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Abstract. In the Semantic Web, the goal is offering access to infor-
mation that is distributed over the Internet. Data integration is highly
relevant in this context, since it consists in providing a uniform access to
a set of data sources, through a unified representation of the data called
global schema. Integrity constraints (ICs) are expressed on the global
schema in order to better represent the domain of interest, yet such con-
straints may not be satisfied by the data at the sources. In this paper
we address the problem of answering queries posed to a data integration
system where the mapping is specified in the so-called GLAV approach,
and when tuple-generating dependencies (TGDs) and functional depen-
dencies (FDs) are expressed over the global schema. We extend previous
results by first showing that, in the case of TGDs without FDs, known
query rewriting techniques can be applied in a more general case, and
can take into account also the GLAV mapping in a single rewriting step.
Then we introduce FDs with TGDs, identifying a novel class of ICs for
which query answering is decidable, and providing a query answering
algorithm based on query rewriting also in this case.

1 Introduction

In the Semantic Web [15, 8] the goal is to enrich data accessible on the Web
in order to provide semantic knowledge that facilitates users in retrieving and
accessing information that is relevant for them. Ideally, the aim is to allow users
to pose queries to the Web as if they were querying a single, local knowledge
base. Hence, one of the fundamental issues of the Semantic Web is that of inte-
grating the information present in the various sources, and therefore data inte-
gration techniques prove to be higly useful for this task. Conceptual modelling
formalisms, such as the Entity-Relationship model, have proved to be highly ef-
fective for representing intensional information about data, and are now widely
accepted means of enriching data with semantic knowledge about the domain
of interest. When the data are represented in the relation model, as in the case
of this paper, integrity constraints (ICs), like key and foreign key constraints,
are able to capture most of the information expressed by conceptual modelling
formalisms.
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A data integration system has the goal of providing a uniform access to
a set of heterogeneous data sources, through a unified view of all underlying
data, called global schema. Once the user issues a query over the global schema,
the system carries out the task of suitably accessing the different sources and
assemble the retrieved data into the final answer to the query.

In data integration, the specification of the relationship between the global
schema and the sources, which is called mapping [18], is a significant issue.
There are two basic approaches for specifying a mapping in a data integration
system [14, 18]. The first one, called global-as-view (GAV), requires that to each
element of the global schema a view over the sources is associated. The second
approach, called local-as-view (LAV), requires that to each source a view over
the global schema is associated. Besides GAV and LAV, a mixed approach, called
GLAV [11, 10], consists in associating views over the global schema to views over
the sources.

In a data integration system, the global schema is a representation of the
domain of interest of the system, therefore there is the need of having a global
schema that fits the fragment of real world that is modelled by the system. To
this aim, integrity constraints are expressed on the global schema.

It is important to notice that integrity constraints are used to enhance the
expressiveness of the global schema, and their presence is not due to constraints
on the sources, which in our approach are supposed to be enforced by the systems
that manage the local data. Therefore, in general, the data at the sources may not
satisfy the constraints on the global schema; in this case a common assumption
(which is the one adopted in this paper) is to to consider the sources as sound,
i.e., they provide a subset of the data that satisfy the global schema. Answering
queries posed over the global schema in this setting requires to consider a set
of databases for the global schema, and in particular all those that contain the
data provided by the sources through the mapping, and that satisfy the ICs on
the global schema. Therefore, query answering requires reasoning on incomplete
information.

In this paper we address the problem of query answering in data integration
in the relational context, where the mapping is GLAV, and in the presence of
tuple-generating dependencies (TGDs) and functional dependencies (FDs) on
the global schema; TGDs and FDs are an extension of two important classes
of dependencies in relational database schemata, namely inclusion dependencies
and key dependencies respectively [1, 16].

First we consider TGDs alone: since the query answering under general TGDs
is undecidable [17], we solve the problem for a restricted class of TGDs, that we
call cycle-harmless TGDs, that extends a decidable class known in the litera-
ture. Our approach is purely intensional here: we do query answering by query
rewriting, i.e. by reformulating the query into a new one, which encodes the in-
formation about the integrity constraints, and then proceeding as if there were
no integrity constraints. The rewriting algorithm used here is the same as in [3].
The form of the TGDs we consider is general enough to consider the GLAV map-
ping assertion as TGDs over a unified schema constituted by the union of the
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global schema and the source schema; therefore, we are able to apply the rewrit-
ing technique in a single step, taking into account the TGDs and the mapping
at the same time.

Then, we address the problem of query answering when also FDs are ex-
pressed on the global schema. Even if we consider cycle-harmless TGDs, the
presence of FDs causes an interaction that makes query answering again unde-
cidable. We need to consider a new, more restricted class of TGDs, which we call
non-functional-conflicting TGDs, that do not interact with FDs, and again we
present a technique for query answering. In this case, however, we cannot take
into account the mapping in an intensional fashion, because it is not realistic to
assume that the mapping assertions are non-functional-conflicting TGDs. There-
fore, in order to answer queries, we need to construct the retrieved global database
(RGD) [4], that is the minimum global database that satisfies the mapping. If
the RGD satisfies the FDs, we can proceed with the same rewriting technique
used for TGDs, simply disregarding the presence of FDs.

The rest of the paper is organised as follows. In Section 2 we present a formal
framework for data integration; in Section 3 we address the query answering
problem for TGDs alone; in Section 4 we introduce FDs together with TGDs,
showing a decidable class of constraints for this case and providing a query
answering technique. Section 5 concludes the paper.

2 Framework

In this section we define a logical framework for data integration, based on the
relational model with integrity constraints.

2.1 Syntax

We consider to have an infinite, fixed alphabet Γ of constants representing real
world objects, and will take into account only databases having Γ as domain.

A relational schema R is a set of first-order predicates, called relation sym-
bols, each with an associated arity; a relation symbol R of arity n is denoted
by R/n. A relational database instance of a schema R is a set of facts of the
form R(c1, . . . , cn) ←, where R/n ∈ R and c1, . . . , cn ∈ Γ . In the following, for
the sake of conciseness, we will use the term “database” instead of “database
instance”.

Formally, a data integration system I is a triple 〈G,S,M〉, where:

1. G is the global schema expressed in the relational model with integrity con-
straints. In particular:
(a) G is constituted by a set of relations, each with an associated arity that

indicates the number of its attributes. A relation R of arity n is denoted
by R/n.

(b) A set ΣT of tuple-generating dependencies (TGDs) is expressed over G.
A TGD [1, 10] is a first-order formula of the form

∀X(∃Y χ(X,Y ) → ∃Z ψ(X,Z))
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where X,Y ,Z are sets of variables or constants of Γ , and χ and ψ are
conjunctions of atoms whose predicate symbols are in G. Henceforth, for
the sake of conciseness, we will omit the quantifiers in TGDs.

(c) A set ΣF of functional dependencies (FDs) is expressed over G. A FD [1]
is written in the form

R : A → B

where R is a relation symbol, A is a set of attributes of R, and B is an
attribute of R.

2. S is the source schema, constituted by the schemata of the different sources.
We assume that the sources are relational, and in particular that each source
is represented by a single relation. Assuming sources to be relational is not
a restriction, since we may assume that sources that are not relational are
suitably accessible in relational form by means of software modules called
wrappers. Furthermore, we assume that no integrity constraint is expressed
on the source schema. This because integrity constraints on the sources are
local to the data source, and they are enforced by the source itself.

3. M is the mapping between G and S, specifying the relationship between the
global schema and the source schema. The mappingM is a set of first-order
formulae, which we call mapping assertions, of the form

∀X(∃Y ϕS(X,Y ) → ∃ZϕG(X,Z))

where X,Y ,Z are sets of variables or constants, and ϕS and ϕG are con-
junctions of atoms whose predicate symbols are in S and G respectively.
Henceforth, we will omit quantifiers in mapping formulae. Note that this
kind of mapping assertions is a generalisation of both LAV and GAV asser-
tions; in particular, in a LAV assertion a view (conjunction of atoms) over
the global schema is associated to a source relation, while in a GAV asser-
tion a view over the source schema is associated to a relation symbol in G.
Henceforth, consistently with [11], we will call GLAV (global-local-as-view)
this approach.

Example 1 ([19]). Consider a data integration system I = 〈G,S,M〉, where
the global schema G consists of the following relations (names of relations and
attributes are self-explanatory):

work(Person,Project)
area(Project ,Field)
employed(Person, Institution)
runsProject(Institution,Project)

The source schema S contains the following relations:

hasjob(Person,Field)
teaches(Professor ,Course)
infield(Course,Field)
getgrant(Researcher ,Grant)
grantfor(Grant ,Project)
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The GLAV mappingM is as follows:

hasjob(R,F ) → work(R,P ) ∧ area(P, F )
getgrant(R,G) ∧ grantfor(G,P )→ work(R,P )
teaches(R,C) ∧ infield(C,F ) → work(R,P ) ∧ area(P, F )

Note that the first assertion is in fact a LAV assertion, the second one is a GAV
one, while the third assertion is a general GLAV assertion.

The set ΣT of TGDs is constituted by the following TGD:

work(R,P ) → employed(R, I) ∧ runsProject(I, P )

This TGD imposes that, if a person R works on a project P , he/she needs to be
employed in some institution I that is running the project P . �

Example 2. Consider a data integration system I = 〈G,S,M〉, where the global
schema G is constituted by the relations R1/2 and R2/2, the source schema by re-
lations S1/2, S2/1. The set of TGDsΣT contains the single TGD θ : R1(X,Y )→
R1(Y,W ) ∧ R2(Y,X). Note that θ introduces a cycle in the dependencies. The
mapping M consists of the assertions S1(X, c) → R1(X,Y ) ∧ R2(Y,Z) and
S2(X)→ R2(X,Y ). �

Now we come to queries expressed over the global schema; a n-ary relational
query (relational query of arity n) is a formula that is intended to specify a
set of n-tuples of constants in Γ , that constitute the answer to the query. In
our setting, we assume that queries over the global schema are expressed in the
language of union of conjunctive queries (UCQs). A conjunctive query (CQ) of
arity n is a formula of the form q(X) ← ω(X,Y ) where X is a set of variables
called distinguished variables, Y is a set of symbols that are either variables
(called non-distinguished) or constants, q is a predicate symbol not appearing
in G or S, and ω is a conjunction of atoms whose predicate symbols are in G.
The atom q(X) is called head of the query (denoted head(q)), while ω(X,Y ) is
called body (denoted body(q)). A UCQ of arity n is a set of conjunctive queries Q
such that each q ∈ Q has the same arity n and uses the same predicate symbol
in the head.

2.2 Semantics

A database instance (or simply database) C for a relational schema R is a set of
facts of the form R(t) where R is a relation of arity n in R and t is an n-tuple
of constants of the alphabet Γ . We denote as RC the set of tuples of the form
{t | R(t) ∈ C}.

In the following, we shall often make use of the notion of substitution. A
substitution of variables σ is a partial function that associates to a variable
either a constant or a variable, and to each constant the constant itself. In the
following, given a first-order formula F , we will denote with σ(F ) the formula
obtained by replacing in F each variable (or constant) x with σ(x). Given an
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atomic formula R(x1, . . . , xn), where R is a n-ary predicate and x1, . . . , xn are
variables or constants, we say that a substitution σ sends R(x1, . . . , xn) to the
fact σ(R(x1, . . . , xn)), that we denote with R(σ(x1), . . . , σ(xn)) ←. Moreover,
given a conjunction C = A1 ∧ . . . ∧ am of atomic formulae, we will say that a
substitution σ sends C to the set of facts {σ(A1), . . . , σ(Am)}.

Given a CQ q of arity n and a database instance C, we denote as qC the
evaluation of q over C, i.e., the set of n-tuples t of constants of Γ such that there
exists a substitution that sends the atoms of q to facts of C and the head to q(t).
Moreover, given a UCQ Q, we define the evaluation of Q over C as QC =

⋃
q∈Q q

C

Now we come to the semantics of a data integration system I = 〈G,S,M〉.
Such a semantics is defined by first considering a source database for I, i.e., a
database D for the source schema S. We call global database for I any database
for G. Given a source database D for I = 〈G,S,M〉, the semantics sem(I,D) of
I w.r.t. D is the set of global databases B for I such that:

1. B satisfies the ICs ΣT and ΣF (TGDs and FDs) in G. In particular:
– B satisfies a TGD χ(X,Y ) → ψ(X,Z) when, if there exists a substi-

tution σ that sends χ(X,Y ) to a set of facts of B, then there exists
another substitution σ′ that sends ψ(X,Z) to σ(χ(X,Y )) and those of
χ(X,Y ) to sets of facts of B. In other words, σ′ is an extension of σ that
sends the atoms of ψ(X,Z) to sets of facts of B.

– B satisfies a FD R : A→ B if there are no two tuples t1, t2 ∈ RB such
that t1[A] = t2[A] and t1[B] 	= t2[B].

2. B satisfiesM w.r.t. D. In particular, B satisfies a GLAV mappingM w.r.t.
D if for each mapping formula ϕS(X,Y )→ ϕG(X,Z) we have that, if there
exists a substitution σ that sends ϕS(X,Y ) to a set of facts of D, then
there exists an extension σ′ of σ that sends ϕG(X,Z) to a set of facts of B.
Note that the above definition amounts to consider the mapping as sound
but not necessarily complete; intuitively, for each mapping formula, the data
retrievable at the sources by means of the conjunctive query in the left-hand
side are a subset of the global data that satisfy the conjunctive query on the
right-hand side.

We now give the semantics of queries. Formally, given a source database D for
I we call certain answers to a query q of arity n w.r.t. I and D, the set

cert(Q, I,D) = {t | t ∈ QB for each B ∈ sem(I,D)}
or, equivalently, cert(Q, I,D) =

⋂
B∈sem(I,D)Q

B.

3 Query Rewriting Under Tuple-Generating
Dependencies Alone

In this section we present a technique for query answering based on query rewrit-
ing, in the case of a GLAV data integration system where only TGDs are ex-
pressed over the global schema. We show that such technique, first presented
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in [3], is applicable to a more general class of constraints, so that it can take
into account the GLAV mapping together with the dependencies on the global
schema.

We first introduce the concept of retrieved global database (RGD). Given
a source database D for a data integration system 〈G,S,M〉, the RGD is the
“minimum” global database that satisfies the mapping. Intuitively, the RGD is
obtained by “filtering” the data from the sources through the mapping, thus
populating the global schema.

Definition 1 ([3]). Let I = 〈G,S,M〉 be a GLAV data integration system, and
D a source database for I. The retrieved global database ret(I,D) is defined
constructively as follows. For every mapping assertion ϕS(X,Y )→ ϕG(X,Z),
and for each set H of facts of D such that there exists a substitution σ that
sends the atoms of ϕS(X,Y ) to H: (i) we first define a substitution σ′ such that
σ′(Xi) = σ(Xi) for each Xi in X, and σ′(Zj) = zj for each Zj in Z, where zj

is a fresh constant, not introduced before and not appearing in D; (ii) we add to
ret(I,D) the set of facts that are in σ′(ϕG(X,Z)).

Note that, given a a data integration system and a source database D, the
RGD is unique, since it is constructed by evaluating the left-hand side of every
mapping assertion on D, and by adding suitable tuples according to the right-
hand side of the mapping assertion, regardless of the already added tuples and
of the other mapping assertions. However, differently from the case of GAV
mappings, the RGD is not strictly minimal, since in some cases it is possible to
have redundant tuples that can be eliminated while preserving all the properties
of the RGD. Minimisation of the RGD is not a significant issue, therefore we
will not consider it in the following.

When no constraints are expressed over the global schema, the RGD is a
representative of all global databases that satisfy the mapping (and therefore of
all databases in sem(I,D)): in fact in this case it can be proved that, for every
query Q posed over the global schema, Qret(I,D) = cert(Q, I,D).

Now we come to integrity constraints. Given a data integration system I =
〈G,S,M〉 and a source database D, since sources are autonomous and in general
do not know each other, the retrieved global database ret(I,D) does not satisfy
the integrity constraints (TGDs in this case) on the global schema. In this case
we may think of repairing the RGD so as to make it satisfy ΣT ; intuitively,
the adoption of the sound semantics for the mapping M allows us to repair
the violations of TGDs by adding suitable tuples to the RGD. This is done
by building the chase [4, 10, 3] of ret(I,D), a database that we denote with
chaseΣT

(ret(I,D)), and that is built by repeatedly applying, as long as it is
applicable, the TGD chase rule.

TGD Chase Rule [3]. Consider a database B for a schema Ψ , and a
TGD θ of the form χ(X,Y )→ ψ(X,Z). The TGD θ is applicable to B
if there is a substitution σ that sends the atoms of χ(X,Y ) to tuples
of B, and there does not exist a substitution σ̄ that sends the atoms of
χ(X,Y ) to σ(χ(X,Y )), and the atoms of ψ(X,Z) to tuples of B. In this
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case: (i) we define a substitution σ′ such that σ′(Xi) = σ(Xi) for each
Xi in X, and σ′(Zj) = zj for each Zj in Z, where zj is a fresh constant
of Γ , not already introduced in the construction and not appearing in
B; (ii) we add to B the facts of σ′(ϕG(X,Z)) that are not already in B.

Note that in the case of cyclic TGDs, the chase may be infinite.

Example 3. Consider Example 2, and let B be a RGD constituted by a single
fact R1(a, b). Let us construct chaseΣT

(B): at the first step we add the facts
R1(b, z1), R2(b, a); at the second step the facts R1(z1, z2), R2(z1, b), and so on;
note that in this case the construction process is infinite. �

In [3] it is proved that the chase of the RGD, constructed according to the
TGDs, is a representative of all databases in sem(I,D): in particular, for every
global query Q we have that QchaseΣT

(ret(I,D)) = cert(Q, I,D). Unfortunately
the chase of the RGD may be of infinite size, and therefore building it is not
only impractical, but sometimes even impossible. In [3], along the lines of [6],
the problem is solved in an intensional fashion: query answering is done by query
rewriting, i.e., the global query Q is reformulated into another query QR that,
evaluated over the RGD, returns the certain answers to Q. The function that
reformulates Q is denoted as TGDrewrite, and takes as input G, the set of TGDs
ΣT and Q. Formally, we have that

TGDrewrite(G, ΣT , Q)ret(I,D) = QchaseΣT
(ret(I,D)) = cert(Q, I,D)

Such technique avoids the construction of the RGD. The technique is applica-
ble for a restricted class of TGDs, namely the weakly-joined TGDs (WJTGDs);
in fact, it is known that query answering under general TGDs is undecidable [17].
WJTGDs are defined as follows.

Definition 2 ([3]). A TGD of the form χ(X,Y ) → ψ(X,Z) is a weakly-
joined TGD (WJTGD) if each Yi ∈ Y appears at most once in it.

We give a description of how the algorithm TGDrewrite works. The idea is
that the algorithm repeatedly executes a basic rewriting step (together with a
minimisation step that we will not see in detail), until there are no more CQs to
be added to the rewritten query. In the basic rewriting step, TGDrewrite verifies
(besides some other conditions) whether there is a substitution σ that sends a
subset of the atoms of the right-hand side of some TGD θ to a subset G of the
atoms of the body of some CQ q in Q. If this happens, a new CQ is added to Q,
obtained by replacing in q the set of atoms G with the left-hand side of θ, where
substitution σ has been applied.

Example 4. Consider Example 2 and a CQ q(X1) ← R1(X1, X2), R2(X1, X3),
represented as q(X1) ← R1(X1, 
), R2(X1, 
), where (similarly to the Logic
Programming notation, where the symbol “ ” is used) we indicate with 
 the
variables appearing only once in the query. The WJTGD θ is applicable to
G = {R1(X1, 
), R2(X1, 
)}, because the substitution σ = {X → X3, Y →
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X1,W → X2} sends the right-hand side of θ to G. Therefore, we apply the basic
rewriting step by replacing G with the left-hand side of θ and by applying σ
to the obtained query. The result is the CQ q(X1) ← R1(X3, X1), which we
represent as q(X1)← R1(
,X1).

Suppose there is another WJTGD θ1 on G, of the formR2(Y,W )→ R1(X,Y ).
Though there is a substitution sending the right-hand side of θ to G1 =
{R1(X1, X2)}, the basic rewriting step cannot be executed because the vari-
able X1 would “disappear”, and this is not allowed since X1 appears outside G1
(in particular, both in the head(q) and in another atom of body(q)). �

In [3] the mappingM is taken into account in a separate step, by first trans-
forming the GLAV system into a GAV system; query answering in GAV systems
is then done by a traditional rewriting technique called unfolding [18]. However,
the form of the GLAV mapping assertions, similar to TGDs, suggests that the
algorithm TGDrewrite can be used for the mapping as well.

Now we introduce a more general class of constraints that will allow us to deal
with the mapping assertions together with the constraints on the global schema.
First, we consider the global schema G and the source schema S as a single
database schema, on which are expressed the TGDs in ΣT , plus the assertions
inM, that now we can see as TGDs on G∪S, and that we denote with ΣM. The
TGDs in ΣM are in general not WJTGDs, but the following results, extending
those of [3], allows us to deal with a more general class of constraints. We give
some preliminary definitions.

Definition 3. Given a set ΣT of TGDs expressed over a global schema G, the
TGD-graph GΣT

associated to it is defined as follows:

– the set of nodes is the set of relation symbols in G;
– an arc (R1, R2) exists if R1 and R2 appear respectively in the left-hand and

right-hand side of some TGD in ΣT .

Definition 4. Given a set ΣT of TGDs expressed over a global schema G, and
the corresponding TGD-graph GΣT

, a TGD θ is said to be cycle-harmless w.r.t.
ΣT if at least one of the following conditions holds:

1. for any two relation symbols R1, R2 appearing in the body and in the head of
θ respectively, the arc (R1, R2) is not part of any cycle in GΣT

, or
2. θ is a WJTGD.

Now we come to the results.

Lemma 1. Let B be a relational database for a schema R, and ΣT a set of
cycle-harmless TGDs expressed over R. Then for every query Q on R, expressed
in UCQs, we have that TGDrewrite(R, ΣT , Q)B = QchaseΣT

(B).

Proof (sketch). We want to prove that, being n the arity of Q, for any n-tuple
t of constants of Γ , we have

t ∈ TGDrewrite(R, ΣT , Q)B iff t ∈ QchaseΣT
(B)
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“⇐”The proof is by induction on the number of applications of the TGD
chase rule. By hypothesis, there is a CQ q in Q such that there exists a query
homomorphism ψ (see [16]) that sends the body of q to tuples of chaseΣT

(B)
and the head of q to t. At the base step, ψ sends the body of q to tuples of
B, and since q is part of TGDrewrite(R, ΣT , Q), the thesis follows. As for the
inductive step, suppose that the result holds when ψ sends the body of q to
tuples of the chase (that we briefly denote as ψ(q)) that are generated after k
applications of the chase rule. It is possible to show that, denoting by H the set
of tuples from which ψ(q) is generated (and that are therefore generated from B
with k − 1 applications of the chase rule), there exists a query homomorphism
ψ1 that sends the body of q1 to tuples in H and the head of q1 to t, where q1 is
obtained from q by application of the basic rewriting step of TGDrewrite.

“⇒”The proof is analogous to the previous one, by induction on the number
of applications of the basic rewriting rule of TGDrewrite.

Lemma 2. Let I = 〈G,S,M〉 be a data integration system; let ΣT be a set of
TGDs expressed over G. If for every TGD θ in ΣT it holds that θ is a cycle-
harmless TGD w.r.t. ΣT , then for every source database D and for every global
query Q we have

QchaseΣT
(ret(I,D)) = cert(Q, I,D)

Proof (sketch). Analogously to what is done in [4] for the chase in the
presence of inclusion dependencies, it is possible to prove that, for every global
database B that is in sem(I,D), there exists a homomorphism λ that sends
tuples of chaseΣT

(ret(I,D)) to those of B.
We now prove that, being n the arity of Q, for every n-tuple of constants of

Γ ,
t ∈ QchaseΣT

(ret(I,D)) iff t ∈ cert(Q, I,D)

“⇐”If t 	∈ QchaseΣT
(ret(I,D)), since the chase is a database in sem(I,D)

because it satisfies both the mapping and the ICs, we immediately deduce that
t ∈ cert(Q, I,D).

“⇒”By hypothesis, there exists a query homomorphism µ that sends the
body of some CQ q in Q to tuples of chaseΣT

(ret(I,D)). Recalling the ex-
istence of the homomorphism λ for any global database B in sem(I,D), we
consider the composition µ ◦ λ. The existence of such homomorphism for any
B in sem(I,D) guarantees that t ∈ QB for every B ∈ sem(I,D), and therefore
t ∈ cert(Q, I,D). �

Theorem 1. Let I = 〈G,S,M〉 be a data integration system; let ΣT be a set of
TGDs expressed over G . If for every TGD θ in ΣT it holds that θ is a cycle-
harmless TGD w.r.t. ΣT , then for every source database D and for every global
query Q we have

TGDrewrite(G, ΣT , Q)ret(I,D) = cert(Q, I,D)

Proof. By Lemma 2 we have TGDrewrite(G, ΣT , Q)ret(I,D) = QchaseΣT
(ret(I,D)).

The thesis follows immediately from Lemma 2. �
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The following theorem, directly derived from Theorem 1, allows us to take
the mapping into account in a single step with the algorithm TGDrewrite.

Theorem 2. Let I = 〈G,S,M〉 be a data integration system; let ΣT be a set
of TGDs expressed over G and ΣM the TGDs that constitute M. If for every
TGD θ in ΣT it holds that θ is cycle-harmless w.r.t. ΣT , then for every source
database D and for every global query Q we have

TGDrewrite(G, ΣT ∪ΣM, Q)D = cert(Q, I,D)

Proof. The proof is done by observing that chaseΣM(D) = ret(I,D), and that
chaseΣT

(ret(I,D)) = chaseΣT ∪ΣM(D). Note that all TGDs in ΣM are cycle-
harmless by construction. By Lemma 1 we have

TGDrewrite(G, ΣT ∪ΣM, Q)D = QchaseΣT ∪ΣM (D)

and therefore

TGDrewrite(G, ΣT ∪ΣM, Q)D = QchaseΣT
(chaseΣM (D)) = QchaseΣT

(ret(I,D))

The thesis follows immediately from Lemma 2. �

Note that we have in some way abused the notation in the statement of
the previous theorem; in fact we are evaluating TGDrewrite, which in general
is formulated over G ∪ S, over a source database D that is a database for S.
However, we can consider D as a database for G ∪ S where for each g ∈ G we
have gD = ∅. Indeed, this observation leads us to the obvious conclusion that,
once TGDrewrite(G, ΣT ∪ ΣM, Q) is computed, in its evaluation over D we can
omit to consider all the CQs in which at least one atom with a relation symbol
of G appears. This can save computation time in the query rewriting phase.

Example 5. Recall Example 1. Suppose the source database D contains a single
fact hasjob(anne,maths)←. Consider the global query

Q(X) ← employed(X,Y ) ∧ runsProject(Y,Z)

asking for persons employed in institutions that run some project. A rewriting
step, according to the single TGD expressed on G, will produce the CQ

Q1(X) ← work(X,Z)

Applying the mapping assertions as rewriting rules, we obtain the following CQs:

Q2(X)← hasjob(X,W1)
Q3(X)← getgrant(X,W2) ∧ grantfor(W2, Z)
Q4(X)← teaches(X,W3) ∧ infield(W3,W4)

The final rewriting is QR = Q ∨ Q1 ∨ Q2 ∨ Q3 ∨ Q4 (however, Q and Q1
will not be considered since they contain relation names not appearing in S).
The evaluation of the rewriting over the source database D returns the answer
QD

R = {(anne)}. �
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4 Query Rewriting Under Tuple-Generating
Dependencies and Functional Dependencies

In this section we address the problem of query answering in GLAV systems
where two sets of TGDs and FDs, that we will denote with ΣT and ΣF respec-
tively, are expressed over the global schema. In this case, even if we restrict to
TGDs that are either cycle-harmless w.r.t. ΣT , the problem of query answering
is undecidable.

Theorem 3. Let I = 〈G,S,M〉 be a data integration system, where two sets
of TGDs and FDs, ΣT and ΣF respectively, are expressed over G; let ΣT be a
set of cycle-harmless TGDs w.r.t. ΣT itself. We have that the problem of query
answering is undecidable.

Proof. The proof is derived from the undecidability result for query answering in
the presence of inclusion dependencies and key dependencies [5], which is clearly
a particular case of the one considered here. Note that inclusion dependencies
are cycle-harmless TGDs, since they cannot have joins in the left-hand side. In
turn, the result of [5] is derived from the undecidability result about implication
of functional and inclusion dependencies [7]. �

Here we consider a slightly restricted class of TGDs and FDs: in particular,
similarly to what is done in [5], we consider a class of TGDs that “does not con-
flict” with the FDs, and for which query answering is decidable. In the following
we will make use of the notion of freezing a formula; given a conjunction C of
atomic formulae, freezing C consists in defining a substitution σ that sends each
distinct variable to a distinct constant; the frozen formula σ(C) is a set of facts.

Definition 5. Given a set of FDs ΣF over a relational schema R, a TGD θ of
the form

χ(X,Y ) → ψ(X,Z)

is a non-functional-conflicting TGD (NFCTGD) w.r.t. ΣF if the following con-
ditions hold:

1. the database constructed by “freezing” the variables of ψ(X,Z) and consid-
ering the the obtained facts satisfies ΣF ;

2. for each atom R(X,Z) in ψ, and for every FD of the form R : A → B
in ΣF defined on R, the symbols that are either constants or are in X (we
recall that the symbols in X appear both sides of the TGD) are placed in a
set of attributes of R that is not a superset of A.

Example 6. Consider a relational schema R = {R1/3, R2/1, R3/2}, let ΣF a
set of FDs over R, constituted by a single FD φ of the form R1 : 1 → 2
(we have indicated the attributes of R1 with integer numbers). The TGD
θ : R3(X,Y ) → R1(X,Y, Z), R2(Y ) is not a NFCTGD w.r.t. ΣF because in
the first two attributes of the atom R1(X,Y, Z) are covering a superset of the
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left-hand-side of φ, and X and Y appear in the left-hand side of θ. Moreover,
the TGD θ1 : R3(Z, Y ) → R1(X,Y, Z), R1(X, b,W ) (where b is a constant) is
not a NFCTGD w.r.t. ΣF because if we freeze its right-hand side we obtain two
facts R1(cX , cY , cZ)← and R1(cX , b, cW )← that violate φ.

Non-functional-conflicting TGDs are a generalisation of non-key-conflicting
inclusion dependencies (NKCIDs) [5]; similarly to NKCIDs, the NFCTGDs enjoy
the following property.

Proposition 1. Consider a relational database B on which a set ΣF of FDs and
a set ΣT of NFCTGDs w.r.t. ΣF are defined. If B |= ΣF then chaseΣT

(B) |= ΣF .

Proof. The proof is by induction on the structure of chaseΣT
(B). At the base

step, B satisfies ΣF , that is true by hypothesis. As for the inductive step, consider
the addition of a set of facts f1, . . . , fn, due to the application of the TGD chase
rule. By Condition 1 of Definition 5, it is straightforward to see that the facts
f1, . . . , fn are such that no two facts fi, fj (1 ≤ i, j ≤ n) that violate a FD in
ΣF . Moreover, none of the facts in f1, . . . , fn will violate a FD φ in ΣF together
with another fact f1 already present in the segment of chaseΣT

(B) until the
insertion of f1, . . . , fn. In fact, let f and f1 be of the form R(c1, . . . , cm)← and
R(d1, . . . , dm) ← respectively; by Condition 2 of Definition 5, for any FD φ in
ΣF of the form R : A → B, f and f1 will never have the same values in the
attributes of A. This ends the proof of the claim.

Intuitively, from the previous property follows that, if a global database sat-
isfies the set ΣF FDs, and the TGDs are all non-functional-conflicting, we can
ignore ΣF w.r.t. to query answering, since the chase is indifferent to the presence
of FDs.

At this point, we come to the problem of query answering in a data integration
system I = 〈G,S,M〉. Recalling Theorem 2 and assuming that both ΣT and
ΣM contain only NFCTGDs that are also cycle-harmless, we have that the
source database D satisfies ΣF by construction, since the FDs are defined only
on G. Therefore, given a global query Q, we may think of applying the algorithm
TGDrewrite to Q under the set of TGDs ΣT ∪ ΣM, thus solving immediately
the problem of query answering by means of rewriting. Unfortunately, while
assuming that the TGDs in ΣT are NFCTGDs is reasonable in practical cases,
assuming the same for the dependencies in ΣM is not. Nevertheless, the TGDs
in ΣM are the only ones having source relations appearing in them (in the left-
hand side); such property ensures that we are still in luck when they are not non-
functional conflicting. In fact, the problem of query answering is still decidable
when TGDs inΣT are cycle-harmless and NFCTGDs, and those inΣM are cycle-
harmless (this is by construction) but in general not non-functional-conflicting.
The query answering technique, in this case, requires the construction of the
RGD; in particular the algorithm for query answering, given a data integration
system I = 〈G,S,M〉, a source database D and a global query Q, consists of
the following steps:
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1. We build the RGD ret(I,D).
2. We check whether ret(I,D) |= ΣF ; if ret(I,D) 	|= ΣF we are done: in this

case there is no global database satisfying both the constraints and the map-
ping, so sem(I,D) = ∅ (see e.g. [18]); therefore, query answering is trivial,
since every tuple of the same arity of Q is in cert(Q, I,D). If, on the contrary,
ret(I,D) |= ΣF , we proceed with the following steps.

3. We calculate TGDrewrite(G, ΣT , Q).
4. We evaluate TGDrewrite(G, ΣT , Q) over ret(I,D): the result is cert(Q, I,D).

In the presence of FDs on the global schema, the construction of the retrieved
global database cannot be done independently of the FDs; in fact, some of the
violations of the FDs that occur during the construction of the RGD are not
“real” violations; instead, they lead to the inference of equalities among newly
introduced constants and constants already present in the part of the RGD
constructed in previous steps. The following example illustrates this issue.

Example 7. Consider again Example 1, and suppose that the following FD is
expressed over G:

work : 1→ 2

Such FD imposes that a person can work at most on one project. Now, suppose
to have a source database D with the following facts:

hasjob(anne,maths)←
teaches(anne, databases)←
infield(databases, compScience)←

According to M, The RGD will contain the following facts:

work(anne, p1)←
area(p1,maths)←
work(anne, p2)←
area(p2, compScience)←

where p1 and p2 are fresh constants introduced in the construction. Note that
the facts work(anne, p1)← and work(anne, p2)← violate the above FD. In this
case, however, the violation is due to the two fresh constants p1 and p2: therefore,
instead of concluding that sem(I,D) = ∅, we instead infer p1 = p2. Now suppose
that also the following facts are in D:

getgrant(anne, eu123 )←
grantfor(eu123 , venus)←

Now the RGD will have the additional fact

work(anne, venus)←
asserting that anne works on project venus; here we have another violation,
but again we do not conclude that sem(I,D) = ∅: instead, the new facts make
us infer that the project on which Anne is working is venus. Therefore, we
have p1 = p2 = venus. All occurrencies of p1 and p2 in the part of ret(I,D)
constructed so far need to be replaced by venus. �
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Now we present a technique for constructing the RGD in the case of GLAV
mapping, in the presence of FDs on the global schema.

Definition 6. Let I = 〈G,S,M〉 be a GLAV data integration system, where a
set ΣF of FDs is defined on G, and D a source database for I. The retrieved
global database ret(I,D) is defined constructively as follows. Consider a map-
ping assertion ϕS(X,Y ) → ϕG(X,Z). For each set H of facts of D such that
there exists a substitution σ that sends the atoms of ϕS(X,Y ) to H: (i) we
first define a substitution σ′ such that σ′(Xi) = σ(Xi) for each Xi in X, and
σ′(Zj) = zj for each Zj in Z, where zj is a fresh constant, not introduced before
and not appearing in D; (ii) we add to ret(I,D) the set of facts that are in
σ′(ϕG(X,Z)). Now, suppose that one of the added facts, say R(t)←, violates a
FD φ because of the presence of another fact R(t0) ← in the part of the RGD
that has been constructed in the previous steps (t and t0 are tuples of constants).
Formally, being φ of the form

R : A → B

we have t[A] = t0[A] and t[B] 	= t0[B]. Let t[B] = c and t0[B] = c0; there are
different cases, that we enumerate as follows:

1. c is a fresh constant, not appearing in D: in this case we substitute c with c0
(which can be either a fresh constant or a constant of D) and proceed;

2. c is a constant of D and c0 is a fresh constant: in this case we replace c0
with c in all the part of the RGD that has been constructed in the previous
steps and proceed.

3. c and c0 are both constants appearing in D: in this case we have sem(I,D) =
∅ and we stop the construction.

Note that the construction of the RGD in this case can be done in time
polynomial in the size of the source database D: in fact, though the replacement
can involve all the data in the RGD retrieved at a certain point, we have that
the replacement of case 2 can be performed at most once on each constant.

The following theorem states the correctness and completeness of the above
technique.

Theorem 4. Let I = 〈G,S,M〉 be a data integration system; let ΣT and ΣF

two sets of TGDs and FDs defined on G respectively, where all TGDs in ΣT are
cycle-harmless w.r.t. ΣT and NFCTFDs w.r.t. ΣF . If ret(I,D) |= ΣF , then we
have that TGDrewrite(G, ΣT , Q)ret(I,D) = cert(Q, I,D).

Proof (sketch). The result follows straightforwardly from Proposition 1; since
ret(I,D) |= ΣF , we can proceed by applying Theorem 1 as if ΣF = ∅. �‘
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5 Discussion

In this paper we have addressed the problem of query answering in GLAV data
integration systems, in the presence of tuple-generating dependencies and func-
tional dependencies.

Several works in the literature address the problem of query answering un-
der integrity constraints, both in a single database context [5, 2, 12] and in data
integration [9, 20, 13, 17, 10, 6, 4]. In particular, [17] presents a technique, well
supported by experimental results and theoretical foundations, for query rewrit-
ing under conjunctive inclusion dependencies (CINDs); CINDs are analogous to
TGDs, but in [17] a syntactic restriction on CINDs imposes that CINDs are
acyclic, so that the problem of having a chase of infinite size (and therefore
the problem of the termination of the rewriting algorithm) is not relevant. An-
other interesting paper about repair of database dependencies is [10]; this paper
addresses the problem of integrity constraints in data exchange, so in this case
data are to be materialised in a target schema, as well as their chase, and not ac-
cessed on-the-fly as in our virtual data integration approach. Due to the need of
materialising the target schema, the class of ICs considered, namely the weakly-
acyclic TGDs together with equality-generating dependencies, though certainly
quite general, is such that the chase is always finite. Therefore, such class of
constraints is not comparable with the one considered in our paper.

In this paper we have first addressed the problem of query answering in the
presence of TGDs alone; we have recalled the algorithm TGDrewrite, introduced
in [3], showing that it can be applied to a more general class of TGDs, namely
the cycle-harmless TGDs. The result about the introduced class of TGDs al-
lowed us to use TGDrewrite for rewriting global queries according not only to
the TGDs, but also according to the mapping, that can be seen as a set of TGDs
over a unified schema including both the global schema and the source schema.
The rewriting algorithm can be used, of course, also in particular cases, e.g.,
when there are no constraints; in such a case, when the mapping is LAV instead
of GLAV, our technique is similar to the algorithm MiniCon [21], which incor-
porates effective optimisation techniques not present in TGDrewrite; however,
TGDrewrite is more general, being able to deal with GLAV mappings.

Then, we have introduced functional dependencies together with TGDs,
defining a class of ICs for which the query answering problem is decidable, and
providing a query answering technique based on the algorithm TGDrewrite. In
this case the mapping cannot be dealt with at once, together with the ICs on
the global schema; instead, the construction of the retrieved global database is
required. After that, if the RGD satisfies the FDs, the form of the constraints is
such that we can proceed as if there were no FDs.

As for the computational complexity, we focus our attention on the data com-
plexity, i.e. the complexity w.r.t. the size of the data residing at the sources. This
is the usual way of considering complexity in a database context, since the size
of schemata and constraints is usually negligible with respect to the size of the
data. In our case, since we solve the problem of query answering in an inten-
sional fashion, the only phases where the data are involved are the evaluation
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of the reformulated query over the source database, and the construction of the
RGD (only in the presence of FDs). Both such operations can be done in time
polynomial w.r.t. the size of the data.
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