
SoftContract: Model-Based Design of Error-Checking
Code and Property Monitors

Luciano Lavagno1, Marco Di Natale2, Alberto Ferrari3, and Paolo Giusto4

1 Cadence Berkeley Labs, Berkeley, CA
2 Scuola Superiore Sant’Anna, Pisa, IT

3 PARADES, Roma, IT
4 Cadence Automotive Team, San Jose, CA

Abstract. This paper discusses a model-based design flow for requirements in dis-
tributed embedded software development. Such requirements are specified using
a language similar to Linear Temporal Logic which allows one to reason about
time and sequencing. They consist of assertions which must hold for a design,
given some assumptions on its environment. They can be checked both during
simulation and, at least for a subset, even on the target. Of course the guarantee of
correctness is ensured only as long as the assertion express the complete design
intent, and the simulation stimuli cover all possible cases. While this is generally
not true, the simulation-based approach is a practical manner to ensure correct-
ness with a good degree of confidence, while avoiding the intricacies of software
formal verification. Assertions related to deadline satisfaction can also be checked
statically by a schedulability analysis tool. The key contribution of the paper is the
extension to the embedded software domain of assertion-based verification, and
the automated generation of property-checking code in multiple target languages,
from simulation, to prototyping, to final production.

1 Introduction

Today, car manufacturers provide specifications to sub-system suppliers, who design
software and hardware subsystems that may include mechanical parts (e.g. injectors and
throttle bodies). In general, volumes are large, cost and dependability being major driving
forces. Once the sub-systems are provided back to the car manufacturers, they have to be
integrated on the car and then the overall system must be tested. If the car manufacturer
detects errors during the extensive testing period, which includes driving under extreme
conditions, a chain of engineering changes is initiated that may (and it often does!) cause
major delays in the design. Such problems are traceable for the most part to software
errors, because of incorrect understanding of the specifications and unpredictable side
effects when the subsystems are interconnected. The loop is particularly painful since
testing is done when the car is almost ready for its launch on the market.

This paper addresses directly this issue, and discusses a model-based design flow
for properties in distributed embedded software design, thus extending the traditional
accepted model-based design paradigm. The proposed methodology supports the defi-
nition of requirements on the performance and dependability of a real-time distributed

LNCS 3297, pp. 150–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,



SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 151

system, as well as the validation that they are met in the fully implemented system.
In this context, we first consider applications of automotive electronics that set strin-
gent requirements in particular on dependability attributes such as safety, availability,
maintainability, and also confidentiality, due to the complexity of its design chain.

Current model-based design flows, such as those based on Ascet-SD [1] or Simulink
[2] specifications and Real-Time Workshop Embedded Coder [2] or TargetLink [3]
implementations, emphasize automated transformations of specifications early in the
design cycles, therefore reducing the risk of incorrect implementations. Yet they neglect
automated transformations of properties. The basic tenet of the proposed novel flow
is that both functional (e.g. relating I/O values) and non-functional (e.g. specifying
performance requirements) properties, must be stated formally at the highest possible
level in the flow, immediately deriving them from the informal requirements captured
in a natural language. The traditional mechanism for representing functional and some
non-functional properties, e.g. I/O rates, is the definition of a testbench, which verifies
operationally that the properties are satisfied. This method is not efficient, because it is
too implicit, non-declarative and partial.

Constraints that a design must satisfy are decomposed, checked and propagated along
the design flow, whether it uses a top-down, bottom-up or V-cycle path including spec-
ification, implementation and integration. In particular, propagation entails automated
transformation from one domain to another when crossing levels of abstraction (e.g.
temporal logic formulae translated into simulation monitors and then into on-line error-
checking software). Decomposition and checking, on the other hand, enable a clean
design by contract between different parties involved in different design levels (e.g.
system architect and software designer).

The goal of contract-based design is speeding up dramatically the design and im-
prove the quality of embedded systems. The former is achieved by enabling a clear
communication of requirements between various parties involved in the specification,
design and validation of embedded systems. The latter is obtained by describing and
automatically tracking satisfaction of constraints throughout the design flow, including
post-production and on-line (run-time) checking, in a formal way.

1.1 Previous Work

Past work in this area, which traditionally belongs to the formal and semi-formal veri-
fication methods, can be identified both on the hardware and on the software side. On
the hardware side, assertion-based verification is emerging as a promising evolutionary
method to introduce formal techniques to specify and check properties starting from the
Register Transfer Level, as opposed to merely checking equivalence between optimized
and unoptimized designs or between layout and netlist. Recent standardization efforts,
such as the PSL proposal by Accellera [4], aim at defining languages that are close to the
way in which designers are used to model, e.g. Verilog and VHDL, and which provide
a full range of options including full temporal logic, both in untimed (e.g. every request
shall eventually be granted) and timed (e.g. every request shall be granted within 15 clock
cycles) forms. The Rosetta work [5] also aimed at defining a very generic mechanism,
based on sets and logics, to reason about properties of hardware designs.



152 L. Lavagno et al.

On the software side, Hoare triples have been classically used to describe the pre-
conditions that must hold in order for a statement to be executed correctly (“assump-
tions”, in the terminology of this paper) and the post-conditions that are guaranteed to
hold after the execution of the statement (“assertions”, in the terminology of this paper).
However, their use has been typically limited to imperative languages, and their full
power in general required the availability of a theorem prover in order to check that the
post-condition is indeed implied by the pre-condition and the statement logic. In this
context, we are pragmatically more interested in defining properties that are useful within
a specific domain, written in a user-friendly language, and easy to check by simulation
or on a prototype, rather than being used to formally prove the correctness of a design.
More recently, the Object Management Group has standardized the Object Constraint
Language, which has similar goals, i.e. to precisely state requirements that objects, sce-
narios and software systems modeled in the Unified Modeling Language must satisfy.
The OCL, however, is very expressive, and suffers from the lack of a standard executable
semantics for the UML (which should be added in the upcoming UML 2.0 standard,
also from the OMG). Thus it becomes suitable for automated checking and decompo-
sition only if an application-dependent subset is chosen by a specific UML profile. For
example, the proposed UML Profile for Schedulability, Performance and Time [6] (SPT)
defines a subset of the OCL that can be used for representing deadlines, execution times,
usage of shared resources and so on. While subsetting is not necessarily a disadvantage,
since it improves expressiveness, still having to learn several sub-dialects of the same
language for different tasks is more difficult than using, as in this proposal, a specially
tailored one that is suitable for all the verification tasks in the chosen application area
(real-time software implementation and verification).

Before the SPT standardization effort UML had been enriched with non-standard
stereotypes and timing notations in order to provide ground for a-priori verification of
timing constraints. Some examples are the MAST project [7] and the work by Sak-
sena [8]. The latter originated from research on the ROOM methodology. It added a
simple formalism for timing constraints to the standard port-based ROOM components.
The proposed methodology and toolset allowed for the automatic generation of embed-
ded SW and a-priori guarantees on the schedulability properties of components.

Another notable effort aimed at providing an integrated environment for expressing
functional and non-functional constraints is the HRT-HOOD methodology for hierar-
chical object-oriented design [9]. HRT-HOOD components (objects) are characterized
by timing attributes and constraints, which can be analyzed for schedulability at design
time. In [10] Cornwell proposed the use of the Z formal language for expressing the func-
tional behavior of HRT-HOOD components, thus allowing for the automatic generation
of Ada95 code.

Finally, and most important, Real-Time Logic [11] is probably the best known for-
malism among real-time systems researchers for expressing timing constraints. In [12]
Mok proved it amenable to early run-time checking of timing constraints. The SARTOR
proposal for an integrated environment [13] makes use of RTL, together with AND/OR
dataflow graphs and Modecharts for specifying the control, dataflow and concurrency
domains of embedded applications. The integrated toolset aims at providing automatic
generation of code and a priori timing analysis (guaranteed satisfaction) of timing con-



SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 153

straints, but it lacks any kind of automated transformation from one domain to the other,
and it does not.

In this work we use the Logic Of Constraints [14], which is a language reminiscent of
various temporal logics (CTL, LTL and RTL) and which has been developed specifically
to reason about various quantitative aspects of an embedded system (not just time). LOC
is useful for our purposes, because it can be translated into simulation monitors for on-
the-fly checking, rather than requiring full-fledged model checking, which suffers from
inherent state explosion problems. Moreover, its semantics is based on sequences of
events over signals, and it is thus easy to use for designers who are familiar with tools such
as Simulink. This proved to be a key advantage with respect to more classical temporal
logics such as CTL and LTL, which were designed more with protocol verification in
mind. LOC moreover allows one to associate and reason about any annotation, not just
time but also e.g. energy or memory, with events in the system.

1.2 Terminology and Conceptual Model

A design is a modeled piece of hardware and/or software, which must be implemented
as a result of the design activities. A design can be represented as a structure, i.e. an
interconnection of components (also called modules or blocks) connected via nets to each
other’s ports (mechanisms to communicate between blocks, such as shared variables or
messages). Each component, and thus eventually the whole design, may have a functional
model, describing how its output ports relate over time with its input ports. Both structure
and functionality are described using any appropriate modeling language such as C,
StateCharts, Simulink, Verilog, VHDL, and so on.

An event is an update of value (not necessarily a change of value, i.e. the updated
value may be the same as the old one) of a port of a module of the design. For exam-
ple, the arrival of a value from a sensor, the decision to change the state of a design
component, or the generation of a command to an actuator are all events. Each event
is annotated with a time of occurrence, and optionally with other quantities (such as
energy) for which constraints can be specified. Although our definition of design is in-
dependent of the chosen Model-Of-Computation (MOC), for the sake of this paper we
focus on the Discrete Event (DE) MOC for functional and performance modeling. DE is
a particularly amenable to represent control and RT automotive applications, since it is a
sort of a least common denominator between other MOCs which can be used to embed
dataflow networks, Simulink networks, Hardware Description Languages, StateCharts
and synchronous languages into a common semantic framework.

Events can only occur on explicitly defined ports of components (ports are the mech-
anisms through which blocks communicate), or on specifically exposed viewports.View-
ports are internal aspects of the block, like state for example, that the designer chooses
to expose about their internal behavior, which is otherwise hidden. This black-box se-
mantics is essential for efficient implementation and decomposition, since prematurely
exposing information about internal aspects of a design leads to poor portability, modifi-
ability, re-usability, verifiability and optimizability. Black-boxing also improves security
of a company’s Intellectual Property, by hiding implementation details.

The environment of a design is a part of the whole system which cannot or need
not be implemented by the considered team (e.g. the engine for the electronic control



154 L. Lavagno et al.

unit implementors, or the sensor sample conditioning filters for the control algorithm
implementors). In other words, this paper considers a design flow in which the top-level
model is (recursively) decomposed into sub-models, whose design must be carried out by
different teams or individuals, possibly belonging to different companies. Unambiguous
communication between these teams or individuals, by means of assertions on the design
that they must guarantee by implementation and assumptions on the environment that
they can make, is one of the key advantages of this proposal over the state of the art.

A property is LOC formula, involving events and their annotations (e.g. time of
occurrence), which must be true, and which can play different roles depending on the
context. An assertion is a property which must be guaranteed to hold by a design. For
example, the statement that the latency between an input and an output event must be
less than 0.1 msec is an assertion. An assumption is a property which limits the set of
environment behaviors to be considered, and thus exhibits some freedom that can be
exploited by knowing that some cases can never occur. For example the statement that
the maximum rate of arrival of input events is 1 per msec is an assumption.

Quite often, a requirement on a design component is expressed as a pair including:
an assertion that is assumed by users of the component to hold, and guaranteed by its
implementer to hold, and an assumption that is assumed by the implementer of the
component to hold, and must be guaranteed by its users to hold, as illustrated by the
following simple example. First of all, the designer in charge of assigning priorities to
tasks running on a real-time executive can make assumptions on the maximum rate of
arrival of events triggering them and on their WCET, and must satisfy assertions on
the priority ranking (e.g. based on Rate Monotonic Analysis). Then the team who is
in charge of implementing the tasks can make assumptions on the maximum rate of
arrival of events and on priorities, and must satisfy assertions on their WCET. Finally,
the integrator of the control unit in the car can assume priorities and WCETs and must
satisfy assertions on event arrival rates.

A monitor finally is a component of a design whose main task is to verify that an
assumption or an assertion on another component or set of components is satisfied.
Monitors are executable checkers that can be used in simulation, prototyping and pro-
duction code in order to ensure that the design contracts are respected. A key aspect
of the proposed design methodology is the ability to derive various kinds of monitors
for the various stages (simulation, formal verification, prototyping, production) from
a single specification (model-based contract design). This ensures a consistent flow of
information between various phases of design, verification and usage of components of
an embedded system.

2 Design Flow

In the proposed design flow, the requirements on a design are first specified as assertions
which must hold, given some assumptions on its environment. In order to be able to
define such assertions and assumptions, one must have defined a skeletal structure for the
design, at the very least the I/O ports with which it communicates with its environment.
Assertions are checkable only when the functionality of the design has been specified.
Some of them, e.g. those related with timing, are checkable only when the functional



SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 155

model has been annotated with performance information, so that the time information
attached to events reflects the effects of the underlying architecture.

These requirements can be used both bottom-up and top-down. Bottom-up, they
clearly specify the contract that the implementer promises to obey with respect to the
users of a component. Assertions are guaranteed provided that assumptions are satisfied
(e.g., this piece of software written in C computes the response with a precision of 1%
provided that “int” variables have at least 32 bits). Top-down they specify requirements
that the implementer must obey, and state the assumptions he can make on the users of
the component.

An essential aspect of a bottom-up design flow is the composition of assertions
on individual components, while checking that the used components guarantee each
other’s assumptions. A full-fledged compositional proof methodology would require
theorem proving, an expensive proposition today even for safety-critical applications.
More practically, monitors can be used to trace the requirements throughout the lifetime
of a component. This is already common practice for safety-critical embedded software,
e.g. in the automotive industry. In this case, code devoted to verifying that the input values
received by a piece of code match the assumptions made by the designer of that piece of
code, and that only legal values are produced as a result of the internal computations, can
constitute a very significant portion of the total software content of a design. For example,
governments have imposed regulations for the automotive industry that limit the level of
chemical emissions from car engine exhausts. In order to comply with these regulations,
a vehicle must satisfy the European On Board Diagnostics, a standard which imposes
a set of properties of the system that must hold and are checked at run-time. This is
implemented through a set of monitors allocated to the different electronic control units,
which check relevant values of the state of the software (variables). These monitors are
typically coupled with other components that implement recovery and logging in case
of violations.

One of the innovations of our flow is, as discussed above, the use of the very same
description of an assertion or an assumption (quite often they come in pairs, describing
the conditions under which a given property is guaranteed to hold) for the various phases
of the design. This is essential in order to ensure precise contractual obligations between
parties in the system design flow. It also dramatically eases handoff points between teams
or companies in the design flow, by making requirements explicit and formal, and speeds
up implementation of the final code, by automatically generating the required monitors
in the given context, from simulation to run-time.

In top-down design, on the other hand, requirements on the global I/O of the system
are decomposed into sub-properties that must hold for each component of the design.
The collection of sub-properties on other components, not under design by a specific
team, together with assumptions on the global top-level environment, become the set
of assumptions that an implementer can make on his component’s environment, as
illustrated in Section 3.

2.1 Property Specification Language

Logic Of Constraints [5] is a formalism designed to reason about execution traces. It
consists of basic relational, Boolean and implication operators, with additions that make



156 L. Lavagno et al.

it possible to specify system level quantitative functional and performance constraints
without compromising the ease of analysis. The basic components of an LOC formula
are: events (defined above), the index variable i and annotations:

1. Annotation: each event may be associated with one or more annotations.Annotations
can be used to denote the time, power, area, or any value related to the event. E.g.,
Display[i − 5].t denotes the t annotation (by convention time, while annotation v
represents its value) of the i − 5-th event of the Display port.

2. Index variable: LOC permits only one event index variable i, a positive integer,
in a given expression (the limitation helps ensuring checkability in bounded mem-
ory). Index expressions of events may be any arithmetic operations involving i and
constants, e.g. Display[i − 5], Stimuli[i].

LOC can be used to specify some very common and useful real-time performance
constraints:

– rate: E.g. “Displays are produced every 10 time units”:
Display[i].t − Display[i − 1].t == 10

– latency: E.g. “Display is generated no more than 25 time units after Stimuli”:
Display[i].t − Stimuli[i].t <= 25

– jitter: E.g. “every Display is no more than 4 time units away from the corresponding
tick of the real-time clock with period 10”:

Display[i − 1].t − (i) ∗ 10 <= 4

– throughput: E.g. “at least 100 Display events will be produced in any period of 1001
time units”:

Display[i].t − Display[i − 100].t <= 1001

– burstiness: E.g. “no more than 1000 Display events will arrive in any period of 9999
time units”:

Display[i].t − Display[i − 1000].t > 9999

– maximum rate of change: E.g. “the (discrete) derivative of the value of S shall not
exceed 10”:

(S[i].v − S[i − 1].v)/(S[i].t − S[i − 1].t) < 10

For a LOC formula to be formally proven for a design, it needs to hold for all possible
traces and all values of the index i, as it appears in the index expressions of the formula.
For a formula to be checked for a particular simulation trace, it needs to hold for that trace
only and all values of i. In the rest of the paper we are concerned only about checkability.

Both assertions and assumptions are expressed as LOC formulae to be checked.
Their respective violation, however, is the sign of a breach of the contract by different
parties (roughly speaking, if an assertion formula is not checked, i.e. it is violated, then
it is my fault, while if an assumption is violated, then it is somebody else’s fault). LOC
formulae are, by construction, easy to check during simulation. It is also possible to
generate code that checks them at runtime on a prototype. It may even be possible to
check them at runtime on the real system, if their satisfaction is vital to the correct
operation of the system. Logging these data on the target system is very useful in order



SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 157

to enable maintenance personnel to determine the state of the car and of its components,
and to decide whether some intervention is required (“design for serviceability”). In
addition, violations of assumptions or assertions can be used at runtime to trigger driver
notifications and to enable default “safe” behaviors of the embedded controllers.

2.2 Target Language Translations

The properties specified using the language above can be translated automatically, into:

– Off-line database query code, which checks that both assertions and assumptions
are satisfied on a given set of simulation traces. Probes are automatically generated
and instantiated in order to collect enough information to answer the queries corre-
sponding to all the properties being checked. The example described in Section 3
was checked in this off-line mode of design by contract.

– On-line monitor modules written in whatever simulation language is used for design
verification. These monitors emit error messages when the assertion or assumption
is violated, as well as a warning at the end of the simulation if an assertion or
assumption is neither satisfied nor violated.

– On-line code to be integrated within the software tasks, to which the ports referenced
in the property text belong. Integration of the code into specific “supervisory tasks”,
running under RTOS control and having access to local variables of other tasks, can
also be generated in a second phase, for properties that refer to ports of components
mapped to different tasks. This code can be used in a prototype, for debugging in
the field, at least for that portion of property-generated code that is not intrusive
and does not cause excessive load for the target CPU. Note that taking a consistent
snapshot of the state of a distributed system may be very expensive, or even just
impossible. All properties selected for runtime checking on the target must thus be
local, with respect to the mapping onto the chosen architecture.

– Off-line and on-line hardware-assisted property checkers, using in-circuit debuggers
or on-chip real-time tracers. The hardware resources provided by the these devices
strongly limit the number and complexity of the properties that can be concurrently
checked.

3 A Design Example

For the sake of illustrating our proposal, we describe an example of a safety critical
application, typically implemented on a distributed multi-cluster ECU architecture. The
application is a simplified version of an Adaptive Cruise Control (ACC), shown in
Figure 1. TheACC includes “regular” cruise control features, but must also automatically
decrease the speed of the vehicle, if an obstacle is detected at a distance less than the
safety distance threshold. In this case, actuation signals are automatically sent to the
brake system and to the engine control system.

The functional model that we used includes models of the driver, the radar system, the
engine, and the brake. The ACC algorithm determines the gas pedal position (therefore
replacing the driver) based upon the vehicle speed, the distance between the vehicles,
and their relative speed. The control strategy is defined by the ACC Finite State Machine.



158 L. Lavagno et al.

Fig. 1. The adaptive cruise control application

Based on choices from the driver, it decides which position of the gas pedal is provided
to the engine control. The position may be determined either automatically, if the FSM
is in the state “ACCon”, or by the driver.

3.1 Some Simple Properties

An important safety feature of our algorithm, that can be used to test the contract-based
design flow, is that the current value of the gas pedal is retained in case the new position
determined automatically is very different (for example due to data corruption) from the
current one. This is expressed by the following LOC property:

define limit_change (comp, act, thr) {
abs (comp[i].v - act[i-1].v) > thr ->
act[i].v == act[i-1].v }

instantiated as the following requirement (assumption plus assertion):

assume FSM.State[i].v == ACCon
assert limit_change (FSM.GasPedalPositionFSM,
FSM.GasPedalPositionACC, FSM.threshold);

Here FSM is the name of the block whose inputs and outputs are used in the property,
state is a viewport exposing its state, GasPedalPositionACC is the output of
the automated cruise control block (and input to the FSM block) which determines the
required position to decelerate smoothly when required, GasPedalPositionFSM is
the output of the FSM block which goes directly to the actuator, and threshold is a



SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 159

parameter which must be tuned on the prototype car in order to provide a smooth and
safe driving experience. Finally, -> denotes logical implication.

Another assertion that was checked in this design, using the LOC database monitors,
is the following: if the distance between vehicles goes below a given threshold, then
within 30 seconds the distance will be again above threshold.

define rate (g, thr, tol) {
abs (g[i].t - g[i-1].t) < thr + thr * tol and
abs (g[i].t - g[i-1].t) > thr - thr * tol) }

define slowdown (dist, thr, delta) {
dist[i-delta].v < thr -> dist[i].v >= thr; }

assume ACCCore.Speed - Radar.OtherVehSpeed < 10
and rate (ACCCore.speed, 0.001, 0.01)

assert slowdown (ACCCore.distance,
ACCCore.threshold, 30 / 0.001);

Here we assume that the difference between vehicle speeds is less that 10m/s, other-
wise, the only safe option for the driver is to brake by himself (this is not a drive-by-wire
system, only an enhanced cruise control). Here ACCCore.speed is the speed of the
current vehicle (an input to the ACC controller ACCCore), Radar.OtherVehSpeed
is the speed of the other vehicle, as measured by theRadar,distance is their distance
and threshold is a parameter defining the distance at which the speed must begin to
be reduced. Time is measured here in terms of discrete controller invocation intervals,
which is consistent e.g. with the Simulink semantics, and assumptions on the rate es-
tablish the relationship between invocations and time. For example, since the ACCCore
model is invoked once every millisecond and the tolerance tol on the invocation rate is
1%, the index difference 30 / 0.001 refers to a time interval of 30 seconds plus or minus
1%.

Debounce assertions are important to correctly evaluate Boolean signals produced
by the environment. When a switch is pressed, the output signal oscillates until it reaches
a new stable value. The debouncing functionality guarantees that only the final value
of the switch signal is used as input value. In our example, the switches that turn on
and off the cruise control and the adaptive feature must be debounced before evaluation.
The requirements to debounce a switch in a time window of 200ms can be expressed as
follows:

event EdgeSwitch { Switch[j-1].v!=Switch[j].v }
assert EdgeSwitch[i+1].t-EdgeSwitch[i].t > 0.2;

This example uses an “event definition” facility of LOC, which allows one to define
new events based on the occurrence of logic and relational conditions on existing events.

3.2 Assertion/Assumption Decomposition

We will now consider an example of how decomposition of assertions into pairs of
assumptions and assertions can be used to define and verify the interface between two
teams or companies working on two portions of the system. The adaptive cruise control
must guarantee a certain degree of comfort during cruise. For instance the vehicle should
not accelerate or decelerate, after reaching the cruising speed, by more than a 0.5 m/s2,
which can be expressed with the following assertion:



160 L. Lavagno et al.

assert FSM.State[i].v == ACCon =>
abs(Acceleration[i].v) < 0.5;

The overall system, as shown in Figure 1, is decomposed into ACC, Engine control
and Brake control. The ACC provides the gas pedal position to the Engine control, which
translates it to a request for a given amount of torque. The Engine finally produces the
torque. The previous assertion, checked at run-time, would inform the designer if a
violation on the vehicle acceleration occurred, but would not explain if this was due to
a design error of the engine control or of the ACC control. If the two control units are
built by different sub-system makers, it would be problematic to pinpoint the cause of
the error in the design.

Following our methodology, the assertion should be decomposed into three parts:

1. an assertion on the torque requested by the ACC,
2. an assertion on the torque provided by the Engine control and the engine, and
3. an assertion on the relation between vehicle acceleration and torque.

The third assertion is always satisfied in a given gear, since it checks the inputs and
outputs of a mechanical system, that is the powertrain of the vehicle. In this case, a
torque smaller than 20 ensures an acceleration smaller than 0.5. The first assertion on
the behavior of the ACC can thus be expressed as follows:

assert FSM.State[i].v == ACCon =>
abs(ACC.TorqueRequest[i].v) < 20;

The Engine control unit maker is using the same property as an assumption, instead
of an assertion, checking that the torque request, when the cruise control is on, is limited
as specified and agreed. The second assertion thus is expressed as follows:

assume FSM.State[i].v == ACCon
and abs(ACC.TorqueRequest[i].v) < 20

assert abs(Engine.Torque[i].v) < 20;

A violation of the vehicle acceleration is now shown by different checkers, and the
sub-system causing the violation is easily found, even before system integration.

More complex comfort assertions can be efficiently added to the design, such as
checking the jerk (i.e. the rate of change of the acceleration) of the vehicle, hence the
rate of change of the generated torque.

The design described here was created using the Cadence Automotive System De-
sign Platform (also known as SysDesign). Plant models were imported from Simulink
via a special Real-Time Workshop target. The Engine control model along with the task
structure was imported from Ascet-SD [1], a model based design environment for al-
gorithmic development, with code generation capabilities for both prototype and target.
The definition of the target multi-ECU architecture, the task allocation to the ECUs, the
bus modeling and the simulation were performed in SysDesign.

Properties were checked automatically using a tool which compiles the LOC formula
into a fragment of C code which reads the SysDesign simulation database and checks
the validity of the formula off-line over a simulation run.



SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 161

3.3 Lessons Learned

Although this project is currently at the research stage, and it has not been applied to
any real-life example, its motivations stem from the observation of the current state of
the art of model-based design in the automotive world, and of worldwide trends in the
car electronics industry.

The key observation that we made during both the experiment described in this sec-
tion, and during previous attempts at defining a model-based design flow for properties,
is that the language used is extremely important, i.e. it is not just syntactic sugar. While
this work is the latest (and certainly not the last) one in a long stream of property-based
formal modeling approaches, we believe that it is unique in that the language used fits
very well the working habits of designers that are supposed to use it. The notions of
events, sequences and indices are familiar to everyone involved in discrete control, im-
plemented on a computer. Hence the Logic Of Constraints is easy to use, much easier
than forms of temporal logics or higher-order logics. It is, however, powerful enough
to express properties of interest for a significant example, and we could easily generate
efficient code for checking it both on-line and off-line.

In the future, practical application of the methodology and language proposed in
this paper will require the definition and implementation of modeling mechanisms that
are even more user-friendly, e.g. taking the form of a Simulink block-set. It will also
require cooperation with companies and groups that are expert in the area of data logging
and monitoring, and of parameter tuning, since they have the capability to extract the
atoms on which the LOC is built, and hence are essential in order to efficiently check
properties both on-line and off-line on the target system, both in the prototyping and in
the production phases.

4 Conclusions

This paper proposes a model-based design flow for assertions and assumptions that
together ensure the correctness, both functional and non-functional, of a complex em-
bedded system. The paper uses examples, terminology and scenarios from the auto-
motive software domain, but the flow is applicable to any safety-critical mixed hard-
ware/software system. Assertion-based verification is becoming a cornerstone of hard-
ware design. What is new in the case of safety-critical embedded systems is the extension
to the software domain of assertion-based verification, and the automated generation of
code in multiple target languages, from simulation database queries, to simulation mon-
itors, to prototyping, to final production. This leads to:

– faster time-to-market, by reducing design iterations,
– real contract-based design between specifiers (system architects), implementors

(software designers) and integrators, by allowing
• fast verification by the sub-system providers that the assertions made by the

architect on sub-systems are satisfied and
• delivery of partial assumptions and assertions from sub-system providers to

system integrators for earlier verification of end-to-end assertions.



162 L. Lavagno et al.

– faster implementation, thanks to automated target code generation for assumption
and assertion checking,

– safer implementation, due to the formal property specification mechanism.

In the future we are planning to explore the use of assertions and assumptions for
automated testbench generation, e.g. by constraint solving.

References

1. Ascet-SD, E.: (2004) http://www.etas.de.
2. Simulink, T.M., StateFlow: (2004) http://www.mathworks.com.
3. dSPACE TargetLink: (2004) http://www.dspace.de/.
4. Language, A.P.S.: (2004) http://www.accellera.org/.
5. Alexander, P., Kong, C., Barton, D.: Rosetta usage guide (2003) http://www.sldl.org.
6. Group, O.M., ed.: UML Profile for Schedulability, Performance, and Time. OMG document

ptc/02-03-02 (2002)
7. Medina, J., Harbour, M.G., Drake, J.: Mast real-time view: A graphic uml tool for modeling

object-oriented real-time systems. In: Proceedings of IEEE Real-Time Systems Symposium.
(2001)

8. Saksena, M., Freedman, P., Rodziewic, P.: Automated implementation of executable object
oriented models for real-time embedded control systems. In: Proceedings of IEEE Real-Time
Systems Symposium. (1997)

9. Burns, A., Welling, A.J.: HRT-HOOD: A design method for hard real-time. Journal of
Real-Time Systems 6 (1994) 73–114

10. Cornwell, P.D.: Reusable Component Engineering For Hard Real-Time Systems. PhD thesis,
University of York (1998) YCST-98-04.

11. Jahanian, F., Mok, A.: Modechart: a specification language for real-time systems. IEEE
Transactions on Software Engineering 20 (1994) 933–947

12. Mok, A., Liu, G.: Early detection of timing violation at runtime. In: Proceedings of IEEE
Real-Time Systems Symposium. (1997)

13. Puchol, C., Mok, A.: Integrated design tools for hard real-time systems. In: Proceedings of
IEEE Real-Time Systems Symposium. (1998)

14. Chen, X., Hsieh, H., Balarin, F., Watanabe, Y.: Automatic generation of simulation monitors
from quantitative constr aint formula. In: Proceedings of Design Automation and Test in
Europe. (2003)


	Introduction
	Previous Work
	Terminology and Conceptual Model

	Design Flow
	Property Specification Language
	Target Language Translations

	A Design Example
	Some Simple Properties
	Assertion/Assumption Decomposition
	Lessons Learned

	Conclusions



