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Abstract. Changes of semantics in data sources further complicate the semantic 
heterogeneity problem. We identify four types of semantic heterogeneities re-
lated to changing semantics and present a solution based on an extension to the 
Context Interchange (COIN) framework. Changing semantics is represented as 
multi-valued contextual attributes in a shared ontology; however, only a single 
value is valid over a certain time interval. A mediator, implemented in abduc-
tive constraint logic programming, processes the semantics by solving temporal 
constraints for single-valued time intervals and automatically applying conver-
sions to resolve semantic differences over these intervals. We also discuss the 
scalability of the approach and its applicability to the Semantic Web. 

1   Introduction 

The Web has become a large database, from which obtaining meaningful data is be-
coming increasingly difficult. As a simple example, try querying historic stock prices 
for Daimler-Benz from Yahoo. Figure 1 shows what Yahoo returned for the prices at 
stock exchanges in New York and Frankfurt.  

   
 

 

Fig. 1. Stock prices for Daimler-Chrysler from Yahoo. Top: New York; Bottom: Frankfurt 
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What conclusions will you draw from the retrieved data? Perhaps you regret that 
you were not arbitraging the substantial price differences between the exchanges, or 
feel lucky that you sold the stock in your Frankfurt account at the end of 1998? Both 
conclusions are wrong. Here, not only are the currencies for stock prices different at 
the two exchanges, but the currency at Frankfurt exchange also changed from German 
Marks to Euros at the beginning of 1999 (the New York exchange remained as US 
dollars). Once the data is transformed into a uniform context, e.g., all prices in US 
dollars, it can be seen that there is neither significant arbitraging opportunity nor 
abrupt price plunge for this stock.  

The example illustrates the kinds of problems that the Semantic Web aims to solve. 
We need not wait until the full implementation of the Semantic Web for meaningful 
data retrieval. Context Interchange (COIN) framework [7, 10, 11], originated from the 
semantic data integration research tradition, shares this goal with the Semantic Web 
research. With the recent temporal extension that processes heterogeneous and chang-
ing semantics, described in this paper, COIN provides an extensible and scalable 
solution to the problem of identifying and resolving semantic heterogeneities. COIN 
is a web-based mediation approach with several distinguishing characteristics: 

− Detection and reconciliation of semantic differences are system services and are 
transparent to users. Thus with COIN, the historic stock prices in the simple exam-
ple are automatically transformed before they are returned to the user; 

− Mediation does not require that semantic differences between each source-receiver 
pair to be specified a priori, rather, it only needs a declarative description of each 
source’s data semantics and the methods of reconciling possible differences. Se-
mantic differences are detected and automatically reconciled at the time of query. 
Scalability is achieved by the use of ontology, context inheritance, and parameteri-
zation of conversion functions;  

− Mediation is implemented in abductive constraint logic programming. As a result, 
it allows for knowledge level query and can generate intensional answers as well 
as extensional answers. Efficient reasoning is achieved by combining abduction 
with concurrent constraint solving.  

 In this paper, we will focus on the representation and reasoning of changing se-
mantics in COIN. Since it is an extension to early implementations, it is capable of 
mediating static semantic heterogeneities as well as those that change over time. 

2   Temporal Semantic Heterogeneities 

Temporal semantic heterogeneities refer to the situation where the semantics in data 
sources and/or receivers changes over time. We categorize them into four types, 
which are described below, then followed by an illustrative example. 

2.1   Categories of Temporal Semantic Heterogeneities 

Representational heterogeneity. The same concept can be represented differently in 
different sources and during different time periods. In the stock price example, the 
same concept of stock price is represented in different currencies, and for the Frank-
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furt exchange, the currency also changed in the beginning of 1999. This introduces 
representational temporal heterogeneity when the receiver needs price data in US 
dollars. Representational heterogeneity often results from the differences in unit of 
measures, scale factors, and other syntactic characteristics. 

Ontological heterogeneity. The same term is often used to refer to slightly different 
concepts; in the same source the concepts referred to by a term may shift over time, 
which introduces ontological temporal heterogeneities. For example, profit can refer 
to gross profit that includes all taxes collected on behalf of government, or net profit 
that excludes those taxes. The referred concept may shift from one type of profit to 
another because of change of reporting rules.  

Aggregational heterogeneity. When the data of interest is an attribute of an entity that 
can consist of other entities, aggregational heterogeneity arises if the component enti-
ties vary in different situations. A detailed example is presented in [17], where de-
pending on regulatory requirements and purposes, the financial data of corporations 
may or may not include those from certain branches, subsidiaries, and majority owned 
foreign joint ventures. These rules and purposes may change over time, which intro-
duces aggregational temporal heterogeneities. We will give a more detailed example 
of this category later in this section. 

There are certain connections between ontological and aggregational heterogenei-
ties. For example, the question “does profit include taxes” concerns ontological het-
erogeneity; while the question “does profit for corporation x include that of its sub-
sidiaries” concerns aggregational heterogeneity. The latter can be seen as a more 
complicated version of the former in that the heterogeneity results from the entity that 
the data is about, not the data itself. In addition, data aggregation rules are often more 
complicated than ontological concept definitions. We will use this connection in 
COIN to encode and process aggregational heterogeneity. 

Heterogeneity in temporal entity. The representation and operations for the domain of 
time vary across systems. As a result, there exist heterogeneities that include, for 
example, location dependencies such as time zones, differences in representation 
conventions, calendars, and granularities. Although it is a type of representational 
heterogeneity, we treat it as a special category because of the complexity of the do-
main of temporal entity. 

2.2   An Illustrative Example 

We use the following example to illustrate representational and aggregational hetero-
geneities. Readers are referred to [17] for a more complicated aggregational example 
and to [21] for an example of representational and ontological heterogeneities. 

The example involves two sources and one receiver1. The receiver is interested in 
the longitudinal economic and environmental changes in the Balkans area, before and 
after the war in Yugoslavia. As shown in Figure 2, the sources organize the data by 
sovereign country, while the receiver is interested in data for the region covered by 

                                                           
1 This example has been simplified in this paper to reduce space while maintaining the key 

details. The actual situation involves many more sources as well as multiple users, each with 
a potentially different context. 
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the former Yugoslavia. The sources also make other implicit assumptions for data in 
terms of currencies and scale factors. We call these assumptions for interpreting the 
data contexts and identify them using context labels, c_srs and c_target, in Figure 2.  

As the web and traditional databases are often used today, the receiver knows what 
data is available in the sources and wants to query them directly using query Q – but 
the user may not know about (nor want to deal with) the differences in contexts. Thus, 
a direct execution of query Q over the sources would bring back wrong answers be-
cause the query does not consider context differences, such as those in currency and 
scale factor. Additionally, in 1992 former Yugoslavia was divided into five sovereign 
countries, each with its own distinctive currency (See Table 1). Therefore, the results 
for data after 1992 are also wrong because of unresolved aggregational differences, 
i.e., the data represents only a sub-area of the entire region expected by the receiver. 

Context c_src 
1. Monetary values are in official currency of the country, 

with a scale factor of 1M; 
2. Mass is a rate of tons/year with a scale factor of 1000; 
3. All other numbers have a scale factor of 1; 
4. All values are aggregated by sovereign country. 
 
Schema of  source 1: 
    Statistics(Country, Year, GDP, Population) 
 
Schema of  source 2: 
    Emissions(Country, Year, CO2) 

     

Context c_target 
1. Monetary values are always in USD, 

with a scale factor of 1M; 
2. Mass is in tons/year; 
3. Other numbers have a scale factor of 1;  
4. Value for country denoted by ‘YUG’ is 

aggregated to the geographic area of 
former Yugoslavia. 

 

Query Q
2
: 

 

Select S.Country,S.Year,GDP,CO2 
From Statistics S, Emissions E 
Where S.Country=E.Country and  
S.Year=E.Year and S.Country=’YUG’; 

Fig. 2. Temporal Context Example, with Subtle Changes in Data Semantics 

Table 1. Five Countries Resulting from the Division of the Former Yugoslavia 

Country Code Currency  Currency Code 
Yugoslavia3 YUG New Yugoslavian  Dinar  YUM 
Bosnia and Herzegovia BIH Marka BAM 
Croatia HRV Kuna HRK 
Macedonia MKD Denar MKD 
Slovenia SVN Tolar SIT 

Compared to the stock quote example, the semantic changes in this example are 
more subtle in that there seem to be no semantic changes in the verbal context de-
scriptions in Figure 2, it is the meaning of the country code ‘YUG’ that changes over 
time. To account for this change, we need to make it explicit either in the source  
context or in the receiver context. We choose the latter in the following discussions.  

                                                           
2 For this example and demonstration to follow, the Query Q is expressed in the Structured 

Query Language (SQL).  The basic COIN approach can be applied to any query language. 
3 The Federal Republic of Yugoslavia was renamed Serbia and Montenegro in 2003. We will 

not encode this change in the example to simplify illustration.   
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In addition, the aggregational heterogeneity also dynamically introduces new repre-
sentational heterogeneities, e.g., currency differences will be encountered in aggregat-
ing data for each component country. Another interesting characteristic is that in this 
simple example the two sources share the same context (in reality, there are likely 
many context differences amongst the diverse sources). 

3   COIN Framework and Architecture 

The COIN framework consists of a deductive object-oriented data model for knowl-
edge representation and a general purpose mediation service module that detects and 
resolves semantic conflicts in user queries at run-time (see Figure 3). 

COIN 
Mediator

Executioner

Optimizer

Receivers/
User Apps

Conversion
Libraries

Mediated query/
explication 

User query

Data in user context

Data sources

Knowledge Representation  - F-Logic based data model

Ontology – define types and relationships
Context theories – define source and receiver contexts by 

specifying  modifier historic values
Mappings – assigning correspondence between data elements 

and the types in ontology

Mediation service

Graphic/Web-based 
modeling tool

 

Fig. 3. Architecture of the COIN System 

Knowledge representation in COIN consists of three components:  

− Ontology – to define the semantic domain using a collection of semantic types and 
their relationships. A type corresponds to a concept in the problem domain and can 
be related to another in three ways: 1) as a subtype or super-type (e.g., profit is a 
subtype of monetary value; 2) as a named attribute (e.g., temporal entity such as 
year is a temporal attribute of GDP); and 3) as a modifier or contextual attribute, 
whose value is specified in context axioms and can functionally determine the in-
terpretation of instances of the type that has this modifier (e.g., monetary value 
type has a scale factor modifier). There is a distinguished type basic in the ontol-
ogy that serves as the super type of all the other types and represents all primitive 
data types. Objects are instances of the defined types;  

− Context theories – to specify the values of modifiers for each source or receiver 
and the conversions for transforming an object in one context to another. The con-
text of each source or receiver is uniquely identified with a context label, e.g., 
c_src and c_target in the example. The value specification for modifiers can be a 
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simple value assignment or a set of rules that specify how to obtain the value. Con-
ceptually a context can be thought to be a set of <modifier, object> pairs, where 
object is a singleton in most non-temporal cases; and 

− Semantic mappings – to establish correspondences between data elements in 
sources and the types in the ontology, e.g., GDP in the example in Figure 2 corre-
sponds to monetary value in the ontology.  

These components can be expressed in OWL or F-Logic [15]. Since COIN pre-
dates OWL, F-Logic was the language of choice with its rich constructs for describing 
types and their relationships and has formal semantics for inheritance and overriding. 
In practice, we translate the F-Logic expressions into a Horn logic program and im-
plement the semantics of inheritance and overriding in the context mediator compo-
nent described next. For succinctness, we continue to use the F-Logic syntax in the 
rest of the paper. Attributes and modifiers are represented as functions or methods of 
the defined types; since modifier values vary by context, methods for modifiers are 
parameterized with a context label. Comparison between objects is only meaningful 
when performed in the same context, i.e., suppose x and y are objects, 

.])([])([ vuvcvalueyucvaluexyx
c

◊∧→∧→⇔◊  
where ◊ is one of the comparison operators for primitives in { …,,,,,, ≥>≤<≠= }, 

and the value method is a parameterized function that returns the primitive value of an 
object. A value method call invokes the comparison of modifier values in source 
context and receiver context c, if difference is detected, conversion functions are 
invoked. 

The core component in the mediation service module is the COIN mediator im-
plemented in abductive constraint logic programming. It takes a user query and pro-
duces a set of mediated queries (MQs) that resolve semantic differences. This happens 
by first translating the user query into a Datalog query and using the encoded knowl-
edge to derive the MQs that incorporate necessary conversions from source contexts 
to receiver context. The query optimizer and processor [2] optimize the MQs using a 
simple cost model and the information on source capabilities, obtain the data, perform 
the conversions, and return final datasets to the user.  

We also developed web-based [16] and graphical [13] tools for data administrators 
to design ontologies and input context knowledge. As part of ongoing effort of con-
necting COIN with the Semantic Web, we are also developing OWL and RuleML 
based representations for the COIN ontology and context knowledge; a prototype is 
described in [19]. These prototypes also translate the captured knowledge into Prolog 
syntax required by the current implementation of the mediation service. 

4   Representation of Changing Semantics 

Like many existing ontologies, previously the ontologies in COIN were based on a 
snapshot view of the world and lacked the capability of capturing changing semantics. 
To overcome this limitation, we incorporate in COIN ontologies explicit time con-
cepts such as the ones defined in DAML Time Ontology [12]. Temporal entity is the 
most general concept and can be further specialized into instant and interval. There is 



 Representation and Reasoning About Changing Semantics 133 

 

emerging research that aims to systematically temporalize static ontologies [18]; for 
simple ones, we can manually create a temporal ontology by relating concepts whose 
value or semantics changes over time to temporal concepts via named attributes.  
Figure 4 shows a graphical representation of the ontology for the example.  

temporalEntity

country

mass

population

monetaryValue

basic

currency

scaleFactor

additiveValue

aggregationType

officialCurrency
scaleFactor

tempAttr

country

Sub-/super- type

Attribute
Modifier

Legend
Semantic type

Sub-/super- type

Attribute
Modifier

Legend
Semantic type

 

Fig. 4. A graphical representation of the example ontology 

We should note that, like other types of conceptual modeling, there could be multi-
ple variants of the example ontology that convey the same ideas in the problem  
domain, some of which may be even better. We use this one for illustration purposes. 

The type basic represents system primitives and is the parent of all the other types; 
this relationship is omitted in the graph to eliminate clutter. The context regarding 
data aggregation is captured by the modifier aggregationType of the semantic type 
additiveValue, which serves as the parent all other types that can be aggregated. At-
tributes are also added to this parent type to relate to types country and temporalEn-
tity. Through inheritance and overriding the child types obtain and specialize, if nec-
essary, these relationships and context specifications.  

In the following discussion, we assume certain familiarity with the syntax and the 
semantics of F-Logic. Following Gulog [5], a sub-language of F-Logic, we use −| to 

separate variable type declarations from the rest of a formula. For succinctness we 
also use non-clausal forms, which eventually will be rewritten in clausal form and 
translated into equivalent Horn logic clauses.   

We represent a named attribute in the ontology as a function and a modifier as a 
multi-valued method parameterized with context label. For example, the following 
formula declares that additiveValue has tempAttr with a return type of temporalEntity: 

].[ titytemporalEntempAttrlueadditiveVa ⇒  

Similarly, the following declares modifier aggregationType for additiveValue: 

].)([ basicctxtnTypeaggregatiolueadditiveVa ⇒⇒  

The changing semantics is represented by context axioms that specify the entire 
history of multi-valued modifiers. In the example we have decided to make the  
semantic change explicit in the receiver context, which means that before the balkani-
zation in 1991, the receiver aggregates data at the country level for Yugoslavia, and 
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for data after 1992, the receiver wants to aggregate at the level of geo-region covered 
by former Yugoslavia. This is expressed using the following context axiom: 

).][]'')_([(

)][]'')_([(

''][])_([

|::

1992

_
1991

_

_

≤

≤

∈∧→←→
∧∈∧→←→

∧=∧→∧→
−∃∀

ITTtempAttrXgeoregiontargetcvalueY

ITTtempAttrXcountrytargetcvalueY

YUGCCcountryXYtargetcnTypeaggregatioX

basicYlueadditiveVaX

targetc

t

targetc

t

targetc

 (1) 

where 1991≤I represents the time interval up to year 1991, similarly ≤1992I  is the interval 

since year 1992, and t∈ is a temporal inclusion relation, which can be translated into a 

set of comparisons between time points by introducing functions that return the be-
ginning and ending points of an interval: 

)).()(())()((

|:,:

IendTendTbeginIbeginIT

titytemporalEnItitytemporalEnT
ccc

t ≤∧≤⇔∈

−∀
 

Conceptually, we can think of temporal context as a set of <modifier, history> pairs 
with history being a set of <object, time_interval> pairs or a set of time-stamped ob-
jects. By abusing syntax, we say the temporal context pertaining to aggregation for 
the receiver is >><><< ≤≤ },'',,''{, 19921991 IgeoregionIcountrynTypeaggregatio . 

A multi-valued modifier is still single-valued over a certain time interval. Thus, 
there exist overlapping intervals over which all involved modifiers are single-valued 
in each context. Within these intervals, the determination and the resolution of context 
differences are identical to those in a snapshot model. Therefore conversion functions 
for processing changing semantics are identical to those in snapshot COIN. For the 
interval after 1992, semantic differences exist between the sources and the receiver in 
terms of aggregation because the value of aggregationType modifier in the sources is 
‘country’, while it is ‘georegion’ in the receiver context. Conversions are needed to 
resolve this difference. Conversion functions are defined for the subtypes of addi-
tiveValue, e.g., for moentaryValue we have: 

.])([
])([])([

])([

''''''''

_),,,_(),,_(
_),,,(_),,,_(][

],_@)_,([
|:

432144

3322

11432

14321

444333

222111

mmmmuvmc_targetvalueM
mc_targetvalueMmc_targetvalueM

mc_targetvalueMTTTTTT

TTSVNCMKDCHIVCBIHC

MTCstatisticsMTCstatistics
MTCstatisticsMTCstatisticsTtempAttrX

vusrcctargetcnTypeaggregatiocvtX
luemonetaryVaX

target_ctarget_ctarget_c

target_ctarget_ctarget_ctarget_ctarget_c

++++=∧→
∧→∧→

∧→∧=∧=∧=
∧=∧=∧=∧=∧=

∧∧
∧∧∧→

←→
−

 (2) 

The function essentially states that to process aggregationType semantic difference 
of a monetaryValue object, its value u in c_src context is converted to a value v in 
c_target context by finding the other monetaryValue objects that correspond to the 
four other countries as indicated by the codes at the same year, convert them into 
primitive values in c_target, and make v the sum of these primitives. The function for 
mass subtype is similarly defined. Before calling this function, functions that convert 
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for currency and scaleFactor should have been called to arrive at this interim value u; 
in calling value functions for the four objects C1-C4 in the body of the function, con-
versions for currency and scaleFactor are dynamically called to ensure that they are 
summed in the same context. Thus, it is necessary to specify the precedence of modi-
fiers, i.e., the order in which the modifiers should be processed. 

This function is not general because of the use of constants in places of context pa-
rameters and the references to a semantic relation corresponding to a relation in data 
source. Using COIN for aggregational heterogeneities is a new research area that we 
are currently investigating to produce general methodology. For most other types of 
heterogeneities, though, more general conversions exist and can be utilized in multi-
ple problem domains by collecting them into the conversion library. Generalization  
is achieved by parameterizing the function with variables for context labels. For  
example, the following currency conversion function can be used to convert monetary 
values from any arbitrary context C1 to any other arbitrary context C2:  

.*])([
),,,_(

][])([])([
],@),([

|:

2

21

12

222

ruvrCvalueR
DTBCACDRBAolsen

TtempAttrXCCcurrencyXCCcurrencyX
vuCCcurrencycvtX

luemonetaryVaX

CC

t

C

f

tf

=∧→
∧=∧=∧=∧

∧→∧→∧→
←→

−

 (3) 

where olsen_ corresponds to an external relation that gives exchange rate between 
two currencies on any specified date.  

A recent effort [8] introduced automatic conversion composition based on equa-
tional relationships between contexts, e.g., given conversions 1) between base price 
and tax-included price; and 2) between tax-included price and final price, the conver-
sion between base price and final price can be composed using symbolic equation 
solvers.  

5   Reasoning About Changing Semantics in COIN Mediation 

The mediator is to translate a user query that assumes everything is in user context to 
a set of MQs that reconcile context differences between each involved source and the 
user. The following pseudo code sketches the intuition of the procedure: 

For each source attribute appearing in user query 
Instantiate into object of type in ontology according to mappings 
Find the direct and inherited modifiers 
Order modifiers according to precedence 
For each modifier 

Choose a value and put corresponding temporal constraint in store 
If constraints are consistent 
  Compare values in source and receiver 
  If different, call conversion function and put abducibls in store 

Construct MQ using abducibles 

We implement this procedure using abductive constraint logic programming 
(ACLP) [14]. Briefly, ACLP is a triple <P, A, IC>, where P is a constraint logic pro-
gram, A is a set of abducible predicates different from the constraint predicates, and 
IC is a set of integrity constraints over the domains of P. Query answering in ACLP is 
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that given a query )(Xq , generate a set of abductive hypothesis ∆ and a substitution 
θ  so that ∆∪P entails θ)(Xq and is consistent; ∆ consists of abducible predicates 
and simplified constraints. 

The COIN framework can be straightforwardly mapped to ACLP. Knowledge rep-
resentation in COIN can be translated into an equivalent normal Horn program [1]; or 
alternatively, the knowledge representation can be directly expressed in first order 
Horn clauses. This corresponds to P. Predicates and arithmetic operators allowed by 
the query languages of sources and other callable external functions constitute A. IC 
consists of integrity constraints in data sources and any constraints introduced in the 
user query. The user query corresponds to query )(Xq in ACLP; the MQs are con-
structed from the set ∆ and the substitution θ .  

Abductive inference in COIN is a modified SLD-resolution [6] in that literals cor-
responding to predicates in data sources are abducted without evaluation; constraints 
are abducted and subsequently propagated/simplified. The constraints include basic 
arithmetic comparisons, equational relationships among arithmetic operators for con-
version composition [8], and temporal relations for processing changing semantics. 
The mediator is implemented using constraint logic programming environment 
ECLiPSe [20] with the extension of Constraint Handling Rules (CHR) [9]. Naturally, 
we use the constraint store to collect the abucibles. At the end of a successful deriva-
tion, an MQ is constructed using the predicates and constraints collected in the con-
straint store. 

As shown earlier, context axioms for multi-valued modifiers contain temporal in-
clusion comparison, which can be transformed to a conjunction of comparisons of the 
end points using comparison relation ≤ . We implement temporal relations as a con-
straint tle, with tle(X, Y) meaning temporal entity X is before (inclusive) Y. Here X and 
Y are variables of primitive temporal entities in the same context. Similar to semantic 
relations, we use tle_ for constraint over semantic objects. 

In the process of mediation, temporal constraints appearing in a context axiom are 
abducted into the constraint store after the head of the axiom clause is unified with the 
goal atom. Applicable CHR rules are triggered immediately after abduction to simply 
or propagate the constraints. Inconsistency of the constraint store signifies a failure 
and causes backtracking. The temporal constraints in the consistent store after a suc-
cessful derivation determine the common interval over which all involved modifiers 
are single-valued. Suppose the query language in source accepts ≤  for temporal entity 
comparison, the tle constraint in the store is translated back to ≤  to construct the MQs. 

The context axiom (2) corresponds to two clauses after it is rewritten in the clausal 
form; each clause contains temporal constraints corresponding to the interval for  
pre- or post-balkanization of former Yugoslavia. When the user query in Figure 2 is 
mediated, each clause posts a temporal constraint into the store and produces a  
successful derivation. No inconsistency is produced in the example; refer to [21, 22] 
for an example where inconsistencies occur when multiple modifiers change values at 
different times. The MQs in Datalog syntax are a disjunction of two sub-queries; each 
deals with a time interval in context axiom (2): 
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answer('V8', 'V7', 'V6', 'V5') :- 
     'V5' is 'V4' * 1000.0, 
     olsen("YUM", "USD", 'V3', 'V7'), 
     'Statistics'("YUG", 'V7', 'V2', 'V1'), 
     'Emissions'("YUG", 'V7', 'V4'),  
     'V7' =< 1991, 
     'V6' is 'V2' * 'V3'. 
answer('V96', 'V95', 'V94', 'V93') :- 
     'V92' is 'V91' * 1000.0, 'V90' is 'V89' * 1000.0, 
     'V88' is 'V87' * 1000.0, 'V86' is 'V85' * 1000.0, 
     'V84' is 'V83' * 1000.0, 'V82' is 'V90' + 'V92', 
     'V81' is 'V88' + 'V82', 'V80' is 'V86' + 'V81', 
     'V93' is 'V84' + 'V80', 'V79' is 'V78' * 'V77', 
     'V76' is 'V75' * 'V74', 'V73' is 'V72' * 'V71', 
     'V70' is 'V69' * 'V68', olsen("SIT", "USD", 'V67', 'V95'), 
     Statistics'("SVN", 'V95', 'V66', 'V65'), 
     olsen("MKD", "USD", 'V68', 'V95'), 
     'Statistics'("MKD", 'V95', 'V69', 'V64'), 
     olsen("HRK", "USD", 'V71', 'V95'), 
     'Statistics'("HRV", 'V95', 'V72', 'V63'), 
     olsen("BAM", "USD", 'V74', 'V95'), 
     'Statistics'("BIH", 'V95', 'V75', 'V62'), 
     olsen("YUM", "USD", 'V77', 'V95'), 
     'Emissions'("SVN", 'V95', 'V83'), 
     'Emissions'("MKD", 'V95', 'V85'), 
     'Emissions'("HRV", 'V95', 'V87'), 
     'Emissions'("BIH", 'V95', 'V89'), 
     'Statistics'("YUG", 'V95', 'V78', 'V61'), 
     'Emissions'("YUG", 'V95', 'V91'), 
     1992 =< 'V95', 'V60' is 'V66' * 'V67',  
     'V59' is 'V76' + 'V79', 'V58' is 'V73' + 'V59',  
     'V57' is 'V70' + 'V58', 'V94' is 'V60' + 'V57'. 

The first sub-query corresponds to the pre-balkanization period, when there is no 
aggregational difference between the sources and the receiver; only representational 
differences for GDP and CO2 emissions exist. The second sub-query corresponds to 
the post-balkanization period, when both aggregational differences for GDP and CO2 
emissions and representational differences exist. Note the currency conversions  
dynamically introduced in the conversion for aggregational difference have been 
properly incorporated.  

These MQs are returned to the user as an intensional answer to the original query. 
With all conversions declaratively defined, these MQs in fact convey a great deal  
of useful information to the user. The MQs are then passed to the optimizer and  
executioner components that access actual data sources to return final data to the user.  

6   Discussion 

It is common that data semantics in sources and receivers changes over time. One can 
draw wrong conclusions when these changes are not adequately represented and 
properly processed. In this paper, we identified four categories of semantic heteroge-
neities related to changing semantics. We also presented recent results that extend the 
COIN framework for representing and processing changing semantics, with a focus 
on the treatment of aggregational temporal heterogeneities.  
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As we explained in [21], the COIN framework is applicable to the Semantic Web 
for several reasons. The use of SQL in the example should not be construed as a limi-
tation. In fact, the data model, the representation language, and the ACLP implemen-
tation of COIN mediator are all logic based. Thus, the framework can be applied 
broadly. To adapt to another query language, we can simply include the logic form of 
the language constructs as abducibles. More importantly, semantic differences are 
automatically detected and resolved using declarative descriptions of semantics.  This 
approach is very well in line with the Semantic Web, where each source furnishes a 
description of its semantics for agents from other contexts to process.  In addition, a 
recent extension to the basic COIN system added an ontology merging capability to 
allow large applications to be built by merging separate ontologies [7]. This is very 
similar to how agents work with distributed ontologies on the Semantic Web.  Lastly, 
we are also experimenting with OWL and RuleML based languages for ontology and 
conversion function representation. These formalisms will allow the COIN mediation 
service to process other autonomously created ontologies on the Semantic Web. 

The COIN framework is also scalable. The number of required conversion func-
tions does not depend on the number of sources/receivers involved; rather, it depends 
on the variety of contexts, i.e., number of modifiers and their unique values. With 
context inheritance (e.g., the two sources in the example share the same context, but 
partial sharing is also possible), parameterization of conversions functions (e.g., the 
conversion function for currency differences is applicable to any pair of contexts 
having different currencies), and conversion composition, the number of conversion 
functions required grows only when the addition of sources introduces new contexts 
and the existing conversion functions do not handle the conversions for the new con-
texts. In the illustrative example, suppose we add another two hundred additional 
sources that have semantic differences with the receiver only in terms of currency and 
scale factor, the number of conversion functions remains unchanged because the  
existing conversion functions can process these new contexts. Adding these new 
sources only involves adding context declarations and semantic mappings, which are 
declaratively defined.  

We acknowledge that the conversion functions for processing aggregational het-
erogeneities in the illustrative example are not as general. As future research, we plan 
to investigate ontology modeling techniques and other representational constructs that 
may help generalize conversion functions of this type. We also note that the heteroge-
neities in temporal entities are not currently processed in the prototype.  As another 
future research area, we plan to introduce the full Time ontology into knowledge 
representation and implement conversions as external function calls to web services 
that specifically handle time zones, calendars, and granularities [3, 4]. 
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