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Abstract. We use circular sequences to give an improved lower bound
on the minimum number of (≤ k)-sets in a set of points in general po-
sition. We then use this to show that if S is a set of n points in general
position, then the number �(S) of convex quadrilaterals determined by
the points in S is at least 0.37553

(
n
4

)
+ O(n3). This in turn implies that

the rectilinear crossing number cr(Kn) of the complete graph Kn is at
least 0.37553

(
n
4

)
+ O(n3). These improved bounds refine results recently

obtained by Ábrego and Fernández-Merchant, and by Lovász, Veszter-
gombi, Wagner and Welzl.

1 Introduction

Our aim in this work is to present some selected results and sketches of proofs
of our recent work [5] on the use of circular sequences in the problems described
in the title. For the reader familiar with the application of circular sequences to
these closely related problems, we give in Subsection 1.4 a brief account of what
we perceive is the main achievement hereby reported.

It is well-known that the rectilinear crossing number cr(Kn) of the complete
graph Kn is closely related to the minimum number �(S) of convex quadrilat-
erals in a set S of n points in general position.

Observation 1 For each positive integer n,

cr(Kn) = min
|S|=n

�(S),

with the minimum taken over all point sets S with n elements in general position.
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Working independently, Ábrego and Fernández-Merchant [1], and Lovász,
Vesztergombi, Wagner and Welzl [13] recently explored the close connection
between �(S) and the number η≤k(S) of (≤ k)-sets of S. The following result
is implicitly proved in [1], and the connection with (≤ k)-sets was particularly
emphasized in [13].

Theorem 1 ([1] and [13]). Let S be a set of n points in the plane in general
position. Then

�(S) =
∑

1≤k<(n−2)/2

(
n − 2k − 3

)
η≤k+1(S) + O(n3),

where η≤j(S) denotes the number of (≤ j)-sets of S.

We recall that the rectilinear crossing number cr(G) of a graph G is the
minimum number of pairwise intersections of edges in a drawing of G in the
plane in which every edge is drawn as a straight segment. We also recall that if
S is a set of points in the plane in general position, then a k-set is a subset T
of S with |T | = k, and such that T can be separated from its complement T \ S
by a line. An i-set with 1 ≤ i ≤ k is a (≤ k)-set. As we mentioned above, we use
η≤k(S) to denote the number of (≤ k)-sets of S.

In this paper we follow the approach, via circular sequences, used by Ábrego
and Fernández-Merchant and (independently) by Lovász, Vesztergombi, Wagner
and Welzl, to give improved lower bounds for η≤k(S). In view of Observation 1
and Theorem 1, these refined bounds immediately imply improved bounds for
�(S) (for any set S) and for cr(Kn).

1.1 The Relationship Between �(S) and Circular Sequences

Let S be a set of n points in general position in the plane. In [1] and [13], it is
shown that �(S) is closely related to η≤k(S).

While the important problem of determining, for each k, the maximum num-
ber of k-sets remains tantalizingly open (the best current bounds are O(nk1/3)
and neΩ(log k) (see [8] and [18], respectively), it is known that the maximum
number of (≤ k)-sets of an n-point set S in the plane is nk (this is attained iff
S is in convex position; see [3] and [21]).

In [13] and [21], it is shown that if S is a collection of points in general
position, then �(S) is a linear combination of {η≤j(S)}. Indeed, Theorem 1
above is a direct consequence of Lemma 9 in [13].

Theorem 1 is exploited in [13] by finding a nontrivial lower bound for η≤k(S)
for every k < n/2 and every set S of n points in general position (and using an
even better bound for k close to n/2, which follows from the results in [20]). See
Theorems 2 and 4 in [13]. To obtain the bound in their Theorem 2, they follow
the approach of circular sequences.

A circular sequence on n elements Π is a sequence (π0, π1, . . . , π(n
2)) of permu-

tation of the set {1, 2, . . . , n}, where π0 is the identity permutation (1, 2, . . . , n),
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π(n
2) is the reverse permutation (n, n−1, . . . , 1), and any two consecutive permu-

tations differ by exactly one transposition of two elements in adjacent positions.
A transposition that occurs between elements in positions i and i+1, or between
elements in positions n − i and n − i + 1 is i-critical. A transposition is (≤ k)-
critical if it is critical for some i ≤ k. We denote the number of (≤ k)-critical
transpositions in Π by χ≤k(Π)), and use X≤k(n) to denote the minimum of
χ≤k(Π) taken over all circular sequences Π on n elements.

Circular sequences can be used to encode any set S of points in general
position as follows (see [12]). Let L be a (directed) line that is not orthogonal
to any of the lines defined by pairs of points in S. We label the points in S
as p1, p2, . . . , pn, according to the order in which their orthogonal projections
appear along L. As we rotate L (say counterclockwise), the ordering of the
projections changes precisely at the positions where L passes through a position
orthogonal to the line defined by some pair of points r, s in S. At the time the
projection change occurs, r and s are adjacent in the ordering. and the ordering
changes by transposing r and s. By keeping track of all permutations of the
projections as L is rotated by 180o, we obtain a circular sequence ΠS .

The crucial observation is that (≤ k)-sets are in one-to-one correspondence
with (≤ k)-critical transpositions of ΠS .

Observation 2 Let S be a set of n points in the plane in general position, and
let k < n/2. Then

η≤k(S) = χ≤k(ΠS).

Combining Theorem 1 and Observation 2 and recalling the definition of
X≤k(n), one immediately obtains the following statement, obtained indepen-
dently in [1] and [13].

Theorem 2 ([1] and [13]). Let S be a set of n points in the plane in general
position. Then

�(S) =
∑

1≤k<(n−2)/2

(
n − 2k − 3

)
χ≤k+1(ΠS) + O(n3)

≥
∑

1≤k<(n−2)/2

(
n − 2k − 3

)
X≤k+1(n) + O(n3).

Having reduced the problem of bounding �(S) to the problem of bound-
ing X≤k(n), Ábrego and Fernández-Merchant [1], and independently Lovász,
Vesztergombi, Wagner and Welzl [13], then proceeded to the (combinatorial)
problem of deriving good estimates for X≤k(n).

1.2 Previous Estimates for X≤k(n) and Their Consequences

In [1] and [13], the following was proved:

X≤k(n) ≥ 3
(

k + 1
2

)
, for every positive n and every k < n/2. (1)

In [1], this result is applied together with Theorem 2, to obtain the following.



28 József Balogh and Gelasio Salazar

Theorem 3 (Ábrego and Fernández-Merchant [1]). If S is any set of n
points in general position, then

�(S) ≥ 1
4

⌊
n

4

⌋ ⌊
n − 1

4

⌋⌊
n − 2

4

⌋ ⌊
n − 3

4

⌋
= 0.375

(
n

4

)
+ O(n3). (2)

As a corollary, they obtain cr(Kn) ≥ 0.375
(
n
4

)
+ O(n3).

We observe that the bound X≤k(n) ≥ 3
(
k+1
2

)
is sharp for k ≤ n/3 (see

Example 3 in [13]). Therefore, any improvement on �(S) based on the approach
of circular sequences must necessarily rely on bounds for X≤k(n) that are strictly
better than 3

(
k+1
2

)
for (some subset of) the interval n/3 < k < (n − 2)/2. Prior

to the present paper, the only such bound reported is the following, which is
derived in [13] using a result from [20]:

X≤k(n) ≥ n2

2
− n
√

n2 − 4k2 + O(n). (3)

Now (3) is strictly better than (1) for k sufficiently close to n/2, namely for

k > k0(n) :=
√

(2
√

13 − 5)/9n ≈ 0.4956n + O(
√

n). Combining (1) (which is
also proved in [13] independently of [1]) and (3), and applying Theorem 2, the
following was proved in [13].

Theorem 4 (Lovász, Vesztergombi, Wagner and Welzl [13]). If S is any
set of n points in general position, then

�(S) > 0.37501
(

n

4

)
+ O(n3).

Again, in view of Observation 1 this immediately yields an improved bound
for cr(Kn).

Although numerically the improvement (of roughly 1.088 · 10−5) given in
Theorem 4 over 0.375 may seem marginal, conceptually it is most relevant,
since it shows that the rectilinear and the ordinary crossing number of Kn

(which considers drawings in which the edges are not necessarily straight seg-
ments) are different on the asymptotically relevant term n4. This last obser-
vation follows since there are (non-rectilinear) drawings of Kn with exactly
(1/4)�n/4��(n − 1)/4��(n − 2)/4��(n − 3)/4� = 0.375

(
n
4

)
+ O(n3) crossings. No

better (non-rectilinear) drawings of Kn are known, and consequently the (non-
rectilinear) crossing number of Kn has been long conjectured to be exactly
(1/4)�n/4��(n − 1)/4��(n − 2)/4��(n − 3)/4� (see for instance [10]).

1.3 Our Results: Improved Bound for X≤k(n) and Its Consequences

The core of this paper is an improved bound on the minimum number X≤k(n) of
(≤ k)-critical transpositions in any circular sequence on n elements. Our bound
is given in terms of two functions F (k, n) and s(k, n) defined as follows.
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For all positive integers k, n such that k < n, let

F (k, n) :=
(

2 − 1
s(k, n)

)
k2 −

(
(s(k, n) − 1)2

s(k, n)

)
k(n − 2k − 1)

+
(

s(k, n)4 − 7s(k, n)2 + 12s(k, n)− 6
12s(k, n)

)
(n − 2k − 1)2,

where

s(k, n) :=








1
2







1 +

√√
√
√
√
√√

1 + 6
(

k

n

)
−
(

9
n

)

1 − 2
(

k

n

)
−
(

1
n

)














.

Using this notation, our main result is the following.

Theorem 5 (Main result). For every positive integer n and every k < n/2,

X≤k(n) ≥ F (k, n) + O(n).

This bound is better than the bounds in (1) and (3) for k > k1(n) :=
(1/162)

(−71 + 71n +
√

19n2 − 38n + 19
) ≈ 0.465178n + O(

√
n) (see [5]).

The full proof of Theorem 5 is given in [5]. We present a sketch of the general
ideas in the proof in Section 2.

By Observation 2, the refined bound for X≤k(n) given in Theorem 5 imme-
diately implies improved bounds for η≤k(S), for k ≥ k1(n).

Moreover, in view of Theorem 2, Theorem 5 also gives improved bounds for
�(S), for any set S of n points in general position.

The corresponding calculations (which are somewhat tedious but by no means
difficult) are sketched in Section 3, where the following is established.

Proposition 1. For every positive integer n and every k < n/2,

∑

1≤k<(n−2)/2

(
n− 2k− 3

) ·max
{

3
(

k + 2
2

)
, F (k + 1, n)

}
≥ 0.37553

(
n

4

)
+ O(n3).

By applying Theorem 5 and Proposition 1 to Theorem 2, we obtain the
following.

Corollary 1. If S is a set of n points in the plane in general position, then

�(S) ≥ 0.37553
(

n

4

)
+ O(n3).

In view of Observation 1, we also have the following.

Corollary 2. For each positive integer n,

cr(Kn) ≥ 0.37553
(

n

4

)
+ O(n3).
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To put this improved lower bound on cr(Kn) into context, first we should
point out that the lower bounds on cr(Kn) proved in [1] and [13] represent a
remarkable improvement over the previous best general lower bounds. Previous
to the successful use of the approach of circular sequences (Edelsbrunner et al. [9]
also claimed to have proved that X≤k(n) ≥ 3

(
k+1
2

)
, but their argument seems

to have a gap), the best lower bound known was cr(Kn) ≥ 0.3288
(
n
4

)
[19].

The improved lower bounds on cr(Kn) reported in [1] and [13] are partic-
ularly attractive since they are remarkably close to the best upper bound cur-
rently known, namely cr(Kn) ≤ 0.3807

(
n
4

)
[2]. This bound was obtained using a

computer-generated base case. The best known upper bound derived “by hand”
(quoting [13]), namely cr(Kn) ≤ 0.3838

(
n
4

)
, was obtained by Brodsky, Durocher,

and Gethner [6].
We also mention that the exact crossing number of Kn is known for n ≤ 16.

For all n ≤ 9, the exact value of cr(Kn) can be found for instance in [22]. For
n = 10 it was determined by Brodsky, Durocher, and Gethner [7], for n = 11
and 12 it was calculated by Aichholzer, Aurenhammer, and Krasser [2], and
quite recently Aichholzer and Krasser determined it for n = 13, 14, 15, 16 (pri-
vate communication). The most current information on the rectilinear crossing
number of Kn for specific values of n is given in Aichholzer’s comprehensive web
page http://www.igi.tugraz.at/oaich/triangulations/crossing.html.

From Corollary 2, the best bounds currently known for cr(Kn) are as follows:

0.37553
(

n

4

)
+ O(n3) ≤ cr(Kn) ≤ 0.3807

(
n

4

)
+ O(n3).

1.4 A Brief Discussion on the Main New Results
From our own perspective, the most important contribution of this work is per-
haps not the closing of the gap between the lower and upper bounds for �(S)
and cr(Kn), but the evidence that the technique of circular sequences can be
further pushed to yield (substantial, we think) improved results. Indeed, by us-
ing exclusively circular sequences we could show that the number of (≤ k)-sets
is strictly greater than 3

(
k+1
2

)
for k ≥ k1n ≈ 0.465n, thus closing the gap for

roughly 20% of the interval for which this was previously unknown. This success
gives us hope that even better results can be obtained by alternative approaches
within the technique of circular sequences.

2 Bounding the Number of (≤ k)-Critical Transpositions:
Sketch of Proof of Theorem 5

Our strategy to prove Theorem 5 is as follows. First we show that the number of
(≤ k)-critical transpositions in any circular sequence Π on n elements is bounded
by below by a function that depends on the solution of a maximization problem
over a certain family of digraphs. This is done in Section 2.1 (see Proposition 2).
Then, in Section 2.2, we find an upper bound for the solution of the maximization
problem over this set of digraphs (see Proposition 5).

We will conclude this section with the (by then obvious) observation that
Theorem 5 follows from Propositions 2 and 5.
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2.1 Bounding the Number of (≤ k)-Critical Transpositions
in Terms of the Solution of a Digraph Optimization Problem

Our lower bound for the number of (≤ k)-critical transpositions in a circular
sequence is given in terms of the maximum of an objective function taken over a
certain set of digraphs which we now proceed to define. We use −→uv to denote the
directed edge from vertex u to vertex v. The indegree and outdegree of vertex u
in the digraph D are denoted [u]−D and [u]+D, respectively.

Definition. Let k, m be integers such that 2 ≤ m < k. A digraph D with vertex
set {v1, v2, . . . , vk} is a (k, m)-digraph if it satisfies the following conditions:

(i) There is some vertex vi such that [vi]−D = 0.
(ii) For every i ∈ {1, . . . , k}, [vi]+D ≤ [vi]−D + (m − 1).
(iii) There is a one-to-one ordering map fD : {1, 2, . . . , k} → {1, 2, . . . , k}, such

that, for all i, j ∈ {1, 2, . . . , k}, if −−→vivj is in D then fD(i) < fD(j).

We let Dk,m denote the set of all (k, m)-digraphs.
The following is one of the core statements of this work. For the sake of

brevity, we omit its proof (see [5]).

Proposition 2. Let Π be any circular sequence on n elements and let k < n/2.
Define m := n − 2k. Then

χ≤k(Π) ≥ 2k2 + km

− max
D∈Dk,m





2
∑

1≤i≤k

[vi]−D +
∑

1≤i≤k

min
{
[vi]−D − [vi]+D + (m − 1), m

}




.

2.2 Bounding the Solution of the Digraph Optimization Problem

The next step is to find a (good) upper bound for the maximization problem in
Proposition 2. We achieve this in two steps. First we find a digraph D0(k, m) in
which the maximum is attained, and then we estimate the value of the objective
function at D0(k, m).

Given the nature of the maximization problem in Proposition 2, it is natu-
ral to expect that the objective function is maximized in the digraph D0(k, m)
(with vertex set {v1, v2, . . . , vk}) in which [vi]+D0(k,m) is maximum possible for
each i (subject to the conditions that define Dk,m), and in which the [vi]+D0(k,m)

directed edges leaving each vi have endpoints vi+1, vi+2, . . . , vi+[vi]
+
D0(k,m)

(infor-

mally speaking, “there are no gaps”). It can be proved that this is indeed the
case, but the proof is long and somewhat technical. For the sake of brevity, we
omit the proof of the following statement, and refer the interested reader to [5].

Proposition 3. The optimal value of the maximization problem in Proposi-
tion 2 is attained at the digraph D0(k, m) with vertex set {v1, v2, . . . , vk} defined
as follows:
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(1) [v1]−D0(k,m) = 0;

(2) [vi]+D0(k,m) = min{[vi]−D0(k,m) + (m − 1), k − i}, for every i ≥ 1; and

(3) For all i, j such that 1 ≤ i < j ≤ k, the directed edge −−→vivj is in D0(k, m)
if and only if i + 1 ≤ j ≤ i + [vi]+D0(k,m).

For the rest of the section, we denote D0(k, m) simply by D0.
In view of this and Proposition 2, our next goal is to estimate a bound for

2
∑

1≤i≤k [vi]−D0(k,m) +
∑

1≤i≤k min
{
[vi]−D0(k,m) − [vi]+D0(k,m) + (m − 1), m

}
.

We note that this expression is given in terms of [vi]−D0
and [vi]+D0

. Moreover,
in view of the properties of D0, each [vi]+D0

is fully determined by [vi]−D0
. Thus

our first step is to determine (exactly) [vi]−D0
for each i. The value of [vi]−D0

is
given in terms of functions Sm and Tm defined as follows.

For each real number x ≥ 1, we let Sm(x) denote the (unique) positive integer
such that 1 + (Sm(x) − 1)Sm(x)(m − 1)/2 ≤ x < Sm(x)(Sm(x) + 1)(m − 1)/2.
If i ≥ 1 is an integer, then we let Tm(i), Um(i) denote the (unique) integers
that satisfy 0 ≤ Tm(i) ≤ m − 2, 0 ≤ Um(i) ≤ Sm(i) − 1, and such that i =
1 + (Sm(i) − 1)Sm(i)(m − 1)/2 + Sm(i)Tm(i) + Um(i).

The following statement can be proved by induction on i (see [5]).

Proposition 4. For each integer i such that 1 ≤ i ≤ k, we have [vi]−D0
=

(Sm(i) − 1)(m − 1) + Tm(i).

Once we have the exact value of [vi]−D0
for every i, we then proceed to estimate

an upper bound for the objective function in Proposition 2, evaluated at D0.
The arguments and calculations needed to prove this bound are not difficult,
but somewhat technical and long. We omit the proof of this statement, and refer
once again the interested reader to [5]. The upper bound obtained is the right
hand side in the inequality in our next statement. Since the objective function
is maximized at D0, we finally conclude the following.

Proposition 5.

max
D∈Dk,m





2
∑

1≤i≤k

[vi]−D +
∑

1≤i≤k

min
{
[vi]−D − [vi]+D + (m − 1), m

}




≤

k2

Sm(k)
+

(Sm(k)2 − Sm(k) + 1)
Sm(k)

(m − 1)k

−
(

Sm(k)4 − 7Sm(k)2 + 12Sm(k) − 6
12Sm(k)

)
(m − 1)2 + O(k),

where

Sm(k) =








1 +

√

1 +
8(k − 1)
m − 1

2






 .
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2.3 Proof of Theorem 5

We recall that m = n − 2k, and so s(k, n) = Sm(k). Therefore Theorem 5 is
an immediate consequence of Propositions 2 and 5 (note that we also used the
obvious inequality km ≥ k(m − 1)).

3 Proof of Proposition 1

Our first observation is that, for sufficiently large n, F (k, n) > 3
(
k+1
2

)
for every

k > k1(n) (see Appendix in [5]). We also note that if we define

s̃ (x) :=

⌊
1
2

(

1 +

√
1 + 6x

1 − 2x

)⌋

,

then it is easy to check that s̃(k/n) = s(k, n) (and, moreover, s̃(k/n)=s(k+1, n))
for all but at most O(

√
n) values of k.

These observations imply that

(n−2)/2−1∑

k=1

(
n − 2k − 3

) · max
{

3
(

k + 2
2

)
, F (k + 1, n)

}

≥ 3
�k1(n)�∑

k=1

(
n − 2k − 3

)
(

k + 2
2

)
+

(n−2)/2−1∑

k=�k1(n)�+1

(
n − 2k − 3

)
F (k + 1, n)

≥ 3
2
n3 ·



�k1(n)�∑

k=1

(
1 − 2

(
k

n

))(
k

n

)2


+

n3 ·



(n−2)/2−1∑

k=�k1(n)�+1

(
1 − 2

(
k

n

))
F (k + 1, n)

n2



+ O(n3)

3
2
n4 ·
(∫ c1

0

(1 − 2x)x2 dx

)
+ n4 ·

(∫ 1/2

c1

(1 − 2x)f̃(x) dx

)

+ O(n3),

where c1 := 0.465178 (recall that k1(n) ≈ 0.465178n + O(
√

n)), and

f̃(x) :=
(

2 − 1
s̃(x)

)
x2 −

(
(s̃(x) − 1)2

s̃(x)

)
x(1 − 2x)

+
(

s̃(x)4 − 7s̃(x)2 + 12s̃(x) − 6
12s̃(x)

)
(1 − 2x)2.
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To complete the proof, we note that a numerical evaluation of the integrals
in the previous inequality yields

3
2

∫ c1

0

(1 − 2x)x2 dx +
∫ 1/2

c1

(1 − 2x)f̃(x) dx ≈ 0.37553
24

.
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