

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities, LNCS 3297, pp. 1–12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Consistency Problems in UML-Based Software
Development

Zbigniew Huzar1, Ludwik Kuzniarz2, Gianna Reggio3, and Jean Louis Sourrouille4

1 Department of Computer Science, University of Technology,
, Poland

2 School of Engineering, Blekinge Institute of Technology,
Ronneby, Sweden

3 DISI, Università di Genova, Genova, Italy
4 Department of Information Technology and Computer Engineering, INSA,

Lyon, France

Abstract. This survey of the workshop series Consistency Problems in UML-
based Software Development aims to help readers to find the guidelines of the
papers. First, general considerations about consistency and related problems are
discussed. Next, the approaches proposed in the workshop papers to handle the
problems are categorized and summarized. The last section includes extended
abstracts of the papers from the current workshop.

1 Why Consistency?

The introduction of the first workshop could have been the same for the series: The
Unified Modeling Language (UML) has become an industrially accepted standard for
object-oriented modeling of large, complex systems as well as a basis for software
development methodologies. During the development process, artifacts representing
different aspects of the system are produced. The artifacts should be properly related
to each other in order to form a consistent description of the developed system. The
problems concerning and related to consistency between diagrams and models
produced within the UML-based development process are presented and discussed
within the scope of the workshop. In particular, two kinds of problems concerning
consistency are addressed – those related to consistency between diagrams within a
given model and named as an intra-consistency problem and those concerning
consistency between different models and named as an inter-consistency problem. The
papers selected and included in the workshop materials are intended to present a
spectrum of problems that occur when consistency is concerned, starting from a
general perspective and methodology for systematic checking of consistency, through
possible ways of extending UML to enable consistency checking and checking
consistency through model transformations, followed by examples of practical
realization of the checking in practice and possible tools support, ending with
formalization of the notions of consistency.

The number of submissions and participants shows the importance of the issue.
Each workshop proposed to focus on particular topics: consistency definition and

Worcław
Worcław

2 Z. Huzar et al.

verification (I), examples of inconsistencies (II), and dependency relationship (III).
However, the papers tackle problems in all areas related to consistency, from several
points of view and using various approaches.

1.1 Intra-model Consistency

Consistency problems do not seem to arise in many notations such as programming
languages. So, a preliminary question is: Where are the UML consistency problems
coming from?

When using the UML during the development process, many artifacts representing
different aspects of the system are produced, and these artifacts should be properly
related to each other in order to form a consistent description of the developed system.
There are two main reasons for having many different UML artifacts describing the
same system:

– multiview nature of UML models: at some level of abstraction a system is
described as a collection of views dealing with different, possibly overlapping,
aspects,

– the system is developed throughout different phases and iterations, with each one
producing a new, more refined description of the system.

Another source of inconsistency is the imprecise semantics of the UML. A UML
expression (i.e., a set of model elements) may have multiple interpretations, among
which some are inconsistent. Why is the UML semantics not precise? It was the wish
aim of the UML authors not to supply a precise definition of the UML to broaden the
area in which the UML applies. An advantage is that such imprecise UML models can
be implemented in many ways. The counterpart is that we do not know if there is one
possible implementation of a UML model. This issue is called intra-model or
horizontal consistency. For instance, intra-consistency is expected between model
elements representing the static and dynamic views of the modeled domain.

1.2 Inter-model Consistency

Furthermore, consistency problems arise in the UML because there is no definition of
relationships between models preserving consistency such as the refinement
relationship. A UML–based software development is a modeling process. From the
requirements to the code, the software development process produces more and more
detailed models. A model is a collection of UML model elements that represent a
system at a given level of abstraction. At each level, the produced model should be
consistent with the models at the upper, more abstract levels. This issue is called
inter-model or vertical consistency. For example, a design model should be inter-
consistent with an analysis model.

1.3 Main Issues Related to Consistency Addressed in Contributions

The papers presented and discussed during the workshops deal with the following
important issues: definition of consistency, relationships between consistency and

 Consistency Problems in UML-Based Software Development 3

development process, approaches to check consistency, and checking tools. The
positions are briefly summarized below. Regarding tools, the two main
approaches are:

– to check directly that the UML model has the required properties (expressed by
OCL or other means), using standard tools when available, and

– to translate the model into a formal language such as B or production rules, and
then to perform checks using companion tools of the target language.

2 A Survey of the Workshop Contributions

2.1 Consistency Definitions

Rule-Based Definitions
The semantics of the UML includes constraints that induce restrictions on the use of
notations in order to ensure that model interpretations are licit [26]. To avoid
inconsistencies and to make the semantics precise, most papers propose adding
constraints or well-formedness rules such as the UML ones [4,7,8,9,11,19,21,25,
26, 27,30]. A model is inconsistent when it violates the added constraints, i.e., when
there is no licit interpretation [27]. In [20], a class diagram is consistent if there is at
least one instantiation possible that satisfies all the diagram constraints. UML
artifacts form a hierarchy and all the components of an artifact should be intra and
inter consistent for the artifact to be consistent [11]. Some papers only deal with
model properties that do not ensure the entire model consistency: the behavior
should be deadlock free [24], sequence diagrams should be consistent with
statecharts [3,15], etc.

[2] presents an approach to define which UML models are intra-consistent
following an algebraic approach, that is distinguishing in a UML model a “signature”
which defines the model vocabulary, which is then used to check the well-definedness
of the other parts in quite a modular way.

Refinement
Furthermore, constraints are added to enforce the inter-model consistency, i.e., to
define the refinement relationship. Applying the ODP consistency approach [6], a set
of specifications (models) is consistent if there exists a specification that is the
refinement of each of the specifications in the set with respect to a refinement
relationship. In [21], consistency constraints include conformance to standard, good
practice and stakeholders´ specific constraints. [13] presents a general framework for
defining refinement relationships between UML models, trying to distinguish
between abstraction refinement and semantics refinement, where only the first may be
automatically checked.

Translational Definitions
Adding constraints can be seen as a declarative approach. In a translational approach,
a model is consistent if its translation into a formal language (such as B or Object-Z)

4 Z. Huzar et al.

satisfies some good properties [6,24,23,20,3]. This approach does not enforce the
entire UML model consistency, for instance in [20] only class diagrams, object
diagrams and statecharts are taken into account, while [24] only deals with behavior.
Quite different, but also based on transformations, graphical consistency conditions
specify the situations that must not occur [16]. [22] introduces a formal language
OOL, and proposes transforming a subset of UML models into OOL specifications.
The well-defined consistency and a refinement calculus of OOL are then used to
check the corresponding UML models.

Constraint Completeness
A further question is to write the entire list of constraints: examples of classification
are given (between pairs of diagrams in [8], by abstraction levels in [26]), but it is
likely that no complete list exists. Assuming that syntactic rules are expressed
formally and semantic rules use natural language, if all the constraints cannot be
expressed by syntactic rules, consistency cannot be checked automatically [21,27].

Role of Dependency in Defining Consistency
[29] presents a UML profile allowing one to express dependency relationships among
model elements characterized by behavioral properties, such as call/update/access
preservation, to help establish correct refinement among models. These relationships
are formally defined using Description Logic. Similarly, [17] sketches another profile
for expressing different kinds of dependency, precisely implicit and explicit usage
among model elements.

2.2 Consistency and Development Process

Refinement
During the development process, model consistency should be preserved through
refinement: Object-Z and CSP provide refinement concepts for checking the
translations of UML models in [24], while in [16] model transformations are
expressed using graphs. Another approach proposes defining a profile with
transformation rules using the UML extension mechanisms [25].

Development Methodology
Moreover, models should be consistent with the development methodology or
process (e.g., USDP: Unified Software Development Process in [11], COMET in
[8], general process in [19]). In [11] a three-layer framework is adapted to the
development process, while [6] uses the ODP principle of viewpoints (i.e., partial
specifications) to check UML consistency. Good practice rules and specific
development rules should also be added [21] or followed [18], preferably in a UML
profile [25,27]. [5], instead, considers the consistency problem in the component-
based development process KobrA. [14] considers the problem of the consistency
among the artifacts produced following the USDP and proposes a UML profile
expressing such artifacts and defining rules expressed with OCL to enforce

 Consistency Problems in UML-Based Software Development 5

consistency; such rules are then checked using any standard OCL tool. [2] proposes
a UML based development method which requires models to be produced with a
precise structure, and equipped with guidelines helping to detect the most probable
inconsistencies.

Incompleteness
Several authors underline that the under-specification of the UML induces
incompleteness [26,19], while models should be complete for consistency checks.
Rules can be checked on existing models, and examples of results given in [19] show
that inconsistencies are related to the development practices of the designers.

Domain Specific Cases
[10] presents the consistency aspects of the MERODE method for developing
information systems; the method is based on the formal language CSP and proposes
the use of views of three different kinds, with two having a UML-like syntax. [1]
treats consistencies due to a too rigid application of design patterns; to avoid these
they propose presenting patterns using an extension of the UML 2.0 collaboration
template, which allows to constrain the parameters and to perform some actions at the
instantiation time, such as deletion of model elements.

2.3 Consistency Checking

Most papers deal with either intra-model consistency [4,6,7,8,9,11,15,20,21,23,24,
26], some with inter-model consistency [11,16,25], others deal with both, such as
[23], which translates models into B that supplies a refinement relationship.
Obviously, a tool is required to check consistency, not only to automatically check
constraints but also to help users to find and correct errors. Depending on the
approach, declarative or translational, tools are faced with different problems.
Examples of checks applied to models are given in [14,15,18].

Constraint Checking
Each tool is associated with a suitable representation for the constraints. The most
direct way to express constraints is the OCL (Object Constraint Language). The
checking tool is standard and could be embedded in the modeling tools, as in [14].
The OCL used to express the rules is enriched with a transitive closure operator and
temporal operators in [4], and with actions in [8]. [26,21] use production rules that
add reasoning capabilities to constraints, and unlike OCL which is side-effect free,
allow actions such as corrections or tips. The graph rewriting rules in [30] describe
the resolution actions for detected inconsistencies. Based on rules in XML, the xlinkit
framework allows checking consistency of models mapped to XML using the XMI
[9]. The graphical conditions in [16] are kinds of patterns, and checking constraints
comes down to matching graphs in the UML model. [29] describes a tool, RACOoN,
for checking consistency conditions expressed in Description Logic by combining a
UML tool, an XML translator and a logical reasoning tool.

6 Z. Huzar et al.

Model Translation
Model translation into a formal language is very appealing since checking tools
already exist. Only the notions common to UML and the target language can be
translated, and the inter-consistency definition depends on its refinement
relationship. In [6] a detailed discussion of the translational approaches illustrated
with LOTOS and Object-Z is given. In [24], static aspects are translated into
Object-Z while behavioral ones are translated into CSP: only deadlocks and
interface properties are checked. The B specification and the UML model are
handled in parallel in [7], but the question of how to automate the translation of
UML/OCL models into B is not answered. UML models are decorated with
additional expressions to allow the translation into B in [20], but for temporal
properties another approach is proposed. LTS and traces are used in [3] to check
behavior properties. [5] proposes to reduce the consistency issues into deadlock
detection problems to be checked using the SPIN tools. On the other hand, [10]
describes a tool, MERMAID, which monitors the constructions of the models
required by the MERODE method, helping to ensure their consistency (also if
some post-mortem checks are implemented). Simulation approaches do not give
proofs but they increase the confidence in the model, e.g., trace validation in [15].
Translation to description logic is suggested in [28] to maintain consistency,
together with the use of an accompanying tool to prove the feasibility of the
approach. Consistency checking based on the consistency rules expressed as
graphs rewriting rules and their implementation in the UML CASE tool is
presented in [30].

3 Extended Abstracts

On Understanding of Refinement Relationship
Bogumiła Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz
The software development process is both iterative and incremental in nature.
Modeling constitutes an important step of this process; its key artifacts are described
as models, i.e. abstract representations of the entities being modeled. There are many
relationships between models. The «refine» relationship is an interesting one as it
reflects the evolution of artifacts within the software development process. The
relationship is not precisely defined in the UML standard. Its informal definition
relates to other, not well-defined notions: “perspective”, “abstraction level”, and
“semantic level”. The paper proposes definitions of these notions in the UML terms.
Refinements defined in the paper are based on the change of abstraction levels and on
the change of semantic levels. The first kind of refinement is independent of the
interpretation of models while the second kind depends on model interpretation.
Therefore two models’ categories were introduced: non-interpretable and
interpretable, based on the formal definition of abstract and semantic levels. The
elaborated definitions may be used for describing different step-wise model
transformations.

 Consistency Problems in UML-Based Software Development 7

Consistency and Refinement of UML Models
Zhiming Liu, He Jifeng, Xiaoshan Li, Yifeng Chen
In UML-based software development, artifacts created in the development process are
modeled and analyzed from static and dynamic views using different kinds of UML
notations. Under the multiple views of UML, the developers can decompose a
software design into smaller parts of manageable scales. A development process starts
from a system requirement model consisting of a class diagram, a family of sequence
diagrams, and a family of state diagrams. Such a model can be established through
horizontal requirement incrementally by adding information and incorporating use
cases one by one. A development process also cycles through a number of steps of
vertical refinement from the requirement model into a system design model.
Therefore, the horizontal and vertical consistency are the inevitable challenging
issues, which arise from such a multi-view and multi-notational approach.

In this paper, we use a formal object-oriented specification language (OOL) to
formalize and combine UML models. With OOL, a specification of an object system
is a combination of its class declarations, method declarations and specifications of
method bodies. Different sub-models of a system model are formalized as different
parts in an OOL specification. The consistency of the different sub-models is defined
as the well-formedness of the corresponding OOL specification. With the
formalization, we develop a set of refinement laws of UML models to capture the
essential nature, principles, nature and patterns of object-oriented design. We can
apply the refinement calculus of OOL specifications to treat refinement of system
models in UML. With the support of the incremental and iterative features of object-
orientation and the Rational Unified Process (RUP), the refinement process will
preserve the consistency and correctness of the system.

UML 2.0 Model Consistency – The Rule of Explicit and Implicit Usage
Dependencies
Shiri Kremer-Davidson, Yael Shaham-Gafni
The notion of dependency is modeled in UML using the Dependency relation. The
UML specification intentionally defines the Dependency concept vaguely in order to
serve as a "catch all" relation, describing any relationship that is not a generalization
or association. The specification further defines several subtypes of Dependency:
Abstraction, Realization, Substitution, and Usage, which have a stronger semantic
meaning. For all of these modeling constructs the UML specification does not
describe any relation to the behavioral aspects or to model elements representing
runtime entities.

In this paper we investigate the runtime implications for the usage dependency.
We define the notions of explicit dependencies: dependencies that are explicitly
created by the modeler as part of the static aspect of a UML model, and implicit
usage dependencies: usages that can be inferred form the behavioral portions of a
UML model. Based on these notions we propose a definition for the semantics of
the usage dependency and a corresponding consistency notion. We propose an
implementation of such semantics and consistency through a UML Profile. We
provide an example to illuminate our ideas and describe several scenarios in which
having knowledge of the explicit and implicit dependency information and the
consistency between them is beneficial.

8 Z. Huzar et al.

Consistency Checking of USDP Models
Bogumila Hnatkowska, Anita Walkowiak
The aim of the paper is to propose a method for checking consistency of UML
models. Because the content of UML models strongly depends on used
methodology it was assumed that models that are basic outcomes of USDP process
are considered. Our aim was to improve the USDP process with some mechanisms
validating prepared models against some known rules. The rules belong to two
categories:

– well-formed rules, defined in UML standard document,
– new well-formed rules resulting from applying USDP for software development.

In the paper three USDP models are refined and formalized, i.e. Context Model,
Use Case Model, and Analysis Model. The models are defined in terms of a new
language called Robust Software Development UML (RSD_UML). RSD_UML is a
part of Robust Software Development Profile (RSDP). The profile introduces new
stereotypes basing on standard UML elements. RSD_UML language is defined
similarly to UML standard. Its syntax and static semantics are defined formally by
OCL expressions, while its dynamic semantics is defined informally, in natural
language. It was observed that most of the intra-consistency rules relate to the way of
proper construction of models. For example, the rules state that collaboration at given
semantic level (e.g. analysis) should represent a behavioral element from the previous
model (e.g. requirements). Example models written in XMI were prepared in two
different CASE tools, i.e. Rational Rose, and Poseidon for UML. OCL Evaluator was
used for models verification against inter and intra-consistency rules.

Formalizing Behaviour Preserving Dependencies in UML
Ragnhild Van Der Straeten
In the context of Model-Driven Development (MDD), models are primary assets that
embody a consistent view on the system under study. On the one hand, during model
driven software development, software models can evolve into a new version.

Model refactorings are a particular kind of model evolution which preserve the
behaviour as specified by the model. On the other hand, within the software
development life-cycle, models can gradually be refined resulting in a full-fledged
implementation. At every refinement step, this refinement process adds more concrete
details to the model. In general, refinements preserve certain correctness issues, e.g.
program refinements imply the preservation of program correctness. The behaviour
preserving properties identified in this paper for model refactorings can also be used
in the context of refinements. These properties express that certain parts of the
specified behaviour have to be preserved. In the context of model refinements, these
behaviour preserving properties can be interpreted as correctness properties between a
certain model and its refined version. In the rest of the paper, we refer to these
properties as behaviour preserving properties. The goal of this paper is threefold. First
of all, definitions of behaviour preserving properties are given in the context of UML
models. During the development process, we also want to indicate between which
UML elements or models certain properties are valid. In UML the dependency
relationship is used to describe relationships between models and their elements.

 Consistency Problems in UML-Based Software Development 9

However, it lacks a precise definition. Thus, the second aim of the paper is to extend
the UML metamodel with specialized dependency relationships expressing the
preservation properties. Thirdly, these dependency relationships are formalized
using a logic approach. This allows the automatic checking of these relationships
between UML models and elements. This is illustrated by a simple but nevertheless
representative example.

Behavioral Consistency Checking for Component-Based Software Development
Using the KobrA Approach
Yunja Choi, Christian Bunse
The KobrA method is a structured approach for component-based system
development, providing a natural way of identifying and refining system components
by separating the external view (interface or contract) from its internal view (detailed
functionalities and their realization). The method is designed to reduce system
complexity by separating concerns and facilitates software reuse, thus, saving time
and effort for software development.

Nevertheless, understanding the overall interactions and relations of many
components in a KobrA model often goes beyond human capability, mainly due to its
way of specifying different aspects of a component in various UML diagrams. For
example, statecharts are used to specify the abstract level component behavior and
activity/sequence/collaboration diagrams are used to specify detailed internal component
behavior. While this approach facilitates a systematic, iterative specification-refinement
paradigm, it can also produce unexpected inconsistencies among these different diagrams
as well as among the different levels of refinement. A systematic consistency checking
mechanism is a must to ensure the basic quality of a system.

In this paper, we aim at providing an overall consistency checking mechanism
integrated into the development process of KobrA, named consistency checking using
environment modeling. We first define generic consistency requirements in the KobrA
approach, with an emphasis on the behavioral consistency between different levels of
specifications and realizations. The consistency requirements are then reinterpreted as
consistency between a set of state transition systems describing the system behavior
(reactive systems) and a sequence of stimuli describing the system environment
(action systems). Two behavioral models are considered consistent if the reactive
system accepts every stimulus generated by the action system. In this way, we
transform various consistency issues into a deadlock detection problem that can be
automated. We demonstrate the automated consistency checking using the model
checker SPIN on a hypothetical elevator system.

Implementing Consistency Management Techniques for Conceptual Modeling
Raf Haesen, Monique Snoeck
Most software development methodologies justify the use of multiple independent
models to represent all aspects at the different stages in the development process. This
can make the resulting information system inconsistent at different levels:
inconsistencies can arise between different views of a single system, between

10 Z. Huzar et al.

documents at different development life cycle stages, or in a single document. The use
of a single model and different views to that model can avoid this problem: all views
have to be built according to well-formedness rules for that view and consistency
between the related views must be checked. In this way it is possible to obtain a
model that reaches a feasible level of validity and improved completeness. Validity
means that all statements made by the model are correct and relevant to the problem,
whereas completeness means that the model contains all the statements about the
domain. This paper presents different techniques to maintain consistency of one view
and the use of the same techniques to enforce and check consistency between the
views. First we discuss the three strategies of consistency management: consistency
by analysis, consistency by monitoring and consistency by construction. Finally we
present a concrete implementation of these rules in a modeling tool, based on the
object-oriented domain modeling method MERODE.

Improving Pattern Support in UML CASE Tool
Samir Ammour, Xavier Blanc, Mikal Ziane, Philippe Desfray
In this paper we improve the UML2.0 Collaboration Templates mechanism to better
support patterns in UML CASE tools. In our research and prototyping activities, we
have identified that two important problems lead to severe limitations: Collaboration
Templates are not versatile enough to support design patterns correctly. First, they
constrain their parameters inappropriately. Second, the instantiation of UML
Collaboration Templates does not allow us to modify or to suppress model elements,
which is sometimes necessary. Both problems make it difficult to maintain the UML
models’ consistency when applying design patterns. Collaboration Templates may
lead to inconsistencies in models. We thus propose to explicitly constrain
Collaboration Template parameters using pattern constraints and to allow the
suppression or modification of model elements using pattern actions. Pattern
constraints are OCL expressions to control which elements can be bound to the
template parameters to preserve the consistency of models. Pattern actions are written
in an action language such as Action Semantics or an extension of OCL. They are
used to modify and delete model elements to remove inconsistencies when applying
design patterns. We have prototyped this approach in the Objecteering UML CASE
tool. Both these improvements proved quite useful in several applications, and will be
included in a future version of the Objecteering CASE tool.

References

I. L. Kuzniarz, G. Reggio, J.L. Sourrouille, Z. Huzar, Workshop on Consistency Problems in
UML-based Software Development I, UML 2002, Blekinge Institute of Technology,
Research Report 2002:06. Available at http://www.ipd.bth.se/uml2002/.

II. L. Kuzniarz, G. Reggio, J.L. Sourrouille, Z. Huzar, M. Staron, Workshop on Consistency
Problems in UML-based Software Development II, UML 2003, Blekinge Institute of
Technology. Research Report 2003:06. Available at
http://www.ipd.bth.se/consistencyUML/UML2003workshop.asp.

 Consistency Problems in UML-Based Software Development 11

III. Z. Huzar, L. Kuzniarz, G. Reggio, J.L. Sourrouille, Workshop on Consistency Problems in
UML-based Software Development III, UML 2004. Available at http://uml04.ci.
pwr.wroc.pl/.

1. S. Ammour, X. Blanc, M. Ziane and P. Desfray, Improving Pattern Support in UML CASE
Tools, in III

2. E. Astesiano and G. Reggio, An Algebraic Proposal for Handling UML Consistency,
in II

3. P. Bhaduri and R. Venkatesh, Formal Consistency of Models in Multi-View Modelling,
in I

4. J.-P. Bodeveix, T. Millan, C. Percebois, C. Le Camus, P. Bazex and L. Feraud, Extending
OCL for verifying UML models consistency, in I

5. Y. Choi and C. Bunse, Behavioral Consistency Checking for Component-based Software
Development Using the KobrA Approach, in III

6. J. Derrick, D. Akehurst and E. Boiten, A framework for UML consistency, in I
7. G. Génova, J. Llorens and J. M. Fuentes, The Baseless Links Problem, in II
8. H. Gomaa and D. Wijesekera, Consistency in Multiple-View UML Models: A Case Study,

in II
9. C. Gryce, A. Finkelstein and C. Nentwitch, Lightweight Checking for UML Based

Software Development, in I
10. R. Haesen and M. Snoeck, Implementing Consistency Management Techniques for

Conceptual Modeling, in III
11. B. Hnatkowska, Z. Huzar, L Kurniarz and L. Tuzinkiewicz, A systematic approach to

consistency within UML based software development process, in I
12. B. Hnatkowska, Z. Huzar, L Kuzniarz and L. Tuzinkiewicz, Refinement relationship

between collaborations, in II
13. B. Hnatkowska, Z. Huzar and L. Tuzinkiewicz, On Understanding of Refinement

Relationship, in III
14. B. Hnatkowska and A. Walkowiak, Consistency Checking of USDP Models, in III
15. T. Huining Feng and H. Vangheluwe, Case Study: Consistency Problems in a UML Model

of a Chat Room, in II
16. J. Hendrik Kausmann, R. Heckel and S. Sauer, Extended Model Relations with Graphical

Consistency Conditions, in I
17. S. Kremer-Davidson and Y. Shaham-Gafni, UML 2.0 Model Consistency – the Rule of

Explicit and Implicit Usage Dependencies, in III
18. L. Kuzniarz and M. Staron, Inconsistencies in Student Designs, in II
19. C. Lange, M.R.V. Chaudron, J. Muskens, L.J. Somers and H.M. Dortmans, An Empirical

Investigation in Quantifying Inconsistency and Incompleteness of UML Designs, in II
20. K. Lano, D. Clark and K. Androutsopoulos, Formalising Inter-model Consistency for the

UML, in I
21. W. Qian Liu, S. Easterbrook and J. Mylopoulos, Rule Based detection of Inconsistency in

UML Models, in I
22. Z. Liu, H. Jifeng, X. Li and Y. Chen, Consistency and Refinement of UML Models, in III
23. R. Marcano and N. Levy, Using B formal specifications for analysis and verification of

UML/OCL models, in I
24. H. Rasch and H. Werheim, Consistency between UML Classes and Associated State

Machines, in I
25. W. Shen, Y. Lu and W. Liong Low, Extending the UML Metamodel to Support Software

Refinement, in II

12 Z. Huzar et al.

26. J.-L. Sourrouille and G. Caplat, Checking UML Model Consistency, in I
27. J.-L. Sourrouille and G. Caplat, A Pragmatic View on Consistency Checking of UML

Models, in II
28. R. Van Der Straeten, T. Mens and J. Simmonds, Maintaining Consistency between UML

Models Using Description Logic, in II
29. R. Van Der Straeten, Formalizing Behaviour Preserving Dependencies in UML, in III
30. R. Wagner, H. Giese and U. A. Nickel, A Plug-In for Flexible and Incremental

Consistency Management, in II

	Why Consistency?
	Intra-model Consistency
	Inter-model Consistency
	Main Issues Related to Consistency Addressed in Contributions

	A Survey of the Workshop Contributions
	Consistency Definitions
	Consistency and Development Process
	Consistency Checking
	Extended Abstracts

	References

