
Joint Base Station Scheduling�

Thomas Erlebach1, Riko Jacob2, Matúš Mihǎĺak3, Marc Nunkesser2,
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mihalak@tik.ee.ethz.ch

Abstract. Consider a scenario where base stations need to send data to
users with wireless devices. Time is discrete and slotted into synchronous
rounds. Transmitting a data item from a base station to a user takes one
round. A user can receive the data item from any of the base stations.
The positions of the base stations and users are modeled as points in
Euclidean space. If base station b transmits to user u in a certain round,
no other user within distance at most ‖b−u‖2 from b can receive data in
the same round due to interference phenomena. The goal is to minimize,
given the positions of the base stations and users, the number of rounds
until all users have their data.

We call this problem the Joint Base Station Scheduling Problem (JBS)
and consider it on the line (1D-JBS) and in the plane (2D-JBS). For
1D-JBS, we give a 2-approximation algorithm and polynomial optimal
algorithms for special cases. We model transmissions from base stations
to users as arrows (intervals with a distinguished endpoint) and show
that their conflict graphs, which we call arrow graphs, are a subclass
of the class of perfect graphs. For 2D-JBS, we prove NP-hardness and
discuss an approximation algorithm.

1 Introduction

We consider different combinatorial aspects of problems that arise in the context
of load balancing in time division networks. These problems turn out to be
related to interval scheduling problems and interval graphs.

The general setting is that users with mobile devices are served by a set of base
stations. In each time slot (round) of the time division multiplexing each base
station serves at most one user. Traditionally, each user is assigned to a single
base station that serves him until he leaves its cell or his demand is satisfied.
The amount of data that a user receives depends on the strength of the signal
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(a) This figure describes a possible sit-
uation in some time slot (round). Base
station b2 serves user u2, b3 serves user
u6. Users u3, u4 and u5 are blocked and
cannot be served. Base station b1 can-
not serve u1 because this would create
interference at u2
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(b) Arrow representation of 1(a)
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(c) A possible situation in some
time slot in the 2D case. Users
u2, u4, u7 and u12 are served.
Base station b5 cannot serve
user u1 here, because this would
create interference at u4 as in-
dicated by the dashed circle

Fig. 1.1. The JBS-problem in one and two dimensions

that he receives from his assigned base station and on the interference, i.e. all
signal power that he receives from other base stations. In [4], Das et al. propose a
novel approach: Clusters of base stations jointly decide which users they serve in
which round in order to increase network performance. Intuitively, this approach
increases throughput, when in each round neighboring base stations try to serve
pairs of users such that the mutual interference is low. We turn this approach
into a discrete scheduling problem in one and two dimensions (see Figure 1.1),
the Joint Base Station Scheduling problem (JBS).

In one dimension (see Figure 1.11(a)) we are given a set of n users as points
{u1, . . . , un} on a line and we are given positions {b1, . . . , bm} of m base stations.
Note that such a setting could correspond to a realistic scenario where the base
stations and users are located along a straight road. In our model, when a base
station bj serves a user ui this creates interference in an interval of length 2|bj−ui|
around the midpoint bj . In each round each base station can serve at most one
user such that at the position of this user there is no interference from any other
base station. The goal is to serve all users in as few rounds as possible. In two
dimensions (see Figure 1.11(c)), when base station bj serves user ui this creates
interference in a disk with radius ‖bj − ui‖2 and center bj .

The one-dimensional problem is closely related to interval scheduling prob-
lems, except that the particular way how interference operates leads to directed
intervals (arrows). For these we allow that their tails can intersect (intersect-
ing tails correspond to interference that does not affect the users at the heads
of the arrows). We present results on this special interval scheduling problem.
Similarly, the problem is related to interval graphs, except that we have con-



Joint Base Station Scheduling 227

flict graphs of arrows together with the conflict rules defined by the interference
(arrow graphs).

The problem of scheduling data transmissions in the smallest number of dis-
crete rounds can be expressed as the problem of coloring the corresponding arrow
graph with the smallest number of colors, where the colors represent rounds. In
this paper, we prove that arrow graphs are perfect and can be colored optimally
in O(n log n) time. For the one-dimensional JBS problem with evenly spaced
base stations we give a polynomial-time dynamic programming algorithm. For
the general one-dimensional JBS problem, we show that for any fixed k the ques-
tion whether all users can be served in k rounds can be solved in polynomial time.
From the perfectness of arrow graphs and the existence of a polynomial-time al-
gorithm for computing maximum weighted cliques in these graphs we derive a
2-approximation algorithm for JBS based on an LP relaxation and rounding.
For the two-dimensional JBS problem, we show that it is NP-complete, and we
discuss an approximation algorithm for a constrained version of the problem.

1.1 Related Work

Das et al. [4] propose an involved model for load balancing that takes into account
different fading effects and calculates the resulting signal to noise ratios at the
users for different schedules. In each round only a subset of all base stations
is used in order to keep the interference low. The decision which base stations
to use is taken by a central authority. The search for this subset is formulated
as a (nontrivial) optimization problem that is solved by complete enumeration
and that assumes complete knowledge of the channel conditions. The authors
perform simulations on a hexagonal grid, propose other algorithms, and reach
the conclusion that the approach has the potential to increase throughput.

There is a rich literature on interval scheduling and selection problems (see
[6, 12] and the references given there for an overview). Our problem is more
similar to a setting with several machines where one wants to minimize the
number of machines required to schedule all intervals. A version of this problem
where intervals have to be scheduled within given time windows is studied in [3].
Inapproximability results for the variant with a discrete set of starting times for
each interval are presented in [2].

1.2 Problem Definitions and Model

We fully define the problems of interest in this section. Throughout the paper we
use standard graph-theoretic terminology, see e.g. [14]. In the one-dimensional
case we are given positions of base stations B = {b1, . . . , bm} and users U =
{u1, . . . , un} on the line in left-to-right order. Conceptually, it is more convenient
to think of the interference region that is caused by some base station bj serving
a user ui as an interference arrow of length 2|bj − ui| with midpoint bj pointing
to the user as shown in Figure 1.11(b). The interference arrow for the pair
(ui, bj) has its head at ui and its midpoint at bj . We denote the set of all arrows
resulting from pairs P ⊆ U × B by A(P ). If it is clear from the context, we call
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the interference arrows just arrows. If two users are to be scheduled in the same
round, then each of them must not get any interference from any other base
station. Thus, two arrows are compatible if no head is contained in the other
arrow; otherwise, we say that they are in conflict. (Formally, the head ui of the
arrow for (ui, bj) is contained in the arrow for (uj , bk) if ui is contained in the
closed interval [bk − |uj − bk|, bk + |uj − bk|].) If we want to emphasize which
user is affected by the interference from another transmission, we use the term
blocking, i.e. arrow ai blocks arrow aj if aj ’s head is contained in ai. For each
user we have to decide from which base station she is served. This corresponds
to a selection of an arrow for her. Furthermore, we have to decide in which round
each selected arrow is scheduled under the side constraint that all arrows in one
round must be compatible. For this purpose it is enough to label the arrows with
colors that represent the rounds.

For the two-dimensional JBS problem we have positions in R
2 and interfer-

ence disks d(bi, uj) with center bi and radius ‖bi − uj‖2 instead of arrows. We
denote the set of interference disks for the user base-station pairs from a set P
by D(P ). Two interference disks are in conflict if the user that is served by one
of the disks is contained in the other disk; otherwise, they are compatible. The
problems can now be stated as follows:

1D-JBS
Input: A set of user positions U = {u1, . . . , un} ⊂ R and base station positions

B = {b1, . . . , bm} ⊂ R.
Output: A set P of n user base-station pairs such that each user is in exactly one

pair, and a coloring C : A(P ) → N of the set A(P ) of corresponding arrows
such that any two arrows ai, aj ∈ A(P ), ai �= aj , with C(ai) = C(aj) are
compatible.

Objective: Minimize the number of colors used.

2D-JBS
Input: A set of user positions U = {u1, . . . , un} ⊂ R

2 and base station positions
B = {b1, . . . , bm} ⊂ R

2.
Output: A set P of n user base-station pairs such that each user is in exactly

one pair, and a coloring C : D(P) → N of the set D(P) of corresponding
disks such that any two disks di, dj ∈ D(P), di �= dj , with C(di) = C(dj)
are compatible.

Objective: Minimize the number of colors used.

From the problem definitions above it is clear that both the 1D- and the
2D-JBS problems consist of a selection problem and a coloring problem. In the
selection problem we want to select one base station for each user in such a way
that the arrows (disks) corresponding to the resulting set P of user base-station
pairs can be colored with as few colors as possible. We call a selection P feasible
if it contains exactly one user base-station pair for each user. Determining the
cost of a selection is then the coloring problem. This can also be viewed as a
problem in its own right, where we no longer make any assumption on how the
set of arrows (for the 1D problem) is produced. The conflict graph G(A) of a
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set A of arrows is the graph in which every vertex corresponds to an arrow and
there is an edge between two vertices if the corresponding arrows are in conflict.
We call such conflict graphs of arrows arrow graphs. The arrow graph coloring
problem asks for a proper coloring of such a graph. It is similar in spirit to the
coloring of interval graphs. As we will see in Section 2.1, the arrow graph coloring
problem can be solved in time O(n log n). We finish this section with a simple
lemma that leads to a definition:

Lemma 1. For each 1D-JBS instance there is an optimal solution in which each
user is served either by the closest base station to his left or by the closest base
station to his right.

Proof. This follows by a simple exchange argument: Take any optimal solution
that does not have this form. Then exchange the arrow where a user is not served
by the closest base station in some round against the arrow from the closest base
station on the same side (which must be idle in that round). Shortening an arrow
without moving its head can only resolve conflicts. Thus, there is also an optimal
solution with the claimed property. ��

The two possible arrows by which a user can be served according to this lemma
are called user arrows. It follows that for a feasible selection one has to choose
one user arrow from each pair of user arrows.

2 Case on the Line—1D-JBS

As mentioned above, solving the 1D-JBS problem requires selecting an arrow for
each user and coloring the resulting arrow graph with as few colors as possible.

2.1 Relation of Arrow Graphs to Other Graph Classes

In order to gain a better understanding of arrow graphs, we first discuss their
relationship to other known graph classes.1 We refer to [1, 13] for definitions and
further information about the graph classes mentioned in the following.

First, it is easy to see that arrow graphs are a superclass of interval graphs:
Any interval graph can be represented as an arrow graph with all arrows pointing
in the same direction.

An arrow graph can be represented as the intersection graph of triangles
on two horizontal lines y = 0 and y = 1: Simply represent an arrow with left
endpoint � and right endpoint r that points to the right (left) as a triangle with

1 The connections between arrow graphs and known graph classes such as PI∗ graphs,
trapezoid graphs, co-comparability graphs, AT-free graphs, and weakly chordal
graphs were observed by Ekki Köhler, Jeremy Spinrad, Ross McConnell, and R.
Sritharan at the seminar “Robust and Approximative Algorithms on Particular
Graph Classes”, held in Dagstuhl Castle during May 24–28, 2004.
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Fig. 2.1. An arrow graph (top) and its representation as a PI∗ graph (bottom)

corners (�, 0), (r, 0), and (r, 1) (with corners (r, 1), (�, 1), and (�, 0)). It is easy
to see that two triangles intersect if and only if the corresponding arrows are in
conflict. See Figure 2.1 for an example.

Intersection graphs of triangles with endpoints on two parallel lines are called
PI∗ graphs. They are a subclass of trapezoid graphs, which are the intersection
graphs of trapezoids that have two sides on two fixed parallel lines. Trapezoid
graphs are in turn a subclass of co-comparability graphs, a well-known class
of perfect graphs. Therefore, the containment in these known classes of per-
fect graphs implies the perfectness of arrow graphs. Consequently, the size of a
maximum clique in an arrow graph always equals its chromatic number.

As arrow graphs are a subclass of trapezoid graphs, we can apply known
efficient algorithms for trapezoid graphs to arrow graphs. Felsner et al. [7] give
algorithms with running-time O(n log n) for chromatic number, weighted inde-
pendent set, clique cover, and weighted clique in trapezoid graphs with n ver-
tices, provided that the trapezoid representation is given. Their algorithm for
chromatic number leads to a simple greedy coloring algorithm for arrow graphs
(see [5]).

We sum up the discussed properties of arrow graphs in the following theorem.

Theorem 1. Arrow graphs are perfect. In arrow graphs chromatic number,
weighted independent set, clique cover, and weighted clique can be solved in time
O(n log n).

One can also show that arrow graphs are AT-free (i.e., do not contain an
asteroidal triple) and weakly chordal.

2.2 1D-JBS with Evenly Spaced Base Stations

Now we consider the 1D-JBS problem under the assumption that the base sta-
tions are evenly spaced. We are given m base stations {b1, . . . , bm} and n users
{u1, . . . , un} on a line, where the distance between any two neighboring base
stations is the same. This assumption can be viewed as an abstraction of the
fact that in practice, base stations are often placed in regular patterns and not
in a completely arbitrary fashion.

Let d denote the distance between two neighboring base stations. The base
stations partition the line into two rays and a set of intervals {v1, . . . , vm−1}. In



Joint Base Station Scheduling 231

this section we additionally require that no user to the left of the leftmost base
station be further away from it than distance d, and that the same holds for the
right end. We define a solution to be non-crossing if there are no two users u
and w in the same interval such that u is to the left of w, u is served from the
right, and w from the left.

Lemma 2. There is an optimal solution that is non-crossing.

Proof. Take any optimal solution s that is not non-crossing. We show that such a
solution can be transformed into another optimal solution s′ that is non-crossing.
Let u and w be two users such that u and w are in the same interval, u is to
the left of w, and u is served by the right base station br in round t1 by arrow
ar and w is served by the left base station bl in round t2 by arrow al; trivially,
t1 �= t2. Modify s in such a way that at t1 base station br serves w and at t2 base
station bl serves u. This new solution is still feasible because first of all both the
left and the right involved arrows al and ar have become shorter. This implies
that both al and ar can only block fewer users. On the other hand, the head of
al has moved left and the head of ar has moved right. It is impossible that they
are blocked now because of this movement: In t1 this could only happen if there
were some other arrows containing w, the new head of ar. This arrow cannot
come from the left, because then it would have blocked also the old arrow. It
cannot come from br because br is busy. It cannot come from a base station to
the right of br, because such arrows do not reach any point to the left of br (here
we use the assumption that the rightmost user is no farther to the right of the
rightmost base station than d, and that the base stations are evenly spaced). For
t2 the reasoning is symmetric. ��
The selection of arrows in any non-crossing solution can be completely charac-
terized by a sequence of m − 1 division points, such that the ith division point
is the index of the last user that is served from the left in the ith interval. (The
case where all users in the ith interval are served from the right is handled by
choosing the ith division point as the index of the rightmost user to the left of
the interval, or as 0 if no such user exists.) A brute-force approach could now
enumerate over all possible O(nm−1) division point sequences (dps) and color
the selection of arrows corresponding to each dps with the greedy algorithm.

Dynamic Programming

We can solve the 1D-JBS problem with evenly spaced base stations more effi-
ciently by a dynamic programming algorithm that runs in polynomial time. The
idea of the algorithm is to consider the base stations and thus the intervals in
left-to-right order. We consider the cost χi(di−1, di) of an optimal solution up to
the ith base station conditioned on the position of the division points di−1 and
di in the intervals vi−1 and vi, respectively, see Figure 2.2.

Definition 1. We denote by χi(α, β) the minimum number of colors needed to
serve users u1 to uβ using the base stations b1 to bi under the condition that base
station bi serves exactly users uα+1 to uβ and ignoring the users uβ+1, . . . , un.
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Fig. 2.2. Dynamic programming approach

Let Λ(vi) denote the set of potential division points for interval vi, i.e., the
set of the indices of users in vi and of the rightmost user to the left of vi (or
0 if no such user exists). The values χ1(d0, d1) for d0 = 0 (all users to the left
of b1 must be served by b1 in any solution) and d1 ∈ Λ(v1) can be computed
directly by using the coloring algorithm from [7]. For i ≥ 1, we compute the
values χi+1(di, di+1) for di ∈ Λ(vi), di+1 ∈ Λ(vi+1) from the table for χi(·, ·). If
we additionally fix a division point di−1 for interval vi−1, we know exactly which
selected arrows intersect interval vi regardless of the choice of other division
points. Observe that this only holds for evenly spaced base stations and no “far
out” users. For this selection, we can determine with the coloring algorithm from
[7] how many colors are needed to color the arrows intersecting vi. Let us call
this number c(i, di−1, di, di+1) for interval vi and division points di−1, di and
di+1. We also know how many colors we need to color the arrows intersecting
intervals v0 to vi−1. For a fixed choice of division points di−1, di and di+1 we can
combine the two colorings corresponding to χi(di−1, di) and c(i, di−1, di, di+1):
Both of these colorings color all arrows of base station bi, and these arrows must
all have different colors in both colorings. No other arrows are colored by both
colorings, so χi(di−1, di) and c(i, di−1, di, di+1) agree up to redefinition of colors.
We can choose the best division point di−1 and get

χi+1(di, di+1) = min
di−1∈Λ(vi−1)

max {χi(di−1, di), c(i, di−1, di, di+1)}

The running time is dominated by the calculation of the c(·) values. There are
O(m · n3) such values, and each of them can be computed in time O(n log n)
using the coloring algorithm from [7]. The optimal solution can be found in the
usual way by tracing back where the minimum was achieved from χm(x, n).
Here the x is chosen among the users of the interval before the last base station
such that χm(x, n) is minimum. For the traceback it is necessary to store in the
computation of the χ values where the minimum was achieved. The traceback
yields a sequence of division points that defines the selection of arrows that gives
the optimal schedule. Altogether, we have shown the following theorem:

Theorem 2. The base station scheduling problem for evenly spaced base stations
can be solved in time O(m · n4 log n) by dynamic programming.

Note that the running time can also be bounded by O(m · u4
max log umax),

where umax is the maximum number of users in one interval.
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2.3 Exact Algorithm for the k-Decision Problem

In this section we present an exact algorithm for the decision variant k-1D-JBS
of the 1D-JBS problem: For given k and an instance of 1D-JBS, decide whether
all users can be served in at most k rounds. We present an algorithm for this
problem that runs in O(m · n2k+1 log n) time.

We use the result from Section 2.1 that arrow graphs are perfect. Thus the
size of the maximum clique of an arrow graph equals its chromatic number.

The idea of the algorithm, which we call Ak−JBS, is to divide the problem into
subproblems, one for each base station, and then combine the partial solutions
to a global one.

For base station bi, the corresponding subproblem Si considers only arrows
that intersect bi and arrows for which the alternative user arrow2 intersects bi.
Call this set of arrows Ai. We call Si−1 and Si+1 neighbors of Si. A solution
to Si consists of a feasible selection of arrows from Ai of cost no more than k,
i.e. the selection can be colored with at most k colors. To find all such solutions
we enumerate all possible selections that can lead to a solution in k rounds.
For Si we store all such solutions {s1

i , . . . , s
I
i } in a table Ti. We only need to

consider selections in which at most 2k arrows intersect the base station bi. All
other selections need more than k rounds, because they must contain more than
k arrows pointing in the same direction at bi. Therefore, the number of entries
of Ti is bounded by

∑2k
j=0

(
n
j

)
= O(n2k). We need O(n log n) time to evaluate a

single selection with the coloring algorithm from [7]. Selections that cannot be
colored with at most k colors are marked as irrelevant and ignored in the rest
of the algorithm. We build up the global solution by choosing a set of feasible
selections s1, . . . , sm in which all neighbors are compatible, i.e. they agree on the
selection of common arrows. It is easy to see that in such a global solution all
subsolutions are pairwise compatible.

We can find such a set of compatible neighbors by going through the tables
in left-to-right order and marking every solution in each table as valid if there
is a compatible, valid solution in the table of its left neighbor, or as invalid
otherwise. A solution si marked as valid in table Ti thus indicates that there are
solutions s1, . . . , si−1 in T1, . . . , Ti−1 that are compatible with it and pairwise
compatible. In the leftmost table T1, every feasible solution is marked as valid.
When the marking has been done for the tables of base stations b1, . . . , bi−1, we
can perform the marking in the table Ti for bi in time O(n2k+1) as follows. First,
we go through all entries of the table Ti−1 and, for each such entry, in time O(n)
discard the part of the selection affecting pairs of user arrows that intersect only
bi−1 but not bi, and enter the remaining selection into an intermediate table
Ti−1,i. The table Ti−1,i stores entries for all selections of arrows from pairs of
user arrows intersecting both bi−1 and bi. An entry in Ti−1,i is marked as valid
if at least one valid entry from Ti−1 has given rise to the entry. Then, the entries
of Ti are considered one by one, and for each such entry si the algorithm looks

2 For every user there are only two user arrows that we need to consider (Lemma 1).
If we consider one of them, the other one is the alternative user arrow.
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up in time O(n) the unique entry in Ti−1,i that is compatible with si to see
whether it is marked as valid or not, and marks the entry in Ti accordingly. If
in the end the table Tm contains a solution marked as valid, a set of pairwise
compatible solutions from all tables exists and can be retraced easily.

The overall running time of the algorithm is O(m · n2k+1 · log n). There is a
solution to k-1D-JBS if and only if the algorithm finds such a set of compatible
neighbors. In the technical report [5] we give a formal proof of this statement.

Theorem 3. Problem k-1D-JBS can be solved in time O(m · n2k+1 · log n).

2.4 Approximation Algorithm

In this section we present an approximation algorithm for 1D-JBS that relies
on the properties of arrow graphs from Theorem 1. Let A denote the set of
all user arrows of the given instance of 1D-JBS. From the perfectness of arrow
graphs it follows that it is equivalent to ask for a feasible selection Asel ⊆ A
minimizing the chromatic number of its arrow graph G(Asel) (among all feasible
selections) and to ask for a feasible selection Asel minimizing the maximum
clique size of G(Asel) (among all feasible selections). Exploiting this equivalence,
we can express the 1D-JBS problem as an integer linear program as follows. We
introduce two indicator variables li and ri for every user i that indicate whether
she is served by the left or by the right base station, i.e. if the user’s left or right
user arrow is selected. Moreover, we ensure by the constraints that no cliques in
G(Asel) are large and that each user is served. The ILP formulation is as follows:

min k (2.1)

s.t.
∑

li∈C

li +
∑

ri∈C

ri ≤ k ∀ cliques C in G(A) (2.2)

li + ri = 1 ∀i ∈ {1, . . . , |U |} (2.3)
li, ri ∈ {0, 1} ∀i ∈ {1, . . . , |U |} (2.4)
k ∈ N (2.5)

The natural LP relaxation is obtained by allowing li, ri ∈ [0, 1] and k ≥ 0.
Given a solution to this relaxation, we can use a rounding technique to get an
assignment of users to base stations that has cost at most twice the optimum,
i.e., we obtain a 2-approximation algorithm. Let us denote by opt the optimum
number of colors needed to serve all users. Then opt ≥ k, because the optimum
integer solution is a feasible fractional solution. Construct now a feasible solution
from a solution to the relaxed problem by rounding li := �li + 0.5
, ri := 1 − li.
Before the rounding the size of every (fractional) clique is at most k; afterwards
the size can double in the worst case. Therefore, the cost of the rounded solution
is at most 2k ≤ 2opt. We remark that there are examples where the cost of an
optimal solution to the relaxed program is indeed smaller than the cost of an
optimal integral solution by a factor of 2.
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a3

a4

an−1
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Fig. 2.3. Example of an arrow graph with an exponential number of maximum cliques.
For every choice of arrows from a compatible pair (a2i−1, a2i) we get a clique of size
n/2, which is maximum. The arrow graph can arise from a 1D-JBS instance with two
base stations in the middle and n/2 users on either side

One issue that needs to be discussed is how the relaxation can be solved in
time polynomial in n and m, as there can be an exponential number of con-
straints (2.2). (Figure 2.3 shows that this can really happen. The potentially
exponential number of maximal cliques in arrow graphs distinguishes them from
interval graphs, which have only a linear number of maximal cliques.) Fortu-
nately, we can still solve such an LP in polynomial time with the ellipsoid method
of Khachiyan [11] applied in a setting similar to [10]. This method only requires
a separation oracle that provides us for any values of li, ri with a violated con-
straint, if one exists. It is easy to check for a violation of constraints (2.3) and
(2.4). For constraints (2.2), we need to check if for given values of li, ri the max-
imum weighted clique in G(A) is smaller than k. By Theorem 1 this can be done
in time O(n log n). Summarizing, we get the following theorem:

Theorem 4. There is a polynomial-time 2-approximation algorithm for the 1D-
JBS problem.

3 General Case in the Plane—2D-JBS

We analyze the two-dimensional version (2D-JBS) of the base station scheduling
problem. We show that the decision variant k-2D-JBS of the 2D-JBS problem
is NP-complete and we present a constant factor approximation algorithm for
a constrained version of it. The k-2D-JBS problem asks for a given k and an
instance of 2D-JBS whether the users can be served in at most k rounds.

3.1 NP-Completeness of the 2D-JBS Problem

Here we briefly sketch our reduction from the general graph k-colorability prob-
lem [8] to 2D-JBS; the complete proof can be found in the technical report
[5]. Our reduction follows the methodology presented in [9] for unit disk k-
colorability.

Given any graph G, it is possible to construct in polynomial time a corre-
sponding 2D-JBS instance that can be scheduled in k rounds if and only if G is
k-colorable. We use an embedding of G into the plane which allows us to replace
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the edges of G with suitable base station chains with several users in a systematic
way such that k-colorability is preserved. Our main result is the following:

Theorem 5. The k-2D-JBS problem in the plane is NP-complete for any fixed
k ≥ 3.

In the k-2D-JBS instances used in our reduction, the selection of the base
station serving each user is uniquely defined by the construction. Hence, our
reduction proves that already the coloring step of the 2D-JBS problem is NP-
complete.

Corollary 1. The coloring step of the k-2D-JBS problem is NP-complete for
any fixed k ≥ 3.

3.2 Approximation Algorithms

Bounded Geometric Constraints. We consider instances where the base
stations are at least a distance ∆ from each other and have limited power to
serve a user, i.e., every base station can serve only users that are at most Rmax
away from it. We also assume that for every user there is at least one base
station that can reach the user. We present a simple algorithm achieving an
approximation ratio depending only on the parameters ∆ and Rmax.

Tiling the plane into a grid of squares of size 2Rmax × 2Rmax and labelling
the grid as in Figure 3.1 we get sets of squares Sa, Sb, Sc and Sd, where Sx is
the set of squares with label x. We can place the grid in such a way that no
base station lies on the boundary of a square. Note that if two base stations bi

and bj are in different squares of the same label, their distance is greater than
2Rmax and, therefore, their transmissions cannot interfere. Now the algorithm
proceeds as follows. While not all users are served, it goes in four steps through
labels a, b, c and d. For each square of the current label, it repeatedly chooses an
arbitrary base station from that square that can serve some user (i.e., the user

a b a

c d c d

baba

c d c d

b

d

d c d c

b

d

b

d

Fig. 3.1. Tiling of the plane
into a grid of squares of size
2Rmax ×2Rmax and labelling
of the squares

.   .   .

b0b1

b2

bnu1

u2

un

Fig. 3.2. A greedy approach serves n users placed
on a common interference disk in n time steps. An
optimum algorithm can serve the users in one time
step by assigning ui to base station bi, which lies on
a halfline determined by b0 and ui
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is at distance at most Rmax from the base station and there is no interference at
the user in the current round) and schedules the transmission from the chosen
base station to that user in the current round. It keeps choosing base stations in
the current square in this way as long as possible. If, after executing this step for
all squares of the current label, there are still some unserved users, the algorithm
proceeds to the next label and starts a new round.

We analyze the algorithm as follows. For every grid square s, let ks denote
the number of rounds in which a base station in s serves a user (in the solution
computed by the algorithm). Let us be the number of users served by base
stations in s. Note that us ≥ ks. Choose a square s for which ks is maximum.
It is clear that the solution of the algorithm uses at most 4ks rounds, since the
squares with the label of s are considered at least once every four rounds. Now
we derive a lower bound on the number of rounds in the optimum solution.
The us users served by the algorithm from base stations in s are contained in a
square with side length 4Rmax, as the maximum transmission radius is Rmax. The
base stations that the optimum solution uses to serve these users must then be
contained in a square of side length 6Rmax for the same reason. As disks of radius
∆/2 centered at different base stations are interior-disjoint by assumption, an
easy area argument shows that there can be at most ρ = (6Rmax +∆)2/π(∆/2)2

base stations in such a square. Therefore, even the optimal algorithm cannot
serve more than ρ of the us users in one round. Hence, the optimum solution
needs at least ks/ρ rounds. This establishes the following theorem.

Theorem 6. There exists an approximation algorithm with approximation ratio
16
π ( 6Rmax+∆

∆ )2 for 2D-JBS in the setting where any two base stations are at least
∆ away from each other and every base station can serve only users within
distance at most Rmax from it.

General 2D-JBS. In the technical report [5] we also discuss lower bounds
on three natural greedy approaches for the general 2D-JBS problem: serve a
maximum number of users in each round (max-independent-set), or repeatedly
choose an interference disk of an unserved user with minimum radius (smallest-
disk-first), or repeatedly choose an interference disk containing the fewest other
unserved users (fewest-users-in-disk). In [5] we prove the following theorem.

Theorem 7. There are instances (U, B) of 2D-JBS in general position (i.e.,
with no two users located on the same circle centered at a base station) for which
the maximum-independent-set greedy algorithm, the smallest-disk-first greedy al-
gorithm, and the fewest-users-in-disk greedy algorithm have approximation ratio
Ω(log n), where n = |U |.

For instances of 2D-JBS that are not in general position, the smallest-disk-
first greedy algorithm can have approximation ratio n, as shown in Figure 3.2.
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4 Conclusion and Open Problems

In this paper we study the 1D- and 2D-JBS problems that arise in the context of
coordinated scheduling in packet data systems. These problems can be split into
a selection and a coloring problem. In the one-dimensional case, we have shown
that the coloring problem leads to the class of arrow graphs, for which we have
discussed its relation to other graph classes and algorithms. For the selection
problem we propose an approach based on LP relaxation and rounding. For
the 2D-problem, we have shown its NP-completeness. Several problems remain
unsolved. In particular, it is open whether the 1D-JBS problem is NP-complete.
For 2D-JBS it would be interesting to design approximation algorithms whose
approximation ratio does not depend on the ratio Rmax

∆ . Moreover, algorithmic
results for more refined models would be interesting.
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9. A. Gräf, M. Stumpf, and G. Weißenfels. On coloring unit disk graphs. Algorithmica,

20(3):277–293, March 1998.
10. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-

quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.
11. L. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii

Nauk SSSR, 244:1093–1096, 1979.
12. F. C. R. Spieksma. On the approximability of an interval scheduling problem.

Journal of Scheduling, 2:215–227, 1999.
13. J. P. Spinrad. Efficient Graph Representations, volume 19 of Field Institute Mono-

graphs. AMS, 2003.
14. D. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.


	Introduction
	Related Work
	Problem Definitions and Model

	Case on the Line—1D-JBS
	Relation of Arrow Graphs to Other Graph Classes
	1D-JBS with Evenly Spaced Base Stations
	Exact Algorithm for the k-Decision Problem
	Approximation Algorithm

	General Case in the Plane—2D-JBS
	NP-Completeness of the 2D-JBS Problem
	Approximation Algorithms

	Conclusion and Open Problems
	References



