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Abstract. We consider the problem of designing monotone determini-
stic algorithms for scheduling tasks on related machines in order to mini-
mize the makespan. Several recent papers showed that monotonicity is a
fundamental property to design truthful mechanisms for this scheduling
problem.

We give both theoretical and experimental results. For the case of
two machines, when speeds of the machines are restricted to be powers of
a given constant c > 0, we prove that algorithm Largest Processing

Time is monotone for any c ≥ 2 while it is not monotone for c ≤ 1.78;
algorithm List Scheduling, instead, is monotone only for c > 2.

For the case of m machines we restrict our attention to the class of
“greedy-like” monotone algorithms defined in [AP04]. We propose the
greedy–like algorithm Uniform RR and we prove that it is monotone
when speeds are powers of a given integer constant c > 0 and it ob-
tains an approximation ratio that is not worse than algorithm Uniform,
proposed in [AP04]. We also experimentally compare performances of
Uniform, Uniform RR, LPT, and several other monotone and greedy–
like heuristics.

1 Introduction

In this paper we consider the problem of designing deterministic monotone al-
gorithms for scheduling tasks on related machines in order to minimize the
makespan (i.e. the maximum completion time). A classical result of game theory,
recently rediscovered by [AT01], states that monotonicity is a necessary condi-
tion to design truthful (dominant strategies) mechanisms for this scheduling
problem. Mechanisms are a classical concept of the theory of non-cooperative
games [OR94]. In these games there are several independent agents that have
to work together in order to optimize a global objective function. However, each
player has its own private valuation function, maybe different from the global
objective function, and may lie if this can improve its valuation of the game
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output, even though this can produce a suboptimal solution. Non-cooperative
games can be used to model problems that have to be solved in market environ-
ments where heterogenous entities have to cooperate in computing some global
function but they compete for “resources” (e.g. the autonomous systems that
regulate the routing of traffic in Internet) [Pa01].

The main idea of the Mechanism Design theory is to pay the agents to con-
vince them to perform strategies that help the system to optimize the global
objective function. A Mechanism M=(A,P) is a combination of two elements:
an algorithm A computing a solution and a payment function P specifying the
amount of ”money” the mechanism should pay to each agent. A mechanism is
Truthful with Dominant Strategies (in the sequel simply truthful) if its payments
guarantee that agents are not stimulated to lie, whatever strategies other agents
perform.

Recently, mechanism design has been applied to several optimization prob-
lems arising in computer science and networking that have been (re-)considered
in the context of non-cooperative games [NR99, Ro00, Pa01].

State of the Art. The celebrated VCG mechanism [Cl71, Gr73, V61] is the promi-
nent technique to derive truthful mechanisms for optimization problems. How-
ever, this technique applies only to utilitarian problems, that are problems where
the objective function is equal to the sum of the agents valuation functions (e.g.,
shortest path, minimum spanning tree, etc.). In the seminal papers by Nisan and
Ronen [NR99, NR00] it is pointed out that VCG mechanisms do not completely
fit in a context where computational issues play a crucial role since they assume
that it is possible to compute an optimal solution of the corresponding optimiza-
tion problem (maybe a NP-hard problem). Scheduling, is a classical optimization
problem that is not utilitarian, since we aim at minimizing the maximum over
all machines of their completion times and it is NP-Hard. Moreover, scheduling
models important features of different allocation problems and routing problems
in communication networks. Thus, it has been the first problem for which not
VCG based techniques have been introduced.

Nisan and Ronen [NR99, Ro00] give an m-approximation truthful mechanism
for the problem of scheduling tasks on m unrelated machines, when each machine
is owned by a different agent that declares the processing times of the tasks
assigned to his/her machine and the algorithm has to compute the scheduling
based on the values declared by the agents. In [AT01] it is considered the simpler
variant of the task scheduling on related machines (in short Q||Cmax), where each
machine i has a speed si and the processing time of a task is given by the ratio
between the weight of the task and the speed of the machine. They show that
a mechanism M = (A, P ) for the Q||Cmax problem is truthful if and only if
algorithm A is monotone. Intuitively, monotonicity means that increasing the
speed of exactly one machine does not make the algorithm decrease the work
assigned to that machine (see Section 2 for a formal definition). The result of
[AT01] reduces the problem of designing a truthful mechanism for Q||Cmax to
the algorithmic problem of designing a good algorithm which also satisfies the
additional monotonicity requirement.
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Several algorithms are known in literature for Q||Cmax, but most of them
are not monotone. Greedy algorithms were proposed by Graham in the ’60s for
the case of identical machines. He proves that algorithm LPT, which considers
the tasks in non-increasing order by weight, is (4/3 − 1/(3m))-approximated
[Gr69], while algorithm List Scheduling, which considers tasks in the same
order as given in input, is (2 − 1/m)–approximated [Gr66]. Moreover, a PTAS
can be constructed using LPT as a subroutine [Gr69]. The same algorithms can
be used for Q||Cmax. In particular, LPT is φ-approximated for two machines,
where φ = 1+

√
5

2 is the golden ratio, and 2m
m+1–approximated for m machines

[GI80]. LS, instead, is O(log m)–approximated [AA+93, CS80]. However, both
these algorithms are not monotone [AT01]. Not greedy techniques have been
used to provide a PTAS for Q||Cmax [HS88] and constant approximations for
the online version of the problem [AA+93, BC97]. However, all these algorithms
are intrinsically not monotone.

The first non-trivial monotone algorithm for Q||Cmax is given in [AT01],
where a randomized 3-approximated mechanism for Q||Cmax is presented that
is truthful in expectation. In [AP04] a technique is provided to construct a
family of (2 + ε)-approximated monotone algorithms starting from a monotone
allocation algorithm that is “greedy–like” (i.e. its cost is within an additive
factor of O(tmax/s1) from the cost of LPT, where tmax is the largest task weight
and s1 is the smallest machine speed). The basic idea, derived by the PTAS
of Graham, is to combine the optimal scheduling of the largest tasks with the
schedule computed by a monotone “greedy–like” algorithm; however, in order to
guarantee monotonicity, the scheduling of the large tasks and of the small tasks
are computed independently. In [AP04] it is proposed the algorithm Uniform,
which is greedy–like and it is monotone in the particular case where machine
speeds are divisible (see Section 2 for a formal definition). Thus, they obtain a
family of deterministic truthful (2+ε)-approximated mechanisms for the case of
divisible speeds. This result, combined with payment functions of [AT01], implies
the existence, for any fixed number of machines and any ε > 0, of deterministic
truthful (4 + ε)-approximated mechanisms for the case of arbitrary speeds.

Our Results. In [AP04] two questions are left open. The first one is whether LPT

is monotone in the particular case of divisible speeds; the second one is whether
the algorithm Uniform is monotone also in the case of arbitrary speeds.

In this paper we try to answer to both the questions. With respect to the
first question we give answers only for the case of 2 machines (see Section 3). We
say that speeds are c–divisible if and only if they are powers of a given positive
constant c. We prove that LPT is monotone for c–divisible speeds when c ≥ 2
while it is not monotone when c ≤ 1.78. We also prove that LS is monotone
if c > 2. With respect to the second question, we prove that any “Uniform–
like” algorithm is not monotone when speeds are not-divisible. It is possible
to modify the algorithm to obtain monotonicity but this implies a much weaker
approximation factor. We also describe a new algorithm Uniform RR, based on
Uniform, and prove that it is more efficient than Uniform and it is monotone
for divisible speeds (see Section 4).
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We experimentally evaluate the performances of algorithms Uniform and
Uniform RR, comparing it to LPT and to several other “Uniform–like” heuris-
tics. The experiments show that algorithm Uniform RR outperforms the other
considered heuristics both with respect to the worst case and the average case
approximation factor and it is very close to LPT.

2 The Problem

In this section we formally define the Q||Cmax problem. Consider m machines
having speeds s = 〈s1, s2, . . . , sm〉, with s1 ≤ s2 ≤ . . . ≤ sm, and n tasks of
weights σ = (t1, t2, . . . , tn). In the sequel we simply denote the i-th task with its
weight ti. A schedule is a mapping that associates each task to a machine. The
amount of time to complete task j on machine i is tj/si. The work of machine i,
denoted as wi, is given by the sum of the weights of the tasks assigned to i. The
load (or completion time) of machine i is given by wi/si. The cost of a schedule
is the maximum load over all machines, that is, its makespan.

Given an algorithm A for Q||Cmax, A(σ, s) = (A1(σ, s), A2(σ, s), · · · , Am(σ, s))
denotes the solution computed by A on input the task sequence σ and the speed
vector s, where Ai(σ, s) is the load assigned to machine i. The cost of this so-
lution is denoted by Cost(A, σ, s). In the sequel we omit σ and s every time it
is clear from the context. Following the standard notation of game theory, we
denote by s−i = (s1, s2, · · · , si−1, si+1, · · · , sm) the vector of the speeds of all
machines except machine i and we write s = (s−i, si).

Definition 1 (Monotone Scheduling Algorithms). A scheduling algorithm
A is monotone iff for any machine i, fixed the speeds of the other machines s−i,
the work assigned to machine i is not decreasing with respect to si, that is for
any s′

i > s′′
i it holds that wi(s−i, s

′
i) ≥ wi(s−i, s

′′
i ).

An optimal algorithm computes a solution of minimal cost opt(σ, s). Through-
out the paper we assume that the optimal algorithm always produces the lexi-
cographically minimal optimal assignment. As shown in [AT01], this algorithm
is monotone.

An algorithm A is a c-approximation algorithm if, for every instance (σ, s),
Cost(A, σ, s) ≤ c ·opt(σ, s). A polynomial-time approximation scheme (PTAS)
for a minimization problem is a family A of algorithms such that, for every ε > 0
there exists a (1 + ε)-approximation algorithm Aε ∈ A whose running time is
polynomial in the size of the input.

Largest Processing Time (LPT) and List Scheduling (LS) are two
greedy algorithms widely used for Q||Cmax. LPT first sorts the tasks in nonin-
creasing order by weight and then process them assigning task tj to machine i
that minimizes (wi + tj)/si, where wi denotes the work of machine i before task
tj is assigned; if more than one machine minimizing the above ratio exists then
the machine with small index is chosen. LS uses the same rule as LPT to assign
tasks to machines, but it processes the tasks in the same order as they appear
in σ. For any fixed number of machines, there exists a PTAS for Q||Cmax that
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assigns the h largest tasks optimally, for h large enough, and the remaining tasks
with LPT [Gr69].
We say that a scheduling algorithm A is greedy-close if for any speed vector s
and for any task sequence σ we have that Cost(A, σ, s) ≤ Cost(LPT, σ, s) +
O

(
tmax

s1

)
, where tmax is the largest task of σ and s1 is the smallest speed in

s. In [AP04] the monotone scheduling algorithm PTAS-Gc is provided that
uses a greedy-close algorithm Gc as a subroutine. This algorithm splits the task
sequence in two parts: the h largest tasks are scheduled optimally; the remaining
tasks are scheduled by Gc, independently from the schedule obtained in the first
two phases. They prove that for any sequence of tasks and for any ε > 0 there
exists an integer h > 0 such that PTAS-Gc gives a solution that is within a
factor of (2 + ε) from the optimum.

We say that speeds of the machines are c–divisible, for any constant c > 0,
if and only if each speed is a power of c. We say that the Q||Cmax problem
is restricted to c–divisible speeds if speeds are c–divisible and each agent can
declare only values that are powers of c.

3 Scheduling on Two Machines with c–Divisible Speeds

In this section we consider the case of two machines with c–divisible speeds and
give upper and lower bounds on the values of c that guarantee the monotonicity
of algorithms LPT and LS.

We start by proving two interesting properties of the schedules computed by
LPT. The first lemma proves that the scheduling computed by LPT is such
that if a task assigned to a machine (say i) is moved to another machine then it
has a completion time that is not smaller than its completion time on machine
i. This property, known as a Nash Equilibrium, is very important in the context
of dynamic systems since it implies that the system is in a stable state and no
entity has an incentive to move from its state.

Lemma 1. Let w1, w2, · · · , wm be the works assigned to the machines by LPT.
For each task t, let i(t) be the machine which t is assigned to. Then, for each
1 ≤ j ≤ m, it holds that wj+t

sj
≥ wi(t)

si(t)
.

Lemma 2. For each speed vector s and for each sequence of tasks σ, the schedule
computed by LPT on input s and σ is such that for any i, j, if si ≤ sj/2 then
wi ≤ wj, where wi is the work assigned by the algorithm to machine i.

Let c(A) > 0 be the smallest real number such that for each c ≥ c(A) the algo-
rithm A is monotone when restricted to c–divisible speeds. We briefly describe
now the argument that we use to lower bound c(A). Consider two speed vectors
s = 〈s1, s2〉 and s′ = 〈s′

1, s
′
2〉, where s′ differs from s only on speed of machine i

and si ≤ s′
i. For each sequence of tasks σ = 〈t1, t2, · · · , tn〉, we divide the tasks in

σ in the following four sets with respect to the allocations computed by A with
respect to s and s′: Ti(σ), for i = 1, 2, is the set of tasks of σ that are assigned
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to machine i both with respect to s and s′; L(σ) is the set of tasks of σ that
are assigned to machine 1 with respect to s and to machine 2 with respect to
s′; R(σ) is the set of tasks of σ that are assigned to machine 2 with respect to
s and to machine 1 with respect to s′. In the following we omit the argument σ
whenever it is clear from the context. It is easy to see that

w1(s) =
T1 + L

s1
, w2(s) =

T2 + R

s2
, w1(s′) =

T1 + R

s′
1

, w2(s′) =
T2 + L

s′
2

.

(1)

Theorem 3. For any c ≥ 2, the algorithm LPT is monotone when restricted
to the case of two machines with c–divisible speeds.

Proof. Suppose by contradiction that LPT is not monotone for c–divisible speeds.
Then, there exist two speed vectors s = 〈s1 ≤ s2〉 and s′ = 〈s′

1 ≤ s′
2〉, where

s′ has been obtained from s by increasing only one speed, and a sequence of
tasks σ = 〈σ′, t〉 such that the scheduling of the tasks in σ computed by LPT

with respect to s and s′ is not monotone. Without loss of generality assume that
σ is the shortest sequence that LPT schedules in a not monotone way. This
means that the schedule of σ′ is monotone while the allocation of t destroys the
monotonicity. We distinguish three cases.

First of all, consider the case s′
2 ≥ c · s2. Since, by hypothesis, the schedule of

σ′ is monotone while the schedule of σ is not monotone we have that w2(σ′, s) ≤
w2(σ′, s′) and w2(σ, s) > w2(σ, s′). By Eq. 1 it follows that

R(σ′) ≤ L(σ′) < R(σ′) + t. (2)

Observe now that if LPT on input s assigns task t to machine 2 then T1(σ′)+L(σ′)+t
s1

> T2(σ′)+R(σ′)+t
s2

, from which we obtain

T2(σ′) <
s2

s1
(T1(σ′) + L(σ′) + t) − R(σ′) − t. (3)

Similarly, if LPT on input s′ assigns task t to machine 1 then T1(σ′)+R(σ′)+t
s′
1

≤
T2(σ′)+L(σ′)+t

s′
2

, from which we obtain

T2(σ′) + L(σ′) + t ≥ s′
2

s1
(T1(σ′) + R(σ′) + t) (4)

Substituting Eq. 3 in Eq. 4 and making some algebraic manipulations we obtain
that

L(σ′) ≥ s′
2

s1
(T1(σ′) + R(σ′) + t) − T2(σ′) − t

≥ s2

s1
T1(σ′) +

s2

s1
(2R(σ′) − L(σ′)) + t(

s2

s1
− 1) + (R(σ′) + t)

≥ (R(σ′) + t)
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where the last inequality holds since by hypothesis s2
s1

≥ 1 and, since t is the
smallest task, R(σ′) ≥ L(σ′)/2. However, this contradicts Eq. 2 and therefore
there is no instance σ for which the schedule computed by LPT is not monotone.
The other two cases can be solved by reduction to the previous case.

A similar argument can be used to prove the following theorem.

Theorem 4. For any c > 2, the algorithm LS is monotone when restricted to
the case of two machines with c–divisible speeds.

Intuitively, Theorem 3 states that LPT is monotone if a machine that wants
to reduce its speed has to do it in a significant way (at least half in this case).
It is interesting to study which is the value of c(LPT). Next Lemma gives a
constructive lower bound on this value.

Lemma 5. For any c ≤ 1.78, the restriction of LPT to two machines and c–
divisible speeds is not monotone.

Proof. Consider the sequence of tasks σ = 〈y ≥ x ≥ x/2 + 2ε ≥ x/2 − ε〉 and
the speed vectors s = 〈1, c〉 and s′ = 〈1, c2〉. Assume that x, y and ε are chosen
in such a way that LPT, on input s, assign all tasks except for x to machine 2,
while, on input s′ it assigns the first two tasks to machine 2 and the other tasks
to machine 1. Clearly, this schedule is not monotone since machine 2 receives a
total load of y + x + ε with speed c and a total load of x + y with speed c2. We
observe that LPT produces the previous schedules when

y + x

c
> x,

y + x + ε

c
<

3
2
x − ε (5)

and
y + x

c2 < x,
y + x + x/2 − ε

c2 > x + ε. (6)

By trivial computations it can be seen that for any c ≤ 1.78 it is possible to
choose y, x and ε so that previous inequalities hold. In particular, for c = 1.78
we can take y = 113.5, x = 68, ε = 0.005.

The argument of the proof of Lemma 5 cannot be extended since for any c ≥
3+

√
17

4 it is not possible to choose y, x and ε in order to satisfy Eq. 5–6.

4 Algorithms Uniform–Like

In this section we prove that algorithm Uniform, proposed in [AP04], is not
monotone with respect to not divisible speeds. In the sequel we assume that
machine speeds are positive integers.

Algorithm Uniform works in two phases: first it uses LPT as a subroutine
to compute a schedule of the tasks to S =

∑m
i=1 si identical “virtual machines”;

then, it assigns to each real machine i the work assigned to si virtual machines
in such a way that each virtual machine is assigned to only one real machine. To
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guarantee the monotonicity of Uniform the mapping of the virtual machines
to the real machines is such that w1/s1 ≤ w2/s2 ≤ · · · ≤ wm/sm. In particular,
Uniform partitions the virtual machines into g blocks of the same size, where
g is equal to GCD(s1, s2, . . . , sm), in such a way that each virtual machine of
block i has a work greater than any other machine in a block j < i. Finally, for
each block i, for i = 1, 2, · · · , m, it assigns si/g consecutive virtual machines to
the real machine i, starting from the virtual machine with less work.

In [AP04] it is proved that Uniform is greedy-close and it is monotone in the
particular case of divisible speeds. It is left open the question whether Uniform

is monotone also when speeds are not divisible. Next Theorem gives a negative
answer to this question.

Theorem 6. Algorithm Uniform is not monotone with respect to not divisible
speeds.

Proof. We prove the Theorem by constructing an example where the allocation
computed by algorithm Uniform is not monotone. Consider the task sequence
σ = 〈2, 2, 2, 1, 1, 1〉 and the speed vectors s = 〈3, 8〉 and s′ = 〈2, 8〉. Observe that
on input (σ, s) algorithm Uniform partitions the virtual machines in only one
block and assigns all the load to machine 2 (see Fig. 1(a)): thus, we have a work
equal to 0 for machine 1 and a work equal to 9 for machine 2. On input (σ, s′),
instead, algorithm Uniform splits the virtual machines in 2 blocks producing
the schedule given in Fig. 1(b), where machine 1 obtains a work of 2. Thus, the
algorithm is not monotone because machine 1 increases its load while reducing
its speed.

1        2        3       4       5           6           7     8          9          10         11

1 block 

Assigned to 
machine 1

Assigned to 
machine 2

1          2          3           4           5           6     7            8         9         10      

2 blocks 

Assigned to 
machine 1

Assigned to 
machine 2

Assigned to 
machine 1

Assigned to 
machine 2

(a) (b)

Fig. 1. An example of non monotone scheduling computed by Uniform. In (a) it is
given the scheduling computed for s = (3, 8); in (b) it is given the scheduling computed
for S′ = (2, 8)

The proof of Theorem 6 shows that any algorithm based on the partition of
virtual machines in blocks will be not monotone if the number of blocks depends
on the speeds of the machines. We can modify Uniform, so that it sets g = 1
and it considers all the virtual machines as in the same block. This new algorithm
is monotone but it obtains a weak approximation since the assignment of the
virtual machines to real machines is completely unbalanced (see Fig. 2(a)). We
describe now a variation of Uniform that computes g = GCD(s1, s2, · · · , sm)
blocks but it makes a more clever assignment of the virtual machines of each
block to the real machines.
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Algorithm Uniform RR, described in Alg. 1, uses a round-robin strategy
to assign virtual machines of a block to real machines, starting from the vir-
tual machine with lowest work that is assigned to the real machine with lowest
speed. Fig. 2 shows the assignments computed by Uniform and Uniform RR

on an instance of 7 virtual machines and gives evidence of the more balanced
scheduling computed by Uniform RR. We state that algorithm Uniform RR

is monotone with respect to divisible speeds and it is (2+ ε)-approximated. The
proof of the monotonicity of Uniform RR is a technical extension of the proof
of monotonicity of Uniform given in [AP04] and we omit it from this extended
abstract (a complete version of the paper can be found in [AA04]). In order
to prove the bound on the approximation factor we show that for any speed
vector s and any task sequence σ it holds that Cost(Uniform RR, σ, s) ≤
Cost(Uniform, σ, s).

Algorithm 1 Uniform RR

Input: a task sequence σ, speed vector s = 〈s1, s2, . . . , sm〉, with s1 ≤ s2 ≤ . . . ≤ sm

1. Run algorithm LPT to allocate tasks of σ on S =
∑m

i=1 si identical virtual
machines.

2. Order the virtual machines by nondecreasing load l1, . . . , lS .
3. Set g := GCD(s1, s2, . . . , sm) and partition the virtual machines into g blocks

B1, . . . , Bg, each consisting of S/g consecutive virtual machines. For 1 ≤ i ≤ g
and 1 ≤ k ≤ S/g, denote by Bik the k-th virtual machine of the i-th block. Thus
the virtual machine Bik has load l(i−1) S

g
+k.

4. For each block j

(a) set ki = si/g, for 1 ≤ i ≤ m, and x = 1.
(b) for 1 ≤ k ≤ S/g

– while kx = 0 set x = (x + 1) mod m. Then, allocate the total load of
the virtual machine Bjk to the real machine x and set kx = kx − 1.

s1 s2 s1 s2 s1 s2 s2

2 5 6 19 20 2515

s1 s1 s1 s2 s2 s2 s2

2 5 6 19 20 2515

Fig. 2. Assignments computed by Uniform (left) and Uniform RR (right) on an
instance with two machines with speeds s = 〈3, 4〉. Uniform produces an assignment
with makespan equal to 19.75; Uniform RR produces an assignment with a makespan
equal to 16.25

In [AP04] it is proved that the makespan of Uniform is obtained by machine
m. We prove that a similar property holds also for Uniform RR.
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Lemma 7. For any speed vector s = 〈s1, s2, · · · , sm〉 and any task sequence σ it
holds that the makespan of the solution computed by Uniform RR is equal to
the completion time of the fastest machine.

Proof. We prove the lemma by showing that for each block B the load assigned
to machine m in block B is greater than or equal to the load assigned in the
same block to any other machine.

Let x1 ≤ x2 ≤ · · · ≤ xsm/g and y1 ≤ y2 ≤ · · · ≤ ysj/g be the loads of the
virtual machines assigned to machine m and j, for any j < m, respectively. We
observe that xh ≥ yh for 1 ≤ h ≤ sj/g and xh ≥ ysj/g for sj/g < h ≤ sm/g.
Then,

1
sm

sm/g∑
h=1

xh ≥ 1
sj

sj/g∑
h=1

yh.

Lemma 8. For any speed vector s = 〈s1, s2, · · · , sm〉 and any task sequence σ
it holds that the cost of the solution computed by Uniform RR is not greater
than the cost of the solution computed by Uniform.

Proof. By Lemma 7 it is sufficient to prove that Uniform RR assigns to ma-
chine m a total load not greater than the load assigned by Uniform to the same
machine.

Observe that the two algorithms compute the same assignment of tasks to
the virtual machines and the same partition of virtual machines in blocks. Thus,
it is sufficient to prove that the load assigned by algorithm Uniform RR to
machine m for each block B is not greater than the load assigned by Uniform

to the same machine. Let x1 ≤ x2 ≤ · · · ≤ xsm/g and y1 ≤ y2 ≤ · · · ≤ ysm/g be
the works of the virtual machines of block B assigned to machine m algorithms
by Uniform and Uniform RR, respectively. It can be easily seen that xh ≥ yh

for 1 ≤ h ≤ sm/g and the lemma follows.

Theorem 9. For any speed vector s = 〈s1, s2, · · · , sm〉 and any task sequence σ
it holds that

Cost(Uniform RR, σ, s) ≤ (2 + ε)opt(σ, s).

Proof. The theorem follows by Lemma 8 and Theorem 16 of [AP04].

5 Experimental Results

In this section we describe the results of an experimental analysis on the perfor-
mances of several monotone scheduling algorithms. We have performed two dif-
ferent experiments: in the first experiment we have measured the approximation
factors of several monotone heuristics, comparing them to the approximation of
LPT; in the second experiment, instead, we have measured the approximation
factors of the algorithms obtained by plugging different monotone greedy–like
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Table 1. Algorithms considered in our testing and their theoretical approximation
factors

Upper bounds to approximation factors of monotone
scheduling algorithms

LPT (1) ( 2n
n+1 )

LPT restricted(2) ( 2n
n+1 )

Uniform g=1 (3) (4 + ε)
Uniform g=1 restricted (4) (4 + ε)
Uniform restricted (5) (4 + ε)
Uniform RR g=1 (6) (4 − ε)
Uniform RR g=1 restricted (7) (4 − ε)
Uniform RR restricted (8) (4 − ε)

Table 2. Summary of the number of instances performed in each run

Jobs Machines Instances
β = 1 β = 2 β = 3 β = 4 β = 5 β = 6

10 4 3690 7380 11070 14760 22140 29520
25 5 3690 11070 14760 19680 29520 39360

100 10 5538 17694 33232 54310 66466 88620

algorithms in the scheme described in [AP04]; in the third experiment we have
measured the total quantity of money paid by the mechanisms induced from the
algorithms Uniform and Uniform RR. In our testing we have considered three
basic algorithms: LPT, Uniform and Uniform RR. We have also considered
several variations of these three algorithms, obtained by changing the number
of blocks, if used, or rounding the speeds of the machines. In particular, the re-
stricted versions of the two algorithms take in input the machine speeds, round
up the speeds to a power of 2 and then compute the scheduling. Table 1 sum-
marizes the algorithms we have considered in our testing. We have performed
experiments with respect to arbitrary speeds. We executed our measures on
three different runs: in each run we fix the number of machines and the number
of tasks and select speeds uniformly in a range [1, 2β ] with 1 ≤ β ≤ 6 and task
weights uniformly in a range [1, 2α] with 0 ≤ α ≤ 8. Table 2 gives a summary
of the instances performed in each run. For each instance we have measured the
makespan and the approximation factor. Then we have computed the average
makespan, the average approximation factor and the worst case approximation
factor in each run. We have also performed similar experiments for speeds and
weights selected according to a normal distribution and for 2–divisible speeds.
The results obtained are substantially equivalent and we omit them. Figure 3
shows the worst case approximation factors obtained in the three runs. Table 3,
instead, shows the average approximation factors, where the average is computed
on the set of all the instances. Experiments give evidence that Uniform RR ob-
tains the best results among the monotone algorithms considered in our testing.
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Fig. 3. Worst case approximation factors obtained in our testing. Algorithms are la-
beled as shown in Table 5. (a) 10 tasks and 4 machines (b) 15 tasks and 5 machines
(c) 100 tasks and 15 machines

Table 3. Average Competitive ratio computed on all the instances

Average approximation factors of monotone
scheduling algorithms

Largest Processing Time 1.377031
Largest Processing Time restricted 1.777902
Uniform MCD=1 4.692374
Uniform MCD=1 restricted 4.062987
Uniform restricted 3.387385
Uniform Round-Robin MCD=1 2.935213
Uniform Round-Robin MCD=1 restricted 2.600026
Uniform Round-Robin restricted 1.988051

Its approximation factor is very close to LPT, both in the worst case and in
the average case. Uniform, instead, obtains an approximation factor that is
very close to the theoretical bound. An unexpected result is that the restricted
version of Uniform RR obtains better results than the unrestricted version of
the same algorithm and its performances improve when the number of tasks
increase. Our interpretation is that the restriction version of the problem uses
more blocks and thus obtains a more balanced assignment of virtual machines
to real machines, counterbalancing the approximation induced by the rounding
of the machine speeds.

We have also experimentally measured the impact of the proposed greedy-
close monotone algorithms on the performances of the PTAS-Gc algorithm
defined in [AP04]. Notice that PTAS-Gc takes three inputs: the task sequence,
the speed vector and a parameter h, that is the number of tasks that are allo-
cated optimally in the first phase of the algorithm. Our testing is organized in
two runs: the first run is performed on instances with 15 tasks and 4 machines;
the second run is performed on instances with 25 tasks and 5 machines. For each
instance of σ and s we run the algorithm with h ∈ {0, 3, 5, 8} Our experiments
point out two interesting aspects: the first one is that, since the largest tasks are
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Fig. 4. Average approximation factor of PTAS-Gc, computed on all the instances of
our testing, for different selections of Gc and h

assigned optimally, the difference in the performances between Uniform RR

and the other heuristics is significantly less; the second one is that all the con-
sidered heuristics, except for Uniform RR, improve their performances when h
increases. In particular, for h sufficiently large, algorithm Uniform outperforms
Uniform RR. However, this relatively small improvement in the approximatio
factor is counterbalanced by a dramatic growing in the computatio time.

6 Conclusion

The contribution of this paper is twofold. From a theoretical point of view,
we have proved that greedy algorithms like LPT and LS are monotone if we
restrict to the case of 2 machines with c–divisible speeds, for c large enough.
We think that this technique can be generalized to prove that greedy algorithms
can be made monotone with a loss in the approximation factor even for the
case of m > 2 machines. From an experimental point of view we have analyzed
several heuristics, based on the algorithm Uniform, and proved that making a
more clever assignments of virtual machines to real machines can significantly
improve the performances of the algorithm. In particular, we have shown that
in several cases rounding machine speeds can yield better results than solving
the problem with respect to the original speeds. However, if we could prove that
LPT is monotone for c-divisible speeds, for a small c, we could obtain even
better approximations.
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