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We study general mixed fractional packing and covering problems (MPCε) of
the following form: Given a vector f : B → IRM

+ of M nonnegative continuous
convex functions and a vector g : B → IRM

+ of M nonnegative continuous concave
functions, two M - dimensional nonnegative vectors a, b, a nonempty convex
compact set B and a relative tolerance ε ∈ (0, 1), find an approximately feasible
vector x ∈ B such that f(x) ≤ (1 + ε)a and g(x) ≥ (1 − ε)b or find a proof that
no vector is feasible (that satisfies x ∈ B, f(x) ≤ a and g(x) ≥ b).

The fractional packing problem with convex constraints, i.e. to find x ∈ B
such that f(x) ≤ (1 + ε)a, is solved in [4, 5, 8] by the Lagrangian decomposition
method in O(M(ε−2 + lnM)) iterations where each iteration requires a call
to an approximate block solver ABS(p, t) of the form: find x̂ ∈ B such that
pT f(x̂) ≤ (1 + t)Λ(p) where Λ(p) = minx∈B pT f(x). Furthermore, Grigoriadis
et al. [6] proposed also an approximation algorithm for the fractional covering
problem with concave constraints, i.e. to find x ∈ B such that g(x) ≥ (1 − ε)b,
within O(M(ε−2 + lnM)) iterations where each iteration requires here a call
to an approximate block solver ABS(q, t) of the form: find x̂ ∈ B such that
qT g(x̂) ≥ (1 − t)Λ(q) where Λ(q) = maxx∈B qT g(x). Both algorithms solve also
the corresponding min-max and max-min optimization variants within the same
number of iterations. Furthermore, the algorithms can be generalized to the case
where the block solver has arbitrary approximation ratio [7, 8, 9].

Further interesting algorithms for the fractional packing and fractional cov-
ering problem with linear constraints were developed by Plotkin et al. [13] and
Young [15]. These algorithms have a running time that depends linearly on the
width - an unbounded function of the input instance. Several relatively compli-
cated techniques were proposed to reduce this dependence. Garg and Könemann
[3] described a nice algorithm for the fractional packing problem with linear con-
straints that needs only O(Mε−2 lnM) iterations.
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ETH Zürich.

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 6–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Approximation Algorithms 7

For the mixed packing and covering problem (with linear constraints), Plotkin
et al. [13] proposed also approximation algorithms where the running time de-
pends on the width. Young [16] described an approximation algorithm for a
special mixed packing and covering problem with linear constraints and special
convex set B = IRN

+ . The algorithm has a running time of O(M2ε−2 lnM). Re-
cently, Fleischer [1] gave an approximation scheme for the optimization variant
(minimizing cT x such that Cx ≥ b, Px ≤ a and x ≥ 0 where a, b, and c are
nonnegative integer vectors and P and C are nonnegative integer matrices).

Young [16] posed the following interesting open problem: find an efficient
width-independent Lagrangian-relaxation algorithm for the mixed packing and
covering problem (with linear constraints): find x ∈ B such that Px ≤ (1 + ε)a,
Cx ≥ (1− ε)b, where P, C are nonnegative matrices, a, b are nonnegative vectors
and B is a polytope that can be queried by an optimization oracle (given a vector
c, return x ∈ B minimizing cT x) or some other suitable oracle.

New results: We found an approximation algorithm for the general mixed
problem with M convex and M concave functions fm, gm that uses an suitable
oracle of the form: find x̂ ∈ B such that pT f(x̂) ≤ ∑M

m=1 pm and qT g(x̂) ≥
∑M

m=1 qm [10]. The algorithm uses O(Mε−2 ln(Mε−1)) iterations or coordination
steps, where in each iteration an oracle of the form above is called. Recently we
found an improved width-independent Lagrangian-relaxation algorithm for the
general mixed problem [11]. The algorithm uses a variant of the Lagrangian or
price directive decomposition method. This is an iterative strategy that solves
(MPCε) by computing a sequence of triples (p, q, x) as follows. A coordinator
uses the current vector x ∈ B to compute two price vectors p = p(x) ∈ IRM

+

and q = q(x) ∈ IRM
+ with

∑M
m=1 pm + qm = 1. Then the coordinator calls here a

feasibility oracle to compute a solution x̂ ∈ B of the block problem BP (p, q, t)

find x̂ ∈ B s.t. pT f(x̂)/(1 + t) ≤ qT g(x̂)(1 + t) + 2p̄ − 1,

(where t = Θ(ε) and p̄ =
∑M

m=1 pm) and makes a move from x to (1 − τ)x + τ x̂
with an appropriate step length τ ∈ (0, 1). Such a iteration is called a coordi-
nation step. In case p̄ is close to 1/2, we use a slightly different block problem
BP ′(p, q, t) of the form:

find x̂ ∈ B s.t. pT f(x̂)/(1 + 8t) ≤ qT g(x̂)(1 + 8t) + (2p̄ − 1 − t).

Our main result is the following: There is an approximation algorithm that
for any given accuracy ε ∈ (0, 1) solves the general mixed fractional packing and
covering problem (MPCε) within

N = O(M(ε−2 ln ε−1 + lnM))

iterations or coordination steps, where each of which requires a call to the block
problem BP (p, q, t) or BP ′(p, q, t).

Independently, Khandekar and Garg [2] proposed an approximation algo-
rithm for the general mixed problem that uses O(Mε−2 lnM) iterations or co-
ordination steps.
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