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Abstract. We consider the problem of placing n points, each one inside
its own, prespecified disk, with the objective of maximizing the distance
between the closest pair of them. The disks can overlap and have different
sizes. The problem is NP-hard and does not admit a PTAS. In the L∞
metric, we give a 2-approximation algorithm running in O(n

√
n log2 n)

time. In the L2 metric, similar ideas yield a quadratic time algorithm
that gives an 8

3 -approximation in general, and a ∼ 2.2393-approximation
when all the disks are congruent.

1 Introduction

The problem of distant representatives was recently introduced by Fiala et al. [11,
12]: given a collection of subsets of a metric space and a value δ > 0, we want
a representative of each subset such that any two representatives are at least δ
apart. They introduced this problem as a variation of the problem of systems of
disjoint representatives in hypergraphs [1]. It generalizes the problem of systems
of distinct representatives, and it has applications in areas such as scheduling or
radio frequency (or channel) assignment to avoid interferences.

As shown by Fiala et al. [11, 12], and independently by Baur and Fekete [3],
the problem of deciding the existence of distant representatives is NP-hard even
in the plane under natural metrics. This problem naturally embeds within the
context of packing and map labelling problems, which has a much longer history;
see the discussion in [3] and references therein.

However, in most applications, rather than systems of representatives at a
given distance, we would be more interested in systems of representatives whose
closest pairs are as separated as possible. Therefore, the design of approximation
algorithms for the latter problem seems a suitable alternative. Here, we consider
the problem of maximizing the distance of the closest pair in systems of rep-
resentatives in the plane with either the L∞ or the Euclidean L2 metric. The
subsets that we consider are (possibly intersecting) disks.

The geometric optimization problem under consideration finds applications
in cartography [7], graph drawing [8], and more generally in data visualization,
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where the readability of the displayed data is a basic requirement, and often a
difficult task. In many cases, there are some restrictions on how and where each
object has to be drawn, as well as some freedom. For example, cartographers
improve the readability of a map by displacing some features with respect to their
real position. The displacement has to be small to preserve correctness, and the
problem can be abstracted as follows. We want to place a fixed number of points
(0-dimensional cartographic features) in the plane, but with the restriction that
each point has to lie inside a prespecified region. The regions may overlap, and
we want the placement that maximizes the distance between the closest pair.
The region where each point has to be placed is application dependent. We will
assume that they are given, and that they are disks.

Formulation of the problem. Given a distance d in the plane, consider the func-
tion D : (R2)n → R that gives the distance between a closest pair of n points

D(p1, . . . , pn) = min
i �=j

d(pi, pj).

Let B = {B1, . . . , Bn} be a collection of (possibly intersecting) disks in R
2 under

the metric d. A feasible solution is a placement of points p1, . . . , pn with pi ∈ Bi.
We are interested in a feasible placement p∗

1, . . . , p
∗
n that maximizes D

D(p∗
1, . . . , p

∗
n) = max

(p1,...,pn)∈B1×···×Bn

D(p1, . . . , pn).

We use D(B) to denote this optimal value.
A t-approximation, with t ≥ 1, is a feasible placement p1, . . . , pn, with t ·

D(p1, . . . , pn) ≥ D(B). We will use B(p, r) to denote the disk of radius r centered
at p. Recall that under the L∞ metric, B(p, r) is an axis-aligned square centered
at p and side length 2r. We assume that the disk Bi is centered at ci and has
radius ri, so Bi = B(ci, ri).

Related work. The decision problem associated to our optimization one is the
original distant representatives problem: for a given value δ, is D(B) ≥ δ? Fiala et
al. [11, 12] showed that this problem is NP-hard in the Euclidean and Manhattan
metrics. Furthermore, by repeating at regular intervals their construction [11–
Figures 1 and 2], it follows from the slackness of the construction that, unless
NP = P , there is a certain constant T > 1 such that no T -approximation is
possible. See [13] for a similar argument related to the slackness. They also notice
that the one dimensional problem can be solved using the scheduling algorithm
by Simons [17].

Closely related are geometric dispersion problems: we are given a polygonal
region of the plane and we want to place n points on it such that the closest pair is
as far as possible. This problem has been considered by Baur and Fekete [3] (see
also [6, 10]), where both inapproximability results and approximation algorithms
are presented. Their NP-hardness proof and inapproximability results can easily
be adapted to show inapproximability results for our problem, showing also
that no polynomial time approximation scheme is possible, unless P = NP .



Approximation Algorithms for Spreading Points 85

Dispersion problems have also been considered in arbitrary metric spaces and
with various optimization functions; see [6, 14] and references therein.

In a more general setting, we can consider the following problem: given a
collection S1, . . . , Sn of regions in R

2, and a function f : S1 × · · · × Sn → R that
describes the quality of a feasible placement (p1, . . . , pn) ∈ S1 × · · · × Sn, we
want to find a feasible placement p∗

1, . . . , p
∗
n such that

f(p∗
1, . . . , p

∗
n) = max

(p1,...,pn)∈S1×···×Sn

f(p1, . . . , pn).

Geometric dispersion problems are a particular instance of this type where we
want to maximize the function D over k copies of the same polygonal region.
Minimum diameter covering problems try to minimize the diameter of the place-
ment [2]. In [5], given a graph on the vertices p1, . . . , pn, placements that maxi-
mize the number of straight-line edges in a given set of orientations are consid-
ered.

Our results. The main idea in our approach is to consider an “approximate-
placement” problem in the L∞ metric: given a value δ that satisfies 2δ ≤ D(B),
we can provide a feasible placement p1, . . . , pn such that D(p1, . . . , pn) ≥ δ.
The proof can be seen as a suitable packing argument. This placement can be
computed in O(n

√
n log n) time using the data structure by Mortensen [16] and

the technique by Efrat et al. [9] for computing a matching in geometric settings.
See Sections 2 and 3 for details.

We then combine the “approximate-placement” algorithm with the geometric
features of our problem to get a 2-approximation in the L∞ metric. This is
done by a two-stage binary search on some special values by paying an extra
logarithmic factor; see Section 4.

Section 5 summarizes in L2 the results that are equivalent to those described
in L∞. In particular, the same idea of “approximate-placement” can be used
in the L2 metric, but the approximation ratio becomes 8/3 and the running
time increases to O(n2). Using binary search leads to an (8/3)-approximation
algorithm for the L2 metric.

However, when we restrict ourselves to congruent disks in L2, a trivial adapta-
tion of the techniques gives an approximation ratio of ∼ 2.2393. This is explained
in Section 6.

2 Placement Algorithm in L∞

Consider an instance B = {B1, . . . , Bn} of the problem in the L∞ metric, and
let δ∗ = D(B) be the maximum value that a feasible placement can attain.
We will consider the “approximate-placement” problem that follows: given a
value δ, we provide a feasible placement p1, . . . , pn such that, if δ ≤ 1

2δ∗ then
D(p1, . . . , pn) ≥ δ, and otherwise there is no guarantee on the placement. In
this section we present an algorithm and discuss its approximation performance,
while in next section we discuss a more efficient version of it.
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Let Λ = Z
2, that is, the lattice Λ = {(a, b) | a, b ∈ Z}. For any δ ∈ R and

any point p = (px, py) ∈ R
2, we define δp = (δpx, δpy) and δΛ = {δp | p ∈ Λ}.

Observe that δΛ is also a lattice. The reason to use this notation is that we can
use p ∈ Λ to refer to δp ∈ δΛ for different values of δ. An edge of the lattice δΛ
is a horizontal or vertical segment joining two points of δΛ at distance δ. The
edges of δΛ divide the plane into squares of side length δ, which we call the cells
of δΛ.

The idea is that whenever 2δ ≤ δ∗, the lattice points δΛ almost provide a
solution. However, we have to treat as a special case the disks with no lattice
point inside. More precisely, let Q ⊂ δΛ be the set of points that cannot be
considered as a possible placement because there is another already placed point
too near by. Initially, we have Q = ∅. If a disk Bi does not contain any point
from the lattice, there are two possibilities:

– Bi is contained in a cell C of δΛ; see Fig. 1 left. In this case, place pi := ci

in the center of Bi, and remove the vertices of the cell C from the set of
possible placements for the other disks, that is, add them to Q.

– Bi intersects an edge E of δΛ; see Fig. 1 right. In this case, choose pi on
E ∩ Bi, and remove the vertices of the edge E from the set of possible
placements for the other disks, that is, add them to Q.

Bi
p∗

i
Bi

δΛ

p∗
i

pi

pi Q

δΛ

Fig. 1. Special cases where the disk Bi does not contain any lattice point. Left: Bi is
fully contained in a cell of δΛ. Right: Bi intersects an edge of δΛ

We are left with disks, say B1, . . . , Bk, that have some lattice points inside.
Consider for each such disk Bi the set of points Pi := Bi ∩(δΛ\Q) as candidates
for the placement corresponding to Bi. Observe that Pi may be empty if (Bi ∩
δΛ) ⊂ Q. We want to make sure that each disk Bi gets a point from Pi, and
that each point gets assigned to at most one disk Bi. We deal with this by
constructing a bipartite graph Gδ with B := {B1, . . . , Bk} as one class of nodes
and P := P1 ∪ · · · ∪Pk as the other class, and with an edge between Bi ∈ B and
p ∈ P whenever p ∈ Pi.

It is clear that a (perfect) matching in Gδ provides a feasible placement.
When a matching is not possible, the algorithm reports a feasible placement by
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Fig. 2. Example showing the main features of the placement algorithm in L∞

placing each point in the center of its disk. We call this algorithm Placement.
See Figure 2 for an example.

In any case, Placement always gives a feasible placement p1, . . . , pn, and we
can then compute the value D(p1, . . . , pn) finding a closest pair in the placement.
Below we show that, whenever 2δ ≤ δ∗, Placement(δ) gives a placement whose
closest pair is at distance at least δ. In particular, this implies that if Bi ∩δΛ �= ∅
but Pi = Bi ∩ (δΛ \ Q) = ∅, then there is no matching in Gδ because the node
Bi has no edges, and so we can conclude that 2δ > δ∗.

Definition 1. In the L∞ metric, Placement(δ) succeeds if the computed place-
ment p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ. Otherwise, Placement(δ) fails.

Lemma 1. If 2δ ≤ δ∗, then Placement(δ) succeeds.

Proof. The proof is divided in two steps. Firstly, we will show that if 2δ ≤ δ∗ then
the graph Gδ has a matching. Secondly, we will see that if p1, . . . , pn is a place-
ment computed by Placement(δ) when 2δ ≤ δ∗, then indeed D(p1, . . . , pn) ≥ δ.

Consider an optimal placement p∗
1, . . . , p

∗
n. The points that we added to Q due

to a disk Bi are in the interior of B(p∗
i , δ

∗/2) because of the following analysis:

– If Bi ∩ δΛ = ∅ and Bi is completely contained in a cell C of δΛ, then p∗
i is

in C, and C ⊂ B(p∗
i , δ) ⊂ B(p∗

i , δ
∗/2); see Figure 1 left.

– If Bi ∩ δΛ = ∅ and there is an edge E of δΛ such that Bi ∩ E �= ∅, then
E ⊂ B(p∗

i , δ) ⊂ B(p∗
i , δ

∗/2); see Figure 1 right.

The interiors of the disks (in L∞) B(p∗
i , δ

∗/2) are disjoint, and we can
use them to construct a matching in Gδ as follows. If Bi ∩ δΛ �= ∅, then
B(p∗

i , δ
∗/2)∩Bi contains some lattice point pi ∈ δΛ. Because the interiors of the

disks B(p∗
i , δ

∗/2) are disjoint, we have pi �∈ Q and pi ∈ Pi. We cannot directly
add the edge (Bi, pi) to the matching that we are constructing because it may
happen that pi is on the boundary of B(p∗

i , δ
∗/2)∩Bi, but also on the boundary
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of B(p∗
j , δ

∗/2) ∩ Bj . However, in this case, B(p∗
i , δ

∗/2) ∩ Bi ∩ δΛ contains an
edge of δΛ inside. If we match each Bi to the lexicographically smallest point
in B(p∗

i , δ
∗/2) ∩ Bi ∩ δΛ, then, because the interiors of disks B(p∗

i , δ
∗/2) are

disjoint, each point is claimed by at most one disk. This proves the existence of
a matching in Gδ provided that 2δ ≤ δ∗.

For the second part of the proof, let pi, pj be a pair of points computed by
Placement(δ). We want to show that pi, pj are at distance at least δ. If both
were computed by the matching in Gδ, they both are different points in δΛ, and
so they are at distance at least δ. If pi was not placed on a point of δΛ (at ci or
on an edge of δΛ), then the lattice points closer than δ to pi were included in
Q, and so the distance to any pj placed during the matching of Gδ is at least δ.
If both pi, pj were not placed on a point of δΛ, then Bi, Bj do not contain any
point from δΛ, and therefore ri, rj < δ/2. Two cases arise:

– If both Bi, Bj do not intersect an edge of δΛ, by the triangle inequality we
have d(pi, pj) ≥ d(p∗

i , p
∗
j )−d(pi, p

∗
i )−d(pj , p

∗
j ) > δ∗−δ/2−δ/2 ≥ δ, provided

that 2δ ≤ δ∗.
– If one of the disks, say Bi, intersects an edge E of δΛ, then Bi is contained

in the two cells of δΛ that have E as an edge. Let C be the six cells of
δΛ that share a vertex with E. If Bj does not intersect any edge of δΛ,
then Bj ∩ C = ∅ because otherwise d(p∗

i , p
∗
j ) < 2δ, and so d(pi, pj) ≥ δ.

If Bj intersects an edge E′ of δΛ, we have E ∩ E′ = ∅ because otherwise
d(p∗

i , p
∗
j ) < 2δ. It follows that d(pi, pj) ≥ δ.

�

Notice that, in particular, if rmin is the radius of the smallest disk and we
set δ = (rmin/

√
n), then the nodes of type Bi in Gδ have degree n, and there is

always a matching. This implies that δ∗ = Ω(rmin/
√

n).
Observe also that whether Placement fails or succeeds is not a mono-

tone property. That is, there may be values δ1 < δ2 < δ3 such that both
Placement(δ1) and Placement(δ3) succeed, but Placement(δ2) fails. This
happens because for values δ ∈ ( δ∗

2 , δ∗], we do not have any guarantee on what
Placement(δ) does.

The algorithm can be adapted to compute Placement(δ+ε) for an infinitesi-
mal ε > 0 because only the points of δΛ lying on the boundaries of B1, . . . , Bn are
affected. Therefore, for an infinitesimal ε > 0, we can decide if Placement(δ+ε)
succeeds or fails.

Observation 2. If Placement(δ) succeeds for B, but Placement(δ) fails for
a translation of B, then δ ≤ δ∗ < 2δ and we have a 2-approximation.

If for some δ > δ′, Placement(δ) succeeds, but Placement(δ′) fails, then
δ∗ < 2δ′ < 2δ and we have a 2-approximation.

If Placement(δ) succeeds, but Placement(δ + ε) fails for an infinitesimal
ε > 0, then δ∗ ≤ 2δ and we have a 2-approximation.
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3 Efficiency of the Placement Algorithm in L∞

The algorithm Placement, as stated so far, is not strongly polynomial because
the sets Pi = Bi ∩ (δΛ \ Q) can have arbitrarily many points, depending on the
value δ. However, when Pi has more than n points, we can just take any n of
them. This is so because a node Bi with degree at least n is never a problem
for the matching: if Gδ \ Bi does not have a matching, then Gδ does not have
it either; if Gδ \ Bi has a matching M , then at most n − 1 nodes from the class
P participate in M , and one of the n edges leaving Bi has to go to a node in P
that is not in M , and this edge can be added to M to get a matching in Gδ.

For a disk Bi we can decide in constant time if it contains some point from
the lattice δΛ: we round its center ci to the closest point p of the lattice, and
depending on whether p belongs to Bi or not, we decide. Each disk Bi adds at
most 4 points to Q, and so |Q| ≤ 4n. We can construct Q and remove repetitions
in O(n log n) time.

If a disk Bi has radius bigger than 3δ
√

n, then it contains more than 5n
lattice points, that is, |Bi ∩ δΛ| > 5n. Because Q contains at most 4n points, Pi

has more than n points. Therefore, we can shrink the disks with radius bigger
than 3δ

√
n to disks of radius exactly 3δ

√
n, and this does not affect to the

construction of the matching. We can then assume that each disk Bi ∈ B has
radius O(δ

√
n). In this case, each Bi contains at most O(n) points of δΛ, and so

the set P =
⋃

i Pi has O(n2) elements.
In fact, we only need to consider a set P with O(n

√
n) points. The idea is

to divide the disks B into two groups: the disks that intersect more than
√

n
other disks, and the ones that intersect less than

√
n other disks. For the former

group, we can see that they bring O(n
√

n) points in total to P . As for the latter
group, we only need to consider O(

√
n) points per disk.

Lemma 3. It is sufficient to consider a set P with O(n
√

n) points. Moreover,
we can construct such a set P in O(n

√
n log n) time.

We are left with the following problem: given a set P of O(n
√

n) points, and
a set B of n disks, find a maximum matching between P and B such that a point
is matched to a disk that contains it. However, the graph Gδ does not need
to be constructed explicitly because its edges are implicitly represented by the
disk-point containment. This type of matching problem, when both sets have
the same cardinality, has been considered by Efrat et al. [9]. Although in our
setting one of the sets may be much larger than the other one, we can make
minor modifications to the algorithm in [9] and use the data structure designed
by Mortensen [16] to get the following result.

Lemma 4. In L∞, Placement can be adapted to run in O(n
√

n log n) time.
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4 Approximation Algorithms for L∞

We want a value δ̃ such that Placement(δ̃) succeeds, but Placement(δ̃ + ε)
fails for an infinitesimally small ε > 0; then δ̃ is a 2-approximation because of
Observation 2. General techniques based on Megiddo’s parametric search [15] are
not very fruitful in this case because the known parallel algorithms for computing
maximum matchings do not have an appropriate tradeoff between the number
of processors and the running time.

Instead, we can use the geometric characteristics of our problem to find a 2-
approximation δ̃ in O(n

√
n log2 n) time. The idea is to consider for which values

δ the algorithm changes its behavior, and use it to narrow down the interval
where δ̃ can lie. First, we state how to solve a special type of instances, and then
present the main result of this section.

Lemma 5. Let B be an instance consisting of m disks such that each disk Bi ∈ B
has radius O(r

√
k), and assume that there is a disk B of radius R = O(mr

√
k)

enclosing all the disks in B. If Placement( r
3
√

k
) succeeds, then we can compute

in O(m
√

m log2 mk) time a placement p1, . . . , pm with pi ∈ Bi that yields a
2-approximation of D(B).

Proof. (Sketch) The proof is divided into three parts. Firstly, we show that
we can assume that the origin is placed at the center of the enclosing disk B.
Secondly, we narrow down our search space to an interval [δ1, δ2] such that
Placement(δ1) succeeds but Placement(δ2) fails. Finally, we consider all the
critical values δ ∈ [δ1, δ2] for which the flow of control of Placement(δ) is
different than for Placement(δ + ε) or Placement(δ − ε). The important
observation is that the values δ1, δ2 are such that not many critical values are in
the interval [δ1, δ2].

Let B′ be a translation of B such that the center of the enclosing disk B is at
the origin. By hypothesis, Placement( r

3
√

k
) for B succeeds. If Placement( r

3
√

k
)

for B′ fails, then Placement( r
3
√

k
) for B gives a 2-approximation due to Obser-

vation 2, and we are done. This finishes the first part of the proof.
As for the second part, consider the horizontal axis h. Because the enclosing

disk B has radius R = O(mr
√

k), the lattice ( r
3
√

k
)Λ has O(mk) points in B ∩h.

Equivalently, we have t = max{z ∈ Z s.t.( r
3
√

k
)(z, 0) ∈ B} = � 3R

√
k

r 
 = O(mk).
In particular, R

t+1 ≤ r
3
√

k
.

If Placement( R
t+1 ) fails, then Placement( r

3
√

k
) is a 2-approximation due

to Observation 2. So we can assume that Placement( R
t+1 ) succeeds. We can

also assume that Placement(R
1 ) fails, as otherwise B consists of only one disk.

We perform a binary search in Z ∩ [1, t + 1] to find a value t′ ∈ Z such
that Placement(R

t′ ) succeeds but Placement( R
t′−1 ) fails. We can do this with

O(log t) = O(log mk) calls to Placement, each taking O(m
√

m log m) time due
to Lemma 4, and we have spent O(m

√
m log2 mk) time in total. Let δ1 := R

t′

and δ2 := R
t′−1 . This finishes the second part of the proof.
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Before we start the third part, let us state, without proof, the property of
δ1, δ2 that we will use later. If p ∈ Λ is such that δ1p is in the interior of B, and
Cp is the union of all four cells of δ1Λ having δ1p as a vertex, then δ2p ∈ Cp,
and more generally, δp ∈ Cp for any δ ∈ [δ1, δ2]. Therefore, if for a point p ∈ Λ
there is a δ ∈ [δ1, δ2] such that δp ∈ ∂Bi, then ∂Bi must intersect Cp.

We are ready for the third part of the proof. Consider the critical values
δ ∈ [δ1, δ2] for which the flow of control of the Placement changes. They are
the following:

– A point p ∈ Λ such that δp ∈ Bi but (δ + ε)p /∈ Bi or (δ − ε)p �∈ Bi for an
infinitesimal ε > 0. That is, δp ∈ ∂Bi.

– Bi intersects an edge of δΛ, but not of (δ + ε)Λ (δ − ε)Λ for an infinitesimal
ε > 0.

Because of the property of δ1, δ2 stated above, only the vertices V of cells of
δ1Λ that intersect ∂Bi can change the flow of control of Placement. In the L∞
metric, because the disks are axis-aligned squares, the vertices V are distributed
along two axis-aligned rectangles, and each disk Bi induces O(1) such critical
values ∆i changing the flow of control of Placement.

We can compute all the critical values ∆ =
⋃m

i=1 ∆i and sort them in
O(m log m) time. Using a binary search on ∆, we find δ3, δ4 ∈ ∆, with δ3 < δ4,
such that Placement(δ3) succeeds but Placement(δ4) fails. Because |∆| =
O(m), this can be done in O(m

√
m log2 m) time with O(log m) calls to Place-

ment. The flow of control of Placement(δ4) and of Placement(δ3 + ε) are
the same. Therefore, we know that Placement(δ3 + ε) also fails, and conclude
that Placement(δ3) yields a 2-approximation because of Observation 2. �

Theorem 1. Let B = {B1, . . . , Bn} be a collection of disks in the plane with the
L∞ metric. We can compute in O(n

√
n log2 n) time a placement p1, . . . , pn with

pi ∈ Bi that yields a 2-approximation of D(B).

Proof. Let us assume that r1 ≤ · · · ≤ rn, that is, Bi is smaller than Bi+1.
Consider the values ∆ = { r1

3
√

n
, . . . , rn

3
√

n
, 4rn}. We know that Placement( r1

3
√

n
)

succeeds, and we can assume that Placement(4rn) fails; if it would succeed,
then the disks in B would be disjoint, and placing each point pi := ci would give
a 2-approximation.

We use Placement to make a binary search on the values ∆ and find a value
rmax such that Placement( rmax

3
√

n
) succeeds, but either Placement( rmax+1

3
√

n
)

fails or rmax = rn. This takes O(n
√

n log n) time, and two cases arise:

– If Placement(4rmax) succeeds, then rmax �= rn. In the case that 4rmax >
rmax+1

3
√

n
, we have a 2-approximation due to Observation 2. In the case that

4rmax ≤ rmax+1

3
√

n
, consider any value δ ∈ [4rmax, rmax+1

3
√

n
]. On the one hand,

the balls Bmax+1, . . . , Bn are not problematic because they have degree n
in Gδ. On the other hand, the balls B1, . . . , Bmax have to be disjoint be-
cause δ∗ ≥ 4rmax, and they determine the closest pair in Placement(δ).
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In this case, placing the points p1, . . . , pmax at the centers of their corre-
sponding disks, computing the distance δ̃ of their closest pair, and using
Placement(δ̃) for the disks Bmax+1, . . . , Bn provides a 2-approximation.

– If Placement(4rmax) fails, then we know that for any δ ∈ [ rmax

3
√

n
, 4rmax]

the disks Bj with rj

3
√

n
≥ 4rmax have degree at least n in Gδ. We shrink

them to have radius 12rmax
√

n, and then they keep having degree at least n
in Gδ, so they are not problematic for the matching. We also use B for the
new instance (with shrunk disks), and we can assume that all the disks have
radius O(12rmax

√
n) = O(rmax

√
n).

We group the disks B into clusters B1, . . . ,Bt as follows: a cluster is a con-
nected component of the intersection graph of the disks B(c1, r1+4rmax), . . . ,
B(cn, rn + 4rmax). This implies that the distance between different clusters
is at least 4rmax, and that each cluster Bj can be enclosed in a disk of radius
O(rmax|Bj |

√
n).

For each subinstance Bj , we can use Lemma 5, where m = |Bj | and k = n,
and compute in O(|Bj |

√|Bj | log2(|Bj |n)) time a placement yielding a 2-
approximation of D(Bj). Joining all the placements we get a 2-approximation

of D(B), and we have used
∑t

j=1 O
(
|Bj |

√|Bj | log2(|Bj |n)
)

= O(n
√

n log2 n)
time overall. �

5 Analogous Results in L2

The rest of the paper studies how the L2 metric changes the approximation ratio
and running time of the algorithms studied for the L∞ metric. We just give the
main observations, and refer to the full version for details.

5.1 Placement Algorithm in L2

For the L∞ metric, we used the optimal packing of disks that is provided by
an orthogonal grid. For the Euclidean L2 metric we will consider the regular
hexagonal packing of disks, given by Λ := {(a + b

2 , b
√

3
2 ) | a, b ∈ Z}. For disks of

radius δ/2, the hexagonal packing is provided by placing the disks centered at
δΛ. The edges of δΛ are the segments connecting each pair of points in δΛ at
distance δ. They decompose the plane into equilateral triangles of side length δ,
which are the cells of δΛ.

Consider a version of Placement using the new lattice δΛ and modifying it
slightly for the cases when Bi contains no lattice point:

– If Bi is contained in a cell C, place pi := ci and add the vertices of C to Q;
see Figure 3a.

– If Bi intersects some edges of δΛ, let E be the edge that is closest to ci.
Then place pi at the projection of ci onto E, and add the vertices of E to
Q; see Figure 3b.
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δΛ

pi

pi

pi

pj

Bi Bi

Bi
Bj

(a) (b) (c)

Q

δΛ

Fig. 3. Cases and properties of Placement for the L2 metric. (a) Placement when Bi is
fully contained in a cell. (b) Placement when Bi intersects an edge: we project the center
ci onto the closest edge. (c) A case showing that the closest pair in Placement(δ) may
be at distance δ

√
3

2

Observe that, in this case, the distance between a point placed on an edge
and a point in δΛ \ Q may be δ

√
3

2 ; see Figure 3c. We modify accordingly the
criteria of Definition 1 regarding when Placement succeeds, and then we state
the result corresponding to Lemma 1.

Definition 2. In the L2 metric, Placement(δ) succeeds if the computed place-
ment p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ

√
3

2 . Otherwise, Placement(δ) fails.

Lemma 6. If 4δ√
3

≤ δ∗, then Placement(δ) succeeds.

Observe that now, if Placement(δ) succeeds, but Placement(δ + ε) fails
for an infinitesimal ε > 0, then we are getting an approximation ratio of 8/3: we
have δ ≥ δ∗√

3
4 , and Placement(δ) gives a placement p1, . . . , pn that satisfies

D(p1, . . . , pn) ≥ δ
√

3
2 ≥ 3δ∗

8 .

5.2 Approximation Algorithms in L2

Lemma 3 also applies to the L2 metric. However, the proof of Lemma 4 relies
on some data structures that do not carry over to L2. Instead we can show the
following result, whose running time depends on whether the original disks are
congruent or not.

Lemma 7. The Algorithm Placement can be adapted to run in O(n1.5+ε)
time. When all the disks are congruent, it can be adapted to run in O(n

√
n log n)

time.

The proof of Lemma 5 is not valid for the L2 metric because it relies on the
fact that disks in the L∞ metric are squares. Instead, we can solve in quadratic
time the type of instances that are considered in Lemma 5. This leads to the
following result, where we spend roughly O(

√
n) times more time than in the

L∞ case (Theorem 1).

Theorem 2. Let B = {B1, . . . , Bn} be a collection of disks in the plane with the
L2 metric. We can compute in O(n2) time a placement p1, . . . , pn with pi ∈ Bi

that yields an 8
3 -approximation of D(B).
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6 Congruent Disks in L2

When the disks B1, . . . , Bn are all congruent, say, of diameter one, we can im-
prove the approximation ratio in Theorem 2. For general disks, the problematic
cases are those balls that do not contain any lattice point. But when all the disks
are of diameter one, we can rule out those cases.

Assume 1 ≤ δ∗ ≤ 2 and take δ such that δ ≤ −√
3+

√
3δ∗+

√
3+2δ∗−δ∗2

4 . When
running Placement(δ) under this hypothesis, it is possible to show that Q = ∅
and that the graph Gδ has a matching. This requires some non-trivial geometric
considerations; see the full version of the paper.

In this case, if p1, . . . , pn is the placement computed by Placement(δ), we
have D(p1, . . . , pn) ≥ δ because Q = ∅ and so all the points pi ∈ δΛ. Therefore,
for 1 ≤ δ∗ ≤ 2, we can get an approximation ratio of

δ∗

δ
≥ 4δ∗

−√
3 +

√
3δ∗ +

√
3 + 2δ∗ − δ∗2

.

For any δ∗ ≤ 1, also some geometric considerations imply that Placement
gives a 2-approximation.

On the other hand, we have the trivial approximation algorithm Centers
consisting of placing each point pi := ci, which gives a δ∗

δ∗−1 -approximation when
δ∗ > 1. In particular, Centers gives a 2-approximation when δ∗ ≥ 2.

1.5 1.6 1.7 1.8 1.9

2.2

2.4

2.6

2.8

3

Fig. 4. Approximation ratios for both approximation algorithms as a function of the
optimum δ∗

The idea is that the performances of Placement and Centers are re-
versed for different values δ∗ in the interval [1, 2]. For example, when δ∗ = 2,
the algorithm Placement gives a 4√

3
-approximation, while Centers gives a

2-approximation because the disks need to have disjoint interiors to achieve
δ∗ = 2. But for δ∗ = 1, the performances are reversed: Placement gives a
2-approximation, while Centers does not give any constant factor approxima-
tion.
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The approximation ratios of both algorithms are plotted in Figure 4. Apply-
ing both algorithms and taking the best of both solutions, we get an approxi-
mation ratio that is the minimum of both approximation ratios, which attains a
maximum of

α := 1 +
13

√
65 + 26

√
3

∼ 2.2393.

Theorem 3. Let B = {B1, . . . , Bn} be a collection of congruent disks in the
plane with the L2 metric. We can compute in O(n2) time a placement p1, . . . , pn

with pi ∈ Bi that yields a ∼ 2.2393-approximation of D(B).
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