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Abstract. The Directed Multicut (DM) problem is: given a simple di-
rected graph G = (V, E) with positive capacities ue on the edges, and a
set K ⊆ V × V of ordered pairs of nodes of G, find a minimum capacity
K-multicut; C ⊆ E is a K-multicut if in G−C there is no (s, t)-path for
every (s, t) ∈ K. In the uncapacitated case (UDM) the goal is to find a
minimum size K-multicut. The best approximation ratio known for DM
is min{O(

√
n), opt} by Anupam Gupta [5], where n = |V |, and opt is the

optimal solution value. All known non-trivial approximation algorithms
for the problem solve large linear programs. We give the first combina-
torial approximation algorithms for the problem. Our main result is a
Õ(n2/3/opt1/3)-approximation algorithm for UDM, which improves the√

n-approximation for opt = Ω(n1/2+ε). Combined with the paper of
Gupta [5], we get that UDM can be approximated within better than
O(

√
n), unless opt = Θ̃(

√
n). We also give a simple and fast O(n2/3)-

approximation algorithm for DM.

1 Introduction and Preliminaries

Problem formulation: An instance to the Directed Multicut (DM) problem con-
sists of a simple directed graph G = (V, E) with integral capacities ue on the
edges and a set K ⊆ V × V of ordered pairs of nodes of G. The goal is to find a
minimum K-multicut, that is, a minimum capacity edge set C so that in G−C
there is no (s, t)-paths for every (s, t) ∈ K. In the uncapacitated case (UDM),
all edges have capacities 1.

Related work: The case |K| = 1 is polynomially solvable based on the funda-
mental Max-Flow Min-Cut Theorem. For |K| > 1 the min-cut max-flow equality
breaks down even on undirected graphs. In fact, the undirected multicut prob-
lem is MAXSNP-hard even on stars [6]. [6] gives a 2-approximation algorithm
for the undirected multicut problem on trees. The best approximation ratio for
the minimum multicut problem on general undirected graphs is O(log |K|) [7].
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In [8], a related problem is studied. The input is as in the DM problem,
except that the pairs in K are unordered. The goal is to remove a min-cost
edge set C so that in G − C no cycle contains a pair from K. This problem
seems easier than the DM problem. In particular, divide and conquer methods
similar to the ones in [3, 7, 9] give an O(log2 |K|)-approximation for this variant
[8]. In [3] a relatively general scheme is presented handling many problems that
are “decomposable”, but DM does not seem to lend itself in any way to the
divide and conquer approach. Given this fact, it may be that the directed multi-
cut problem is harder to approximate than the undirected one. In particular, a
(poly)logarithmic approximation is not known for DM, nor for UDM. However,
so far, an exact proof separating the approximability of the undirected and di-
rected problems does not exist. In fact, the only approximation threshold known
for the directed case is the one derived from the undirected case: namely, that
the problem is MAXSNP-hard.

The first nontrivial approximation ratio O(
√

n lg n) for DM is due to Cheriyan,
Karloff, and Rabani [1]. This was slightly improved by Anupam Gupta [5] to
O(
√

n). Gupta’s analysis also gives an O(opt2) cost solution with opt the opti-
mal multicut capacity. This can be considered as an opt-approximation algorithm
and is useful in the case the value of opt is “small”. Both algorithms [1] and [5]
require solving large linear programs.

Our results: We design combinatorial approximation algorithms for DM. Let n
and m be the number of nodes and of edges, respectively, in the input graph.
Our main result is:

Theorem 1. For UDM there exists an algorithm with running time Õ(n2m)
that finds a multicut C of size O

(
(n lg n · opt)2/3

)
= Õ

(
(n · opt)2/3

)
.

The approximation ratio is Õ(n2/3/opt1/3). Therefore, Theorem 1 implies
that for UDM the

√
n-approximation can be improved if opt is large (e.g., opt =

Ω(n1/2+ε) for some ε > 0). This is the first algorithm whose approximation ratio
improves as opt gets larger. Combined with the results of [5] that provides an
O(opt)-approximation, we get approximation ratio better than Õ(

√
n), unless

opt = Θ̃(
√

n).
Our additional result is:

Theorem 2. DM admits an O(n2/3)-approximation algorithm with running time
Õ(nm2).

The approximation ratio in [5, 1] is better than the one in Theorem 2. How-
ever, our algorithm is very simple and runs faster than the algorithms in [5, 1];
the later can be implemented in O(n2m2) time using the algorithm of Fleisher
[4] for finding an approximate solution of multicommodity-flow type linear pro-
grams.

We prove Theorems 1 and 1 in Sections 2 and 3, respectively.
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Notation: Let G = (V, E) be a directed graph. For s, t ∈ V the distance dG(s, t)
from s to t in G is the minimum number of edges in an (s, t)-path; dG(s, t) =∞
if no (s, t)-path exists in G. For disjoint subsets S, T ⊆ V of V let δG(S, T ) =
{st ∈ E : s ∈ S, t ∈ T}.
We often omit the subscript G if it is clear from the context. An edge set C ⊆ E
is an (s, t)-cut if C = δ(S) for some S ⊆ V − t with s ∈ S. Let u(C) =

∑{ue :
e ∈ C} be the capacity of C; u(C) = |C| if no capacities are given. For simplicity
of the exposition, we ignore that some numbers are not integral. The adaptation
using floors and ceilings is immediate.

Preliminaries: Our algorithms run with certain parameters, which should get
appropriate values that depend on n and opt to achieve the claimed approxima-
tion ratios. Specifically, for UDM we show an algorithm that for any integer �

computes a multicut of size �·opt+O((n lg n)2/�2). Setting � = (n lg n)2/3
/opt1/3

gives the claimed approximation ratio. Since opt is not known, we execute the al-
gorithm for � = 1, . . . , (n lg n)2/3, and among the multicuts computed output one
of minimum size. For DM we show an algorithm that for any integers �, µ with
1 ≤ � ≤ n−1 and µ ≥ opt computes a K-multicut of capacity ≤ µ · (2�+n2/�2).
Setting � = n2/3 and µ = opt gives the claimed approximation ratio. Since opt
is not known, we apply binary search to find the minimum integer µ so that
a multicut of capacity ≤ µ · (2� + n2/�2) is returned. Note that if µ ≥ opt, a
multicut C of capacity ≤ µ(2� + n2/�2) is returned. If µ < opt, then either the
returned multicut C is of capacity ≤ µ(2� + n2/�2) < 3optn2/3 which is fine or
we know that µ < opt as the above inequality fails.

Remark: Recently we became aware of the [10] paper, which gives an Õ(n2/3)-
approximation algorithm for the related Edge-Disjoint Paths problem. Our result
for UDM, which was derived independently, and the main result in [10] rely on
the same combinatorial statement (Corollary 1 in our paper, Theorem 1.1 in
[10]), but the proofs are different.

2 The Uncapacitated Case

Definition 1. For X, Y ⊆V , let RG(X, Y )= |{(x, y) ⊆ X×Y : x �= y, dG(x, y) <
∞}| denote the number of pairs (x, y) ⊆ X ×Y , so that an (x, y)-path exists; let
R(G) = RG(V, V ).

We say that G = (V, E) is a p-layered graph if V can be partitioned into
p layers L1, . . . , Lp so that every e ∈ E belongs to δG(Li, Li+1) for some i ∈
{1, . . . , p− 1}.
Lemma 1. Let G = (V, E) be a 4-layered graph containing k edge-disjoint
(L1, L4)-paths such that G − δG(L2, L3) is a simple graph. Then R(L1, L3) +
R(L2, L4) ≥ k.

Remark: Observe that the graph induced by L2∪L3 may contain parallel edges.
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Proof. We will prove the statement by induction on k. The case k = 0 is obvious.
Assume k ≥ 1, and that E is a union of k edge-disjoint paths. Let st ∈ δG(L2, L3),
let G′ = G − {s, t}, and let S = {v ∈ L1 : vs ∈ E}, T = {v ∈ L4 : tv ∈ E}.
Then G′ contains at least k − (|S| + |T |) edge-disjoint (L1, L4)-paths. Also,
RG′(L1, L3) ≤ RG(L1, L3)−|S| and RG′(L2, L4) ≤ RG(L2, L4)−|T |. This follows
because of the removal of {s, t}. By the induction hypothesis, RG′(L1, L3) +
RG′(L2, L4) ≥ k − (|S|+ |T |). Combining, we get the statement.

Lemma 2. Let G be a simple �-layered graph containing k-edge disjoint paths
from the first layer to the last layer, and let S and T be the union of pS ≥ 2
first and pT ≥ 2 last layers, respectively, so that S ∩ T = ∅. Then R(S, T ) =
Ω(kpSpT ).

Proof. By Lemma 1, R(Li, Lj)+R(Li+1, Lj+1) ≥ k for every two pairs Li, Li+1 ⊆
S and Lj , Lj+1 ⊆ T . The statement follows by summing the contribution of all
such pairs.

Lemma 3. Let s, t be a pair of nodes in a simple graph G with dG(s, t) ≥ 2p lg n.
Then there exists an (s, t)-cut C so that R(G)−R(G− C) = Ω(|C|p2).

Proof. Consider the corresponding dG(s, t) BFS layers from s to t, where nodes
that cannot reach t are deleted. Let Xi be the layer at distance i from s, and let
Yi be the layer at distance i to t. Let kj be the maximum number of edge-disjoint
(Xj·p, Yj·p)-paths in the graph Gj induced by all the layers starting with Xj·p
and ending at Yj·�, j = 1, . . . , 2 lg n.

We claim that there exists an index j with kj ≤ 2 · kj−1. Otherwise, since
k0 ≥ 1, we have kj ≥ 2j . For j = log n we get kj ≥ n2, which is not possible in
a simple graph.

Let j be such an index with kj ≤ 2·kj−1, and let C be a minimum (Xj·p, Yj·p)-
cut, so |C| = kj . We now apply Lemma 2 on the graph Gj−1. Note that Gj−1
contains |C|/2 edge-disjoint paths between its first layer X(j−1)·� and its last
layer Y(j−1)·�; this is since kj = |C| by Menger’s Theorem, and kj−1 ≥ kj/2 by
the choice of j. Since C separates the first and the last p layers of Gj−1, the
statement follows from Lemma 2.

Corollary 1. For UDM there exists an algorithm that for any integer � finds
in Õ(mn2/�2) time a K-multicut B with |B| = O

(
(n lg n)2/�2

)
, where K =

{(u, v) : d(u, v) ≥ �}.
Proof. Let p = �/(2 lg n). The algorithm starts with B = ∅. While there is an
(s, t)-path for some (s, t) ∈ K it computes an (s, t)-cut C = Cst as in Lemma 3,
and sets B ← B∪C, G← G−C. We claim that at the end of the algorithm |B| =
O(R(G)/p2) = O(n2/p2); we get that |B| = O

(
(n lg n)2/�2

)
by substituting

p = �/(2 lg n). Lemma 2 implies that there exists a constant α > 0 so that each
time Cst is deleted, R(G) is reduced by at least α|Cst|p2. Thus we get:

αp2 · |B| ≤ αp2 ·
∑

(s,t)∈K

|Cst| ≤ R(G) ≤ n2.
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The dominating time at each iteration is spent for computing a cut as in
Lemma 3. This can be done using O(lg n) max-flow computations, thus in
Õ(m|Cst|) time using the Ford-Fulkerson algorithm. Thus the total time required
is Õ(m|B|) = Õ(mn2/�2).

Given an integer �, apply the following algorithm starting with A, B = ∅:
While there is an (s, t)-path P with |P | ≤ � for some (s, t) ∈ K do:

A← A + P , G← G− P .
End While
Find in G−A a K-multicut B as in Corollary 1.

For any integer �, the algorithm computes a K-multicut C = A ∪ B of
size � · opt + O((n lg n)2/�2); |A| ≤ � · opt since any K-multicut contains at
least one edge of each path removed, and |B| = O((n lg n)2/�2) by Corol-
lary 1. As was explained in the introduction, we execute the algorithm for
� = 1, . . . , (n lg n)2/3, and among the multicuts computed output one of min-
imum size. For � = (n lg n)2/3

/opt1/3 we get the claimed approximation ratio.
Let us now discuss the implementation of the algorithm. After executing

Procedure 1 at iteration �, the graph G − A is used as an input for itera-
tion � + 1. As the total length of the paths removed is at most n2, the total
time of Phase 1 executions is O(mn2). The total time of Phase 2 executions is

Õ
(∑n2/3

�=1 mn2/�2
)

= Õ(mn2). Thus the time complexity is as claimed, and the
proof of Theorem 1 is complete.

3 An O(n2/3)-Approximation Algorithm for DM

The algorithm: Consider the following algorithm:
Input: An instance (G, u, K) of DM, and integers �, µ.
Initialization: C ← ∅.
While in G there is an (s, t)-path P for some (s, t) ∈ K do:

(a) Let P ’ is the union of the first and the last � edges of P (P ′ = P if
|P | < 2�);

(b) Among the (s, t)-cuts in G disjoint to P ′ compute one C ′ of minimum
capacity (u(C ′) =∞ if P ′ = P );

(c) If u(C ′) > µ then: ue ← ue −min{ue : e ∈ P ′} for every e ∈ P ′;
C ← C ∪ P ′

0, G ← G − P ′
0, where P ′

0 = {e ∈ P ′ :
ue = 0}.

Else (u(C ′) ≤ µ) C ← C ∪ C ′, G← G− C ′.
End While

Theorem 3. At the end of the algorithm C is a K-multicut. If µ ≥ opt then
u(C) ≤ µ · (2� + n2/�2).

Proof. Assume that µ ≥ opt. Consider a specific iteration of the main loop, and
the edge sets P ′, C ′ found. There are two possible cases.

If u(C ′) > µ then u(C ′) > µ ≥ opt. This implies that any minimum K-
multicut contains at least one edge from P ′. Hence, after setting ue ← ue −
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min{ue : e ∈ P ′} for every e ∈ P ′ the optimum decreased by at least min{ue :
e ∈ P ′}. Since |P ′| = 2�, the total capacity of the edges in all sets P ′

0 added into
C during the algorithm is at most 2�opt ≤ 2�µ.

Otherwise, if u(C ′) ≤ µ then R(G)−R(G−C ′) ≥ �2. Thus the total number
of cuts C ′ removed during the algorithm ≤ n2/�2, and their total capacity ≤
µn2/�2.

To see that R(G)−R(G− C ′) ≥ �2, let P ′
F and P ′

L be the first and the last
� nodes in P , respectively. We claim that RG(P ′

F , P ′
L) = |P ′

F | · |P ′
L| = �2 and

RG−C′(P ′
F , P ′

L) = 0. The first statement follows from the simple observation that
P ′

F , P ′
L belong to the same path P of G, and thus dG(u, v) <∞ for every pair u, v

with u ∈ P ′
F , v ∈ P ′

L. To see the second statement, note that in dG−C′(u, v) =∞
for every such pair u, v, as otherwise there would be an (s, t)-path in G − C ′,
contradicting that C ′ is an (s, t)-cut in G.

As was mentioned in the introduction, for � = n2/3 we use binary search to
find the minimum integer µ so that a multicut of capacity ≤ µ · (2� + n2/�2) is
returned. Theorem 3 implies that µ ≤ opt, and the required ratio follows.

Implementation: We can assume that ue ∈ {1, . . . , n4} or ue = ∞ for every
e ∈ E. In this case binary search for appropriate µ requires O(lg(n6)) = O(lg n)
iterations. Indeed, let c be the least integer so that {e ∈ E : ue ≤ c} is a K-
multicut. Edges of capacity ≥ cn2 do not belong to any optimal solution, and
their capacity is set to ∞. Edges of capacity ≤ c/n2 are removed, as adding
all of them to the solution affects only the constant in the approximation ratio.
This gives an instance with umax/umin ≤ n4, where umax and umin denote the
maximum finite and the minimum nonzero capacity of an edge in E, respectively.
Further, for every e ∈ E set ue ← �ue/umin. It is easy to see that the loss
incurred in the approximation ratio is only a constant, which is negligible in our
context.

The dominating time is spent for computing O(m) minimum cuts at step
(b); each such computation leads to a removal of an edge, since reducing the
capacities along P ′ by min{ue : e ∈ P ′} guarantees that at least one edge gets
capacity zero. As a max-flow/min-cut computation can be done in Õ(nm) time
(c.f., [2]), the total running time is Õ(nm2). This finishes the proof of Theorem 2.
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