
An Efficient Implementation
of Sugiyama’s Algorithm

for Layered Graph Drawing�

Markus Eiglsperger1, Martin Siebenhaller2, and Michael Kaufmann2

1 Universität Konstanz, Fakultät für Informationswissenschaften,
78457 Konstanz, Germany

markus.eiglsperger@uni-konstanz.de
2 Universität Tübingen, WSI für Informatik, Sand 13,

72076 Tübingen, Germany
{siebenha,mk}@informatik.uni-tuebingen.de

Abstract. Sugiyama’s algorithmic framework for layered graph drawing
is commonly used in practical software. The extensive use of dummy
vertices to break long edges between non-adjacent layers often leads to
unsatisfactorial performance. The worst-case running-time of Sugiyama’s
approach is O(|V ||E| log |E|) requiring O(|V ||E|) memory, which makes
it unusable for the visualization of large graphs. By a conceptually simple
new technique we are able to keep the number of dummy vertices and
edges linear in the size of the graph and hence reduce the worst-case
time complexity of Sugiyama’s approach by an order of magnitude to
O((|V | + |E|) log |E|) requiring O(|V | + |E|) space.

1 Introduction

Most approaches for drawing directed graphs used in practice follow the same
framework developed by Sugiyama et al. [17], which produces layered layouts [3].
This framework consists of four phases: In the first phase, called Cycle Removal,
the directed input graph G = (V, E) is made acyclic by reversing appropriate
edges. During the second phase, called Layer Assignment, the vertices are as-
signed to horizontal layers. Before the third phase starts, long edges between
vertices of non-adjacent layers are replaced by chains of dummy vertices and
edges between the corresponding adjacent layers. Hence in the third phase, called
Crossing Reduction, an ordering of the vertices within a layer is computed such
that the number of edge crossings is reduced. Finally, the fourth phase, called
Horizontal Coordinate Assignment, calculates an x-coordinate for each vertex.
Now the dummy vertices introduced after the layer assignment are removed and
replaced by bends.

Unfortunately, almost all problems occuring during the single phases of this
approach are NP-hard: Feedback-arc set [12], Precedence Constrained Multi-
processor Scheduling [5], 2-layer crossing minimization [8], etc. Nevertheless, for
� This work has partially been supported by the DFG-grant Ka512/8-2. It has been

performed when the first author was with the Universität Tübingen.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 155–166, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

156 Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

all these problems appropriate heuristics have been developed and nearly all
practical graph drawing software use this approach, mostly enriched by mod-
ifications required in practice like large vertices, same-layer-edges, clustering,
etc.

In the following, we review Sugiyama’s framework for drawing directed graphs
in more detail and give the necessary definitions and results. Then we use this
as basis for our new approach. In the rest of this work we assume that the input
graph is already acyclic.

1.1 Layer Assignment and Normalization

Let L1,..,Lh be a partition of V with Li ⊂ V , 1 ≤ i ≤ h and
⋃h

i=1 Li = V
(h denotes the number of layers). Such a partition is called a layering of G if for
all e = (v, w) with v ∈ Li and w ∈ Lj holds i < j. The number of vertices in a
layer Li is denoted with ni. The span of edge e is j − i. In a layered drawing,
all vertices v ∈ Li are drawn on a horizontal line (same y-coordinate). We call
the layering proper if span(e) = 1 for all edges e ∈ E. In most applications the
layers of the vertices can be assigned arbitrarily and, in some cases, the layer
assignment is even part of the input.

For edges e = (u, v) with span(e) > 1 and for which the endpoints u and
v lie on layers Li and Lj , we replace edge e by a chain of dummy vertices
u = di, di−1, . . . , dj+1, dj = v where any two consecutive dummy vertices are
connected by a dummy edge. Vertex dk for i ≤ k ≤ j is placed on layer Lk.
This process is called normalization and the result the normalized graph GN =
(VN , EN). With this construction, the next phase starts with a proper layering.

Gansner et al. [10] presented an algorithm, which calculates a layer assign-
ment of the vertices such that the total number of dummy vertices is minimized.
The algorithm for minimizing the number of dummy vertices is a network sim-
plex method and no polynomial time bound has been proven for it, but several
linear time heuristics for this problem work well in practice [14, 15]. In the worst
case |VN | = O(|V ||E|) and |EN | = O(|V ||E|).

After the final layout of the modified graph, we replace the chains of dummy
edges by polygonal chains in which the former dummy vertices become bends.

1.2 Crossing Reduction

The vertices within each layer Li are stored in an ordered list, which gives the
left-to-right order of the vertices on the corresponding horizontal line. Such an
ordering is called a layer ordering. We will often identify the layer with the
corresponding list Li. The ordering of the vertices within adjacent layers Li−1

and Li determines the edge crossings with endpoints on both layers.
Crossing reduction is usually done by a layer-by-layer sweep where each step

minimizes the number of edge crossings for a pair of adjacent layers. This layer-
by-layer sweep is performed as follows: We start by choosing an arbitrary vertex
order for the first layer L1 (we number the layers from top to bottom). Then
iteratively, while the vertex ordering of layer Li−1 is kept fixed, the vertices of

An Efficient Implementation of Sugiyama’s Algorithm 157

Li are put in an order that minimizes crossings. This step is called one-sided
two-layer crossing minimization and is repeated for i = 2, .., h. Then the sweep
direction is reversed and repeated until no further crossings can be saved.

Many heuristics have been proposed to attack the one-sided two-layer cross-
ing minimization problem [3, 6]. Most important are the median and the barycen-
ter heuristic, where the new position of each vertex v in list Li is chosen relative
to the position of the adjacent vertices from list Li−1.

To decide whether we improved the number of crossings by a sweep, we
have to count this number. This important subproblem, called the bilayer cross
counting problem, has to be solved in each of the steps. The naive sweep-line
algorithm needs time O(|E′| + |C′|) where |E′| is the number of edges between
the two layers and |C′| the number of crossings between these edges [15]. It has
recently been improved to O(|E′| log |V ′|) by Waddle [19] and Barth et al. [2].

The algorithm reduces the bilayer cross counting problem to the problem of
counting the inversions in the vertex sequences of layers Li+1 and Li respectively.
The number of inversions are counted by means of an efficient data structure,
called the accumulator tree T .

1.3 Horizontal Coordinate Assignment

The horizontal coordinate assignment computes the x-coordinate for each vertex
with respect to the layer ordering computed by the crossing reduction phase.
There are two objectives to consider to get nice drawings. First the drawings
should be compact and second the edges should be as vertical as possible.

Gansner et al. [10] model this problem as a linear program:

min
∑

(v,w)∈E

Ω(v, w) · |x(v) − x(w)|

s.t. x(b) − x(a) ≥ δ(a, b) a, b consecutive in Li, 1 ≤ i ≤ h

where Ω(v, w) denotes the priority to draw edge (v, w) vertical and δ(a, b) de-
notes the minimum distance of consecutive vertices a and b. This linear pro-
gram can be interpreted as a rank assignment problem on a compaction graph
Ga = (V, {(a, b) : a, b consecutive in Li, 1 ≤ i ≤ h}) with length function δ.
Each valid rank assignment corresponds to a valid drawing. The above objective
function can be modeled by adding vertices and edges to Ga [10].

The drawback of the above approach is, that edges can have as many bends
as dummy vertices. This creates sometimes a “spaghetti” effect which reduces
the readability. To avoid this negative behaviour the linear segments model was
proposed, where each edge is drawn as polyline with at most three segments.
The middle segment is always drawn vertical. In general, linear segment drawings
have less bends but need more area than drawings in other models. There have
been a number of algorithms proposed for this model [4, 15]. The approach of
Brandes and Köpf [4] produces pleasing results in linear time.

158 Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

1.4 Drawbacks

The complexity of algorithms in the Sugiyama framework heavily depends on the
number of dummy vertices inserted. Although this number can be minimized ef-
ficiently, it may still be in the order of O(|V ||E|) [9]. Assume we use an algorithm
based on the Sugiyama framework which uses the fastest available algorithms
for each phase. Then this algorithm has running time O(|V ||E| log |E|) and uses
O(|V ||E|) memory.

To improve the running time and space complexity we avoid introducing
dummy vertices for each layer that an edge spans. We rather split edges only in
a limited number of segments. As a result, there may be edges which traverse
layers without having a dummy vertex in it. We will extend the existing crossing
reduction and coordinate assignment algorithms to handle this case.

A similar idea is used in the Tulip-software described in [1]. Unfortunately, no
details are given. However, in this approach, only the proper edges are considered
in the crossing reduction phase and the long edges are ignored. This leads to
drawings which have many more crossings than drawings using the traditional
Sugiyama approach. In contrast, we will show that our approach yields the same
results as the methods traditionally used in practice.

2 The New Approach

The basic idea of our new approach is the following: Since in the linear segments
model each edge consists of at most two bends, all corresponding dummy vertices
in the middle layers have the same x-coordinate. We combine them into one
segment and therefore reduce the size of the normalized graph dramatically. More
precisely, if edge e = (v, w) spans between layers Li and Lj with |j − i| > 2,
we introduce only two dummy vertices: pe at layer Li+1 (called p-vertex) and qe

at layer Lj−1 (called q-vertex), as well as three edges: (v, pe), se = (pe, qe), and
(qe, w). The first and the last edge are proper while se, called the segment of e, is
not necessarily proper. If |j − i| = 2 we insert a single dummy vertex re. We call
this transformation sparse normalization and the result the sparse normalized
graph GS = (VS , ES). The size of the sparse normalized graph is linear with
respect to the size of the input graph.

A layer L of a sparse normalized graph contains vertices and segments. A
layer ordering of a sparse normalized graph is a linear ordering of the vertices
and segments in a layer and is called a sparse layer ordering. For a graph G,
there is a one-to-one correspondence between layer orderings of the normalized
graph GN and sparse layer orderings of the sparse normalized graph GS .

Let us look at the layer orderings of normalized graphs: instead of stor-
ing the layer ordering in lists, we can store it in a directed graph D. This
graph has an edge between vertices v and w if and only if these two vertices
are in the same layer i and are consecutive in Li. The ordering < defined as
v < w if and only if there is a directed path from v to w in D, is a complete or-
dering for the vertices of a layer, i.e., either v < w or w < v for v, w ∈ Li.
In fact D is the compaction graph Ga mentioned in the preceding section. The

An Efficient Implementation of Sugiyama’s Algorithm 159

Fig. 1. In the left figure a sparse normalized graph is shown. Thick lines denote the
segments. The right figure shows the corresponding compaction graph.

graph D has |VN | vertices and O(|VN |) edges, which results in a worst case size
of O(|V ||E|).

We want to reduce the size of D to O(|V |+ |E|) without losing the property
that < defines a total layer ordering. The key observation therefor is that the
edges between two segments in D can be omitted if no two segments cross.

Given a layer Li, we partition the layer in the following way:

Si0 , vi0 , Si1 , vi1 , Si2 , vi2 , . . . , Sini−1
, vini−1

, Sini
.

The list Sik
contains the segments which are between vertices vik−1 and vik

for
1 ≤ k ≤ ni − 1, Si0 contains the segments before vi0 and Sini

the segments after
vini−1

. We denote the first element of a non-empty list S as head(S) and the last
element as tail(S). Furthermore, let v be a vertex in VS . We denote with s(v)
the segment to which v is incident if v is a p- or q-vertex, otherwise s(v) = v.
Definition 1. Given a directed acyclic graph G = (V, E) and a sparse layer
ordering in which no two segments cross. The sparse compaction graph (N, A)
of the sparse normalized graph GS = (VS , ES) of G is defined as:

N = {VS \ {v : v is p- or q-vertex}} ∪ {se : se is segment of e ∈ E}
A = {(s(vij−1), s(vij)) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni − 1, Sij = ∅} ∪

{(s(tail(Sij)), s(vij)) : 1 ≤ i ≤ h, 0 ≤ j ≤ ni − 1, Sij �= ∅} ∪
{(s(vij−1), s(head(Sij))) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni, Sij �= ∅}

If we look at two consecutive layers Ln and Ls of a sparse normalized graph
we have the following properties:

P1: A segment se in Ln is either also in Ls or the adjacent q-vertex qe is in Ls.
P2: A segment se in Ls is either also in Ln or the adjacent p-vertex pe is in Ln.

Theorem 1. The ordering < induced by the sparse compaction graph (N, A) of
a sparse normalized graph GS = (VS , ES) defines a sparse layer ordering. The
compaction graph (N, A) has linear size with respect to G.

Our new approach is now as follows: In the first phase we create a sparse
normalization of the input graph. In the second phase we perform crossing min-
imization on the sparse normalization. In the third phase we take the resulting

160 Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

sparse compaction graph and perform a coordinate assignment in linear time
using an approach similar to the one described in [4]. It remains to show how
we can perform crossing minimization on a sparse normalization efficiently.

3 Efficient Crossing Reduction

In this section we present an algorithm which performs crossing minimization
using the barycenter or median heuristic on a sparse normalization. The output
is a sparse compaction graph which induces a sparse layer ordering with the
same number of crossings as these heuristics would produce for a normalization.
For our algorithm it is not important which strategy we choose as long as it
conforms to some rules.

Definition 2. A measure m defines for each vertex v in a layer Li+1 a non-
negative value m(v). If v has only one neighbor w in Li, then m(v) = pos(w),
where pos(w) is the position of w in layer Li.

Clearly the barycenter and median heuristic define such a measure.

Lemma 1. Using such a measure m there are no segments crossing each other.

Proof. A segment represents a chain of dummy vertices. Each dummy vertex v
on a layer Li has exactly one neighbor w in layer Li−1. Hence when we use a
measure m then m(v) = pos(w). Thus two segments never change their relative
ordering and thus never produce a crossing with each other. �

3.1 2-Layer Crossing Minimization

The input of our two-layer crossing minimization algorithm is an alternating
layer Li and the sparse compaction graph for the layers L1, . . . , Li. An alternat-
ing layer consists of an alternating sequence of vertices and containers, where
each container represents a maximal sequence of segments. The output is an al-
ternating layer Li+1 and the sparse compaction graph for L1, . . . , Li+1, in which
the vertices and segments are ordered by some measure. Note that the represen-
tation of layer Li will be lost, since the containers are reused for layer Li+1.

The containers correspond to the lists S of the previous section. The segments
in the container are ordered. The data structure implementing the container must
support the following operations:

• S = create() : Creates an empty container S.
• append(S, s) : Appends segment s to the end of container S.
• join(S1,S2) : Appends all elements of container S2 to container S1.
• (S1,S2) = split(S, s) : Split container S at segment s into containers S1 and

S2. All elements less than s are in container S1 and those who are greater
than s in S2. Element s is neither in S1 nor S2.

• (S1,S2) = split(S,k) : Split container S at position k. The first k elements
in container S are in S1 and the remainder in S2.

• size(S) : Returns the number of elements in container S.

An Efficient Implementation of Sugiyama’s Algorithm 161

Layer 5:

Layer 4:

S 1

v’1 1S’

p1 S 2 v1 p2S 3

v’11S’ S’2

1S’ S’2v1

L :4

L :5

v’11S’ q S’’ 3S’’ 2

v’11S’ S’’ 2 q S’’3

v’1

1S’ S’2

S’2

S’2

L : ,S

L :V

count crossings: 0

2)

3)

4)

5)

6)

pos() = 3, pos() = 0, pos() = 4

split(q,)

1)

Fig. 2. The six steps applied to layers 4 and 5 from figure 1.

Our algorithm Crossing Minimization(Li, Li+1) consists of six steps:

• In the first step we append the segment s(v) for each p-vertex v in layer Li to
the container preceding v. Then we join this container with the succeeding
container. The result is again an alternating layer (p-vertices are omitted).

• In the second step we compute the measure values for the elements in Li+1.
First we assign a position value pos(vij) to all vertices vij in Li. pos(vi0) =
size(Si0) and pos(vij) = pos(vij−1)+ size(Sij)+ 1. Note that the pos values
are the same as they would be in the median or barycenter heuristic if each
segment was represented as dummy vertex. Each non-empty container Sij

has pos value pos(vij−1) + 1. If container Si0 is non-empty it has pos value
0. Now we assign the measure to all non-q-vertices and containers in Li+1.
Recall that the measure of a container is its old position.

• In the third step we calculate an initial ordering of Li+1. We sort all non-q-
vertices in Li+1 according to their measure in a list LV . We do the same for
the containers and store them in a list LS. Then we merge these two sorted
lists in the following way:

162 Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

if m(head(LV)) ≤ pos(head(LS)) then v = pop(LV), append(Li+1, v)
if m(head(LV)) ≥ (pos(head(LS)) + size(head(LS)) − 1)

then S = pop(LS), append(Li+1, S)
else S=pop(LS), v = pop(LV), k = �m(v)−pos(S)�, (S1,S2) = split(S, k),

append(Li+1,S1), append(Li+1, v), pos(S2) = pos(S) + k, push(LS ,S2).

• In the fourth step we place the q-vertices according to the position of their
segment. We do this by calling split(s(v)) for all q vertices v in layer Li+1.

• In the fifth step we perform cross counting according to the scheme proposed
by Barth et al. Using the size(S) operation, we put appropriate weights on
the container S, such that the number of segments in the container can be
taken into account without any loss of performance.

• In the sixth step we perform a scan on Li+1 and insert empty containers
between two consecutive vertices, and call join(S1, S2) on two consecutive
containers in the list. This ensures that Li+1 is an alternating layer.

Finally we create the edges in the sparse compaction graph for layer Li+1.

3.2 The Overall Algorithm

The first and the last layer never contain segments because of property P1 and
P2. Therefore when we perform a sweep or reverse sweep it is easy to create
the initial alternating layer. During the reverse sweeps we simply have to take
the former p-vertices as q-vertices and vice versa and apply the 2-layer crossing
minimization algorithm of the previous section.

There are no other changes to the original Sugiyama approach except for the
different calculation of the measure m for all vertices in a layer, the normalization
of the layer lists such that the lists are alternating, and the modified counting
scheme for crossings. We summarize this section in the following theorem.

Theorem 2. The approach described above is equivalent to traditional crossing
reduction.

4 An Efficient Data Structure

Let n denote the maximal number of elements in a container. To be competitive,
we need a data structure that supports append, split, join and size operations
in O(log n). Thus we use splay trees, a data structure developed by Sleator und
Tarjan [16]. Splay trees are self-adjusting binary search trees, which are easy to
implement because the tree is allowed to become unbalanced and we need not
keep balance information. Nevertheless we can perform all required operations in
O(log n) amortized time. A single operation might cost O(n) but k consecutive
operations starting from an empty tree take O(k log n) time.

The basic operation on a splay tree is called a ‘splay’. Splaying node x makes
x the root of the tree by a series of special rotations. We use splay trees to
represent containers. So we have to implement the container operations.

An Efficient Implementation of Sugiyama’s Algorithm 163

• append(S, s): We search the rightmost element in the tree (last element in
the container) by going from the root down taking always the right child.
Now, we insert s as the right child of the rightmost element and then splay
s. The append operation is performed once for each p-vertex.

• join(S1,S2): To join two containers, we search the rightmost element of S1,
splay it and then make S2 to the right child of it. This operation can only
be invoked by an append operation or during the normalization of a layer
list. Thus, it is invoked O(|V | + |E|) times.

• size(S): While performing the rotations we have to update the size informa-
tion. Therefore each node knows the size of the subtree rooted by it. So we
can maintain the correct size at no extra cost.

• split(S, s): First we have to search s in the container. We can not perform a
conventional tree search because the elements have only an implicit ordering
(their container position) which is not stored by the element. To avoid a
search operation, we store a pointer to s in the corresponding p-vertex (this
split operation is only used when we are processing the q-vertex layer and
the q-vertex knows its corresponding p-vertex). So we just have to splay s
and then take its left and its right child as root for the resulting lists. The
split operation is performed once for each q-vertex.

• split(S,k): First we have to search the element at position k. We use a
conventional binary tree search. Let p(x) denote the parent of x and l(x)
(r(x)) the left (right) child of x. The positions are computed by the following
formula: pos(x) = pos(p(x))+size(l(x))+1, if x is a right child and pos(x) =
pos(p(x)) − size(r(x)) − 1 if x is a left child. If x is the root then pos(x) =
size(l(x))+1. After we have found the element at position k, we just splay it
and then take its right child as root for the second list. This split operation
is performed at most once for each common vertex.

Theorem 3. [16] A sequence of k arbitrary update operations on a collection of
initially empty splay trees takes O(k+

∑k
j=1 log nj) time, where nj is the number

of items in the tree or trees involved in operation j.

The update operations include insert, join and split operations; ‘append’ is
a special case of the insert operation and the size operation does not change the
data structure. Each new iteration starts with empty containers and there are
at most O(|E|) elements. Thus we have an overall cost of O((|V |+ |E|) log |E|).

5 Conclusion: Complexity and Practical Behaviour

We have given a new technique that leads to a drastic reduction of the complex-
ity of the important algorithm of Sugiyama for automatic graph drawing. We
close with some remarks on the complexity of the algorithm. We first do the nor-
malization of the graph by introducing at most O(|E|) new vertices and edges.
Then we perform the layer-by-layer sweep with the modified two-layer crossing
minimization procedure. Using the splay-tree data structure as well as the cross-
counting scheme by Barth et al., we can ensure that each crossing minimization

164 Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

step can be executed in time O(n log n) where n denotes the number of vertices
and edges involved in this step. Summed up over all layers, the complexity re-
mains O((|V | + |E|) log |E|). The coordinate assignment is performed in time
O(|V | + |E|) using a variant of the algorithm of Brandes and Köpf [4]. Our
approach favourably compares to the previous implementations of Sugiyama’s
algorithm where the complexity might be quadratic in the size of the graph.

We implemented our approach in Java using the yFiles library[20]. We made
some preliminary tests and compared our approach to the results achieved with
other layout tools using Sugiyama’s algorithm. All experiments have been per-
formed on a Pentium IV System with 1.5 GHz and 512 MB main memory running
Redhat Linux 9. For our measurement we used the following types of graphs:

• Long Edge Graphs: These graphs have many long edges. They have n/2
vertical vertices v1, . . . , vn/2 and n/2 horizontal vertices h1, . . . , hn/2. The
vertical vertices are connected by edges (vi, vi+1) for 1 ≤ i ≤ n/2 − 1. The
graph also have edges (vi, hj) for 1 ≤ i, j ≤ n/2.

• Random Graphs: They have n vertices and 2.5n random edges.

We run the experiments for VCG [18], Dot [11] and our new approach. We
also added an algorithm ‘Traditional’ which uses the same code as our new
approach but insert the traditional dummy vertices. Table 1 shows the time
taken by the cross counting step, which is given in milliseconds/iteration as
well as the number of dummy vertices in the normalized graph, when applying
the network simplex for layer assignment. The network simplex gives a solution
which minimize the edge length. So the results for other methods are even worse.

Our approach achieved significant improvements in running time for both
graph types. This is due to the enormous increase of the number of dummy
vertices in the common approach. The results show that our improvements are

Table 1. Experimental results for the long edge graphs and the random graphs.

Size (n) Time (ms/iter)∗ #Dummy vertices
(long edges) VCG Dot Traditional New Common New

60 146 499 116 19 13050 1710

80 455 2852 306 42 31200 3080

100 1040 13346 658 69 61250 4850

120 2060 42414 1219 98 106200 7020

140 3702 103327 2020 158 169050 9590

Size (n) Time (ms/iter)∗ #Dummy vertices
(random) VCG Dot Traditional New Common New

100 11 33 16 4 2725 295

200 40 275 60 9 9486 596

500 311 4404 416 29 49203 1485

1000 2978 60783 2643 72 233486 3001

2000 14419 n/a∗∗ n/a∗∗ 190 796653 6019
∗ results are averaged over 10 passes ∗∗ not enough memory

An Efficient Implementation of Sugiyama’s Algorithm 165

also relevant for practice, even if the number of dummy vertices is usually far less
than |V | · |E| there. The number of crossings in our new approach is comparable
with the number computed by the other tools. The slight differences are based on
the fact, that each implementation has its own refinements (e.g. how to handle
nodes having the same median weight). Only Dot has noticeable less crossings
but is therefor very slow. This is possibly due to an additional optimization
method. Our improvements made it possible to layout graphs for which this
was formerly not possible because of the enormous memory consumption of
Sugiyama’s algorithm. Our approach has just a linear memory consumption.

References

1. D. Auber: Tulip – A Huge Graph Visualization Framework. In: Jünger, Mutzel
(eds.): Graph Drawing Software, Springer-Verlag, pp. 105–126, 2003.

2. W. Barth, M. Jünger and P. Mutzel: Simple and Efficient Bilayer Cross Counting.
In: Proceedings of Graph Drawing 2002, Springer LNCS 2528, pp. 130–141, 2002.

3. O. Bastert and C. Matuszewski: Layered drawings of digraphs. In: Kaufmann, Wag-
ner (eds.): Drawing Graphs: Methods and Models, Springer LNCS 2025, pp. 104–
139, 2001.

4. U. Brandes and B. Köpf: Fast and Simple Horizontal Coordinate Assignment. In:
Proceedings of Graph Drawing 2001, Springer LNCS 2265, pp. 31–44, 2001.

5. E. Coffman and R. Graham: Optimal scheduling for two processor systems. Acta
Informatica, 1: 200–213, 1972.

6. G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

7. P. Eades and D. Kelly: Heuristics for Reducing Crossings in 2-Layered Networks.
Ars Combin., 21.A: 89–98, 1986.

8. P. Eades and N. Wormald: Edge crossings in drawings of bipartite graphs. Algo-
rithmica, 11(4): 379–403, 1994.

9. A. Frick: Upper bounds on the number of hidden nodes in Sugiyama’s algorithm.
In: Proceedings of Graph Drawing 1996, Springer LNCS 1190, pp. 169–183, 1996.

10. E. Gansner, E. Koutsofios, S. North and K. Vo: A technique for drawing directed
graphs. In: IEEE Transactions on Software Engineering, 19(3): 214–229, 1993.

11. Graphviz – open source graph drawing software:
http://www.research.att.com/sw/tools/graphviz/.

12. R. M. Karp: Reducibility among Combinatorial Problems. In: Miller R. E., Thatcher
J. W. (eds.): Complexity of Computer Computations, Plenum Press, New York,
pp. 85–103, 1972.

13. C. Matuszewski, R. Schönfeld and P. Molitor: Using sifting of k-layer straightline
crossing minimization. In: Proceedings of the 7th Symposium on Graph Drawing
(GD’99), Springer LNCS 1731, pp. 217–224, 1999.

14. N. Nikolov and P. Healy: How to layer a directed Acyclic Graph. In: Proceedings of
the 9th Symposium on Graph Drawing (GD’01), Springer LNCS 2265, pp. 16–30,
2002.

15. G. Sander: Graph layout through the VCG tool. In: Proceedings of Graph Drawing
1994, Springer LNCS 894, pp. 194–205, 1995.

16. D. Sleator and R. E. Tarjan: Self-Adjusting Binary Search Trees. In: Journal of the
ACM, 3: 652–686, 1985.

166 Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

17. K. Sugiyama, S. Tagawa and M. Toda: Methods for visual understanding of hierar-
chical system structures. In: IEEE Transactions on Systems, Man and Cybernetics,
SMC-11(2): 109–125, 1981.

18. VCG – Visualization of Compiler Graphs:
http://rw4.cs.uni-sb.de/users/sander/ html/gsvcg1.html.

19. V. Waddle and A. Malhotra: An E log E line crossing algorithm for levelled graphs.
In: Proceedings of the 7th Symposium on Graph Drawing (GD’99), Springer LNCS
1731, pp. 59–70, 1999.

20. yFiles – a Java Graph Layout and Visualization Library: http://www.yworks.com.

	1 Introduction
	1.1 Layer Assignment and Normalization
	1.2 Crossing Reduction
	1.3 Horizontal Coordinate Assignment
	1.4 Drawbacks

	2 The New Approach
	3 Efficient Crossing Reduction
	3.1 2-Layer Crossing Minimization
	3.2 The Overall Algorithm

	4 An Efficient Data Structure
	5 Conclusion: Complexity and Practical Behaviour
	References

