
A PTAS for Delay Minimization
in Establishing Wireless Conference Calls

Leah Epstein1,� and Asaf Levin2

1 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
lea@idc.ac.il.

2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. A prevailing feature of mobile telephony systems is that the
location of a mobile user may be unknown. Therefore, when the system
is to establish a call between users, it may need to search, or page, all
the cells that it suspects the users may be located in, in order to find the
cells where the users currently reside. The search consumes expensive
wireless links which motivates search techniques that page as few cells
as possible.

We consider cellular systems with n cells and m mobile users roaming
among the cells. The location of the users is uncertain and is given by
m probability distribution vectors. Whenever the system needs to find
specific users, it conducts a search operation lasting at most d rounds.
In each round the system may check an arbitrary subset of cells to see
which users are located there. The problem of finding a single user is
known to be polynomially solvable. Whereas the problem of finding any
constant number of users (at least 2) in any fixed (constant) number of
rounds (at least two rounds) is known to be NP-hard. In this paper we
present a simple polynomial-time approximation scheme for this problem
with a constant number of rounds and a constant number of users. This
result improves an earlier e

e−1 ∼ 1.581977-approximation of Bar-Noy and
Malewicz.

1 Introduction

establishing wireless conference calls under delay constraints
problem (EWCC) is concerned with establishing a conference call involving
m + 1 users (from which one has a static position and the other m users have
dynamic locations) in a cellular network. The main property of a cellular net-
work is that the users are roaming. This places another step in the process of
establishment of the conference call. I.e., the system needs to find out to which
cell each user is connected at the moment. Using historical data the system has
a certain probability vector for each user that describes the probability that the

� Research supported by Israel Science Foundation (grant no. 250/01).

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 36–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A PTAS for Delay Minimization in Establishing Wireless Conference Calls 37

system will find the user in each cell. We assume that each user is connected to
exactly one cell in the system and that the locations of the different users are
independent random variables.

In order to find a set of users the system may page a subset of cells. Each
cell in this subset returns a complete and accurate list of all the users that are
connected to it. We assume that the search lasts a short period and during
this period users do not move from one cell to another. The search strategy is
to page a certain subset of cells looking for the users that participate in the
conference call. After the system gets the answers from all the paged cells, it
decides whether it needs to continue to the next round (i.e., the search did not
find all the users) or it can stop the search (i.e., all the users have been already
found). In order to ensure a reasonable quality of service there is an upper bound
on the maximum number of rounds, denoted by d. We assume that the system
must find all the users within d rounds. Therefore, if the system does not find all
the participating users within the first d−1 rounds then in the last round it must
page all the cells it did not page before. In this paper we follow Bar-Noy and
Malewicz [1], and restrict our search strategy to oblivious algorithms, in which
the subset of cells that is paged in round i does not depend on the actual users
that the system found in round 1, 2 . . . , i − 1. However, if the search process is
completed at round i, the algorithm may stop. There are other search strategies
that are known as adaptive search strategies in which the subset of cells that is
paged in round i depends on the users that have been found so far. As noted in
[1] the two versions coincide for the special case of two rounds.

The goal of EWCC is to minimize the expected number of cells that the
system pages throughout the search.

If d = 1 then EWCC is trivial since the system must page all cells in the
first round, and the solution costs n. If m = 1 EWCC can be solved in poly-
nomial time using a simple dynamic programming [2, 3]. Bar-Noy and Malewicz
[1] showed that EWCC is NP-hard for any pair of fixed values of m, d such
that m, d ≥ 2. They also presented an approximation algorithm with perfor-
mance guarantee of e

e−1 ∼ 1.581977 for arbitrary values of d, m, and for the
special (NP-hard) case where d = m = 2 they showed that their approximation
algorithm is a 4

3 -approximation. Bar-Noy and Malewicz raised the open prob-
lem of the existence of a polynomial-time approximation scheme for EWCC. In
this paper we give the first positive answer for this question by presenting a
polynomial-time approximation scheme (PTAS) for the case of a fixed number
of rounds and a fixed number of users (m and d are arbitrary constant integer
values).

We now present a formal definition of EWCC. Denote the cell set by C =
{1, 2, . . . , n}, and the user set by U = {1, 2, . . . , m}. For i ∈ U and j ∈ C, denote
by pj

i the probability that user i is located at cell j. We assume that pj
i > 0, ∀i, j.

Given a positive matrix P = {pj
i}i,j and a bound d on the number of rounds, a

feasible solution is a partition C1, C2, . . . , Cd of C with the interpretation that in
round k the system pages the cells in the subset Ck, unless it has already found
all the users. A partition C1, C2, . . . , Cd induces probabilities (Pk)d

k=1 where Pk

38 L. Epstein and A. Levin

denotes the probability that the search will last for at least k rounds. I.e., Pk

is the probability that C1 ∪ C2 ∪ · · · ∪ Ck−1 does not contain U . Then, the cost
of C1, C2, . . . , Cd is

∑d
k=1 Pi|Ci|. The goal of EWCC is to find a partition of C

that minimizes its cost.
We now give a more detailed expression for the cost of a partition for the

special case of two rounds: C2 = C \ C1, denote pi(C1) =
∑

j∈C1
pj

i , which is
the probability to find user i in the first round. Therefore P2 = 1−∏i∈U pi(C1),
and the cost associated with the partition C1, C \C1 is exactly |C1|+(n−|C1|) ·(
1 −∏i∈U pi(C1)

)
.

We start the paper with a PTAS for two rounds, and later extend it to an
arbitrary (constant) number of rounds d.

2 A PTAS for Two Rounds

In this section we present the main result of this paper; a polynomial time
approximation scheme for EWCC when d = 2. We fix an optimal solution OPT .
Our scheme is composed of two guessing steps. In these guessing steps we guess
certain information about the structure of OPT . Each guessing step can be
emulated via an exhaustive enumeration of all the possibilities for this piece of
information. So our algorithm runs all the possibilities, and among them chooses
the best solution achieved. In the analysis it is sufficient to consider the solution
obtained when we check the right guess.

Given OPT , denote by OPT1 the number of cells that OPT pages in the
first round, and by αi the probability that OPT does not find user i in the first
round. Therefore, the cost of OPT denoted by COST (OPT) is COST (OPT) =
OPT1 + (n − OPT1) · (1 −∏�∈U (1 − α�)

)
.

Recall that m is a constant, and let ε be a value such that 0 < ε < 1
(m+1) . If

n ≤ m, then EWCC can be solved in a constant time via exhaustive enumera-
tion (since m is a constant), and therefore we assume that n > m. Denote the
probability intervals I0 = (0, ε

n2], and for 1 ≤ i ≤
⌈
log1+ε

(
n2

ε

)⌉
,

Ii =
(ε

n2 (1 + ε)i−1,
ε

n2 (1 + ε)i
]
.

Our first guessing step guesses for each � ∈ U , the index i(�) such that
α� ∈ Ii(�). The following lemma is trivial:

Lemma 1. The number of possibilities for the first guessing step is

O

([

log1+ε

(
n2

ε

)

+ 2
]m)

.

Therefore, performing an exhaustive enumeration for this guessing step can
be done in polynomial time. We continue to analyze the iteration of this step
in which we guess the right values that correspond to OPT . For all � ∈ U , we
denote the guess of α� by β� to be the upper bound of Ii(�); β� = ε

n2 (1 + ε)i(�).

A PTAS for Delay Minimization in Establishing Wireless Conference Calls 39

The next step is to scale up the probabilities as follows: for all i, j define qj
i =

pj
i/βi to be the scaled probability of i and j. We consider the vector Qj = (qj

i)i∈U

of the scaled probabilities that the users are in cell j. We remove all cells with
scaled probability larger than 1. Such cells cannot be paged in the second round,
and therefore must be paged in the first round. We further assign a type and
weight for each Qj according to the following way. Let qj

i be a maximum entry

in Qj , then we assign a weight wj = qj
i to Qj , and we define Q̃j =

(
qj
�/wj

)

�∈U
.

Note that Qj = wj · Q̃j . We define a set of intervals J as follows: J0 = (0, ε],
and for all k ≥ 1, Jk = (ε · (1 + ε)k−1, ε · (1 + ε)k], and J = {J0, J1, . . .}. For
each entry � in Q̃j , we find the interval from J that contains qj

�/wj . We assign
the type of Qj to be the following vector. For each �, compute a value t� such
that qj

�

wj ∈ Jt�
, then the type of Qj is the vector (t1, t2, . . . , tm).

Lemma 2. The number of possible types is O
([

log1+ε

(1
ε

)
+ 2
]m).

Proof. To see this note that for all �, j, we have qj
�

wj ≤ 1. Therefore, it is enough
to use the first �log1+ε

(1
ε

)� + 1 intervals in J . The bound on the number of
possibilities of types that our instance contains follows.

Note that the bound on the number of types is a constant (for fixed values of
ε, m). Our second guessing step is to guess OPT1 (since the first round is never
skipped, this is an integer between 1 and n) and guess the number of cells from
each type that OPT pages in the second round (this also gives the number of
cells from each type that OPT pages in the first round).

Lemma 3. The number of possible guesses is bounded by O
(
n[log1+ε(1

ε)+2]m
)
.

Proof. The number of cells from each type is an integer between 0 and OPT2 =
n − OPT1 ≤ n − 1. This guess also implies a guess for OPT2 and OPT1.

Note that the number of possibilities for this guessing step is polynomial (for
fixed values of ε, m).

Assume that for a type T = (t1, t2, . . . , tm), OPT has OPT2(T) cells of type
T that are paged in the second round. We sort the cells of type T according
to their weight, and we assign the second round the OPT2(T) cells (among
the cells of type T) that have the least weight. We apply this procedure for
all the types T . We would like to ignore all invalid solutions. In order to be
valid, the probability bounds β� must be satisfied, i.e. the sum of (non-scaled)
probabilities must be in the interval Ii(�). We slightly relax this requirement
since a result of the scaling may shift the sum out of this interval. Instead, we
disregard probabilities such that their scaled probability is in the interval (0, ε],
and we allow the sum of the other (non-scaled) probabilities to reside in the
interval [0, β�(1 + ε)]. Equivalently, the sum of scaled and rounded vectors of
probability of chosen cells (ignoring the small components as explained above)
should be such that no component exceeds 1 + ε. For some guesses we obtain a
candidate solution. Among all candidate solutions we output the one whose cost
is minimized.

40 L. Epstein and A. Levin

Lemma 4. For a fixed number of users m, and for a constant ε > 0, the above
scheme takes polynomial time.

Proof. By Lemmas 1,2 and 3, the number of possibilities in the first step and
in the second step is polynomial. The time to compute the resulting candidate
solution for a single guess is clearly polynomial (i.e., finding a maximum value
for each cell and finding its weight is polynomial, and the rest is simply sorting
of the cells according to their weights), and the time to compute its cost is also
polynomial. Therefore, the scheme has polynomial running time.

3 Analysis

We analyze the iteration of the first guessing step in which the guessed values
of βi ∀i are the right guesses. We also assume that in the second guessing step
we guess the right value of OPT1 and the right number of cells of each type
that OPT pages in the second round. We analyze the cost of the corresponding
candidate solution.

Lemma 5. The right set of guesses leads to a candidate solution.

Proof. We have to show that for each user i, the sum of the probabilities (when
we ignore cells whose scaled probability is at most ε) of finding user i in the
second round is at most βi(1 + ε). For a type T = (t1, t2, . . . , tm) with ti ≥ 0,
OPT selects OPT2(T) cells of type T with sum of weights that is at least the sum
of weights of the cells of type T that the candidate solution selects (note that
the weights are not changed in the process of partitioning the cells into types).
By definition of J , the probabilities of having user i in a pair of cells of type
T with the same weight, are within a multiplicative factor of 1 + ε. Therefore,
the contribution of type T cells to the probability that the candidate solution
finds i during the second round, is at most 1 + ε times the contribution of type
T cells to the probability that OPT finds i only during the second round. Since
the probability that OPT finds i only during the second round is αi ≤ βi, the
claim follows.

Lemma 6. Consider a user i, then the probability that the candidate solution
finds i during the second round (and not during the first round) is at most βi(1+
(m + 1)ε).

Proof. Consider a type T = (t1, t2, . . . , tm). First, assume that ti ≥ 1. By Lemma
5, the contribution of type T cells to the probability that the candidate solution
finds i during the second round, is at most 1 + ε times the contribution of type
T cells to the probability that OPT finds i only during the second round.

Next, consider a type T such that ti = 0. For such a type we define the leader
of T to be the first entry of the type vector that relates to the largest interval
(the interval which contains the point 1). There exists at least one such entry as

A PTAS for Delay Minimization in Establishing Wireless Conference Calls 41

in Q̃j there is at least one unit entry. Note that the sum of scaled probabilities
of finding user � of all the cells paged by OPT with a type such that � is the
leader, is at most 1 + ε. Therefore, the total contribution of scaled probabilities
of all the cells of any type T such that ti = 0 and � is acting as the leader of
T is at most (1 + ε)ε. Summing over all � (note that � 	= i), we get an increase
of (m − 1)ε(1 + ε) caused by the types where ti = 0. In terms of the original
probabilities (i.e., for each cell we multiply its probability by βi) the types T
such that ti = 0 increase the probability of not finding user i in the first round
by (an additive factor of) (m − 1)(1 + ε)εβi.

To conclude (the two above arguments) the probability that the candidate
solution finds i during the second round (and not during the first round) is at
most βi(1 + ε) + βi(1 + ε)(m − 1)ε = βi(1 + ε)(1 + (m − 1)ε) ≤ βi(1 + (m + 1)ε)
(since ε < 1/(m + 1)).

We denote by S = {i ∈ U |βi = ε
n2 } the set of users with small probability

of being left for the second round, and by L = U \ S the set of users with large
probability of being left for the second round.

Theorem 1. The best candidate solution is a (1 + ε)(1 + 2ε)(1 + (m + 1)ε)-
approximated solution.

Proof. We will analyze the candidate solution that corresponds to the right
guesses (with respect to the information used by the solution OPT). By Lemma
5, this is a candidate solution. The best candidate solution clearly outperforms
this particular candidate solution.

For a user i ∈ L, the probability that OPT does not find i in the first round
is αi, whereas by Lemma 6 the probability that the candidate solution does not
find i in the first round is at most βi(1 + (m + 1)ε). Since i ∈ L, we conclude
that αi ≥ βi

1+ε . Therefore, the probability that the candidate solution does not
find i in the first round is at most (1 + ε)(1 + (m + 1)ε)αi.

For a user i ∈ S, the probability that the candidate solution does not find
i in the first round is at most βi(1 + (m + 1)ε) = ε(1+(m+1)ε)

n2 ≤ 2ε
n2 , where the

inequality follows as ε < 1
(m+1) . Using the union bound we conclude that the

probability that the candidate solution does not find at least one of the users
in S is at most 2ε|S|

n2 ≤ 2εm
n2 ≤ 2ε

n , where the last inequality follows from the
assumption n > m. In case this event happens we assign an extra cost of n (for
the second round). This extra cost incurs an expected extra cost (an additive
factor) of at most 2ε

n · n = 2ε. Since OPT costs at least 1, we will conclude that
the users in S caused an increase of the approximation factor by a multiplicative
factor of at most 1 + 2ε.

We first assume that there is � ∈ U such that β�(1 + (m + 1)ε)(1 + ε) ≥
1. In this case α� ≥ 1

(1+(m+1)ε)(1+ε)2 , and therefore COST (OPT) ≥ OPT1 +
(n − OPT1)α� ≥ nα� ≥ n

(1+(m+1)ε)(1+ε)2 ≥ n
(1+(m+1)ε)(1+ε)(1+2ε) . Note that the

returned solution costs at most n, and therefore in this case the returned solution
pays at most (1+(m+1)ε)(1+ε)(1+2ε)COST (OPT). Therefore, we can assume
that for all �, β�(1 + (m + 1)ε)(1 + ε) < 1.

42 L. Epstein and A. Levin

We denote by τ = (1 + ε)(1 + (m + 1)ε). The cost of the candidate solution
is at most:

OPT1 + (n − OPT1) ·
(

1 −
∏

�∈U

(1 − β�(1 + (m + 1)ε))

)

(1)

≤ OPT1 + (n − OPT1) ·
(

1 −
∏

�∈L

(1 − β�(1 + (m + 1)ε))

)

+ 2ε (2)

≤ OPT1 + (n − OPT1) ·
(

1 −
∏

�∈L

(1 − τα�)

)

+ 2ε (3)

≤ OPT1 + (n − OPT1)τ ·
(

1 −
∏

�∈L

(1 − α�)

)

+ 2ε (4)

≤ (τ + 2ε)

[

OPT1 + (n − OPT1) ·
(

1 −
∏

�∈L

(1 − α�)

)]

(5)

≤ τ(1 + 2ε)

[

OPT1 + (n − OPT1) ·
(

1 −
∏

�∈L

(1 − α�)

)]

(6)

≤ τ(1 + 2ε)

[

OPT1 + (n − OPT1) ·
(

1 −
∏

�∈U

(1 − α�)

)]

(7)

= τ(1 + 2ε)COST (OPT), (8)

where (1) follows from Lemma 6 and the monotonicity of the goal function
(increasing the probability of not finding a user in the first round only increases
the solution cost). (2) follows as explained above since the users in S incur an
additive increase of the expected cost by at most 2ε. (3) follows since for all
i ∈ L, α�(1 + ε) ≥ β�. (4) follows because given a set of |L| independent random
events the probability of their union is multiplied by at most τ if we multiply the
probability of each event in this set by τ . (5) and (6) follow by simple algebra
(and by OPT1 ≥ 1). (7) follows since we deal with probabilities, and for each
� ∈ S, 1 − α� ≤ 1, and therefore

∏
�∈L(1 − α�) ≥∏�∈U (1 − α�). (8) follows from

the fact that we consider the right guesses on OPT .

By Theorem 1 we conclude that,

Corollary 1. The above scheme is a [1 + 6mε]-approximation for all ε > 0.

Proof. Since ε < 1
(m+1) and m ≥ 2 we get (1 + (m + 1)ε)(1 + ε)(1 + 2ε) ≤

(1 + (m + 1)ε)(1 + 4ε) ≤ 1 + (m + 9)ε ≤ 1 + 6mε.

By setting ε′ = ε
6m , and applying the above algorithm with ε′ instead of ε,

we get a 1+ε-approximation algorithm whose time complexity is polynomial for
any fixed value of ε. Therefore, we proved the main result:

Theorem 2. Problem EWCC with two rounds and a constant number of users
has a polynomial time approximation scheme.

A PTAS for Delay Minimization in Establishing Wireless Conference Calls 43

4 Extension of the PTAS to Any Fixed Number of
Rounds

In this section we show how the PTAS of the previous sections can be extended
to provide a PTAS for EWCC when the number of rounds d is an arbitrary
constant (the number of users is also a constant).

We fix an optimal solution OPT . Our scheme is again composed of two
guessing steps.

Given OPT , denote by OPTr the number of cells that OPT pages in the
r-th round, and by αr

i the probability for OPT to find user i exactly in the r-th
round (i.e., OPT does not find i in the first r − 1 rounds but finds i in the r-th
round). Denote by πr

i =
∑d

s=r αs
i the probability that OPT does not find i in

the first r − 1 rounds. Therefore, the cost of OPT denoted by COST (OPT) is
COST (OPT) =

∑d
r=1 OPTr · (1 −∏i∈U (1 − πr

i)).
Recall that m, d are constants, and let ε be a value such that 0 < ε <
1

(md+1) . If n ≤ md2, then EWCC can be solved in a constant time via exhaustive
enumeration (as m and d are constants), therefore we assume that n > md2.
Similarly to the d = 2 case we denote the probability intervals I0 = (0, ε

n2], and

for 1 ≤ i ≤
⌈
log1+ε

(
n2

ε

)⌉
, Ii =

(
ε

n2 (1 + ε)i−1, ε
n2 (1 + ε)i

]
.

Our first guessing step guesses for each � ∈ U and 1 ≤ r ≤ d, the index ir(�)
such that αr

� ∈ Iir(�). The following lemma is trivial:

Lemma 7. The number of possibilities for the first guessing step is

O

([

log1+ε

(
n2

ε

)

+ 2
]md

)

.

Therefore, performing an exhaustive enumeration for this guessing step can
be done in polynomial time. We continue to analyze the iteration of this step
in which we guess the right values that correspond to OPT . For all � ∈ U , we
denote the guess of αr

� by βr
� to be the upper bound of Iir(�); βr

� = ε
n2 (1+ε)ir(�).

The next step is to scale up the probabilities. Similarly in the d = 2 case we
define qj

i (r) = pj
i/(βr

i) to be the scaled probability for user i to be found in cell
j in round r. The matrix of cell j is Qj = (qj

i (r))1≤i≤m,1≤r≤d. For every matrix,
each component larger than 1 is replaced by ∞ as this probability means that
such cells cannot be paged in the relevant round. We further assign a type to
each cell in the following way.

Let qj
i (r) be a maximum real entry in Qj (if all entries are ∞, we can skip

the current guess as it cannot lead to a valid solution), then we assign a weight
wj = qj

i (r) to Qj , and we define Q̃j =
(
qj
� (r)/wj

)

�∈U,1≤r≤d
. Note that Qj =

wj · Q̃j . We define a set of intervals J as follows: J0 = (0, ε], and for all k ≥ 1,
Jk = (ε ·(1+ε)k−1, ε ·(1+ε)k], and J = {J0, J1, . . .}. For each entry (�, r) in Q̃j ,
we find the interval from J that contains qj

� (r)/wj . We assign the type of Qj to
be the following matrix. For each (�, r) of real probability, compute a value t(�,r)

44 L. Epstein and A. Levin

such that qj
� (r)
wj ∈ Jt(�,r) . Entries of infinite probability are assigned (t(�,r) = ∞.

The type of Qj is the matrix (t(�,r))1≤�≤m,1≤r≤d.
Our second guessing step is to guess OPTr for r = 1, 2, . . . , d (since the first

round is never skipped, OPT1 is an integer between 1 and n, and the other values
are integers between 0 and n − 1) and guess the number of cells from each type
that OPT pages in each round.

Lemma 8. The number of possible types is O
([

log1+ε

(1
ε

)
+ 3
]md

)
.

Proof. Each entry can have any of the values as in the two round case or infinity.

Lemma 9. The number of possible guesses is bounded by the value
O
(
(n + 1)d[log1+ε(1

ε)+3]md)
.

Proof. For round 1 ≤ r ≤ d, the number of cells from each type is an integer
between 0 and OPTr ≤ n. Guessing the number of cells of each type in every
round implies a guess of the OPTr values.

Note that the number of possibilities for this guessing step is polynomial (for
fixed values of ε, m, d).

Assume that for a type T , OPT has OPTr(T) cells of type T that are paged
in the r-th round. We sort the cells of type T according to their weight, and we
iterate the following: we initialize r = d and assign the r-th round OPTr(T) cells
(among the cells of type T) that have the least weight. We remove this set of
cells, we decrease r by 1 and repeat until no more cells of type T exist. We apply
this procedure for all the types T . We would like to ignore all invalid solutions.
In order to be valid, the probability bounds βr

� must be satisfied, i.e. the sum
of probabilities must be in the interval Iir(�). We slightly relax this requirement
since a result of the scaling may shift the sum out of this interval. Instead, we
disregard probabilities such that their scaled probability is in the interval (0, ε],
and we require that the sum over all rounds from r to d, of the sum of the other
(non-scaled) probabilities should reside in the interval [0,

∑d
s=r βs

� (1 + ε)]. For
some guesses we obtain a candidate solution. Among all candidate solutions we
output the one whose cost is minimized.

Lemma 10. For a fixed number of users m, a fixed number of rounds d, and
for a constant ε > 0, the above scheme takes a polynomial time.

Proof. By Lemmas 7,8 and 9, the number of possibilities in the first step and
in the second step is polynomial. The time to compute the resulting candidate
solution for a single guess is clearly polynomial (i.e., finding a maximum value
for each cell and finding its weight is polynomial, and the rest is simply sorting
of the cells according to their weights), and the time to compute its cost is also
polynomial. Therefore, the scheme takes a polynomial time.

We analyze the iteration of the first guessing step in which the guessed values
of βr

i ∀i, r are the right guesses. We also assume that in the second guessing step

A PTAS for Delay Minimization in Establishing Wireless Conference Calls 45

we guess the right values of OPTr for r = 1, 2, . . . , d and the right number of
cells of each type that OPT pages in each round. We analyze the cost of the
corresponding candidate solution.

Lemma 11. The right set of guesses leads to a candidate solution.

Proof. We have to show that for each user i and each round r, the sum of the
probabilities (when we ignore cells whose scaled probability is at most ε) of not
finding user i within the first r − 1 rounds is at most

∑d
s=r βs

i (1+ ε). For a type
T , OPT selects

∑d
s=r OPTs(T) cells of type T with sum of weights that is at

least the sum of weights of the cells of type T that the candidate solution selects
(note that the weights are not changed in the process of partitioning the cells
into types). By definition of J , the probabilities of having user i in a pair of
cells of type T with the same weight, are within a multiplicative factor of 1 + ε.
Therefore, the contribution of type T cells to the probability that the candidate
solution does not find i during the first r − 1 rounds, is at most 1 + ε times the
contribution of type T cells to the probability that OPT does not find i during
the first r − 1 rounds. As the probability that OPT finds i only during the s-th
round is αs

i ≤ βs
i , the claim follows.

Lemma 12. Consider a user i and a round r, then the probability that the
candidate solution does not find i during the first r − 1 rounds is at most∑d

s=r βs
i (1 + (md + 1)ε).

Proof. Consider a type matrix T . A type with an ∞ entry for round s will have
zero cells for that round. Otherwise assume first that t(i,r) ≥ 1. By Lemma 11,
the contribution of type T cells to the probability that the candidate solution
does not find i during the first r−1 rounds, is at most 1+ε times the contribution
of type T cells to the probability that OPT does not find i during the first r − 1
rounds.

Next, consider a type T such that t(i,r) = 0. For such a type we define the
leader of T to be the first entry of the type matrix that relates to the largest real
interval (that contains the point 1). There exists at least one entry like this, as
there is at least one unit entry in Q̃j . Note that the sum of scaled probabilities
of finding user � in round r′ of all the cells paged by OPT in that round with a
type such that � is the leader, is at most 1 + ε. Therefore, the total contribution
of scaled probabilities of all the cells of any type T such that t(i,r′) = 0 and �, r′

is acting as the leader of T is at most (1 + ε)ε. Summing over all � and r′ (note
that we may exclude the case � = i, r′ = r), we get an increase of (md−1)ε(1+ε)
caused by the types where t(i,r) = 0. In terms of the original probabilities (i.e.,
for each cell and round s we multiply its probability by βs

i) the types T such
that t(i,r) = 0 increase the probability of not finding user i in the first r − 1
rounds by at most (an additive factor of) (dm − 1)ε(1 + ε)

∑d
s=r βs

i .
To conclude (the two above arguments) the probability that the candidate

solution does not find i during the first r −1 rounds is at most
∑d

s=r βs
i (1+ ε)+

∑d
s=r βs

i (md − 1)ε(1 + ε) =
∑d

s=r βs
i (1 + (md + 1)ε) (since ε < 1/(dm + 1)).

.

46 L. Epstein and A. Levin

Theorem 3. The best candidate solution is a (1+ε)2(1+(md+1)ε)-approximated
solution.

Proof. We will analyze the candidate solution that corresponds to the right
guesses (with respect to the information used by the solution OPT). By Lemma
11, this is a candidate solution. The best candidate solution clearly outperforms
this particular candidate solution.

For a user i, the probability that OPT does not find i in the first r−1 rounds
is
∑d

s=r αs
i , whereas by Lemma 12 the probability that the candidate solution

does not find i in the first r−1 rounds is at most
∑d

s=r βs
i (1+(md+1)ε). For all

� ∈ U and for all s = 1, 2, . . . , d, αs
�(1+ε)+ ε

n2 ≥ βs
� holds. This gives

∑d
s=r αs

i ≥
∑d

s=r βs
i

1+ε − ε(d−r+1)
n2 . Therefore, the probability that the candidate solution does

not find i in the first r−1 rounds is at most (1+ε)(1+(md+1)ε)
∑d

s=r αs
i +(1+

ε)(1+(md+1)ε) εd
n2 . Since the above term bounds a probability we conclude that

the probability that the candidate solution does not find i in the first r−1 rounds
is at most min{1, (1 + ε)(1 + (md + 1)ε)

∑d
s=r αs

i + (1 + ε)(1 + (md + 1)ε) εd
n2 }.

We denote by τ = (1 + ε)(1 + mdε). The cost of the candidate solution is at
most:

OPT1 +
d∑

r=2

OPTr ·
⎛

⎝1 −
∏

�∈U

(

1 −
d∑

s=r

βs
� (1 + mdε)

)+⎞

⎠ (9)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛

⎝1 −
∏

�∈U

(

1 − τ

(
d∑

s=r

αs
� +

εd

n2

))+⎞

⎠ (10)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛

⎝1 −
∏

�∈U

(

1 − τ

d∑

s=r

αs
�

)+

+
ετmd

n2

⎞

⎠ (11)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛

⎝1 −
∏

�∈U

(

1 − τ

d∑

s=r

αs
�

)+⎞

⎠+
ετmd2

n
(12)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛

⎝1 −
∏

�∈U

(

1 − τ

d∑

s=r

αs
�

)+⎞

⎠+ ετ (13)

≤ OPT1 +
d∑

r=2

OPTr · τ

(

1 −
∏

�∈U

(

1 −
d∑

s=r

αs
�

))

+ ετ (14)

≤ τ(1 + ε)

[

OPT1 +
d∑

r=2

OPTr ·
(

1 −
∏

�∈U

(

1 −
d∑

s=r

αs
�

))]

(15)

= τ(1 + ε)COST (OPT), (16)

where (9) follows from Lemma 12 and the monotonicity of the goal function
(increasing the probability of not finding a user in the first rounds only increase

A PTAS for Delay Minimization in Establishing Wireless Conference Calls 47

the solution cost). (10) follows as explained above. (11) follows by simple algebra.
(12) follows since OPTr ≤ n, ∀n. (13) follows from the assumption n ≥ md2.
(14) follows because given a set of |L| independent random events the probability
of their union is multiplied by at most τ if we multiply the probability of each
event in this set by τ . (15) follow by simple algebra (and by OPT1 ≥ 1). (16)
follows from considering the right guesses on OPT .

Similar to the d = 2 case, we establish the following theorem:

Theorem 4. Problem EWCC with a constant number of rounds and a constant
number of users has a polynomial time approximation scheme.

References

1. A. Bar-Noy and G. Malewicz, ”Establishing wireless conference calls under delay
constraints,” Journal of Algorithms, 51, 145-169, 2004.

2. D. Goodman, P. Krishnan and B. Sugla, ”Minimizing queuing delays and number
of messages in mobile phone location,” Mobile Networks and Applications, 1, 39-48,
1996.

3. C. Rose and R. Yates, ”Minimizing the average cost of paging under delay con-
straints,” Wireless Networks, 1, 211-219, 1995.

	Introduction
	A PTAS for Two Rounds
	Analysis
	Extension of the PTAS to Any Fixed Number of Rounds

