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Abstract. We consider the problem of splitting an order for R goods,
R ≥ 1, among a set of sellers, each having bounded amounts of the goods,
so as to minimize the total cost of the deal. In deal splitting with packages
(DSP), the sellers offer packages containing combinations of the goods; in
deal splitting with price tables (DST), the buyer can generate such com-
binations using price tables. Our problems, which often occur in online
reverse auctions, generalize covering integer programs with multiplicity
constraints (CIP), where we must fill up an R-dimensional bin by select-
ing (with bounded number of repetitions) from a set of R-dimensional
items, such that the overall cost is minimized. Thus, both DSP and DST
are NP-hard, already for a single good, and hard to approximate for
arbitrary number of goods.

In this paper we focus on finding efficient approximations, and ex-
act solutions, for DSP and DST instances where the number of goods is
some fixed constant. In particular, we show that when R is fixed both
DSP and DST can be optimally solved in pseudo-polynomial time, and
develop polynomial time approximation schemes (PTAS) for several sub-
classes of instances of practical interest. Our results include a PTAS for
CIP in fixed dimension, and a more efficient (combinatorial) scheme for
CIP∞, where the multiplicity constraints are omitted. Our approxima-
tion scheme for CIP∞ is based on a non-trivial application of the fast
scheme for the fractional covering problem, proposed recently by Fleis-
cher [Fl-04].

1 Introduction
An increasing number of companies are using online reverse auctions for their
sourcing activities. In reverse auctions, multiple sellers bid for a contract from a
buyer for selling goods and/or services. We consider the deal splitting problems
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arising in these reverse auctions. Suppose that a buyer needs to order multiple
units from a set of R goods. The number of units required from the j-th good,
1 ≤ j ≤ R, is nj ≥ 1. The goods can be obtained from m sellers, S1, . . . , Sm.
Each seller offers certain amount from each good (or some combination of the
goods); the maximum number of units of the j-th good available from Si is Tij ,
1 ≤ j ≤ R, 1 ≤ i ≤ m. In any deal, we may split the order for the goods among
a subset of the sellers. We say that a deal is feasible if (i) the number of units
obtained from the j-th good is at least nj , 1 ≤ j ≤ R, and (ii) the amount of
the j-th good obtained from Si does not exceed Tij , its supply from that good,
1 ≤ i ≤ m, 1 ≤ j ≤ R. The goal is to find a feasible deal of minimum total cost.
Deal splitting naturally models a procurement auction to obtain raw materials
with flexible sized lots and many other services. We consider two variants of the
problem.

In deal splitting with packages (DSP), each of the sellers, Si, offers a set of
Ni packages. The �-th package, pi

�, 1 ≤ � ≤ Ni, has a non-negative cost c(pi
�)

and is given by the R-tuple (ni
�1, . . . , n

i
�R); that is, Si offers in this package

0 ≤ ni
�j ≤ nj units from the j-th good, 1 ≤ j ≤ R. We need to find a feasible

deal that minimizes the total cost.
In deal splitting with price tables (DST), each seller Si, has mi price ranges.

The minimal and maximal numbers of units of the j-th good available from Si

in the �-th price range are r�j and u�j , respectively. The unit cost for the j-th
good in the �-th range is c�j , 1 ≤ � ≤ mi, 1 ≤ j ≤ R.1 Thus, the �-th entry in
the price table of Si is given by the vector {(r�1, u�1, c�1), . . . , (r�R, u�R, c�R)}.
We need to find a feasible deal in which the sale of Si, 1 ≤ i ≤ m, corresponds
to a valid entry in its price table, and the total cost is minimized.

We note that DSP is NP-hard already for R = 1, by reduction from Partition,
and hard to approximate within factor lnR for arbitrary R > 1, as it includes
as a special case the multi-set multi-cover problem.2 For DST, we note that
each price range of a seller “encodes” a possibly large number of packages (each
formed by choosing the number of units from each good), as well as a simple rule
for computing the price of a particular package (via the unit costs). Thus, in the
special case where each price table consists of a single price range, which allows
to form a single combination of the goods, we get an instance of the constrained
multi-set multi-cover. It follows that DST is also hard to approximate within
factor lnR.

Note that DSP generalizes also covering integer program with multiplicity
constraints (CIP). In this core problem, we must fill up an R-dimensional bin
by selecting (with bounded number of repetitions) from a set of R-dimensional
items, such that the overall cost is minimized. Formally, let A = {aji} denote
the sizes of the items in the R dimensions, 1 ≤ j ≤ R, 1 ≤ i ≤ n; the cost of item
i is ci ≥ 0. Let xi denote the number of copies selected from item i, 1 ≤ i ≤ n.

1 See an example in the Appendix.
2 We elaborate in [S+04] on the relation of our problems to set cover and its general-

izations.
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We seek an n-vector x of non-negative integers, which minimizes cT x, subject
to the R constraints given by Ax ≥ b, where bj ≥ 0 is the size of the bin in
dimension j. In addition, we have multiplicity constraints for the vector x, given
by x ≤ d, where d ∈ {1, 2, . . .}n. Recall that, in DSP, each seller Si has Tij units
from the j-th good. Consider, for example, the case where R = 2, and suppose
that Si has Ti1 = 10 units from the first good and Ti2 = 20 units from the
second good. Si offers two possible packages: pi

1 = (5, 7) and pi
2 = (6, 2); then

if we obtain two copies of pi
1, no copies of pi

2 are available. This dependence
among the packages makes DSP a generalization of CIP.3 Indeed, an instance of
CIP can be formulated as a special case of DSP, where each seller offers a single
package, whose “multiplicity” reflects the precise amount that is available from
each of the goods.

1.1 Our Results

Since our deal splitting problems are harder than set cover, the best approxima-
tion ratio that we can expect for arbitrary R is O(log R) (see, e.g., in [Va-01]);
thus, we focus on finding efficient approximations, and exact solutions, for sub-
classes of instances in which R is a fixed constant. We summarize below our
main results.

Deal Splitting with Packages: We show (in Section 2.1) that when R is fixed
DSP can be solved in pseudo-polynomial time. In Section 2.2 we develop a PTAS
for instances where the i-th seller offers a set of Ni ≥ 1 packages, pi

1, . . . , p
i
Ni

,
and the buyer can obtain at most ri

� copies from pi
�, for some ri

� ≥ 1; the total
amount of the j-th good available from Si is Tij =

∑Ni

�=1 ni
�jr

i
�, 1 ≤ j ≤ R,

1 ≤ i ≤ m. Indeed, such instances can be formulated as CIP with
∑m

i=1 Ni

variables. Thus, we get a PTAS for CIP in fixed dimension. In Section 2.3 we
consider DSP instances with unbounded supply. Such instances model deals in
which the buyer’s need is much smaller than the supply from each of the goods.
For these instances we develop a faster (combinatorial) scheme. This gives a
combinatorial approximation scheme for CIP∞.

Deal Splitting with Price Tables: We show (in Section 3) that when R is
fixed DST is solvable in pseudo-polynomial time. We then develop a PTAS for
DST instances in which the price tables satisfy some natural properties such as
volume discount, that is widely used in reverse auctions (see, e.g., in [KPS-03],
[BK+02]).4

Techniques: Our PTAS for unbounded DSP (in Section 2.3) is based on a non-
trivial application of a fully polynomial time approximation scheme (FPTAS) for
the fractional covering problem, proposed recently by Fleischer [Fl-04]. We use
this combinatorial scheme to obtain an approximate fractional solution for a lin-

3 In the corresponding integer program, we get dependencies among the variables that
give the number of copies obtained from each package.

4 We elaborate on these properties in Section 3.
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ear programming formulation of our problem, building on a technique of Chandra
et al. [CHW-76]. We show that by rounding an approximate solution for the LP
we increase the cost of the optimal (integral) solution for the DSP instance only
by factor of ε. Thus, we get a fast combinatorial implementation for our LP-
based scheme. The overall running time of the scheme is O(N�R/ε� · 1

ε2 log C),
where N =

∑m
i=1 Ni is the total number of distinct packages offered by the

sellers, and C = max1≤i≤N ci is the maximal cost of any package. Since un-
bounded DSP is equivalent to CIP∞, this yields a combinatorial approximation
scheme for CIP∞ in fixed dimension. With slight modification, we get the first
combinatorial scheme for multi-dimensional multiple choice knapsack.

In our PTAS for DST (in Section 3), we combine the guessing technique of
Chekuri and Khanna [CK-00] with a novel application of the technique of Frieze
and Clarke [FC-84], to the minimum binary multiple choice knapsack problem
in fixed dimension. Indeed, due to the constraints imposed on the solution for
DST — the amounts chosen from the goods for each seller must correspond to
a valid entry in its price table — we cannot apply the rounding technique of
[FC-84] to the fractional solution obtained by our scheme; instead, we apply
non-standard rounding, which relies heavily on the mathematical properties of
the price tables.

1.2 Related Work

Procurement Auctions.: Our deal splitting problems belong to the class of
winner determination problems in reverse auctions. Generally, in reverse auction
we have a single buyer that needs to obtain multiple goods, and a set of sellers
offers bids for selling the goods. Bidding may follow various mechanisms (a survey
of common mechanisms is given in [W-96]). The DST problem with single good
(i.e., R = 1) and price tables that satisfy the volume discount property5 was
studied in [KPS-03]. The paper shows that DST is NP-hard already in this
case and presents an FPTAS for the problem. There has been some previous
work on deal splitting with multiple goods, however, these papers present either
experimental studies or software that implements a given mechanism (see, e.g.,
[BK+02]). Heuristic methods and preliminary analytic results related to deal
splitting are given in [SG+02].

Multiple Choice Knapsack (MCK).: As shown in Section 2.2, DSP can
be reduced to the minimum R-dimensional binary MCK (R-MMCK) problem.
The maximum variant of this problem was studied since the mid-1970’s (see,
e.g., [Lu-75], [IH+78], [I-80]). For a single dimension, the best known result is a
PTAS by Chandra et al. [CHW-76]. Most of the published work on the maximum
multi-dimensional binary MCK presented heuristic solutions (see a survey in
[AM+97]). Recently, Shachnai and Tamir developed in [ST-03] a PTAS for the
problem in fixed dimension. Our scheme in Section 2.2 includes a PTAS for the
minimum R-dimensional binary MCK in fixed dimension.

5 See in Section 3.
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In Section 2.3, we reduce unbounded DSP to the minimum (non-binary) R-
dimensionalMCK. Chandra et al. [CHW-76] gave aPTAS for themaximumversion
of this problem in fixed dimension; their scheme solves as a procedure a linear
program. Our scheme yields the first combinatorial scheme for this problem.

Set Cover/Covering Integer Programs.: As mentioned above, our prob-
lems include as a special case the multi-set multi-cover problem. Set cover and
its generalizations have been extensively studied. (A comprehensive survey is
given in [Va-01].) Feige showed that in general set cover is hard to approximate
within factor ln |E|, where E is the set of elements to be covered. This hard-
ness result carries over to multi-set multi-cover. The best approximation ratio
for set cover is (1 + ln |E|) [C-79]. For multi-set multi-cover, the best ratio is
O(log maxS |S|), where |S| is the size of the multi-set S when counting elements
with multiplicity [RV-98]. This yields an O(log n)-approximation algorithm for
general instances of DSP with unbounded supply, where n =

∑R
j=1 nj .

Covering integer programs form a large subclass of integer programs en-
compassing such NP-hard problems as minimum knapsack and set cover. This
implies the hardness of CIP in fixed dimension (i.e., where R is a fixed con-
stant). For general instances, the hardness of approximation results for set cover
carry over to CIP. Dobson [D-82] gave an algorithm that outputs a solution
of cost O(max1≤i≤n{log(

∑m
j=1 Aij)}) times the integral optimum. It was un-

known until recently whether an O(log R)-approximation existed. Kolliopoulos
and Young [KY-01] settled this question. Their O(log R)-approximation yields
the first constant approximation for CIP in fixed dimension. A comprehensive
survey of other results is given in [K-03] (see also in [KY-01]). The best known
bounds for the CIP∞ problem (that include existential improvements on the
O(log R) factor) are due to Srinivasan ([S-99] and [S-96]). In this paper, we give
the first pseudo-polynomial time algorithms and approximation schemes for CIP
and CIP∞ in fixed dimension.

Due to space limitations, we omit some of the proofs. Detailed proofs can be
found in [S+04].

2 Deal Splitting with Packages

2.1 Exact Algorithms

When R is fixed DSP is solvable in pseudo-polynomial time. In particular,

Theorem 1. DSP can be solved optimally in O(m · max1≤i≤m Ni · ∏R
j=1 n3

j )
steps, where nj is the number of units required from the j-th good.

This yields a pseudo-polynomial time algorithm for CIP in fixed dimension.

Corollary 1. CIP in fixed dimension, R, and n variables can be solved optimally
in O(n · maxi,j(aijdi)2R).

Consider a restricted version of DSP, in which we require that the total
number of packages used in the deal is bounded by some fixed constant, k ≥ 1.
It can be shown that the problem then becomes easy to solve.
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Theorem 2. Restricted DSP is solvable in polynomial time.

2.2 DSP with Bounded Multiplicity

Approximation Scheme: Suppose that the packages offered by each of the
sellers have bounded multiplicity. Specifically, there are ri

� copies available from
pi

�, 1 ≤ � ≤ Ni. In this case, if pi
� = (ni

�1, . . . , n
i
�R), 1 ≤ � ≤ Ni, then the number

of units of the j-th good available from Si is Tij =
∑Ni

�=1 ni
�jr

i
�, for 1 ≤ j ≤ R,

1 ≤ i ≤ m. We now develop a PTAS for these instances, assuming that R is
fixed.

Reduction to the R-MMCK Problem: Assume that we know the opti-
mal cost, C, for our instance, then we reduce our problem to the minimum
R-dimensional binary multiple choice knapsack problem. Recall that for some
R ≥ 1, an instance of binary R-MMCK consists of a single R-dimensional knap-
sack, of size bj in the j-th dimension, and m sets of items. Each item has an
R-dimensional size and is associated with a cost. The goal is to pack a subset
of items, by selecting at most one item from each set, such that the total size of
the packed items in dimension j is at least bj , 1 ≤ j ≤ R, and the overall cost is
minimized.

For given values of C and ε, we define an instance for R-MMCK, such that
if there is an optimal solution for DSP with cost C, we can find a solution for
the DSP instance, whose cost is at most C(1 + ε). Note that C can be ‘guessed’
in polynomial time within factor (1 + ε), using binary search over the range
(0,

∑m
i=1

∑Ni

�=1 ri
�c(p

i
�)).

Formally, given the value of C, the parameter ε and a DSP instance with
bounded multiplicity, we construct an R-MMCK instance in which the knapsack
capacities in the R dimensions are bj = nj , 1 ≤ j ≤ R. Also, we have N =
∑m

i=1 Ni sets of items, denoted by Ai
�, 1 ≤ i ≤ m, 1 ≤ � ≤ Ni. Let K̂i

� be the
value satisfying ri

�c(p
i
�) ∈ [K̂i

�εC/N, (K̂i
� +1)εC/N), then the number of items in

Ai
� is Ki

� = min(K̂i
�, �N/ε�). The set Ai

� represents a sale of the package pi
� which

partially fulfills the order. In particular, the k-th item in Ai
�, denoted (i, �, k),

represents a sale of at most ri
� copies of pi

� such that c(i, �, k), the total cost
incurred by these copies, is in [kεC/N, (k + 1)εC/N). This total cost is rounded
down to the nearest integral multiple of εC/N ; thus, c(i, �, k) = kεC/N . The
size of the item (i, �, k) in dimension j, 1 ≤ j ≤ R, denoted by sj(i, �, k), is the
total number of units of the j-th good that we can obtain, such that the total
(rounded down) cost is c(i, �, k).

Approximating the Optimal Solution for R-MMCK: Given an instance
of R-MMCK, we ‘guess’ the set S of items of maximal costs in the optimal
solution, where |S| = h = min(m, � 2R(1−ε)

ε �). We choose the value of h such
that the resulting solution is guaranteed to be within 1 + ε from the optimal, as
computed below. Let E(S) be the subset of items with costs that are larger than
the minimal cost of any item in S, that is, E(S) = {(i, �, k) /∈ S | c(i, �, k) >
cmin(S)}, where cmin(S) = min(i,�,k)∈S c(i, �, k). We select all the items (i, �, k) ∈
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S, and eliminate from the instance all the items (i, �, k) ∈ E(S) and the sets Ai
�

from which an item has been selected. In the next step we find an optimal basic
solution for the following linear program, in which xi,�,k is an indicator variable
for the selection of the item (i, �, k) /∈ S ∪ E(S).

(LP (S)) minimize
m∑

i=1

Ni∑

�=1

Ki
�∑

k=1

xi,�,k · c(i, �, k)

subject to :
Ki

�∑

k=1

xi,�,k ≤ 1 for i = 1, . . . , m, � = 1, . . . , Ni

m∑

i=1

Ni∑

�=1

Ki
�∑

k=1

sj(i, �, k)xi,�,k ≥ nj for j = 1, . . . , R

0 ≤ xi,�,k ≤ 1 for (i, �, k) /∈ S ∪ E(S)

Rounding the Fractional Solution: Given an optimal fractional solution for
R-MMCK, we get an integral solution as follows. For any i, 1 ≤ i ≤ m and �,
1 ≤ � ≤ Ni let kmax = kmax(�, i) be the maximal value of 1 ≤ k ≤ Ki

� such that
xi,�,k > 0; then we set xi,�,kmax

= 1 and, for any other item in Ai
�, xi,�,k = 0.

Finally, we return to the DSP instance and take the maximum number of copies
of the package pi

� whose total (rounded down) cost is c(i, �, kmax).

Analysis of the Scheme: We use the next three lemmas to show that the
scheme yields a (1+ε)-approximation to the optimum cost, and that the resulting
integral solution is feasible.

Lemma 1. If there exists an optimal (integral) solution for DSP with cost C,
then the integral solution obtained from the rounding for R-MMCK has the cost
ẑ ≤ (1 + ε)C.

Lemma 2. The scheme yields a feasible solution for the DSP instance.

Lemma 3. The cost of the integral solution for the DSP instance is at most
ẑ + εC.

Combining the above lemmas we get:

Theorem 3. There is a polynomial time approximation scheme for DSP in-
stances with fixed number of goods and bounded multiplicity.

Consider an instance of CIP in fixed dimension, R. We want to minimize∑n
i=1 cixi subject to the constraints

∑n
i=1 aijxi ≥ bj for j = 1, . . . , R, and

xi ∈ {0, 1, . . . di} for i = 1 . . . , n. We can represent such a program as an instance
of DSP with m = n sellers, each offering a single package i of multiplicity di.
The number of units required from the j-th good is nj = bj .
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Corollary 2. The above is a PTAS for CIP in fixed dimension.

2.3 Unbounded DSP

Consider now the special case where the sellers have unbounded supply from
each of the goods. As before, we formulate our problem as a linear program,
however, instead of applying standard techniques to solve this program, we use
a fast combinatorial approximation scheme of [Fl-04] to get a fractional solution
that is within factor of (1 + ε) from the optimal; then, we round the solution to
obtain an integral solution that is close to the optimal.

Overview of the Scheme. Our scheme, called multi-dimensional cover with
parameter ε (MDCε), proceeds in the following steps.

(i) For a given ε ∈ (0, 1), let δ = �R · ((1/ε) − 1)�.
(ii) Let ci denote the cost of package i. Recall that N =

∑m
i=1 Ni is the total

number of packages. We number the packages by 1, . . . , N , such that c1 ≥
c2 ≥ · · · ≥ cN .

(iii) Denote by Ω the set of integer vectors x = (x1, . . . , xN ) satisfying xi ≥ 0
and

∑N
i=1 xi ≤ δ. For any vector x ∈ Ω:

– Let d ≥ 1 be the maximal integer i for which xi 	= 0. Find a (1 + ε)-
approximation to the optimal (fractional) solution of the following linear
program.

(LP ′) minimize
N∑

i=d+1

cizi

subject to :
N∑

i=d+1

aijzi ≥ nj −
N∑

i=1

aijxi for j = 1, . . . , R (1)

zi ≥ 0, for i = d + 1, . . . , N

The constraints (1) reflect the fact that we need to obtain from each of the goods
at least nj − ∑N

i=1 aijxi, units, once we obtained the vector x.

(iv) Let ẑi, d + 1 ≤ i ≤ N be a (1 + ε) -approximate solution for LP ′. We take
�ẑi� as the integral solution. Denote by CMDC(x) =

∑N
i=d+1 ci�ẑi� the value

obtained from the rounded solution, and let c(x) =
∑N

i=1 cixi.
(v) Select the vector x for which CMDCε(x) = minx(c(x) + CMDC(x)).

Analysis. We now show that MDCε is a PTAS for DSP with unbounded sup-
ply. Let Co be the optimal cost for DSP (in which we take an integral number
of units from each package).

Theorem 4. (i) If Co 	= 0,∞ then CMDCε
/Co < 1+ε. (ii) The running time of

algorithm MDCε is O(N�R/ε� · 1
ε2 log C), where C = max1≤i≤N ci is the maximal

cost of any package, and its space complexity is O(N).
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We use in the proof the next lemma.

Lemma 4. For any ε > 0, a (1 + ε)-approximation to the optimal solution for
LP ′ can be found in O(1/ε2R log(C · R)) steps.

Proof. For a system of inequalities as given in LP ′, there is a solution in which
at most R variables get non-zero values. This follows from the fact that the
number of non-trivial constraints is R. Hence, it suffices to solve LP ′ for the(
N−d

R

)
possible subsets of R variables, out of (zd+1, . . . , zN ). This can be done

in polynomial time since R is fixed. Now, for each subset of R variables we
have an instance of the fractional covering problem, for which we can find a
(1 + ε)-approximate solution using, e.g., the fast scheme of Fleischer [Fl-04].

Proof of Theorem 4: For showing (i), assume that the optimal (integral)
solution for the DSP instance is obtained by the vector y = (y1, . . . , yN ). If
∑N

i=1 yi ≤ δ then CMDCε = Co, since in this case y is a valid solution, and y ∈ Ω,
therefore, in some iteration MDCε will examine y. Suppose that

∑N
i=1 yi > δ,

then we define the vector x = (y1, . . . , yd−1, xd, 0, . . . , 0), such that y1 + · · · +
yd−1 +xd = δ. (Note that xd 	= 0.) Let C̃o(x) =

∑N
i=d+1 ciẑi be the approximate

fractional solution for LP ′. We have that x ∈ Ω, therefore

CMDC(x) − C̃o(x) ≤ Rcd, (2)

Let Co(x) be the optimal fractional solution for LP ′ with the vector x. Note that
Co, the optimal (integral) solution for DSP, satisfies Co > c(x) + Co(x), since
Co(x) is a lower bound for the cost incurred by the integral values yd+1, . . . , yN .
In addition, c(x) + CMDC(x) ≥ CMDCε . Hence, we get that

Co

CMDCε

≥ c(x) + Co(x)
c(x) + CMDC(x)

≥ c(x) + C̃o(x)(1 − ε)
c(x) + CMDC(x)

> (1 − ε)(1 − CMDC(x) − C̃o(x)
c(x) + CMDC(x) − C̃o(x)

)

≥ (1 − ε)(1 − CMDC(x) − C̃o(x)
δcd + CMDC(x) − C̃o(x)

)

The second inequality follows from the fact that Co(x) ≥ C̃o(x)(1 − ε), and the
last inequality follows from the fact that c(x) ≥ δcd.

Let f(w) = w/(a + w), then f(w) is monotone increasing. Define w =
CMDC(x) − C̃o(x), and a = δcd; then, using (2), we get that 1 − w/(a + w) ≥
1−Rcd/(δcd +Rcd) ≥ 1−ε. Thus, we get that Co/CMDCε ≥ (1−ε)2. By taking
in the scheme ε̃ = ε/2 we get the statement of the theorem.

Next, we show (ii). Note that |Ω| = O(N δ), since the number of possible
choices of N non-negative integers, whose sum is at most δ is bounded by

(
N+δ

δ

)
.

Now, given a vector x ∈ Ω, we can compute CMDC(x) in O(NR) steps, since at
most R variables out of zd+1, . . . , zN can have non-zero values. Multiplying by
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the complexity of the FPTAS for fractional covering, as given in Lemma 4, we
get the statement of the theorem.

Recall that DSP with unbounded supply is equivalent to CIP∞.

Corollary 3. There is a PTAS for CIP∞ with n variables and fixed dimension,
R, whose running time is O(nR/ε · 1

ε2 log C).

3 Deal Splitting with Price Tables
When R is fixed, DST can be solved in pseudo-polynomial time. In particular,

Theorem 5. The DST problem can be optimally solved in O(
∑

i mi · ∏R
j=1 n2

j ).

3.1 A PTAS for DST

We now describe a PTAS for DS with price tables and fixed number of goods. Our
scheme applies to any instance of DST satisfying the following properties. (P1)
Volume discount. If we increase the quantity bought from each of the goods, the
unit cost can only decrease; that is, let (a1

1, . . . , a
1
R), (a2

1, . . . , a
2
R) be two vectors

representing feasible sales for Si, for some 1 ≤ i ≤ m. If a2
j ≥ a1

j for all 1 ≤ j ≤ R,
then the unit costs corresponding to the two vectors satisfy c2

j ≤ c1
j for all j.

(P2) Dominance. If the vectors (d1
1, . . . , d

1
R), (d2

1, . . . , d
2
R) represent valid sales

(vis a vis the price table) for Si, then the vector max((d1
1, . . . , d

1
R), (d2

1, . . . , d
2
R))

also represents a valid sale for Si, where the maximum is taken coordinate-wise.
Table 1 (in the Appendix) satisfies the volume discount and the dominance
properties.

We note that the properties (P1) and (P2) are quite reasonable in commer-
cial scenarios, reflecting the desire of each seller to increase its part in the deal,
by selling more units from each of the goods. (P1) implies that as the quanti-
ties increase, the unit prices decrease; (P2) allows for more combinations of the
goods for the buyer.6 It can be shown (by reduction from Partition) that DST
is NP-hard even for instances that satisfy properties (P1) and (P2), already for
R = 1.

Assume that we know the optimal cost, C, for our instance. Then, for a given
value of ε > 0, we define an instance of R-MMCK, whose optimal solution in-
duces a solution for DST with cost at most (1 + ε)C. We then find an optimal
fractional solution for the R-MMCK instance. This gives an almost optimal frac-
tional solution for the DST instance. Finally, we use non-standard rounding to
obtain an integral solution whose cost is within factor (1+ε) from the fractional
solution. Note that C can be ‘guessed’ in polynomial time within factor (1 + ε),
using binary search over the range (0, mR · maxi,j max1≤�≤mi u�jc�j), i.e., we
allow to take the maximum number of units from the j-th good in the �th range,
for 1 ≤ � ≤ mi 1 ≤ i ≤ m, 1 ≤ j ≤ R.

6 It is easy to modify any price table to one that satisfies (P2). We elaborate on that
in the full version of the paper.
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Reduction to the R-MMCK Problem: Given the value of C, the parameter
ε and a DST instance with m price tables, we construct an R-MMCK instance
which consists of a single R-dimensional knapsack with capacities bj = nj , 1 ≤
j ≤ R, and m sets of items; each set Ai has mi · (m/ε)R items, 1 ≤ i ≤ m. Each
of the items in Ai represents a sale of the i-th seller, which (partially) satisfies
the order. Specifically, each item in Ai is an integer vector (i, �, k1, . . . , kR),
where � is the range in the i-th price table from which we choose the goods, and
0 ≤ kj ≤ m/ε is the contribution of the j-th good, bought from the i-th seller,
to the total cost. We take this contribution as an integral multiple of εC/m; for
each vector we find the maximal number of units of each good that can be bought
with this vector. If for some integer g ≥ 1, kjεC/m < gc�j ≤ (kj + 1)εC/m then
we buy g units from the good and round down the cost to kjεC/m. The cost
of an item (i, �, k1 . . . , kR) in Ai is given by c(i, �, k1 . . . , kj) = εC/m

∑R
j=1 kj .

We denote by sj(i, �, k1 . . . , kR) the maximum total number of units of the j-th
good that can be bought from Si at the cost kjεC/m, 1 ≤ j ≤ R.

Approximating the Optimal Solution for R-MMCK: Given an instance
of R-MMCK, we ‘guess’ the set S of items of maximal costs in the optimal
solution, where |S| = h = min(m, � 2R(1−ε)

ε �). Let E(S) be the subset of items
with costs that are larger than the minimal cost of any item in S, that is,
E(S) = {(i, �, k1, . . . , kR) /∈ S | c(i, �, k1, . . . , kR) > cmin(S)}, where cmin(S) =
min(i,�,k1,...,kR)∈S c(i, �, k1, . . . , kR).

We select all the items (i, �, k1, . . . , kR) ∈ S and eliminate from the instance
all the items (i, �, k1, . . . , kR) ∈ E(S) and the sets Ai from which an item has
been selected. In the next step we find an optimal basic solution for the following
linear program, in which xi,�,k1,...,kR

is an indicator variable for the selection of
an item (i, �, k1, . . . , kR) /∈ S ∪ E(S).

(LP (S)) min
m∑

i=1

mi∑

�=1

∑

k1,...,kR

c(i, �, k1, . . . , kR)xi,�,k1,...,kR

s.t.

mi∑

�=1

∑

k1,...,kR

xi,�,k1,...,kR
≤ 1 for i = 1, . . . , m

m∑

i=1

mi∑

�=1

∑

k1,...,kR

sj(i, �, k1, . . . , kR)xi,�,k1,...,kR
≥ nj , 1 ≤ j ≤ R

0 ≤ xi,�,k1,...,kR
≤ 1 for (i, �, k1, . . . , kR) /∈ S ∪ E(S)

Rounding the Fractional Solution: Given an optimal fractional solution for
R-MMCK, we now return to the DST instance and get an integral solution as
follows. Suppose that we have D = D(i) fractional variables for some set Ai,
xi,�1,k11,...,k1R

, . . . , xi,�D,kD1,...,kDR
, then we buy from the i-th seller max1≤d≤D

sj(i, �d, kd1, . . . , kdR) units of the j-th good, 1 ≤ j ≤ R.
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3.2 Analysis

We now show that the above scheme yields a (1 + ε)-approximation for the
optimum cost for DST, and that the resulting (integral) solution is feasible.

Lemma 5. If there exists an optimal (fractional) solution with cost C for the
R-MMCK instance, then there exists a (fractional) solution with cost at most
(1 + ε)C for the DST instance.

Proof. For any ε′ > 0, in any fractional solution for R-MMCK with ε′, the cost
of each of the selected items (i, �, k1 . . . , kR) in the DST instance is at most
(c(i, �, k1 . . . , kR) + Rε′C/m)xi,�,k1...,kR

. Since
∑mi

�=1
∑

k1,...,kR
xi,�,k1,...,kR

≤ 1,
for all 1 ≤ i ≤ m this yields an increase of at most Rε′C/m for the seller Si. By
taking ε′ = ε/R, we get that the overall increase in the cost is Rε′C = εC.

Lemma 6. The integral solution obtained from the fractional solution for LP(S)
yields a ratio of at most (1 + ε) to the optimal cost for the DST instance.

Proof. Let x∗ be an optimal (integral) solution for the linear program LP(S),
and let S∗ = {(i, �, k1, . . . , kR)| x∗

i,�,k1,...,kR
= 1} be the corresponding subset of

items. As in the proof of Lemma 1, we may assume that |S∗| ≥ h, otherwise we
are done. Let

S∗ = {(i1, �1, k11, . . . , k1R), . . . , (ir, �r, kr1, . . . , krR)},

such that c(i1, �1, k11, . . . , k1R) ≥ · · · ≥ c(ir, �r, kr1, . . . , krR), for some r > h,
and let

S∗
h = {(i1, �1, k11, . . . , k1R), . . . , (ih, �h, kh1, . . . , khR)}.

Let σ =
∑h

t=1 c(it, �t, kt1, . . . , ktR) be the total cost of the items in S∗
h. Then, for

any item (i, �, k1, . . . , kR) /∈ (S∗
h ∪ E(S∗

h)), c(i, �, k1, . . . , kR) ≤ σ/h.
We use below the notation sj(d) when referring to sj(i, �d, kd1, . . . , kdR). Let

c(max1≤d≤Dsj(d)) be the total cost of buying the j-th good in the entry of the
price table where we obtain max1≤d≤Dsj(d) units form good j, 1 ≤ j ≤ R. The
heart of the proof is the following claim.

Claim 1. For any 1 ≤ i ≤ m, the cost of buying from the i-th seller satisfies

R∑

j=1

c(max1≤d≤Dsj(d)) ≤
D∑

d=1

c(i, �d, kd1, . . . , kdR).

Proof. By our rounding technique, the vector giving the amounts bought from
Si from each of the goods satisfies (max1≤d≤Ds1(d), . . . , max1≤d≤DsR(d)) ≥
(s1(i, �d, kd1, . . . , kdR), . . . , sR(i, �d, kd1, . . . , kdR)), for all 1 ≤ d ≤ D. By the
volume discount property, the total cost of the rounded solution satisfies
c(max1≤d≤Ds1(d), . . . , max1≤d≤DsR(d)) ≤ ∑D

d=1 c(i, �d, kd1, . . . , kdR).

Let z∗ denote the optimal (integral) solution for the R-MMCK instance.
Denote by xB(S∗

h) a basic solution for LP(S), and let xI(S∗
h) be an integral
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solution obtained by setting xi,�d,kd1,...,kdR
= 1 for all 1 ≤ d ≤ D. From Claim 1,

we can bound the total cost of the solution output by the scheme, ẑ, by comparing
z∗ to the cost of xI(S∗

h). In particular,

z∗ ≥
m∑

i=1

mi∑

�=1

∑

k1,...,kR

c(i, �, k1, . . . , kR)xB
i,�,k1,...,kR

(S∗
h)

≥
m∑

i=1

mi∑

�=1

∑

k1,...,kR

c(i, �, k1, . . . , kR)xI
i,�,k1,...,kR

(S∗
h) − δ

where δ =
∑

(i,�,k1,...,kR)∈F c(i, �, k1, . . . , kR), and F is the set of items for which
the basic variable was a fraction, i.e., F = {(i, �, k1, . . . , kR)| xB

i,�,k1,...,kR
(S∗

h) < 1}
Assume that in the optimal (fractional) solution of LP (S∗

h) there are L tight
constraints, where 0 ≤ L ≤ m + R, then in the basic solution xB(S∗

h), at most
L variables can be strictly positive. Thus, at least L − 2R variables get an
integral value (i.e. ‘1’), and |F | ≤ 2R. Note that, for any (i, �, k1, . . . , kR) ∈ F ,
c(i, �, k1, . . . , kR) ≤ σ/h, since F ∩ (S∗

h ∪ E(S∗
h)) = ∅. Hence, we get that z∗ ≥

ẑ + 2Rσ
h ≥ ẑ + 2Rẑ

h ≥ ẑ
1−ε .

Now, from Lemma 5, we have (1+ε)2-approximation for DST, and since C is
guessed within factor 1+ ε, we get a (1+ ε)3-approximation. By taking ε′ = ε/4
we get the statement of the lemma.

Lemma 7. The integral solution obtained by the rounding is feasible for DST.

Combining the above lemmas we get:

Theorem 6. There is a polynomial time approximation scheme for any DST
instance satisfying properties (P1) and (P2), with fixed number of goods.
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A Deal Splitting with Price Tables - An Example

Suppose that R = 3 and the goods are printers, cartridges and paper boxes.
Table 1 gives the possible combinations of goods for the seller S1, specified by
amounts and unit costs, in 3 price ranges (i.e., m1 = 3).
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Table 1. A price table for multiple (3) goods

Price range Printers Cartridges Paper
1 (0, 2, 300) (0, 5, 30) (0, 9, 15)
2 (3, 5, 280) (7, 9, 25) (10, 100, 10)
3 (6, 20, 250) (10, 50, 23) (10, 100, 10)

Thus, if we buy 2 printers or less, the unit cost is 300, whereas the unit cost
for buying 3 ≤ p ≤ 5 printers is 280. A valid sale for S1 is the combination
(1, 0, 7), in which we obtain a printer and 7 paper boxes. The cost of this sale,
which corresponds to the first price range, is 405.
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