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Abstract. Suppose there are a set of suppliers i and a set of consumers
j with demands bj , and the amount of products that can be shipped
from i to j is at most cij . The amount of products that a supplier i can
produce is an integer multiple of its capacity κi, and every production of
κi products incurs the cost of wi. The capacitated supply-demand (CSD)
problem is to minimize the production cost of

∑
i wixi such that all

the demands (or the total demand requirement specified separately) at
consumers are satisfied by shipping products from the suppliers to them.

To capture the core structural properties of CSD in a general frame-
work, we introduce the submodular integer cover (SIC) problem, which
extends the submodular set cover (SSC) problem by generalizing sub-
modular constraints on subsets to those on integer vectors. Whereas it
can be shown that CSD is approximable within a factor of O(log(maxi κi))
by extending the greedy approach for SSC to CSD, we first generalize the
primal-dual approach for SSC to SIC and evaluate its performance. One
of the approximation ratios obtained for CSD from such an approach is
the maximum number of suppliers that can ship to a single consumer;
therefore, the approximability of CSD can be ensured to depend only
on the network (incidence) structure and not on any numerical values of
input capacities κi, bj , cij .

The CSD problem also serves as a unifying framework for various
types of covering problems, and any approximation bound for CSD holds
for set cover generalized simultaneously into various directions. It will be
seen, nevertheless, that our bound matches (or nearly matches) the best
result for each generalization individually. Meanwhile, this bound being
nearly tight for standard set cover, any further improvement, even if
possible, is doomed to be a marginal one.

1 Introduction

1.1 Capacitated Supply-Demand Problem

Suppose there are a set A of factories, that all produce the same product, and
a set B of customers that use the product. Each factory i ∈ A has capability
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of producing products in the units of κi tons, incurring the cost of wi dollars
per unit. Customer j ∈ B requests bj tons of the product every month. ¿From
factory i to customer j at most cij tons of the product can be transported every
month. Moreover, the total demand btotal, with 0 ≤ btotal ≤ ∑

j∈B bj , specifies,
out of the total requested amount

∑
j∈B bj , what amount of products need to be

supplied in total. A monthly production plan specifies the number of units to be
produced a month at each factory. The problem is: what is the most economical
monthly production plan to fulfill at least btotal tons of all the needs requested
by the customers ? We call this problem the capacitated supply-demand (CSD)
problem.

Using a supply-demand model network, this problem can be defined equiv-
alently as follows. Let N = (V, E) be a network, where V = A ∪ B ∪ {s, t, t′},
with source s, subsink t, sink t′, a set A of supply nodes, and a set B of demand
nodes. Each supply node i ∈ A has an incoming arc from source s, each demand
node has an outgoing arc to subsink t, one arc goes from t to sink t′, and all the
other arcs go from A to B (thus, E = ({s}×A)∪E′ ∪ (B ×{t})∪{(t, t′)} where
E′ ⊆ (A × B)). All the arcs other than those in {s} × A are a priori associated
with integral capacities; each capacity bj on arc (j, t) specifies the “demand”
requested by node j ∈ B, cij on arc (i, j) ∈ A × B limits the amount of supply
that can be shipped from i ∈ A to j ∈ B, and btotal on (t, t′) is the total amount
of demands to be supplied. The capacities on the remaining arcs (s, i) ∈ {s}×A
are not given initially; rather, they need to be “purchased” as follows. For each
i ∈ A the unit capacity of κi is available for the unit cost of wi, and it costs
wixi to install the capacity of ai = κixi on (s, i), where a nonnegative integer xi

specifies the number of unit capacities to be used on (s, i). With all the capacities
fully specified, the network is denoted by N = (A∪B ∪{s, t, t′}, E, a, b, c, btotal),
where ai = κixi for each i ∈ A. The problem is then to install capacities a ∈ ZA

+
of minimum total cost on arcs in {s} × A by purchasing the available unit ca-
pacities κ, so that the total demand of btotal can be shipped in N , or in other
words, the max flow value reaches btotal in N .

It should be clear by now that, denoting by fij the amount of a flow going
from i ∈ A to j ∈ B in N , CSD can be succinctly formulated by the following
integer program:

min
∑

i∈A wixi

subject to:
∑

j∈B fij ≤ κixi i ∈ A∑
i∈A fij ≤ bj j ∈ B∑

j∈B

∑
i∈A fij ≥ btotal

xi ∈ Z+ i ∈ A
0 ≤ fij ≤ cij i ∈ A, j ∈ B

where w ∈ QA
+, C = [cij ] ∈ ZA×B

+ , κ ∈ ZA
+, b ∈ ZB

+. To capture the core struc-
tural properties of CSD in a general framework, however, we next introduce the
submodular integer cover problem, and will later derive an IP formulation for it.
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1.2 Submodular Integer Cover

Definition 1. A function g : Rn → R is said to be

1. nondecreasing if x ≤ y implies g(x) ≤ g(y), and
2. submodular if g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) for all x, y ∈ Rn,

where x ∨ y and x ∧ y are, respectively, the vectors of componentwise maxima
and minima of x and y: (x ∨ y)i = max{xi, yi}, (x ∧ y)i = min{xi, yi}.

Let G = (V, E) be a network with a nonnegative capacity c(a) for each arc
a ∈ E. Two arcs are said to be parallel if every simple cycle containing both
of them orients them in the opposite direction, and a set of arcs is parallel if
it consists of pairwise parallel arcs. Let P be a parallel arc set and denote the
vector of capacities on arcs in P by cP .

Proposition 2 (Gale-Politof [12]) The maximum flow value F of G as a
function in cP is submodular.

Recall the network N constructed in Sect. 1.1. The arc set {s} × A in N is
then parallel, and hence, the max flow value F of N is submodular in c{s}×A.
Define a function ρ : ZA

+ → R+ s.t.

ρ(x) = (max flow value of N with ai = κixi, ∀i)

for a CSD instance of (N , κ, w). Then, x ∈ ZA
+ is a feasible CSD solution for

(N , κ, w) iff ρ(x) = btotal = ρ( �∞). Using ρ, CSD can be thus formulated by
min{∑i∈A wixi | ρ(x) = ρ( �∞)}.

One can easily observe that ρ is nondecreasing as well as submodular by
Proposition 2 since ρ(x) = F ((· · · , κixi, · · ·)), and CSD thus fits into the follow-
ing general framework:

Definition 3. Given a finite set A, a weight function w : A → R, and a
nondecreasing submodular function g : ZA

+ → R, the problem of computing
min{∑i∈A wixi | g(x) = g( �∞)} is called the Submodular Integer Cover (SIC)
problem. Any x ∈ ZA

+ satisfying g(x) = g( �∞) is a solution for the instance
(A, w, g) of SIC.

NOTE: In case when g is a set function (i.e., a function defined on 0-1 vectors),
the problem is known as submodular set cover [29].

1.3 Related Problems and Previous Work

When all the unit capacities κi equal to one, CSD can be seen reducible to the
minimum-cost flow problem. Another basic problem arising as a special case is
the set cover (SC) or vertex cover (VC) problems, classic NP-hard problems of
which polynomial time approximability has been intensively studied in the liter-
ature. In fact CSD serves as a unifying framework for various types of covering
problems as will be seen below. In SC, given a family F of subsets of some base



Submodular Integer Cover and Its Application to Production Planning 157

Table 1. Covering Problems in the framework of CSD

κi cij bj btotal

Set Cover |δ+(i)| 1 1 |B| = ∑
j∈B bj

Multicover |δ+(i)| 1
∑

j∈B bj

Capacitated Set Cover 1 1 |B| = ∑
j∈B bj

(with Demands) 1
∑

j∈B bj

Partial Set Cover |δ+(i)| 1 1

set U with associated nonnegative costs, it is required to compute a minimum
cost subfamily C such that every element of U is “covered by” (i.e., contained
in) some subset in C. Defined analogously on graphs G, VC is to compute a
minimum cost vertex subset C in G such that every edge of G is incident to
some vertex in C. In the multicover (MC) problem, each element j of U in an
SC instance is associated with “demand” bj , and each j now needs to be covered
bj times (by different subsets). One of the most general problems previously con-
sidered along this line is the multiset multicover (MMC) problem, that can be
defined by the following integer program: min{wT x | xT C ≥ bT , x ≤ u, x ∈ Zn

+}.
It also has a version without explicit upper bounds u on x. In capacitated SC ,
each subset S ∈ F in an SC instance is associated with capacity κS and cost wS .
A single copy of S can cover only κS elements among those contained in S, and
by paying wS per copy, more copies of S can be used to cover more elements of
S. In case when each element e is associated with demand be in capacitated SC,
e has to be covered be times. In yet another direction of generalizations of SC,
it is required to cover only btotal elements or more (instead of all) in partial SC
when an additional integer btotal is given to SC.

For a node v ∈ V in network N , let δ+(v) (δ−(v), resp.) denote the set
of arcs leaving v (entering v, resp.). For a finite set J , J ′ ⊆ J , and a vector
z ∈ ZJ

+ in general, z(J ′) will be used as an abbreviation for
∑

j∈J ′ zj . Those
covering problems listed above can be realized in CSD by fixing some of problem
parameters appropriately (see Table 1). In MMC min{wT x | xT C ≥ bT , x ≤
u, x ∈ Zn

+}, explicit upper bounds x ≤ u are called multiplicity constraints, and
if it is non-existent, a trivial upper bound on xi is maxj�bj/cij�. When cast in
CSD, each i ∈ A is replaced (not explicitly) by ui copies, i1, . . . , iui

, each cilj is
set to min{cij , max{0, bj −∑l−1

k=1 cikj}}, and the unit capacity κil
to c(δ+(il)).

(We remark that possibly non-polynomial expansion of problem instances in this
reduction causes no trouble in our algorithm.)

It was (or can be) shown in all the cases that a greedy heuristic yields a factor
H(maxi∈A κi) = O(log(maxi∈A κi)) approximation, where H(k) =

∑k
i=1(1/i) is

the kth harmonic number; see [22, 24, 6] for SC, [8] for MMC, [26] for partial
SC, and [5] for capacitated MMC. Other approximation bounds known for these
problems include:

– maxj∈B |δ−(j)| [20, 2] and maxj∈B |δ−(j)| − (1− o(1)) (maxj∈B |δ−(j)|−1) ln ln n
ln n

[18] for SC.
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– maxj∈B |δ−(j)| for MC [17], and maxj∈B |δ−(j)| − bmin + 1 for unweighted
MC [25], where bmin = minj∈B bj .

– O(log |B|) [23] and maxj∈B |δ−(j)| = “max # of nonzero entries in a row of
C” [4] for MMC.

– maxj∈B |δ−(j)| for capacitated SC, and 3 for capacitated VC with “unsplit-
table” demands [16].

– maxj∈B |δ−(j)| for partial SC [1, 11, 13], 2 for partial VC [10, 3, 21], and
2 − Θ( ln ln |δ+(i)|

ln |δ+(i)| ) for unweighted partial VC on graphs of maximum degree
|δ+(i)| [19].

On the other hand, the following lower bounds are known for approximability of
SC: (1 − ε) ln |B| for any ε > 0 [9] (assuming NP ⊂ DTIME

(
nO(log log n)

)
), and

|δ−(j)| − 1 − ε [7].
CSD can be seen also related to the capacitated facility location problem, the

network loading problem, and the single-sink buy-at-bulk problem among others.
In fact, if shipping a unit product from i ∈ A to j ∈ B incurs a certain cost
and the objective is to minimize total cost of production and shipping, CSD cor-
responds to the capacitated facility location problem having “flow constraints”
in it. To the best of our knowledge, however, no covering-type problem with
covering capacities and flow constraints explicitly given as in CSD, has been
previously considered.

1.4 Summary of Results

In designing approximation algorithms for CSD or SIC, it is natural to con-
sider extending known approximation algorithms for SSC. There are two such
algorithms, one greedy [29] and the other primal-dual [11]. It is rather straight-
forward to extend the former to CSD resulting in the approximation ratio of
H(maxi∈A κi) = O(log(maxi∈A κi)). It will be seen, on the other hand, that
the primal-dual approach for SIC yields an approximation algorithm for CSD
running in time O(nM(n, m)), where M(n, m) denotes time complexity of com-
puting an s− t max flow in a network with n nodes and m arcs. It requires much
more intricate analysis based on reasoning on the relationship between flow val-
ues and capacity settings, however, to estimate its performance ratio, and to
describe it, let δD−(j) = δ−(j) − D, bD

j = bj − c(D), and cD
ij = min{cij , b

D
j } for

any D ⊂ δ−(j). It will be shown that the approximation factor guaranteed is

max

{
2, max

j∈B, D⊂δ−(j)

{
cD(δD−(j))

bD
j

}}
(1)

in its general form. Various consequences can be drawn immediately from (1),
e.g.,

1. By assuming w.l.o.g. that cij ≤ bj , ∀i, j, (1) reduces to maxj∈B |δ−(j)|;
hence, the approximability of CSD can be ensured to dependent only on
the network (incidence) structure of a given instance, and not on any nu-
merical values of input capacities κi, bj , cij .
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The primal-dual algorithm is thus more effective than greedy when the number
of suppliers that can ship products to each consumer is relatively small (such as
in “vertex cover type” problems).

To measure the effectiveness of these bounds, it is instructive to compare
them with existing results for the covering problems previously considered. The
bound in 1. matches the best ones for capacitated SC [16], partial SC [1, 11, 13],
weighted MC [17], and MMC [4] (see 3. below), respectively. Meanwhile, this
bound nearly matching the best one for SC [18] as well, any further improvement
would be necessarily a marginal one, even if possible, due to the strong lower
bound of maxj∈B |δ−(j)|−1−ε for standard SC [7]. Further consequences implied
by (1) (or the bound in 1.) include:

2. Capacitated VC with splittable demands is approximable within a factor of
2, in contrast with the 3-approximation of [16] for unsplittable demands.

3. In MMC, with or without multiplicity constraints, cD
ij ’s (= min{cilj , b

D
j }’s)

in (1) are evaluated s.t., when summed up over all il’s for some i, they never
exceed bD

j (more details will be given in the full version). And then, the
obtained bound (assuming maxj |δ−(j)| ≥ 2) is at most

max

{
2, max

j,D

{
|δD−(j)|bD

j

bD
j

}}
= max{2, max

j,D
|δ−(j) − D|} = max

j∈B
|δ−(j)|,

which coincides with the approximation factor, “max # of nonzero entries
in a row of C”, given in [4].

4. Depending on actual values of cij and bj , the estimation could be further
lowered. If cij = cj , ∀i, j, let bj = sjcj + tj s.t. 0 ≤ sj , 0 < tj ≤ cj .
Then, the value of (1) can be seen reducible to maxj∈B {max {|δ−(j)| − sj ,

(|δ−(j)| − sj + 1) cj

cj+tj

}}
. Thus, when cij = 1, ∀i, j, for instance, CSD is

approximable within a factor of maxj∈B (|δ−(j)| − bj)+ 1. This CSD bound
with such restrictions on cij ’s alone already improves e.g. maxj∈B |δ−(j)| −
bmin + 1 for unweighted MC observed in [25].

In the multi-capacitated version of CSD, multiple types of unit capacities are
available at different prices for each i ∈ A. Such a generalization enables CSD
to reflect e.g. an “economy of scale” (or “volume discount”). Our algorithm
still works with this version providing the same approximation guarantee of (1)
(details given in the full version).

2 Approximating Submodular Integer Cover

It is rather straightforward to obtain the greedy bound of H(maxi∈A κi) for CSD
by extending the greedy algorithm for SSC and its performance analysis given
by Wolsey [29]. Therefore, we focus on the primal-dual approach for SIC and
its application to CSD for the rest of the paper.
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2.1 Preliminaries and IP Formulation

Definition 4. Let ek denote the kth unit vector in ZA
+ s.t. ek

i =
{

1 if i = k
0 otherwise

for i ∈ A. For nondecreasing g we also assume it is bounded, i.e., there exists
u ∈ R s.t. g(x) ≤ u, ∀x ∈ ZA

+. Then, there must exist an integer ui for each i ∈ A
s.t., for any x with xi = ui and x′

i ≥ ui, g(x′) = g(x) if x′
j = xj for j ∈ A−{i}.

Let ui be minimal such an integer for each i ∈ A, and let χS denote the vector

in ZA
+ s.t. χS

i =
{

ui if i ∈ S
0 otherwise for S ⊆ A. Thus, g(χA) = supx∈Z

A
+

g(x).

Let Li be a lattice for i = 1, · · · , n, and L be a sublattice of
∏n

i=1 Li. It was
shown by Topkis that a submodular function on L has antitone (i.e., nonincreas-
ing) differences on L:

Proposition 5 (Topkis [27]) Let (x1, · · · , xn) be an element of L. If g is a
real-valued submodular function on L, for all j = k with each xi fixed for i = j
and i = k, g(xj , z) − g(xj , xk) is nonincreasing in xj on Lz ∩ Lxk for each
xk < z in Lk, where Lt = {x | (x1, · · · , xj = x, · · · , xk = t, · · · , xn) ∈ L}.

Lemma 6. If g is submodular and nondecreasing,

g(x) ≤ g(χS) +
∑

j∈A−S

(g(χS + ej) − g(χS))xj

for x ∈ ZA
+ and S ⊆ A.

Proof. Let A − S = {j1, . . . , jr}. Then,

g(x + χS) − g(χS) =
r∑

t=1

xjt∑
l=1

{g(χS +
t−1∑
k=1

xjk
ejk + lejt)

−g(χS +
t−1∑
k=1

xjk
ejk + (l − 1)ejt)}

≤
r∑

t=1

xjt∑
l=1

{g(χS + ejt) − g(χS)}

=
r∑

t=1

{g(χS + ejt) − g(χS)}xjt

where the inequality holds due to Proposition 5. Since g is also nondecreasing,

g(x) ≤ g(x + χS) = g(χS) + (g(x + χS) − g(χS))

≤ g(χS) +
r∑

t=1

{g(χS + ejt) − g(χS)}xjt

��
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Define function ∆S : A−S → Z+ for S ⊆ A s.t. ∆S(i) = g(χS + ei)− g(χS).

Theorem 7. If x is a solution for an SIC instance (A, w, g), it is feasible in the
following integer program:

min
∑

i∈A wixi

(IP) subject to: x ∈ ZA
+∑

i∈A−S ∆S(i)xi ≥ g(χA) − g(χS), S ⊆ A

Consequently, the optimum for (A, w, g) is lower bounded by that of the corre-
sponding (IP).

Proof. If x is a solution for (A, w, g), g(x) = g( �∞) = g(χA), and by Lemma 6,

g(χA) = g(x) ≤ g(χS) +
∑

i∈A−S

(g(χS + ei) − g(χS))xi = g(χS) +
∑

i∈A−S

∆S(i)xi

for any S ⊆ A; hence, x satisfies all the constraints of (IP). ��

2.2 Primal-Dual Schema

To design a primal-dual based approximation algorithm for SIC, we begin with
relaxing the integral constraints x ∈ ZA

+ of (IP) to the linear constraints x ≥ 0.
By taking the dual of the resulting LP relaxation (LP) of (IP), we next obtain

max
∑

S⊆A

(
g(χA) − g(χS)

)
ys

(D) subject to:
∑

S:i∈A−S ∆S(i)yS ≤ wi, i ∈ A
yS ≥ 0, S ⊆ A

The primal-dual schema for “set cover type” problems (i.e., “covering by a
0-1 vector” type) is by now a well established algorithmic technique (see surveys
given in e.g. [14, 28]); we here extend it to the primal-dual pair of (IP) and (D)
in designing an algorithm called PD. It consists of the following two phases; the
phase in which a maximal dual solution y is constructed in a greedy fashion, and
an integral primal solution x is correspondingly chosen s.t. it satisfies the primal
complementary slackness conditions with y, followed by the phase called reverse
delete in which x is ensured to satisfy minimality conditions in a certain order.

More specifically, starting with F = ∅ and the dual solution y = 0, a variable
yF in (D) is iteratively increased maximally without violating dual feasibility in
the first phase, so that the dual constraint for i becomes newly binding for some
i in A−F ; that is,

∑
S:i∈A−S ∆S(i)yS = wi. This amounts to finding i in A−F

(say, i′) at the lth iteration minimizing

wi −∑S:i �∈S,S �=F ∆S(i)yS

∆F (i)
=

wi −∑1≤t≤l−1 ∆Ft
(i)yFt

∆F (i)

and setting yF to
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Initialize: x = 0, y = 0, F = ∅, STACK = ∅, w̄i ← wi (∀i ∈ A).
While x is not an SIC solution for (A, w, g) (i.e., g(x) < g(χA)) do

Let yF ← mini∈A−F {w̄i/∆F (i)} and i′ ← argmini∈A−F {w̄i/∆F (i)}.
Add i′ into F , push it onto STACK, and set xi′ ← ui′ .
For each i ∈ A− F do

Reset w̄i ← w̄i −∆F (i)yF

(
= w̄i − ∆F (i)

∆F (i′) w̄i′
)
.

While STACK �= ∅ do
Let i′ ← pop(STACK).
Set xi′ ← min{xi′ | g(x) = g(χA)}.

Output x.

Fig. 1. Algorithm PD for SIC

min
i∈A−F

{
wi −∑S:i �∈S,S �=F ∆S(i)yS

∆F (i)

}
=

wi′ −∑S:i′ �∈S,S �=F ∆S(i′)yS

∆F (i′)

=
wi′ −∑1≤t≤l−1 ∆Ft(i

′)yFt

∆F (i′)

where F0 = ∅ ⊆ F1 ⊆ . . . ⊆ FT denote (intermediate) F ’s constructed, in this
order, by each iteration of the first phase (So, yS > 0 iff S is one of these F ’s).
This i′ (or any other binding i’s) is then added to F so that F remains as the
set of all i’s whose corresponding constraints are binding. At the same time it is
kept track of in what order dual constraints become binding during this process
(or, in what order i’s enter F ) in the first phase. Let x represent χF . Then, x
eventually becomes an SIC solution as F may grow up to A if necessary.

In the second phase an actual SIC solution x is constructed based on F
and the ordering of i’s in F computed as above. Starting with x = χF , each
i ∈ F is processed, one by one, in reversal of the order in which they were added
to F during the first phase, and xi is set to the minimal value needed for x
to remain as a solution for (A, w, g). The SIC solution x constructed in this
manner satisfies a certain minimality property: For all t = 1, . . . , T , the values
of xi’s with i ∈ F − Ft are the ones “minimally” required, in addition to χFt ,
to increase its g-value from g(χFt) up to the required g(χA); in other words, the
value of g(x + χFt) drops below that of g(χA) whenever any xi with i ∈ F − Ft

is decremented. The pseudo-code description of this algorithm is given in Fig. 1.

2.3 Analysis

In the algorithm PD any element i ∈ A enters F (in the first phase) iff the cor-
responding dual constraint becomes binding; that is, wi =

∑
S:i∈A−S ∆S(i)yS .

Therefore, the weight of computed x is

∑
i∈F

wixi =
∑
i∈F

( ∑
S:i∈A−S

∆S(i)yS

)
xi =

∑
S⊆A

( ∑
i∈F−S

∆S(i)xi

)
yS .
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When the RHS in this equation is compared with the objective function of (D),
of which value gives a lower bound for the optimal weight, it can be seen that
the ratio of the weight of x to the optimal weight is bounded above by

max
S⊆A,yS>0

∑
i∈F−S ∆S(i)xi

g(χA) − g(χS)
= max

1≤t≤T

∑
i∈F−Ft

∆Ft(i)xi

g(χA) − g(χFt)
. (2)

Recall now how an actual SIC solution x is constructed in the second phase.

Definition 8. We call a solution x for (A, w, g) minimal w.r.t. S ⊆ A if x +
χA−S becomes a non-solution when any xi > 0 with i ∈ S is decremented.

It is ensured that x be minimal w.r.t. A − Ft for each t (1 ≤ t ≤ T ). Therefore,
x can be restricted to such solutions for (A, w, g) in estimating the bound in (2),
and we have the following general approximation bound for SIC:

Theorem 9. When applied to an SIC instance (A, w, g), the algorithm PD com-
putes a solution such that the ratio of its weight to the optimal weight is bounded
by

max
{∑

i∈A−S ∆S(i)xi

g(χA) − g(χS)

}
, (3)

where max is taken over any S ⊆ A and such a solution x for (A, w, g) that is
minimal w.r.t. A − S.

3 Application to CSD Problem

To model CSD in the framework of SIC, let ui = �c(δ+(i))/κi�, ∀i ∈ A, and de-
fine a function ρ : ZA

+ → Z+ s.t. ρ(x) = (max flow value of N with ai = xiκi, ∀i)
for a CSD instance of (N , κ, w). As we will need to consider N specified with
flow capacities of our own choice, such a network with new capacities a′, b′, c′

will be denoted by N (a = a′, b = b′, c = c′). Let NS denote the network N in
which capacity ai on (s, i) = ∞ if i ∈ S and ai = 0 otherwise, for S ⊆ A (i.e.,
NS = N (ai = ∞ for i ∈ S, ai = 0 for i ∈ A − S)). In estimating the bound of
(3) in the context of CSD, the next lemma is useful:

Lemma 10. Let f be any max flow in the network NS for S ⊆ A. When f
is augmented up to a max flow in NA, no augmenting path passes through any
i ∈ S.

Proof. Consider the residual network N r
A with respect to NA and f . Assuming

that f is not yet a max flow in NA, observe that f saturates either arc (i, j)
or (j, t) in NS for each i ∈ S and all j with (i, j) ∈ δ+(i). Or, in other words,
for each j reachable from some i ∈ S, either arc (j, t) is saturated, or all (i, j)’s
going from S to j are saturated. Therefore, N r

A has no s-t dipath in it passing
through any i ∈ S, and it remains so even if f is augmented to a larger flow
in NA; even after augmentations, the original f is nowhere decremented, and
saturated arcs continue to block any augmentation through nodes in S, due to
the network structure (A ∪ B ∪ {s, t, t′}, E) of N . ��
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The next is a key lemma of this paper, yet due to the space limitation, its
proof is omitted here (will be given in the full version):

Lemma 11. Let x ∈ ZĀ
+ be a minimal CSD solution for (N̄ = (Ā ∪ B̄ ∪

{s, t, t′}, Ē, b̄, c, b̄total), κ, w). Then,∑
i∈Ā κixi

b̄total
≤ max

{
2, max

j∈B̄

c(δ−(j))
b̄j

}
. (4)

Consider the network N ′
S obtained from NS and a max flow f in it by re-

moving all the nodes in S along with incident arcs, and adjusting the capacities
on (j, t) to bj − f(j, t). It follows from Lemma 10 that the values of ∆S(i) and
ρ(χA) − ρ(χS) in (3) coincide with the max flow value in N ′

S(ai = κi) and
btotal − |f |, respectively, where the former is always bounded by κi. Recall that,
x being minimal w.r.t. A − S, the vector (xi)i∈A−S specifies minimal capacities
on arcs (s, i), i ∈ A − S, required to increase the max flow value |f | of NS to
btotal; again from Lemma 10, it means that (xi)i∈A−S is by itself a minimal CSD
solution for N ′

S with btotal adjusted to the necessary increments of btotal − |f |.
Therefore, the value of (3) can be evaluated by taking the maximal value of (4)
over all possible N ′

S (subject to yS > 0) used in place of N̄ of Lemma 11. It
follows from these observations and Theorem 9 that

Theorem 12. For any D ⊂ δ−(j), let δD−(j) = δ−(j)−D, bD
j = bj −c(D), and

cD
ij = min{cij , b

D
j }. The algorithm PD computes a CSD solution to an instance

(N = (A∪B∪{s, t, t′}, E, b, c, btotal), κ, w), s.t. the ratio of its cost to the optimal
cost is bounded above by

max

{
2, max

j∈B, D⊂δ−(j)

{
cD(δD−(j))

bD
j

}}
. (5)

By assuming w.l.o.g. that cij ≤ bj , ∀i, j, it can be shown that (5) reduces to
max {2, maxj∈B |δ−(j)|}. If maxj∈B |δ−(j)| < 2, however, |δ−(j)| = 1, ∀j ∈ B,
and this occurs only in a trivial case.

Corollary 13. The algorithm PD computes a CSD solution to an instance (N =
(A∪B ∪{s, t, t′}, E, b, c, btotal), κ, w), s.t. the ratio of its cost to the optimal cost
is bounded above by maxj∈B{|δ−(j)|}.

Running Time. Each iteration in the first phase (first while-loop) can be car-
ried out in time O(m), whereas time complexity of the second phase (second
while-loop) is dominated by that of computing a max flow in each iteration.
The running time of PD, when applied to CSD, is thus O(nM(n, m)), and
M(n, m) = O(nm log(n2/m)), for instance, when the Goldberg-Tarjan’s algo-
rithm is used [15].
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6. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3) (1979) 233–235

7. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. In: Proc. 35th STOC. ACM (2003) 595–601

8. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Math. Oper. Res. 7(4) (1982) 515–531

9. Feige, U.: A threshold of ln n for approximating set cover. In: Proc. 28th STOC.
ACM (1996) 314–318

10. Fujito, T.: A unified local ratio approximation of node-deletion problems. In: Proc.
ESA’96. (1996) 167–178

11. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res.
Lett. 25 (1999) 169–174

12. Gale, D., Politof, T.: Substitutes and complements in network flow problems. Dis-
crete Appl. Math. 3 (1981) 175–186

13. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. In: Proc. 28th ICALP. (2001) 225-236

14. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation
algorithms and its application to network design problems. In: Hochbaum, D. (ed.):
Approximation Algorithm for NP-Hard Problems. PWS, Boston (1996) 144–191

15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35 (1988) 921–940

16. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering with appli-
cations. In: Proc. 13th SODA. ACM-SIAM (2002) 858–865

17. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering
problem. Discrete Appl. Math. 15 (1986) 35–40

18. Halperin, E.: Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. In: Proc. 11th SODA. ACM-SIAM (2000) 329–337

19. Halperin, E., Srinivasan, A.: Improved approximation algorithms for the partial
vertex cover problem. In: Proc. APPROX 2002. (2002) 161–174

20. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput. 11(3) (1982) 555–556

21. Hochbaum, D.S.: The t-vertex cover problem: Extending the half integrality frame-
work with budget constraints. In: Proc. APPROX’98. (1998) 111–122

22. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9 (1974) 256–278

23. Kolliopoulos, S. G., Young, N. E.: Tight approximation results for general covering
integer programs. In: Proc. 42nd FOCS. IEEE (2001) 522–528

24. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13 (1975) 383–390

25. Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded mul-
ticovering problems. Algorithmica 18 (1997) 44–66



166 T. Fujito and T. Yabuta

26. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Inform.
Process. Lett. 64(5) (1997) 251–254

27. Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Res.
26(2) (1978) 305–321

28. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)
29. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering

problem. Combinatorica 2(4) (1982) 385–393


	Introduction
	Capacitated Supply-Demand Problem
	Submodular Integer Cover
	Related Problems and Previous Work
	Summary of Results

	Approximating Submodular Integer Cover
	Preliminaries and IP Formulation
	Primal-Dual Schema
	Analysis

	Application to CSD Problem



