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Abstract. We consider a general class of scheduling problems where
a set of dependent jobs needs to be scheduled (preemptively or non-
preemptively) on a set of machines so as to minimize the weighted sum
of completion times. The dependencies among the jobs are formed as an
arbitrary conflict graph. An input to our problems can be modeled as
an instance of the sum multicoloring (SMC) problem: Given a graph and
the number of colors required by each vertex, find a proper multicoloring
which minimizes the sum over all vertices of the largest color assigned
to each vertex. In the preemptive case (pSMC), each vertex can receive
an arbitrary subset of colors; in the non-preemptive case (npSMC), the
colors assigned to each vertex need to be contiguous. SMC is known to
be no easier than classic graph coloring, even in the case of unit color
requirements.

Building on the framework of Queyranne and Sviridenko (J. of Schedul-
ing, 5:287-305, 2002 ), we present a general technique for reducing the
sum multicoloring problem to classical graph multicoloring. Using the
technique, we improve the best known results for pSMC and npSMC on
several fundamental classes of graphs, including line graphs, (k+1)-claw
free graphs and perfect graphs. In particular, we obtain the first con-
stant factor approximation ratio for npSMC on interval graphs, on which
our problems have numerous applications. We also improve the results
of Kim (SODA 2003, 97–98 ) for npSMC of line graphs and for resource-
constrained scheduling.

1 Introduction

We consider a general class of problems in which jobs that utilize non-sharable
resources need to be scheduled (preemptively or non-preemptively) on multiple
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machines. Scheduling any job j depends on whether another job sharing resources
with j is being scheduled. The dependencies among the jobs are modeled by an
arbitrary conflict graph, in which the vertices represent the jobs, and an edge
between two vertices means that the corresponding jobs cannot be scheduled
simultaneously. Then the problem of scheduling dependent jobs can be formu-
lated as a coloring problem: a proper coloring of the conflict graph partitions the
set of jobs to subsets of non-conflicting jobs. Thus, when all jobs have the same
(unit) execution time, we get a graph coloring problem, and when the execution
times are arbitrary, we get a graph multicoloring problem.

In this work, we focus on the sum of completion times measure. For unit-
length jobs, this is known as the chromatic sum or sum coloring (SC) of the
conflict graph. Let G = (V,E) be the conflict graph. Given a coloring ψ of G,
the sum coloring of ψ is given by SC(G,ψ) =

∑
v ψ(v). The minimum chromatic

sum of G is given by SC(G) = minψ SC(G,ψ). In the weighted case, each vertex v
has a weight, wv, and we need to minimize

∑
v wvψ(v) over all proper colorings.

An instance of a multicoloring problem is a pair (G, x), where G = (V,E) is
a graph, and x is a vector of color requirements (or lengths) of the vertices. A
multicoloring of G is an assignment ψ : V → 2N, such that each vertex v ∈ V is
assigned a set of xv distinct colors, and adjacent vertices receive non-intersecting
sets of colors. Denote by fv(ψ) = maxi∈ψ(v) i the largest color assigned to v
by a multicoloring ψ. The sum multicoloring (SMC) of ψ on G is SMC(G,ψ) =∑
v∈V fv(ψ). The SMC problem is to find a multicoloring ψ, such that SMC(G,ψ)

is minimized. In the weighted case, we want to minimize
∑
v∈V wvfv(ψ), over

all proper multicolorings ψ. When all the color requirements are equal to 1, the
problem reduces to SC. A multicoloring, ψ, is called non-preemptive if the colors
assigned to each vertex v are contiguous, i.e., if for any v ∈ V , (maxi∈ψ(v) i) −
(mini∈ψ(v) i) + 1 = xv. We denote this version of the problem by npSMC; the
preemptive problem, where each vertex v can receive any set of xv colors, is
denoted by pSMC.

Scheduling dependent jobs, and the resulting variants of the sum (multi)
coloring problem, have numerous applications, in particular on interval graphs.
The following practical scenarios yield instances of our problems on this natural
subclass of graphs.

Session scheduling on a path: In a path network, pairs of nodes need to
communicate, for which they need use of the intervening path. If two paths
intersect, the corresponding sessions cannot be held simultaneously. In this case,
it would be natural to expect the sessions (i.e., “jobs”) to be of different lengths,
leading to the sum multicoloring problem on interval graphs.

Storage allocation: Storage allocation in a warehouse involves minimizing
the total distance traveled by a robot [W97]. Goods are checked in and out at
known times; thus, goods that are not in the warehouse at the same time can
share the same location. We represent each of the goods by an interval on the
line, which gives the time interval in which it is available at the warehouse.
Numbering the storage locations by their distance from the counter, the total
distance corresponds to sum coloring the intervals formed by the goods.
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VLSI design: In the wire-minimization problem [NSS99], terminals lie on a
single vertical line (each terminal is represented by an interval on this line), and
with unit spacings are vertical bus lanes. Pairs of terminals are to be connected
via horizontal wires on each side to a vertical lane, with non-overlapping pair uti-
lizing the same lane. With the vertical segments fixed, the wire cost corresponds
to the total length of horizontal segments. Numbering the lanes in increasing
order of distance from the terminal line, lane assignment to a terminal corre-
sponds to coloring the terminal’s interval by an integer. The wire-minimization
problem then corresponds to sum coloring an interval graph.

Other applications of sum (multi)coloring include traffic intersection control,
session scheduling in local-area networks and compiler design (a comprehensive
survey appears in [BHK+00]). Instances of SMC on line graphs and, more gen-
erally, on (k + 1)-claw free graphs, are derived mainly from applications that
involve resource constrained scheduling. Our results apply also to permutation
graphs, which model, e.g., train scheduling problems.

1.1 Our Results

We present (in Section 2.1) a general technique for reducing SMC to the classic
graph (multi)coloring problem. Using the technique, we improve the best known
results for pSMC and npSMC on several fundamental classes of graphs, including
line graphs, (k+1)-claw free graphs and perfect graphs. In particular, we obtain
the first constant factor approximation ratio for npSMC on interval graphs. Our
improved bound of 7.682 for npSMC of line graphs is achieved by a simple greedy
algorithm (see in Section 3.1). The previous best ratio of 10, achieved by an
algorithm of Kim [K-03], involved solving an LP with an exponential number of
constraints.

While our main focus is on minimizing the sum of completion times of the
jobs, our technique can be applied to other minsum optimization problems, such
as resource constrained scheduling (RCS). In RCS, we have a set of jobs, each
requesting up to k resources; jobs that need to utilize the same resource cannot
be processed simultaneously. We say that a resource has completion time i if
the last job utilizing this resource completes at time i. Our goal is to find a
non-preemptive schedule that minimizes the sum of completion times of all the
resources. We show (in Section 4) that our technique yields an approximation
ratio of 2e · k ≈ 5.437k. This improves the best ratio known of 8k − 7 given
in [K-03], for any k ≥ 3.

For simplicity, in formulating our results it is implicitly assumed that the
number of machines is “unbounded”. The technique can, however, be applied in
a system with any given number of machines, with slightly weaker performance
ratios (see in [?]). Also, we formulate our results for the unweighted case, and
show (in Section 4) how to generalize the results for the weighted versions of the
problems.

Relation to Min-sum Set Cover: Our results include an approximation ratio
of 3.591 for sum coloring of perfect graphs. This improvement upon the previous
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ratio of 4 (of [BBH+98]) is of particular interest, due to the relation of SC to
the min-sum set cover problem. The input to min-sum set cover consists of a
universe U and a collection of subsets S = {Si}, Si ⊆ U . A feasible solution is an
ordered sub-collection of subsets S ′ = {S′

1, S
′
2, . . .}, such that

⋃
i S

′
i = U . We say

that u ∈ U has cover time i if S′
i is the first subset in the order of S ′ to include u.

The goal is to minimize the sum of cover times over all the elements of U . Feige et
al. [FLT-02] showed that min-sum set cover admits a 4-approximation and that,
unless P=NP, for any constant ε > 0, there is no (4− ε)-approximation. Observe
that SC is a special case of min-sum set cover, in which S is the collection of all
independent sets in G. Hence, our 3.591-approximation implies that the min-sum
set cover problem in its full generality is provably harder to approximate than
SC on perfect graphs.

Techniques: Our general approximation technique builds on the framework
of Queyranne and Sviridenko [QS-02] for scheduling jobs with release times on
parallel machines. As in [QS-02], we divide the time line into intervals of geomet-
rically increasing size (see also [HSW-96, HSSW-97]), using randomized starting
points (as introduced in [CP+96]), and approximate the classic makespan prob-
lem on each block. Note, however, that the results in [QS-02] do not apply to
arbitrary conflict graphs. The class of problems studied in [QS-01, QS-02] include
shop scheduling (open shop and job shop) and entail a different optimization cri-
teria than SMC. (As shown in [GHKS04], open shop scheduling is in fact a special
case of the data migration problem [K-03].)

1.2 Related Work

The SC problem was introduced in [K89] and the SMC problems in [BHK+00].
Table 1 summarizes the known results for SC, pSMC and npSMC in various classes
of graphs. New bounds given in this paper are shown in boldface. In each of these
entries, we give in parenthesis the previous best known bound for the problem.
Entries marked with · follow by inference, either by using containment of graph
classes (interval graphs are perfect), or by SC being a special case of SMC. When
omitted, [BBH+98] is the references for SC and [BHK+00] for SMC. Also, in the
table below, c represents some constant.
There is a wide literature on parallel machine scheduling with the objective

of minimizing the sum of completion times. These works generally deal with
scheduling independent jobs, or allow for precedence constraints which are di-
rected dependencies. The undirected conflict graphs considered here require quite
different treatment.

Some work has been done on resource-constrained scheduling. Kubale [K-96]
studied the complexity of scheduling biprocessor tasks. They also investigate spe-
cial classes of graphs, and showed that npSMC of line graphs of trees is NP-hard
in the weak sense. Afrati et al. [AB+00] gave a polynomial time approximation
scheme for the problem that we consider, minimizing sum of completion times of
dedicated tasks. However, their method applies only to the case where the total
number of processors is a fixed constant. Coffman et al. [CG+85] analyzed the



72 R. Gandhi et al.

Table 1. Known results for sum (multi-)coloring problems

SC SMC
u.b. l.b. pSMC npSMC

General graphs · n1−ε n/ log2 n n/ log n

Perfect graphs 3.591 (4) c > 1 [BK98] 5.436 (16) O(log n)
Interval graphs 1.796 [HKS03] c > 1 [G01] 5.436 (7.184) 11.273 (O(log n))
Bipartite graphs 27/26 [G+02] c > 1 [BK98] 1.5 2.8
Planar graphs PTAS [HK02] NPC [HK02] PTAS [HK02] PTAS [HK02]
Trees 1 [K89] PTAS [HKP+03] 1 [HKP+03]
k + 1-claw free k k 1.796k2+.5 (4k2−2k) [HKS03]
k-sets k k 3.591k+.5 (6k−2) [K-03]
Line graphs 2 NPC 2 7.682 (10) [K-03]

makespan version of npSMC of line graphs, which arises in the file transfer prob-
lem. They showed that a class of greedy algorithms yields a 2-approximation and
gave a (2+ε)-approximation for a version with more general resource constraints.
Kim [K-03] gave an LP formulation of the npSMC problem on line graphs and
intersection graphs of k-sets,1 improving the earlier bounds of [HKS03]. The
paper presents also a ratio of 8k − 7 for the RCS problem with k resources.

2 Sum Multicoloring via Makespan Approximations
In this section we describe and analyze our main approximation technique. Later,
we show how to obtain our results by applying the general technique to specific
classes of graphs, and to the different variants of the sum multicoloring problem
that we consider here.

2.1 Algorithms and Implementation

Our technique uses two components: (i) a lower bound, f∗
v , on the completion

time of the vertex v in an optimal solution, for any v ∈ V ; a parameter d ≥ 1,
which indicates how well the lower bound captures the optimal value; (ii) a
(makespan) multicoloring algorithm A with performance ratio ρ, for some ρ ≥ 1.

Given the f∗
v values, the algorithm schema, ALG, breaks the time line (or the

color sequence 1, 2, . . .) into intervals. We use in the partition two parameters: α,
chosen uniformly at random from [0, 1), and a constant β > 1 (to be optimized).
Let ck = βα+k, for k = 0, 1, . . . , L, where cL ≥ maxv xv. The intervals induce a
partition of the graph into blocks V� = {v ∈ V : c�−1 < f∗

v ≤ c�}, � = 1, . . . , L,
of vertices whose completion times (f∗

v ) fall in the respective interval. We then
apply the makespan multicoloring algorithm on each block in sequence. We show
that when this is possible, our algorithm attains a ratio of d · eρ ≈ 2.718dρ for
pSMC, 1.796dρ+ 0.5 for npSMC, and 1.796dρ for SC.

1 We give the precise definition in Section 3.1.
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The lower bounds, f∗
v , can be obtained either by solving a linear program,

or by using an approximation algorithm for the preemptive sum multicoloring
problem. This results in two algorithms described below. As shown in Section 2.2,
we can unify the analyses of the two algorithms, once we guarantee that each
satisfies certain properties.

LP-based Algorithm: One way to obtain the f∗
v values is by solving the

LP relaxation of an integer programming formulation of the problem. (Such LP
relaxations have been used in the past in scheduling independent jobs; see, e.g.,
[W-85, Q-93, S-96].) Before we describe our LP-based algorithm, we give some
underlying properties of this algorithm. Let OPT be the cost of an optimal
solution, and OPT ∗ =

∑
v f

∗
v the total of the lower bounds f∗

v . Also, we denote
by ω(H,x) the maximum weight of any clique in a subgraph H, i.e., largest sum
of color requirements. For a subset U of vertices, let x(U) =

∑
u∈U xu.

We require that the following properties be satisfied:

(P1) OPT ∗ ≤ OPT .
(P2a) maxv∈V�

f∗
v ≥ ω(V�, x)/d, for some d ≥ 1, for all 1 ≤ � ≤ L.

(P2b) There is a multicoloring algorithm, A, that approximates the
makespan of any graph in the given graph class within a ρ factor of the
weighted clique size, and in particular,

A(V�, x) ≤ ρ · ω(V�, x), for � = 1, 2, . . . , L. (1)

We formulate sum multicoloring with an integer program that uses linear
ordering variables (see, e.g., [P-80, HSSW-97]). For any edge uv ∈ E, there is
a variable δuv ∈ {0, 1}, such that δuv = 1 if u precedes v in the schedule, and
0 otherwise. Let N(v) denote the set of neighbors of v in G, and C1, . . . , CNv

denote the maximal cliques in N(v). The constraints (2) follow from the require-
ment that the vertices in any clique C are assigned disjoint sets of colors; thus
the completion time fv of a vertex v in a clique C is at least the sum of the
color requirements of the vertices in C that completed before v plus that of v
itself.

(LP ) minimize
∑
v∈V

fv

subject to: ∀v ∈ V, 1 ≤ r ≤ Nv : fv ≥ xv +
∑
u∈Cr

xuδuv (2)

∀uv ∈ E : δuv + δvu = 1

In the linear relaxation of LP, we allow fv to take non-integral values ≥ 1. We
denote by f∗

v the value of fv in an optimal LP solution. Note that the program
is equally valid for the preemptive and non-preemptive variants.

The next lemma shows that the above LP formulation satisfies property
(P2a) with d = 2. It is based on a result of [K-03] (Lemma 2.3), attributed
to [HSSW-97].
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Lemma 1. For any 1 ≤ � ≤ L, maxv∈V�
f∗
v ≥ ω(V�, x)

2
.

In particular, since maxv∈V�
f∗
v ≤ c�, this implies that c� ≥ ω(V�, x)/2 for � =

1, . . . , L.

Proof. Let C be a clique in G. Let fv be the completion time of v ∈ C in the
solution for LP . Indeed, C \ {v} ⊆ N(v). From LP , we get that∑

v∈C
xvfv ≥

∑
v∈C

xv(xv +
∑

u∈C,u �=v
xuδuv)

=
∑
v∈C

x2
v +

∑
u,v∈C

(xvxuδuv + xvxuδvu)

≥
∑
v∈C x

2
v + (

∑
u∈C xu)

2

2
(3)

Now, let C� be a maximum weight clique in V�, and let v� be the vertex in C� with
the largest completion time in V�, f∗

v�
. From (3), we have that

∑
u∈C�

xufu ≥
x(C�)2/2 = ω(V�, x)2/2. We also have that

∑
u∈C�

xufu ≤ f∗
v�

∑
u∈C�

xu =
f∗
v�
x(C�) = f∗

v�
ω(V�, x).

We now summarize the steps of the LP-based algorithm with parameters β, α>1.

Algorithm ALGLP

(i) Solve the linear program LP to obtain the f∗
v values.

(ii) Partition the vertices in the graph to the blocks V1, V2, . . . by their f∗
v values.

(iii) Color the blocks in sequence using a non-preemptive multicoloring algorithm
A which satisfies Property (P2b); that is, suppose that the last color used
for the block V� is col�, then A starts coloring the block V�+1 with col� + 1.

Applying an Approximation Algorithm for pSMC: An alternative way
of obtaining the infeasible solution, f∗

v , is to use the preemptive solution when
solving the non-preemptive problem. In this case, we replace (P2a) and (P2b)
by the following properties.

(P2a′) There is a d-approximation algorithm for pSMC, for some d ≥ 1.
(P2b′) There is non-preemptive multicoloring algorithm, A, that ap-
proximates the makespan of any graph in the given graph class within
a ρ factor of the number of colors used by a preemptive multicoloring,
and in particular,

A(V�, x) ≤ ρ · pMC(V�, x), for � = 1, 2, . . . , L. (4)

We now summarize the steps of the algorithm based on the approximation
for pSMC. The algorithm gets as parameters the values β, α > 1.

Algorithm ALGPRE

(i) Apply toG a d-approximation algorithm for pSMC. Let fprev be the completion
time of v ∈ V . Set for any v ∈ V , f∗

v = fprev /d,
(ii) Partition the vertices in the graph to the blocks V1, V2, . . . by their f∗

v values.
(iii) Color the blocks in sequence using a non-preemptive multicoloring algorithm

A which satisfies Property (P2b′).



Improved Bounds for SMC and Scheduling Dependent Jobs 75

2.2 Analysis

We use in the analysis the following notation. Recall that the (multi)chromatic
number χ(G) of a graph G is the minimal number of colors required for (multi)
coloring the vertices in G properly. In scheduling terms, this is the minimal total
length (or makespan) of any legal schedule. We use the notation pMC, npMC for
the preemptive and non-preemptive versions of this problem, respectively. Let
�v denote the block into which v falls ( �v is a function of α). Let t� denote the
number of colors used by the multicoloring algorithm A on block �. If we apply
algorithm ALGLP, then by properties (P2a) and (P2b),

t� ≤ ρω(V�, x) ≤ ρdc�. (5)

Similarly, if we use ALGPRE, we have that tl ≤ ρ · pMC(V�, x) ≤ ρmaxv∈V�
fprev =

ρdmaxv∈V�
f∗
v ≤ ρdc�. We proceed to analyze our algorithm schema, ALG, with-

out making any assumptions on the algorithm used (i.e., the analysis applies for
both ALGLP and ALGPRE).

Denote by f̃v the last color (completion time) of a vertex v by our algorithm
schema ALG. This color is the sum of the makespans of the colorings of the
previous blocks, plus the completion time f ′

v of v within the current block, i.e.
f̃v =

∑�−1
r=1 tr + f ′

v.

Bound for pSMC: We first consider a general scenario, that captures, e.g., the
preemptive case. We trivially bound the last color of v ∈ V� under A by the total
number of colors used, i.e., f ′

v ≤ t�. Hence, we get for each vertex independently
that

f̃v ≤
�∑

r=1

tr ≤ d · ρβα+�+1

β − 1
, (6)

and

ALG(V, x) =
∑
v∈V

f̃v ≤ d · ρ
∑
v∈V

βα+�v+1

β − 1
= d · ρ · β

β − 1

∑
v∈V

c�v , (7)

where �v is the block in which v is colored and c� is the largest color in block �.
We now select α uniformly at random from [0, 1). Then �v and c� are also

random variables.

Lemma 2. For any β > 1 and v ∈ V , E[c�v ] = β−1
ln β f

∗
v , where the expectation is

over the random choices of α.

Proof. By the definition of �v, c�v−1 = βα+�v−1 < f∗
v ≤ βα+�v = c�v . Let us

write f∗
v = βx, i.e. x = logβ f∗

v . Let yv = �v + α − x and note that yv is in the
range [0, 1). We may write yv = (α−x) mod 1. The values f∗

v and x are fixed and
independent of α. Thus, when α is chosen uniformly at random from [0, 1), yv is
also uniformly distributed in [0, 1). The random variable βyv then has expected
value

E[βyv ] =
∫ 1

0
βtdt =

β − 1
lnβ

.
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Hence,

E[c�v ] = E[β�v+α] = E[β�v+α−x] · βx =
β − 1
lnβ

f∗
v . (8)

Recall that OPT ∗ =
∑
v f

∗
v . Combining (7) with Lemma 2 we get that

E[ALG(V, x)] ≤ dρ
β

β − 1

∑
v∈V

β − 1
lnβ

f∗
v ≤ dρ

β

lnβ
OPT ∗.

The function f(β) = β/ lnβ is minimized when β = e ≈ 2.718. This gives the
following.

Theorem 1. There is a (d · eρ)-approximation algorithm for pSMC.

Bound for npSMC: In the non-preemptive case, we may use the schedule output
by algorithm A for V� either directly or reversed. In the reverse order, any vertex
v, whose last color is fv, is colored with (t�−fv+1), (t�−fv+2), . . . , (t�−fv+xv).
By selecting the order that yields the better weighted average completion time,
we may assume that on average, each job is at least half-way through completion
at the half-way mark for V�. That is, on average, for any vertex v ∈ V�, f ′

v ≤
(t� + xv)/2. Thus, we have

f̃v ≤
�−1∑
r=1

tr +
t�
2

+
xv
2

≤ d · ρ
(
βα+�

2
+
�−1∑
r=0

βα+r

)
+
xv
2

(9)

≤ d · ρβα+�
(

1
2

+
1

β − 1

)
+
xv
2

= d · ρ · c�
(

β + 1
2(β − 1)

)
+
xv
2

(10)

Combining (10) with Lemma 2 we have

E[ALG(V, x)] =
∑
v∈V

E[f̃v] ≤ d · ρ β + 1
2(β − 1)

∑
v

E[c�v ] +
x(V )

2

= d · ρβ + 1
2 lnβ

OPT ∗ +
x(V )

2

The function f(β) = (β + 1)/ lnβ is minimized when β = γ ≈ 3.59112, for a
ratio of dγρ/2 + 0.5.

Note that the above schema can be derandomized, by partitioning the interval
(0, 1] to smaller intervals; we can then search for the best value for α in these
intervals, to within desired precision. We summarize in the next result.
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Theorem 2. There is a (dγρ/2+0.5)-approximation algorithm for npSMC, where
γ ≈ 3.59112.

Deterministic and simultaneous approximation: If we make do without
randomization, we can still obtain reasonable bounds that translate to simulta-
neous approximations of makespan and weighted completion time.

By the definition of V�, f∗
v > βα+�−1. Then, from (6) we obtain, for each

vertex v, a bound of
f̃v
f∗
v

≤ d · ρ β2

β − 1
.

This is optimized when β = 2,

Theorem 3. There is an algorithm that approximates simultaneously pSMC
(npSMC) and pMC (npMC), to within factor 4dρ.

Sum coloring approximation: When the graph has unit color requirements,
we get the SC problem. For this case, we obtain a slight improvement.

Theorem 4. There is a (dγρ/2)-approximation algorithm for SC, where γ ≈
3.59112.

Proof. Continuing from (9), we have

∑
v∈V�

f̃v ≤ dρ|V�|(β
α+�

2
+
�−1∑
r=0

βα+r) +
1
2

∑
v∈V�

xv

= dρ|V�|(β
α+�

2
+ βα

β� − 1
β − 1

) +
1
2

∑
v∈V�

xv

= dρ|V�|(βα+� β + 1
2(β − 1)

− βα

β − 1
) +

1
2

∑
v∈V�

xv.

Thus,

ALG(V, x) =
∑
v∈V

f̃v ≤ dρ
∑
�≥1

|V�|
[
β + 1

2(β − 1)
βα+� − βα

α− 1

]
+

|V |
2

.

Hence, applying Lemma 1, we have

E[ALG(V, x)] =
∑
v∈V

E[f̃v] ≤ dρ
∑
v

[
E[c�v ] · β + 1

2(β − 1)
− 1
β − 1

]
+

|V |
2

= dρ · β + 1
2 lnβ

OPT ∗ − dρ|V |
β − 1

+
|V |
2

≤ dρ · β + 1
2 lnβ

OPT ∗.

The last inequality follows from the fact that ρd
β−1 > 1/2, since ρ ≥ 1, β < 5,

and in the cases we have studied, d ≥ 2.
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3 Approximating Sum Multicoloring
We now apply our technique to the npSMC problem on several classes of graphs.
We use both the preemptive approximation and the LP-based algorithm.

3.1 Approximating npSMC

Line graphs: Here we can apply both the LP and the preemptive relaxations
with equal performance ratio, but the latter is both combinatorial and more
efficient. A greedy 2-approximation algorithm for pSMC on line graphs is pre-
sented in [BHK+00] (that holds also in the weighted case). Thus, we can apply
algorithm ALGPRE, with d = 2.

For non-preemptive multicoloring line graphs, we use the greedy algorithm
of [CG+85] that schedules each job as early as possible (i.e. colors each vertex
with the smallest possible colors), breaking ties arbitrarily. This ensures that
each vertex is always waiting for a neighbor until it is scheduled to completion.
The completion time of a vertex is then at most the sum of the lengths of its
neighbors, which is at most twice the length of the larger clique involving the
vertex (see [CG+85]). Thus, in this case, we have ρ = 2. Now, using Theorem 2,
we get a performance bound for line graphs.

Theorem 5. There is a 7.683-approximation algorithm for npSMC on line graphs.

This improves on the recent factor of 10 by Kim [K-03] and the factor of 12
obtained by a combinatorial (greedy) algorithm in [HKS03]. Observe that the
non-preemptive algorithms are all measured in terms of the preemptive optimum.
Intersection graphs of k-sets: Resource-bounded scheduling when each job
uses at most k resources is modeled by graphs that are intersection graphs of
sets of size at most k. For each resource r, the vertices using that resource form a
clique Cr. Then, for any v ∈ V , N(v) can be partitioned into at most k maximal
cliques.

We can extend the LP-based strategy for line graphs to intersection graphs
of k sets. In this case, the non-preemptive greedy multicoloring algorithm of
[CG+85] uses at most kω colors, where ω is the maximal size of any of the
resource cliques. Thus, it suffices to consider only cliques induced by individual
resource, and not those cliques formed by interplay of a collection of resources.
In other words, the clique constraints in LP need only involve the resource-
cliques, therefore the number of constraints in polynomial. Hence, we obtain a
non-preemptive solution with d = 2 and ρ = k, and by Theorem 2, we get

Theorem 6. There is a (3.591k+0.5)-approximation for npSMC on intersection
graphs of k-sets.

This improves on the ratio of 6k − 2 of [K-03].
(k + 1)-claw free graphs: The combinatorial strategy for line graphs can
be generalized for (k + 1)-claw free graphs, albeit with a worse ratio function
than for LP-based algorithm for intersection graphs of k-sets. The sorted greedy
algorithm of [BHK+00] yields a ratio of k for pSMC in (k + 1)-claw free graphs,
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resulting in a preemptive relaxation with d = k in our schema. Also, as above,
the makespan algorithm has performance ratio ρ = k. Thus, we get

Theorem 7. There is a combinatorial (1.796k2 +0.5)-approximation for npSMC
on (k + 1)-claw free graphs.

Interval graphs: The npMC problem on interval graphs is better known as
dynamic storage allocation. Gergov gave an algorithm that uses at most 3ω(G)
colors [G-99]. The number of maximal cliques in an interval graph is at most n.
Thus, LP has a polynomial number of constraints and we can use it to obtain
a multicoloring satisfying (P1) and (P2a), with d = 2. We can also use the
approximation of the preemptive solution of [HKS03] as a relaxation with d =
7.184. Applying Theorem 2, we obtain the first constant approximation factor
for this problem.

Theorem 8. There is an 11.273-approximation and a combinatorial 38.7-approx-
imation for npSMC on interval graphs.

3.2 Approximating pSMC

Perfect graphs: On perfect graphs, LP can be solved in polynomial time,
even though the number of constraints may be exponential, because there is a
polynomial time separation algorithm: given a solution f for LP , we can test in
polynomial time whether all the constraints are satisfied. For a vertex v ∈ V ,
we set, for each neighbor u ∈ N(v), x′

u = xuδuv. We can now find the maximum
weight clique in N(v) with respect to x′, since any subgraph of G is perfect.
Then, we can test in polynomial time whether fv satisfies the constraint (2)
by checking whether the inequality holds for this maximum weight clique. (For
more details, see e.g., [Q-93].) The solution for LP yields a multicoloring ψ∗

that satisfies (P1) and (P2), with d = 2. The multicoloring problem pMC on
perfect graphs is solvable in polynomial time, within arbitrary desired precision,
as shown in [GLS-93], yielding our ρ = 1 + O(1/n). Applying Theorems 1 and
4, we improve on the previous best factors of 16 for pSMC [BHK+00] and 4 for
SC [BBH+98].

Theorem 9. There is a 2e ≈ 5.436-approximation for pSMC and a 3.592-approx-
imation for SC on perfect graphs.

4 Extensions

Weights: Note that vertex weights can be added in our LP formulation, to
get the fractional values f∗

v that satisfy (P1) and (P2) for the weighted minsum
objective. We then apply as before for each block � the makespan algorithm A.
Release times: Our technique can be applied also in the case where each job Jj
has a release time, rj . In this case, in the LP formulation we add for any vertex
v the constraint fv ≥ rv + xv. This ensures that, for any v ∈ V�, rv ≤ c�. Hence,
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when applying the makespan algorithm, A, we start scheduling the vertices in V�
at max(

∑�−1
r=1 tr, β

α+�). This is attained by taking β = 2, which slightly increases
the performance bounds that we obtained for ALG, both in the preemptive and
the non-preemptive case.

Theorem 10. ALG attains a ratio of dρ1.5/ ln 2 ≈ 2.16dρ for npSMC and dρ2/ ln
2 ≈ 2.89dρ for pSMC instances with release times.

Resource Constrained Scheduling: Recall that in RCS, the resources are
represented as cliques in our conflict graph G. Let C denote the set of maximal
cliques in G, then RCS can be formulated as the following linear program.

(LP −RCS) minimize
∑
Ĉ∈C fĈ

subject to: ∀Ĉ ∈ C, ∀v ∈ Ĉ : fv ≥ xv +
∑
u∈Ĉ

xuδuv

∀Ĉ ∈ C, ∀v ∈ Ĉ : fC ≥ fv (11)
∀uv ∈ E : δuv + δvu = 1 (12)

This corresponds to only the last vertex of each clique contributing to the
objective function in the npSMC problem. Our analysis in the preemptive case was
separate for each vertex, bounding the cost for the vertex only by the last color
used in that block. Thus, we obtain an approximation ratio of 2e · k for RCS.
This improves on the previous ratio of 8k − 7 presented by Kim [K-03], for any
k ≥ 3. For k = 2, the ratio of 10.45 is worse than the best known approximation
ratio of 5.055 [GHKS04], but is achieved by a polynomial-size linear program.

Acknowledgments. We thank Moses Charikar and Chandra Chekuri for help-
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