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Abstract. In this paper we study the clustered graphs whose underlying graph
is a cycle. This is a simple family of clustered graphs that are “highly non con-
nected”. We start by studying 3-cluster cycles, that are clustered graphs such that
the underlying graph is a simple cycle and there are three clusters all at the same
level. We show that in this case testing the c-planarity can be done efficiently
and give an efficient drawing algorithm. Also, we characterize 3-cluster cycles in
terms of formal grammars. Finally, we generalize the results on 3-cluster cycles
considering clustered graphs that at each level of the inclusion tree have a cy-
cle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms.

1 Introduction

Consider the following problem. A cycle is given where each vertex has a label. Is it
possible to add new edges so that: (i) the new graph (i.e. cycle plus new edges) is planar
and (ii) for each label, the subgraph induced by the vertices with that label is connected?
An example is in Fig. 1.a. In this case the problem admits a solution, depicted in Fig. 1.b.

In this paper we tackle problems of the above type. Such kind of problems arise in
the field of clustered planarity [9, 8]. Given a graph, a cluster is a non empty subset of
its vertices. A clustered graph consists of a graph GG and a rooted tree 7" such that the
leaves of T" are the vertices of G. Each node v of T corresponds to the cluster V() of
G whose vertices are the leaves of the subtree rooted at v. The subgraph of GG induced
by V(v) is denoted as G(v). An edge e between a vertex of V(v) and a vertex of
V — V(v) is said to be incident on v. Graph G and tree T are called underlying graph
and inclusion tree, respectively. A clustered graph is connected if for each node v of T’
we have that G(v) is connected.

In a drawing of a clustered graph each vertex of GG is a point and each edge is a
simple curve between its end-vertices. For each node v of T, G(v) is drawn inside a
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Fig. 1. (a) An example of a cycle with labels in {a, b, c}. (b) The cycle with extra edges. (c) The
corresponding clustered drawing of the cycle.

simple closed region R(v) such that: (i) for each node 1 of T that is neither an ancestor
nor a descendant of v, R(x) is completely contained in the exterior of R(v); (ii) an
edge e incident on v crosses the boundary of R(v) exactly once. We say that edge e
and region R have an edge-region crossing if both endpoints of e are outside R and e
crosses the boundary of R. A drawing of a clustered graph is c-planar if it does not
have edge crossings and edge-region crossings. A clustered graph is c-planar if it has a
c-planar drawing.

Consider again the example of Fig. 1 according to the above definitions. The cycle
is the underlying graph of a clustered graph. Vertices with the same label are in the
same cluster. The inclusion tree consists of a root with three children, denoted a, b,
and c. The children of node x are the vertices labeled . The edges added to the cycle
are used to “simulate” the closed regions containing the clusters (See Fig. 1.c). In this
paper we call saturator such set of edges. The clustered graph of the example is c-
planar. Further, the problem of adding extra edges to a labeled cycle admits a solution
iff the corresponding clustered graph is c-planar. Observe that the clustered graph of the
example is not connected.

Clustered planarity, because of its practical impact and because of its theoretical
appeal, attracted many research contributions. Feng, Cohen, and Eades devised the first
polynomial time c-planarity testing algorithm for connected clustered graphs [9]. A
planarization algorithm for connected clustered graph is shown in [5]. However, the
complexity of the problem for a non connected clustered graph is still unknown.

A contribution on this topic has been given by Gutwenger et al. that presented
a polynomial time algorithm for c-planarity testing for almost connected clustered
graphs [10]. In almost connected clustered graphs either all nodes corresponding to non
connected clusters are in the same path in 7" starting at the root of 7', or for each non
connected cluster its parent and all its siblings are connected. Also, the works in [1,2]
by Biedl, Kaufmann, and Mutzel can be interpreted as a linear time c-planarity test for
non connected clustered graphs with exactly two clusters at the same level.

Another contribution studying the interplay between c-planarity and connectivity
has been presented in [3] by Cornelsen and Wagner. They show that a completely con-
nected clustered graph is c-planar iff its underlying graph is planar. A completely con-
nected clustered graph is so that not only each cluster is connected but also its comple-
ment is connected.
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In this paper we study the clustered graphs whose underlying graph is a cycle. This
is a simple family of clustered graphs that are “highly non connected”. The paper is
organized as follows.

Section 2 contains preliminaries. In Section 3 we study 3-cluster cycles, that are
clustered graphs such that the underlying graph is a simple cycle and there are three
clusters all at the same level. We show that, in this case, testing the c-planarity can be
done efficiently. We also give an efficient drawing algorithm. Further, we show that in
this specific case if the c-planarity problem admits a solution then a saturator exists
that is composed only by simple paths. In Section 4 we generalize the results on 3-
cluster cycles considering clustered graphs that on each level of the inclusion tree have
a cycle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms. Section 5 contains conclusions and open problems.

2 Preliminaries

We assume familiarity with connectivity and planarity of graphs [7, 6]. We also assume
familiarity with formal grammars [11].

Given a c-planar non connected clustered graph C (G, T), a saturator of C'is a set
of edges that can be added to the underlying graph G so that C' becomes connected
without loosing its c-planarity. Finding a saturator of a clustered graph is important
since it allows to apply to C' the same drawing techniques that have been devised for
connected clustered graphs.

We call 3-cluster cycle a clustered graph such that the underlying graph is a simple
cycle and there are exactly three clusters all at the same level (plus the root cluster). In
a 3-cluster cycle the inclusion tree consists of a root node with three children and each
vertex of the underlying cycle is a child of one of these three nodes. Given a 3-cluster
cycle, we associate a label in {a, b, ¢} to each of the three clusters.

Consider a 3-cluster cycle and arbitrarily select a starting vertex and a direction.
We can visit the cycle and denote it by the sequence o of labels associated with the
clusters encountered during the visit. The same clustered cycle is also denoted by any
cyclic permutation of ¢ and by any reverse sequence of such permutations. We use
Greek letters to denote general sequences and Roman letters to identify single-character
sequences. Given a sequence o, we denote with 7 its reverse sequence.

A non c-planar c-cluster cycle is abcabc, while a c-planar one is abcbac.

It is easy to see that repeated consecutive labels can be collapsed into a single label
without affecting the c-planarity property of a 3-cluster cycle. Hence, in the following
we consider only 3-cluster cycles where consecutive vertices belong to distinct clusters.
Also, since clusters can not be empty, in a 3-cluster cycle at least one occurrence of
each label can be found.

We assign a cyclic order to the clusters so that a < b, b < ¢, and ¢ < a. A sequence
o is monotonic increasing (decreasing) if for each pair x, y of consecutive labels of o
x <y (y < x). A sequence is cyclically increasing (decreasing) monotonic if all its
cyclic permutations are increasing (decreasing) monotonic.

Given a 3-cluster cycle o, Balance(o) is a number defined as follows. Select a
starting vertex and a direction. Set counter ¢ to zero. Visit o adding (subtracting) one
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unit to ¢ when passing from z to y, where x < y (y < z). Observe that, when the start-
ing vertex is reached again, c is a multiple of 3 that can be positive, negative, or zero. If
we selected a different starting vertex, while preserving the direction, we would obtain
the same value. On the contrary, if o was visited in the opposite direction the opposite
value would be obtained for ¢. Balance(o) = |c|. For example, Balance(ababc) = 3
and Balance(cbacba) = 6.

Observe that, when representing a 3-cluster cycle with a sequence of labels, by
reading the sequence from left to right, we implicitly choose a direction for visiting the
cycle. For simplicity, we adopt the convention of representing a 3-cluster cycle with a
sequence o such that, when the vertices of the cycle are visited according to the order
induced by o, a non negative value for c is obtained.

3 Cycles with Three Clusters

In this section we address the problem of testing the c-planarity of a 3-cluster cycle.
The following lemma introduces transformations that can be used to simplify 3-cluster
cycles without affecting their c-planarity properties.

Lemma 1. Let 0 = oyzayazayoy be a 3-cluster cycle such that o1, o2, and « are
possibly empty and xoy is monotonic. The 3-cluster cycle o' = o1xayos is c-planar if
and only if o is c-planar. Balance(o) = Balance(o”).

Proof Sketch: Suppose there exists a c-planar drawing of ¢’. The black line in Fig. 2.a
shows an example of such a drawing for the portion concerning subsequence xay.
Such a drawing can be modified by replacing the edge between y and the first vertex
of oo with the sequence @xay. Such sequence can be drawn arbitrarily close to zay
preserving c-planarity. Finally, the just added instance of ¥ may be connected to the first
vertex of go. The result is shown in Fig. 2.a where the added part is drawn gray.

Now, suppose that there exists a c-planar drawing of o. Fig. 2.b shows an example
of such a drawing for the part concerning subsequence rayaxay. The inlet formed
by zaya@x may contain parts of o that are denoted by Q) in Fig. 2.b. The parts of o
that are contained in the inlet formed by yazay are denoted by P. The embedding of
P and ) may be rearranged preserving c-planarity as in Fig. 2.c. Path @zay can now

Fig. 2. Tllustration of the proof of Lemma 1. (a) Necessary condition. (b) and (c) Sufficient con-
dition.
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be deleted and substituted by an edge connecting vertex y with the first vertex of .
Finally, observe that, since we have removed from o two monotonic sub-sequences, one
increasing and one decreasing, with the same length, Balance(c') = Balance(o). O

For example, Lemma 1 allows to study the c-planarity of cabcab instead of the c-
planarity of cabcacbabcab (by taking 01 = ¢, x = a, a = be, y = a, and o2 = b).

Lemma 2. Let o be a 3-cluster cycle. There exists a 3-cluster cycle o' such that:
Balance(o') = Balance(o), o' is c-planar iff o is c-planar, and either o’ is cycli-
cally monotonic or o' = xay3, where

1. «and (B are non empty,
2. xay is maximal monotonic increasing, and
3. yBz is maximal monotonic decreasing.

Because of space limitation, the proof for this Lemma is omitted. This proofis based
on the main idea of repeatedly applying Lemma 1 starting from the shortest monotonic
subsequences [4].

The following two lemmas (Lemma 3 and Lemma 4) study the c-planarity of the
simple families of 3-cluster cycles cited in Lemma 2.

Lemma 3. A 3-cluster cycle o such that o is cyclically monotonic is c-planar if and
only if Balance(o) = 3.

Proof Sketch: Since o is monotonic we have that Balance(o) # 0. Recall that
Balance(o) is a multiple of 3. If Balance(o) = 3, then it can only be the case that
0 = abcor o = bca or 0 = cab and it is trivial to see that o is c-planar.

Suppose that Balance(o) > 6. We show that o is not c-planar. Suppose by con-
tradiction that there exists a c-planar drawing I, of o. Consider the vertices vy, va, v3,
vy, U5 and vg of o as drawn in I, (see Fig. 3.b). The two edges incident to v4 separate
vy from the rest of the vertices of its cluster. Thus, it is possible to add an edge (v1, v4)
preserving the planarity of the drawing. For similar reasons, it is possible to add the
edges (ve,v5) and (vs, vg). A contradiction arises from the fact that a subdivision of
a K3 3 can be found in the drawing. Consider, the vertices vi, v, v3, v4, v5 and vs.
Vertex v; is connected to vg with a path in ¢ and it is directly connected to vy and vy.
Vertices vs and vy are directly connected to ve, v4, and vg. ]

Lemma 4. Let 0 = xayl be a 3-cluster cycle, where o and 3 are non empty, ray
is maximal monotonic increasing, and yBx is maximal monotonic decreasing. We have
that o is c-planar iff Balance(o) is in {0, +3}.

Proof Sketch: Let Balance(o) = 3k, with k non negative integer. Suppose k is equal
to 0 or 1. A c-planar drawing of o can be constructed by placing the vertices on three
half-lines as in the examples shown in Fig. 4.a and 4.b, respectively. The vertices of
each half-line can be enclosed into a region representing their cluster.

Suppose that & > 1. We show that o is not c-planar. Suppose for a contradiction
that o is c-planar and let I'(c) be a c-planar drawing of . Denote with vy, ..., v, the
vertices of o starting from the first vertex of o and suppose, without loss of generality,
that the length of «v is greater or equal than the length of 3.
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Fig. 4. The construction of a c-planar drawing for a cycle o when Balance(o) = 0 (a) and when
Balance(o) = 3 (b).

Consider the relative position of v; and v4 in I in their cluster X (see Fig. 3.c). We
have that the two edges incident on v, separate v; from the rest of the vertices of X.
Thus, it is possible to join v; and v4 with an edge (v1, v4) that is entirely contained into
the cluster X and that preserves the planarity of the drawing. Analogously, it is possible
to join vertices vy and v5 in cluster Y with the edge (v2, v5) and vertices vs and vg in
cluster Z with the edge (vs, vg).

A contradiction arises since a subgraph that is a subdivision of K3 3 can be found
in the drawing. In fact, exploiting the edges of o and the edges introduced above, each
vertex in {v1,v3,v5} is connected to all vertices in {vs, v4, vg}. Vertex vy is directly
connected to vo and to vg with edges of o, while it is connected to v4 with edge (v1, v4);
vertex vs is directly connected to v and to v4 with edges of o, while it is connected to
v, with edge (vs, vy, ); finally, vertex vy is directly connected to v, with an edge of o, it
is connected to v, with a path in o, and it is connected to vy with edge (va, vs). ]

Because of Lemma 2, Lemma 3, and Lemma 4, the problem of testing whether a
3-cluster cycle o is c-planar can be reduced to the problem of computing Balance(o).
Since it is easy to compute Balance(o) in linear time (see Section 2), the following
theorem holds.

Theorem 1. Given an n-vertex 3-cluster cycle, there exists an algorithm to test if it is
c-planar in O(n) time.

In what follows we introduce a simple algorithm which guarantees the computation
of a c-planar drawing of a 3-cluster cycle, if it admits one, in linear time. Consider a
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3-cluster cycle o with Balance(o) € {0,+3}. Set a counter to zero. Visit o starting
from the first vertex and adding (subtracting) one unit to the counter when passing from
x toy, where z < y (y < x). Without loss of generality we will assume that the counter
never reaches a negative value. Otherwise, we can replace o with an equivalent cyclic
permutation of it that has the above property and that can be obtained in linear time. Let
K be the maximum value assumed by the counter during the visit.

We say that a vertex of o belongs to the k-th level iff the counter has value k when
reaching such a vertex. The first vertex of o belongs to level 0. Note that each level
contains vertices of the same cluster. Also, vertices belonging to level £ and level k£ + 3
belong to the same cluster. We denote with o|; the sequence o restricted to level k,
obtained from o by deleting all the vertices not belonging to the k-th level.

We construct a saturator in the following way. For each level £ € {0,...,K},
we connect with an edge each pair of consecutive vertices of o|;. For each level k €
{0,..., K — 3}, we insert an edge connecting the first vertex of o, with the last vertex
of o | k+3-

Now we show that the graph composed by the cycle and the saturator is planar by
providing a planar drawing of it (see Fig. 5). First, we arrange all the vertices of o on
a grid: the x-coordinate of a vertex is its position in ¢ and the y-coordinate is its level.
Then, we draw each edge of the cycle (excluding the one connecting the first and the
last vertex of o) with a straight segment without introducing intersections. Second, for
each level k € {0,..., K}, we draw those edges of the saturator that connect pairs
of consecutive vertices of o, with straight segments without introducing intersections.
Note that, the sequence of the clusters at levels 0,..., K — 3 is the same sequence
as that of the clusters at levels 3, ..., K. Also, at this point of the construction, for
each k € {0,..., K} the first and the last vertices of o|; are on the external face.
Hence, the drawing can be completed without intersections by adding, for each level
k € {0,..., K — 3}, the edge of the saturator connecting the first vertex of o|;, with

Level
7

6

Fig.5. The construction of a c-planar drawing of a 3-cluster cycle o in the case in which
Balance(o) = 3.
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the last vertex of 0|43 as shown in the example of Fig. 5. Finally, since the first and
the last vertex of o are on the same face, they can be connected with a curve contained
into such a face without introducing intersections. To explicitly represents clusters as
simple closed regions starting from the saturator we select a region of the plane at small
distance (strictly greater than zero) from each saturator edge and delete the saturator.

It is easy to implement the above algorithm to work in linear time by building the
lists of vertices for each level while visiting o. Notice that K is bounded by the number
of the vertices of the cycle.

Hence, we can state the following result.

Theorem 2. Given an n-vertex c-planar 3-cluster cycle o, there exists an algorithm
that computes a c-planar drawing of o in O(n) time.

From the above construction we also have the following.

Theorem 3. A c-planar 3-cluster cycle admits a saturator that is the collection of three
disjoint paths.

If we consider the representation of 3-cluster cycles as strings, it is possible to show,
in terms of formal grammars, that the set of 3-cluster cycles is a regular set, while the
set of c-planar 3-cluster cycles is generated by a context-free grammar [4].

4 Cycles in Cycles of Clusters

In this section we present a generalization of the results of Section 3. First, we general-
ize the results on 3-cluster cycles to the case of clusters that form a cycle whose length
is greater than three. Second, we tackle the general problem of testing the c-planarity
of a cycle that is clustered into a cycle of clusters that is in turn clustered into another
cycle of clusters, and so on. Fig. 6.a shows c-planar clustered graph whose underlying
graph is a cycle for which two levels of clusters are defined. Fig. 6.b puts in evidence the
inclusion relationship between clusters of a given level and clusters of the level directly
above it. The same figure shows also that the clusters of each level form a cycle.

We start by introducing preliminary assumptions and definitions. We consider clus-
tered graphs C(G, T') in which all the leaves of the inclusion tree 7" have the same dis-
tance from the root (we call depth that distance). A clustered graph which has not this
property can be easily reduced to this case by inserting “dummy” nodes in 7'. Hence,
from now on we consider only inclusion trees whose leaves are all at the same depth.
We define as G'(V!, E') the graph whose vertices are the nodes of 7" at distance [ from
its root, and an edge (u, v) exists if and only if an edge of G exists incident to both
and v.

For example, G° has only one vertex and G, where L is the depth of the tree,
is the underlying graph G of C(G,T). We label each vertex v of G with the cluster
(corresponding to a vertex of G'~!) which v belongs to. If G! is a cycle, then it is
possible to identify G' with the cyclic sequence of the labels of its vertices. If also
G'~1is a cycle, we consider the labels of G' cyclically ordered according to the order
they appear in G'~!. At this point, Balance(G") can be defined as in Section 3 and can
assume values 0, k, 2k, 3k, ... where k is the length of G~ .
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Fig. 6. A clustered graph where at each level of the inclusion tree the nodes form a cycle. (a) A c-
planar drawing. (b) The inclusion tree augmented with edges that put in evidence the adjacencies
between nodes at the same level.

According to the above definitions a 3-cluster cycle is a clustered graph where 7" as
depth 2, G? is a cycle and G is a cycle of length 3. In fact, the results of Section 3 can
be extended to the case in which G is a cycle of an arbitrary length.

Theorem 4. Given an n-vertex clustered graph C(G,T'), such that T' has depth 2 and
G and G? are cycles, there exists an algorithm to test if C is c-planar in O(n) time. If
C'is c-planar, a c-planar drawing of C' can be computed in O(n) time.

Proof Sketch: The proof exploits the same considerations and constructions of Theo-
rems 1 and 2. If the length of G is k then C' is c-planar iff Balance(G?) € {0, k}.
In order to find a c-planar drawing of C, if it exists, the same strategy described in
Section 3 can be applied, where, since in the construction depicted in Fig. 5 vertices
belonging to level j and level j + k belong to the same cluster, an edge of the saturator
is added between the first vertex of level j and the last vertex of level j + k instead of
between the first vertex of level j and the last vertex of level j + 3. O

Let C(G,T) be a clustered graph and [ be an integer between 1 and L, where L is
the depth of T'. Clustered graph C'(G, T") is obtained from C by replacing T with a
tree 7" obtained from 7 by connecting all the nodes at depth  with the root and deleting
all the nodes having depth greater than zero and less than [. The c-planarity of C can
be used to study the c-planarity of C'~1, as is shown in the following lemma.

Lemma 5. Let C(G,T) be a clustered graph and | be an integer between 1 and L,
where L is the depth of T. Let C' be c-planar, G be a cycle, and G'~' be a cycle of
length k. C'=1 is c-planar iff Balance(G") € {0, k}.

Proof Sketch: First, we prove that if Balance(G') € {0, k}, then C'~! is c-planar.
Since Balance(G') € {0,k}, then it exists a planar drawing of G' augmented with



Clustering Cycles into Cycles of Clusters 109

the edges of a saturator connecting vertices of G! with the same label. Those edges
can be added to the internal or external face of cycle G' according to the output of
the algorithm described in Section 3. Let i be a c-planar drawing of C!. Since G
is a cycle, there exist in I'-: exactly two faces containing vertices belonging to all the
clusters corresponding to vertices of G'~1. Call such faces internal and external face
arbitrarily. A c-planar drawing I '~:—1 can be constructed by adding to I'~: an edge for
each edge of the saturator of G! in such a way to place on the internal (external) face of
T'ci the edges of the saturator that are added to the internal (external) face of G'.

The second part of the proof shows that if Balance(G") is not in {0, k} then then
C'~1 is not c-planar. Assume for a contradiction that Balance(G'") is not in {0, k} and
a c-planar drawing of I'-i—1 exists.

By using similar arguments as in the proofs of Lemmas 3 and 4, a subdivision of a
K3 3 can be found where the vertices of the subdivision are actually vertices of G!, that
is, clusters of C. O

Lemma 6. Ler C = (G, T) be a clustered graph and let be | an integer between 1 and
L, where L is the depth of T. If C" is not c-planar, then C° = C is not c-planar

Proof Sketch: If C! is not c-planar, there is a subdivision of K3 3 or K in the graph G
augmented with the edges of the saturator of C. The same obstruction can be found in
the graph GG augmented with the edges of saturator of C°; hence C° can not be c-planar.

U

Theorem 5. Given an n-vertex clustered graph C(G,T), such that T has depth L and,
forl >0, G is a cycle, there exists an algorithm to test if C is c-planar in O(Ln) time.

Proof Sketch: The proof is based on iteratively applying, level by level, Lemma 5 to
the clustered graphs C! for I = L,L — 1,...,2. Since each test can be performed in
O(n) time, the statement follows. O

Theorem 6. Given an n-vertex clustered graph C(G,T), such that T has depth L and,
forl >0, Glis acycle, if C is c-planar there exists an algorithm to compute a c-planar
drawing of C'in O(Ln) time.

Proof Sketch: The proof of Lemma 5 is a constructive one. Thus, by applying, level
by level, Lemma 5 starting from level L to level 1, a c-planar drawing of C' can be
obtained. Since each step may be performed in O(n) the statement follows. 0

5 Conclusions and Open Problems

In this paper we studied a peculiar family of non-connected clustered graphs. Namely,
we studied clustered graphs whose underlying graph is a simple cycle. Besides the
general problem of stating the complexity of the c-planarity testing of non-connected
clustered graphs, several other problems remain open.

Are there other families of non-connected clustered graphs whose c-planarity can be
efficiently assessed and whose underlying graph has a simple structure? For example,
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what happens if the underlying graph is a tree? It is easy to show that a two-level
clustered graph whose underlying graph G? is a path and such that graph G* is a cycle,
is c-planar. It is also easy to find an example of a two level clustered graph whose
underlying graph G2 is a tree, such that G is a cycle and that is not c-planar.

Suppose that the underlying graph has a fixed embedding. Can this hypothesis sim-
plify the c-planarity testing?

Can the techniques introduced in this paper be combined with techniques known
in the literature for devising tools able to handle the c-planarity testing and embedding
problem for more complex families of clustered graphs?
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