
Drawing Power Law Graphs

Reid Andersen, Fan Chung�, and Lincoln Lu

University of California, San Diego

Abstract. We present methods for drawing graphs that arise in various
information networks. It has been noted that many realistic graphs have
a power law degree distribution and exhibit the small world phenomenon.
Our methods are influenced by recent developments in the modeling of
such graphs.

1 Introduction

Several research groups have observed that many networks, including Internet
graphs, call graphs and social networks, have a power law degree distribution,
where the fraction of nodes with degree k is proportional to k−β for some pos-
itive exponent β [8]. Many networks also exhibit a so-called “small world phe-
nomenon” consisting of two distinct properties — small average distance between
nodes, and a clustering effect where two nodes sharing a common neighbor are
more likely to be adjacent. It was shown in [2] that a random power law graph
has small average distance and small diameter. However, random power law
graphs do not adequately capture the clustering effect.

To model the small world phenomenon, several researchers have introduced
random graph models with additional geometric structure. Kleinberg [7] pro-
posed a model where a grid graph G is augmented with random edges between
nodes u, v with probability proportional to [dG(u, v)]−r for some constant r.
Fabrikant, Koutsoupias and Paradimitriou [4] proposed a model where vertices
are points in the Euclidean plane and edges are added by optimizing a function
involving both Euclidean distance and graph distance to a central node.

Chung and Lu [3] introduced a hybrid graph model where a random power law
graph called the “global” graph is added to a “local graph” having a certain kind
of local connectivity. In [1] an efficient algorithm was presented for extracting a
highly connected local graph from an arbitrary graph. For a graph generated by
the hybrid model, this algorithm recovers the original local graph up to a small
error.

In this paper, we present a drawing method using the algorithm for extracting
local graphs. This algorithm may be useful for drawing graphs similar to those
produced by the hybrid model. A graph from the hybrid model contains a random
power law graph which will not be amenable to most drawing methods, but also
contains a local graph which can be more geometric in nature. The recovery
theorem in [1] guarantees that when applied to a graph from the hybrid model,
our algorithm produces a layout which depends largely on the local graph.
� Research supported in part by NSF Grants DMS 0100472 and ITR 0205061.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 12–17, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Drawing Power Law Graphs 13

2 Preliminaries

2.1 Weighted Graphs and Quotient Graphs
Although our input graphs are unweighted, our algorithm will form weighted
graphs by collapsing connected components into single vertices. A weighted
graph is a simple graph G together with a vertex weight function wG(v) and
an edge weight function φG(e). Suppose that V (G) has a partition V (G) =
C1 ∪ C2 ∪ · · · ∪ Ck. The quotient graph Q is defined as follows. The vertices of
Q are communities C1, . . . Ck, and we set

wQ(Ck) =
∑

u∈Ci

wG(u).

φQ(Ci, Cj) =
∑

u∈Ci,v∈Cj

φG(u, v).

There is an edge between Ci and Cj if φQ(Ci, Cj) > 0.

2.2 Local Flow and Local Graphs
Given a weighted graph with edge capacity function φ, we will define a notion
of local connectivity between vertices. We will say a path is short if it has length
less than or equal to �. A short flow is a positive linear combination of short
paths where no edge carries more than its capacity. The maximum short flow
problem can be viewed as a linear program, and can be computed in polynomial
time using nontrivial but relatively efficient algorithms for fractional packing
(See 2.3).
Definition 1 (Short Flow). A short flow is a feasible solution to the following
linear program. The flow connectivity f(u, v) between two vertices is the maxi-
mum value of any short flow, which is the optimum value of the following LP
problem. Let P� be the collection of short u-v paths, and let Pe be the collection
of short u-v paths which intersect the edge e.

maximize
∑

p∈P�

fp (1)

subject to
∑

p∈Pe

fp ≤ φ(e) for each e ∈ L

fp ≥ 0 for each p ∈ P�

We say two vertices u and v are (f, �)-connected if there exists a short flow
between them of size at least f . We a say a graph L is an (f, �)-local graph if
for each edge e = (u, v) in L, the vertices u and v are (f, �)-connected in L.

2.3 Computing the Maximum Short Flow
Finding the maximum short flow between u and v in a graph G with given edge
capacities φ(e) can be viewed as a fractional packing problem, which has the form

max{ cTx | Ax ≤ b,x � 0 }.



14 Reid Andersen, Fan Chung, and Lincoln Lu

To view the maximum short flow as a fractional packing problem, first let
G(u, v) be a subgraph containing all short paths from u to v. For example, we
may take G(u, v) = N�/2(u)∪N�/2(v). Let A be the incidence matrix where each
row represents an edge in G(u, v) and each column represents a short path from
u to v. Let b = φ, and c = 1.

Using the algorithm of Garg and Könemann in [5] for general fractional
packing problems, one can obtain a (1 − ε)−2-approximation to the maximum
short flow in time O(M2�� 1

ε log1+εM�), where M is the number of edges in
G(u, v).

3 Extracting the Local Graph

For a given graph, we wish to extract the largest (f, �)-local subgraph. We define
Lf,�(G) to be the union of all (f, �)-local subgraphs in G. By definition, the union
of two (f, �)-local graphs is an (f, �)-local graph, and so Lf,�(G) is in fact the
unique largest (f, �)-local subgraph in G. We remark that Lf,�(G) is not neces-
sarily connected. The simple greedy algorithm Extract computes Lf,�(G) in any
graph G using O(m2) max-short-flow computations, where m is the number of
edges in G. The number of max-short-flow computations can be reduced by using
a standard random sampling approach if we are willing to accept approximate
local graphs. We say L is an α-approximate (f, �)-local graph if L(f, �) ⊆ L, and
at most an α-fraction of the edges in L are not (f, �)-connected. The algorithm
Approximate Extract computes a series of approximate local graphs.

Extract:
Input: G,f ,�
If there is an edge e = (u, v) ∈ G where u,v are not (f, �)-connected in G,

remove e from G.
When no further edges can be removed, output G.

Approximate Extract:
Input: G,�,{f1 ≤ · · · ≤ fk}
Let m be the number of edges in G.
For i = 1 . . . k:

Repeat until no edge is removed for 1
α log mk

δ consecutive attempts:
Pick an edge e = (u, v) from G uniformly at random.
If u, v are not (fi, �)-connected, remove (u, v) from G.

Let Li = G, reset m to be the number of edges in Li,
and proceed to compute Li+1.

Stop when graphs L1 ⊇ · · · ⊇ Lk have been output.

Since at most m edges are removed from G and there are at most 1
α log mk

δ
attempted removals for every edge removed, Approximate Extract performs at
most m

α log mk
δ max-short-flow computations.

Theorem 1. Given G, �, and {f1 ≤ · · · ≤ fk}, let L1 ⊇ · · · ⊇ Lk be the output
of Approximate Extract. With probability at least 1 − δ, each of the graphs Li

is an α-approximate (fi, �)-local graph.



Drawing Power Law Graphs 15

Proof: Given i ∈ [1, k], let e1 . . . eJ be the edges removed from Li−1 to obtain
Li. Let mi be the number of edges in Li−1 and note that J ≤ mi. Let Tj be
the number of attempts between the removal of the ej−1 and ej. If Li is not an
α-approximate local graph, then some Tj must be at least 1

α log mik
δ when at

least an α-fraction of the edges remaining in Li were not (fi, �)-connected. For
a given j, this occurs with probability at most

(1 − α)Tj ≤ e−αTj ≤ e− log
mik

δ ≤ δm−1
i /k.

Since J ≤ mi, the probability that this occurs for any Tj is at most δ/k. The
probability that a bad Tj occurs for any Li is at most δ, and the result follows.

4 An Algorithm for Drawing Power Law Graphs

In this section we describe a framework for producing drawings of power law
graphs that reflect local connectivity. In the algorithm Local Draw below, a local
subgraph is used to determine the layout of the vertices. Our algorithm uses
as a subroutine a standard force-directed drawing method which we describe
in section 4.2, but other methods can be used in its place. The algorithm is
motivated by the structure of power law graphs, but can be applied to general
graphs as well.

4.1 The Algorithm

Local Draw:
Given an input graph G, compute the local graph Lf,� for some choice of f and
� using Extract or Approximate Extract. Let Πf,� be the partition induced by
the connected components C1 . . . Ck of Lf,�, and let Q be the quotient graph of G
with respect to this partition. Use the force-based drawing algorithm to produce
drawings of each component C1 . . . Ck and Q separately. To combine into a single
drawing, let q1 . . . qk be the coordinates of the vertices in Q corresponding to
C1 . . . Ck, and let

ri =
1
2
min

j
‖qi − qj‖.

Scale each drawing of Ci by ri, and place at location qi to create a new drawing
which only contains edges in Lf,�. Apply the force-based algorithm to this draw-
ing to determine the final layout of the vertices, and then add back the edges in
G \ Lf,�.

4.2 A Force-Directed Drawing Method

Our algorithms use a standard force-based drawing method, modified for use on
graphs with vertex weights w(v) and edge weights φ(e). We define a repulsive
force between every pair of vertices, where the force acting on vertex u due to
vertex v is

Ru,v =
1
n2

u − v

‖u − v‖2
w(u)w(v)



16 Reid Andersen, Fan Chung, and Lincoln Lu

Each edge also acts as a spring, with the force on a vertex u from the edge
e = (u, v) defined to be

Su,v =
1
n

(v − u)φ(e)

To keep the drawing in a bounded area, we place all vertices within the unit
circle and define a force between each vertex and the boundary of the circle.

Bu = − u

‖u‖
1

(1 − ‖u‖)w(u)

The standard force-based approach is to compute the sum of the forces acting
on each vertex and move in the resulting direction at each time step.

Fig. 1. Local Draw applied to the giant
component of random graph G(n, p) with
n = 500 and p = 0.004.

Fig. 2. Local Draw applied to the in-
duced subgraph of G: the collaboration
graph on authors with Erdős number ex-
actly 2.

Fig. 3. The quotient graph of G. Fig. 4. The largest connected component
in the local graph of G, of size 15.



Drawing Power Law Graphs 17

5 Implementation and Examples

We have implemented Extract and Local Draw and experimented on several
examples. Figure 1 is a drawing of a sparse random graph, generated from the
Erdős-Rényi model G(n, p) with n = 500 and p = .004. Jerry Grossman [6] has
graciously provided data from a collaboration graph of the second kind, where
each vertex represents an author and each edge represents a joint paper with two
authors. Our example graph G is the largest component of the induced subgraph
on authors with Erdős number exactly 2. This graph contains 834 vertices. We
applied Local Draw to G with parameters (f = 2, � = 3), obtaining the drawing
in Figure 2, and in the process obtaining the quotient graph shown in Figure
3 and the local graph. The largest connected component of the local graph is
shown in Figure 4.

References

1. R. Andersen, F. Chung and L. Lu, Analyzing the small world phenomenon using
a hybrid model with local network flow, Proceedings of the Third Workshop on
Algorithms and Models for the Web-Graph (2004).

2. F. Chung and L. Lu, Average distances in random graphs with given expected degree
sequences, Proceedings of National Academy of Science, 99 (2002).

3. F. Chung and L. Lu, The small world phenomenon in hybrid power law graphs
Complex Networks, (Eds. E. Ben-Naim et. al.), Springer-Verlag, (2004).

4. A. Fabrikant, E. Koutsoupias and C. H. Papadimitriou, Heuristically optimized
trade-offs: a new paradigm for power laws in the Internet, STOC 2002.

5. N. Garg, J. Könemann, Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. Technical Report, Max-Planck-Institut fur
Informatik, Saarbrucken, Germany (1997).

6. Jerry Grossman, Patrick Ion, and Rodrigo De Castro, Facts about Erdős Numbers
and the Collaboration Graph, http://www.oakland.edu/∼grossman/trivia.html.

7. J. Kleinberg, The small-world phenomenon: An algorithmic perspective, Proc. 32nd
ACM Symposium on Theory of Computing, 2000.

8. M. Mitzenmacher, A Brief History of Generative Models for Power Law and Log-
normal Distributions, Internet Math. 1 (2003), no. 2.


	1 Introduction
	2 Preliminaries
	2.1 Weighted Graphs and Quotient Graphs
	2.2 Local Flow and Local Graphs
	2.3 Computing the Maximum Short Flow

	3 Extracting the Local Graph
	4 An Algorithm for Drawing Power Law Graphs
	4.1 The Algorithm
	4.2 A Force-Directed Drawing Method

	5 Implementation and Examples
	References



