
Order-Preserving Transformations and
Greedy-Like Algorithms

Spyros Angelopoulos�

School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

sangelop@cs.uwaterloo.ca

Abstract. Borodin, Nielsen and Rackoff [5] proposed a framework for
abstracting the main properties of greedy-like algorithms with emphasis
on scheduling problems, and Davis and Impagliazzo [6] extended it so
as to make it applicable to graph optimization problems. In this paper
we propose a related model which places certain reasonable restrictions
on the power of the greedy-like algorithm. Our goal is to define a model
in which it is possible to filter out certain overly powerful algorithms,
while still capturing a very rich class of greedy-like algorithms. We argue
that this approach better motivates the lower-bound proofs and possibly
yields better bounds. To illustrate the techniques involved we apply the
model to the well-known problems of (complete) facility location and
dominating set.

Keywords: Priority algorithms, inapproximability results, facility loca-
tion, dominating set.

1 Introduction

Greedy algorithms have been a widely popular approach in combinatorial opti-
mization and approximation algorithms. This is mainly due to their conceptual
simplicity as well as their amenability to analysis. In fact, one reasonably expects
a greedy algorithm to be one of the first approaches an algorithm designer em-
ploys when facing a specific optimization problem. It would therefore be desirable
to know when such an approach is not likely to yield an efficient approximation.
However, while it is relatively easy to identify a greedy algorithm based on intu-
ition and personal experience, a precise definition of such a class of algorithms
is needed so as to prove limitations on its power. Even more importantly, as
argued in [5] it is expected that a rigorous framework for greedy algorithms can
provide insight on how to develop better, more efficient algorithms.

Despite the popularity and importance of greedy algorithms as an algorithmic
paradigm, it was only recently that a formal framework for their study emerged.
In particular, Borodin, Nielsen and Rackoff introduced in [5] the class of prior-
ity algorithms as a model for abstracting the main properties of deterministic

� Research done while at the Department of Computer Science, University of Toronto.

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 197–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



198 S. Angelopoulos

greedy-like algorithms (we will hereafter refer to their model as the BNR model).
In addition, Borodin, Nielsen and Rackoff showed how the framework can yield
lower bounds on the approximation ratio achieved by priority algorithms for
a variety of classical scheduling problems. In a follow-up paper, Regev [15] ad-
dressed one of the open questions in [5] related to scheduling in the subset model.
The priority framework was subsequently applied in the context of the facility
location and set cover problems by Angelopoulos and Borodin [2], and it has also
been extended to capture greedy-like algorithms that allow randomization [1].
More recently, Davis and Impagliazzo [6] showed how to modify the BNR model
in order to show limitations on the power of priority algorithms for graph opti-
mization problems. To illustrate the technique, they applied the game to basic
graph problems such as shortest path, metric Steiner tree, independent set and
vertex cover. We refer to their model as the DI model.

In this paper we continue the study of greedy-like algorithms as formulated
by priority algorithms. We first provide some key definitions. According to [5]
priority algorithms are characterized by the following two properties:

1. The algorithm specifies an ordering of “the input items” and each input item
is considered in this order.

2. As each input item is considered, the algorithm must make an “irrevocable
decision” concerning the input input.

As one would expect, a precise definition of “input items” and “irrevocable
decisions” pertains to the specific problem at hand.

Depending on whether the ordering changes throughout the execution of the
algorithm, two classes of priority algorithms can be defined:

– Algorithms in the class Fixed Priority decide the ordering before any
input item is considered and this ordering does not change throughout the
execution of the algorithm.

– Algorithms in the broader class Adaptive Priority are allowed to specify
a new ordering after each input item is processed. The new ordering can thus
depend on input items already considered.

In [5], greedy algorithms are defined as (fixed or adaptive) priority algo-
rithms, which satisfy an additional property: the irrevocable decision is such
that the objective function is locally optimized. More specifically, the objective
function must be optimized as if the the input currently being considered is
the last input. Note that in this context not every greedy-like (that is, priority)
algorithm is greedy.

In both the work of Borodin et al and Davis and Impagliazzo, in order to
show a lower bound on the approximation ratio one evaluates the performance
of every priority algorithm for an appropriately constructed nemesis input. The
construction of such a nemesis input can be seen as a game between an adversary
and the algorithm. In both games, the adversary presents initially a (large) set of
potential input items, and in each round removes certain input items according
to the corresponding decisions made by the algorithm.



Order-Preserving Transformations and Greedy-Like Algorithms 199

654

321

Fig. 1. An input for a graph problem

As noted in [5] it is expected that the study of priority algorithms will pro-
vide insights about how to develop better, more efficient greedy-like algorithms.
To this end, it is essential that the adversary involved in the lower-bound ar-
guments is “reasonably” powerful, or, from a different scope, that the priority
algorithm does not have “unreasonable” power. Otherwise, it is expected that i)
the arguments behind the lower bound proofs will be very elaborate (something
which becomes even more critical in the context of graph problems, where the
input items refer to each other) and it will be hard to get reasonably good lower
bounds; and most importantly ii) the lower bounds will not necessarily reflect
the limitations of “real” greedy-like algorithms, but rather those of artificial
algorithms which use information that is conceptually difficult to generalize.

To illustrate the argument above, consider the graph shown in Figure 1,
and suppose it is used as input to a Fixed Priority algorithm for a certain
unweighted graph optimization problem. In the DI model it is possible that
the algorithm specifies the ordering 1,5,4,2,3,6 from highest to lowest priority.
Note that in this ordering a vertex of degree one (namely vertex 3) receives
both higher and lower priority than vertices of degree two (namely vertices 6
and 2, respectively). In other words, the algorithm has somehow the power to
differentiate between two input items of the same degree such as vertices 6 and
2. However, it is very counterintuitive to think of a Fixed Priority algorithm
which can make such an unnatural distinction of seemingly identical input items.

In this paper we put forward a formal model which intends to capture the
above observation, namely that the priority algorithm normally should give equal
priority to input items which “look alike” (which is not necessarily the case in
the DI and BNR models). We propose an adversary which applies to priority
algorithms that are not necessarily as powerful as the algorithms assumed by the
DI model, while still being able to capture a very wide class of natural greedy-
like algorithms for graph problems. In a nutshell, we do not allow algorithms
to acquire useful information from the id’s of the input items (vertices). Inter-
estingly, the proposed adversary does not remove input items, but instead can
apply a more wide range of transformations over the potential input items. In
particular, we allow transformations that do not affect the ordering in which
the algorithm considers the input items, in the presence of an adversary. We
believe this model reflects the fact that local information does not necessarily
yield knowledge of the global structure of an instance, which is only self-evident
in greedy-like algorithms.

To demonstrate our techniques, we apply our model to the complete metric
facility location and dominating set problems. The former is a variant of the



200 S. Angelopoulos

classic metric facility location problem in which every node is both a facility
and a city (unlike the disjoint variant in which facilities and cities form disjoint
sets); the latter can be seen as a variant of the set cover problem, where now each
vertex can both cover and “be covered by” other vertices. We focus on these two
graph optimization problems for two reasons: i) their corresponding variants,
namely disjoint facility location and set cover have already been studied in [2]
from the point of view of approximability by priority algorithms using the BNR
game; ii) the lower bounds of [2] do not carry over to the problems we consider,
since the input items are no longer “isolated”, but refer to each other.

How do our results compare to the work of Davis and Impagliazzo? It is not
clear to us whether the bounds as stated in Theorems 2 and 3 can be reproduced
using the DI adversary. Similarly, we do not know whether Theorem 5 can be
shown within the DI framework, but we believe that if so it would require a
more elaborate proof. Theorems 1 and 4 can definitely be reproduced by the
DI adversary. We nevertheless include them since not only they illustrate our
transformations, but they are also interesting on their own (Theorem 1 uses an
instance where the facilities have non-uniform opening costs).

We emphasize that as in deterministic priority algorithms (and similar to
competitive analysis of online algorithms) the lower bounds are derived by ex-
ploiting the syntactic structure of the algorithms, and are orthogonal to any
complexity considerations. In other words, we allow the algorithm unbounded
time complexity.

Very recently and independently to this work, Borodin, Boyar and Larsen [4]
addressed further the topic of priority algorithms for graph optimization prob-
lems. Their focus is primarily on the effect of memory on priority algorithms
as defined in [5] and [6]; in particular they considered a model in which memo-
ryless algorithms do not accept an input item once some other input item was
rejected in a previous iteration (which they call the “acceptances-first” model)
and presented lower bounds for problems such as vertex cover, independent set
and vertex coloring. In addition, they showed that the “vertex-adjacency” model
of representing input items (also assumed in our work) is more general than the
“edge-adjacency” model. Finally, they proposed a formal definition of “greedi-
ness” in the context of graph problems; however, it is not clear whether their
definition can lead to lower bounds for the class of ”greedy” priority algorithms.
The contributions of our paper are orthogonal to the work of Borodin, Boyar
and Larsen even though the two papers address a similar topic.

2 The Model

2.1 Preliminaries

Input representation. An instance of a graph optimization problem Π can be
described as an (undirected) graph G = (V, E), with vertex and edge weights.
A reasonable representation of an input item for Π is a pair 〈dv, wv〉 where



Order-Preserving Transformations and Greedy-Like Algorithms 201

v ∈ V . Here, wv is the weight vector1 of v, and dv is the distance vector of v. The
weight vector represents the weight assignments for vertex v (e.g., the cost that
is payed if v is included in the solution), while the distance vector is the vector
of distances (edge weights) from v to every other vertex in V . In addition, each
input item has a unique id. In what follows we use the notation 〈v〉 to denote
the input item that corresponds to vertex v, although in some cases we will
not make the distinction when it is clear from the context. Note that every
time the priority algorithm considers an input item 〈v〉, all the information for
〈v〉 becomes available to the algorithm (including the id’s of the neighbouring
vertices in its distance vector).

Priority functions. As in [6] we will assume that the priority algorithm uses
a priority function to assign real-valued priorities to the input items. Thus,
in each iteration, the input item with the highest priority is the one that the
priority function maps to the highest value among all remaining input items. To
make the definition more precise, we must distinguish between the two classes
of priority algorithms. Let 〈V 〉 denote the infinite set of input items of the
form described earlier. For Fixed Priority algorithms, the priority function is
P : 〈V 〉 → R, that is, the priority of an input item is determined solely by the
input item itself. In contrast, in iteration k, an Adaptive Priority algorithm
will take into consideration the history of the algorithm’s execution, namely
the set Hk−1 = 〈v1〉, 〈v2〉, . . . , 〈vk−1〉 of input items considered in iterations 1
through k − 1. Hence for Adaptive Priority algorithms we can describe the
priority function at iteration k as Pk : 〈V 〉 × Hk−1 → R.

We will assume that in the event two input items have the same highest
priority, the algorithm cannot distinguish them. Equivalently, we will assume an
adversary that dictates which input item should be considered next, in the event
of a tie.

We also need to impose some natural, realistic restrictions on the capacity
of the algorithm to assign priorities and differentiate between input items. Let
us first introduce some notation. For a distance vector dv denote by M(dv) the
distance multiset of v, namely the multiset of all distances from v to every other
vertex in G. Also, for a given set S ⊆ V , denote by dv(S) the vector of distances
d(v, u), for all u ∈ S.

Consider first algorithms in the class Fixed Priority. Let 〈v〉, 〈u〉 be two
input items. The priority function P must obey the following rule:

FP Rule: P (〈v〉) = P (〈u〉) if M(dv) = M(du) and wv = wu. (∗)

The interpretation of the above rule is that id’s do not carry information. In
this view the distance vectors degenerate to distance multisets, and thus two

1 In general, the weight vector can represent more than one weights, according to the
specific problem at hand. E.g., for the weighted complete facility location problem,
each weight vector will store the weight of the facility as well as its opening cost.



202 S. Angelopoulos

input items with the same distance multisets and the same weight vectors will
be indistinguishable to the algorithm.

A similar assumption will be made for Adaptive Priority algorithms; in
this case, however, we must take into account the history. More specifically, let
〈v〉, 〈u〉 be two input items not in Hk−1. Also, let π : V \ Hk−1 ∪ {u} ∪ {v} →
V \ Hk−1 ∪ {u} ∪ {v} be a permutation of vertices in V \ Hk−1 ∪ {u} ∪ {v}.
Then Pk must observe the following rule:

AP Rule: Pk(〈v〉, Hk−1) = Pk(〈u〉, Hk−1) if

– dv(Hk−1) = du(Hk−1) and wu = wv,
– There exists a permutation π such that for every x ∈ V \ Hk−1 ∪ {u} ∪ {v},

d(u, x) = d(v, π(x)), dx(Hk−1) = dπ(x)(Hk−1) and w(x) = w(π(x)). (∗∗)

The first constraint is related to the fact that the algorithm knows the distance
vectors of all vertices in Hk−1. It implies that the history by itself is not sufficient
to distinguish u from v. The second constraint is related to vertices not yet
considered, and likewise signifies that such vertices cannot help in distinguishing
u from v, assuming that id’s do not carry information.

We conclude this section by mentioning that every time the priority algorithm
considers an input item 〈v〉 it has to make an irrevocable decision concerning
the input item. In several graph problems, the decision is whether to include the
input item in the partial solution (we then say that the algorithm accepts the
input item).

2.2 Order-Preserving Transformations

Similar to [5] and [6], in order to establish a lower bound on the approximability
of a graph problem by a deterministic priority algorithm, we will use the concept
of a game between the algorithm and an adversary. The game evolves in rounds,
with each round corresponding to an iteration of the algorithm as described
below (we focus on the more general case of Adaptive Priority algorithms).

The adversary presents, in the beginning of the first round of the game, a
graph G1 = (V1, E1). Denote by v1

1 , v1
2 , . . . , v1

n, the input items for G1, with the
superscript “1” identifying the round of the game, and subscripts denoting the
labels of vertices 2. The algorithm considers the input item of highest priority, say
v1
1 , and makes an irrevocable decision concerning it. More generally, suppose that

by the end of the k-th round the algorithm has considered the input items with
labels 1, . . . , k. At the end of the k-th round, the adversary applies a transforma-
tion φk : 〈V 〉 → 〈V 〉. This transformation maps an input item 〈vk

i 〉 = 〈dvk
i
, wvk

i
〉

2 We distinguish between “labels” and “id’s” intentionly, since the adversary is al-
lowed to permute id’s, as will become clear later. We need some invariant piece of
information to refer to the input items in the order they are considered in the game,
and the labels serve precisely this purpose.



Order-Preserving Transformations and Greedy-Like Algorithms 203

to an input item 〈vk+1
i 〉 = 〈d′

vk+1
i

, w′
vk+1

i

〉; in other words, the distance and weight
vectors of the item may change. We emphasize that the transformation applies
only to input items with labels k + 1, . . . , n, i.e., the adversary cannot modify
items considered in previous rounds. This gives rise to a new graph Gk+1, which
can be uniquely described by the input items vk+1

1 , vk+1
2 , . . . , vk+1

n , for which
vk+1

i ≡ vk
i , for all i ≤ k. The game proceeds until the last round, namely round

n. At that point the algorithm has considered all input items in the graph.
As one might expect, only limited types of transformations can be helpful for

our purposes. We call φk an order-preserving transformation, if and only if for
every j ≤ k, and i ≥ k + 1,

Pj(vk+1
i , Hj−1) ≤ Pj(v

j
j , Hj−1) (1)

where Hj−1 is the history at the end of round j −1 of the game, namely Hj−1 =
{vl

l | l ≤ j − 1}.
Informally, the definition suggests that as vk

i is “replaced” by vk+1
i , the or-

dering of input items (in terms of their labels) considered by the algorithm up
to round k will not be affected.

The following lemma3 formalizes the use of the adversary/algorithm game as
a tool for bounding the approximation ratio:

Lemma 1. Suppose that the graph defined by the input items vn
1 , . . . vn

n (as de-
termined by the game between the adversary and the algorithm) is given as input
to the algorithm. Then on this specific input, and in iteration i, the algorithm
will consider input item vn

i . In other words, the algorithm will consider input
items in the order of their labels.

The following transformations are implied in our model, but we emphasize
them since they are of particular importance. First, if σ is the ordering of a set
of input items, as produced by a Fixed Priority algorithm, then the adversary
can swap the positions in σ of two input items which have the same priority.
Second, suppose that G1 and G2 are two isomorphic graphs, in the sense that
there exists a permutation of the id’s of vertices in G1 which produces G2.
Suppose that on input G1 the algorithm assigns label i to the vertex it considers
in the i-th iteration. Then on input G2, the algorithm will consider in the i-th
iteration the vertex with label i, and will make the same decision as the decision
made by the algorithm on input G1 and in the i-th iteration.

2.3 What Is a “Greedy” Algorithm for a Graph Problem?

In the context of graph problems, a definition for greediness that treats the cur-
rent input item as if it were the last one becomes problematic. First, note that
throughout its execution the algorithm acquires local information which reveals

3 In this preliminary version we omit certain proofs due to space restrictions. Full
proofs will be provided in the journal version of the paper.



204 S. Angelopoulos

only part of the input graph. Hence, it is difficult to think of a specific input item
as being the last one when the partial information suggests that there definitely
exist input items that should follow. Second, and more importantly, it is not
easy to identify a unique “locally optimal” decision at each iteration, precisely
because the partial information does not represent a valid graph instance (some
distances and weights have not yet been revealed to the algorithm). For the
above reasons we will employ only intuitive and in a sense ad-hoc definitions of
greedy (as opposed to greedy-like) algorithms which are specific to the prob-
lems we consider. The definitions which we propose are still broad enough to
capture known algorithms, and provide some flavour of what a “locally optimal”
decision is meant to be. We insist on providing some meaningful definitions not
only because of the historical interest in this concept, but mainly because the
concept itself is widely used in practice. As one would expect, it is possible to
show much better lower bounds for greedy priority algorithms (for instance the
bounds of Theorem 3 and Theorem 5 are tight for the corresponding classes
of algorithms). In such cases, the bounds suggest some directions towards the
design of better algorithms: namely, that in order to improve the approximation
ratio it is essential that the algorithm is not greedy.

We first provide a definition of what we consider to be a greedy priority
algorithm for complete facility location. Let vi be the node considered by the al-
gorithm at iteration i. We capture the greedy behaviour of the algorithm (which
one would informally describe by the motto “live for today”), by requiring that
it always opens vi if this results in lowering the cost of the “current
solution”. Of course, we must clearly define the intuitive term “current solu-
tion”. Note that the algorithm has only limited information (i.e., what can be
deduced by the triangle inequality) about the distance d(u, v) of every two nodes
u, v which have not been considered yet (prior to iteration i), as well as the fa-
cility cost of such nodes. The current solution is then the optimal solution with
the constraint that the algorithm cannot open a yet unconsidered node (which
implies that every unconsidered node has to be connected to a node which was
opened by iteration i), and cannot revoke the decision about nodes which were
considered before the current iteration (i.e., cannot open a facility it did not open
in a previous iteration, and cannot close a facility that it opened in a previous
iteration).

For dominating set, we propose the following definition of a greedy priority
algorithm. Let v be the vertex considered in the current iteration. Then v will
be accepted if it is adjacent to at least two vertices which have not been
considered yet and which are not dominated by vertices accepted thus
far. We emphasize that in the case where the above condition does not hold the
algorithm may or may not open v; in other words no restrictions are placed on the
algorithm in situations other than the one we described earlier. This is important
since we do not want a definition that forces the algorithm to open a large
number of vertices, because the lower bounds then become artificial. For instance,
consider the situation where v is adjacent to only one yet unconsidered and
undominated vertex u, and furthermore v is adjacent to no other undominated



Order-Preserving Transformations and Greedy-Like Algorithms 205

vertices. Then it would make sense for the algorithm to reject v, wait until u is
considered in a subsequent iteration, and then accept u; this would not increase
the total cost of the algorithm.

3 Applications: Complete Facility Location and
Dominating Set

Problem definitions. In the (uncapacitated, unweighted) facility location prob-
lem, the input consists of a set F of facilities and a set C of cities. The set
N = F ∪ C corresponds to the set of nodes in the graph, i.e., a node can be
either a facility or a city, or both. Each facility i ∈ F is associated with an
opening cost fi which reflects the cost that must be paid to utilize the facility.
Furthermore, for every facility i ∈ F and city j ∈ C, the non-negative distance
or connection cost cij is the cost that must be paid to connect city j to facility
i. In the version of the problem that is known as the complete facility location
problem, we have F = C = N , i.e., every node is both a facility and a city. The
objective is to open the facilities at a subset of the nodes and connect every other
node to some open facility so that the total cost incurred, namely the sum of
the cost of open facilities and the total connection cost is minimized4. We shall
focus exclusively on the metric version of the problem, in which the connection
costs satisfy the triangle inequality.

Observe that from the point of view of algorithms (upper bounds), the dis-
joint version (namely the version in which F ∩ C = ∅) subsumes the complete
version. This is because we can always “split” a node in the complete version
of the problem to a corresponding facility and a corresponding city at zero dis-
tance from each other. However, we emphasize that the lower bounds for priority
algorithms for the disjoint version (see [2]) do not carry over to the complete
version.

In the dominating set problem, the input is an undirected, unweighted graph
G = (V, E). We seek a set V ′ ⊆ V of smallest cardinality such that every vertex
u ∈ V \ V ′ is adjacent to at least one vertex in V ′.

3.1 Complete (Metric) Facility Location

The first constant-factor polynomial-time approximation algorithm for (metric)
facility location was given by Shmoys, Tardos and Aardal [16]. Interestingly, the
best-known approximation ratio (1.52) is due to Mahdian, Ye and Zhang [13],
and is achieved by a priority algorithm. Other algorithms that follow the prior-
ity framework include the Adaptive Priority greedy algorithm of Mahdian,
Markakis, Saberi and Vazirani [12], which is a 1.861-approximation algorithms,
and the Adaptive Priority algorithm of Jain, Mahdian and Saberi [9]. On
the other hand, Mettu and Plaxton [14] showed that an algorithm which be-
longs in the class Fixed Priority greedy yields a 3-approximation for the

4 We say that a node is opened, when the facility on the said node is opened.



206 S. Angelopoulos

v v

v

v

v v

8

9 10

1 2

7

v5v4

v6v3

G1

v v1 2

v

7

10

v

v

v5

6

v43 v9v8

G2

v

Fig. 2. The graphs G1 and G2 for the proof of Theorem 1. The edges shown indicate
edges of distance 1, while all other distances are equal to 2

problem. It should be mentioned that their algorithm is in fact a re-statement
of a primal-dual algorithm due to Jain and Vazirani [10].

On the negative side, Guha and Khuller [8] have shown that the disjoint fa-
cility location problem is not approximable within a factor better than 1.463,
unless NP ⊆ DTIME(nO(log log n)). They also showed, that under the same
complexity assumption complete facility location is not approximable within a
factor better than 1.278. Negative results for facility location priority algorithms
in the disjoint model were given by Angelopoulos and Borodin in [2]. In particu-
lar, they showed lower bounds of 4/3 and 1.463 for general Adaptive Priority
algorithms and memoryless Adaptive Priority algorithms respectively, as well
as a lower bound of 3-ε for Fixed Prioritygreedy algorithms.

In the lower-bound constructions shown in this Section we say that a node v
covers a set U ⊂ N of nodes if and only if the distance from v to every node in
U is equal to 1. The vertices of the graphs in our constructions will correspond
to the nodes of the facility location instance.

Theorem 1. No Adaptive Priority (not necessarily greedy) algorithm is bet-
ter than an α-approximation, where α is a constant slightly greater than 36/35.

Proof. We will use instances that consist of 10 nodes. Every node will cover
either 2 or 4 facilities, and its facility cost will be denoted by f2 and f4, for
the two cases, respectively. Here, f2 and f4 are suitably chosen constants (in
particular, the 36/35 bound is obtained for (f2, f4) = (3, 4.5)).

Initially the adversary presents graph G1, shown in Figure 2. We consider
the following cases:



Order-Preserving Transformations and Greedy-Like Algorithms 207

Case 1: The algorithm gives highest priority to an f2 node, which the adversary
specifies to be v1, and the algorithm does not open it. In this case the input to
the algorithm is G1 itself (no transformation takes place).

Case 2: The algorithm gives highest priority to an f2 node, (again, assume
it to be v1) which it opens. The adversary will perform an order-preserving
transformation to derive graph G2 also shown in Figure 2.

The remaining two cases, namely when the algorithm considers first a f4
node, and either opens it or does not open it, are symmetric to Cases (1) and
(2). In particular, in the case where the algorithm opens the f4 node, the input
to the algorithm will be graph G1, while in the event it does not open it, the
input is graph G2. To complete the proof, it suffices to optimize with respect to
f2 and f4. �

Using ideas similar to Theorem 1, we can show the following:

Theorem 2. There exists β > α, where α is the lower bound of Theorem 1
such that no Fixed Priority (but not necessarily greedy) algorithm achieves
an approximation ratio better than β. In particular, β is slightly greater than
34/33.

The lower bound we show in the following theorem matches the upper bound
of Jain and Vazirani [10] and Mettu and Plaxton [14] (which it is easy to show
that they belong in the class Fixed Priority greedy ).

Theorem 3. No Fixed Priority greedy algorithm has an approximation ratio
better than 3 − ε for arbitrarily small ε.

Proof. The adversary presents to the algorithm a graph G = (V, E), with V =
{v1, v2, . . . vk, u1, u2, . . . ul} and l = c+d(k−1). Here, c and d are large constants,
such that c >> d2 (and whose importance will become evident later). Note that
the total number of nodes in the graph is n = k + c+d(k −1) = k(d+1)+ c−d;
that is, n is a linear function of k. Each vi, with i ∈ [k] is at distance 1 from
nodes ud(i−1)+1 . . . , uc+d(i−1), and has a facility cost equal to 2d − ε′, where ε′

is infinitesimally small. The distance between any two nodes vi, vj as well as
the distance between any two nodes ui, uj is equal to 2. Every other distance
is equal to 3. The facility cost of every ui node is infinite (arbitrarily large).
Figure 3 illustrates G for k = 5, d = 2, c = 4, with edges denoting distances
equal to 1.

Lemma 2. cost(OPT ) ≤ (2d2/c + d + 3)k + O(1) and cost(ALG) ≥ k(3d − ε′)
for arbitrarily small ε′.

The lower bound on the approximation ratio follows directly from Lemma 2.
As k grows to infinity, and for large constants c, d, with c >> d2, it is easy to
verify that cost(ALG)/cost(OPT ) ≥ 3 − ε, for arbitrarily small ε. �

For completeness we mention that a simple argument can be used to show the
following theorem.

Theorem 4. No Adaptive Priority greedy algorithm is better than a 10/9-
approximation.



208 S. Angelopoulos

3u2u1u

2 3v 54 vv1 vv

u 1211109 uuuu8u7u6u5u4

Fig. 3. Input for the proof of Theorem 3, for the case k = 5, c = 4, d = 2. The edges
shown correspond to edges of distance 1 only

3.2 Dominating Set

Dominating set is known to be equivalent to Set Cover under L-reductions [3].
This result implies that dominating set is not approximable within a factor
better than (1 − ε) lnn unless NP ⊆ DTIME(nO(log log n)), by a result due
to Feige [7]. Here, n is the number of vertices in the graph. The well known
greedy algorithm for set cover [11] can in fact be applied to yield a Θ(log(n))-
approximation priority algorithm for dominating set, which is also greedy (as
defined in Section 2.3, since the algorithm will always accept vertices as long
as undominated vertices remain). Note that in [2] it was shown that no priority
algorithm for set cover is better than lnn − o(lnn)-approximation, however the
result does not carry over to dominating set.

Theorem 5. Every Adaptive Priority greedy algorithm has approximation
ratio Ω(log n) where n is the number of vertices in the graph.

Proof. The adversary presents the graph G, defined as follows. There is a set
V of k = 2m triangles (3-cliques) of vertices v1

l , v2
l , v3

l , with l ∈ {0, . . . , k − 1},
for some integer m. We call triangle {v1

l , v2
l , v3

l } triangle l, and we say that a
vertex is adjacent to triangle l if and only if it is adjacent to all three vertices of
triangle l. In addition, there is a set U of m+1 = log k +1 vertices u1, . . . , um+1
with the following property: vertex uj , with j ∈ [m] is adjacent to all triangles
i for which the binary representation of i has the j-th most significant bit equal
to 0. Vertex vm+1, on the other hand, is adjacent to all triangles whose least
significant bit is equal to 1. We call vertices ui,uj ∈ U complementary if and
only if every triangle is adjacent to one of ui,uj . Note that um and um+1 are the
only complementary vertices in G. Figure 4 illustrates G for the case m = 3 (for
the sake of clarity we substituted the triangles by filled-in nodes). We remind
the reader that the ui’s and vj ’s play the role of the id’s. Note that the total
number of vertices in G is Θ(k). Then OPT has a cost of at most 3, since it
suffices to accept vertices um, um+1, v

1
0 in order to dominate every vertex in G.

Consider the class A of priority algorithms with the following statement. On
input G, every algorithm A ∈ A works in rounds, with a round consisting of
several iterations. In particular, in the beginning of round j, A considers and



Order-Preserving Transformations and Greedy-Like Algorithms 209

1 2 3 4 5 6 70

1

2

U U

U
U 3

4

Fig. 4. The graph G for the proof of Theorem 5. Each filled-in node j corresponds to
a triangle, and an edge between a vertex ui and a triangle j indicates that all three
vertices v1

j , v2
j , v3

j that comprise triangle j are adjacent to ui

accepts a vertex in U . In subsequent iterations during round j, A considers (and
possibly accepts) certain vertices in V , all of which are dominated by the set of
vertices in U which were accepted by A in rounds 1, . . . , j. Round j ends (and
round j + 1 begins) when A considers and accepts a new vertex in U .

We shall focus on A since it is easier to lower-bound the cost of algorithms
in this class. First, we show that the cost of every greedy priority algorithm is
lower-bounded (within a factor of 1/2) by the cost of some algorithm in A.

Lemma 3. Let A′ be a greedy priority algorithm. Then there is an algorithm
A ∈ A such that on input G cost(A′) ≥ (1/2) · cost(A).

It now suffices to prove the following lemma. Interestingly, we will show that
permuting the id’s of the vertices is sufficient for the adversary to force a loga-
rithmic bound on the approximation ratio.

Lemma 4. Let A be an algorithm in class A. For every j ≤ m there exists a
graph Gj isomorphic to G such that on input Gj the adversary can force A to
consider and accept j vertices in U no two of which are complementary in the
first j rounds of A.

The theorem follows from Lemma 3 and Lemma 4, and the observation that
on input G (or any graph isomorphic to G) no algorithm in A is correct unless
it accepts a pair of complementary vertices. �

Acknowledgements. I would like to thank the authors of [4] for providing an
early copy of their paper as well as for comments on this paper.

References

1. S. Angelopoulos. Randomized priority algorithms. In Proceedings of the 1st Inter-
national Workshop on Approximation and Online Algorithms, pages 27–40, 2003.



210 S. Angelopoulos

2. S. Angelopoulos and A. Borodin. On the power of priority algorithms for facil-
ity location and set cover. In Proceedings of the 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 26–39, 2002.

3. R. Bar-Yehuda and S. Moran. On approximation problems related to the indepen-
dent set and vertex cover problems. Disc. Appl. Math, 9:1–10, 1984.

4. A. Borodin, J. Boyar, and K. Larsen. Priority algorithms for graph optimization
problems. These proceedings.

5. A. Borodin, M. Nielsen, and C. Rackoff. (Incremental) priority algorithms. Algo-
rithmica, 37:295–326, 2003.

6. S. Davis and R. Impagliazzo. Models of greedy algorithms for graph problems. In
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, 2004.

7. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

8. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
In Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, pages
649–657, 1998.

9. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility loca-
tion problems. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computation, pages 731–740, 2002.

10. K. Jain and V.V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation.
Journal of the ACM, 48(2):274–296, 2001.

11. D.S. Johnson. Approximation algorithms for combinatorial problems. JCSS,
9(3):256–278, 1974.

12. M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. A greedy facility location
algorithm analyzed using dual fitting. In Proceedings of the 4th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 127–137, 2001.

13. M. Mahdian, J. Ye, and J. Zhang. Improved approximation algorithms for metric
facility location problems. In Proceedings of the 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 229–242, 2002.

14. R. R. Mettu and C. G. Plaxton. The online median problem. In Proceedings of
the 41st Annual IEEE Symposium on Foundations of Computer Science, pages
339–348, 2000.

15. O. Regev. Priority algorithms for makespan minimization in the subset model.
IPL, 84(3):153–157, 2002.

16. D.B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 265–274, 1997.


	Introduction
	The Model
	Preliminaries
	Order-Preserving Transformations
	What Is a ``Greedy'' Algorithm for a Graph Problem?

	Applications: Complete Facility Location and Dominating Set
	Complete (Metric) Facility Location
	Dominating Set




