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Abstract. Finding a minimum size 2-vertex connected spanning sub-
graph of a k-vertex connected graph G = (V, E) with n vertices and m
edges is known to be NP-hard and APX-hard, as well as approximable in
O(n2m) time within a factor of 4/3. Interestingly, the problem remains
NP-hard even if a Hamiltonian path of G is given as part of the input.
For this input-enriched version of the problem, we provide in this pa-
per a linear time and space algorithm which approximates the optimal
solution by a factor of no more than min

{
5
4 , 2k−1

2(k−1)

}
.

1 Introduction

The problem of finding a minimum size 2-vertex connected (simply biconnected,
in the following) spanning subgraph (MBSS problem) of a biconnected, undi-
rected graph G = (V, E), with n vertices and m edges, is one of the classical
problems in computer science and combinatorial optimization [9]. It is known to
be NP-hard, since its decision version contains as a special case the Hamiltonian
cycle problem (i.e., the problem of deciding whether a graph G contains a simple
cycle that includes all the vertices), which is well-known to be NP-complete [5].

Due to its relevance and to the great number of applications it finds in differ-
ent fields, several approximation algorithms for solving this problem have been
devised in the past few years. Khuller and Vishkin [10] introduced the notions
of carving of a graph to establish an approximation factor of no more than 5/3.
Their algorithm has been firstly improved by Garg et al. [6], who obtained an
approximation ratio of 3/2. After, this ratio was improved to 4/3 by Vempala
and Vetta [13]. Concerning inapproximability results, the problem is known to
be APX-hard [11].

The weighted version of the problem has been deeply investigated as well.
In this case, the problem admits a

(
2 + 1

n

)
-approximation algorithm [10], while

if G satisfies the triangle inequality, then it is approximable within 3/2 [4].
Moreover, for any integer d = o(log n), if G is complete and Euclidean in Rd
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(i.e., G is embedded in the Euclidean d-dimensional space and the edge weights
correspond to the Euclidean d-dimensional distance between the corresponding
endvertices), then the problem admits a PTAS [2]. Concerning inapproximability
results, the problem is not approximable (unless P=NP) within 68569

68564 −ε, for any
constant ε > 0 [1].

As far as the edge version of the problem is concerned, i.e., that of finding
a minimum size 2-edge connected spanning subgraph of a 2-edge-connected,
undirected graph, the best known approximation ratio is 5/4 [7]. In the same
paper, the authors claimed that their algorithm can be extended, by preserving
the approximation ratio, to the vertex version of the problem, but unfortunately
this seems not to be the case [8]. As a consequence, there is currently a gap
between the approximability of the vertex and the edge version of the problem,
i.e., 4/3 versus 5/4.

A question which naturally arises is that of studying whether the approxi-
mation guarantee can be improved once the input of the problem is enriched. In
particular, Papadimitriou and Steiglitz [12] proved that the problem of deter-
mining whether a graph contains a Hamiltonian cycle remains NP-complete even
if a Hamiltonian path is given as part of the input. It follows that the problem
of determining whether a graph admits a biconnected spanning subgraph of size
k ≥ n, once a Hamiltonian path is given as part of the input, is NP-complete as
well. In this paper we consider the optimization version of this latter problem
(MBSSHP problem for short).

To the best of our knowledge, for the MBSSHP problem the same approxi-
mation factor as for the MBSS problem holds, also when the edge-version of the
problem is considered. Hence, also in this case, there is a gap between the ap-
proximability of the vertex and the edge version of the problem, i.e., 4/3 versus
5/4.

In this paper, we get to the target of closing this gap. Indeed, we show
that the MBSSHP problem can be approximated in linear time and space with a
performance guarantee of 5/4. Moreover, we show that if G is k-vertex connected,
k > 3, then our algorithm can be enhanced to return a 2k−1

2(k−1) -approximated
solution. Our approach deviates significantly from that proposed for the MBSS
problem by Vempala and Vetta [13], since their algorithm cannot guarantee an
approximation factor better than 4/3 when adapted to the MBSSHP problem.

From an application point of view, our algorithm has a practical impact on
chain communication networks, where we have a set of vertices v1, v2, . . . , vn

which mutually exchange messages through a chain of links (vi, vi+1), i =
1, . . . , n − 1. Suppose now we have a set of potential additional links (vi, vj),
1 ≤ i < j + 1 ≤ n, such that the graph resulting from the chain enriched of
the additional edges is biconnected. Then, one might be interested in making
the communication between vertices immune to single vertex failures, by using a
minimum number of links. In this case, our algorithm computes an approximated
solution in linear time and space with a performance guarantee of 5/4.

The paper is organized as follows: in Section 2 we introduce basic definitions
and notations used in the paper. In Section 3 we present two simple algorithms
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for the MBSSHP problem. In Section 4, after analyzing the known lower bounds
for the MBSS problem, we first present a new lower bound, then we refine the
algorithms of Section 3.

2 Basic Definitions

Let G = (V, E) be a simple undirected graph (i.e., without loops and parallel
edges), where V is the set of vertices and E ⊆ V × V is the set of edges. Let
n ≥ 3 and m be the number of vertices and the number of edges, respectively.
For all v ∈ V , δG(v) denotes the degree of v in G, i.e., the number of vertices
adjacent to v with respect to the edge set of G. A graph H = (V (H), E(H))
is called a subgraph of G if V (H) ⊆ V and E(H) ⊆ E. If V (H) = V then H
is called a spanning subgraph of G. For any U ⊆ V , the graph GU = (U, EU )
where EU = {(v, v′) ∈ E | v, v′ ∈ U} is said to be induced from U while the
graph G′ = (U ∪ {xU}, EU ∪ E′), where xU /∈ V and E′ = {(u, xU ) | (u, v) ∈
E with u ∈ U ∧ v ∈ V \ U}, is said to be obtained from G by shrinking V \ U
into one vertex xU .

A simple path Π (or a path for short) in G is a subgraph with V (Π) =
{v1, . . . , vk | vi �= vj for i �= j} and E(Π) = {ei = (vi, vi+1) | 1 ≤ i < k},
also denoted as Π(v1, vk) or 〈v1, v2, . . . , vk〉. Path Π is said to go from v1 to vk,
called the endvertices of Π, passing through the internal vertices v2, v3, . . . , vk−1.
A cycle is a path whose endvertices coincide. G is said to be Hamiltonian if it
has a spanning cycle. A spanning path ΠG = 〈v1, v2, . . . , vn〉 of G is called a
Hamiltonian path. Edges in E(ΠG) are called path edges, while edges in F =
E \ E(ΠG) are called cycle edges. By E(ei) we denote the set of all cycle edges
forming a fundamental cycle with ei, i.e., a cycle containing only one cycle edge.
If f ∈ E(ei) then we say f covers ei. Thus, f = (vj , vh), with j < h, covers ei

iff j ≤ i < h. For any cycle edge f = (vi, vj), with i < j, we call vi (resp., vj)
the left (resp., right) endvertex of f . We denote by Gn the class of graphs of n
vertices having a Hamiltonian path.

A graph G is connected if, for any u, v ∈ V , there exists a path in G going
from u to v. The connected components of a graph G are the maximal (w.r.t.
vertex insertion) connected subgraphs of G. A graph G is k-vertex connected (or
simply k-connected) if n ≥ k + 1 and for any V ′ � V of k − 1 vertices, the graph
induced by V \ V ′ is connected. When k = 2, G is said to be biconnected. The
maximum integer k such that G is k-connected is said to be the connectivity
number of G and it is denoted by κ(G).

A subset C of V , with |C| = k is a k-separator (or simply separator) if
GV \C is not connected, that is, there exists a two partition V�, Vr of V \ C
such that G has no edges with one endvertex in V� and the other in Vr. We
say that V�, C, Vr is a k-separation of G. A separator C is said to be minimal
if no proper subset of C is a separator. Observe that κ(C) ≥ κ(G), for every
separator C. Let ei ∈ E(ΠG). By κ�(ei) (resp., κr(ei)) we denote the cardinality
of a minimal (unique) separation V�, C, Vr such that C ∪ V� = {v1, v2, . . . , vi}
(resp., C ∪ Vr = {vi+1, vi+2, . . . , vn}). Then, κ(ei) = min {κ�(ei), κr(ei)}.
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In the rest of the paper, Opt(G) will denote the size of a minimum
biconnected spanning subgraph (MBSS) of a biconnected graph G. Clearly,
Opt(G) ≥ n.

3 Basic Algorithm

In this section we describe a very simple algorithm for finding a biconnected
spanning subgraph of an undirected graph G, with the hypothesis that we have a
Hamiltonian path ΠG of G and κ(G) > 1. We show that the approximation ratio
depends on κ(G). Henceforth, unless stated otherwise, ΠG = 〈v1, v2, . . . , vn〉.
Moreover, by fi we denote a cycle edge of E(ei) with right endvertex of maximum
index.

The basic idea of the algorithm is simple. Starting from a spanning subgraph
H of G with no edges, the algorithm processes each vertex in order from v1 to
vn. At each step it augments E(H) by adding edges. The invariant property
maintained by the algorithm is the following: if it is currently exploring ΠG

from vi to vj , i < j, then the subgraph H ′ of H induced from {v1, v2, . . . , vi} is
already biconnected. The set of edges to be added is determined by the function
Expand. Thus, the more powerful the function Expand, the lower the size of the
computed biconnected spanning subgraph. We propose a first simple version of
the function Expand.

Algorithm BSS(G, ΠG = 〈v1, v2, . . . vn〉);
Input: A biconnected graph G and a Hamiltonian path ΠG of G;
Output: A biconnected spanning subgraph H of G.
begin

H = (V, ∅);
ΠR = ΠG(v2, vn);
while ΠR �= 〈vn〉 do

(F ′, EΠ) = Expand(G, ΠR); %F ′ ⊆ F = E \ E(ΠG), EΠ ⊆ E(ΠG)
i = max{j | (vh, vj) ∈ F ′, h < j};
E(H) = E(H) ∪ F ′ ∪ EΠ ;
ΠR = ΠG(vi, vn);

end while
return H;

end.

Function Expand(G, ΠR = 〈vi+1, vi+2, . . . , vn〉);
Input: A graph G and a path ΠR of G;
Output: A set of cycle edges F ′ ⊆ E \ E(ΠG) and a set of path edges EΠ ⊆ E(ΠR).
begin

Let EΠ ⊆ E(ΠR) be the set of path edges covered by fi;
return ({fi}, EΠ);

end.

Theorem 1. The algorithm BSS computes a κ(G)
κ(G)−1 -approximated solution in

O(m) time and space.
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Proof. At a given iteration, let ΠR = ΠG(vi+1, vn). Since κ(ei) ≥ κ(G), we have
that fi = (v, vi+j+1), with j ≥ min {n − i − 1, κ(G) − 1}. So we add at most one
cycle edge every κ(G) − 1 edges of ΠR plus one extra cycle edge if ΠR has a
length less than κ(G)−1. Since ΠG is a subgraph of H, we achieve the following
approximation ratio:

|E(H)|
Opt(G)

≤
n − 1 +

⌈
n−1

κ(G)−1

⌉
n

≤ 1 +

⌈
n

κ(G)−1

⌉
− 1

n
≤ 1 +

n
κ(G)−1

n
=

κ(G)
κ(G) − 1

.

Moreover, at each iteration we only have to explore the cycle edges belonging to
E(ei). As we take the one whose right endvertex has maximum index and since
ΠR updates to Π(vi+j+1, vn), then the algorithm does not need to explore these
edges any more. Hence, the time and space complexity is O(m). 
�

The function Expand(G, ΠR) defined above uses little information implied by
κ(G). To improve the performance of the algorithm we introduce the relation
of semi-adjacency between cycle edges. So we say that two cycle edges f =
(vi, vj+1), f ′ = (vj , vk), with i < j < k − 1, are semi-adjacent. Path edge ej is
said to be the middle of f and f ′. We can now prove the following:

Lemma 1. For every ei, either fi or a pair semi-adjacent edges f, f ′ (one of
which belongs to E(ei)) cover min{n− i− 1, 2(κ(G)− 1)} edges of ΠG(vi+1, vn).

Proof. Let vj+1 be the right endvertex of fi. If fi covers min{n−i−1, 2(κ(G)−1)}
edges of ΠG(vi+1, vn) then the claim is true. So we can assume that fi covers
k < min{n − i − 1, 2(κ(G) − 1)} edges of ΠG(vi+1, vn). We say that vh, with
i < h ≤ j is a potential semi-adjacent vertex if vh+1 is an endvertex of some
edges in E(ei). Indeed, if some edge in E(ej) has vh as endvertex, then this
edge is semi-adjacent to some edge in E(ei). Since κ(ei) ≥ κ(G), then there are
k1 ≥ κ(G) − 1 vertices of ΠG(vi+2, vj+1) that are endvertices of some edge in
E(ei). Hence, k1 vertices of ΠG(vi+1, vj) are potential semi-adjacent vertices,
while the remaining

k2 = k − k1 ≤ k − κ(G) + 1

are not. Since κ(ej) ≥ κ(G), then at least κ(G) − 1 vertices of ΠG(vi+1, vj)
are endvertices of some edges in E(ej). As k2 ≤ k − κ(G) + 1 < κ(G) − 1 this
means that there exist edges in E(ej) semi-adjacent to some edges in E(ei).
Among such edges, choose any one (say f) whose right endvertex has maximum
index. We claim that f covers at least min{n − j − 1, 2(κ(G) − 1) − k} edges
of ΠG(vj+1, vn). To prove this, suppose it is not true, that is f covers h <
min{n− j − 1, 2(κ(G)− 1)− k} ≤ 2(κ(G)− 1)− k edges of ΠG(vj+1, vn). In this
case, if we remove the first h + 1 vertices of ΠG(vj+1, vn) and all non potential
semi-adjacent vertices in ΠG(vi+1, vj), we break the graph into two connected
components. But the number of vertices removed is

k2 + h + 1 ≤ k − κ(G) + 1 + h + 1 < k − κ(G) + 1 + 2κ(G) − 2 − k + 1 = κ(G)

and so G is not κ(G)-connected. We have obtained a contradiction. 
�
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Using Lemma 1 we can implement a new powerful function Expand such that:

Theorem 2. The algorithm BSS computes a 2κ(G)−1
2(κ(G)−1) -approximated solution

in O(m) time and space.

Proof. At a given iteration, let vj+1 in ΠR = ΠG(vi+1, vn) be the right endvertex
of fi. If fi covers min{n − i − 1, 2(κ(G) − 1)} edges of ΠR, set EC = {fi} and
EΠ = {ei+1, ei+2, . . . , ej}, otherwise from Lemma 1 there are two semi-adjacent
edges f, f ′, one of which belongs to E(ei), covering min{n − i − 1, 2(κ(G) − 1)}
edges of ΠR. In this case EΠ it the set of path edges of ΠR covered by f, f ′

minus the middle one, while EC = {f, f ′}. So we add at most one cycle edge
every 2(κ(G) − 1) edges of ΠR plus one extra cycle edge if ΠR has a length less
than 2(κ(G) − 1). Thus, we achieve the following approximation ratio:

|E(H)|
Opt(G)

≤
n − 1 +

⌈
n−1

2(κ(G)−1)

⌉
n

≤ 1 +
n

2(κ(G)−1)

n
=

2κ(G) − 1
2(κ(G) − 1)

.

From Lemma 1 it also follows that at each iteration we have to explore the edges
belonging to E(ei) and the edges belonging to E(ej). Since the next iterations
the algorithm will not explore edges in E(ei) any more, then the time and space
complexity is O(m). 
�

The second function Expand we have just defined, uses κ(G) as a lower bound
for κ(ei), 1 ≤ i ≤ n−1. Looking at the proof of Lemma 1 one may convince that

Remark 1. The practical approximation ratio we obtain is given by the minimum
value κ(ei) of all sets E(ei) the algorithm considers.

The following lemma shows that the approximation ratio of Theorem 2 is
tight when compared to the trivial lower bound n.

Lemma 2. ∀k ≥ 2, there exists a k-connected graph G ∈ Gn for which the ratio
between Opt(G) and n is equal to 2k−1

2(k−1) .

Proof. The proof is constructive. Let n = 2j(k−1)+4k−1, where j is a positive
integer. We first build a bipartite graph G′ ∈ Gn. We number the vertices of G′

from 1 to n. Let VC = {ui = v2k+2i(k−1)|i = 0, . . . , j}. Let V0 = {v1, v2, . . . , u
0}

and Vj+1 = {uj , . . . , n}, while

Vi = {ui−1, . . . , ui}, with i = 1, . . . , j.

Notice that Vi ∩ Vi+1 = {ui}. For every i = 0, 1, . . . , j, let V e
i (resp., V o

i ) be the
set of even (resp., odd) vertices of Vi. The set of edges of G′ is defined as follows:

E(G′) =
j+1⋃
i=0

(
V e

i × V o
i

)
.



A 5
4 -Approximation Algorithm for Biconnectivity Given a Hamiltonian Path 187

Notice that 〈v1, v2, . . . , vn〉 is a Hamiltonian path of G′. Clearly κ(G′) = 1, since
every vertex in VC is a cut-vertex, i.e., a vertex whose removal disconnects G′.
From G′ we build a new graph G = (V, E) with κ(G) = k. Let V = V (G′) and
E = E(G′) ∪ E′, where

E′ = {(u, v)|u ∈ V e
i , v ∈ V e

i+1, i = 0, 1, . . . , j}.

It is easy to see that G is k-connected. Let us consider the topological structure
of a MBSS H of G. As every vertex ui ∈ VC in G′ is a cut-vertex, it follows that
E(H) must contain a cycle edge in E′ covering ui (i.e., an edge whose addition
to G′ makes ui not to be a cut-vertex). By construction, the cycle edges covering
ui do not cover uj , with j �= i. So H has at least

|VC | = j + 1 =
n − 4k + 1
2(k − 1)

+ 1 =
n − 2k − 1
2(k − 1)

edges of E′. Moreover, since there is no edge between pairs of odd vertices, this
implies that H must have 2

⌈
n
2

⌉
= n + 1 edges of E(G′), where the equality

follows from the fact that n is odd. So the approximation ratio is

lim
n→+∞

n + 1 + |VC |
n

= 1+ lim
n→+∞

1 + n−2k−1
2(k−1)

n
= 1+ lim

n→+∞
n − 3

2n(k − 1)
=

2k − 1
2(k − 1)

.


�

4 Improving the Algorithm

4.1 Considerations About Well-Known Lower Bounds

As seen in the previous section, the approximation ratio we can achieve is strictly
related to the connectivity value of G. Since ∀κ(G) ≥ 3, 2κ(G)−1

2(κ(G)−1) ≤ 5
4 , our aim

now is to improve the approximation ratio for graphs G with κ(G) = 2. In [13],
the authors give an improvement for the lower bound of Opt(G) based on the
following definitions:

Definition 1. A vertex v is a beta-vertex if there exist two vertices u1, u2 such
that the graph induced from V \{u1, u2} has at least three connected components,
one of which only contains v.

Definition 2. Two vertices v1, v2 are a beta-pair if there exist two vertices
u1, u2 such that the graph induced from V \ {u1, u2} has at least three connected
components, one of which only contains v1, v2.

Definition 3. A graph G is beta-free if it has no beta-structures, i.e., neither
beta-vertices nor beta-pairs.
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Fig. 1. A tight example for the lower bound given in [13] and in [7]. The edges of a
MBSS are represented in bold

In [13], the authors only consider instances for which G is beta-free. They
first show that the case of beta-pairs can be reduced to that of beta-vertices.
Then, they consider the case of a beta-vertex v of G. Assume u1, u2 are the two
vertices adjacent to v. Let G′ = G \ {v}. Since the two edges incident to v are
forced in any MBSS of G, an α-approximated solution for G can be obtained
from an α-approximated solution for G′ by adding the edges incident to v. In
this case, it is easy to build a Hamiltonian path ΠG′ of G′ from a Hamiltonian
path ΠG of G: simply remove the beta-vertex v and add edge (u1, u2). If v is an
endvertex of ΠG, then the graph induced from V \ {u1, u2} has another beta-
vertex u different from v. In this case remove u (as it cannot be an endvertex of
ΠG) and add edge (u1, u2).

Now we describe a linear time algorithm that uses ΠG to remove all beta-
vertices and all beta-pairs from G. For every vertex vi, 1 < i ≤ n−3, if δG(vi+1) =
2 and fi−1 does not cover ei+2, then vi+1 is a beta-vertex. Otherwise, if vi+3 �=
vn, vi+1 is at most adjacent to vi, vi+2, vi+3, while vi+2 is at most adjacent to
vi+1, vi+3, vi and fi−1 does not cover ei+3, then vi+1, vi+2 is a beta-pair.

In [13] it is shown that one can find a 4/3-approximated solution in O(n2m)
time and linear space. The lower bound used there to estimate Opt(G) (the
same lower bound was used in [7]) is given by the number of beta-structures
removed from G plus the size of a minimum spanning subgraph H with δH(v) ≥
2, ∀v ∈ V (H), of the graph computed from the beta-free reduction of G. However,
whenever G ∈ Gn is a beta-free graph, this lower bound is at most n+1. Indeed,
a subgraph H of G made up by a Hamiltonian path ΠG, plus two extra edges
(v1, u), (u′, vn) ∈ E, is a spanning subgraph of G such that δH(v) ≥ 2, ∀v ∈ V . In
Figure 1 we show a beta-free graph G ∈ Gn whose MBSS has size asymptotically
equal to 4

3n.

4.2 Our Lower Bound

As seen before, the core of the MBSS problem is not just the achievement of a
better algorithm, but also the careful estimate of the size of an optimal solution.
The purpose of this section is to present a new lower bound.

Let α(G) denote the independence number of G, i.e., the size of a largest
set of vertices U (called maximum independent set) of G that induces an empty
graph, i.e., a graph with no edges. The following two lemmas are well-known.

Lemma 3. [3] Every graph G with n ≥ 3 and κ(G) ≥ α(G) is Hamiltonian. 
�
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Lemma 4. [6] For a biconnected graph G, Opt(G) ≥ max{n, 2α(G)}. 
�
The join G = G1 + G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2),

where V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅, is the graph union G1 ∪ G2 (i.e., the graph
(V1 ∪ V2, E1 ∪ E2)) together with all the edges joining V1 and V2.

Let K(|U |, Kk) denote the join of the empty graph of |U | vertices and the
complete graph Kk (i.e., the graph having an edge between every pair of its k
vertices). We can now prove the following:

Lemma 5. For every integer k ≥ 2, K(k+1, Kk) is a maximum-size k-connected
non-Hamiltonian graph with 2k + 1 vertices. Moreover, any other k-connected
non-Hamiltonian graph G with 2k + 1 vertices is isomorphic to a subgraph of
K(k + 1, Kk).

Proof. From Lemma 3, a non-Hamiltonian k-connected graph must have at least
2k + 1 vertices. Since α(K(k + 1, Kk)) = k + 1, from Lemma 4 it follows that
K(k + 1, Kk)) is not Hamiltonian (notice that, in every biconnected spanning
subgraph of K(k + 1, Kk), at least 2 vertices of V (K(k + 1, Kk)) \ U must have
degree 3). The insertion of an edge in K(k + 1, Kk) causes the independence
number to decrease to k, and so from Lemma 3 the graph becomes Hamiltonian.
Every non-Hamiltonian k-connected graph G with 2k + 1 vertices must have
α(G) = k + 1, and so there exists a subgraph of K(k + 1, Kk) isomorphic to G.
The claim follows. 
�

Let G = (V, E) be a biconnected graph. For every k-partition V1, V2, . . . , Vk

of V , there exist two edges with one endvertex in Vi and the other in V \ Vi,
i = 1, . . . , k. Looking at the proof of Lemma 5, we deduce the following:

Lemma 6. Let C be a k-separator and let V1, V2, . . . Vk+1 be a (k + 1)-partition
of V \ C. If by shrinking each Vi into a node xi we obtain a graph isomorphic
to a subgraph of K(k + 1, Kk) (with x1, x2, . . . , xk+1 mapped to U), then G is
not Hamiltonian, i.e., Opt(G) ≥ n + 1. Moreover, every biconnected spanning
subgraph of G has two vertices of C with degree greater than 2.

Now it becomes trivial to prove the following:

Corollary 1 (Lower Bound). Let G be a biconnected graph and let
C1, C2, . . . , Cp be disjoint separators. If Cj , j = 1, . . . , p, satisfies conditions of
Lemma 6, then Opt(G) ≥ n + p. 
�

Before ending this subsection we introduce a new topological structure that
let us allow to design a better algorithm w.r.t. the one described in Theorem 2.

Definition 4. A path edge ei+3 = (vi+3, vi+4) in ΠG, generates a left hook (see
Figure 2) if the following conditions hold:

(i) δG(vi+2) = 2;
(ii) E(ei) ∩ E(ei+1) = {(vj , vi+3), (vj , vi+4)}, for a unique j ≤ i (vj is the tip of

the hook);
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(iii) E(ei+4) contains at least one edge with vi+1 as left endvertex, plus (possibly)
edges with vi+4 as left endvertex; these are the only admissible covering edges
for ei+4;

(iv) there exists a vertex vt �= vj, with t ≤ i.

Definition 5. A path edge (vi, vi+1) in ΠG = 〈v1, v2, . . . , vn〉 generates a
right hook if (un−i, un−i+1) generates a left hook in Π−1

G = 〈u1 ≡ vn, u2 ≡
vn−1, . . . , u

n−i+1 ≡ vi, . . . , u
n ≡ v1〉.

Definition 6. Let G ∈ Gn and let ΠG a Hamiltonian path of G. G has a hook
if there exists a path edges that generates either a left or a right hook.

Looking at the definition of left hook, it is easy to devise an O(m) time
algorithm that finds all the hooks of a graph G. In the next subsection we will
prove that, if G has k hooks, then Opt(G) ≥ n+k. Moreover, we will prove that
we can remove all hooks from G by creating a new graph and a Hamiltonian
path for it, and without altering the size of MBSS.

vj vi+2 vi+4vi+3
ei+3

Fig. 2. A left hook generated by ei+3

4.3 Graph Decomposition

Let G be a biconnected graph and let V�, C, Vr be a 2-separation. Henceforth,
G� (resp., Gr) will denote the graph obtained from G by shrinking Vr (resp., V�)
into one vertex x� (resp., xr). Notice that G�, Gr are biconnected. Moreover, by
G�,r = (V ′, E′), where V ′ = V� ∪ C ∪ Vr and E′ = {(u, v) ∈ E(G�) ∪ E(Gr) |
u, v ∈ V ′}, we denote the graph built from G� and Gr w.r.t. x�, C, xr. Observe
that G = G�,r.

Lemma 7. If H is a MBSS of G then H�, Hr are MBSS of G�, Gr, respectively.
If H�, Hr are respectively MBSS of G�, Gr, then H�,r is a MBSS of G.

Proof. Suppose H is a MBSS of G, but, w.l.o.g., H� is not a MBSS of G�. Let
H∗

� be a biconnected spanning subgraph of G� and |E(H∗
� )| < |E(H�)|. It is easy

to show that the graph H ′ built from H∗
� and Hr w.r.t. x�, C, xr is biconnected.

As x�, xr have degree 2 in G�, Gr, respectively, it follows that

|E(H ′)| = |E(H∗
� )| − 2 + |E(Hr)| − 2 < |E(H�)| − 2 + |E(Hr)| − 2 = |E(H)|

and so H cannot be a MBSS of G, thus obtaining a contradiction.



A 5
4 -Approximation Algorithm for Biconnectivity Given a Hamiltonian Path 191

Suppose now that H�, Hr are respectively MBSS of G�, Gr, but H�,r is not a
MBSS of G�,r. Let H be a biconnected spanning subgraph of G with |E(H)| <
|E(H)|. Then, we have

|E(H)| = |E(H�)| − 2 + |E(Hr)| − 2 < |E(H�)| − 2 + |E(Hr)| − 2 = |E(H�,r)|,

from which we deduce

|E(H�)| + |E(Hr)| < |E(H�)| + |E(Hr)|.

Since all graphs used in the equation above are biconnected, we can claim that
either H� or Hr is not a MBSS for the respective graph, thus obtaining a con-
tradiction. 
�

Let ΠG be a Hamiltonian path of a biconnected graph G. We say that G is
decomposable if there exists a path edge ei with κ(ei) = 2 and the associated
2-separation V�, C, Vr is such that |V�|, |Vr| �= 1. The pair G�, Gr is a decompo-
sition of G. A non decomposable graph is called prime. A prime decomposition
G1, G2, . . . , Gk of a decomposable graph G is the repeated decomposition of
non-prime graphs of a decomposition of G, until Gj is prime, j = 1, 2, . . . , k.

Remark 2. How much does it cost to decompose G w.r.t. the 2-separation
V�, C, Vr? Let δG(v) = δ�(v) + δr(v), where v ∈ C and δ�(v) (resp., δr(v)) is
the number of edges incident to v and to a vertex in V� (resp., Vr). Then de-
composing G into G�, Gr costs O (maxv∈C {min{δ�(v), δr(v)}}) time. Moreover
δG�

(v) = δ�(v) + 1 and δGr
(v) = δr(v) + 1, ∀v ∈ C.

Remark 3. If G ∈ Gn is prime, then κ(ei) ≥ 3, 4 ≤ i ≤ n − 4.

We can now prove the following lemma:

Lemma 8. Let G ∈ Gn be a prime graph and let ΠG be a Hamiltonian path of
G. If G has a left hook, then Opt(G) ≥ n + 1.

Proof. First note that a prime graph cannot have more than one left hook.
Indeed, if ei+3 generates a left hook, then {vi+1, vi+4} is a 2-separator. Let v be
the tip of the hook. It is not hard to see that every MBSS of G is such that either
of vi+3, vi+4 or v has degree at least 3, while vi+1 must always have degree at
least 3. The claim follows. 
�

The previous lemma naturally extends to right hooks. Looking at its proof,
it is not hard to see that if G has a left hook generated by ei+3 with tip in v,
then we can remove edge (v, vi+4) without altering the size of a MBSS. Note
that this process makes vi+2 become a beta-vertex.

Remark 4. From now on, we will consider biconnected beta-free graphs having
no hooks.
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Looking at Remarks 1 and 3, there is an advantage if the instance of our prob-
lem is a prime graph in Gn. We can try to work with prime graphs if Lemma 7
applies in a nice way. Let us assume that there exists a path edge ei such that
κ(ei) = 2. W.l.o.g. assume that κ�(ei) = 2, and let V�, C = {vj , vi}, Vr be the
associated 2-separation such that v1 ∈ V�. Let G� (resp., Gr) be the graph ob-
tained by shrinking the set Vr (resp., V�) into one vertex x� (resp., xr). The pair
G�, Gr is a decomposition of G. It is easy to see that 〈v1, v2, . . . , vj , . . . , vi, x�〉
is a Hamiltonian path of G�, while 〈vj , xr, vi, vi+1, vi+2, . . . , vn〉 is a Hamilto-
nian path of Gr. Moreover, note that xr has degree 2 in Gr. Thus, by remov-
ing xr from Gr and by adding (vj , vi) to Gr we obtain a new graph G′

r and
〈vj , vi, vi+1, vi+2, . . . , vn〉 is a Hamiltonian path of G′

r. It is easy to see that if
H′

r is a MBSS of G′
r chosen among all biconnected spanning subgraphs of G′

r

having edge (vj , vi), then Lemma 7 still holds. Indeed, the graph obtained from
H′

r minus edge (vj , vi), plus vertex xr and edges (vj , xr), (xr, vi), is a MBSS of
Gr. Moreover, notice that:

Remark 5. If H�, H
′
r are biconnected spanning subgraphs of G�, G

′
r, respectively,

then the graph H built from H� and H ′
r w.r.t. x�, C, xr, is such that |E(H)| =

|E(H�)| + |E(H ′
r)| − 3.

The pair G�, G
′
r is said to be a simplified decomposition of G. A simplified

prime decomposition G1, G2, . . . , Gk of a decomposable graph G is the repeated
simplified decomposition of non-prime graphs of a simplified decomposition of
G, until Gj is prime, j = 1, . . . , k.

4.4 The Final Algorithm

In this section we improve the algorithms described in Section 3. Before show-
ing the final algorithm, we first describe a linear time and space algorithm for
decomposing a graph G into a collection of prime graphs. We assume that a
Hamiltonian path ΠG of G is given in input. The algorithm begins by making a
copy of G (say G′) and by assuming that G′ is the initial partial decomposition
of G. Then, it decomposes the computed partial decomposition of G until each
graph of the decomposition is prime. The algorithm explores path edges in order
from e1 to en. At a given iteration, let ei be the path edge the algorithm must
examine. Let vh be the right endvertex of fi and let vj+1 be the second right
endvertex (different from h) of some edge in E(ei) ∪ {ei} (say f ′

i) having maxi-
mum index. If vj+1 = vi+1, then κr(ei) = 2 and C = {vi+1, vh} is a 2-separator.
If a graph of the computed partial decomposition of G is decomposable w.r.t. C,
then decompose it and skip to ej = ei+1. Otherwise, κr(et) ≥ 3, t = i, . . . , j − 1,
and the algorithm can directly skip to ej . Moreover, when examining ej , it suf-
fices to explore only cycle edges in E(ej) having the left endvertex with index
greater than i. However, remember that fi could be either fj or f ′

j . The same
algorithm can be easily adapted to compute κ�(ei). About the time and space
complexity, notice that each cycle edge is explored a constant number of times.
Moreover, as the number of vertices of a prime decomposition of G is O(n), then
from Remark 2 it follows that the time and space complexity is O(m).
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Lemma 9. A biconnected beta-free graph G ∈ Gk, with k ≤ 6, is Hamiltonian.

Proof. Since G is biconnected, from Lemma 3 it follows that graphs in G3, G4

are Hamiltonian. Let us assume that G ∈ G6 is not Hamiltonian and let H be
a MBSS of G. In this case there are 2 vertices u1, u2 of H having degree 3.
The graph obtained from H after the removal of u1, u2 has at least 3 connected
components, two of these made by a single vertex v and v′, respectively. Both
v, v′ cannot be adjacent to other vertices different from u1, u2 in G, otherwise
G is Hamiltonian and H is not an optimal solution. So v is a beta-vertex in a
beta-free graph. We have obtained a contradiction. The same technique can be
used to prove that a beta-free graph G ∈ G5 is Hamiltonian. 
�

Now we can implement a new more powerful function Expand such that

Lemma 10. For a prime graph G ∈ Gn and a given Hamiltonian path ΠG of G,
if Opt(G) ≥ n + k, then the algorithm BSS computes in O(m) time and space
a solution H such that |E(H)| ≤ n + k +

⌈
n−6

4

⌉
< 5

4Opt(G).

Proof. If n ≤ 6 the claim follows from Lemma 9. Notice that as G is prime and
has no beta-structures, it is not hard to see that we can cover the first (resp.,
last) 4 edges of ΠG by adding only one extra edge. So, looking at Remark 3
it is easy to prove the claim when n ≤ 9. Hence, we can assume that n ≥ 10.
Moreover suppose we have added all edges of ΠG to E(H). So we will remove all
useless path edges and add cycle edges. We prove that we need to add one extra
edge for the first (resp., last) 5 edges of ΠG, and one extra edge every 4 edges
of ΠG(v6, vn) (in an amortized sense). We prove this for the first path edges of
ΠG, since for the last 5 path edges of ΠG the problem is symmetric. Let λ = n
be an initial lower bound for |E(H)|.

We first prove that we add only one extra edge for the first 5 path edges of
ΠG. We must test sequentially the following (mutually exclusive) conditions.

(i) If f1 covers 5 edges of ΠG(v1, vn), then take it. Otherwise, if there are 2
semi-adjacent edges (one of which in E(e1)) covering 5 edges of ΠG(v1, vn),
then take them and remove the middle one.

(ii) As G is prime, then f1 = (v1, v5) is the only cycle edge covering E(e1), and
so it must be added to H. If there is an edge in E(e4) covering the first
edges of ΠG(v5, vn), then take it. Otherwise, if there are 2 semi-adjacent
edges (one of which in E(e4)) covering the first 5 edges of ΠG(v5, vn), then
take them and remove the middle one.

(iii) Add f1 = (v1, v5). In this case E(e5) ⊆ {(v2, vj), (v3, vi) | 6 ≤ i, j ≤ 9}. Note
that e2 cannot generate a right hook (see Remark 4). Now the proof breaks
into mutually exclusive cases that must be tested sequentially:
(a) (v2, v6) ∈ E(e4) (resp., (v3, v6) ∈ E(e4)). Add (v2, v6) (resp., (v3, v6))

plus one cycle edge in E(e5) with endvertex v3 (resp., v2), and remove
e2, e5 (see Figure 3 (a)). In this case we add one extra edge for at least
6 path edges.

(b) (v2, vj), (v3, vj+1) ∈ E(e4) (resp., (v3, vj), (v2, vj+1) ∈ E(e4)). Add both
edges and remove e2, ej (see Figure 3 (b)). In this case we add one extra
edge for at least 7 path edges.
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v1 vn v1 vnv10

(b)(a)

Fig. 3. Cases (a) and (b)

x�

xr

x� xr

K(4, K3)

⇒

Fig. 4. Case (c)

(c) Otherwise, it must be E(e5) ⊆ {(v2, v7), (v2, v9), (v3, v7), (v3, v9)} and
E(e9) ⊆ {(v5, vj), (v7, vi), (v9, vk) | 10 ≤ j, i, k}. Let G′ be the graph
obtained by shrinking the set {v1, v2, v3, v4} (resp., {v10, v11, . . . , vn})
into one vertex x� (resp., xr). Since C = {v5, v7, v9} is a separator and
G is prime, it is not hard to see that G′ is isomorphic to a subgraph
of K(4, K3) (see Figure 4). In this case, add either {(v2, v7), (v3, v9)} or
{(v3, v7), (v2, v9)}, and remove e2. Since from Corollary 1 we can increase
λ by 1, it follows that in this case we add one extra edge for 9 path edges.

Since κ(ei) ≥ 3 for 4 ≤ i ≤ n − 4, from Lemma 1 we have that we are able
to add one cycle edge every 4 path edges. Let λ = n + k ≤ Opt(G) be our final
lower bound. The computed solution H has size

|E(H)| ≤ n − 1 +
(

1 + k +
⌈

n − 1 − 5
4

⌉)
= n + k +

⌈
n − 6

4

⌉
<

5
4
(n + k).

Comparing the size of H with Opt(G) the approximation ratio follows. About
the time and space complexity, as each edge is explored a constant number of
times (see also Theorem 2), then the time and space complexity is O(m). 
�

We can finally prove the following:

Theorem 3. The algorithm BSS returns a min
{

5
4 , 2κ(G)−1

2(κ(G)−1)

}
-approximated so-

lution for the MBSSHP-problem in O(m) time and space.
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Proof. If κ(G) ≥ 3, the claim follows from Theorem 2. So, assume κ(G) = 2.
Let G1, G2, . . . , Gi be the simplified prime decomposition of G and let ΠGj

be
the given Hamiltonian path of Gj , j = 1, 2, . . . , i. We first find a biconnected
spanning subgraph Hj for each instance Gj , ΠGj . Notice that we can build a
biconnected spanning subgraph H of G from H1, H2, . . . , Hi in O(m) time and
space. Let pj + 1, with j = 1, i, be the length of path ΠGj

, and let pj + 1 + kj

be the lower bound for the size of a MBSS of Gj computed as in Lemma 10.
Moreover, let pj + 2, with j = 2, . . . , i − 1, be the length of path ΠGj , and let
pj + 2 + kj be the lower bound for the size of a MBSS of Gj computed as in
Lemma 10. Then, let k =

∑i
j=1 kj .

From Lemma 10, from Remark 5 and since n ≥ 1 +
∑i

j=1 pj , we have that

|E(H)|=
∑
j=1,i

(
pj +2 +kj +

⌈
pj − 4

4

⌉)
+

i−1∑
j=2

(
pj + 3+kj +

⌈
pj − 3

4

⌉)
− 3(i − 1)

≤ k + n +
i∑

j=1

⌈
pj − 3

4

⌉
≤ k + n +

1
4

i∑
j=1

pj ≤ 5
4
(n + k),

where the second inequality follows from the fact that, for every integer 1 ≤ h ≤
m, being m = hq + r, where q and r < h are positive integers, then:

⌈
m − (h − 1)

h

⌉
=

⌈
hq + (r + 1 − h)

h

⌉
≤ q +

⌈
r + 1 − h

h

⌉
≤ q ≤ m

h
.

As Lemma 7 and Corollary 1 imply that Opt(G) ≥ n+k, then the approximation
ratio follows. The time and space complexity follows from Lemma 10 and from
the fact we can find a prime decomposition of G in linear time and space. 
�
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