

W.S. Ng et al. (Eds.): DBISP2P 2004, LNCS 3367, pp. 215–229, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CISS: An Efficient Object Clustering Framework for
DHT-Based Peer-to-Peer Applications

Jinwon Lee, Hyonik Lee, Seungwoo Kang, Sungwon Choe, and Junehwa Song

Division of Computer Science,
Department of Electrical Engineering & Computer Science,

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
{jcircle, hyonigi, swkang, sungwon, junesong}@nclab.kaist.ac.kr

Abstract. Distributed Hash Tables (DHTs) have been widely adopted in many
Internet-scale P2P systems. Emerging P2P applications such as massively multi
player online games (MMOGs) and P2P catalog systems frequently update data
or issue multi-dimensional range queries, but existing DHT-based P2P systems
can not support these applications efficiently due to object declustering. Object
declustering can result in significant inefficiencies in data update and multi-
dimensional range query routing. In this paper, we propose CISS, a framework
that supports efficient object clustering for DHT-based P2P applications. While
utilizing DHT as a basic lookup layer, CISS uses a Locality Preserving
Function (LPF) instead of a hash function. Thus, CISS achieves a high level of
clustering without requiring any changes to existing DHT implementations.
Technically, we study LPF encoding function, efficient routing protocols for
data updates and multi-dimensional range queries, and cluster-preserving load
balancing. We demonstrate the performance benefits of CISS through simulation.

1 Introduction

Distributed Hash Table (DHT)-based overlay networks [15][17][20][21] have re-
cently emerged as a scalable and efficient infrastructure for wide-area data manage-
ment. DHT is already adopted in many P2P systems including a wide-area file system
[5] and an Internet-scale query processor [9]. These P2P systems mainly focus on an
environment in which data updates are rare and exact match queries are the norm.
However, emerging P2P applications frequently update data or issue range queries.
For example, MMOGs intensively generate streams of updates such as players' loca-
tions and status [3][10]; P2P catalog systems intensively issue multi-dimensional
range queries such as interest area queries [13].

Existing DHT-based P2P systems [5][9] can not support such applications effi-
ciently due to object declustering. These P2P systems use a hash function to distribute
objects randomly across different peer nodes. Thus, while they are effective in achiev-
ing a high level of load balancing, objects are totally declustered; even highly co-
related objects are spread over different peer nodes. Such object declustering can
result in significant inefficiencies in both data update and multi-dimensional range

216 J. Lee et al.

query routing. In data-intensive P2P applications such as MMOGs, DHT lookups
have to be performed at every data update even though consecutive data updates are
semantically close. Thus, it increases not only the communication overhead of the
DHT layer, but also the latency of update routing. However, when objects are clus-
tered, semantically close updates can be routed to the same peer node without having
to perform additional lookups. In multi-dimensional range query-intensive P2P appli-
cation such as P2P catalog systems, queries search for semantically related objects.
Thus, when totally declustered, each key value in a query range should be enumerated
and individually searched for via a separate DHT lookup. However, when objects are
clustered, multiple key values can be searched for via a single lookup. Thus, the num-
ber of DHT lookups needed for query processing can be greatly reduced.

In this paper, we propose CISS (Cooperative Information Sharing System), a
framework that supports efficient object clustering for DHT-based P2P applications.
While utilizing DHT as a basic lookup layer, CISS uses a Locality Preserving Func-
tion (LPF) instead of a hash function. Thus, CISS achieves a high level of object
clustering without requiring any changes to existing DHT implementations. Conse-
quently, CISS significantly reduces the number of DHT lookups needed for data up-
dates and multi-dimensional range queries.

In realizing CISS, there are three technical issues that must be taken into consid-
eration. First, CISS has to construct an N-bit key from multiple attributes for each
object while preserving locality. In order to preserve locality, the keys of two objects
should be similar if attribute values of those objects are semantically related. The LPF
is responsible for this key encoding. The LPF first encodes each attribute value to a
shorter-length bit key. It then maps multiple such shorter-length bit keys to a one-
dimensional N-bit key using the Hilbert SFC. Since the data types of each attribute
can be diverse in practice, the LPF needs to be able to encode the attributes of various
data types. We describe this encoding scheme in Section 4.1 with practical examples.

Second, CISS must support efficient routing protocols for data updates and multi-
dimensional range queries in order to maximize the benefits of object clustering. To
route data updates efficiently, we propose a caching-based update routing protocol.
This routing protocol does not perform additional lookups if streams of updates be-
long to the key range of the most-recently-searched peer node. Each peer node man-
ages semantically related objects and data updates are also usually semantically close.
Thus, streams of updates belong to the same node with high probability. To route
multi-dimensional range queries efficiently, we propose a forwarding-based query
routing protocol that performs a minimal number of costly DHT lookups. In addition,
our query routing protocol prevents query congestion.

Third, CISS must perform load balancing while preserving object clustering.
Since each peer node in CISS manages semantically related objects, a skewed distri-
bution of objects and queries results in significant load imbalance. To prevent hot-
spots, load balancing must be performed. However, load balancing mechanisms in
existing DHT-based systems such as virtual servers [4][5][14][20] destroy the object
clustering property. When using virtual servers, physical peer nodes can manage non-
contiguous key ranges, i.e. multiple virtual servers. In order to preserve object cluster-
ing, physical peer nodes must manage contiguous key ranges. We propose two novel

 CISS: An Efficient Object Clustering Framework 217

load balancing schemes, local-handover and global-handover, which preserve object
clustering even after load balancing is achieved.

The rest of the paper is organized as follows. Section 2 reviews related work in the
area of object clustering in P2P overlay networks. In Section 3, we describe the archi-
tecture of CISS. In Section 4, we explain technical issues faced in realizing CISS,
including LPF, data and query routing protocols and cluster-preserving load balanc-
ing. Section 5 presents results from simulation studies of CISS. Finally, Section 6
concludes with a discussion of our plans for future work.

2 Related Work

In existing DHT-based P2P systems [5][9], exact matching queries are efficiently
processed in O(log S) time, where S is the number of nodes in the P2P overlay net-
work. However, streams of data updates and multi-dimensional range queries are not
supported well due to object declustering in such systems. Recent research has fo-
cused on alleviating these shortcomings.

Much of this research [1][7][11][18] attempts to provide simple one-dimensional
range queries over P2P overlay networks. In [1][18], the authors extend CAN [15] for
range queries by utilizing query flooding techniques. In [7][11], they propose newly
designed range addressable P2P frameworks which are not compatible with existing
DHT implementations.

CLASH [12] and PHT [16] apply an extensible hashing technique to DHTs.
They efficiently achieve an adaptive object clustering as well as support range
queries. Due to the need for depth searching, an exact match lookup takes
O(log(D)⋅log(S)) time, where D is the maximum depth of the key and S is the num-
ber of nodes. However, multi-dimensional range queries have not been considered
yet in these research projects.

Squid [19] supports multi-dimensional range queries over DHTs by using the Hil-
bert Space Filling Curve (SFC). Recursive refinement of queries in Squid signifi-
cantly improves the performance of query routing, but it can incur query congestion.
Thus, the overall scalability of a DHT-based P2P system is limited.

From the standpoint of real systems, much of this previous research did not
consider several critical technical issues. First, it is not clear how to encode real
attribute values to N-bit routing keys. In this paper, we clearly describe such an
encoding scheme with practical examples. Second, even though many previous
works focused on query routing, in fact it is data updates that are the major per-
formance bottleneck of data-intensive P2P applications. We propose an efficient
update routing protocol to address this. Finally, cluster-preserving load balancing
has not been considered yet in those previous works. Load balancing is essential for
such P2P systems to be able to work under real environments. However, the bene-
fits of object clustering can be destroyed if we directly apply previous load balanc-
ing schemes [4][5][14][20]. Our cluster-preserving load balancing schemes are
novel in that sense.

218 J. Lee et al.

3 System Architecture

CISS is designed for a three-tier P2P system as shown in Figure 1. Such three-tier
architecture is similar to existing DHT-based P2P systems [5][9]. While CISS uses
DHT as a basic lookup layer by using DHT interfaces, P2P applications utilize
CISS as an Internet-scale data management system. For data updates and queries,
an interface using a simple conjunctive normal form language is provided to appli-
cations (see Table 1). CISS, like common P2P systems, consists of client and server
modules. The client module of CISS receives data updates or queries from P2P
applications. It then routes them to rendezvous peer nodes for processing. Before
routing them, the client module leverages an LPF to encode multiple attributes of an
object to an N-bit routing key. This key is used to perform a DHT lookup to search
for rendezvous peer nodes in the P2P overlay network. The server module of CISS
stores data to its repository and processes queries. It then returns matched results to
requesting peer nodes. The load balancer in the server module is responsible for
cluster-preserving load balancing.

Client module Server module

Query
Requestor Repository

Data
Sender

LPF

Query
Respondent

Data
ReceiverLoad

Balancer

CISS

Distributed Hash Table (DHT)Distributed Hash Table (DHT)

P2P Applications (MMOGs, P2P catalog systems, etc)

Fig. 1. CISS Architecture

Table 1. Interfaces for DHT and CISS

DHT CISS
Lookup(key) → IP address Update: (A1= value) ∧ (A2=value) ∧….

Join () Query: PredicateA1 ∧ PredicateA2 ∧….

Leave() Predicate = Attribute Operator Value
Operators = {>, <, ≥, ≤, =}

 CISS: An Efficient Object Clustering Framework 219

Query (contents)

Update (contents)
SE (0)

(rendezvous
peer node)

(14, 0]SE

(12, 14]SD

(8, 12]SC

(6, 8]SB

(0, 6]SA

Key rangePeer node

(14, 0]SE

(12, 14]SD

(8, 12]SC

(6, 8]SB

(0, 6]SA

Key rangePeer node

SA (6)

SD(14)

SC(12)

SB(8)

Fig. 2. Chord DHT

The scalable and robust nature of CISS stems primarily from utilizing DHT. We
explain CISS using Chord [20] as an example DHT environment though any DHT
implementation could be used. DHT [15][17][20][21] organizes highly distributed
and loosely coupled peer nodes into an overlay network for storing and querying a
massive number of objects. In a DHT environment, not only the placement of data
objects on nodes, but also the join and leave of nodes in the overlay network can be
done efficiently without any global knowledge. As shown in Figure 2, five peer nodes
cooperatively manage an N-bit key space, where N is 4. Each node has a unique node
identifier and is responsible for the key range between itself and its predecessor node.

From a database point of view, there are two attractive characteristics for using a
DHT-based overlay network.

First, content-based searching in peer to peer networks – DHT makes it possible
to implement content-based search networks. Multiple attributes of an object are en-
coded to form an N-bit key which is used to update and locate that object. Data up-
dates and exact match queries which are encoded to the same N-bit key are routed to
the same rendezvous peer node. After query processing, the matching results are re-
turned to the querying nodes. This rendezvous point approach achieves content-based
searching effectively by avoiding query flooding.

Second, efficient wide-area data indexing – It is critical that searches for the ren-
dezvous peer node responsible for a given N-bit key should be done efficiently. DHT
theoretically ensures that any peer node can look up any object using that object's N-
bit key in O(log S) time, where S is the number of peer nodes in the overlay network.
Lookups proceed in a multi-hop fashion; each node maintains information (IP ad-
dresses) about a small number of other nodes (neighbors) and forwards the lookup
message recursively to the neighbor that is nearest to the N-bit key of the object.

4 Technical Issues

In this section, we describe three technical issues and novel solution approaches in
realizing CISS. Specifically, the LPF encoding function, efficient routing protocols
for data updates and multi-dimensional range queries and cluster-preserving load
balancing are examined.

220 J. Lee et al.

4.1 Locality Preserving Function (LPF)

The LPF constructs N-bit keys of objects while preserving locality. As shown below,
this encoding is done in two steps.

Step1:{(A1 = value) ∧ (A2 = value) ∧….}→ {bitsA1 ∧ bitsA2 ∧….}

Step2:{bitsA1 ∧ bitsA2 ∧….}→ N-bit key of object

The LPF first encodes each attribute value to a smaller-sized bit key. It then maps
multiple bit keys to a one-dimensional N-bit key by using the Hilbert SFC. Both steps
preserve the locality of objects. Each attribute is encoded to N / D (= M) bits if D
attributes are used for key encoding. As a practical value, we can use N = 160 and D =
2. Thus, M = 80. We select N = 160 to be compatible with Chord [20] implementation
which uses 160-bit key. Also, D = 2 because two-dimensional range queries are
dominantly issued in both MMOGs and P2P catalog systems. If an attribute of an
object is not encoded as part of an N-bit key, queries on this attribute must be routed
to all nodes in the P2P overlay networks. Thus, all attributes referred to in dominantly
issued queries must be encoded to bit keys in order to avoid query flooding. We de-
scribe the technical details of each step as follows.

Step1: Bit key encoding of each attribute while preserving locality – LPF classi-
fies data types of attributes into Numerical and String types, and applies differ-
ent encoding schemes accordingly. We explain each encoding scheme with practical
examples. The encoding scheme for the Numerical type handles int, long,
float, double and DATE data-types.

For instance, MMOG (see Figure 3) use Numerical attributes. Players are the
objects, and their x and y coordinates are the object attributes. In order to preserve
locality, each attribute value is simply rescaled by multiplying a coefficient, 2M /
(Maximum of attribute value). For example, {x=60 ∧ y=70} where the maximum of
each attribute value is 100 is encoded to {x=1010 ∧ y=1011} if M is four. In the
same way, a two-dimensional range query in Figure 3 is also encoded to {(0101 < x <
1110) ∧ (0011 < y < 1110)}. Therefore, objects will be clustered well if the positions
of the objects are similar.

For the String type, we propose a hash-concatenation encoding scheme. P2P
catalog systems (see Figure 4) use String attributes. Catalogs are the objects and
categorized by two attributes, location and product. Each attribute value is represented
using a hierarchical naming structure. For example,

A1: location = USA.New York.White Plains.79 North Broadway

(“USA” is the value of the topmost level in the hierarchy, “New York”
is the second highest and so on)

A2: product = Electronics.Computer.HP.Inkjet Pinter

(“Electronics” is the value of the topmost level in the hierarchy,
“Computer” is the second highest and so on)

 CISS: An Efficient Object Clustering Framework 221

(60, 70)

Player

Virtual World
[0, 100] x [0, 100]

Int 30 < x < 90
Int 20 < y < 90

USA

Alabama …New York …Wyoming

…White PlainsAlbany

USA

Alabama …New York …Wyoming

…White PlainsAlbany

…
Com

puter

Electronics

..IBM
H

P

…
VTR

Audio

Q 1

Q 2

location=USA.New York.White Plains.79 North Broadway
product=Electronics.Computer.HP.Inkjet Printer

Catalogs

 Fig. 3. MMOGs Fig. 4. P2P catalog systems

Dominantly issued queries are two-dimensional range queries such as Q1 and Q2
in Figure 4 1 . Within each level in the hierarchy, partial string matching (ex.
USA.N*.White Plains) is not usual. Thus, clustering according to the hierarchy is
enough, while clustering between similar string values in same level is not necessary.

The hash-concatenation scheme hashes the value of each level in the hierarchy
into M / d bits, where d is the hierarchy depth. It then concatenates the hashed values
one after another. In practice, d is determined by an application. To hash a variable-
length string value of each level to a fixed-length bit representation, a modified SHA-
1[20] hash function is used2. Queries are also encoded in the same way. The tables
below show encoding examples when M is 80 and the hierarchy depth d is 4. Thus,
each string in the hierarchy is hashed to 20 bits.

A1: location = USA.New York.White Plains.79 North Broadway →
h20(USA)·h20(New York)·h20(White Plains)·h20(79 North Broadway)

A2: product = Electronics.Computer.HP.Inkjet Pinter →
h20(Electronics)·h20(Computer)·h20(HP)·h20(Inkjet Printer)

•

Q1: location = h20(USA)·h20(New York)·h20(Albany)* ∧
product = h20(Electronics)·h20(Computer)·h20(HP)*

Q2: location = h20(USA)·h20(New York)·h20(White Plains)* ∧
product = * (* means a wild card)

1 Although String type keyword queries such as “%keyword%” are popular in P2P file

sharing, we do not tackle such queries because they do not benefit from object clustering.
2 SHA-1[20] hashes a string to the randomized 160-bit. A string of each level has to be hashed

to M / d bits which is less than 160. Thus, just M / d prefix bit of SHA-1 is used as a hashed
value.

222 J. Lee et al.

Our hash-concatenation scheme is useful in two aspects. First, due to hashing, a
variable-length string is encoded to a fixed size bit length. Second, locality is pre-
served due to the concatenation scheme. Bit keys with similar hierarchical struc-
tures are closely clustered. In contrast, previous string-to-bit encoding schemes such
as serial numbering and prefix encoding [3][19] are not feasible in P2P environ-
ments. The serial numbering scheme, which stores all mappings from strings to
serial numbers, can not add new values easily. If new values in the hierarchy are
added, all peer nodes have to update their mapping. Prefix encoding also can not
categorize variable length strings well. Since this scheme encodes only the prefix
characters of a string due to limited bit length, objects are not clustered well accord-
ing to the hierarchy.

Fig. 5. Hilbert SFC

Step2: Mapping multiple bit keys to a one-dimensional N-bit key while consider-
ing multi-dimension clustering – Many schemes have been studied to map multi-
dimensional keys to a one-dimensional key [2]. Space Filling Curve (SFC) is a well-
known scheme. It includes z-ordering, Gray code and the Hilbert SFC. We use the
Hilbert SFC because it has better object clustering properties compared to other SFCs.
It can be implemented with a simple state machine. As an example, the Hilbert SFC
maps {x=1010 ∧ y=1011} to 10001011. The Hilbert SFC has two interesting proper-
ties: recursion and locality preservation. Figure 5 shows the recursion. The locality
preserving property can be described as follows. Points which are close to each other
along the space filling curve map to points which are close in the multi-dimensional
space. We utilize this property for the multi-dimensional range query routing protocol.

4.2 Efficient Routing Protocols for Data Updates and Multi-dimensional Range
Queries

CISS supports efficient routing protocols to maximize the benefit of object clustering:
a caching-based update routing protocol for data updates and a forwarding-based
query routing protocol for multi-dimensional range queries. Both of them signifi-
cantly reduce the number of costly DHT lookups, and thus improve the efficiency of
data-intensive and multi-dimensional range query-intensive P2P applications. We
describe the technical details as follows.

2nd or- 3rd order

…

1st order

 CISS: An Efficient Object Clustering Framework 223

CISS
client

LPF Data
Sender

DHT

Key range
Cache

Data-intensive P2P application

Data
Receiver

CISS
server

Additional processing flow when a cache miss occurs

Update processing flow

Rendezvous peer node(1)

(2)

(3)

(4)

(a) (b)

(c)

(d)

Fig. 6. Caching-based update routing protocol

Caching-based update routing protocol: As shown in Figure 6, the CISS client
caches the key range of the most-recently-searched rendezvous node. Thus, the CISS
client does not perform additional DHT lookups if streams of updates belong to the
cached key range (cache hit). Streams of updates belong to the same node with high
probability. It is because each peer node manages a semantically contiguous key
range and data updates are usually semantically close. For example, in MMOGs, a
subsection of the virtual world is managed by a peer node. Players will spend signifi-
cant amounts of time in a given subsection and therefore their data will belong to the
same node with high probability. To quantify the performance benefit of this update
routing protocol, we measure the hit ratio of the key range cache. In our experiments,
we also measure the hit ratio under various data mobility values because the hit ratio
is directly affected by a data mobility value. The cached key range can be stale due to
DHT topology changes (e.g. leave and join of nodes). Thus, a TTL (Time-To-Live)
mechanism is utilized to maintain the consistency of the cached key range. After the
TTL expires, the CISS client performs a DHT lookup to refresh the cached key range.

000 001 010 011 100 101 110 111

100000

110100

Fig. 7. Forwarding-based query routing protocol

224 J. Lee et al.

Forwarding-based query routing protocol: For multi-dimensional range query
routing, we propose a forwarding-based query routing protocol that reduces costly
DHT lookups by forwarding a query to succeeding peer nodes. Multi-dimensional
range queries involve multiple contiguous key ranges in CISS. To reduce the number
of DHT lookups for those multiple key ranges, the forwarding-based query routing
protocol utilizes the object clustering property of CISS. Assume that a user issues a
multi-dimensional range query (10*, *) which is mapped to the two dotted curves in
the gray area as shown in Figure 7. The Query Requester in CISS client module finds
the first keys from the each contiguous curve using LPF, which are 100000 and
110100. The Query Requester then searches matching peer nodes via DHT lookups
for the two keys. If matching peer nodes are found, the Query Requester sends the
query (10*, *) to the Query Respondents in the CISS server modules of those peer
nodes. The Query Respondent generates a result and sends it to the Query Requester.
If the key range for the result is larger than the key range managed by the node, the
Query Respondent forwards the query to the succeeding peer node without having to
perform any more DHT lookups. Query forwarding is repeated until all relevant data
are found for the result. In CISS, the number of DHT lookups is determined by the
number of separate curves describing the query. In addition, the number of query
forwarding messages depends on the size of the query range as well as the topology of
a P2P overlay network. In experiments, we show that the forwarding-based routing
protocol outperforms existing DHT-based query routing protocols in terms of the
number of messages needed for query processing.

In Squid [19], authors suggested a mechanism to resolve a multi-dimensional key-
word and range query by embedding a tree structure into the P2P overlay network
topology. In this mechanism, all queries should be routed to the peer matching the
cluster prefix 0 or 1 for query refinement. Thus, the peer can be the congestion point,
which can result in one point of failure. However, our forwarding-based query routing
protocol does not incur such a query congestion problem while supporting efficient
query processing with few DHT lookups.

4.3 Cluster-Preserving Load Balancing

CISS supports two load balancing schemes: local-handover and global-handover. In
order to achieve load balancing, both of them hand over the partial key range man-
aged by an overloaded node to lightly loaded nodes. However, in contrast to the pre-
vious virtual server approach, our approach does not destroy the object clustering
property. Thus, it still maintains the benefit of object clustering to process data update
and multi-dimensional range queries.

In local-handover, the overloaded node hands over a part of its own key range to
one of its neighbor nodes (predecessor or successor). This can be done easily by a
leave followed by a join. Figure 8 shows a local-handover example. When node B
gets overloaded, it hands over a part of its key range to its predecessor node A or
successor node C. If A takes the load of B, A leaves the DHT-based overlay network
and joins again closer to B so as to adopt the part of B’s key range. This reduces the
key range which B must manage, and the B’s key range is therefore decreased.

 CISS: An Efficient Object Clustering Framework 225

A (predecessor)

C (successor)

D

E

B

A (predecessor)

C (successor)

D

E

B

D (victim node)

E

B

C

A

 Fig. 8. Local-handover Fig. 9. Global-handover

Table 2. Load Balancing Cost

 Local-handover Global-handover
DHT routing
table updates

• O(log S) messages • O(log S) messages

Object Trans-
ferring

• From the overloaded node
to the neighbor node

• From the overloaded node
to the victim node

• From the victim node to the
successor of victim node.

Victim
Probing

• None • n DHT lookups

Similarly, C can take B‘s load if B leaves and joins again. Even after the local-
handover is performed, each node still manages a contiguous key range. Thus, object
clustering is preserved. However, cascading load propagation can occur in this
scheme. If a neighbor node also gets overloaded due to the local-handover, it will also
perform a local-handover to its neighbor node, and so on.

To alleviate this shortcoming, we propose global-handover. In this scheme, an
overloaded node hands over a part of its key range to a victim node instead of a
neighbor node. After probing randomly selected nodes in the DHT-based overlay
network, the most lightly loaded node is determined as a victim node. Figure 9 shows
a global-handover example. If node D is determined as a victim node, an overloaded
node B makes D leave. Node D then joins as a predecessor of B and takes over a
contiguous sub-range of B’s key range. Also, D’s successor node E manages contigu-
ous key range. Thus, object clustering is still preserved.

Table 2 shows the load balancing cost of both schemes. First of all, the cost for
updating the DHT routing table is the same since the node leave and the node join
occurs only once in both schemes. The cost of the object transferring from the over-
loaded node to the lightly loaded node is also the same. However, global-handover
requires additional object transferring cost as well as a victim-probing cost. The addi-
tional object transferring cost is required because the victim node should hand over all
of its objects to its successor node before leaving the overlay network. For victim
probing, it is necessary to collect load information from n randomly selected nodes.
Thus, it requires n DHT lookups. To minimize the load balancing cost, CISS per-
forms global-handover only when the cascading load propagation is expected if local-
handover were to be used.

226 J. Lee et al.

We are currently investigating some technical details for the proposed schemes in-
cluding overload detection, load estimation and victim selection algorithms. For effi-
cient load estimation, we are developing a histogram-based algorithm. To hand over
the proper amount of load, all nodes have to know their own load information in de-
tail. However, it is not practically possible to maintain load information for each key.
Thus, each node divides its key range into several sub-ranges and then maintains a
histogram for the number of requests in each sub-range.

5 Experiments

In this section, we demonstrate the performance benefit of CISS compared to existing
DHT-based P2P systems which use a hash function. For our experiment, we have
implemented a C++-based simulation engine which includes the Hilbert SFC-based
LPF, the core functions of the CISS client and server module and a Chord-based DHT
overlay network. The simulation has been performed for three overlay network to-
pologies which consist of 1000, 10000 and 100000 peer nodes respectively. The iden-
tifier of each node is randomly generated. To exclude the effects of dynamic topol-
ogy changes, we did not simulate node leaves or joins. We detail the performance of
the proposed routing protocol in the simulation results below.

5.1 Data Update Performance

In each simulation, 1000, 10000 and 100000 mobile clients in a virtual world generate
their position updates periodically for the workload of the simulator. Before updating
its position, the mobile client checks whether its current position is in the cached key
range. If a cache miss occurs, it looks up the node that is responsible for its current
position. The mobile clients are designed to wander the [0, 212] × [0, 212] square vir-
tual world based on the ns-2 random waypoint mobility model [6]. Each mobile client
updates its position every 125 milliseconds (for comparison, the first-person shooter
Quake II updates a player’s position every 50ms); a position consists of two attrib-
utes: an x-coordinate and a y-coordinate. The simulation is run for 300 seconds.

0

20

40

60

80

100

120

1 4 16 64 256

mobility (movement/update)

h
it
 r
a
ti
o
(%
)

1000

10000

100000

Fig. 10. Hit ratio of the key range cache

 CISS: An Efficient Object Clustering Framework 227

To measure the performance benefit of the caching-based update routing protocol,
we use the hit ratio of the key range cache. Figure 10 depicts the average hit ratio of
the key range cache over all the mobile clients having the same mobility value. A
mobility value of 1 means that a mobile client can move maximum one pixel length in
the [0, 212] × [0, 212] virtual world during one position update period. From the Figure
10, we see that this update routing protocol significantly reduces the number of look-
ups for position updates (by up to 93% with 100000 nodes), whereas with hash func-
tion, the mobile client has to look up the node responsible for its current position at
every position update. Because the range of mobile client movement is much smaller
than the range managed by the responsible server, the hit ratio is high for low mobil-
ity values. The larger the mobility value, the lower the hit ratio. However, even with a
high mobility value of 256, the update routing protocol achieves a 35% hit ratio with
100000 nodes. Figure 10 also shows the hit ratio variation according to the number of
nodes. The range managed by each node increases as the number of peer nodes de-
creases. Thus, the hit ratio with a 1000 node topology, which has larger range size
than the other ones, is the highest.

5.2 Multi-dimensional Range Query Performance

To implement multi-dimensional range queries, we used a P2P catalog system as an
example application. The catalog is categorized by two attributes (location and prod-
uct); each attribute consists of four levels. We have performed experiments for each
of ten query types. For example,

 Q(4,4): Queries with both attributes having values in the top four levels of the
hierarchy, e.g. (location: USA.New York.White Plains.79 North Broadway,
product: Electronics. Computer.HP.Inkjet Pinter).

 Q(4,3): Queries with one attribute having values in the top four levels and the
other attribute having values in the top three levels. e.g.(location: USA.New
York.White Plains.79 North Broadway, product: Electronics.Computer.HP.*).

0

2

4

6

8

10

12

14

16

18

20

Q(4,4) Q(4,3) Q(4,2) Q(4,1) Q(3,3) Q(3,2) Q(3,1) Q(2,2) Q(2,1) Q(1,1)

lo
g

(
#

o
f

lo
o
k
u
p
)

Hash Function

CISS

0

200

400

600

800

1000

1200

1400

1600

1800

Q(4,4) Q(4,3) Q(4,2) Q(4,1) Q(3,3) Q(3,2) Q(3,1) Q(2,2) Q(2,1) Q(1,1)

#
 o
f
q
u
e
ry
 f
o
rw
a
rd
in
g
 m
e
s
s
a
g
e

1000

10000

100000

 Fig. 11. # of DHT lookups Fig. 12. # of DHT forwarding messages

 The other queries Q(4,2), Q(4,1), Q(3,3), Q(3,2), Q(3,1), Q(2,2), Q(2,1) and Q(1,1)
are similarly generated. In our experiment, the LPF constructs 24-bit keys. Thus, each

228 J. Lee et al.

attribute is encoded using 12 bits. We simulated all possible combinations for each of
the ten queries.

Figure 11 shows the average number of DHT lookups for the ten types of que-
ries in log-scale. When the size of the query range becomes large, the number of
DHT lookups is significantly reduced. This is clearly shown from Q(3,3) to Q(1,1)
where the difference in the number of lookups required for CISS compared to the
hash-based approach is dramatically illustrated. This is achieved due to the object
clustering effect of CISS. Queries like Q(3,3), Q(2,2) and Q(1,1) are mapped to one
contiguous curve on the Hilbert SFC. For such queries, only one DHT lookup is
necessary for query processing in our forwarding-based query routing protocol.
However, Q(4,4) is an exact matching query. Thus, in this case the number of DHT
lookups required for CISS is the same as that for the hash-based approach. Finally,
in cases Q(4,3), Q(4,2) and Q(4,1), one attribute is specified exactly. These results
in a decrease in object clustering and therefore decreased performance benefit.
Nevertheless, CISS still performs two times better than the hash-based approach for
these queries.

Figure 12 shows the average number of query forwarding messages when all peer
nodes manage the same size key range. As shown in the figure, the first nine types of
queries with 1000 nodes and seven types of queries with 10000 and 100000 nodes do
not need query forwarding. The results for these queries can be retrieved from the
peer node found out by a DHT lookup. On the other hand, in the cases of Q(1,1) with
1000 nodes and Q(2,2), Q(2,1), Q(1,1) with 10000 and 100000 nodes, query forward-
ing is necessary because the query range size is larger than the key range size which
the peer node manages. However, the forwarding cost is just one message whereas a
DHT lookup may cost several messages. Figure 11 and Figure 12 demonstrate that the
total number of messages for query processing is significantly reduced in our for-
warding-based query routing protocol.

6 Conclusion and Future Work

We have described CISS, a framework that supports efficient object clustering for
DHT-based peer-to-peer applications, especially data-intensive and multi-
dimensional range query-intensive P2P applications. While utilizing a DHT-based
overlay network as a scalable and robust lookup layer, CISS uses a Locality Pre-
serving Function (LPF) instead of a hash function. Thus, CISS achieves a high level
of object clustering without requiring any changes to existing DHT implementa-
tions. Our simulation studies show that a caching-based update routing protocol
reduces the number of DHT lookups for data updates by up to 93% with 100000
peer nodes, and a forwarding-based query routing protocol for multi-dimensional
range queries outperforms existing DHT-based P2P systems by up to an order of
magnitude. We are currently developing the cluster-preserving load balancing
mechanism in detail.

 CISS: An Efficient Object Clustering Framework 229

References

[1] A. Andrzejak and Z. Xu, "Scalable, Efficient Range Queries for Grid Information
Services", In Proceedings of IEEE P2P, Sweden, September 2002

[2] T.Asano, D.Ranjan, T.Roose,E. Welzl and P.Widmaier, "Space Filling Curves and Their
Use in Geometric Data Structures", Theoretical Computing Science, 181, 1997, pp.3-15

[3] A.R. Bharambe, S. Rao and S. Seshan, "Mercury: A Scalable Publish-Subscribe System
for Internet Games", In Proceedings of NetGames, Germany, April 2002

[4] J. Byers, J. Considine and M. Mitzenmacher, "Simple Load Balancing for Distributed
Hash Tables", In Proceedings of IPTPS, CA, USA, February 2003

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, "Wide-area cooperative
storage with CFS", In Proceedings of SOSP, Canada, October 2001

[6] K. Fall and K. Varadhan. NS Manual
[7] A. Gupta, D. Agrawal and A. El Abbadi, “Approximate Range Selection Queries in

Peer-to-Peer Systems”,In Proceedings of CIDR, CA, USA, January 2003
[8] M. Harren, J.M. Hellerstein, R. Huebsch, B.T. Loo, S. Shenker and I. Stoica, "Complex

Queries in DHT-based Peer-to-Peer Networks", In Proceedings of IPTPS, MA, USA,
March 2002

[9] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T. Loo, S. Shenker and I. Stoica, "Query-
ing the Internet with PIER", In Proceedings of VLDB, Berlin, September 2003

[10] B. Knutsson, H. Lu, W. Xu and B. Hopkins, "Peer-to-Peer Support for Massively Multi-
player Games", In Proceedings of INFOCOM, Hong Kong, China, March 2004

[11] A. Kothari, D. Agrawal, A. Gupta and Subhash Suri, “Range Addressable Network:
A P2P Cache Architecture for Data Ranges”, In Proceedings of IEEE P2P, Sweden,
September 2003

[12] A. Misra, P. Castro and J. Lee, "CLASH: A Protocol for Internet-Scale Utility-Oriented
Distributed Computing", In Proceedings of ICDCS, Japan, March 2004

[13] V. Papadimos, D. Maier and K. Tufte, "Distributed Query Processing and Catalogs for
Peer-to-Peer Systems", In Proceedings of CIDR, CA, USA, January 2003

[14] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp and I. Stoica, "Load Balancing in
Structured P2P Systems", In Proceedings of IPTPS, CA, USA, February 2003

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, "A Scalable Content-
Addressable Network", In Proceedings of SIGCOMM, CA, USA, August 2001

[16] S. Ratnasamy, J. M. Hellerstein and S. Shenker, “Range Queries over DHTs”, IRB-TR-
03-009, June 2003

[17] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems", In Proceedings of IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), Germany, November 2001

[18] O. Sahin, A. Gupta, D. Agrawal and A. El Abbadi , “A Peer-to-peer Framework for
Caching Range Queries”, In Proceedings of ICDE, MA, USA, March 2004

[19] C. Schmidt and M. Parashar, "Flexible Information Discovery in Decentralized Distrib-
uted Systems", In Proceedings of HPDC, WA, USA June 2003

[20] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek and H. Balakrishnan, "Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications", In Proceedings of SIGCOMM,
CA, USA, August 2001

[21] B. Y. Zhao, J. Kubiatowicz and A. Joseph, "Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing", UCB Tech. Report UCB/CSD-01-1141

	Introduction
	Related Work
	System Architecture
	Technical Issues
	Locality Preserving Function (LPF)
	Efficient Routing Protocols for Data Updates and Multi-dimensional Range Queries
	Cluster-Preserving Load Balancing

	Experiments
	Data Update Performance
	Multi-dimensional Range Query Performance

	Conclusion and Future Work
	References

