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Fingerprint Matching Using the Distribution
of the Pairwise Distances Between Minutiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

Chul-Hyun Park, Mark J.T. Smith, Mireille Boutin, and Joon-Jae Lee



Table of Contents XVII

A Layered Fingerprint Recognition Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
Woong-Sik Kim and Weon-Hee Yoo

Super-template Generation Using Successive Bayesian Estimation
for Fingerprint Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

Choonwoo Ryu, Youngchan Han, and Hakil Kim

Secure Fingerprint Matching with External Registration . . . . . . . . . . . . . . . . . . . . . 720
James Reisman, Umut Uludag, and Arun Ross

Palmprint Recognition Using Fourier-Mellin Transformation
Based Registration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

Liang Li, Xin Yang, Yuliang Hi, and Jie Tian

Parametric Versus Non-parametric Models of Driving Behavior Signals
for Driver Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

Toshihiro Wakita, Koji Ozawa, Chiyomi Miyajima, and Kazuya Takeda

Performance Evaluation and Prediction for 3D Ear Recognition . . . . . . . . . . . . . . . 748
Hui Chen, Bir Bhanu, and Rong Wang

Optimal User Weighting Fusion
in DWT Domain On-Line Signature Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 758

Isao Nakanishi, Hiroyuki Sakamoto, Yoshio Itoh, and Yutaka Fukui

Gait Recognition Using Spectral Features of Foot Motion . . . . . . . . . . . . . . . . . . . 767
Agus Santoso Lie, Ryo Shimomoto, Shohei Sakaguchi, Toshiyuki Ishimura,
Shuichi Enokida, Tomohito Wada, and Toshiaki Ejima

VALID: A New Practical Audio-Visual Database, and Comparative Results . . . . . 777
Niall A. Fox, Brian A. O’Mullane, and Richard B. Reilly

Audio-Visual Speaker Identification via Adaptive Fusion
Using Reliability Estimates of Both Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

Niall A. Fox, Brian A. O’Mullane, and Richard B. Reilly

Speaker Identification Using the VQ-Based Discriminative Kernels . . . . . . . . . . . . 797
Zhenchun Lei, Yingchun Yang, and Zhaohui Wu

Exploiting Glottal Information in Speaker Recognition Using Parallel GMMs . . . 804
Pu Yang, Yingchun Yang, and Zhaohui Wu

Biometric Recognition Using Feature Selection and Combination . . . . . . . . . . . . . 813
Ajay Kumar and David Zhang

Evaluation of Biometric Identification in Open Systems . . . . . . . . . . . . . . . . . . . . . 823
Michael Gibbons, Sungsoo Yoon, Sung-Hyuk Cha, and Charles Tappert

Exploring Similarity Measures for Biometric Databases . . . . . . . . . . . . . . . . . . . . . 832
Praveer Mansukhani and Venu Govindaraju



XVIII Table of Contents

Indexing Biometric Databases Using Pyramid Technique . . . . . . . . . . . . . . . . . . . . 841
Amit Mhatre, Sharat Chikkerur, and Venu Govindaraju

Classification Enhancement via Biometric Pattern Perturbation . . . . . . . . . . . . . . . 850
Terry Riopka and Terrance Boult

Calculation of a Composite DET Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
Andy Adler and Michael E. Schuckers

Privacy Operating Characteristic
for Privacy Protection in Surveillance Applications . . . . . . . . . . . . . . . . . . . . . . . . . 869

P. Jonathon Phillips

Poster II

Headprint – Person Reacquisition
Using Visual Features of Hair in Overhead Surveillance Video . . . . . . . . . . . . . . . . 879

Hrishikesh Aradhye, Martin Fischler, Robert Bolles, and Gregory Myers

A Survey of 3D Face Recognition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
Alize Scheenstra, Arnout Ruifrok, and Remco C. Veltkamp

Influences of Image Disturbances on 2D Face Recognition . . . . . . . . . . . . . . . . . . . 900
Henning Daum

Local Feature Based 3D Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
Yonguk Lee, Hwanjong Song, Ukil Yang, Hyungchul Shin,
and Kwanghoon Sohn

Fusion of Appearance and Depth Information for Face Recognition . . . . . . . . . . . . 919
Jian-Gang Wang, Kar-Ann Toh, and Ronda Venkateswarlu

Gabor Feature Based Classification Using 2D Linear Discriminant Analysis
for Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929

Ming Li, Baozong Yuan, and Xiaofang Tang

Multi-resolution Histograms of Local Variation Patterns (MHLVP)
for Robust Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937

Wenchao Zhang, Shiguang Shan, Hongming Zhang, Wen Gao, and Xilin Chen

Analysis of Response Performance Characteristics for Identification
Using a Matching Score Generation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945

Takuji Maeda, Masahito Matsushita, Koichi Sasakawa, and Yasushi Yagi

Pose Invariant Face Recognition Under Arbitrary Illumination
Based on 3D Face Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956

Xiujuan Chai, Laiyun Qing, Shiguang Shan, Xilin Chen, and Wen Gao



Table of Contents XIX

Discriminant Analysis Based on Kernelized Decision Boundary
for Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966

Baochang Zhang, Xilin Chen, and Wen Gao

A Probabilistic Approach to Semantic Face Retrieval System . . . . . . . . . . . . . . . . . 977
Karthik Sridharan, Sankalp Nayak, Sharat Chikkerur, and Venu Govindaraju

Authenticating Corrupted Facial Images on Stand-Alone DSP System . . . . . . . . . . 987
Sang-Woong Lee, Ho-Choul Jung, and Seong-Whan Lee

Evaluation of 3D Face Recognition Using Registration and PCA . . . . . . . . . . . . . . 997
Theodoros Papatheodorou and Daniel Rueckert

Dynamic Approach for Face Recognition Using Digital Image Skin Correlation . 1010
Satprem Pamudurthy, E Guan, Klaus Mueller, and Miriam Rafailovich

Rank-Based Decision Fusion for 3D Shape-Based Face Recognition . . . . . . . . . . 1019
Berk Gökberk, Albert Ali Salah, and Lale Akarun

Robust Active Shape Model Construction and Fitting
for Facial Feature Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029

Zhenghui Gui and Chao Zhang

Comparative Assessment of Content-Based Face Image Retrieval
in Different Color Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039

Peichung Shih and Chengjun Liu

A Principled Approach to Score Level Fusion
in Multimodal Biometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049

Sarat C. Dass, Karthik Nandakumar, and Anil K. Jain

A Score-Level Fusion Benchmark Database for Biometric Authentication . . . . . . 1059
Norman Poh and Samy Bengio

Fusion for Multimodal Biometric Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071
Yongjin Lee, Kyunghee Lee, Hyungkeun Jee, Younhee Gil, Wooyong Choi,
Dosung Ahn, and Sungbum Pan

Between-Source Modelling for Likelihood Ratio Computation
in Forensic Biometric Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

Daniel Ramos-Castro, Joaquin Gonzalez-Rodriguez, Christophe Champod,
Julian Fierrez-Aguilar, and Javier Ortega-Garcia

The Effectiveness of Generative Attacks on an Online Handwriting Biometric . . 1090
Daniel P. Lopresti and Jarret D. Raim

Vulnerabilities in Biometric Encryption Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
Andy Adler



XX Table of Contents

Securing Electronic Medical Records Using Biometric Authentication . . . . . . . . 1110
Stephen Krawczyk and Anil K. Jain

A Novel Approach to Combining Client-Dependent and Confidence Information
in Multimodal Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120

Norman Poh and Samy Bengio

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131



cfancourt@sarnoff.com 



° ° °









°

° °

[ ]⋅=

++−++⋅++−++

++⋅++−++⋅++
=

====

===

=
=

=++



( )
σσ
μμ

+
−=



° ° μ σ μ σ

°
°

°
°



°



μ σ μ σ





°





{pshuang,g950302,g941311}@ccit.edu.tw 
http://www.ccit.edu.tw/~elec/ 



∈

=
∈

=

σ π
∂
∂

σ

σ



π− π π π

θ ×

×

×

×



θ
θ θ

π θ

θφ θ′ =

θ

θ θ
φ′

×

×



φ′′

φ φ′′ ′=

δ

•

•

δ



×









{emine.krichen,lorene.allano,sonia.salicetti,bernadette.dorizzi} 
@int-evry.fr 







−=



=









9737001@smu.ac.kr 

parkgr@smu.ac.kr 





















Eye Perturbation Approach for Robust Recognition
of Inaccurately Aligned Faces

Jaesik Min, Kevin W. Bowyer, and Patrick J. Flynn

Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract. Extraction of normalized face from input images is an essential pre-
processing step of many face recognition algorithms. Typical face extraction al-
gorithms make use of the locations of facial features, such as the center of eyes,
that are marked either manually or automatically. It is not guaranteed, however,
that we always obtain the exact or optimal locations of the eye centers, and using
inaccurate landmark locations, and consequently poorly registered faces, is one
of the main causes of performance degradation in appearance-based face recog-
nition. Moreover, in some applications, it is hard to verify the correctness of the
face extraction for every query image. For improved performance and robust-
ness to the eye location variation, we propose an eye perturbation approach that
generates multiple face extractions from a query image by using the perturbed
eye locations centered at the initial eye locations. The extracted faces are then
matched against the enrolled gallery set to produce individual similarity scores.
Final decisions can be made by using various committee methods – nearest neigh-
bor, maximum vote, etc.– of combining the results of individual classifiers. We
conclude that the proposed eye perturbation approach with nearest neighbor clas-
sification improves recognition performance and makes existing face recognition
algorithms robust to eye localization errors.

1 Introduction

Many face recognition methodologies require, as an essential preprocessing step, the
extraction of a normalized face region from the input image. In many appearance-based
face recognition approaches, the face extraction is performed based on the locations
of facial landmarks, such as eyes, nose, or mouth [1]. Once the coordinates of these
landmarks are given, extraction of the face can be done through the processes of image
scaling, rotation, intensity normalization, and aligning to a predetermined template, etc.
that minimizes the variations unrelated to the identity.

The most prominent facial landmarks in 2D face images are the eyes [2], whereas it
is the nose in 3D (depth) face images [3]. The locations of eye centers can be obtained
either manually or automatically by using eye detection algorithms [4]. Often, however,
the detected eye locations are unreliable; they are inaccurate and inconsistent across eye
detectors. This causes sub-optimal face extraction, and consequently degrades recogni-
tion performance even with a good algorithm and images of well-posed faces [5]. In
this paper we first investigates the effect of the accuracy of eye locations.

Minimizing the errors at the stage of localization is desired for this problem, but has
a limit. An alternative solution is to take the existence of localization errors for granted,
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and to design a recognition algorithm that is robust to the localization variation. In this
paper we propose to produce multiple eye locations perturbed from the initial locations
of both eyes and then use the extracted faces from these eye locations. We tested two
representative face recognition algorithms, PCA and FaceIt, on a large number of face
extractions that are generated from various sampling of eye locations. Then we com-
pared the results of eye perturbation to the baseline.

The remaining sections of this paper are organized as follows. In Section 2, a num-
ber of related works are investigated. Sections 3 to 5 describe how we designed the
experiments on eye perturbation and committee and discusses the effect of these factors
on the performance. Section 6 shows compared results of the experiments. Section 7
summarizes our work and introduces topics to be addressed in future work.

2 Previous Works

The importance of eye localization as a preprocessing module in a face recognition
system has been addressed by many researchers. Marques et al. [6] investigated the
effect of eye position on a PCA-based face recognition algorithm. They used a total
of 8 images and showed the sensitivity of the algorithm to the eye location deviations
along various directions. As mentioned in their work, even the eye positions that are
manually selected – or at least inspected – by human operators are unreliable and tend
to deviate from a definition of the geometric eye center.

The role of eye locations in achieving high performance in face recognition systems
received special focus in the paper by Riopka et al. [2]. They evaluated the effect of eye
location accuracy through experiments of 3 different face recognition algorithms, that
is, Principal Component Analysis (PCA), Elastic Bunch Graph Matching (EBGM), and
FaceIt, on 1024 images from FERET database [7] by generating 17×17=289 perturba-
tions of eye locations from the original locations and compared the recognition results.
They first used ideal image data – that is, used the same image set for both gallery and
probe sets – to measure the pure effect of eye perturbation. Then they applied the same
perturbation to more realistic images. They report that using real image data did not
degrade the performance drastically when the same eye perturbation is applied.

Some researchers have proposed solutions to the inaccurate localization problem.
In the paper by Martinez [8], the gallery is augmented by perturbation and modeled by
Gaussian Mixture Models (GMM). Shan et al. [9] defined robustness to misalignment in
their paper and observed the effects of misalignment. They also proposed an enhanced
Linear Discriminant Analysis (LDA) algorithm for face recognition that generated mul-
tiple (9×9=81) virtual samples from each original training image by perturbation.

3 Experimental Design

A total of 600 subjects were selected partly from the FERET database [7] and partly
from the University of Notre Dame (ND) database [10] so that their neutral expression
face images are used in creating a training image set. Another 393 subjects from the
ND database who participated between years of 2002 and 2003 were selected to create
a test image set where each subject’s earliest image is used as the gallery image and the
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gallery probe

Fig. 1. Gallery and probe image samples of the University of Notre Dame database. Each image
is either 1200×1600 or 1704×2272-pixel color image

latest image is put into the probe set (Figure 1). The elapsed time between the gallery
and probe images ranges from 1 to 94 weeks, with 35 weeks on average. Both gallery
and probe images are acquired under the same controlled environment, that is, lighting
condition, background, and facial expression. There may exist slight and unintended
pose variation and other variations over time.

As the recognition algorithms, we used two representative face recognition algo-
rithms: PCA and FaceIt. For the PCA algorithm, we used the Version 5.0 code imple-
mented at Colorado State University (CSU) [11]. The Mahalanobis Angle was selected
as the distance metric, and no dimension reduction of the eigenspace was performed.
For the FaceIt algorithm, we used the version G5, which was developed and distributed
by Identix Incorporated.

The recognition performance is represented by a cumulative match characteristic
(CMC) score, where CMC score at rank r is defined as the ratio of people whose correct
match exists within r best matches. For example, a score of 85% at rank 1 means that
85% of people were correctly matched at the first choice. Similarly, a score of 90%
at rank 3 means that 90% of people have their correct matches in the first three best
matches. Therefore, a single recognition result gives different scores at different ranks,
and the score at rank s is higher than or equal to the score at rank r, where r < s.

4 Effect of Inaccurate Localization

Previous studies [2, 9] show that PCA and LDA algorithms are sensitive to eye localiza-
tion errors. Figure 2 shows the real examples of face extraction when eyes are localized
by the eye locater module of the FaceIt software. Inaccurate localization yields unde-
sirable, e.g., scaled, rotated, or translated face templates. In this section, we investigate
how the inaccurate localization affects the performance of algorithms. For this we set
the manually marked eye locations as the ground truth and the automatically selected
eye locations as the set of real-life samples, because it sounds more practical to get
samples from a real eye locater rather than to add artificial random noises to the ground
truth locations.

Originally, all of the 393 gallery images and 393 probe images are provided with
ground truth eye locations. The probe images were also fed into the eye locater module
of the FaceIt software to get the eyes localized automatically. These locations are com-
pared to the ground truth eye locations of the same images. The difference between the
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scaled scaled rotated translated

Fig. 2. Examples of poorly extracted faces due to the eye position deviation. Faces at the top
row are from gallery images with ground truth eye positions and faces at the bottom are from
corresponding probe images with automatically marked eye positions

manual and the automated eye locations is 10.7 pixels on average, with standard devi-
ation of 5.7 pixels, while the average distance between two eye centers in the ground
truth is 268.8 pixels.

We ran three face recognition algorithms at hand on this gallery set (with ground
truth) and probe set (automatic markings). Figure 3 shows how the performance of each
algorithm degrades with the inaccurate eye locations. As expected, the PCA algorithm
degrades abruptly, confirming that it is highly dependent on the localization accuracy.
The FaceIt and EBGM algorithms turned out to be relatively tolerant to the inaccurate
localizations; the performance also degrades, but the amount of degradation is negli-
gible. We do not know what FaceIt does to handle this problem, and EBGM adjusts
itself to some degree. Similar experiments with FaceIt performed in [2] showed large
degradation with the “weathered” image set. In the next session we propose a method
of augmenting the probe data to solve the problem caused by misalignment.

5 Eye Perturbations

Using large and representative samples per class is the best way to assure better classi-
fication, but it is not always feasible [8]. Generating multiple versions of face templates
from a limited number of originals, thus augmenting the dataset, is one promising so-
lution, as in [8, 9]. To solve the problem of inaccurate eye localization as discussed
in Section 4, we propose to augment the probe images by perturbing the initial eye
locations.

In real-life applications, the gallery set resides in the database, thus its quality and
metadata are under strict control. In contrast, the probe images usually are transient and
its quality (along with that of metadata) is less controlled. Thus, it is more likely the
probe images have bad eye localization than the gallery images do. Therefore, instead
of augmenting the gallery set as in [8, 9], we propose to augment the probe images. By
keeping the gallery set and augmenting the probe images, the face recognition system
becomes more flexible in that the degree of dataset augmentation is easily adjustable
accordingly; there is no need of rebuilding or remodeling of the system.
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Fig. 3. The performance degradation due to inaccurate eye localization. The CMC at rank 1 of
PCA algorithm dropped 76.3 % to 53.5 %. The EBGM (51.1 % to 47.6 %) and FaceIt (90.8 % to
89.8 %) were less affected by the deviation

All of 786 images used in our experiments are accompanied by the ground truth
facial landmarks, which are marked by a number of different human operators and are
highly reliable in spite of the existence of slight variations across operators and over
time. The images also are provided with the machine-selected eye locations. For each
original query image, we generate multiple normalized faces by perturbing the initial
– either ground truth or machine-selected – eye locations (Figure 4). The sampling
window size is set to 49×49 pixels so that it covers an area slightly wider than the iris.
We sample 41 uniformly distributed locations for each eye, a total of 41×41=1681 pairs
of eye locations, and thus generate the same number of normalized faces for each query
image.

Each normalized face probe matches against the gallery set and produces distance
measures to each of the 393 gallery images. So for each query image we will have 1681
individual classification results. A number of committee schemes to combine these re-
sults are available, such as nearest neighbor, k-nearest neighbors, weighted sum, maxi-
mum vote, etc. So far we tested the nearest neighbor and maximum votes. In the nearest
neighbor (NN) scheme, we simply select the pair of probe and gallery with the mini-
mum distance – or the highest similarity score in FaceIt terminology. In the maximum
vote scheme, the gallery image that gets the maximum number of NN selections from
1681 individual normalized face probes is finally selected.

6 Results and Discussion

We compared the NN ensemble method to the baseline on the PCA and the FaceIt al-
gorithms, where both ground truth and machine-selected eye markings are provided
(Fig. 5 (a)). The NN ensemble PCA algorithm scored 79.4 % rank-1 CMC, marginally
improved from that of the baseline PCA, 76.3 %. The improvement achieved by the
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(a) (b)

(c)

Fig. 4. An example of multiple generation of normalized faces from a probe image. Given an
original image (a), possibly with inaccurate eye locations, 41 sampling locations centered at the
initial eye locations are selected for each eye as illustrated in (b). Six out of 1681 normalized
faces are shown in (c)
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Fig. 5. Comparison between the baseline and ensemble methods. The ensemble methods achieved
both improvement (significant or marginal) and stability in performance

NN ensemble is just over 3 %, but considering that the baseline performance was with
the ground truth, it promises greater improvement with machine-selected eye locations.
The experiment of the ensemble PCA algorithm with machine-selected eye locations
reached 79.1 % rank-1 CMC, which is a huge improvement from the baseline perfor-
mance of 53.7 %. The comparison of baseline and ensemble FaceIt is shown in Fig.
5 (b). The baseline performance of FaceIt is already high enough, but we still observe
marginal improvements, and the amount of improvement is a little higher in case of
machine-selected eye locations, which was expected. The overall CMC curves shown
in Figure 5 indicate that the ensemble method also achieved stability in performance
as well as improvement, that is, we observe only negligible difference in performance
between the ground truth and automatic markings.

At this point we need to analyze the mechanism of the maximum vote scheme,
which yields low performance. The maximum-vote ensemble method was also applied



Eye Perturbation Approach for Robust Recognition of Inaccurately Aligned Faces 47

0 5 10 15
x standard deviation

0

20

40

60

C
ou

nt

incorrectly matched NN’s

0 5 10 15
0

20

40

60

C
ou

nt

correctly matched NN’s

Distribution of Nearest Neighbor Distances
baseline PCA with machine selected eye locations

0 5 10 15
x standard deviation

0

20

40

60

C
ou

nt

incorrectly matched NN’s

0 5 10 15
0

20

40

60

C
ou

nt

correctly matched NN’s

Distribution of Nearest Neighbor Distances
ensemble PCA with machine selected eye locations
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Fig. 6. The distribution of nearest neighbor distances in the (a) baseline and (b) ensemble PCA
with the automatically marked eye locations. Each of the 393 probes have 393 distance mea-
sures to the gallery images, and this plot shows how the 393 NN distance outlies in the overall
distribution of probe-to-gallery distances

with the PCA algorithm, but it achieved lower performance (63.6 % rank-1 CMC) than
that of the baseline. In general, the NN pair of a probe and a gallery image is the ex-
treme outlier in the distribution of distances between probe and gallery images. We
investigated how far the NN distance lies in the distance distribution. In the baseline ex-
periment the correctly matched NN distances lie at, on average, 5.2 standard deviation
of the distance distribution, and the incorrectly matched NN distances lie at 3.6 standard
deviation (Figure 6 (a)). In both cases, the NN distances are the extreme outliers in the
distribution whose p-values are less than 0.001. This extremity of the NN distance gets
further (Figure 6 (b)) in the ensemble scheme because it produces a better (or equal at
least) NN distance and adds a huge amount of mediocre distances. This explains the
poor performance achieved by the maximum vote committee method, where the newly
produced NN distance just casts one vote equally as the other 1680 distances do. There-
fore, hereinafter we discard the maximum vote committee scheme and focus on the NN
scheme only.

Figure 7 shows two examples of successful NN match after the eye perturbation. At
the top row, the original probe in the baseline was matched to a wrong gallery image,
and the correct gallery image scored rank of 150; after the eye perturbation, one of the
perturbed probes was matched to the correct gallery image. At the bottom row of the
figure, which is the case where the machine-selected eye locations were provided, the
rank score has jumped from 131 to 1.

However, augmenting the dataset not always improve the performance. It is pos-
sible that some of the enlarged data may match to wrong gallery images with smaller
distances than that of correct match. In our experiments it actually happened (Figure 8),
but the rank change is relatively small. The count and amount of performance improve-
ment and degradation are summarized in Table 1. In the PCA case with ground truth,
the number of instances of improvement is not much more than that of degradation, but
the average amount of rank change is larger, which gives overall improvement. In the
PCA case with machine-selected eye locations, both the number and the amount of rank
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(a) (b) (c) (d)

Fig. 7. Successful cases of eye perturbation. The probe with initial eye localization (a) is matched
to a wrong gallery image (b). After perturbation, a new probe image (c) is successfully matched
to the correct gallery image (d). It is shown that the probe image (a) and the gallery image (d) are
not well aligned

(a) (b) (c) (d)

Fig. 8. Examples of degradation after eye perturbation. The probe with initial eye localization (a)
is matched to a correct gallery image (b). After perturbation, a new probe (c) picked up a wrong
match (d) that has smaller distance

change is large, which explains the big jump in the CMC curve in Figure 5. The FaceIt
rank results have similar patterns, although less obvious.

There also exist cases where the proposed method cannot be the solution. The sub-
ject in Figure 9, for example, has significant pose change between the gallery and probe
images. Neither PCA nor FaceIt succeeded in matching this subject correctly both in
the baseline and in the ensemble method because the problem here comes from the pose
angle rather than from the localization accuracy.

7 Conclusions and Future Works

In this paper we showed the effect of inaccurate eye localization on the performance of
face recognition and proposed a method that is robust to the effect. We first investigated
the impact of eye localization accuracy through experiments with two sets of realis-
tic localization data; a set of manual markings, which is used as the ground truth, and
another set automatically marked by a commercial software, which served as the devi-
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Table 1. The rank change between the baseline and the NN ensemble methods

PCA FaceIt
GT Auto GT Auto

Count Amount Count Amount Count Amount Count Amount
Improved 69 36.4 160 44.2 22 16.7 31 53.6
Degraded 51 7.9 28 16.3 13 19.2 10 13.3
Unchanged 273 205 358 352

(a) (b) (c) (d) (e)

Fig. 9. A failed match after eye sampling. The various extractions of the probe images, (a) and
(c), could not be matched to the correct gallery image, (e), because the pose difference between
the original gallery and probe images is significant. Image (c) and (d) are the nearest neighbor
pair after the eye perturbation

ation from the ground truth. By using large sets of images with substantial time lapse
between the gallery and probe images, and by using real-life outputs of eye localization,
we showed that, for some face recognition algorithms, the accuracy of eye localization
is critical to the recognition performance.

Based on the baseline experimental results, we proposed an eye perturbation ap-
proach to make existing face recognition algorithms robust to the eye localization vari-
ation. A number of experiments with ground truth and machine-selected eye locations
showed that achieving both improvement and robustness was successful.

It will be worth investigation to extend this experiments with image sets of larger
variety. As mentioned in [2], the inaccurate eye localization may have the greatest im-
pact on controlled pairs of gallery and probe images; using pairs of different conditions
in the probe images – e.g., uncontrolled probe images against controlled gallery – might
attenuate the effect of inaccurate localization.

Currently the increased computational cost is the main problem of the proposed ap-
proach. We used a full-scale eye perturbation for a thorough investigation, but a smaller
and sparser sampling may be enough for the intended purpose. Alternatively, the de-
gree of perturbation may be parameterized so that the degree can be adjustable. We also
plan to design an intelligent decision algorithm by modeling the distribution of NN dis-
tances as shown in Figure 6, so that it can decide the necessity and degree of the eye
perturbation, methods of combining individual classifications, etc.
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Abstract. In this paper, a combined shape-texture approach to dis-
criminative face authentication is studied. Facial texture information is
captured through Gabor responses (jets), similarly to the Elastic Bunch
Graph Matching approach, but the points where filters are applied are
located over lines that sketch the face. In this way, textural information
is “shape-driven” and unlike other Gabor-based approaches, it shows a
person-dependent behaviour. For every pair of face images, the score ob-
tained through jets is combined with 3 measurements of pair-wise shape
distortion. Discriminative Fisher methods are applied at the shape algo-
rithm level and at the score combination level, in order to get a unified
score ready for classification. Face verification results are reported on
configuration I of the XM2VTS database.

1 Introduction

Most of face recognition systems rely on a compact representation that encodes
global and/or local information. Global approaches are mainly represented by
linear projection methodologies (among others: Principal Component Analy-
sis (Eigenfaces [1]), Linear Discriminant Analysis (Fisherfaces [2]), Independent
Component Analysis [3] , etc.). These methods are devoted to encode faces in
an efficient manner, and characterize the spanned face space or manifold. Local
approaches have been based on finding and characterizing informative features
such as eyes, nose, mouth, chin, eyebrows, etc. If their mutual relationships are
considered, then we have a local-global approach (Local Feature Analysis [4]).
Inside this last group of methods we can find the Elastic Bunch Graph Match-
ing (EBGM) algorithm [5]. It combines local and global representation of the
face by computing multi-scale and multi-orientation Gabor responses (jets) from
a set of the so-called fiducial points, located at specific face regions (eyes, tip
of the nose, mouth,. . . , i.e. “universal features”). Finding every fiducial point
is one of the most critical parts of EBGM, either in terms of accuracy or in
terms of computational burden. This search relies on a matching process be-
tween the candidate jet and a bunch of jets extracted from the corresponding
fiducial points in different faces. In this way, there are several variables that can
affect the accuracy of the final fiducial point locations, as differences in pose,
illumination conditions and insufficient representativeness of the stored bunch
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52 José Luis Alba-Castro and Daniel González-Jiménez

of jets. Once fiducial points are adjusted, only textural information is used in
the classifier. In [13], an easier way to locate grid-nodes was presented by taking
advantage of illumination-invariant features from which geometry of face can be
characterized.

As it will be seen later, our method chooses a set of points, P , in an image F
from lines that characterize the face. These sets are the base for shape distortion
measurements and texture similarities. The set of selected points turned out to
be quite robust against illumination conditions and slight variations in pose.
Many of the points located belong to “universal” features, but many others are
person-dependent. In this way we say that this method is inherently discrimina-
tive, in contrast to trainable parametric models. So, EBGM locates a pre-defined
set of “universal” features and our approach locates a person-dependent set of
features. As a byproduct of the correspondence algorithm [6], we extract two
measurements of local geometrical distortion. Gabor jets are then calculated
from the correspondent points and the final dissimilarity function compiles geo-
metrical and local texture information. In order to include a global measurement
of shape distortion, a Hausdorff-based distance has also been added to the final
classifier.

Our method can be splitted into several steps. Given two faces, say F1 and
F2, it normalizes both of them to a standard size, obtaining face sketches and
choosing a set of points from those sketches, which must be matched. Later, Ga-
bor responses are calculated at selected locations and this textural information
is combined with geometrical distortions to compute the final dissimilarity score
between F1 and F2. The different steps of our method are detailed in the next
sections. Section 2 explains the operator used to extract face lines and intro-
duces the global shape score between face images. The grid adjustment, the way
we select points and the algorithm used to match these sets of points are also
described in this section. The Gabor filters used to extract texture are explained
in section 3. Section 4 introduces different geometrical terms and the Sketch
Distortion concept used to measure dissimilarity between faces. Experimental
results are given in section 5. Finally, conclusions are drawn in section 6.

2 Computation of Fiducial Points
and Global Shape Distortion

In this work, shape information has been obtained using the ridges and valleys
operator because of its robustness against illumination changes [7]. Moreover,
the relevance of valleys in face shape description has been pointed out by some
cognitive science works [8]. In this paper, we have used the ridges and valleys
obtained by thresholding the so-called multi local level set extrinsic curvature
(MLSEC) [9]. The MLSEC operator works here as follows: i) computing the
normalized gradient vector field of the smoothed image, ii) calculating the di-
vergence of this vector field, which is bounded and gives an intuitive measure of
valleyness (positive values running from 0 to 2) and ridgeness (negative values
from -2 to 0), and iii) thresholding the response so that image pixels where the
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MLSEC response is smaller than -1 are considered ridges, and those pixels larger
than 1 are considered valleys.

Now that the feature descriptor has been properly defined, we have a way
of describing fiducial points in terms of positions where the geometrical image
features have been detected.

Fig. 1. Left: Original Image. Center-left: Valleys and ridges image. Center-right:
Thresholded ridges image. Right: Thresholded valleys image

Once we have extracted the ridges and valleys from two face images, a global
shape score can be obtained. One of the most successful dissimilarity measure-
ments for sets of points (or binary images) is the Hausdorff distance, that has
been widely used for object matching in scene analysis [10]. It is well known
that the standard Hausdorff distance is quite sensible to outliers, so some mod-
ifications [11] have been used to avoid such a problem. In this work, we have
used a particular modification that can be referred as Average Hausdorff Dis-
tance (AHD). Given two sets A and B, the directed Average Hausdorff Distance
ahd(A,B) from the set A to the set B, (assuming Euclidean distance between
set elements) is:

ahd(A,B) =
1
|A|

∑
a∈A

min
b∈B

(‖a− b‖) (1)

where |A| denotes the cardinal of the set A. So, the (symmetric) Average Haus-
dorff Distance (AHD) can be formally written as:

AHD(A,B) =
1
2
(ahd(A,B) + ahd(B,A)) (2)

The computation of AHD(A,B) is easily performed as a double dot prod-
uct: given our binary image F1(x, y) that can be thought of as the output of
any contour operator, with A = {(x, y)|F1(x, y) = 1}; we can define −→F1 as the
binary vector associated to the binary image F1, and F̂1 = 1

|A|
−→F1 the associ-

ated normalized vector. For a digital binary image, we can define the Distance
Transform, D(F1) [12], as a point-wise transform that contains, for each pixel,
the distance between that pixel and the pixel of value 1 closest to it. The vector
format for the distance transform D(−→F1) can also be extended to the associated
normalized image D(F̂1) with the same meaning. With these definitions, the
AHD between binary images can then be calculated averaging inner products:

AHD(F1,F2) =
1
2
(< F̂1, D(F̂2) > + < F̂2, D(F̂1) >) (3)
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2.1 Point Matching

Once the ridges and valleys in a new image have been extracted, we must sample
these lines in order to keep a set of points for further processing. There are some
possible combinations, in terms of using just ridges, just valleys or both of them,
so we will refer to the binary image, obtained as a result of the previous step,
as the sketch from now on.

In order to select a set of points from the original sketch, a dense rectangular
grid (Nx ×Ny nodes) is applied onto the face image and each grid node changes
its position until it finds the nearest line of the sketch. So, finally, we get a
vector of points P = {p1,p2, . . . ,pn},1 where pi ∈ IR2. These points sample the
original sketch, as it can be seen in figure 2.

Fig. 2. Left: Original rectangular dense grid. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch

In order to compare feature vectors extracted at these positions, we must
first compute the matching between points from both images. We have adopted
the idea described in [6]. For each point i in the constellation, we compute a 2-D
histogram hi of the relative position of the remaining points, so that a vector of
distances D = {di1, di2, . . . , din} and a vector of angles θ = {θi1, θi2, . . . , θin} are
calculated for each point. As in [6], we employ bins that are uniform in log-polar
space, i.e. the logarithm of distances is computed. Each pair (log dij , θij) will
increase the number of counts in the adequate bin of the histogram.

Once the sets of histograms are computed for both faces, we must match
each point in the first set P with a point from the second set Q. A point p from
P is matched to a point q from Q if the term Cpq, defined as:

Cpq =
∑

k

[hp (k) − hq (k)]2

hp (k) + hq (k)
(4)

is minimized2. Finally, we have a correspondence between points defined by ξ:

ξ (i) : pi =⇒ qξ(i) (5)

where pi ∈ P and qξ(i) ∈ Q.

1 n = Nx ×Ny. Typical sizes for n are 100 or more nodes
2 k in (4) runs over the number of bins in the 2D histogram
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The vectors of angles θ = {θi1, θi2, . . . , θin} are calculated taking the x-axis
( the vector (1, 0)T ) as reference. This is enough if we are sure that the faces
are in an upright position. But, to deal with rotations in plane, i.e. if we do not
know the rotation angle of the heads, we must take a relative reference for the
shape matching algorithm to perform correctly. Consider, for the set of points
P = {p1,p2, . . . ,pn}, the centroid of the constellation cP :

cP =
1
n

n∑
i=1

pi (6)

For each point pi, we will use the vector −−→picP = cP − pi as the x-axis, so that
rotation invariance is achieved. Also, the angle between the two images, ϕ, can
be computed as follows:

ϕ =
1
n

n∑
i=1

�
(−−→picP ,−−−−→qξ(i)cQ

)
(7)

so that the system is able to put both images in a common position for further
comparison. If we do not take this angle into account, textural extraction will
not be useful for our purposes.

3 Local Texture Similarity

For this shape descriptor to be useful in face authentication, local texture in-
formation must be also taken into account. Gabor wavelets are biologically mo-
tivated convolution kernels that capture this kind of information and are also
quite invariant to the local mean brightness, so an efficient face encoding ap-
proach will be to extract texture from these geometrically salience regions. The
system uses a set of 40 Gabor filters, with the same configuration employed in
[5]. These filters are convolution kernels in the shape of plane waves restricted
by a Gaussian envelope, as it is shown next:

ψm (−→x ) =

∥∥∥−→k m

∥∥∥2

σ2
exp

⎛⎜⎝−

∥∥∥−→k m

∥∥∥2

‖−→x ‖2

2σ2

⎞⎟⎠[
exp

(
i
−→
k m · −→x

)
− exp

(
−σ2

2

)]
(8)

where −→
k m contains information about frequency and orientation of the filters,−→x = (x, y)T and σ = 2π.

The region surrounding a pixel in the image is encoded by the convolution of
the image patch with these filters, and the set of responses is called a jet, J . So,
a jet is a vector with 40 coefficients, and it provides information about a specific
region of the image. Each coefficient, Jk, can be expressed as follows:

Jk (I (x0, y0)) =
∑

x

∑
y

I(x, y)ψk (x0 − x, y0 − y) (9)
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In the previous step, we have selected n points from the face image, but in
order to avoid overlapping between responses of filters and to reduce compu-
tational time, we must leave just a few of them, from which we will extract
textural information. So, we decided to establish a minimum distance D be-
tween each pair of nodes, so that all final positions are separated at least by D.
As a consequence, the number of final points, nD, will be less or equal than n.
Let P ′ =

{
p′
1,p

′
2, . . . ,p

′
nD

}
denote the set of final points for textural extraction,

and let R =
{
Jp′

1
,Jp′

2
, . . . ,Jp′

nD

}
be the set of jets calculated for one face. The

similarity function between two faces, SJ (F1,F2) results in:

SJ (F1,F2) ≡ SJ
(R1,R2

)
=

1
nD

nD∑
i=1

< R1
i ,R2

ξ(i) > (10)

where < R1
i ,R2

ξ(i) > represents the normalized dot product between the i-th jet
from R1 and the correspondent jet from R2, but taking into account that only
the moduli of jet coefficients are used.

4 Discriminative Shape and Textural Distortion

Global shape distortion has been taken into account throughout the computation
of AHD(F1,F2). In this section, local shape distortions will be handled. So, we
introduce two different terms here:

GD1 (F1,F2) ≡ GD1 (P ,Q) =
n∑

i=1

viCiξ(i) (11)

GD2 (F1,F2) ≡ GD2 (P ,Q) =
n∑

i=1

wi

∥∥−−→picP −−−−−→qξ(i)cQ
∥∥ (12)

Equation (11) computes geometrical distortion by linearly combining the in-
dividual costs represented in (4). On the other hand, (12) calculates metric
deformation by combining the norm of the difference vector between matched
points3.

Weighting vectors v and w can be simply set to the vector −→1 or can be dis-
criminatively calculated. When dealing with face shape distortion, it is obvious
that regions related to face muscles are more likely to suffer slight displacements
than others. Hence, the local contributions in GD1 and GD2 must be weighted
accordingly. We have found the n components of v and w as the Fisher best
discriminative direction between the local shape distortion vectors for evalua-
tion clients and impostors. GD1 and GD2 can be seen as global shape distortion
measurements, that should be large for faces of different subjects and small for
faces representing the same person. If faces are in an upright position and are
3 Note that the centroid of the constellation has been substracted from the point

coordinates in order to deal with translation
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scaled at the same size, adding the global distorsion AHD(F1,F2) increases the
discriminative power of the shape part of the classifier, as it will be seen at the
results section.

Now we can think of linearly combining jet dissimilarity, [1 − SJ (F1,F2)],
with shape deformations, resulting in the final dissimilarity function DS (F1,F2):

DS (F1,F2)=λ1 [1 − SJ (F1,F2)]+λ2GD1 (F1,F2)+λ3GD2 (F1,F2)+λ4AHD(F1,F2)
(13)

with λi > 0. The combination of GD1 and GD2 is what we call Sketch Distortion
(SKD). From (13) and using (10), (11) and (12), it follows that DS (F1,F2) is
equal to:

n∑
i=1

[
λ1

1− < R1
i ,R2

ξ(i) >

nD
+ λ2Ciξ(i) + λ3

∥∥−−→picP −−−−−→qξ(i)cQ
∥∥]

+λ4 ·AHD(F1,F2) (14)

Equation (14) needs an explanation. The index i in (14) runs over the entire set
of points, although only a subset of them was used to compute jet similarity, as
it was explained in the previous section. When i refers to a point that was not
used to calculate a jet, only geometrical dissimilarity is taken into account, as
1− < R1

i ,R2
ξ(i) > is set to 0. Except for this, in (14) we can see that each con-

tribution of jet dissimilarity is modified with a weighted geometrical distortion
(the so-called Local Sketch Distortion or LSKD). A high value in LSKD from
the pair

(
pi, qξ(i)

)
means that they are not positioned over the same face region,

so that jet dissimilarity will also be high. This fact is more likely to occur when
incoming faces do not represent the same person. Even if LSKD is low, but
faces do not belong to the same person, textural information will increase the
dissimilarity between them. On the other hand, when faces belong to the same
subject, low LSKD values should be generally achieved, so that matched points
are located over the same face region, resulting in a low jet dissimilarity. Thus,
the measurement in (14) reinforces discrimination between subjects. Figures 3
and 4 give a visual understanding of this concept. Figure 3 shows two instances
of face images from subject A, while faces in figure 4 belong to subject B. The
visual geometric difference between the two persons is reflected in the Sketch
Distortion term, whose values are shown in table 1.

The scores weighting vector −→
λ = [λ1, λ2, λ3, λ4]

T is absolutely necessary to
avoid that scores with weak performance provoke an useless score combination.

Table 1. Sketch Distortion (SKD) between the face images from figures 3 to 4

Subject A Subject B

Image 1 Image 2 Image 1 Image 2

Image 1 0 1851 3335 3226
Subject A

Image 2 1851 0 3053 2821

Image 1 3335 3053 0 1889
Subject B

Image 2 3326 2821 1889 0
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Fig. 3. Top: Left: First image from subject A. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch. Bottom: Left: Second image from subject A. Center:
Valleys and ridges sketch. Right: Grid adjusted to the sketch

Fig. 4. Top: Left: First image from subject B. Center: Valleys and ridges sketch. Right:
Grid adjusted to the sketch. Bottom: Left: Second image from subject B. Center:
Valleys and ridges sketch. Right: Grid adjusted to the sketch

5 Results

In this section, we present the results using this new approach. From our previous
work ([13]), the matching procedure between points has been improved, and the
Sketch Distortion and AHD terms have been introduced. As before, we use the
XM2VTS database [14] and the Lausanne protocol (configuration I) [15] for
testing. The modifications mentioned above reduced the error rates, as shown
in table 2. In the second row, although only textural information (T ) is used,
i.e. λ1 = 1, λ2,3,4 = 0, some shape information still remains, because jets are
extracted and compared at geometrically matched fiducial points. The next row
shows the performace using only the AHD score. Rows 4th and 5th show the
performance using the GD1 and the GD2 scores with Fisher weighting vectors
(v and w) for balancing local shape distortion. The results in the sixth row
(T + SKD) were achieved by using λ1,2,3 = 1, λ4 = 0. Seventh row (T + AHD)
shows performance with λ1,4 = 1, λ2,3 = 0. Next row presents the error rates
with −→

λ = [1, 1, 1, 1]T . Finally, the last row shows the results using the two
vectors v and w mentioned above, and a second level of Fisher discriminative
weighting for balancing individual scores λi.
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Table 2. FRRev(%),FARev(%),FARtest(%) and FRRtest(%) (at EER threshold) for
different configurations

Method FRRev(%) FARev(%) FARtest(%) FRRtest(%)

Previous work [13] 2.4 2.2 2.5 8.4

Textural (T ) 3.17 2.36 2.5 5.11

AHD 8.67 6.08 11.75 7.22

GD1 13.5 6.41 29.75 11.12

GD2 13.17 7.21 38 12.09

T + SKD 3.33 1.73 5.75 4.23

T + AHD 4.17 2.76 4.75 4.93

T + SKD+AHD 2.67 2.02 4.25 4.26

Fisher combination 1.83 1.86 2.25 4.33

From this table we can highlight: i) Textural information extracted from
person-dependent points performs better than any of the shape measurements
tested, ii) GD1 and GD2, obtained as a byproduct of the point matching process
do not perform well alone. Moreover, the direct combination of SKD with jet
dissimilarity yields a worse performance than using Gabor responses alone, and
the same for (T +AHD) and (T + SKD +AHD), but iii) both types of shape
distortion help to reduce error rates when they are discriminatively combined
with jet dissimilarity (a relative improvement of 13.53%).

We have also tested our verification system using the BANCA Database [16]
on protocol MC and obtained an average WER of 4,89% with λ1 = 1, λ2,3,4 = 0.
An implementation of the EBGM algorithm from the CSU Face Identification
Evaluation System (http://www.cs.colostate.edu/evalfacerec/index.html) on the
same database and protocol gave an average WER of 8,79% [17]. With the above
vector −→λ , the main difference of both algorithms is the location of fiducial points,
so it seems clear that our verification system selects more discriminative points.

6 Conclusions

In this paper, we have presented an inherently discriminative approach to au-
tomatic face recognition by combining shape and textural information. Fiducial
points are located over lines that depict each individual face geometry, and shape
differences between constellations of points from two faces are measured using
the Sketch Distortion and the AHD terms. Gabor jets provide the textural in-
formation as defined in [5]. Two-level Fisher discriminative weightings were used
to achieve results over the standard XM2VTS database. These results show that
the method is comparable to the best ones reported in the literature and a clear
improvement from those reported in [13].
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Abstract. The present paper introduces a novel set of biometrics based
on facial asymmetry measures in the frequency domain using a compact
one-bit representation. A simplistic Hamming distance-type classifier is
proposed as a means for matching bit patterns for identification pur-
poses which is more efficient than PCA-based classifiers from storage
and computation point of view, and produces equivalent results. A com-
parison with spatial intensity-based asymmetry measures suggests that
our proposed measures are more robust to intra-personal distortions with
a misclassification rate of only 4.24% on the standard facial expression
database (Cohn-Kanade) consisting of 55 individuals. In addition, a rig-
orous statistical analysis of the matching algorithm is presented. The role
of asymmetry of different face parts (e.g., eyes, mouth, nose) is investi-
gated to determine which regions provide the maximum discrimination
among individuals under different expressions.

1 Introduction

Human faces have two kinds of asymmetry - intrinsic and extrinsic. The former is
caused by growth, injury and age-related changes, while the latter is affected by
viewing orientation and lighting direction. We are however interested in intrin-
sic asymmetry which is directly related to the individual facial structure while
extrinsic asymmetry can be controlled to a large extent or can be pre-processed
or normalized. Psychologists have long been interested in the relationship be-
tween facial asymmetry, attractiveness and identification. The more asymmetric
a face, the less attractive it is and more recognizable ([1], [2]). This indicates the
potential significance of asymmetry in automatic face recognition problems.

A commonly accepted notion in computer vision is that human faces are
bilaterally symmetric ([3]) and [4] reported no differences whatsoever in recog-
nition rates while using only the right and left halves of the face. However, a
well-known fact is that manifesting expressions cause a considerable amount of
facial asymmetry, they being more intense on the left side of the face ([5]). Indeed
[6] found differences in recognition rates for the two halves of the face under a
given facial expression.
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Despite extensive studies on facial asymmetry, its use in human identification
started in the computer vision community only in 2001 with the seminal work
by Liu ([7]), who for the first time showed that certain facial asymmetry mea-
sures are efficient human identification tools under expression variations. This
was followed by more in-depth studies ([8], [9]) which further investigated the
role and locations of different types of asymmetry measures both for human as
well as expression classifications. But people have not so far utilized the fre-
quency domain for developing facial asymmetry measures for recognition. This
is a natural extension given that there exists much correspondence between the
two domains. We explore this in depth in this paper, with a view to developing
a computationally and memory efficient biometric for face identification.

The paper is organized as follows. Section 2 describes the dataset used and
Section 3 introduces the new asymmetry measures in the frequency domain.
Section 4 presents some exploratory feature analysis and Section 5 contains the
classification results along with a statistical analysis of the matching results. A
discussion appears in Section 6.

2 Data

The dataset used here is a part of the “Cohn-Kanade AU-coded Facial Expression
Database” ([10]), consisting of images of 55 individuals expressing three different
kinds of emotions - joy, anger and disgust. Each person was asked to express one
emotion at a time by starting with a neutral expression and gradually evolving
into its peak form. The data thus consists of video clips of people showing an
emotion, each clip being broken down into several frames. The raw images are
normalized and cenetered using an affine transformation (details included in [8]).
Each normalized image is of size 128 × 128. Some normalized images from our
database are shown in Fig. 1. We use a total of 495 frames, which include 3
frames from each emotion for each subject (55 × 3 × 3). These are chosen from
the most neutral (the beginning frame), the most peak (the final frame) and a
middle frame in the entire sequence. Such a selection of frames is performed in
order to be able to study the effects of extreme expression variations on the face
identification routines based on the new biometric in an effective manner.

Fig. 1. Sample images from our database
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3 The Frequency Domain

Many signal processing applications in computer engineering involve the frequen-
cy-domain representation of signals. The frequency spectrum consists of two
components, the magnitude and phase. In 2D images particularly, the phase com-
ponent captures more of the image intelligibility than magnitude and hence is
very significant for performing image reconstruction ([11]). [12] showed that cor-
relation filters built in the frequency domain can be used for efficient face-based
recognition. Recently, the significance of phase has also been used in biometric
authentication. [13] proposed correlation filters based only on the phase com-
ponent of an image, which performed as well as the original filters. Later [14]
demonstrated that performing PCA in the frequency domain by eliminating the
magnitude spectrum and retaining only the phase not only outperformed spatial
domain PCA, but also have attractive features such as illumination tolerance,
can handle partial occlusions. All these point out the benefits of considering
classification features in the frequency domain for potentially improved results.

Symmetry properties of the Fourier transform are often very useful ([15]).
Any sequence x(n) can be expressed as a sum of a symmetric part xe(n) and
an asymmetric part xo(n). Specifically, x(n) = xe(n) + xo(n), where xe(n) =
1
2 (x(n) + x(−n)) and xo(n) = 1

2 (x(n) − x(−n)). When a Fourier transform is
performed on a real sequence x(n), xe(n) transforms to the real part of the
Fourier transform and xo(n) transforms to its imaginary part (Fourier trans-
form of any sequence is generally complex-valued). The Fourier transform of a
real symmetric sequence is thus real; that of a real and odd sequence is purely
imaginary. Now, since phase is defined as θ = tan−1

(
I
R

)
, it will be zero in case

the imaginary component is zero. In other words, a symmetric sequence gives rise
to zero-phase frequency spectrum. These observations therefore imply that the
imaginary component of the Fourier transform can be considered as a measure of
facial asymmetry in the frequency domain, and also establish a nice relationship
between facial asymmetry and the phase component of the frequency domain.
Given the role played by both phase and asymmetry in face-based recognition,
this presents an opportunity to exploit this correspondence for the development
of more refined classification tools. Note that, this holds for 1D sequences and
hence we will consider 1D Fourier transforms of row slices of images. The 2D
case is more complex and we will not address this issue in this paper.

3.1 Facial Asymmetry Code (FAC)

Following the notion presented in the earlier section, we wish to develop a simple
frequency code to represent the asymmetry/symmetry in a frequency and this
is done using the real and imaginary part of the Fourier transform. For each
frequency x of the Fourier transform of a row slice of an image, we define a set
of features as follows:

F (x) =
{

+1, if I(x) > R(x)
−1, if I(x) ≤ R(x) ,
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where I(x) and R(x) respectively denote the imaginary and the real part of
the Fourier frequency x. Each of our asymmetry features is therefore of one
bit per frequency and hence we call them one bit Facial Asymmetry Code (or,
FAC for short). Note that, these features are very easy to compute and store
requiring much less memory than usual quantified measures which are bigger
in size. What the features describe are as follows: for a particular frequency,
F (x) = 1 implies that that frequency has more asymmetry than symmetry, and
vice versa if F (x) = −1. It is a very simplistic and compact representation of
asymmetry of the different facial regions and we will show that these features
are capable of devising efficient human recognition routines.

We consider two sets of features: (i) the frequency-wise FAC values - 128×128
matrix, and (ii) FAC computed on Fourier transforms of two-row averages of the
original image - 64× 128 matrix, denoted ave FAC. The averaging over rows for
the latter case is done in an attempt to smooth out noise in the image which
can possibly create artificial asymmetry artifacts and give misleading results.
Averaging over more rows, on the other hand, can lead to over-smoothing and a
loss of relevant information. The two-row blocks were selected as optimal after
some experimentation.

4 Feature Analysis

For all the exploratory feature analysis, we consider a reduced dimension FAC set
constructed as follows: the FAC bits are averaged over each row, so that if b(x, y)
denotes the bit at frequency (x, y), we compute B(x) = 1

N

∑
y b(x, y) where N

denotes the number of columns in each image. This means that if B(x) > 0 for
a particular row, the features in that row are more asymmetric and if B(x) < 0,
the features in that row are more symmetric. This feature reduction technique
is being used for two reasons. First, this helps us compare our results with
those reported in [8] who also employed a similar row-averaging technique for
feature analysis. Second, the frequency-wise values are noisy and do not depict
a clear picture, whereas the row averages are much easier to study and at the
same time provide an useful insight into the nature of the different features and
their utility in classification. Figure 2 shows the pattern of variation of FAC for
three people while expressing different emotions, framewise and generally over all
frames. They give a preliminary but convincing idea that these measures may be
helpful in recognizing people in the presence of expression variations owing to the
existence of somewhat distinct patterns for each person. This hence constitutes
a work parallel to that of [8], in a frequency domain framework instead.

We next studied the discriminative power of these asymmetry measures to
determine which parts of the face are actually useful for the identification process.
We used a variance ratio-type quantity called the Augmented Variance Ratio or
AVR, which was also used by ([8]). AVR compares within class and between
class variances and at the same time penalizes features whose class means are
too close to one another. For a feature F with values SF in a data set with C
total classes, AVR is calculated as
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(a) Person 1 (b) Person 2 (c) Person 3

Fig. 2. FAC for the 4 expressions of 3 individuals. For the top 4 rows, +ve values
denote more asymmetry and -ve values more symmetry. The features 0 − 128 range
from the forehead to the chin of a face. The last row shows FAC distribution over all
images of each person - darker areas show more symmetry and lighter areas show more
asymmetry across images of the same person

AV R(SF ) =
V ar(SF )

1
C

∑C
k=1

V ark(SF )
minj �=k(|meank(SF )−meanj(SF )|)

,

where meani(SF ) is the mean of the subset of values from feature F belonging
to class i. The higher the AVR value of a feature, the more discriminative it is
for classification. For our problem, the 55 subjects form the classes (C = 55).

Figure 3 shows the AVR values for the row-averaged FAC-based features,
which clearly shows that features around forehead region just above the eyes
contain the most discriminative information followed by the region around the
nose bridge, pertaining to expression-invariant recognition of individuals. The
other features have very low AVR values which signify that they are not very
useful for human face recognition based on the FAC features. [8], on the other
hand, reported that for their spatial asymmetry measures, the nose bridge is
the most discriminating facial region for similar recognition tasks, followed by
regions around the forehead and chin. Hence there exists some consistency in the
location of asymmetry defined in different ways that helps distinguishing people
under expression changes.
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Fig. 3. (a) AVR values for the FAC-based features, (b) The white strips on the image
denote the regions corresponding to the two peaks in (a)

5 Results

We trained on the neutral frames of the 3 emotions of joy, anger and disgust
from all the 55 individuals in the dataset and tested on the peak frames of all
the 3 emotions from all the people. Hence this represents an expression-invariant
human identification problem, similar to the one reported in [8] which uses an
analogous simple measure of facial asymmetry in the spatial domain called D-
face defined as:

D(x, y) = I(x, y) − I ′(x, y) .

I denotes a normalized face and I ′ its reflected version along the face midline.
Since our features are essentially encoded as bit patterns, it seems natural

to use a distance-type metric that is more effective for comparing bit patterns.
Once such metric is the popular Hamming distance (we will denote it by HD,
for short), which gives the count of bits that are different in two patterns. More
generally, if two ordered list of items are compared, HD is the number of items
that do not match identically. In our case, when comparing two FAC patterns,
HD outputs the number of bits in two codes that do not match.

The results appear in Table 1 which show that our proposed HD classifier
outperforms spatial D-face, an absolute improvement of 13− 14% was observed,
and at the same time FAC is much more compact than the D-face representation.
Furthermore, HD produced as good classification results as with the individual
PCA approach ([12]). One advantage of this method is that it requires training
for new images in the database unlike the global PCA method ([16]) in which
the re-training and projections have to be done on the entire database each time
a new person’s data become available. Apart from the impressive results, the
HD classifier also has a definite advantage over PCA-based method in that it is
computationally much less intensive (involves Boolean exclusive-OR, operation

Table 1. Error rates using the HD classifier on the FAC-based features

Asymmetry features Misclassification rates

FAC 4.24%
Ave FAC 4.54%

Spatial D-face 17.58%
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only) and is much simpler to store than the eigenvectors of PCA which require
floating point 32-bit representation. Moreover, only half of these codes need
to be stored and used due to the conjugate hermitian symmetry arising from
purely real sequences in the spatial domain, according to which frequencies are
symmetric around the origin (real part is symmetric and imaginary part is odd-
symmetric). So, in essence, we are just using half-bit codes in the matching
routine. A comparison of the storage requirements shown in Table 2 clearly shows
that HD requires upto 64 times less storage space than PCA for operation and
even 16 times less storage space than the original normalized images. This alone
establishes a firm basis for the utility of the HD classification algorithm based
on FAC for performing face recognition in practice. Moreover, it lays the ground
for some rigorous statistical analysis which we discuss in the next section.

Table 2. Storage requirements of HD and PCA classifiers for images of different sizes

Actual size Image storage (bits) PCA eigenvectors (bits) HD (bits)

64 × 64 32768 131072 2048
128 × 128 131072 524288 8192

5.1 Statistical Analysis

The Hamming distance is computed using a matching of two one bit patterns.
Hence if X is the random variable denoting the number of matched bits for a
pair of FACs, then assuming that the individual bits are uncorrelated, X follows
a Binomial distribution with parameters p (probability of a match) and n (total
number of bits per image) with the distribution mass function

f(x) =
(
n

x

)
px(1 − p)n−x, x = 0, . . . , n .

Now, if Yi denotes the total number of matched bits for person i when matching
Ni images of this person, then Yi =

∑Ni

k=1 X
i
k, X i

k is the number of matched
bits for the kth image of person i. Then Yi ∼ Bin(nNi, pi), i = 1, . . . , 55,
where pi is the probability of a matched bit for person i. pi = p implies that
every person has the same probability of match per bit. Note that, HD gives the
number of mismatched bits for a pair of FAC, say Z, then X = n− Z.

We estimate pi by the sample proportions of match, which is given by
p̂i = yi/nNi, i = 1, . . . , 55. The 95% confidence interval for each pi is then

given by p̂i ± 1.96× σ̂i, where σ̂i =
√

p̂i(1−p̂i)
nNi

using the normal approximation
to binomial which is valid since we have a large number of samples. We compute
these point and interval estimates for two cases: (i)“genuine”, when matching
two FAC belonging to the same person, and (ii) “impostor”, where two FAC
belonging to two different people are matched. This is done since it is reason-
able to assume that the probability of bit-matching depends largely on the fact
whether the bit patterns belong to the same individual or not. Figure 4 shows
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Fig. 4. Histograms of the number of matched bits for 3 people. The top panel is for
the (i) genuine cases, and the bottom panel for the (ii) impostor cases

the distributions of Yi for 3 people in the database. If we assume pi = p, we
get p̂ = 0.7276 for case (i) and p̂ = 0.5625 for case (ii) with confidence inter-
vals of (0, 1) for both, which is not very useful. This happens due to the fact
that the variation among the number of matched bits for all the people is very
large which off-sets the confidence intervals. It is thus desirable to form these
estimates separately for each person for a more meaningful picture as well as
a comparative study across people. Figure 5 shows the sample estimates along
with the respective confidence intervals for the probabilities of matches for all
the 55 individuals in the database for the two cases. As expected, the estimates
for the genuine cases are considerably higher than the impostors ones. However,
the upper confidence limits for latter seem a little higher than desirable (greater
than 0.5 in some cases). This is attributed to inflated standard errors caused
by variation in the impostor probabilities among different people. This happens
because some people are more identical looking and hence more likely to be
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Fig. 5. The sample estimates of the probabilities of bit-matching (p̂), along with the
95% confidence interval for each of the 55 individuals in the database
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mistaken for each other than others. One way to rectify this will be to consider
impostor probabilities for pairs of people taken at a time. The plots also suggest
that people differ in expressing emotions to a considerable extent.

Statistical tests were also conducted to determine if there existed any signif-
icant difference in the p̂i values for the two cases. A one-sided two-sample t-test
([17]) gave p-values < 0.0001 which indicated that the genuine cases have a sig-
nificantly higher probability of bit-matching than the impostor cases. A pairwise
comparison further showed that all the 55 people have significantly higher bit-
matching probabilities for the genuine cases than the impostor cases, which is
what one should expect. A plot of the p-values for the tests appear in Figure 6.
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Fig. 6. The p-values for the tests comparing the genuine and impostor probabilities of
bit-matching for the 55 individuals

6 Discussion

We have thus shown in this paper that facial asymmetry measures in the fre-
quency domain offer a promising potential as an useful biometric in practice,
especially in the presence of expression variations. Our proposed one bit FACs
and the HD classifier are very efficient with regard to computation and storage
requirements, in fact much more than other known features/classifiers (PCA,
D-face) as we have demonstrated. In fact, FAC needs less space than the actual
gray-scale intensity images also, thus instead of storing or transmitting those,
one can compute their FAC and transmit them. This is very useful for mobile,
low-bandwidth communication channels and low-memory devices such as smart-
cards and system-on-chip implementations. As far as recognition is concerned,
an error rate as low as 4.24% is very impressive and desirable indeed in any
situation, especially given that the test images in our case are very different
from the training ones. This in turn is very important for recognition routines in
practice, for example, in biometric identification applications since surveillance
photos captured at airports are expected to be quite diverse with respect to the
expressions of an individual’s face. Hence any algorithm that can deal with such
variations is supposed to be attractive to users.

Moreover, the fact that we observed significant difference in the scores for
genuine and impostor cases indicates that our method can be easily adopted
to form efficient verification tools. This constitutes our next research direction,
along with exploring whether FAC can handle illumination variations as well as
it does expression variations and extension to a larger database.
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Abstract. In this paper, we propose a novel method named the Multi-
ple Constrained Mutual Subspace Method which increases the accuracy of
face recognition by introducing a framework provided by ensemble learn-
ing. In our method we represent the set of patterns as a low-dimensional
subspace, and calculate the similarity between an input subspace and
a reference subspace, representing learnt identity. To extract effective
features for identification both subspaces are projected onto multiple
constraint subspaces. For generating constraint subspaces we apply en-
semble learning algorithms, i.e. Bagging and Boosting. Through experi-
mental results we show the effectiveness of our method.

1 Introduction

Recently, many face identification methods that perform recognition from a set
of patterns instead of a single pattern have been proposed[1–5]. Since these
methods are able to cope with variation in appearance under varying pose, a
robust face identification application can be built.

To identify faces using a set of patterns, we have previously proposed the
Mutual Subspace Method (MSM)[1]. In MSM, a set of patterns is represented
as a low-dimensional subspace. To compare the input subspace with the refer-
ence subspace representing learnt identity, we calculate their similarity which
is defined by the minimum angle between the input subspace and the reference
subspace. These subspaces are generated using principal component analysis
(PCA).

To improve the performance of MSM we have extended this method to the
Constrained Mutual Subspace Method (CMSM)[5]. In CMSM, to extract effec-
tive features for identification, we project the input subspace and the reference
subspace onto the constraint subspace, as shown in Fig. 1. Through this projec-
tion we can extract features that are insensitive to varying facial pose and illu-
mination, while remaining sensitive to change in individual appearance. Using
CMSM Sato et al.[6] illustrated the effectiveness in a practical security system,
while Kozakaya et al.[7] demonstrated an implementation of a real-time system
on an image processing LSI chip.
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Fig. 1. Concept of CMSM. The input subspace and the reference subspace are gener-
ated from the set of patterns. Then, both subspaces are projected onto the constraint
subspace. Finally, the similarity is determined with the angle θC

Although CMSM is effective, a large number of training patterns are required
for generating the constraint subspace. Since variation in appearance is large un-
der varying pose and illumination, it is difficult to acquire training patterns which
sufficiently represent these variations. Therefore, we need a method of generating
the constraint subspace which yields high performance from a limited number
of acquired training patterns. In the field of machine learning, ensemble learn-
ing has been proposed[8, 9]. Ensemble learning derives recognition performance
by combining hypotheses obtained from given training samples. Wang et al.[10]
applied ensemble learning to face identification based on Linear Discriminant
Analysis and demonstrated that they obtain high performance using only a few
training patterns.

In this paper we propose a new method which generates multiple constraint
subspaces by introducing the framework provided by ensemble learning. Us-
ing these constraint subspaces, we extend CMSM to the Multiple Constrained
Mutual Subspace Method (MCMSM). In MCMSM, the input subspace and the
reference subspace are projected onto each constraint subspace, and the similar-
ity is calculated on each constraint subspace. By combining these similarities we
finally determine the combined similarity as shown in Fig. 2. To generate con-
straint subspaces, we propose two approaches in which we apply the framework
provided by ensemble learning.

This paper is organized as follows. First, we describe the method for applying
MCMSM to face identification in section 2. Next, we describe two approaches
for generating constraint subspaces in section 3. Then, we demonstrate the ef-
fectiveness of our method using MCMSM by experiments in section 4.

2 Identification Using MCMSM

2.1 Algorithm for Face Identification

In this section, we describe the procedure of our face identification method. First,
an input set of face patterns is obtained from a video sequence. We locate the face
pattern from the positions of the pupils and the nostrils obtained automatically
by the method described in [1, 7]. The pattern is transformed to a vector by
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Fig. 2. Concept of MCMSM. The input subspace P and the reference subspace Q are
projected onto each constraint subspace Ci. By combining M similarities(cos2θCi),
which are calculated on Ci, we finally determine the combined similarity

raster-scanning of the pattern, and we apply PCA to the vectors to generate an
input subspace. Let x be a vector and NV be the number of the vectors, the
basis vectors of the input subspace are the eigenvectors of the correlation matrix
A = 1/NV

∑NV

i=1 xxT [12].
To compare the input subspace with the reference subspace, registered in a

database for each individual, we calculate their combined similarity. This com-
bined similarity is determined with similarities calculated on each constraint
subspace. The identified person is determined as corresponding to the reference
subspace of the highest combined similarity. The details of each process are
described in the following section.

2.2 Projection onto Constraint Subspaces

To project the input subspace P onto M constraint subspaces, we carry out the
following steps:

1. Project basis vectors of P onto the i-th constraint subspace Ci.
2. Normalize the length of each projected vector.
3. Apply Gram-Schmidt orthogonalization to the normalized vectors.

The orthogonal normalized vectors are basis vectors of the projected input sub-
space PCi . This procedure is repeated M times for each constraint subspace.
The projected reference subspace QCi can be obtained with the same procedure.

2.3 Calculation of the Similarity on Each Constraint Subspace

We define similarity SCi between the subspace PCi and the subspace QCi as

SCi = cos2 θCi , (1)

where θCi represents the canonical angle between PCi and QCi . The canonical
angle is calculated using MSM[1]. The similarity SCi can be obtained from the
largest eigenvalue λmax of X using

Xa = λa , (2)
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X = (xmn) m,n = 1 . . .N , and (3)

xmn =
N∑

l=1

(ψm, φl)(φl, ψn) , (4)

where ψm is the m-th basis vector of subspace PCi ; φl is the l-th basis vector of
subspace QCi ; (ψm, φl) is the inner product of ψm and φl; N is the dimension
of PCi and QCi . The similarity SCiequals λmax. If the input subspace and the
reference subspace are identical, the canonical angle θCi equals 0.

2.4 Combine Similarities

To combine similarities obtained on each constraint subspace, we define the
combined similarity ST as follows:

ST =
M∑
i=1

αiSCi , (5)

where M is the number of the constraint subspaces; αi is the i-th coefficient of
Ci; SCi is the similarity between PCi and QCi projected onto Ci.

3 Generation of Multiple Constraint Subspaces
with Ensemble Learning

In this section, we explain the method of generating a single constraint sub-
space for CMSM[5]. Next, we describe two approaches for generating multiple
constraint subspaces with ensemble learning for MCMSM.

3.1 Generation of a Single Constraint Subspace

To allow for the variation in appearance for each individual, we acquire the sets of
patterns while changing illumination and pose for L individuals. The variation
of the patterns is represented as a subspace for each individual. We call this
subspace the training subspace.

To generate a constraint subspace which separates the training subspaces by
projection, we calculate eigenvectors using

(P1 + P2 + . . . + PL)a = λa , (6)

Pj =
NB∑
k=1

ψjkψ
T
jk , (7)

where Pj is the projection matrix of the j-th training subspace; NB is the
dimension of training subspace; ψjk is the k-th basis vector of the j-th training
subspace. The eigenvectors, selected in ascending order, are the basis vectors of
the constraint subspace. For details of CMSM see [5, 7].
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Fig. 3. Concept of the method for generating constraint subspaces using Boosting

3.2 Generation of Constraint Subspaces with Bagging

To generate constraint subspaces, we use Bagging[8], which is based on an ensem-
ble learning algorithm. Multiple classifiers are constructed using random sam-
pling in Bagging. To apply this framework to generating constraint subspaces, we
randomly select L′(< L) subspaces from L training subspaces. Each constraint
subspace is generated independently using selected training subspaces.

Algorithm Using Bagging
To summarize: we generate M constraint subspaces by the following steps:

1. Select L′ training subspaces randomly without replacement.
2. Generate a constraint subspace using selected L′ training subspaces in eq.(6).
3. Until M constraint subspaces are generated, go to 1.

3.3 Generation of Constraint Subspaces with Boosting

In another method of generating constraint subspaces, we use Boosting[9]. Each
classifier is constructed sequentially by reweighting the training patterns in
Boosting. The current weight is given to training patterns which were classi-
fied incorrectly in the previous constructed classifier.

In applying this framework to generate constraint subspaces we must de-
fine how to calculate the weight for each training subspace. Consider similarities
between training subspaces on the constraint subspace. As shown in Fig. 3(a),
when the projected training subspace P1Ci and the projected training subspace
P3Ci are similar on the constraint subspace Ci, the likelihood of the false identi-
fication is increased for these training subspaces. To cope with this problem, we
aim to separate P1Ci+1 and P3Ci+1 on Ci+1 as shown in Fig. 3(b). To achieve this,
we generate Ci+1 by assigning large weight to P1Ci and P3Ci , thereby increasing
their importance and decreasing the remaining error.

Algorithm Using Boosting
To summarize: we generate M constraint subspaces by the following steps:
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1. Define the initial weight W1(j).
2. Generate the i-th constraint subspace Ci using i-th weight Wi(j) and the

projection matrix Pj of the j-th training subspace as

(Wi(1)P1 + . . . + Wi(L)PL)a = λa . (8)

3. Calculate the next weight Wi+1(j) using Ci.
4. Until M constraint subspaces are generated, go to 2.

The weight Wi+1(j) is calculated using

Wi+1(j) =
S′

j∑L
j=1 S

′
j

and (9)

S′
j =

L∑
j′ �=j

βjj′ , (10)

where βjj′ equals θCijj′ ; θCijj′ is the angle between Pj and Pj′ projected onto
the Ci. To generate a constraint subspace using only similar training subspaces,
we can set threshold T to be

βjj′ =
{

cos2 θCijj′ T ≤ cos2 θCijj′
0 T > cos2 θCijj′ .

(11)

4 Empirical Evaluation

4.1 Performance for Varying Illumination

To illustrate the performance of our face identification method, the lighting
condition was changed dynamically. We collected a video sequence at 5 frames
per second for each person under each lighting condition. We set 10 difference
lighting conditions using 7 light sources (A-G); see Fig. 4. A image of the set of
each lighting condition is shown in Fig. 5(a). A video sequence consisted of 140
face images which were captured in arbitrary facial pose, e.g. translation, yaw
and pitch. The size of each image was 240×320 pixels and 50 different individuals’
data were collected. From each image a 30 × 30 pixel pattern, as shown in Fig.
5(b), was extracted. This pattern was histogram equalized, resized to 15 × 15
pixels by subsampling, a vertical gradient operator was applied, and finally the
pattern was transformed to a 15 × (15 − 1) = 210-dimensional vector.

We divided the data into two groups that each consisted of 25 individuals’
patterns. The first group was used for identification and the second for generating
constraint subspaces. In the first group, we divided the patterns into input sets
and reference sets for each person. An input set consisted of 10 patterns for
each lighting condition and a reference set consisted of 70 patterns for each
lighting condition. We used 7 input sets per person for each lighting condition.
In the second group, to learn variation of patterns under varying illuminations, a
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training subspace was generated by using all lighting condition patterns. A set of
training patterns consisted of 140 patterns per lighting condition. We generated
25 training subspaces.

We compared the performance of MCMSM with those of conventional meth-
ods.
(a)Nearest Neighbor (NN)
The similarity was determined with the smallest Euclidean distance between the
pattern in the input set and the pattern in the reference set.
(b)Subspace Method[11] (SM)
The similarity was determined using the average of the angle calculated between
each pattern of the input set and the reference subspace. We generated the
40-dimensional reference subspace for each reference set.
(c)Mutual Subspace Method[1] (MSM)
The similarity was determined using the angle between the input subspace and
the reference subspace. We generated the 7-dimensional input subspace for each
input set and the 7-dimensional reference subspace for each reference set.
(d)Constrained MSM[5] (CMSM)
The similarity was determined with MSM after projection onto a single con-
straint subspace. The constraint subspace was generated with L = 25 training
subspaces. We set the dimension of the training subspace to NB = 30, and the
dimension of the constraint subspace to NC = 170.
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(e)Multiple CMSM with Bagging (MCMSM-Bagging)
The similarity was determined with MSM after projecting onto multiple con-
straint subspaces. Each constraint subspace was generated from L′ = 8 training
subspaces selected randomly. We used M = 10 constraint subspaces. The coef-
ficient of the combining was αi = 1/10.
(f)Multiple CMSM with Boosting (MCMSM-Boosting)
The similarity was determined with MSM after projecting onto multiple con-
straint subspaces. Each constraint subspace was generated from weighted train-
ing subspaces. We used M = 10 constraint subspaces. The initial weight W1(j)(j
= 1 . . . 25) was 1/25, the threshold T was 3.5σi, and σi was the standard de-
viation of similarities which were calculated between training subspaces. The
coefficient αi was 1/10.

Table 1 shows the evaluation result of each method in terms of the correct
match rate (CMR) and the equal error rate (EER). CMR is the probability that
an input set of the right person is correctly accepted. EER is the probability
that the false acceptance rate (FAR) equals the false rejection rate (FRR). We
can see that the methods (e) and (f) using MCMSM are superior to (a)-(d) with
regard to CMR and EER. Figure 6 shows the receiver operating characteristic
(ROC) curves, which indicate FAR and FRR of each method. The superiority
of MCMSM (e) and (f) is also apparent from this.

Table 1. Experimental results under varying illumination (25 registered persons)

Method CMR(%) EER(%)

(a) NN 95.4 23.9
(b) SM 95.4 12.9
(c) MSM 95.4 9.8
(d) CMSM 95.4 5.0
(e) MCMSM-Bagging 98.2 4.0
(f) MCMSM-Boosting 98.6 3.9
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Fig. 6. ROC curves (25 registered persons, varying illumination)
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Figure 7 shows the performance of MCMSM versus the number of constraint
subspaces. We can see improved performance for both generating methods as
the number of constraint subspaces increased.

4.2 Performance Assessment on a Large Database

To evaluate performance for a large number of individuals, we collected a total of
1000 input sets for 500 people. The facial pose changed irregularly at each input
set although the lighting conditions were almost uniform. As before the dimen-
sion of the vector was 210. An input set consisted of 15 patterns and a reference
set consisted of 125 patterns. We compared the performance of three methods:
(i)CMSM, (ii)MCMSM-Bagging and (iii)MCMSM-Boosting. In these methods,
we used the 7-dimensional input subspace and the 7-dimensional reference sub-
space. We used 500 training subspaces for generating the constraint subspace.
The training subspace was generated with the reference set. The dimension of
the training subspace was NB = 10, and the dimension of the constraint sub-
space was NC = 170. In (i), we used a single constraint subspace generated with
500 training subspaces. In (ii), we used M = 10 constraint subspaces. Each con-
straint subspace was generated from L′ = 30 training subspaces. The coefficient
αi was 1/10. In (iii), we used M = 10 constraint subspaces. The initial weight
W1(j) was 1/500, the threshold T was 5σi, and the coefficient αi was 1/10.

Table 2 shows the evaluation result of each method. We can see that the
methods using MCMSM are superior to that using CMSM.

Table 2. Experimental results (500 registered persons)

Method CMR (%) EER (%)

(i) CMSM 94.7 2.3
(ii) MCMSM-Bagging 96.2 1.6
(iii) MCMSM-Boosting 96.8 1.6
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5 Conclusion

This paper presented the Multiple Constrained Mutual Subspace Method in which
we applied ensemble learning to the Constrained Mutual Subspace Method. To
extract effective features for face identification, we project the input subspace
and the reference subspace onto multiple constraint subspaces. In the experiment
we obtained high performance compared with projecting onto a single constraint
subspace. To generate constraint subspaces, we apply the framework provided
by ensemble learning, i.e. Bagging, Boosting. We evaluated the algorithms on
a database of varying illumination and a database with 500 individuals. The
effectiveness of MCMSM is demonstrated on both databases.
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A Flexible Object Model for Recognising
and Synthesising Facial Expressions
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Abstract. We here introduce the Flexible Object Model to represent
objects with structured deformation, such as the human face under vari-
able expression. The model represents object shape and texture sepa-
rately and extracts a data parameterisation autonomously from image
sequences after initialisation by a single hand-labeled model graph. We
apply the model to the representation, recognition and reconstruction of
nine different facial expressions. After training, the model is capable of
automatically finding facial landmarks, extracting deformation parame-
ters and reconstructing faces in any of the learned expressions.

1 Introduction

Elastic matching of graphs labeled with Gabor wavelet features (EGM) [1] has
proved a very successful basis for invariant object recognition, even when spatial
deformation is involved as with face recognition under small changes in pose
or expression. According to that concept, variation due to position, scale and
in-plane orientation can be dealt with precisely, but intrinsic image deforma-
tions are not actively modeled and can only passively be followed. This leads
to limited discriminatory power during recognition and precludes the possibil-
ity to reconstruct images from model data. Facial image deformations due to
pose or expression are highly structured and should be represented by a param-
eterised model. To this end we have developed a Flexible Object Model (FOM).
It continues to use elastic graphs to represent objects in individual images but
parameterises these graphs, treating them as functions of pose and expression
parameters. In this paper we present the FOM in general and apply it in chap-
ter 3 to the description of the human face under nine different expressions. We
demonstrate the power of the model by matching and reconstructing faces in a
person-independent way. We conclude by discussing possible applications, among
them improved facial recognition under variable expression.

2 The Flexible Object Model

The FOM, using Gabor wavelet-labeled graphs as fundamental data structure,
distinguishes object shape (represented by the spatial arrangement of landmarks)
from texture (represented by Gabor jets attached to the landmarks). While de-
formation of shape is described in a parameterised way relative to a reference
model, the interrelationship between shape deformation and texture is charac-
terised using a linear function mapping the former onto the latter. The FOM
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therefore also includes mappings between shape deformation and texture, an
idea developed earlier in our lab [2, 3]. Both the variations (of shape and tex-
ture) and the mappings between them are extracted by statistical procedures
from video frame sequences for one or several persons performing different facial
gestures. Compared to the concept of Active Appearance Models, which describes
shape and texture variations using either one common set of parameters or one
set for each [4], in the context of FOM only the shape variation is learned in
a parameterised way while the texture is assumed to be fully determined by a
given shape and map. Finally also the matching process, which uses the concept
of EGM and is described in section 4 in detail, differs from the Fitting process
in the context of AAMs.

2.1 Data Collection

We used sample material collected by Hai Hong [3]. The sequences were taken
under fairly controlled lighting conditions and in frontal pose. In each sequence
the subject performs one of a number of facial gestures, starting and ending with
neutral expression. The gestures were selected for ease of performance (shunning
the difficulty of expressing emotional states) and attempting to cover the whole
range of facial movements. In this study we have used only a subset of 9 of the
23 gestures originally collected [3] for each person.

We initialise the process of extracting model graphs from the frames of a
sequence by manually locating the nodes of the standard graph over facial land-
marks in the first frame. The system then automatically tracks these nodes from
frame to frame with a method based on the phases of Gabor wavelets [5]. The
link structure of the graphs is kept constant throughout. For the sake of scale
invariance, the size of the reference graph is noted in terms of a bounding box
and node displacement in x- and y-direction is measured relative to the width
and height of that box, respectively. To encode local image texture, responses
of several Gabor kernels differing in scale and orientation [1] were extracted at
the landmark positions in each frame. We treat a set of 300 Gabor responses
(real and imaginary part, 15 orientations [φmin = 0, φmax = 14

15π] and 10 scales
[kmin = 2−

11
2 π, kmax = 1

2π]) as one real-valued vector, called Gabor jet.
For each frame, the normalised shift vectors of landmarks relative to the first

frame as well as the Gabor jets at the node positions are noted. They together
form the raw input data, see (1). The models of section 3 were created for
individuals, the models in sections 4 and 5 were formed using video sequences
for several persons. Figure 1, left side, shows two facial graphs superimposed
on each other. The graph with black nodes represents the reference shape (first
frame) while the one with grey nodes belongs to a deformation (which in this
case obviously only affects mouth and chin).

2.2 Model Formation

To construct the FOM as a parameterised model of graph deformation, the raw
data extracted from several video sequences are merged using Principal Compo-
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the bounding box. N denotes the number of nodes while Δxi and Δyi indicates the
displacement of node i along x- and y-direction

nent Analysis (PCA) [6] and a Neural Gas (NG) [7]. While the latter is suitable
for forming sparse representations of the extracted deformations and for clas-
sification purposes, PCA is important for data compression and is particularly
interesting for interpolating and extrapolating the deformations present in the
samples. By this, different deformations which do not not occur simultaneously
in the sample sequences can be superimposed, as illustrated in figure 4. In ad-
dition we are working with Principal Curves [8] to describe smooth transitions,
although we don’t elaborate on that here.

To represent our raw data we use the following notation. If the number of
video frames and raw graphs is M we form the matrices

D := (d1 . . .dM ) ; F i :=
(
ji
1 . . . j

i
M

)
, (1)

where the column vector d denotes the deformation as introduced in figure 1
and the column vector ji indicates the feature vector belonging to the node
with index i. Using PCA, we can now construct the following quantities

< D > ≡ 1
M

M∑
m=1

dm (2)

< F i > ≡ 1
M

M∑
m=1

ji
m (3)

P := (P1 . . .PL) ≡ Principal Deformations (4)

Qi :=
(
Qi

1 . . .Q
i
K

) ≡ Principal Features at node i (5)

D̃ := D− < D > (1 . . . 1)︸ ︷︷ ︸
M times

≡ Mean-Free Deformations (6)

F̃
i
:= F i− < F i > (1 . . . 1)︸ ︷︷ ︸

M times

≡ Mean-Free Features of node i (7)
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where all vectors are taken as column vectors. To reduce the data dimensionality
we use only the first L principal components to describe graph deformation and
the first K principal components for the Gabor jets, respectively. Throughout
this paper we have set L = 7 and K = 20, values that proved sufficient to
reproduce the original data with little error.

Shape deformation is always accompanied by changing texture. We make the
simple assumption of a linear mapping between the shape deformation and the
feature vectors (or rather their mean-free versions), and see that assumption
justified by our numerical results, see chapter 3. Using the matrices Ai (one
matrix per node) we can express and estimate this relationship as follows,

AiPT D̃
!= (Qi)T F̃

i ⇒ Ai ≈ (Qi)T F̃
i
(
PT D̃

)+

, (8)

where + indicates the Moore-Penrose inverse [9] of the term in brackets. By
using homogeneous coordinates it is possible to squeeze all necessary operations
into one matrix that maps a given deformation immediately onto the feature
vector. This is important because it accelerates the computation and therefore
makes it more suitable for the matching tasks introduced in chapter 4.

3 Flexible Model for Synthesising Facial Expressions

In this section we demonstrate the ability of the FOM to synthesise images of
varying facial expression. To this end we have created a person-specific FOM,
using as data nine video sequences with nine different facial expressions (each
containing between 30 and 70 frames). Sample frames are shown in figure 2.

Figure 3 shows three sample frames, taken from the same sequence, with
tracked landmarks.

After collecting the data from all nine sequences, we perform the PCA of
steps (4) and (5), and estimate the shape-to-texture mappings according to (8).
To demonstrate the resulting FOM we chose two of the principal components,
added them with variable amplitude to the mean deformation (which is near to
the neutral expression) and show in figure 4 reconstructions of the resulting data
models. Reconstructions were obtained by the method of [10]. In the bottom row
of the figure the PC amplitude runs from one negative standard deviation on the
left through zero in the middle to one positive standard deviation on the right.
The middle column shows the effect of another PC for positive amplitudes. Three
of the gestures shown in figure 2 can be recognised among the reconstructions
in the middle columns and bottom row. The diagonals of the figure were formed
by superposition of the two PCs and show gestures not present in the input
sequences, demonstrating the extrapolation alluded to above.

In the next section we will need a discrete set of “canonical” facial deforma-
tions. To this end we use a Neural Gas [7] for clustering and apply the following
procedure. From each frame we obtain a shape deformation vector d. This we
project into the subspace of the first L = 7 principal components. These shape
vectors are clustered by a neural gas of 9 neurons, each neuron corresponding
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Fig. 2. Facial Gestures shown at maximal extent

Fig. 3. Autonomously Tracked Landmarks within a gesture sequence

to a cluster. Figure 5 shows the deformed face graphs for the 9 neurons or clus-
ters. From each neuron’s deformation d we obtain Gabor jets by applying the
matrices Ai and reconstruct a facial image, shown for the 9 clusters or canonical
gestures in figure 6.

4 Landmark Finding

Landmark finding, that is, the establishment of precise point correspondences
between facial images and generic facial models, is a critical step for facial pro-
cessing. It is difficult to achieve, especially in the presence of facial deformation.
Passive mechanisms, such as classical elastic graph matching [1] have to be per-
missive in terms of deviations of image texture and shape relative to the model
and thus lose reliability quickly beyond small deformations. The problem can
only be solved by actively modeling the changes in texture and shape observed
in images. For this purpose we here employ a FOM. For greater robustness we
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Fig. 4. Synthesised facial expressions using the first (shown vertically) and fourth
(shown horizontally) Principal Deformation as well as superpositions

Fig. 5. Shape deformations as per Neural Gas. Expressions are shown corresponding
to figure 2

have trained it on four different persons (where we used the total number of se-
quences collected from all persons while each person contributes a data amount
as described in section 3).
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Fig. 6. Synthesised images using shape deformations as shown in figure 5

Our test images display facial gestures of persons not contained in the data set
used for training the FOM. We first find the face to some precision with the help
of a bunch graph [1] constructed out of frontal neutral-expression images for six
persons (again different from the test persons). After suppressing the background
of the image outside the convex hull of the bunch graph by Gaussian smoothing
we replace the bunch graph by the graph of the FOM and improve the match
by separate scale moves in vertical and horizontal directions using the reference
shape. Starting from this reference graph, we now apply the nine “canonical”
gesture deformations trained by the methods of the last section on four persons
(each with the amplitude represented by the trained neurons) and pick the best-
matching gesture. Figure 7 shows examples for six different facial expressions.
The first and third column show test images with suppressed background and
superimposed best-matching graph, each image accompanied on its right by a
reconstruction from the 4-person FOM in the best-matching expression.

In addition to accurate landmark finding in spite of image deformation the
system can be used to identify the gesture displayed in the image. Using several
persons to construct the FOM increased the robustness of the model for person-
independent matching (just as the bunch graph increases the robustness of face
finding), and in addition handled personal differences in the reference persons’
performance of gestures (although the gestures were originally selected for ease
of performance [3]).

5 Correction of Facial Expression

An important application of our FOM will be face recognition. Even for col-
laborating subjects, variation in facial expression cannot be totally avoided and
passive methods of dealing with it are compromising accuracy. What is required
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Fig. 7. FOM Matching for six different facial expressions. The sample images (first and
third column) are shown with suppressed background and superimposed final graph
position, while the correspondent image to the right is a reconstruction from the 4-
person flexible object model

Fig. 8. Estimation of neutral expression using the FOM. From left to right are shown
the original image with the best-matching graph, the image reconstructed from that
graph, the estimated neutral expression using a person-indpendent FOM, and finally
a reconstruction of the neutral-expression gallery image from its graph representation

is active modeling of the effect of expression change so that the test image’s
expression can be adjusted to that of the gallery entry (or vice versa). After
that step, standard recognition tools can be used. We here show in exploratory
experiments that our FOM is a viable basis for this operation.

Without loss of generality we assume that images in the gallery are of neutral
expression. Using a FOM, trained as described in the previous two sections on
data for several (4) persons, we first recognise the expression in the test image
by selecting the best-matching canonical expression (including neutral). After
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landmark finding, feature vectors are extracted from the test image and the face
is transformed with the help of the FOM into neutral expression by applying the
reference shape and replacing only those jets which are significantly deformed
with the corresponding jets of the neutralised FOM. By keeping the jets which
belong to landmarks hardly deformed as much as possible of the subject’s identity
should be preserved. An example of this approach is shown in figure 8. The thus
synthesised model is compared with the one stored in the database. A similar
approach can be applied to changing head pose.

6 Conclusions

We have presented an extension of the established concept of Elastic Graph
Matching. Instead of synthetically constructing a model for shape variation we
empirically learn it from sample image sequences requiring only minimal assis-
tance. The model describes flexible objects in terms of deformation in shape and
in texture as well as a linear mapping between the two. Applications to facial
gestures are investigated in exploratory experiments. As the model is based on
the data format of EGM it is immediately applicable to image matching opera-
tions, as demonstrated. More extensive experiments like recognition tasks using
a larger database and further applications are in progress.
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Abstract. In this paper, we present a novel method for face recon-
struction from multi-posed face images taken under arbitrary unknown
illumination conditions. Previous work shows that any face image can
be represented by a set of low dimensional parameters: shape parame-
ters, spherical harmonic basis (SHB) parameters, pose parameters and
illumination coefficients. Thus, face reconstruction can be performed by
recovering the set of parameters from the input images. In this paper, we
demonstrate that the shape and SHB parameters can be estimated by
minimizing the silhouettes errors and image intensity errors in a fast and
robust manner. We propose a new algorithm to detect the corresponding
points between the 3D face model and the input images by using sil-
houettes. We also apply a model-based bundle adjustment technique to
perform this minimization. We provide a series of experiments on both
synthetic and real data and experimental results show that our method
can have an accurate face shape and texture reconstruction1.

1 Introduction

Face recognition from images has received significant attention in the past few
decades. Although rapid progress has been made in this area during the last few
years, the general task of recognition remains unsolved. In general, face appear-
ance does not depend solely on identity. It is also influenced by illumination and
viewpoint. Thus, recovery of 3D shape and texture from face images is an im-
portant task for an accurate face recognition system. In this paper, we propose
a novel method to extract accurate 3D shape and texture from multi-pose face
images taken under arbitrary unknown lighting.

Previous work[19][20] has shown that any face image taken under arbitrary
unknown lighting and pose can be represented by a set of low dimensional param-
eters: shape parameters, spherical harmonic basis parameters, pose parameters
and illumination parameters. Thus, given input images, 3D face reconstruction
can be performed by estimating the shape and spherical harmonic basis param-
eters of the face. In this paper, we demonstrate that, given a set of multi-posed
1 We would like to thank Sudeep Sarkar and Simon Baker for providing databases and

Thomas Vetter and Sami Romdhani for helpful discussions. This research was sup-
ported by grants from U.S. Department of Justice(2004-DD-BX-1224) and National
Science Foundation(ACI-0313184)
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face images, the shape and texture parameters can be recovered by minimizing
the silhouette errors and image intensity errors respectively.

We recover shape by using silhouette images because the silhouette images
depend only on the shape and pose of the objects and thus are illumination
independent. This reconstruction technique is also called visual hull[10][8] and
the accuracy of shape reconstruction depends on the number and location of
cameras used to capture images. In general, such methods cannot perform shape
recovery accurately for complex objects such as human faces when the visual hull
is constructed from a small number of cameras. However, prior knowledge of the
object to be reconstructed can help shape recovery by providing an important
constraint. In our method, the 3D face model we constructed with separate shape
and texture parts provides such prior knowledge and thus facilitates accurate
shape recovery.

Our method can be described by the following steps: 1) From a set of 3D
faces[2] obtained by laser-based cylindrical scanners, we construct a 3D face
Model with separate shape and texture parts; 2) Given a set of multi-pose input
images of a human face under unknown lighting, we estimate the pose parameters
and shape parameters by minimizing the difference between the silhouette of the
face model and the input images. 3) Using the correspondences provided by the
recovered 3D shape, we recover the illumination parameters and the spherical
harmonic basis parameters by minimizing the image intensity errors. Thus, the
texture of the face can be computed from the recovered spherical harmonic basis.

The main contributions of our paper are the following:

• We propose a new and efficient method to recover 3D shape and appearance
from multi-pose face images under arbitrary unknown lighting.

• We present a novel algorithm to detect the corresponding points between
the 3D face model and the input images by using silhouettes and use model-
based bundle adjustment[16] to minimize errors and recover shape and pose
parameters.

• We reconstruct appearance by recovering the spherical harmonics basis pa-
rameters from multiple input face images under unknown light while texture
and illumination information are recovered in tandem.

This paper is organized as follows. In the next section, we will discuss the
related work on face reconstruction. In Section 3, we will introduce shape re-
covery by using silhouette face images. In Section 4, we will explain appearance
recovery by using our 3D face model. Experimental results on both synthetic and
real data are presented in Section 5. The final Section presents the conclusions
and future work directions.

2 Related Work

In recent years, there is extensive research on face reconstruction both from a
single image and from image sequences. The main approaches are shape from
stereo[4], shape from shading[15], shape from structured light[12] and shape from
silhouettes[18].
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Blanz and Vetter’s face recognition system is the closest in spirit to our
work. They are the first to reconstruct the shape and texture by using a face
morphable model. They also apply the 3D morphable model successfully in both
face recognition and synthesis applications [3][2]. In their method, they acquire
the necessary point to point correspondences by using a gradient-based optical
flow algorithm[2][14]. This method might suffers in situations where the illumi-
nation information is general and unknown. Compared with their method, our
method determines the correspondences from silhouette which is less sensitive
to illumination and texture variations.

Lee et al.[9] proposed a method of silhouette-based 3D face shape recovery
by using a morphable model. They used a boundary weight XOR method to
optimize the procedure and used a downhill simplex method to solve the mini-
mization problem which is time consuming. Since they fitted a generic face model
to silhouette images by marking several feature points by hand, the accuracy of
their method depends on the accuracy of these feature points which can not
be updated after manually marked in the generic face model. Compared with
their work, we apply a model-based bundle adjustment technique to solve the
optimization problem and during the optimization, the pose information is also
updated thus providing better shape recovery.

Fua[6] used a generic face model to derive shape constrains and used a model-
driven bundle adjustment algorithm to compute camera motions. However, the
3D face model by recovered this model-driven bundle adjustment method needs
to be refined through an additional step of mesh-based deformable model opti-
mization. In [5], Dimitrijevic et al. also used a 3D morphable model to recovery
shape from face image sequences. A simple correlation-based algorithm is used
to find feature points whose performance might depend on the accuracy of the
correspondences detected by the cross correlation algorithm.

3 Shape Recovery

In this section we introduce our new approach to the recovery shape from multi-
pose face images by using silhouette images as input to extract correspondence
and recover shape parameters.

3.1 Shape Part of 3D Face Model

Let S(α) be the shape of an arbitrary face model parameterized by a vector
α = α1, α2, ..., αn. We want to use the silhouette images to recover this vector α.
In our method, we used a collection of 3D faces supplied by USF as the bootstrap
data set and we applied PCA[2] to register and align the database of 3D faces
to get the statistical shape model. This model can be used to reconstruct both a
new and existing faces through the linear combination of a bootstrap set of 3D
face shapes.

s(α) = s +
M∑
i

Siαi. (1)
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where Si is the ith eigen-vector of the variation shape matrix and s is the mean
shape of the bootstrap faces.

3.2 Silhouette Extraction

We extract face silhouettes from each input image. At the beginning we initialize
a 3D face model from the input images and project the face model onto the image
plane in order to extract the silhouettes of this model. Because the face model we
use is not the whole head model, we do not need the complete head silhouette but
only the silhouette of the facial area (in Fig. 1: example of silhouette extraction).

Fig. 1. Example of silhouette extraction. (1) is one of the input images, (2) is the face
silhouette of this input image, (3) shows the fitting of the generic face model (shaded
surface rendering) to input image, (4) is the silhouette of the fitted model (we just
use the silhouette of the facial area, the red curve in left. The right blue curve is the
silhouette of the omitted head boundary.

3.3 Correspondence Detection

Once we have extracted the silhouettes from the input face images and the 3D
face model after fitting, we need to find the correspondences between them to
update the shape and pose parameters. First, we detect the points with high cur-
vature in the silhouettes of the face model and the input images and match them
as initial correspondences by using a shortest Euclidean distance metric. Using
these initial correspondences, we detect the correspondences of the remaining
points in silhouettes by using a smooth matching function. Given a set of known
distance vectors of feature points ui = pi − p̂i at every matched high-curvature
point i, we construct a function that gives the distance vectors uj for every
unmatched vertex j. We attempt to find a smooth vector-valued function f(p)
fitted to the known data ui = f(pi), from which we can compute uj = f(pj).
There are several choices for constructing this function [7][11]. Similar to [11],
we use a method based on radial basis functions f(p) =

∑
i wiφ(‖p− pi‖) where

φ(r) is radial symmetric basis function. We also use an affine basis as part of
our algorithm, so the function has the form: f(p) =

∑
i wiφ(‖p− pi‖)+Tp+m.

To determine the coefficients wi and the affine components T and m, we solve
a linear equation ui = f(pi), with the constraints

∑
i wi = 0 and

∑
i wip

T
i =

0, which remove the effects of any affine transformation from the radial basis
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function. Here we have chosen to use φ(r) = e−r/c, where c is a pre-selected
constant (c = 64 in our experiment).

After we construct the function u = f(p), we can use p̂j = pj − f(pj) and
a shortest Euclidean distance metric to find the remaining correspondences in
silhouettes of both the face model and the input images.

3.4 Shape and Pose Parameters Update

Given a set of multi-pose input images, the shape and pose parameters can be
recovered as following:

1) Initialize the shape parameters α as 0 and initialize a number of feature
points in the input images. In our experiments, we manually mark 7 feature
points in both the first image and the 3D face model. By matching these features
across images using the point matching technique in [21], we can acquire the
corresponding feature points in the other input images and thus get the initial
fitting information.

2) Extract the face contour ci (image (2) in Fig. 1) in each input image and
using the current fitting information, project the face model to the image plane
and extract the face model contours si (red line in (4) of Fig. 1) as described in
section 3.2.

3) From the contours of the face model {si, i = 1...N}, find the corresponding
points in the silhouettes of the input images {ci, i = 1...N} by using the methods
presented in section 3.3.

4) The contour of the model si can be represented as si = Cm
i [P×Mp(s̄+Sα)]

where Cm
i (x) is the contour extraction operator.Mp is the transformation matrix

from the original face model coordinate system to the camera coordinate system.
P is the camera projection matrix to project the 3D model to the 2D image.

Thus, the minimization can he written as follows:

min

n∑
i=1

‖ci − si‖2 = min

n∑
i=1

‖ci − Cm
i [P ×Mp(s̄ + Sα)]‖2 (2)

For such an expression, we update the shape and pose parameters by using
model-based bundle adjustment techniques[16] to solve this minimization prob-
lem.

5) After we get the new face model and new fitting parameter values, we
reproject the new 3D face model to the input images and perform 2)- 4) itera-
tively until the change of shape and pose parameters are smaller than ξs and ξp,
which are pre-selected thresholds.

4 Texture Recovery

In this section we describe a method that recovers texture from multi-pose face
images under arbitrary unknown lighting. We use a spherical harmonics illu-
mination representation to recover the spherical harmonic basis which contains
texture information.



96 Sen Wang, Lei Zhang, and Dimitris Samaras

4.1 Texture Component of the 3D Face Model

As described in [1][13], any image under arbitrary illumination conditions can be
approximately represented by the linear combination of the spherical harmonic
basis as:

I ≈ b� (3)

where b is the spherical harmonic basis and � is the vector of the illumination
coefficients.

The set of images of a convex Lambertian object obtained under a wide
variety of lighting conditions can be approximated accurately by a 9 dimensional
linear subspace. Since human faces can be treated approximately as Lambertian,
we compute a set of 9 spherical harmonic basis images by using a collection of
3D faces similar to [1] as follows:

b00 = 1√
4π

λ, b10 =
√

3
4πλ. ∗ nz, b20 = 1

2

√
3
4πλ. ∗ (2nz2 − nx2 − ny2),

bo
11 =

√
3
4πλ. ∗ ny, be

11 =
√

3
4πλ. ∗ nx, bo

22 =3
√

5
12πλ. ∗ nxy,

bo
21 =3

√
5

12πλ. ∗ nyz, be
21 =3

√
5

12πλ. ∗ nxz, be
22 = 3

2

√
5

12πλ. ∗ (nx2 − ny2).
(4)

where the superscripts o and e denote the odd and the even components of the
harmonics respectively, λ denote the vector of the object’s albedos, nx, ny, nz

denote three vectors of the same length that contain the x, y and z components
of the surface normals. Further, nxy denote a vector such that the ith element
nxy,i = nx,iny,i.

In recent work [20], the set of spherical harmonic basis images of a new face
can be represented by a linear combination of a set of spherical harmonic basis
computed from a bootstrap data set of 3D faces.

b(β) = b +
M∑
i

Biβi. (5)

where b is the mean of the spherical harmonic basis and Bi is the ith eigen-vector
of the variance matrix.

4.2 Texture and Illumination Parameters Update

According to Eq. 3 and 5, using the recovered shape and pose information, a
realistic face image can be generated by:

I = (b̄ + Bβ)� (6)

where β is the spherical harmonic basis parameter to be recovered and � is the
vector of illumination coefficients. Thus, given a set of n input images Ii

input, i =
1...n of a face, the spherical harmonic basis parameters β of the face and the
illumination coefficients � = (�1, �2, ...�n) can be estimated by minimizing the
difference between the input images and the rendered images from Eq.6:
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minβ,�

n∑
i=1

‖Ii
input − (b̄ + Bβ)�i‖2 (7)

Eq. 7 is similar to Eq. 2, thus, we can solve Eq. 7 similarly. Given input images
I : I1, I2, ..., In, we initialize the set of spherical harmonic basis parameters β = 0
and thus, b = b̄ + Bβ = b̄. Hence, the set of illumination coefficients �i of each
input image Ii can be initially estimated by solving a linear equation: b�i = Ii.
With the initial illumination coefficients �i, we can solve Eq. 7 using the same
technique applied to Eq. 2.

The core of the recovery process is the minimization of the image errors as
shown in Eq. 7. Thus, the recovery results depend on the initial values of the
illumination coefficients. Our experiments on synthetic data showed that the
illumination coefficients � computed by using the mean spherical harmonic basis
(b̄) were close to the actual values, which made the whole recovery fast and
accurate.

After we estimate the spherical harmonic basis from input images, the texture
of a face can be computed as λ = b00

√
4π according to Eq. 4.

5 Experiments

In this section, we provide experimental results of our method on both synthetic
data and real data for face reconstruction.

5.1 Synthetic Data

We use synthetic data as ground truth to show the accuracy and robustness
of our method. In our experiments, we synthesize 30 face models by randomly
assigning different shape and spherical harmonic basis parameters to our 3D
face model. For each model we also generate 14 images with different poses and
different illuminations (image sequence of one face in Figure 2). We recover the
shape and texture from these images and compare them with shape and texture
of the original face models.

To quantify the accuracy of our method we compute the errors between
recovered models and original synthesized face models. At first, we compute the
errors of shape and texture in each vertex between the reconstructed face model

and the ground truth face model by: errs(i) =
√

(x̃i−xi)2+(ỹi−yi)2+(z̃i−zi)2√
x2

i
+y2

i
+z2

i

and

errt(i) = ‖Ĩi−Ii‖
Ii

where (xi, yi, zi) and Ii are the coordinate and texture of ith
vertex of the ground truth face model, and (x̃i, ỹi, z̃i) and Ĩi are the coordinate
and texture of ith vertex of the reconstructed face model. Then, we compute
the maximum, minimum, mean and standard deviation of the shape and texture
errors by comparing all 30 reconstructed 3D face models to the original faces as
shown in Table 1. From these experimental results we can see that our method
achieves accurate shape and texture recovery from synthetic data. Figure 3 shows
the relationship between the reconstructed shape and the number of input images



98 Sen Wang, Lei Zhang, and Dimitris Samaras

Table 1. Statistical errors of shape and texture recovery all these 30 synthetic faces

Max Min Mean Std. dev.

Shape 12.35% 0.97% 3.53% 3.237%
Texture 23.83% 1.87% 4.78% 4.659%

Fig. 2. 14 input images synthesized for the same face in different pose and different
illumination

as a subset of the input image sequence in Figure 2 and Figure 4 shows the
errors between the recovered shape from different numbers input images and the
original face shape. With the increase of the number of input images, we get
more accurate results of shape recovery and if the input images are more than 6,
the improvement of shape reconstruction will be less influenced by the number
of input images. Figure 5 shows 2 examples of shape and texture reconstruction
results.

5.2 Real Data

We use the CMU PIE database [17] for our real data experiments. In the PIE
data set, there are 13 different poses and 22 illumination conditions per pose for
each subject. The silhouettes of face images can be detected by subtracting the
background image from the input images. Figure 6 shows two accurate shape
and texture recovery results of our method. The experimental results on the real
data demonstrate that our method can recover good shape and texture from
multi-pose face images under unknown illumination conditions.

6 Conclusions and Future Work

In this paper, we proposed a novel method for face modeling from multi-pose
face images taken under arbitrary unknown illumination conditions. We demon-
strated that the shape and spherical harmonic basis parameters can be estimated
by minimizing the silhouette errors and image intensity errors. We proposed a
new algorithm to detect the corresponding points between the model and the
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Fig. 3. Shape reconstruction using a varying number of input images in Fig 2. (1)
is the mean face model, (2) is the reconstructed shape from image 1 to 3, (3) is the
reconstructed shape from image 1 to 6, (4) is the reconstructed shape from image from
1 to 9, (5) is the reconstructed shape from image from 1 to 12, (6) is the reconstructed
shape from image from 1 to 14 and (7) is the original shape of the face in Fig 2

Fig. 4. The errors between the reconstructed face shape and the original face shape
in Fig. 3

Fig. 5. Some reconstruction results from synthetic faces. In each row, the first image is
original shape (shaded surface rendering) followed by original texture. The third image
is the mean face model which is initially fitted to the input images. The last 2 images
are the reconstructed face shape and texture
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Fig. 6. Reconstruction results for 2 subjects from real images. Original images are in
the first row, reconstructed face shapes are in the second row and recovered textures
are in the last row

input images by using silhouettes. We also applied a model-based bundle ad-
justment technique to solve the minimization problems. We provide a series of
experiments on both synthetic and real data and experimental results show that
our method can reconstruct accurate face shape and texture from multi-pose
face images under unknown lighting. In future, in order to extract more robust
correspondences for shape recovery, we plan to use both silhouette information
and image intensity information after delighting the input face images. At this
time, there exist few publicly available sets of face images under arbitrary illumi-
nation conditions, so we plan to continue validation of our method on databases
with greater variability of light sources as they become available.
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Abstract. This paper proposes a new method for reconstructing a high-
resolution facial image from a low-resolution facial image using stepwise
reconstruction based on the interpolated morphable face model. First,
we defined an interpolated morphable face model that an interpolated
face is composed of a low-resolution face, its interpolated high-resolution
face from a low-resolution one, and its original high-resolution one. We
also proposed a stepwise reconstruction method for preventing over re-
construction caused by direct reconstruction of a high-resolution image
from a low-resolution facial image. The encouraging results show that
our proposed method can be used to improve the performance of face
recognition systems, specifically in resolution enhancement of facial im-
ages captured on visual surveillance systems.

1 Introduction

There is a growing interest in the visual surveillance systems for security areas
such as international airports, borders, sports grounds, and safety areas. Though
various research on face recognition have been carried out for some time now,
there still exists a number of difficult problems. These include such things as
estimating facial pose, facial expression variations, resolving object occlusion,
changes of lighting conditions, and in particular, the low-resolution (LR) images
captured on visual surveillance systems.

Handling LR images is one of the most difficult and commonly occurring
problems in various image processing applications such as analysis of scientific,
medical, astronomical, and weather images, archiving, retrieval and transmission
of those images as well as video surveillance or monitoring[1]. Numerous methods
have been reported in the area of estimating or reconstructing high-resolution
(HR) images from a series of LR images or single LR image. Super-resolution is
a typical example of techniques used in reconstructing a HR image from a series
of LR images[2], whereas interpolation enlarges a LR image to a HR image.
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We are concerned with building a HR facial image from a LR facial image for
visual surveillance systems. Our reconstruction method is example-based, object-
class-specific or top-down approach. The example-based approach to interpreting
images of deformable objects is now attracting considerable interest among many
researchers[3][4][5] because of its potential of deriving high-level knowledge from
a set of prototypical examples.

In this paper, we define an interpolated morphable face model by adding in-
terpolated image to the extended image and present new reconstruction methods
for obtaining a HR facial image from a LR facial image using stepwise recon-
struction of example-based learning.

2 Definition of the Interpolated Morphable Face Model

In this section, we present an overview of our reconstruction methods using
example-based learning based on the interpolated morphable face model. Sup-
pose that sufficiently large amount of facial images are available for off-line train-
ing, we could then represent any input face by a linear combination of a number
of facial prototypes[7][8].

Moreover, if we have a pair of LR facial image and its corresponding HR
image for the same person, we can obtain an approximation to the deformation
required for the given LR facial image by using the coefficients of examples. We
can then obtain a HR facial image by applying the estimated coefficients to the
corresponding HR example faces as shown in Fig. 1.

Fig. 1. Basic idea of the HR reconstruction using example-based learning
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Consequently, our goal is to find an optimal parameter set α which can best
estimates the HR facial image from a given LR facial image.

2.1 Reconstruction Procedure of High-Resolution Facial Image

Based on the morphable face model[6][7], our reconstruction method is consists
of following 4 steps, starting from a LR facial image to a HR facial image. Here
the displacement of the pixels in an input LR face which correspond to those in
the LR reference face is known.

Step 1. Obtain the texture by warping an input LR face onto the reference face
with its given LR shape.

Step 2. Reconstruct a HR shape from a given LR shape.
Step 3. Reconstruct a HR texture from the obtained LR texture at Step 1.
Step 4. Synthesize a HR face by warping the reconstructed HR texture with

the reconstructed HR shape.

Step 1(backward warping) and Step 4(forward warping) are explained from
the previous studies of morphable face models in many studies[4][7]. Step 2 and
Step 3 are carried out by similar mathematical procedure except that the shape
about a pixel is 2D vector and the texture is 1D(or 3D for RGB color image)
vector.

2.2 Definition of Interpolated Morphable Face Model

In order to reconstruct a HR facial image from a LR one, we defined an extended
morphable face model in which an extended face is composed of a pair of LR
face and its corresponding HR one, and we separated an extended face by an
extended shape and an extended texture according to the definition of morphable
face model[9].

In addition to we applied interpolation techniques to the extended shape and
the extended texture under the assumption that we can enlarge the amount of
information from LR input image by applying interpolation techniques such as
bilinear, bicubic, and so on except nearest method. Fig. 2 shows an example of
the facial image defined by the interpolated morphable face model, where bicubic
method is used for enlarging LR shape and LR texture.

Then we can define S+ = (dx
1 , dy

1 , · · ·, dx
L, dy

L, dx
L+1, d

y
L+1 · · ·, dx

L+I , d
y
L+I ,

dx
L+I+1, d

y
L+I+1 · · ·, dx

L+I+H , dy
L+I+H)T to be an interpolated shape vector by

simply concatenating a LR shape, the interpolated HR shape, and original HR
shape, where L, I and H is the number of pixels in input LR facial image,in
the interpolated HR one, and in the original HR one, respectively. Similarly,
let us define T+ = (i1, · · · , iL, iL+1, · · · , iL+I , iL+I+1, · · · , iL+I+H)T to be an
interpolated texture vector.

Next, we transform the orthogonal coordinate system by principal component
analysis(PCA) into a system defined by eigenvectors s+

p and t+p of the covariance
matrices C+

S and C+
T computed over the differences of the interpolated shape
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Fig. 2. An example facial image defined by the interpolated morphable face model

and texture, S̃+ = S+ − S̄+ and T̃+ = T+ − T̄+. Where S̄+ and T̄+ repre-
sent the mean of interpolated shape and that of texture, respectively. Then, an
interpolated facial image can be represented by the following equation.

S+ = S̄+ +
M−1∑
p=1

αpsp
+, T+ = T̄+ +

M−1∑
p=1

βptp
+ (1)

where α, β ε �M−1.

3 High-Resolution Shape Reconstruction Methods

In order to reconstruct a HR facial image from an input LR one, we need to re-
construct both HR shape and texture from a LR shape and texture, respectively.
As described before, both reconstructions can be carried out by similar mathe-
matical procedure, therefore we will describe only the Step 2 of reconstructing
HR shape from LR one.

3.1 Mathematical Solution for High-Resolution Reconstruction

We can use both LR shape and interpolated HR one from input LR facial image,
according to the previous definition of interpolated shape. We need an approx-
imation to the deformation required for both shapes by using the coefficients
of the bases(see Fig. 1). The goal is to find an optimal parameter set αp that
satisfies

S̃+(xj) =
M−1∑
p=1

αps
+
p (xj), j = 1, 2, · · · , L + I, (2)

where xj is a pixel in the LR facial image, M − 1 the number of bases and L
and I the number of pixels in input LR image and interpolated HR image.
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We assume that the number of observations, L+I, is larger than the number
of unknowns, M − 1. Generally there may not exist a set of αp that perfectly
fits the S̃+. So, the problem is to choose α̂ so as to minimize the reconstruction
error. For this, we define following error function, E(α) the sum of square of
errors which measures the difference between the known displacements of pixels
in the LR input image and its represented ones.

E(α) =
L+I∑
j=1

(S̃+(xj) −
M−1∑
p=1

αps
+
p (xj))2. (3)

Then the problem of reconstruction is formulated as finding α̂ which mini-
mizes the error function

α̂ = arg min
α

E(α). (4)

The solution to Eqs. (3) - (4) is nothing more than least square solution. Eq.
(2) is equivalent to the following equation.⎛⎜⎝ s+

1 (x1) · · · s+
M−1(x1)

...
. . .

...
s+
1 (xL+I)· · ·s+

M−1(xL+I)

⎞⎟⎠
⎛⎜⎝ α1

...
αM−1

⎞⎟⎠=

⎛⎜⎝ S̃+(x1)
...

S̃+(xL+I)

⎞⎟⎠ =⇒ S+ α = S̃+. (5)

By applying our mathematical solution for solving the least square minimiza-
tion problem[9], we can obtain an optimal parameter as follows.

α∗ = (S+T
S+)−1S+T

S̃+. (6)

Finally, we can obtain a HR shape by using the solution α∗

S(xL+I+j) = S̄+(xL+I+j) +
M−1∑
p=1

α∗
ps

+
p (xL+I+j), j = 1, 2, . . . , H, (7)

where xL+I+1, · · · , xL+I+H are pixels in the HR facial image, H is the number
of pixels in the HR facial image.

3.2 Iterative Error Back-Projection Method

According to our example-based learning methods, we approximate a given LR
shape or texture with some errors, that is defined by Eq.( 3) of the estimated
α∗. So, we can easily guess that the estimated HR shape also has some error if
we know the original HR shape,

E(α) =
H∑

j=1

(S̃+(xL+I+j) −
M−1∑
p=1

α∗
ps

+
p (xL+I+j))2 (8)

where x1, , x2, · · · , xH are pixels in the HR facial image.
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In our previous works, iterative error back-projection is applied to reduce the
above reconstruction error by iteratively compensating for the HR error, which
is estimated by similar error reconstruction from a simulated LR error. The
previous iterative error back-projection is composed or three stages: estimation
of HR data, simulation of LR data and error compensation of estimated HR
data with the reconstructed HR error. The detailed procedure was described
our previous report[9].

3.3 Stepwise Reconstruction Method

In our previous reconstruction method, we tried to directly reconstruct a target
HR image from an input LR image based on the interpolated morphable face
model. But, the initially reconstructed facial images are somewhat fluctuated on
the texture and unnatural caused by over-sized reconstruction.

Fig. 3 shows the changes of mean displacement errors according to the size
of reconstructed HR shape from input L×L LR shape. As shown in this figure,
the reconstruction errors are increased according to the ratio of input LR image
and target HR one, as we can easily guess.

Fig. 3. Changes of mean displacement errors according to the size of reconstructed
image

In order to reduce the reconstruction errors caused by over-sized reconstruc-
tion such as reconstructing 256 × 256 HR images from 16 × 16 LR image, we
proposed stepwise reconstruction method. The proposed stepwise method se-
quentially reconstructs next upper HR image starting from an input L × L LR
image as shown in the Fig. 4. We applied the stepwise reconstruction method
for reconstructing HR shape and texture, respectively.

4 Experimental Results and Analysis

4.1 Face Database

For testing the performance of our reconstruction methods, we used 200 facial
images of Caucasian faces that were rendered from a database of 3D head models
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Fig. 4. Comparison of direct reconstruction and stepwise reconstruction

recorded by a laser scanner[7]. The original images were color images, set to the
size of 256×256 pixels. They were converted to an 8-bit gray level and resized to
16 × 16 and 32× 32 for LR facial images. PCA was applied to a random subset
of 100 facial images for constructing bases of the defined face model. The other
100 images were used for testing our reconstruction methods.

4.2 Reconstruction Results and Analysis

As mentioned before, 2D-shape and texture of facial images are treated sepa-
rately. Therefore, a HR facial image is reconstructed by synthesizing the esti-
mated HR shape and the estimated HR texture.

Fig. 5 shows the effects of the iterative error back-projection, where (a) ex-
amples of iteratively updated HR facial images and (b) the changes in the mean
and the standard deviation of the intensity errors per pixel between the original
HR image and the iteratively updated HR images. From this gradually decreasing
distance trend, we can conclude that the similarity between the original HR facial
images and the compensated one increased as the number of iterations increased.

Figs. 6 shows the examples of the 256× 256 HR facial image and their edge
images reconstructed from 16× 16 LR image. In this figure, (a) shows the input
LR images, (b) and (c) the interpolated HR images using Bilinear and Bicubic
interpolation, respectively. And (d) and (e) the reconstructed HR images by
proposed method 1(direct reconstruction method) and by proposed method 2
(stepwise reconstruction method), respectively. Finally, (f) shows the original
HR facial images.

As shown in Fig. 6, classifying the input LR faces is almost impossible, even
with the use of Bilinear or Bicubic interpolations. On the other hand, recon-
structed HR facial images by the proposed reconstruction methods, especially
the reconstructed images by our stepwise method are more similar to the original
faces than others.

From the encouraging results of the proposed method as shown in Fig. 6, we
can expect that it can be used to improve the performance of face recognition
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(a) Examples of iteratively updated HR facial image

(b) Changes of the mean and standard deviation of intensity errors per pixel

Fig. 5. Effects of the iterative error back-projection

systems by reconstructing a HR facial image from a LR facial image captured
on visual surveillance systems.

In order to verify the effect of HR reconstruction, we carried out simple
face recognition experiments under the following configurations. The original
256× 256 facial images were registered, and the reconstructed HR facial images
from 16 × 16 facial images were used as recognition data. Figure 7 shows us
the correct recognition rates of face recognition experiments. As we can see, the
recognition performance has improved by employing the proposed reconstruction
methods.

5 Conclusions

In this paper, we provided efficient methods of reconstructing a high-resolution
facial image using stepwise reconstruction based on the interpolated morphable
face model. Our reconstruction method consists of the following steps: computing
linear coefficients minimizing the error or difference between the given shape
or texture and the linear combination of the shape or texture prototypes in
the low-resolution image, and applying the coefficient estimates to the shape
and texture prototypes in the high-resolution facial image, respectively. Finally
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Fig. 6. Examples of 256 × 256 HR facial images reconstructed from 16 × 16 LR facial
images

Fig. 7. Comparisons of recognition performance
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applying iterative error back-projection or stepwise reconstruction for reducing
the measured reconstruction errors.

The experimental results appear very natural and plausible similar to original
high-resolution facial images. This was achieved when displacement among the
pixels in an input face which correspond to those in the reference face, were
known. It is a challenge for researchers to obtain the correspondence between
the reference face and a given facial image under low-resolution vision tasks.
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Abstract. Facial appearance changes induced by lighting variation
cause serious performance degradation in face recognition. Current face
recognition systems encounter the difficulty to recognize faces under ar-
bitrary illuminations. In this paper, we propose a new face recognition
method under arbitrary lighting conditions, given only a single registered
image and training data under unknown illuminations. Our proposed
method is based on the exemplars which are synthesized from photomet-
ric stereo images of training data and the linear combination of those
exemplars are used to represent the new face. We make experiments for
verifying our approach and compare it with two traditional approaches.
As a result, higher recognition rates are reported in these experiments
using the illumination subset of Max-Planck Institute Face Database.

1 Introduction

Changes in a person’s appearance induced by illumination are sometimes larger
than differences in appearance of individuals, illumination changes are the most
challenging problem in face recognition. In the past few years, many methods
have been proposed to solve this problem with improvements in recognition being
reported. Early works in illumination invariant face recognition focused on image
representations that are mostly insensitive to changes under various lighting
[4]. Various images representations are compared by measuring distances on a
controlled face database. Edge map, second derivatives and 2D Gabor filters are
examples of the image representations used. However, these kind of approaches
have some drawbacks. First, the different image representations can be only
extracted once they overcome some degree of illumination variations. Second,
features for the person’s identity are weakened whereas the illumination-invariant
features are extracted.

The different approaches, called the photometric-stereo method, are based
on the low dimensionality of the image space [1]. The images of one object with
a Lambertian surface, taken from a fixed viewpoint and varying illuminations
lie in a linear subspace. We can classify the new probe image by checking to
� To whom all correspondence should be addressed
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see if it lies in the linear span of the registered gallery images. These gallery
images are composed of at least three images of the same person under different
illuminations. Since it recognizes the new image by checking that it is spanned
in a linear subspace of the multiple gallery images, it cannot handle the new
illuminated images of a different person.

To avoid the necessity of multiple gallery images, the bilinear analysis ap-
proach is proposed [2]. It applies SVD(Singular Value Decomposition) to a va-
riety of vision problems including identity and lighting. The main limitation of
these bilinear analysis methods is that prior knowledge of the images, like the
lighting direction of training data are required.

Unlike the methods described above, Blanz and Vetter use 3D morphable
models of a human head [5]. The 3D model is created using a database collected
by Cyberware laser scans. Both geometry and texture are linearly spanned by
the training ensemble. This approach enables us to handle illumination, pose
and expression variations. But it requires the external 3D model and high com-
putational cost.

For illumination-robust face recognition, we have to solve the following prob-
lem: Given a single image of a face under the arbitrary illumination, how can
the same face under the different illumination be recognized? In this paper, we
propose a new approach for solving this problem based on the synthesized exem-
plars. The illuminated-exemplars are synthesized from photometric stereo images
of each object and the new probe image can be represented by a linear combina-
tion of these synthesized exemplars. The weight coefficients are estimated in this
representation and can be used as the illumination invariant identity signature.

For face recognition, our proposed method has several distinct advantages
over the previously proposed methods. First, the information regarding the light-
ing condition of training data is not required. We can synthesize the arbitrary
illuminated-exemplars from the photometric stereo images of training data. Sec-
ond, we can perform recognition with only one gallery image by using linear
analysis of exemplars in the same class. Third, the coefficients of exemplars are
the illumination invariant identity signature for face recognition, which results
in high recognition rates.

2 Background

We begin with a brief review of the photometric stereo method with Lamber-
tian lighting model and bilinear analysis of illuminated training images. We will
explain what is the Lambertian reflectance and how it can be used in the pho-
tometric stereo images for face recognition [1]. We will also explain recognition
methods using the bilinear analysis of the training images [2],[3].

2.1 Photometric Stereo

We assume the face has the Lambertian surface, the illuminated image I can
represented by

I = ρNTL = T TL (1)
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where n is the surface normal and ρ is the albedo, a material dependant coef-
ficient. The object-specific matrix, T includes albedo and surface normal infor-
mation of object. We have n images, (I1, I2, ..., In) of one object under varying
illumination. These images, called photometric stereo images, were observed at a
fixed pose and different lighting sources. Assuming that they are from the same
object a with single viewpoint and various illuminations, the following can be
expressed

I =

⎛⎜⎜⎜⎝
I1
I2
...
In

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
T TL1

T TL2

...
T TLn

⎞⎟⎟⎟⎠= T T

⎛⎜⎜⎜⎝
L1

L2

...
Ln

⎞⎟⎟⎟⎠= T T L (2)

where I , the collection images {I1, I2, ..., In} of the same object under different
lighting condition, is the observation matrix. L = {L1, L2, ..., Ln} is the light
source matrix. If the lighting parameters are known, we can extract the surface
normal orientation for objects. To solve T , the least squares estimation of I using
SVD. We can classify a new probe image by computing the minimum distance
between the probe image and n-dimensional linear subspace. Photometric stereo
method requires at least 3 gallery images for one object. Multiple gallery images
are large restrictions for a real face recognition system.

2.2 Bilinear Models

Bilinear models offer a powerful framework for extracting the two-factor struc-
ture, identity and lighting. Bilinear analysis approaches had applied SVD to a
variety of vision problems including identity and lighting [2],[3]. For bilinear anal-
ysis, training images of different objects under the same set of illuminations are
required. Theses approaches also assume the Lambertian surface and the image
space T TL, where both T and L vary. Let L1, L2, ..., Ln be a basis of linearly in-
dependent vectors, L =

∑n
j=1 βjLj for some coefficients β = (β1, β2, ..., βn). Let

{T1, ..., Tm} be a basis for spanning all the possible products between albedo and
surface normal of the class of objects, thus T =

∑m
i=1 αiTi for some coefficients

α = (α1, ..., αm). Let A = {A1, ..., Am} be the matrix whose columns are the
images of one object, i.e., Ak = αkTk

∑n
j=1 βjLj. Ak are n images of k-th object

and the column of Ak, Akj is the image of k-th object under j-th illumination.
Therefore we can represent the new probe image H by linear combination of
{A1, ..., Am} with the bilinear coefficients, α and β.

H = ρHNTL = T T
HL = (

m∑
i=1

αkTk)(
n∑

j=1

βjLj) = αβA (3)

The bilinear problem in the m + 3 unknowns is finding α and β. Clearly, we
solve these unknowns, we can generate the image space of object H from any
desired illumination condition simply by keeping α fixed and varying β. But
these approaches require the same set of illuminations per object, so that we
have to know about the lighting condition of training data in advance.
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3 Linear Analysis of the Synthesized Exemplars

We propose an illumination invariant face recognition method based on the syn-
thesized exemplars. We synthesize the illuminated-exemplars from photometric
stereo images and represent a new probe image by linear combination of those
exemplars. The procedure has two phases: training and testing. Images in the
database are separated into two groups for either training or testing. In the
training procedure, we construct the training data to consist of at least three
illuminated images per object. However we do not know the lighting conditions
of training data and the training data can be constructed using different objects
and different sets of illuminations unlike bilinear analysis method. In our exper-
iments, we construct the train matrix as m people under n different illuminated
images. This is followed by computing the orthogonal basis images by the PCA
for inverting the observation matrix per person. The orthogonal basis images
of one person are used to synthesize the exemplars. We can then reconstruct a
novel illuminated image using these basis images of the same face. In the testing
procedure, we synthesize the exemplars under the same illumination as the in-
put image. The lighting conditions of these m synthesized exemplars and input
images are same. The input image can be represented by the linear combination
of the exemplars, the weight coefficients are used as those signature identities
for face recognition. In the registration, those gallery images are already saved
for the recognition, we find the facial image that has the nearest coefficient by
computing the correlation.

3.1 Synthesis of the Exemplars

We assume that the face has a Lambertian surface and the light source, whose
locations are not precisely known, emits light equally in all directions from a
single point. Then, an image I is represented by T TL as shown Eq. 1 and the
matrix I that made n images can be represented by T TL as shown Eq. 2. The
photometric stereo images are from the same object, we can assume that they
have the same object-specific matrix T and different illumination vector L. If the
light source matrix L is non-singular(|L| = 0) and {L1, L2, ..., Ln} are linearly
independent, the matrix L is invertible and then T can be expressed by the
product of matrix I and the pseudo-inverse of L, L+.

T = IL+ (4)

The light source matrix L can be invertible when {L1, L2, ..., Ln} are linearly
independent of each other. To make the images independent from each other,
we transform the photometric stereo images into the orthogonal basis images,
{B1, B2, ..., Bn−1}, by principal component analysis (PCA). By applying PCA to
photometric stereo images, we can express a new illuminated image of the same
object using the orthogonal basis images by changing the coefficients α and
the orthogonal basis images can be obtained in off-line training. Our method for
synthesizing the image, called ‘exemplar ’, proposes that we use the input image
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as a reference. Since photometric stereo images have the same object-specific
matrix and the input image is used as a reference, the synthesized exemplar’s
lighting condition is similar to that of input image. The input image H can be
represented using a linear combination of orthogonal basis images.

H = B̄ + α B (5)

where B̄ represents the mean of orthogonal basis images per object and α ∈
�n−1. We can find the coefficient α as follows. The columns of matrix are or-
thogonal to each other, the transpose is the inverse and we can now easily find
the coefficient vector α ∗ by transpose instead inverse.

α ∗ = B−1(H − B̄) = BT (H − B̄) (6)

In the photometric stereo images, we choose three images of random lighting
directions, {Ĩ1, Ĩ2, Ĩ3} and we transform those images into the orthogonal co-
ordinate system by PCA by eigenvectors {B̃1, B̃2}. Where ¯̃B is the mean of
{B̃1, B̃2} and α̃ ∗ = {α̃1, α̃2} is the coefficient for synthesizing the exemplar Ẽ,
an exemplar using three images is as follows.

Ẽ = ¯̃B +
2∑

j=1

α̃jB̃j = ¯̃B + α̃ ∗B̃ (7)

Fig. 1 shows examples of the synthesized exemplars from the training data. We
choose three images under random illumination of each person and those chosen
images for each person are different set. The top row represents three different
illuminated images of the same person from the training data. The middle row
shows examples of the synthesized exemplars using the images from the top row.
While bottom row shows examples of the different illuminated input images.
Each synthesized exemplar image (middle row) references the illumination of
input image found directly below it. As shown, the synthesized exemplars have
very similar lighting conditions to that of the input image. One exemplar image is
synthesized per object, so there are m exemplar images under the same lighting
condition of the input image where the training data is collected by the images
of m objects.

3.2 Linear Combination of Synthesized Exemplars

In the previous section, we described that how the exemplar is synthesized. Using
both the photometric stereo images and input image as illumination reference,
m exemplars are synthesized per person. The exemplar Ẽk of k-th person can
be represent as

Ẽk = ¯̃Bk +
2∑

j=1

α̃kj B̃kj = ¯̃Bk + α̃ ∗
k B̃k (8)

where ¯̃B is the mean of orthogonal basis images {B̃1, B̃2} from three photomet-
ric stereo images, {Ĩk1 , Ĩk2 , Ĩk3}. The column of Ik, Iki is the image under i-th
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Fig. 1. Example of the synthesized exemplars

illumination of k-th person. The input image is represented well by the linear
combination of the exemplars. At this time, the linear coefficients are estimated
from the exemplars under the same illumination. That means, the coefficients
depend on the m exemplars but not on the lighting conditions. Because the ex-
emplars are for the object class only, the coefficients provide a signature identity
that is invariant to illumination. The coefficient vector f is computed by the
following equation.

H =
m∑

k=1

fkẼk = f Ẽ (9)

where f = {f1, f2, ..., fm} is the coefficient vector from the m exemplars and
used for recognition. fk is the weight coefficient for the k-th exemplar object.
Ẽ = {Ẽ1, Ẽ2, ..., Ẽm} is the matrix of the synthesized exemplars. The problem
is to choose f so as to minimize the cost function, C(f). We define the cost
function as the sum of square errors which measures the difference between
the input image and the linear sum of the exemplars. We can find the optimal
coefficient f , which minimizes the cost function, C(f ).

f ∗ = arg min
f

C(f) (10)

with the cost function,

C(f) =
d∑

i=1

(H(xi) −
m∑

k=1

fkẼk(xi))2 (11)

To represent the input image H using exemplars, we have to find f by the
equation of H = Ẽ f , where Ẽ = {Ẽ1, Ẽ2, ..., Ẽm}. The least square solution
satisfies ẼTH = ẼT Ẽf . If the columns of Ẽ are linearly independent, then ẼT Ẽ
is non-singular and has an inverse.

f ∗ = (ẼT Ẽ)−1ẼTH (12)
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(a) (b) (c) Synthesized Exemplars

Input Result Exemplar 1 Exemplar 2 Exemplar 3 Exemplar 4 Exemplar m. . .

. . .

. . .

. . .

Fig. 2. Example of the reconstructed input images

We can express the input image H using the computed f ∗ on the assumption
that the columns of matrix Ẽ are linearly independent. If they are not indepen-
dent, the solution f ∗ will not be unique, in this case, the solution can be solved
by the pseudo-inverse of Ẽ, Ẽ+. But, that is unlikely to the happen for proposed
method. The reconstructed image HR of the input image H is represented as
follows.

HR =
m∑

k=1

f ∗
k Ẽk = f ∗Ẽ (13)

By using Eq.(13), we can get the optimal weight coefficient vector to represent
the input image. To verify the coefficients as the signature identity, we recon-
struct the input image using the computed coefficients. Fig. 2 shows the example
of reconstructed images using coefficients f ∗. In this figure, (a) shows the input
image under the arbitrary lighting condition, (b) shows the reconstructed images
using the linear combination of exemplars and (c) is the synthesized exemplars
with the input image as illumination reference.

3.3 Recognition

In this section, we describe what kind of signature is used for recognizing the face.
We use the linear coefficients of the synthesized exemplars for face recognition.
When the gallery or probe image is taken, we synthesize exemplars from the
photometric stereo images with each gallery or probe image. We analyze the
input image, gallery and probe image, by the synthesized exemplars. We can
then obtain the linear coefficients of both the gallery image and probe image,
those coefficients are used the signatures for face recognition. Suppose that a
gallery image G has its signature f ∗

g and a probe image P has its signature f ∗
p .

f ∗
g = (ẼT

g Ẽg)−1ẼT
gG, f ∗

p = (ẼT
p Ẽp)−1ẼT

pP, (14)
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where Ẽg and Ẽp are the matrices of synthesized exemplars using G and P as
illumination reference image. The normalized correlation between a gallery and
probe image is

corr(G,P ) =
Cov(f ∗

g ,f ∗
p )

sd(f ∗
g )sd(f ∗

p )
(15)

where sd(a) is the standard deviation of a and Cov(a, b) means the covariance
of a and b.

4 Experiments

We have conducted a number of experiments with our approach using the MPI
(Max-Planck Institute) Face Database [5]. In these experiments, we compared
the proposed method with ‘Eigenface/WO3 [7]’ and ‘Bilinear analysis’[2] method.
To solve the illumination problem, this method is applied without three princi-
pal components, the most influential factor in degradation of performance. We
also implemented the bilinear analysis method for comparison.

4.1 Face Database

The MPI Face Database is used to demonstrate our proposed approach. We
use 200 two-dimensional images of Caucasian faces that were rendered from
a database of three-dimensional head models recorded with a laser scanner
(CyberwareTM ) [6]. The images were rendered from a viewpoint 120cm in front
of each face with ambient light only. For training, we use the images of 100
people. We use 25 face images in different illumination conditions, from −60◦ to
+60◦ in the yaw axis and from −60◦ to +60◦ in the pitch axis, per person.

4.2 Experimental Results and Analysis

We present the recognition results when the images of training and testing sets
are taken from the same database. We have conducted two experiments by chang-
ing the lighting directions of the gallery and probe set.

Gallery Set of Fixed Direction and Probe Set of All Lighting Direc-
tions: Graph in Fig. 3 shows the position configuration of the lights and the
recognition rates for the fixed gallery set of lighting conditions(100 images) with
the probe sets of varying lighting conditions (100 images under each illumina-
tion). We use the gallery set under the first lighting condition, L11 and the probe
sets under the other 24 lighting conditions, from L12 to L55 in the testing set.
In this experiment, we obtain good recognition results although the illumina-
tion changes are rapidly. As shown Fig. 3, when the distance between the light
sources of the gallery and probe sets are small, the recognition performance is
high, conversely when the distance between the two are large, the recognition
results are of lower quality, especially when using the eigenface/WO3 and the
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Fig. 3. Recognition rates for all the probe sets with a fixed gallery set

bilinear methods. The bilinear analysis method allows higher recognition rates
than the eigenface/WO3 method, though neither method results in as high a
performance as our proposed method.

Gallery Set and Probe Set of Varying Lighting Directions: The next
experiment is designed for the gallery and probe sets both under different lighting
conditions. Table 1 represents the comparison results between our approach and
bilinear analysis approach for the gallery and probe sets under the different
directions of lighting, {L11, L22, L33, L44, L55}. P means the probe sets and G
means the gallery sets. The right number is for bilinear analysis approach and
the left one for our approach. The average rates obtained by bilinear analysis
are 88.9%, while our approach outperforms it at an average of 95.1%.

Table 1. Recognition rates comparison

G \ P L11 L22 L33 L44 L55 Avg.

L11 - 100/100 99/100 92/73 81/68 94.4/88.2

L22 100/100 - 100/100 100/79 86/51 97.2/86.0

L33 99/100 100/100 - 100/100 99/100 99.6/100.0

L44 85/77 99/87 100/100 - 100/100 96.8/92.8

L55 63/43 79/47 95/97 100/100 - 87.4/77.4

Avg. 89.4/84.0 95.6/86.8 98.8/99.4 98.4/90.4 93.2/71.0 95.1/88.9

5 Conclusions and Future Work

We have addressed a new approach for illumination invariant face recognition.
The idea here is to synthesize exemplars using photometric stereo images and
apply them to represent the new input image under the arbitrary illumination,
while only one input image and one registered image per person are required for
recognition. The weight coefficients are used as the signature identity, so that
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a new image can be represented as a linear combination of a small number of
exemplars of training data. Experimental results on various face images have
shown a good performance when compared with the previous approaches and
our approach also shows a stable recognition performance even under the large
changes of illumination. In the future, we need to make more experiments with
the other face database. Furthermore, it can become particularly difficult when
illumination is coupled with pose variation. Because there are the extreme light-
ing changes which are caused by pose variation, we are also trying to treat not
only lighting changes but also pose changes.
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Abstract. There has been a flurry of works on video sequence-based
face recognition in recent years. One of the hard problems in this area is
how to effectively combine the facial configuration and temporal dynam-
ics for the recognition task. The proposed method treats this problem
in two steps. We first construct several view specific appearance sub-
manifolds learned from the training video frames using locally linear
embedding (LLE). A general Bayesian inference model is then fit on the
recognition task, transforming the complicated maximum likelihood esti-
mation to some elegant distance measures in the learned sub-manifolds.
Experimental results on a middle-scale video database demonstrate the
effectiveness and flexibility of our proposed method.

1 Introduction

A majority of state-of-the-art face recognition algorithms [1] put emphasis on
still image-based scenarios either by holistic template matching [2,3] or geometric
feature-based methods [4]. Although these dominating approaches have achieved
a certain level of success in restricted conditions such as mug-shot matching, they
often fail to yield satisfactory performance when confronted with large pose,
illumination and expression variations.

Recently, there is a significant trend in performing video-based face analysis
[5,6,7,8], aiming to overcome the above limitations by utilizing visual dynamics
or temporal consistence to facilitate performance of the recognition task. These
approaches take root in relevant psychological and neural studies [9] which in-
dicate that information for identifying a human face can be found both in the
invariant structure of features and in idiosyncratic movements and gestures. As
illustrated in Fig. 1, the dynamic information in terms of human face recognition
can be typically divided into three categories: rigid head motions, no-rigid facial
movements and the combination of both. Several researchers in this area have
conjectured that if expressive dynamic information can be properly extracted,
they will surely give a favorable improvement to video-based face recognition.

With this motivation, a new phase of recognition strategies that use both
spacial and temporal information simultaneously has started. In [5], an iden-
tity surface for each subject is constructed in a discriminant feature space from
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Fig. 1. Facial dynamics can be typically divided into three categories: rigid head mo-
tions (Top), no-rigid facial movements (Middle), and the combination of both (Bottom)

one or more learning sequences, and recognition is performed by computing dis-
tances between object trajectory and a set of model trajectories which encode
the spatio-temporal information of a moving face. Zhou et al [6] simultaneously
characterize the kinematics and identity using a motion vector and an identity
variable respectively in a probabilistic framework. Sequential importance sam-
pling (SIS) algorithm is developed to estimate the joint posterior distribution,
and marginalization over the motion vector yields a robust estimate of the pos-
terior distribution of the identity variable. Recently, Hidden MarKov Models
(HMM) [7] and probabilistic appearance manifolds [8] are both used to learn the
transition probabilities among several viewing states embedded in the observa-
tion space. Hadid et al [10] compared the joint spatio-temporal representation
(e.g. the HMM) with classical ones based on static images (e.g. PCA/LDA) for
performing dynamic face recognition, and pointed out that the former model
outperforms its counterparts in most experiments.

Although facial dynamics, if properly modelled, are tolerate to appearance
variations induced by changes in head pose orientation and expressions (see Fig.
1 as an example), the most essential features for recognition still lie on those
static facial configurations. Thus dynamic information, which provides us with
some unstable behavioral characteristics, should be only treated as an assistant
cue to the recognition task under non-optimal viewing conditions. The proposed
approach in this paper is an attempt to somewhat balance the attention to static
facial configurations for video-based recognition scenario.

To this end, we view sets of face images as high dimensional points whose
underlying degrees of freedom is far less than the actual number of pixels per im-
age. A well-known manifold learning algorithm, locally linear embedding (LLE)
[11,12], is used to detect low dimensional structure in the image sequences for
different individuals. As all human faces are similar patterns, we may antici-
pate under identical viewing conditions, e.g. rotation from left to right profiles
[13], the manifolds of different individuals are often fairly close and parallel.
Thus view specific sub-manifolds can be well constructed using classic cluster-
ing techniques on an individual’s low dimensional embedding, assuming there is
sufficient data (such that the manifold is well-sampled). Face images extracted
from other training videos are sequentially assigned to its corresponding sub-
manifolds under the nearest “distance-from-feature-space” (DFFS) criteria [14].
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To exploit the temporal coherence among successive video frames, we fit a general
Bayesian inference model on the recognition task, transforming the complicated
maximum likelihood estimation to some elegant distance measures in the learned
view specific sub-manifolds. Experimental results conducted on a middle-scale
video database strongly support our assumption and show high superiority of
the newly developed method to its traditional still image-based counterparts.

2 View Specific Sub-manifolds Construction

2.1 Dimensionality Reduction Using LLE

In typical appearance-based methods, m × n face images are often represented
by points in the mn-dimensional space. However, coherent structure in the facial
appearance leads to strong correlations between them, generating observations
that lie on or close to a low-dimensional manifold. When the face images are
extracted from video sequences, it is reasonable to assume that the manifold is
smooth and well-sampled. Unlike traditional linear techniques, PCA and LDA,
which often over-estimate the true degrees of freedom of the face data set, recent
nonlinear dimensionality reduction methods, Isomap [15] and LLE [11,12], can
effectively discover an underlying low dimensional embedding of the manifold.
In this section, we use LLE to map the high-dimensional data to a single global
coordinate system in a manner that preserves the neighboring relationships. An
overview of the LLE algorithm is given in Table 1.

Table 1. An overview of the LLE algorithm [11,12]

INPUT: X = { x1, x2, · · · , xN}, where xi ∈ RD.

OUTPUT: Y = { y1, y2, · · · , yN}, where yi ∈ Rd, d � D.

METHOD: Repeat for each data point xi:

1 Find K nearest neighbors.
2 Reconstruct xi from its neighbors, minimizing the cost function

ε(W ) =
∥∥∥xi − ∑

j Wijxj

∥∥∥2

subjected to the additional constraints that
∑

j Wij = 1 and

Wij = 0 if xi and xj are not neighbors.
3 Define the embedding cost function

ε(y) =
∥∥∥yi − ∑

j Ŵijyj

∥∥∥2

where Ŵij is the optimal result from step 2. Find the reconstructed

vectors ŷi = arg miny ε(y), yi ∈ Rd, with the additional constraints
that

∑
i yi = 0 and

∑
i yiy

T
i /N = I .
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2.2 View Specific Sub-manifolds

To illustrate the effectiveness of LLE, we applied it to a sequence of face images
corresponding to a single person arbitrarily rotating his head. This data set
contained N = 788 grayscale images at 23 × 28 resolution (D = 644). Fig.
2 shows the first three components of these images discovered by LLE (using
K = 12 nearest neighbors) together with some representative frames. As we can
see, the algorithm successfully revealed the meaningful hidden structure of the
nonlinear face manifold.

Fig. 2. LLE applied to a sequence of face images corresponding to a single person
arbitrarily rotating his head

To construct view specific sub-manifolds, we performed K-means clustering
to points in the low-dimensional feature space given by LLE. The initial k clus-
ter seeds were selected as some frames bearing distinct pose variations in the
sequence (just like those shown in Fig. 2). Given large distances between the ini-
tial seeds and a moderate k, the output clusters could act as the expected view
specific sub-manifolds in our method, which were further approximated by a set
of linear subspaces (Pi, i = 1, 2, · · · , k). Face images extracted from other training
videos of different persons were sequentially assigned to its corresponding sub-
manifolds under the nearest “distance-from-feature-space” (DFFS) criteria [14].
Thus in the training process, successive video frames will continuously update
Pi, and provide an enhanced model of the view specific sub-manifolds.
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3 Bayesian Inference Model for Recognition

In statistical pattern recognition [16], Bayesian inference model offers an efficient
and principled approach for integrating prior knowledge and observed data to
improve the classification performance. It is also an effective tool to characterize
abundant temporal information in the video-based face recognition scenario [17].
Although these facial dynamics are by no means stable features as mentioned
before, the temporal coherence among successive video frames still provides a
significant aid in the recognition process.

Suppose w is the identity signature for a c class problem, i.e. w ∈ {1, 2, · · · , c}.
Given a sequence of face images F = {f1, f2, · · · , fN} containing the appearances
of the same but unknown person, Bayesian inference model aims to find the
solution with the maximum a posterior probability (MAP)

ŵ = arg max
{1,2,···,c}

P (w|f1:N ) (1)

According to the Bayesian theory

P (w|f1:N ) =
P (w)P (f1:N |w)

P (f1:N)
(2)

We further assume the prior probability P (w) to be non-informative and ne-
glect the normalization factor P (f1:N ) which is independent to the final decision.
Thus the MAP solution is converted to an equivalent maximum likelihood (ML)
estimation

ŵ = arg max
{1,2,···,c}

P (f1:N |w) (3)

As the face images tend to lie on or close to a non-convex low-dimensional
manifold, it is hard to analytically capture its complexity in a universal or para-
metric solution. One possible way to tackle this problem is to build a view-based
formulation with a set of subspaces (Pi, i = 1, 2, · · · , k) covering the whole man-
ifold, as introduced in Section 2. Here we simply associate each image with a
hidden view parameter θ, where θ ∈ {P1, · · · , Pk}, and decompose (3) as follows:

P (f1:N |w) =
∑
θ1:N

P (f1:N |θ1:N , w)P (θ1:N )

=
∑
θ1:N

N∏
t=1

P (ft|θt, w)P (θt|θ1:t−1)

=
∑
θ1:N

N∏
t=1

P (ft|θt, w)P (θt|θt−1) (4)

In the above derivation, we use two intuitive rules which are appropriate
for video-based face recognition, namely (a) observational conditional indepen-
dence: P (f1:N |θ1:N , w) =

∏N
t=1 P (ft|θt, w) and (b) the first-order Markov chain

rule: P (θ1:N ) =
∏N

t=1 P (θt|θ1:t−1) =
∏N

t=1 P (θt|θt−1), P (θ1|θ0)
.= P (θ1). The

following subsections show how to compute the two probabilities involved in (4).
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3.1 Computation for P (ft|θt, w)

The term P (ft|θt, w) denotes the probability of observing face image ft at time t,
given its corresponding identity w in the view sub-manifold θt. Typically a multi-
variate Gaussian density is fitted for this distribution when a large training set
is available. Here we avoid directly estimating the particular density function
for the limited training data, and convert it to some elegant distance measures
related to the learned sub-manifolds.

From the definition of the law of total probability and the conditional prob-
ability we have

P (ft|θt, w) = P (θt|ft)P (w|ft, θt)
P (ft)

P (θt|w)P (w)
(5)

As before, the prior P (w) and evidence P (ft) are assumed non-informative.
And P (θt|w) represents the likelihood of w being in sub-manifold θt at time t,
which is related to the behavioral characteristic of subject w. To simplify the
computational setting in our case, all three terms are treated as constants, thus

P (ft|θt, w) ∝ P (θt|ft)P (w|ft, θt) (6)

For a k sub-manifold problem, let dm(Pi, ft) be the Euclidean distance be-
tween the ith sub-manifold and the test sample ft (approximated by the DFFS
measure [14]), an estimation of the probability P (θt|ft) can be approximated as

P (θt|ft) =
1/dm(θt, ft)2∑k

i=1 1/dm(Pi, ft)2
(7)

Similarly for a c class problem, let dc(j, ft) be the distance between the jth
class center and the test image ft with all the related training data belonging to
the sub-manifold θt. Thus the term P (w|ft, θt) can be approximated as

P (w|ft, θt) =
1/dc(w, ft)2∑c
j=1 1/dc(j, ft)2

(8)

Here dc(j, ft) is measured by the “distance-in-feature-space” (DIFS)criteria [14],
and the feature space is constructed using null space-based linear discriminant
analysis (NLDA) [18].

3.2 Computation for P (θt|θt−1)

Motivated by the similar work of [8], the transition probability P (θt|θt−1) is
defined by counting the actual transitions between different sub-manifolds Pi

observed in all the training sequences:

P (θt|θt−1) =
1
λ

k∑
t=2

δ(ft−1 ∈ θt−1)δ(ft ∈ θt) (9)

where δ(ft ∈ θt) = 1 if ft ∈ θt and otherwise is 0. The normalization factor λ
ensures P (θt|θt−1) to be a probability measure.
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4 Experiments

To demonstrate the effectiveness of the proposed method, extensive experiments
were performed on a 25-subject video dataset which bears large pose variation
and moderate differences in expression and illumination. Each person is repre-
sented by one training clip and one testing clip both captured in our lab with a
CCD camera at 30 fps for about 15 seconds. The faces were manually cropped
from all frames and resized to 23 × 28 pixel gray level images, followed by a
histogram equalization step to eliminate lighting effects. The examples shown in
Fig. 3 are representative of the amount of variation in the data.

(a) training video clips (b) testing video clips

Fig. 3. Representative examples for two subjects from the training and testing data
used in the experiments. Note the significant pose variation in both sets

Nine view specific sub-manifolds (Pi, i = 1, 2, · · · , 9) are learned from all
the training videos using strategies proposed in Section 2.2. The baseline image
sequence for LLE modelling (Fig. 2) contains a person with abundant pose vari-
ations. Subsequent video frames of other subjects are sequentially absorbed by
the relevant sub-manifolds. This step inevitably produces a few false assignments
which are automatically detected by certain thresholds and manually corrected.

The MAP estimation for each testing sequence was evaluated by (2). Fig.
4 shows the computed posterior probabilities of the two persons in Fig. 3 as a
function of time t. From the figure, it is obvious that the true signature (red
line) always gives the largest posterior probability.

To illustrate the superiority of this newly developed method to its traditional
still image-based counterparts, we implemented the LLE+clustering algorithm
[10] which chose the cluster centers of each training sequence as extracted ex-
emplars for template matching and took a vote to give the final decision. PCA
and LDA were used as the classification methods in [10]. Here we also provide
experimental result given by NLDA classifier [18]. Table 2 summarizes the recog-
nition rates on our databet averaged among various sequence length (like the
testing strategy in [7]) using different approaches mentioned above. The results
clearly show that the proposed method outperforms all its still image-based
counterparts, as it greatly profits from the Baysian inference model while other
approaches use dynamic information only in its most crude form through voting.
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Fig. 4. Posterior probability P (w|f1:N ) of the two persons in Fig. 3 against time t.
Only the seven most likely candidates are shown in this figure. From the figure, it is
obvious that the true signature (red line) always gives the largest posterior probability

Table 2. Recognition rate (%) for different methods using k = 9 clusters

Method LLE+PCA LLE+LDA LLE+NLDA Our method

Recogition rate 82.62 87.21 91.62 95.24

5 Discussion and Conclusions

This paper presents a novel video-based face recognition method using both
spacial and temporal information simultaneously. Unlike most other joint spatio-
temporal representations which excessively rely on unstable facial dynamics for
recognition, we exploit dynamic information in a moderate fashion, i.e. only
those constraints of common transitions along the face manifold are modelled
by the Baysian inference framework. More emphases are put on the construction
of view specific sub-manifolds, which essentially convey relevant discriminating
information, i.e. the static facial configurations, for the recognition task. As our
work combines the major analytic features of the manifold learning algorithm
LLE − precise preservation of the neighboring relationships in a single global
coordinate system − with the flexibility to learn a moderate model of facial
dynamics, it is especially suitable to the video-based face recognition scenario
and exhibited satisfactory performance in a middle-scale video dataset.

Acknowledgements

This work is funded by research grants from the National Basic Research Pro-
gram of China (No. 2004CB318110) and the National Natural Science Founda-
tion of China (No. 60332010).



130 Wei Fan, Yunhong Wang, and Tieniu Tan

References

1. R. Chellappa, C.L. Wilson, and S. Sirohey, “Human and machine recognition of
faces: a survey”, Proceedings of the IEEE, Vol. 83, pp. 705-741, May 1995.

2. M. Turk and A. Pentland, ”Eigenfaces for recognition”, J. of Cognitive Neuro-
science, Vol. 3, No. 1, pp. 71-86, 1991.

3. V. Belhumeur, J. Hespanda, and D. Kiregeman, “Eigenfaces vs. fisherfaces: recog-
nition using class specific linear projection”, IEEE Trans. on PAMI, Vol. 19, No.
7, pp. 711-720, July 1997.

4. L. Wiskott, J.M. Fellous, N. Kruger and C. von der Malsburg, “Face Recognition
by Elastic Bunch Graph Matching,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 19, No.7, pp. 775-779, July, 1997.

5. Y. Li, S. Gong, and H. Liddell, “Video-Based Online Face Recognition Using Iden-
tity Surfaces”, Proceedings of IEEE ICCV Workshop on Recogntion, Analysis, and
Tracking of Faces and Gestures in Real-Time Systems, pp. 40-46, 2001

6. S. Zhou and R. Chellappa. “Probabilistic human recognition from video”. Euro-
pean Conference on Computer Vision (ECCV), May 2002.

7. X.Liu, and T.Chen, “Video-Based Face Recognition Using Adaptive Hidden
Markov Models”, Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recog-
nition, pp. 340-345, 2003.

8. K.C.Lee, J.Ho, M.H.Yang, and D.Kriegman, “Video-Based Face Recognition Using
Probabilistic Appearance Manifolds”, In Proc. of IEEE Int. Conf. on Computer
Vision and Pattern Recognition, pp. 313-320, 2003.

9. Alice J. O’Toole*, Dana A. Roark, Herv Abdi, “Recognizing moving faces: A psy-
chological and neural synthesis”, Trends in Cognitive Sciences, 6, 261-266. Reed,
CL, Stone, VE, Bozova, S., Tanaka, J. (2003).

10. A.Hadid, and M.Pietikainen, “From Still Image to Video-Based Face Recognition:
An Experimental Analysis”, Proc. of IEEE Int. Conf. on Automatic Face and
Gesture Recognition, pp. 813-818, 2004.

11. S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally
Linear Embedding,” Science 290, 2323-2326, 2000.

12. L. K. Saul and S. T. Roweis, “Think Globally, Fit Locally : Unsupervised Learning
of Nonlinear Manifolds,” Technical Report MS CIS-02-18, University of Pennsyl-
vania, 2003.

13. Gong S, McKenna S J and Collins J J, “An Investigation into Face Pose Distribu-
tions”, Second International Conference on Automated Face and Gesture Recog-
nition, Vermont, USA, October 1996.

14. A. Pentland, B. Moghaddam, T. Starner, “View-based and modular eigenspaces
for face recognition”, Proceedings of IEEE, CVPR, 1994.

15. J. B. Tenenbaum, V. D. Silva, and J. C. Langford, “A Global Geometric Framework
for Nonlinear Dimensionality Reduction,” Science, 290(5500):2319–2323, 2000.

16. R. Duda, P. Hart, and D. Stork. Pattern Classification. WileyInterscience, 2001.
17. S. Zhou and R. Chellappa. “Probabilistic Identity Characterization for Face Recog-

nition”. In Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition,
pp. 805-812, 2004.

18. Wei Fan, Yunhong Wang, Wei Liu, Tieniu Tan, “Combining Null Space-based Ga-
bor Features for Face Recognition”, In Proc. of the 17th International Conference
on Pattern Recognition. pp. 330-333, Cambridge, UK, 2004.



A Hybrid Swipe Fingerprint Mosaicing Scheme

Yong-liang Zhang1, Jie Yang1, and Hong-tao Wu2

1 Inst. of Image Processing & Pattern Recognition, Jiaotong University,
Shanghai, 200030, P.R. China
yongliangzhang@sjtu.edu.cn

2 School of Computer Science & Software, Hebei University of Technology,
Tianjin, 300130, P.R. China

Abstract. Due to their very small contact areas and low cost, swipe
fingerprint sensors provide the very convenient and reliable fingerprint
security solutions and are being increasingly used for mobile phones,
PDAs, portable computers and security applications. In this paper, the
minimum mean absolute error as the registration criterion is used to find
an integer translation shift while the extension of the phase correlation
method with singular value decomposition is applied to evaluate a non-
integer translation shift. Based on the merits and faults of these two
methods, we develop a hybrid swipe fingerprint mosaicing scheme. The
proposed scheme succeeds in registering swipe fingerprint frames with
small overlap down to 5% of the frame size and improves the mosaicing
precision, that is, non-integer translation shift can be directly determined
without spatial domain interpolation. Experimental data indicate that
our scheme has high reliability and precision and less time consumption,
therefore, it is very suitable for the real-time applications.

1 Introduction

Fingerprints are today the most widely used biometric features due to their
uniqueness and immutability[14]. Using current technology, fingerprint identifi-
cation is in fact much more reliable than other possible personal identification
methods based on signature, face, or speech alone[1].

Swipe fingerprint sensors[15][16] provide the very convenient and reliable fin-
gerprint security solutions and are being increasingly used for mobile phones,
PDAs, portable computers and security applications due to their very small
contact areas and low cost. For example, the active sensing area of FPC1031B is
152× 32 pixels and that of AES2510 is 196× 16 pixels. Swipe sensor captures a
fingerprint by swiping the finger past it and its captured swipe fingerprint(Fig.1)
is a stream of swipe fingerprint frames (SFFs), which are contiguous and share
some mutual support. The frame data are then “stitched” or “registered” to-
gether to form a fingerprint image.

Fingerprint registration has already become an important issue for the suc-
cess of reliable fingerprint verification using small solid state fingerprint sensors.
Current major registration techniques include template synthesis [7][12]and fin-
gerprint image mosaicing[2][9]. Template synthesis merges the fingerprint fea-
tures while image mosaicing merges the fingerprint images to generate a com-
posite fingerprint image from features of the images. However all above methods
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Fig. 1. A stream of swipe fingerprint frames

base on minutiae alignment and the nature of swipe design in swipe sensor leads
to very few minutiae presented in each captured swipe fingerprint frame. These
facts make it unavailable to align two adjacent SFFs using the minutiae. How-
ever, two adjacent SFFs can be mosaiced by measuring the overlap between
subsequent partial images of the finger. In other words, we can preform two ad-
jacent SFFs registration by aligning them based on the similarity measurement.
The important process of swipe fingerprint mosaicing can be modelled with the
following simplifications derived from[9]: (i) a large number of SFFs are avail-
able covering the fingerprint (the frames of a swipe fingerprint stream are being
acquired at the real-time frame rate of 30 frames a second); (ii) the swipe time
period is relatively short, so there are no changes in value of the intrinsic and
extrinsic imaging parameters. Thus we can assume that two adjacent SFFs rep-
resent the same scene sampled on identical grids but offset from each other by an
unknown translation shift (TSS). Extensive experiments show the assumption is
feasible.

Image mosaicing involves automatic alignment of two or more images into an
integrated image without any visible seam or distortion in the overlapping areas.
The phase correlation method (PCM)[4][5] is known to provide straightforward
estimation of TSS between two images. And the extension of the popular PCM
with singular value decomposition (SVD)[10] leads to non-integer TSS with-
out interpolation, robustness to noise, and limited computational complexity.
However, these methods based on phase correlation have a fatal limitation: the
corresponding overlap between two images to be registered must be 30% bigger
than the smaller image size[13]. Fortunately, the mean absolute error (MAE)
as a similarity measurement to compute the optimal integer TSS between two
images overcomes the limitation.

In this paper, the MAE is used as the similarity measure to evaluate the
optimal integer TSS between two adjacent SFFs while the extension of the PCM
with SVD is applied to evaluate a non-integer TSS. On the basis of the merits
and faults of these two methods, we develop a hybrid swipe fingerprint mosaicing
scheme. The paper is organized as follows: the pixel level mosaicing algorithm
based on MAE is described in Section 2; In Section 3 the phase correlation and
SVD are applied to get subpixel level mosaicing; In Section 4 we develop a hybrid
scheme to mosaic the swipe fingerprint; Implementation issues including the
elliptoid masking and Kaiser window are presented in Section 5; Experimental
results are presented in Section 6. Finally some concluding remarks are provided
in Section 7.
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2 The Pixel Level Mosaicing

Typical similarity measures for image are cross-correlation with or without pre-
filtering, sum of absolute differences, and Fourier invariance properties such as
phase correlation[8]. The minimum mean square error (MSE) has already become
one of registration criteria. Compared to the minimum MSE, the minimum MAE
criterion is preferred for real-time applications because it requires no multipli-
cation while yielding the performance. So we choose the minimum MAE as our
registration criterion to find an integer TSS that registers two adjacent SFFs to
the nearest integral pixel coordinates.

Fig. 2. Two translation shift types, (a) Δx ≥ 0, Δy ≥ 0; (b) Δx ≥ 0, Δy < 0

Let I(x, y) and I
′
(x, y) are two adjacent SFFs that differ only by an integer

TSS (Δx,Δy) (Fig.2), that is, their mutual support (the black region in Fig.2)
satisfies:

I
′
(x, y) = I(x + Δx, y + Δy) (1)

where

1 ≤ x ≤ H −Δx, max{1, 1 −Δy} ≤ y ≤ min{W,W −Δy}
In a general way, there are only two ways to swipe a finger through the sensor
area: from the top down or, conversely, from the bottom up. For the sake of
argument, we define Ω as a search space:

Ω = {(Δx,Δy)
∣∣0 ≤ Δx < H, 0 ≤ |Δy| ≤ Wp < W} (2)

where W and H are the height and width of each frame, Wp is a given upper
bound of |Δy|. Thus, the MAE of the overlap between I and I

′
is:

M(Δx,Δy) =

∑H−Δx
k=1

∑min{W,W−Δy}
l=max{1,1−Δy} |I(k + Δx, l + Δy) − I

′
(k, l)|

(H −Δx)(W − |Δy|) (3)

Then the optimal integer TSS (Δx1, Δy1) is computed by minimizing the M(Δx,
Δy), that is, let

Mm = min
(Δx,Δy)∈Ω

{M(Δx,Δy)} (4)
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and we can get

(Δx1, Δy1) = {(Δx,Δy)
∣∣M(Δx,Δy) = Mm, (Δx,Δy) ∈ Ω} (5)

Finding the minimum MAE is a two-dimensional optimization problem. The
only method yielding global extreme solution is an exhaustive search over the en-
tire search space Ω. Although it is computationally demanding, it is often used if
only translations are to be estimated[3]. However, for the real-time applications,
the mosaicing speed should be fast enough to satisfy the on-line processing. Be-
cause the SFFs are contiguous, the integer TSS in horizontal direction Δy is
often very small. Extensive experiments show that Wp = 8 is enough for the
great majority applications. In this case, the search is just over the small win-
dow of H×Wp size. Moreover, we can optimize the search process as follows: (i)
compute the M(�x,�y) only at these points where the �x and �y are both
even. Let the optimal integer TSS in this case is (Δx2, Δy2); (ii) search the
minimum MAE in the small window ΩW of size 3 × 3, and the center of ΩW is
(Δx2, Δy2); (iii) select (Δx1, Δy1) whose corresponding MAE is the minimum
as the optimal integer TSS evaluation.

3 The Subpixel Level Mosaicing

Many methods have been developed to estimate the TSS between similar images.
The PCM is a popular choice due to its robust performance and computational
simplicity. The idea behind the PCM is quite simple and is based on the Fourier
shift property, which states that a shift in the coordinate frames of two functions
is transformed in the Fourier domain as linear phase differences.

Let the corresponding Fourier transforms of I(x, y) and I
′
(x, y), denoted I

and I ′
respectively, are related by

I ′
(u, v) = I(u, v)exp{−j(uψx + vψy} (6)

where (ψx, ψy) are the TSS that occur between I and I ′
. The normalized cross

power spectrum of I(x, y) and I
′
(x, y) is given by

Q(u, v) =
I ′

(u, v)I(u, v)∗

|I(u, v)I(u, v)∗| = exp{−j(uψx + vψy)} (7)

where Q is also called normalized phase correlation matrix. Traditionally, the
approach to evaluate the TSS, which is more practical and also more robust to
noise, is to first inverse Fourier transform of Q [4]. It is then a simple matter
to determine (ψx, ψy), since from (7) the result is δ(x − ψx, y − ψy) which is a
Dirac delta function centered at (ψx, ψy).

A close inspection of (7) reveals that the noise-free model for Q is in fact a
rank one matrix[10]. Each element in Q can be separated as

Q(u, v) = exp{−juψx}{−jvψy} (8)
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This allows the definition of two vectors: qx(u) = exp{−juψx}, qy(v) =
exp{jvψy}, then (7) can be rewritten as Q = qxq

H
y . This allows one to rewrite

(6) as I ′
= (qxq

H
y )◦I, where {·}H denotes a complex-conjugate transpose, and ◦

indicates an element-by-element product. Therefore, the problem of finding the
exact TSS between two images is recast as finding the rank one approximation
of the normalized phase correlation matrix, Q.

For a given singular vector, V , we find the coefficients of a polynomial P (x) of
degree n to fit the vector, P (x(i)) to V(i), in a least squares sense. The result P is
a row vector of length n+1 containing the polynomial coefficients in descending
powers, that is, P (x) = p1x

n + p2x
n−1 + · · · + pnx + pn+1. In our experiment,

n = 1, that is, we use a line P (x) = p1x + p2 to fit V , p1 and p2 are the slope

and abscissa of the fitted line, respectively. Let P =
[
p1

p2

]
, we construct the set

of normal equations, RP = unwrap{ � V}, where the rows of R are equal to [r, 1]
for r = {0, 1, 2, · · · , (s−1)}, s is equal to the length of V . Let B = unwrap{ � V},
then this system is solved to give P = (RTR)−1RTB.

The slope of the fitted line, p1 maps to the non-integer TSS. Specifically,
ψx = p1H/(2π) for the case V = qx, and ψy = p1W/(2π) for the case V = qy.

4 The Hybrid Mosaicing Scheme

The most remarkable property of the PCM is the accuracy of the evaluated TSS.
A second important property is its robustness to noise, therefore, the PCM is
suitable for registration across different spectral bands. Using the convolution
theorem, the method can also handle blurred images[4]. However, these methods
based on phase correlation have a fatal limitation: the corresponding overlap
between two images to be registered must be 30% bigger than the smaller image
size[13]. Fortunately, the method based on MAE overcomes the limitation.

Based on the merits and faults of these two methods, we develop a hybrid
scheme to mosaic the stream of SFFs so that i)the overlap between two adjacent
frames can be very small down to 5% of the frame size, and ii)the registration
precision can be subpixel level. The full scheme consists of these major steps:
1)Use the algorithm described in Section 2 to evaluate an integer TSS (Δx1, Δy1);
2)Use the algorithm described in Section 3 to compute a non-integer TSS (ψx, ψy);
3)Select (x0, y0) as the last optimal TSS:

x0 =
{

ψx if |ψx −Δx1| < 1
Δx1 otherwise

, y0 =
{

ψy if |ψy −Δy1| < 1
Δy1 otherwise

(9)

4)Register two adjacent SFFs using the optimal TSS (x0, y0).
5)Mosaic the stream of SFFs to be an integrated fingerprint by iterating two
adjacent SFFs registration.
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5 Implementation Issues

The quality of the linear fit depends on the linearity of the unwrapped phase
vector. In practice, the implicit eigen-filtering nature of identifying the dominant
singular vectors of Q provides the unwrapping algorithm with less noisy data[10].
However, two dominant spectrum corruption sources remain: aliasing and edge
effects. The ability of our scheme to handle both is detailed below.

5.1 Elliptoid Masking

Stone, et.al.,[5], recommend masking the phase correlation matrix, Q, to restrict
the spectrum components corrupted by aliasing from the shift estimation. This
mask captures the components of I with magnitude larger than a given threshold
α that are present within a radius r = 0.6 min{W/2, H/2} of the spectrum origin.
However, it isn’t suitable to SFFs because the height of each frame is much
smaller than its width. So, we use an elliptoid masking to restrict the phase
correlation matrix, that is, given two weight coefficients, κ1 and κ2,

τ(i, j) =
(i−H/2)2

(κ1H/2)2
+

(j −W/2)2

(κ2W/2)2
, 0 ≤ κ1, κ2 ≤ 1 (10)

where (i, j) are the spatial domain coordinates. In our experiment, κ1 = 0.9, κ2 =
0.8. Let the mask matrix is G, then

G(i, j) =
{

0 if τ(i, j) > 1
1 otherwise (11)

This masking is applied to the matrix Q: Q = Q◦G, that is, only those compo-
nents within the ellipse are utilized in the linear phase angle determination.

5.2 Kaiser Window

Image features close to the image edge can have a negative effect on the ability
to evaluate TSS between two frames. For images acquired via optical methods,
Stone,et.al.,[5], recommend applying a 2D spatial Blackman or Blackman-Harris
window to the image before transforming the image to the Fourier domain.
Unfortunately, this spatial window removes a significant amount of the signal
energy, and isn’t suitable for SFFs. Here, we apply a 2D spatial Kaiser window to
the frames, which is a relatively simple approximation of the prolate spheroidal
functions. For discrete time the Kaiser window K(N, β) is expressed as[6]:

K(N, β) = B0

(
β

√
1 − 4n2

(N − 1)2

)/
B0(β), −N − 1

2
≤ n ≤ N − 1

2
(12)

where N is the window length which controls the main lobe width of the window;
β is a parameter which controls the amplitude for the sidelobes; B0(x) is the
modified zeroth-order Bessel function.

For a 2D spatial Kaiser window: Wk = K(λ1H, β)T ◦K(λ2W,β), 0 ≤ λ1, λ2 ≤
1, where λ1 and λ2 are two weight coefficients. In our experiment, λ1 = 0.9,
λ2 = 0.8 and β = 2.
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6 Experimental Result

In order to verify the scheme experimentally, some simulations are performed
by shifting images using a procedure similar to the one used in[4]: gm = H ∗
fm, where m is the frame number, fm are shifted versions of a high-resolution
image convolved by a blurring kernel H which characterizes image degradations
(In our simulations, we choose the white noise with gaussian distribution as
H). Each frame gm is then downsampled at a predetermined rate so that the
correspondence between different frames is reduced to subpixel level. We use
three different mosaicing methods: a)Γm: based on the MAE described in Section
2, b)Γp: based on the popular PCM[11], c)Γh: our hybrid scheme.

Table.1 shows the evaluated TSS using the above three different mosaicing
methods: (Δx,Δy), (ψx, ψy) and (x0, y0) are evaluated by the Γm, Γp and Γh

methods respectively. (Υx, Υy) are the predetermined TSS and γ denotes the ratio
of the overlap to the each frame size. From the experimental data, we can see
that (i)the evaluated TSS (ψx, ψy) using the Γp method are not accurate when
γ < 0.10 while the other two methods haven’t this limitation; (ii)the evaluated
non-integer TSS (x0, y0) using our hybrid scheme are much more precise than
(Δx,Δy) and (ψx, ψy), that is, our hybrid scheme has better accuracy compared
to the other two methods.

Table 1. Performance comparison with simulations: Γm, Γp and Γh

(Υx, Υy) (Δx, Δy) (ψx, ψy) (x0, y0) γ

(0.0000,0.0000) (0,0) (0,0) (0,-1.2673e-016) 1

(0.0000,0.5000) (0,0) (0,0) (0.0000,0.5156) 0.9967

(0.2500,0.2500) (0,0) (0,0) (0.2502,0.2496) 0.9906

(0.5000,0.2500) (1,0) (1,0) (0.4952,0.2398) 0.9828

(0.5000,0.5000) (1,0) (1,1) (0.5166,0.4782) 0.9811

(5.0000,5.0000) (5,5) (5,5) (5.0213,5.0090) 0.8160

(10.0000,5.0000) (10,5) (10,5) (10.0127,4.9882) 0.6649

(14.0000,5.0000) (14,5) (14,5) (14.0116,4.9665) 0.5440

(18.0000,5.0000) (18,5) (18,5) (18.0193,5.0101) 0.4231

(20.0000,5.0000) (20,5) (20,5) (20.0236,5.0106) 0.3627

(22.0000,5.0000) (22,5) (22,5) (22.0281,5.0073) 0.3022

(24.0000,5.0000) (24,5) (24,5) (24.0275,5.0078) 0.2418

(26.0000,5.0000) (26,5) (26,5) (26.0000,5.0113) 0.1813

(28.0000,5.0000) (28,5) (28,5) (28.0000,5.0186) 0.1209

(29.0000,5.0000) (29,5) (0,0) (29.0000,5.0143) 0.0907

(30.0000,5.0000) (30,5) (0,2) (30.0000,5.0163) 0.0604

(31.0000,5.0000) (31,5) (0,8) (31.0000,5.0133) 0.0302

The above simulations are ideal so that the evaluated TSS (ψx, ψy) using
the Γp method still works well when 0.10 ≤ γ < 0.30. However, many types of
noise exist in real data, e.g., uniform variations of illumination, offsets in average
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Table 2. Performance comparison with real data: Γp, Γp and Γh

(Δx,Δy) (ψx, ψy) (x0, y0) γ

(10,-1) (10,-1) (10.0144,-1.0002) 0.6916

(11,-1) (11,-1) (11.0133,-0.9966) 0.6601

(11,-1) (11,-1) (11.0070,-1.0018) 0.6604

(9,-1) (9,-1) (9.0129,-0.9991) 0.7231

(8,0) (8,0) (8.0115,0.0051) 0.7496

(9,-1) (8,-1) (8.5236,-1.0144) 0.7385

(10,0) (10,0) (10.0152,0.0028) 0.6870

(10,0) (10,0) (10.0155,0.0134) 0.6870

(9,0) (9,0) (9.0130,0.0037) 0.7183

(10,-1) (10,-1) (10.0102,-0.9919) 0.6917

(13,0) (13,0) (13.0128,0.0143) 0.5933

(13,0) (13,0) (13.0118,0.0109) 0.5933

(18,-1) (18,-1) (18.0232,-0.9666) 0.4396

(9,0) (9,0) (9.0130,0.0037) 0.7183

(7,0) (7,0) (7.0107,0.0081) 0.7809

(23,0) (0,0) (23.0000,0.0096) 0.2805

(24,-1) (0,-1) (24.0000,-1.0012) 0.2509

intensity, and fixed gain errors due to calibration. So, further experimentations
are performed on the real streams of SFFs captured by the FPC1031B swipe
fingerprint sensor of FINGERPRINT CARDS[16]. For example, Fig.1 is a real
stream of SFFs captured by this sensor. Table.2 shows the evaluated TSS pa-
rameters using three different methods: Γm, Γp and Γh. Since the actual TSS
parameters were unknown for these real data, the performance was evaluated by
the visible seams in the mosaiced swipe fingerprint image, that is, the less seams
the better performance. From Fig.3, we can see that there are visible seams in
the mosaiced fingerprint image using the Γm and Γp methods while the mosaiced
fingerprint image using our hybrid scheme Γh hasn’t.

Our scheme has been implemented and applied to actual SFFs. The scheme
is fast enough for real-time application: it can mosaic a series of 40 pre-captured
frames into a high quality fingerprint image in less than one second which is
much faster than the real-time requirement of 30 frames per second. Fig.4 shows
six mosaiced fingerprint images using our hybrid scheme.

7 Conclusions

In this paper we have described a hybrid mosaicing scheme for the stream of
swipe fingerprint frames, which uses the minimum mean absolute error as the
registration criterion to find an integer translation shift that registers two adja-
cent swipe fingerprint frames to the nearest integral pixel coordinates while the
extension phase correlation method with singular value decomposition is used to
get subpixel precision. Experimental data show that our scheme is reliable and
less time consumption. So it is suitable for the real-time applications.
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Fig. 3. The mosaiced fingerprint images: Γm, Γp, Γh

Fig. 4. The mosaiced fingerprint images using our hybrid scheme
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However, in our mosaicing scheme it is assumed that no rotation, scaling and
shear effects are present in individual frames of the swipe fingerprint images.
Due to the nature of the skin, some amount of elastic deformation is expected.
This has not been taken into account and this is a very serious drawback of the
proposed scheme. In future work, we will discuss the swipe fingerprint mosaicing
when the variations in swiping speeds and elastic deformation are taken into
account.
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Abstract. Previous fingerprint verification systems have achieved good
results, but these have been affected by the quality of input data. Finger-
print verification systems that use many fingers or multiple impressions
of the same finger are more efficient and reliable than systems that use
a single finger. However, multiple impressions give inconvenience to the
user and increase the overall verification time. Therefore, we use only
two fingers (multi-unit fusion) to improve performance of the fingerprint
verification system. We show that performance can be improved by se-
lecting a better quality fingerprint image of two fingerprints. Also, we
propose a new quality checking algorithm composed of three stages. Our
experimental results show that when the quality checking algorithm is
performed by selecting a better quality fingerprint image of two finger-
prints, there is a significance improvement in performance of the finger-
print verification system.

1 Introduction

A reliable automatic fingerprint identification system is critical in forensic, civil-
ian, and commercial applications such as criminal investigation, issuing driver’s
licenses, welfare disbursement, resident registration, credit cards, PDA usage,
and access control[1]. Fingerprint verification is much more reliable than other
kinds of personal identification methods such as signature, face, and speech[2].
With recent advances in solid-state sensor technology, fingerprint sensors can
now be miniaturized and made cheaper. However, due to the small size of solid-
state sensors, only a part of the finger tip is captured in the image, and as a
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result, system performance is diminished. In addition, the various sources of
noise to image acquisition and the vulnerability of the feature extractor to noise
and distortion in fingerprint images make very difficult to achieve a desirable
false rejection rate(FRR),when the specified false acceptance rate(FAR) is very
low. To solve those problems, it is necessary to combine more than two fingers
or multiple impressions of the same finger.

Jain et al.[3] proposed a classifier combination at the decision level and em-
phasized the importance of classifier selection in the classifier combination. Hong
et al.[4] combined fingerprints and faces as a means of identification. Bigun et
al.[5] proposed a Bayesian framework scheme to combine different pieces of ev-
idence. On the contrary, J. Daugman[6] insisted that a biometric system using
only a strong biometric in the classifier level is superior to using biometrics with
respect to both the FAR and the FRR. However, this may not be applied when
the quality of the input data is poor. Therefore we propose that the performance
of the verification system can be improved by selecting a better quality finger-
print image of two fingerprints. Also, we prove theoretically and empirically that
the proposed method is more accurate than methods that use an AND rule or
an OR rule and a single finger in the respect of both the FAR and the FRR.

2 Performance Improvement of Combined Biometrics
in Fingerprint Verification

First, we explain the theory of the proposed method and prove the validity of
the method with respect to both the FAR and the FRR. As shown in Fig. 1,
we use two fingerprint images that were sequentially acquired by a sensor. In
real-time fingerprint verification systems, it does not take much time to obtain
two fingerprint images. Once the images have been obtained, we operate the
histogram stretching and the median filtering to improve the contrast of the
fingerprint images in the preprocessing stage. Feature extraction is followed by
matching in the fingerprint verification system. At the feature extraction stage,
we find the minutiae as feature.[7]. With true minutiae, we estimate the quality
of the fingerprint images to select a better quality fingerprint image between two
fingerprints. At the matching stage, we compare the minutiae points extracted
from the good fingerprint image with those in the fingerprint template, and
calculate the matching score[8]. Supposing there are two biometrics, F1 and
F2. F1 is a fingerprint verification system that uses good quality left fingers
and F2 is also a fingerprint verification system that uses right fingers of good
and bad qualities. Bad quality means that the input fingerprint image is not
good enough to be identified due to excessive humidity of the sensor surface or
incomplete fingerprint input.So, we suppose that the FAR and the FRR of F1
and F2 are followed by,

F1 : PF1(FA)=PF1(FR) =P

F2 :

⎧⎨⎩
PF2(FA)=PF2(FR) =P (with good quality fingerprints)
PF2(FR)= Q, PF2(FA) =P (with bad quality fingerprints)
(P < Q , P < 1 , Q ≤ 1 , Q =tP (t > 1))

(1)
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Fig. 1. Fingerprint verification system using multiple fingerprint units

If there are genuine tests of numbers (the number of good data: X, the number of
bad data: M − X) and imposter tests of numbers (the number of good data: Y,
the number of bad data: M − Y), then we can calculate the Total Error Counts
(TEC), as shown below.

Case (1) Using the F1 at the first trial:

TEC= M × P + M × P = 2MP

Case (2) Using the F2 at the second trial:

TEC = X × P + (M − X) × Q + M × P = (M + X)P + (M − X)Q

Case (3) Using an OR rule:

TEC = XP2+ (M − X)PQ + M (2P − P2)

Case (4) Using an AND rule:

TEC = X(2P − P2) + (M − X)(P + Q − PQ)+MP2

Case (5) Using the proposed method:
Considering the quality check error(PE1,PE2,PE3), we can analyze four cases.
We can calculate the TEC by the case 1) case 4).
(1) When the F1 and F2 are actually good quality fingerprint data and they
are identified as the good quality data by the quality checking algorithm. Our
system select the F1 or F2. In this case, both the F1 and F2 are good quality
data and the FAR/FRR are P as shown in Eq.(1). So, the TEC is followed by

TEC = (X + Y)P

(2) When the F1 is identified as a good quality fingerprint and the F2 is misiden-
tified as a bad quality fingerprint(actually, F2 is a good quality fingerprint hav-
ing the number of X and Y as shown in Eq.(1)) by the quality checking al-
gorithm(having the error of PE1), our system will select the F1 because it is
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good quality data and the FAR/FRR are P as shown in Eq.(1). So, the TEC is
followed by

TEC = ((X + Y)P)PE1

(3) When the F1 is identified as a good quality fingerprint, the F2 is misidentified
as a good quality fingerprint(actually, F2 is a bad quality fingerprint having the
number of M − X and M − Y as shown in Eq.(1)) and our system erroneously
selects the F2 as better quality fingerprint than the F1 by the quality checking
algorithm (having the error of PE2), the FRR is increased to Q, while the FAR
is P as shown in Eq.(1). So, the TEC is followed by

TEC = {(M − X)Q +(M − Y)P}PE2

(4) When the F1 is identified as a good quality fingerprint, the F2 is misidentified
as a good quality fingerprint(actually, F2 is the bad quality fingerprint having
the number of M − X and M − Y as shown in Eq.(1)) and our system correctly
selects the F1 as a better quality fingerprint than the F2 by the quality checking
algorithm (having the error of PE3), the FAR and FRR are P as shown in Eq.(1).
So, the TEC is followed by

TEC = {(M − X)P +(M − Y)P}PE3

We prove that the TEC of the proposed method (case(5)-(1)∼(4)) is smaller
than the TEC of the other method (case(1)∼(4)). If we compare case(1)∼(4) with
case(5)-(1), we get the difference function (f(P,Q,M,X)) between the TEC of
case(1)∼(4) and that of case(5)-(1) as shown in Eq.(2)∼(5).

f(P, Q, M, X)= TEC of case(1)−TECof case(5)-(1)
= 2MP − (X + Y)P
= (M−X)P + (M−Y)P

(2)

f(P,Q,M,X) = TEC of case (2) − TEC of case(5)-(1)
= (M + X)P + (M−X)Q− (X + Y)P
= (M−Y)P + (M−X)Q

(3)

f(P,Q,M,X) = TEC of case (3) − TEC of case(5)-(1)
= XP2 + (M − X)PQ +M(2P − P2)− (X + Y)P
= (M − X)P(Q − P)+ (M − X)P + (M − Y)P

(4)

f(P,Q,M,X) = TEC of case (4) − TEC of case(5)-(1)
= X(2P − P2)+ (P + Q − PQ)(M − X)+ MP2− (X + Y)P
= (M − X)P2 +P(M − Y)+Q(1 − P)(M − X)

(5)

In the Eq.(2)∼(5), all the (M − X), (M − Y), Q, P, (Q − P), (M + X) and (1 − P)
are greater than 0. So, all the f(P,Q,M,X)s of Eq.(2)∼(5) are greater than 0
and the TEC of case(5)-(1) is smaller than those of case(1)∼(4), consequently.
Only when all the fingerprint images are composed of good quality data at
genuine and imposter tests (X = M, Y = M), the TEC of case(5)-(1) is same
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to those of case(1)∼(4). However, in real fingerprint verification systems, this is
impossible. Due to excessive humidity, dust or sweat on the sensor surface, bad
quality images are frequently obtained(M − X > 0,M − Y > 0). Also, in case we
compare the TECs of case(1)∼(4) to that of case(5)-(2) by same method as
shown in Eq.(2) ∼(5), we can know the latter (that of case(5)-(2)) is smaller
than the formers (those of case(1)∼(4)). Therefore, we can conclude that the
proposed method shows better performance than case(1)∼(4). Furthermore, if
we compare the TECs of case(1)∼(4) to that of case(5)-(3), we get the difference
functions as shown in Eq.(6)∼(9).

f(P,Q,M,X) =TEC of case (1) − TEC of case(5)-(3)
=2MP − {(M − X)Q + (M − Y)P}PE2

=MP(1 − PE2)+ MP(1 − tPE2)+ XQPE2 +YPPE2

=MP(1 − PE2)+ MPt(1
t−PE2)+XQPE2 + YPPE2

(6)

f(P,Q,M,X) =TEC of case (2) − TEC of case(5)-(3)
=(M + X)P +(M − X)Q−{(M − X)Q +(M − Y)P}PE2

=(M − X)Q(1 − PE2)+M(1 − PE2)P+XP +YPPE2

(7)

f(P,Q,M,X) =TEC of case (3)−TEC of case(5)-(3)
= XP2 + (M − X)PQ+ M(2P− P2)−{ (M − X)Q +(M − Y)P}PE2

=(M − X)P(Q − P)+MP(1 − PE2)+MPt(1
t −PE2)+ (XQ + YP)PE2

(8)

f(P,Q,M,X) =TEC of case (4)−TEC of case(5)-(3)
= X(2P−P2)+(P + Q − PQ)(M − X)+MP2−{(M − X)Q+(M − Y)P}PE2

=Q(1 − P)(M − X)+MPt(1
t −PE2)+P(X−MPE2)+P2(M − X)+(XQ + YP)PE2

(9)
The proposed method is superior to methods of case(1)∼(4), because the con-
ditions of the difference function(Eq.(6)∼(9)) are bigger than 0 on condition
that P

Q > PE2(= 1
t >PE2, because Q = tP as shown in Eq .(1)). So, in case we

can make the quality check algorithm, of which the quality checking error(PE2) is
smaller than 1/t(our experimental results show that PE2 is smaller than 1/t), the
proposed method shows the best performance compared to those of case(1)∼(4).
Also, when we compare case(1)∼(4) with case(5)-(4), we can know the proposed
method produces better results than methods of case(1)∼(4). By conclusion, we
can know that the proposed method of selecting better quality data can show
the better performance than those of case(1)∼(4) on the condition of 1

t >PE2

theoretically.

3 Quality Checking Algorithm

In this section, we explain how to select the best quality fingerprint image be-
tween two fingerprints. The quality checking algorithm is composed of three
stages as shown in Fig. 5 and section 3.1∼3.4. At the first stage, it examines
the size of the foreground and background areas in the input fingerprint image
as the number of foreground blocks. The second stage examines the number of
good blocks by using the classifying method. Finally, we examine the number of
true minutiae.
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Fig. 2. Foreground/Background in the input fingerprint image: (a) Input fingerprint
image, (b) Segmented image

3.1 Quality Checking of Foreground Areas

This section is corresponding to the first stage of Fig. 5. A fingerprint image
can be separated into blocks of pixels. Although each foreground block can be
calculated as a block direction, each background block cannot be calculated
as a block direction. We decide how many foreground areas are obtained by the
input fingerprint image using the number of foreground blocks. Fingerprint image
quality is determined by foreground areas of the input fingerprint image by a
sensor. If the foreground area in the input fingerprint image is large, probability
for the existence of minutiae is increased. Fig. 2 shows how the large foreground
area is included in the input fingerprint image. The input fingerprint image is
divided into foreground and background areas using only variance of gray values.
The variance(V AR(I)) of gray values in the image block is calculated by Eq.(10).

M(I) = 1
N2

N−1∑
n=0

N−1∑
m=0

I(n,m)

V AR(I) = 1
N2

N−1∑
n=0

N−1∑
m=0

(I(n,m) − M(I))
(10)

where, I(n,m) : the pixel grayvalue of n , m position , N : the block size

3.2 Quality Checking of a Local Fingerprint Image
and a Global Fingerprint Image

In the section 3.2 and 3.3, it is corresponding to the second stage of Fig. 5.
We account for the quality checking algorithm in the context of local and global
fingerprint images. In fingerprint images, the difference in quality of the images is
shown in Fig. 3(a). In Fig. 3(a)-(2), a block of good quality has uniform direction
of the ridge structure. However a block of bad quality has irregular direction of
the ridge structure in Fig. 3(a)-(1)and high curvature area. Minutiae detected in
high curvature areas are not reliable. This is especially true of the core and delta
regions of a fingerprint. The coherence is a measure of the local strength of the
directional field [9]. This measurement, which is called the coherence (Coh as
shown in Eq.(11)), presents how well all squared gradient vectors share the same
orientation. Using those characteristics, we examine the quality of the fingerprint
image by calculating the coherence of a pixel gradient within a block of image
pixels(16 * 16 pixels). Coherence is the quality measurement of a local fingerprint
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(a) (b)

Fig. 3. Quality checking method using local and global characteristics: (a) Quality
checking method using local characteristics, (b) Quality checking method using global
characteristics

image (QC) [9] ,which is estimated by variances and crosscovariances of Gx and
Gy, averaged over the window W .

Coh =

√
(Gxx −Gyy)2 + 4G2

xy

Gxx + Gyy
(11)

where, Gxx =
∑
W

G2
x, Gyy =

∑
W

G2
y and Gxy =

∑
W

GxGy

Generally, fingerprints have the characteristic that flows of ridges vary slowly.
As shown in Fig. 3(b)-(1), in the good quality image, there is no variance of
orientation among adjacent blocks. On the contrary, in bad quality image, there
is no coherence (Coh = 0) among adjacent blocks as shown in Fig. 3(b)-(2)).
Using these characteristics, we calculate the quality of a global fingerprint image
by circular variance among adjacent blocks [10]. The method of calculating the
quality measurement (QO) of a global fingerprint image is shown in Eq.(12).

QO = 1 − V (12)

where, V=1−
√
C̄2+S̄2 : Circular variance, C̄= 1

W

W∑
j=1

cos θj , S̄ = 1
W

W∑
j=1

sin θj

W : the number of block, θj : jth block direction of the adjacent block

3.3 Classifying Method of Local and Global Fingerprint Images

To consider local and global fingerprint characteristics, we calculate the mean
and the covariance matrix using supervised-learning method. The quality of the
region is defined by minutiae-based method. Fig. 4 shows the true minutiae and
false minutiae. Good quality regions mean small blocks including true minutiae,
and bad quality regions mean small blocks including false minutiae. It is assumed
that both a local quality measurement and a global quality measurement have
two-dimensional Gaussian random distributions. QC is local quality measure-
ment and QO is global quality measurement. μC is local mean of quality and μO

is global mean of quality.
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Fig. 4. Minutiae points of manually-defined quality:(a) Original image (b) Enhanced
binary image (Blue circle:False minutiae, Red rectangle:True Minutiae)

Fig. 5. Flowchart of the proposed quality checking algorithm

p(X |Wi) =
1

2π × |Σ|1/2
exp

[
−1

2
(X − μ)tΣ−1(X − μ)

]
(13)

where, X =
[
QC QO

]T , μ =
[
μC μO

]T

W0 is the class of good quality fingerprint images and W1 is the class of bad qual-
ity fingerprint images. We use the Bayesian Theorem as a classification method
in Eq.(14) to minimize errors, when the quality of a fingerprint image is tested
by using each quality measurement out of 352 blocks.

If p(Wi|X) > p(Wj |X) then select Wi (14)

If the number of selected window is higher than the threshold value (Th = 304),
the input image is classified as a good quality image.

3.4 Quality Checking of True Minutiae

At the final stage of quality checking method, we calculate the number of true
minutiae. The more true minutiae, the more matching minutiae in the finger-
print image compared with the fingerprint template. To find a true minutiae, we
extract the features (ridge ending, ridge bifurcation) and eliminate false minu-
tiae in the fingerprint images[7]. The overall flowchart of the quality checking
algorithm is shown in Fig. 5.
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4 Experimental Results

A set of fingerprint images was acquired through the fingerprint sensor man-
ufactured by Testech, Inc. We obtained 1,260 (20 fingerprints for 63 people)
fingerprint images of varying quality. We used two fingerprint images as enroll-
ment and rest of them used the test. We performed 1,008 authentic tests and
70,938 impostor tests. In Fig. 6(a), the proposed method shows better perfor-
mance than others that use a single finger, an AND rule and an OR rule. As we
see the Fig. 6(a), when we use the AND rule as a combination method, the GAR
is lower than when we use the single fingerprint. It is due to characteristic of pro-
posed system, which needs to be high security. A criterion of system error rate is
selected that FRR is more than FAR instead of EER(Equal Error Rate). AND
rule affects that FAR becomes less and FRR becomes more, so whole error rate
is increased. Also, the fingerprint verification system using the proposed method
showed better performance in comparison with others in terms of both the FRR
and the FAR. In Fig. 6(b), the proposed method is inferior to methods that
use an SUM and MAX rule[11]. This is because the overlapping area between
the input fingerprint image and the fingerprint template is critical. Though the
input fingerprint image has good quality at the verification stage, the matching
score in the input fingerprint image is lower in case that the overlapping areas
between the input fingerprint image and the fingerprint template are small. To
solve this problem, we will consider the quality of the fingerprint template at
the enrollment stage and the input fingerprint image at the verification stage.
Although the proposed method is poorer than that using an SUM and MAX
rule, it has many profits. Our proposed method has the advantage that it can be
used even if we do not know the internal system of each multimodal biometrics
different from that using SUM,MAX and MIN rule. However, in case of using
SUM, MAX and MIN rule, we should know the internal output matching score
from each multimodal biometrics.

(a) (b)

Fig. 6. ROC curves for the proposed method, a single finger, AND, OR, SUM, MAX,
MIN rule[11] : (a) Using the proposed method vs. a single finger, AND, OR rule at
the decision level (b) Using the proposed method vs. SUM, MAX, MIN rule at the
matching score level
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5 Conclusions

We have designed and implemented a fingerprint verification system which uses
two fingerprint images. We show that considerable improvement in fingerprint
verification performance can be achieved by selecting a better quality fingerprint
image of two fingerprints. Also, we used fusion methods at the matching score
level (SUM, MAX, MIN rule[11]). We proved theoretically and empirically that
the proposed method is better than methods that use an AND rule or an OR
rule and a single finger.
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Abstract. The performance of an automatic fingerprint authentication
system relies heavily on the quality of the captured fingerprint images.
In this paper, two new quality indices for fingerprint images are devel-
oped. The first index measures the energy concentration in the frequency
domain as a global feature. The second index measures the spatial co-
herence in local regions. We present a novel framework for evaluating
and comparing quality indices in terms of their capability of predict-
ing the system performance at three different stages, namely, image en-
hancement, feature extraction and matching. Experimental results on
the IBM-HURSLEY and FVC2002 DB3 databases demonstrate that the
global index is better than the local index in the enhancement stage
(correlation of 0.70 vs. 0.50) and comparative in the feature extraction
stage (correlation of 0.70 vs. 0.71). Both quality indices are effective in
predicting the matching performance, and by applying a quality-based
weighting scheme in the matching algorithm, the overall matching per-
formance can be improved; a decrease of 1.94% in EER is observed on
the FVC2002 DB3 database.

1 Introduction

Fingerprint images are usually obtained under different conditions of the skin of
a finger (e.g., dry, wet, creased/wrinkled, or abraded), the ergonomics of the ac-
quisition system (e.g., ease of use, alignment and positioning), and the inherent
limitations of the sensing equipment (e.g., shadow from optical sensors and elec-
trical noise from capacitive sensors). These conditions, in turn, affect the quality
of the acquired fingerprint images (see Figures 1 (a-c)). Fingerprint quality is
usually defined as a measure of the clarity of the ridge and valley structures, as
well as the “extractability” of features (such as minutiae and singularity points).
Poor quality fingerprint images often result in spurious and missed features, and
thus severely degrade the performance of an authentication system by increas-
ing the false reject and false accept rates. Recently, NIST [1] has shown that the
performance of a fingerprint authentication system is mostly affected, among
other factors, by fingerprint image quality. Therefore, it is desirable to assess the
quality of a fingerprint image to improve the overall performance of a fingerprint
authentication system.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 160–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Many on-going and past efforts have tried to address the problem of assessing
fingerprint image quality. Bolle et al. [2] used ratio of directional area to nondi-
rectional area as a quality measure. Hong et al. [3] and Shen et al. [4] applied
Gabor filters to identify blocks with clear ridge and valley patterns as good qual-
ity blocks. Ratha and Bolle [5] computed the ratio of energy distribution in two
subjectively selected frequency bands based on the WSQ (Wavelet Scalar Quan-
tization) compressed fingerprint images. Lim et al. [6] combined local and global
spatial features to detect low quality and invalid fingerprint images. The most
recent work by Tabassi et al. [1] presented a novel definition of fingerprint qual-
ity as a predictor for matching performance. They consider quality assessment
as a classification problem and use the quality of extracted features to estimate
the quality label of a fingerprint image. This approach is effective only when the
feature extraction algorithm is reliable and is computationally efficient.

In this paper, we propose two new fingerprint quality indices. The first index
measures the entropy of the energy distribution in the frequency domain. The
second estimates the local coherence of gradients in non-overlapping blocks. We
propose a framework for evaluating and comparing quality indices by assessing
how well they predict the system performance at three processing stages: (i)
image enhancement, (ii) feature extraction and (iii) matching. Our goal is to
determine how each processing stage will be affected by the image quality, and to
compare the two quality indices in terms of their predictive capabilities. We also
adopt a quality-based weighting scheme to improve the matching performance.
To the best of our knowledge, this systematic framework is novel.

The rest of the paper is organized as follows. Section 2 describes in detail
the algorithms of each proposed quality index. Section 3 introduces the new
framework for evaluating fingerprint quality indices. In Section 4, experimental
results are provided and discussed. Summary and future work are included in
Section 5.

2 Fingerprint Quality Indices

2.1 A Quality Index in the Frequency Domain

Given a digital image of size M×N , the two-dimensional Discrete Fourier Trans-
formation (DFT) evaluated at the spatial frequency (2πk

M , 2πl
N ) is given by

F (k, l) =
1

NM

N−1∑
i=0

M−1∑
j=0

f(i, j)e−ι2π(ki
N + lj

M ), ι =
√−1 , (1)

where f(i, j) refers to the gray level intensity at pixel (i, j) of the image. Although
DFT produces a complex-valued output, only the power spectrum P (k, l) ≡
|F (k, l)|2 is often used as it contains most of the information regarding the
geometric structure of an image.

The ridge frequency in a fingerprint image is generally around 60 cycles per
image width/height [8]. Since the image width/height is usually between 120 and
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Fig. 1. Computing the quality index Qf from the power spectrum: Panels (a-c) show
three fingerprint images in the decreasing order of quality; Panels (d-f) show their cor-
responding power spectrums; Panels (g-i) show the energy concentrations in the region
of interest. The values of Qf for the three images are 1.0, 0.6, and 0.3, respectively

1000 pixels, the dominant ridge frequencies should be between 60/1000 = 0.06
and 60/120 = 0.5. Therefore, the region of interest (ROI) of the power spectrum
is defined to be an annular band with radius ranging from 0.06 to 0.5. Figures
1(a-c) show three fingerprint images of varying quality with their corresponding
power spectrums in the ROI shown in Figures 1(d-f). Note that, the fingerprint
image with good quality (Figure 1(a)) presents strong ring patterns in the power
spectrum (Figure 1(d)), while a poor quality fingerprint (Figure 1(c)) presents
a more diffused power spectrum (Figure 1(f)). The global quality index will be
defined in terms of the energy concentration in this ROI.

We use a family of Butterworth low-pass filters to extract the ring features
from the ROI. A Butterworth function [7], indexed by m and n, is defined as

H(k, l |m,n) =
1

1 + 1
m2n ((k−a

M )2 + ( l−b
N )2)n

, (2)

where (k, l) is the pixel index in the power spectrum corresponding to the spatial
frequency (2πk

M , 2πl
N ) and (a, b) is the location of the center of the power spectrum

corresponding to spatial frequency (0,0). The Butterworth function generates a
low-pass filter with the cutoff frequency given by m and the filter order given by
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Fig. 2. Taking the differences of two consecutive low-pass filters (a) H(k, l |mt+1, n)
and (b) H(k, l |mt, n) (n = 20) to obtain a bandpass filter (c) Rt(k, l)

n. The value of n controls the steepness of the drop at the cutoff frequency; the
larger the value of n, the closer H is to an idealized step function.

We construct a total of T equally spaced bandpass filters, Rt, by taking
differences of two consecutive Butterworth functions, that is,

Rt(k, l) = H(k, l |mt+1, n) −H(k, l |mt, n) , (3)

where mt = 0.06 + t 0.5−0.06
T and t = 0, 1, 2, . . . , (T − 1). The construction of

Rt(k, l) from H(k, l |mt+1, n) and H(k, l |mt, n) is shown graphically in Figure
2. For every t, Rt captures the energy in an annular band with frequencies from
mt to mt+1. The energy concentrated in the t-th band is computed by

Et =
N−1∑
k=0

M−1∑
l=0

Rt(k, l)P (k, l) , (4)

and the normalized energy for the t-th bandpass filter is defined as Pt = Et∑ T−1
t=0 Et

.

In Figures 1(g-i), we plot the distribution of Pt for T = 15 bandpass filters. A
good quality image has a more peaked energy distribution while poor ones have
more diffused distribution. The extent of energy concentration is given by the
entropy

E = −
T−1∑
t=0

Pt logPt , (5)

which achieves the maximum value log T when the distribution is uniform and
decreases when the distribution is peaked. Our quality score is defined as

Qf = logT − E , (6)

so that a fingerprint image with good (bad) quality will have a higher (lower)
value of Qf . We have normalized Qf on the database so that the values lie
between 0 and 1.
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2.2 A Quality Index in the Spatial Domain

To assess fingerprint image quality in a local region, we partition a given image
into a lattice of blocks of size b× b. An algorithm to distinguish the fingerprint
foreground from the background is then applied as described in [2]. For each
foreground block B, let gs = (gx

s , g
y
s ) denote the gradient of the gray level inten-

sity at site s ∈ B. The covariance matrix of the gradient vectors for all b2 sites
in this block is given by

J =
1
b2

∑
s∈B

gsg
T
s ≡

[
j11 j12
j21 j22

]
. (7)

The above symmetric matrix is positive semidefinite with eigenvalues

λ1 =
1
2
(trace(J) +

√
trace2(J) − 4 det(J))

λ2 =
1
2
(trace(J) −

√
trace2(J) − 4 det(J)) ,

(8)

where trace(J) = j11 + j12, det(J) = j11j22 − j2
12 and λ1 ≥ λ2. The normalized

coherence measure is defined as

k̃ =
(λ1 − λ2)2

(λ1 + λ2)2
=

(j11 − j22)2 + 4j2
12

(j11 + j22)2
, (9)

with 0 ≤ k̃ ≤ 1. This measure reflects the clarity of the local ridge-valley orien-
tation in each foreground block B. If the local region has a distinct ridge-valley
orientation, then λ1 � λ2 results in k̃ ≈ 1. On the contrary, if the local region
is of poor quality, we obtain λ1 ≈ λ2 and consequently k̃ ≈ 0.

A single quality score can be computed as the weighted average of the block-
wise coherence measures given by

Qs =
1
r

r∑
i=1

wik̃i , (10)

where r is the total number of foreground blocks, and the relative weight ωi for
the i-th block centered at li = (xi, yi) is determined by

ωi = exp{− ‖ li − lc ‖2 /(2q)} , (11)

where lc is the centroid of foreground fingerprint, and q is a normalization con-
stant, which reflects the contribution for blocks with respect to the distance
from the centroid [5]. Generally, regions near the centroid of a fingerprint re-
ceive higher weights, since they are likely to provide more information than the
peripheral.

Figure 3 shows the local quality maps of the three fingerprint images and
their overall quality indices. We have also normalized Qs on the database so
that the values lie between 0 and 1.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Computing the quality index Qs using the spatial coherence measure. Panels
(a-c) are the fingerprint images. Panels (d-f) are the block-wise values of k̃; blocks
with brighter color indicate higher quality in the region. The values of Qs for the three
fingerprint images are 0.95, 0.56, and 0.20, respectively

3 Evaluation Criteria

In this section, an evaluation criteria is developed for assessing the performance
of image enhancement, feature extraction and matching with respect to the
proposed quality indices.

3.1 Predicting the Image Enhancement Performance

Our goal is to first quantify the robustness of enhancement for varying values of
Qf and Qs. A fingerprint image with high values of Qf and Qs should be less
sensitive (or more robust) to the tuning parameters of an enhancement algorithm
than those with low Qf and Qs values. The following method is developed to
quantify this sensitivity with regard to the tuning of an enhancement algorithm.

Given an enhancement algorithm E, we tune the parameters to obtain a
modified version called E′. Run E and E′ separately on a fingerprint image
to generate two enhanced images I and I ′. Let A = (g1, g2, . . . , gu) and B =
(h1, h2, . . . , hv) be the sets of minutiae detected, respectively, from I and I ′.
Compute p as the number of paired minutiae in A and B: minutiae gi (i =
1, . . . , u) and hj (j = 1, . . . , v) are said to be paired if their distances in posi-
tion and orientation are within a tolerance bound of 8 pixels and 30 degrees,
respectively. The robustness index (RI) of a fingerprint image is given by

RI =
p

u + v − p
, (12)
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where (u + v − p) represents the total number of minutiae detected in both
enhanced images. A low RI value indicates large variance in the number of
minutiae detected and hence poor image quality due to its sensitivity to the
turning of parameters. On the contrary, high RI value indicates consistency in
minutiae extraction and consequently, good image quality due to its robustness
to parameter tuning (Figure 4).

(a) (b) (c)

(d) (e) (f)

Fig. 4. Sensitivity to the tuning parameters of an enhancement algorithm. Input images
are those shown in Figures 3(a-c). Panels (a-c) are obtained using E while panels (d-
f) are obtained using E′. Minutiae consistently extracted from both algorithms are
considered robust (◦), whereas minutiae detected only by E or E′ are non-robust (×)

3.2 Predicting the Feature Extraction Performance

The effects of image quality with regard to feature extraction performance can
be measured using the goodness index (GI) defined as

GI =
p

t
− a + b

u
, (13)

where p, a, b, respectively, represent the total number of paired, missed and spu-
rious minutiae among the u detected minutiae when compared to the number
of ground truth minutiae t in the given fingerprint image. Here, missed minu-
tiae refers to a ground truth minutiae that is missed by the feature extraction
whereas spurious minutiae represents an extracted minutiae that is not matched
with a ground truth minutiae. A low GI value is obtained when the number of
missed or spurious minutiae is much larger than the paired minutiae, indicating
poor image quality. A high GI value, on the contrary, indicates good quality as
most minutiae are correctly matched.
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3.3 Predicting the Matching Performance

When matching scores are available, a Receiver Operating Characteristic (ROC)
curve is plotted to reflect the performance of the matching algorithm. One effec-
tive evaluation criterion for a quality index is to rank the ROC as a function of
image quality. More specifically, we can divide the quality scores into r equally
numbered bins (from low to high) and plot r ROC curves, with the i-th curve
reflecting the matching performance after images in the first i, 0 ≤ i ≤ 4 bins
are pruned. The 0-th bin is by convention, the original database with no images
removed. If a quality index is a good predictor of the matching performance, the
ROC curves should consistently rise as more poor quality images are excluded.

3.4 Incorporating Local Quality into the Matching Algorithm

We propose to incorporate the local coherence measure, k̃i, into the fingerprint
matching algorithm [12] that accounts for the reliability of the extracted minutiae
points. Prior to finding the matching score between a pair of fingerprint images,
we need to align them to remove effects of any translation and rotation of the
finger. This is done by maxmizing

W =
p∑

i=1

√
k̃A

f(i) × k̃B
g(i) , (14)

where p is the total number of paired minutiae between A and B, k̃A
f(i) and

k̃B
g(i) are the local coherence measures associated with the i-th paired minutiae

in A and B, respectively; functions f and g return index of the block that
contains the paired minutiae belonging to A and B, respectively. Once W is
maximized, its corresponding transformation parameters are applied to align the
orientation field of the pair, with both results determining the final matching
score. Therefore, if the quality is high for both minutiae in a pair, this pairing
will contribute more to the estimation of transformation parameters as well as
the matching score than a pairing of low quality minutiae.

4 Experimental Results

The quality indices are tested using two databases, namely the IBM-HURSLEY
database and FVC2002 DB3 [11]. The IBM-HURSLEY database contains mul-
tiple impressions of 269 fingers (a total of 900 images) taken at significantly
different times, resulting in large variability in fingerprint quality. The images
have different sizes but the same resolution of 500 dpi, with “true” minutiae
marked by a human expert. The FVC2002 DB3 contains 800 images from 100
fingers (8 impressions per finger), all with the same size (300 × 300) and the
same resolution (500 dpi). This database is the most difficult among the four
databases in FVC2002 in terms of image quality [11]. No ground-truth is pro-
vided for this database, and hence, the quality indices for this database are tested
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at the matching stage, while the quality indices for IBM-HURSLEY are tested
at the enhancement and the feature extraction stages.

To evaluate the enhancement performance with regard to the proposed qual-
ity indices, we employed the enhancement algorithm proposed in [9], and the
minutiae feature extraction algorithm given in [10]. We apply a new combi-
nation of three tuning parameters of the enhancement algorithm, namely, the
minimum inter-ridge distance, the window width and height. The default com-
bination was E = [12, 11, 11] and the new one is E′ = [7, 11, 7]. The RI value
for each fingerprint is obtained as in equation (12) and the quality indices Qf

and Qs are obtained as in Section 2. Figures 5(a-b) show the scatter plots of RI
versus Qf and RI versus Qs on the IBM-HURSLEY database. We also sort the
images in the increasing order of quality and divide them into r = 5 bins (180
images per bin). The median and the lower and upper quartiles of the quality
indices in each bin are calculated and shown in the box plots in Figures 5(c-
d). It is demonstrated that Qf has a stronger predictive capability for RI, as
it acquires a larger Pearson’s correlation (0.70) than Qs (0.50). In a similar
manner, the performance of the feature extraction algorithm (measured by GI
in equation (13)) is evaluated with respect to Qf and Qs. Here, default settings
of the enhancement algorithm is used. Figure 6 gives the corresponding results.
Both Qf and Qs are effective in predicting the feature extraction performance
with Qs achieving a slightly higher correlation than Qf (0.71 vs. 0.70).

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Q
f

R
ob

us
tn

es
s 

In
de

x 
(R

I)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Q
s

R
ob

us
tn

es
s 

In
de

x 
(R

I)

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

Bin Index of Q
s

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

Box Index of Q
f

R
o
b
u
s
tn

e
s
s
 I
n
d
e
x
 (

R
I)

(c)

(d)

(a) (b)

Fig. 5. The effect of the proposed quality indices on image enhancement. (a) gives the
scatter plot and (c) the box plot of RI versus Qf , and (b) gives the scatter plot and
(d) the box plot of RI versus Qs
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Fig. 6. The effect of the proposed quality indices on feature extraction. (a) gives the
scatter plot and (c) the box plot of GI versus Qf , and (b) gives the scatter plot and
(d) the box plot of GI versus Qs
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Fig. 7. Improving the matching performance by (a) pruning poor quality images with
regard to Qf and (b) Qs, and (c) adopting a quality-based weighting scheme in the
matcher

Finally, a matcher proposed in [12] is adopted for evaluating and improving
the matching performance with respect to the quality indices on FVC2002 DB3.
Five ROC curves are plotted in Figures 7(a-b) as suggested in Section 3.3. Figure
7(c) shows the overall improvement in the matching performance when local
coherence measures are incorporated by a quality-based weighting scheme in the
matcher (see Section 3.4).

5 Conclusion and Future Work

This paper proposes two quality indices, global (Qf ) and local (Qs), for finger-
print images. We compare the two in a generic evaluation framework and observe
the following: (1) Qf has better predictive capabilities at the image enhancement
stage than Qs. This is because the image enhancement algorithm we use is based
on Gabor filtering in the frequency domain, and is therefore directly related to
Qf . (2) Qs is slightly more effective than Qf at the feature extraction stage. This
is because feature extraction concentrates on local details which is measured di-
rectly by Qs. (3) Both Qf and Qs are effective in predicting and improving the
matching performance. Future work includes expanding the current framework
to other possible representation of fingerprints and biometric identifiers.
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Abstract. When selecting a registration method for fingerprints, the
choice is often between a minutiae based or an orientation field based
registration method. In selecting a combination of both methods, instead
of selecting one of the methods, we obtain a one modality multi-expert
registration system. If the combined methods are based on different fea-
tures in the fingerprint, e.g. the minutiae points respective the orienta-
tion field, they are uncorrelated and a higher registration performance
can be expected compared to when only one of the methods are used. In
this paper two registration methods are discussed that do not use minu-
tiae points, and are therefore candidates to be combined with a minutiae
based registration method to build a multi-expert registration system for
fingerprints with expected high registration performance. Both methods
use complex orientations fields but produce uncorrelated results by con-
struction. One method uses the position and geometric orientation of
symmetry points, i.e. the singular points (SPs) in the fingerprint to esti-
mate the translation respectively the rotation parameter in the Euclidean
transformation. The second method uses 1D projections of orientation
images to find the transformation parameters. Experimental results are
reported.

1 Introduction

There are numerous techniques that use minutiae points in Automatic Finger-
print Identification Systems (AFIS) as well as low cost silicon sensor systems
that are geared toward minutiae based techniques. This is due to long history
of minutiae used in crime scene investigations. Consumer uses of biometrics in-
creasingly questions the limitation of identification features to minutiae. Even
more interestingly, by selecting a combination of features, instead of selecting
minutiae, we can obtain a one modality multi-expert registration system. The
two registration methods can be expected to be uncorrelated if they are based
on different features in the fingerprint, e.g. the minutiae pattern respective the
orientation field. By combining the output of uncorrelated methods a gain in the
registration performance can be achieved, compared to the use of only one of
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the methods. This is because the methods complement each other in a positive
way. When one method fails the other may still have success in the registration.

In the minutiae based registration methods the fingerprints are represented
by its minutiae points, i.e. the position and the orientation of their minutiae
are elements in their respective feature vector representation. Aligning the two
fingerprints is to find the transformation parameters that maximize the number
of matching minutiae pairs in the feature vectors [1, 2]. If the transformation
is the Euclidean transformation, the parameters are the rotation angle and the
translation vector [3] relating the template and the test fingerprint.

However in low quality fingerprints it is difficult to automatically extract
the minutia points in a robust way. This often means that genuine minutiae are
missed and that false minutiae are added [2]. Also, in cost sensitive applications,
because the price of the sensor depends on the sensor area, sensors with small ar-
eas are used and therefore fewer numbers of minutiae are present in the captured
fingerprint. For these two situations a high performance registration is difficult
to obtain if only the minutiae based registration method is used. A higher per-
formance can be expected if the minutiae based method can be combined with
an other technique which we suggest to be orientation field features.

In this paper two registration methods are suggested that use the global struc-
ture of the fingerprint, and therefore are more robust to low quality fingerprint
registration and more suitable to register fingerprints captured from small area
sensors. They are therefore candidates to be combined with a minutiae based
registration method to build a multi-expert registration system for fingerprints
as discussed above. One method uses the position and geometric orientation of
symmetry points, i.e. the singular points (SPs) in the fingerprint (see Figure 1)
to estimate the translation respectively the rotation parameter in the Euclidean
transformation [4]. The second method uses 1D projections of orientation images
[5] to find the transformation parameters intended for a situation when SPs are
poorly imaged. Both methods complement each other as well as minutiae and
used complex orientation fields (see Figure 1).

2 Registration by Symmetry Points

This method (called method 1) extracts automatically the position and the ge-
ometric orientation of SPs, from the global structure using complex filters de-
signed to detect rotational symmetries. The translation is estimated from the
difference in position, and the rotation parameter from the difference in the geo-
metric orientation of SPs in the test and the template fingerprint. In [4] we have
shown that an unbiased alignment error with a standard deviation of approxi-
mately the size of the average wavelength (13 pixels) of a fingerprint is possible
to achieve using this method.

A common technique to extract SPs (core and delta points) in fingerprints
is to use the Poincaré index introduced by Kawagoe and Tojo [6]. It takes the
values 180◦, −180◦, and 0◦ for a core point, a delta point, and an ordinary point
respectively. It is obtained by summing the change in orientation following a
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Fig. 1. Left: marked singular points, a core point is marked with a square and a delta
point with a cross. Middle: the estimated complex orientation field at level 3 for the
fingerprint to the left. Right: a fingerprint of type arch

closed curve counterclockwise around a point [7]. This technique has been used
in the studies of Karu and Jain [7], and Bazen and Gerez [8] to define and extract
SPs.

Our method using complex filters compared to Poincaré index to identify
SPs has the advantage to extract not only the position of an SP but also its
spatial orientation. When two fingerprints are rotated and translated relative to
each other our method can estimate both translation and rotation parameters
simultaneously. In the work of Bazen and Gerez [8] the position extraction and
the orientation estimation of an SP is done in two sequential steps. The position
extraction is performed by using Poincaré index. The orientation estimation is
done by matching a reference model of the orientation field around an SP with
the orientation map of the extracted SP. The orientation maps were obtained
by using a technique introduced in [9].

2.1 Filters for Rotational Symmetry Detection

Complex filters, of order m, for the detection of patterns with rotational symme-
tries are modeled by eimϕ [10, 11]. A polynomial approximation of these filters
in gaussian windows yields (x + iy)mg(x, y) where g is a gaussian defined as

g(x, y) = e−
x2+y2

2σ2 [12, 13].
It is worth to note that these filters are not applied to the original fingerprint

image but instead they are applied to the complex valued orientation field image
z(x, y) = (fx + ify)2. Here fx is the derivative of the original image in the x-
direction and fy is the derivative in the y-direction.

In our experiments we use filters of first order symmetry or parabolic sym-
metry i.e.
h1(x, y) = (x + iy)g(x, y) = reiϕg(x, y) and
h2(x, y) = (x− iy)g(x, y) = r e−iϕg(x, y) = h∗

1.
Patterns that have a local orientation description of z = eiϕ (m=1) and z = e−iϕ
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Fig. 2. Patterns with a local orientation description of z = eiϕ (left) and z = e−iϕ

(right). Both in gray scale (patterns) and in z representation (complex filters)

(m=-1) are shown in Figure 2. As can be seen these patterns are similar to pat-
terns of a core respectively a delta point in a fingerprint and therefore suitable to
use as SP-extractors. The SP-extractors are the z representation of the patterns,
i.e. the complex filter h1 and h2 respectively.

The complex filter response is c = μ eiα, where μ = |I20|
I11

is a certainty
measure of symmetry, and α = Arg(I20) is the ”member” of that symmetry
family, here representing the geometric orientation of the symmetric pattern.
The scalars I20 = 〈h1, z〉 for the core point extraction, I20 = 〈h2, z〉 for the delta
point extraction, and I11 = 〈|h1| , |z|〉 are obtained by use of the 2D complex
scalar product symbolized by 〈 〉 [12]. Representing the certainty measures by
μ1 and μ2 for core point respectively delta point symmetry, we can identify an
SP of type core if μ1 > T1 and of type delta if μ2 > T2, where T1 and T2 are
empirically determined thresholds.

2.2 Multi-scale Filtering

Using a multi-resolution representation of the complex orientation field offers a
possibility to extract SPs more robustly and precisely compared to a represen-
tation at only one resolution level. The extraction of an SP starts at the lowest
resolution level (a smooth orientation field) and continues with refinement at
higher resolutions. The result at a low resolution guides the extraction at higher
resolution levels. This strategy can be taken because SPs have a global support
from the orientation field [14].

The complex orientation field z(x, y) is represented by a five level Gaussian
pyramid. Level 4 has the lowest, and level 0 has the highest resolution. The core
and the delta filtering is applied on each resolution. The complex filter response
is called cnk, where k=4, 3, 2, 1 and 0 are the resolution levels, and n=1, 2 are
the filter types (core and delta).

Figure 3 (upper row) shows the magnitude of the filter responses of filter h1

(called μ1k). The filter is applied to the orientation field of the fingerprint to the
left in Figure 1.

2.3 Multi-scale Searching for SPs

The extraction of an SP starts at the lower resolution level, i.e. we search for
maximum in the certainty image μ1 and μ2 for a core and a delta point respec-
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Fig. 3. Filter responses for the fingerprint to the left in Figure 1, core point. Row1:
μ1k, k=3, 2, and 1. Row2: enhanced μenh

1k , k=3, 2, and 1

tively. In the found position of maximum (x, y)max
n4 we extract the complex filter

response cmax
n4 , for each type of SP, which is a vector pointing in the geometric

orientation of respective SP. The magnitude of this vector is put to one, we call
this vector SPor of which there is one per resolution level and SP type. The SPor

is then used to define the search window (for a core point only) and to increase
the signal-to-noise ratio in the certainty images μ1 and μ2 when searching for
maximum at the next higher resolution level. More precisely, the enhanced cer-
tainty image μenh

k−1 at level (k − 1) is obtained according to equation 1, where
ϕ is the difference in angle between a filter response vector ck−1 and the SPor

vector at previous lower resolution level k.

μenh
k−1 = μk−1 · cos(ϕ) (1)

The quantity μk−1 represents the certainty as described in section 2.1 and the
above equation is a vectorial projection of ck−1 on SPor. In this way we lower
the responses of those complex filter responses that are not coherent with the
orientation of the SPor at the previous lower resolution level. Figure 3 (lower
row) shows the enhanced certainty image for a core point for the fingerprint to
the left in Figure 1. This is repeated for each search of maximum between levels
in the Gaussian pyramid.

At each level k we extract in the complex filter response image cnk at the
position (x, y)max

nk found in the enhanced certainty image μenh
k . We call these

complex filter responses cmax
nk .



176 Kenneth Nilsson and Josef Bigun

3 Registration by 1D Projections of Orientation Images

One class of fingerprints, i.e. class arch (see Figure 1 to the right), lacks SPs [7].
In noisy fingerprints the complex filtering can give a too weak response to classify
the point as a core or a delta point. Also when the sensor area of the capturing
device is small the SPs are not always found within the captured fingerprint. In
these situations symmetry point extraction will fail and must be complemented
by an alternative method. We call this method “Registration by 1D projections
of orientation images” which makes use of the global orientation field of the
fingerprint but does not need SPs for registration. The method is based on
a decomposition of the fingerprint into several images, where each image, Ok,
corresponds to a direction. Called Orientation images in what follows, they were
6 in number, representing 6 equally spaced directions in our experiments.

By a pair of Orientation images we mean two orientation images, one from
the template fingerprint and one from the test fingerprint, belonging to the same
orientation value. The difference in position of a pair of orientation images, is
used to estimate the translation between the template and the test fingerprint (it
is assumed that the rotation is negligible, or have been compensated for, between
the two fingerprints). From each of the orientation images several 1D projections
at different angles (radiograms) are computed [5]. We call the two radiograms
computed from a pair of orientation images at the same projection angle a pair
of radiograms. A correlation is computed between each pair of radiograms. From
the peak in the correlation measure we estimate a displacement for each such
pair of radiograms.

In the estimation of the translation parameter we make use of two displace-
ments computed from pair of radiograms which are perpendicular in projection
angle. The final estimate of the translation between the template and the test
fingerprint is computed from the total of nor ∗ npr

2 number of estimates, where
nor and npr are the number of orientation images and the number of projection
angles respectively.

3.1 Orientation Radiograms

An orientation image is computed according to equation 2.

Ok = |z| eα(cos2(θk−ϕ)−1) (2)

In this equation Θk is the pass orientation angle for an orientation image Ok

and ϕ is the orientation of the orientation field z in each point in the interval[−π
2

π
2

]
. The constant α controls the sensitivity in the selection of orientation

angles close to the pass angle. Figure 4 shows orientation images for pass angles
−π

3 ,−π
6 , 0,

π
6 ,

π
3 and π

2 at level 2 in the Gaussian pyramid when the input is the
fingerprint given in Figure 1 to the right.

The Radon transform is used to compute 1D projections of orientation images
in the direction of φ according to equations 3 and 4. Figure 4 shows radiograms
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Fig. 4. Left: Orientation images (level 2) for the fingerprint to the right in Figure 1.
With pass angles θk = −π

3
,−π

6
, 0 for the upper row from left to right, and θk = π

6
, π

3

and π
2

for the bottom row from left to right. Right: Radiograms computed from the
orientation image to the left in this figure with pass angle −π

6
. Projection angles from

top to bottom are −π
3
,−π

6
, 0, π

6
, π

3
and π

2

for the orientation image to the left with a pass angle of −π
6 . Radon transform

amounts to summing the pixel values along the direction φ.

Rφ (x′) =
∫

f (x′cosφ− y′sinφ, x′sinφ + y′cosφ) dy′ (3)[
x′

y′

]
=

[
cosφ sinφ
−sinφ cosφ

] [
x
y

]
(4)

3.2 Translation Estimation

The relation between the displacement dx′ between a pair of orientation radio-
grams and the translation dx and dy of its pair of orientation images is computed
according to equation 5.

dx′
φm

= cosφmdx + sinφmdy (5)

Where dx′ = x′
template − x′

test, dx = xtemplate − xtest, and dy = ytemplate − ytest.
The displacement dx′ is estimated from data of a certain projection angle

φm by finding the peak in the correlation signal of each pair of orientation radio-
grams. By using two pairs of radiograms, which are perpendicular in projection
angle, we can estimate the translation dx and dy between the template finger-
print and the test fingerprint by equation 6.[

dx′
φm

dx′
φn

]
=

[
cosφm sinφm

−sinφm cosφm

] [
dx
dy

]
(6)
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Where φm = −π
3 ,−π

6 , 0 and φn = φm + π
2 , i.e. π

6 ,
π
3 and π

2 . From each pair of
orientation images we get npr

2 number of estimates. Out of a total of nor ∗ npr

2
estimates we want to select, in a robust way, the final translation estimate dx, dy.
First we apply an outlier detection within an orientation image by disregarding
estimates (dx, dy)T that are most dissimilar to other estimates. Second we take
away orientation images that have a high variance in their estimates. Finally we
estimate the translation by taking the mean value of the estimates.

4 Experiments

The FVC2000 fingerprint database, db2 set A [15] is used in the experiments. A
total of 800 fingerprints (100 persons, 8 fingerprint/person) are captured using
a low cost capacitive sensor. The size of an image is 364 x 256 pixels, and
the resolution is 500 dpi. It is worth to note that FVC2000 is constructed for
the purpose of grading the performance of fingerprint recognition systems, and
contains many poor quality fingerprints.

4.1 Symmetry Point Extraction

The filters used in the multi-scale filtering are of size 11 x 11 (a standard devi-
ation of the Gaussian of 1.6). From the multi-scale searching for maximum in
the enhanced certainty images μenh

nk , as described in section 2.3, the position of
maximum (x, y)max

nk is extracted for each level k and for each type n of SP (in the
lowest resolution level the search for maximum is done in the ordinary certainty
image μnk). In the position (x, y)max

nk the complex filter responses cmax
nk are ex-

tracted and saved for each level k and for each type n of SP. We compute new
filter responses R from the extracted complex filter responses cmax

nk according to
equations 7 and 8, i.e. we sum the complex filter responses cmax

nk in the levels
k (vector-sum) for respective type of SP. The final response is the mean of the
magnitude of the vector-sum.

Rcore =
1
4

∣∣∣∣∣
4∑

k=1

cmax
1k

∣∣∣∣∣ (7)

Rdelta =
1
3

∣∣∣∣∣
3∑

k=1

cmax
2k

∣∣∣∣∣ (8)

To test the performance of the symmetry point extraction (method 1) the true
position (x, y)true

n of the SPs have been manually extracted for the fingerprints
in the database. Those fingerprints that are lacking SPs are marked manually
for being so. An SP is “correct in position” if the Euclidean distance d between
the true position and the extracted position at resolution level 1 (x, y)max

n1 , by
method 1, is ≤ 15 pixels1, and the filter responses Rcore respectively Rdelta are
1 Approximately 1.5 wavelength of the fingerprint pattern
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Fig. 5. Distributions of Rcore (left) and Rdelta (right). Left: core points that are “correct
in position” (top), and core points that are “not correct in position” (bottom). Right:
delta points that are “correct in position” (top), and delta points that are “not correct
in position” (bottom)

high, i.e. higher than a threshold. Figure 5 shows the distribution of the filter
response Rcore for ”correct in position” extracted core points (left/top) and for
core points “not correct in position” (left/bottom) and the distribution of the
filter response Rdelta for ”correct in position” extracted delta points (right/top)
and for delta points “not correct in position” (right/bottom). From these dis-
tributions we can estimate the performance for method 1 for different values of
thresholds.

If we put the threshold for core point acceptance thcore = 0.63 we get an
EER of 4 % and for the delta points we get an EER of 3 % when the threshold
for acceptance for a delta point thdelta = 0.73. In 665 fingerprints out of 800 we
find a core point, or a delta point, or both “correct”. By correct we mean both
close in distance to the true position (closer than 15 pixels) and a high response
from the symmetry filter, i.e. Rcore > thcore respective Rdelta > thdelta.

In figure 6 the histograms of the error in distance for the “correctly” estimated
SPs are shown. The mean value of the error in distance is approximately 5 ± 3
pixels.

4.2 Orientation Radiograms

We apply method 1 to obtain SPs. For those fingerprints which does not contain
sufficiently strong SPs we apply the alternative method discussed in section 3.
Method 1 finds a symmetry point, in 665 fingerprints out of 800. The method
2 is tested on the remaining 135 fingerprints. We call these 135 fingerprints the
SP-free set. We use a jack-knife strategy to measure the performance of method
2, using the rotation principle because we rotate the test data with the template
data to obtain the maximum available trials. This is motivated by that method
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Fig. 6. Histograms of the error in distance for “correct” SPs. To the left for core points
and in the middle for delta points. The mean error in distance is approximately 5 ± 3
pixels for both type of SPs. To the right the histogram of the error for the “correctly”
estimated translation parameters. The mean error is approximately 6 ± 3 pixels

1 leaves too few samples for method 2 to work on despite the fact that the size
of the FVC database is appreciably large. For each fingerprint in the SP-free set
(the test fingerprint) we estimate the translation parameters by using the rest
of the fingerprints for that person as template fingerprints. The templates may
or may not have been found by method 1. In this way we obtain 7 estimates for
each test fingerprint, that is a total of 7 ∗ 135 = 945 translation estimates.

In the experiments we have used 6 orientation images nor with pass angles
−π

3 ,−π
6 , 0,

π
6 ,

π
3 and π

2 and 6 projection angels npr equal in value to the pass
angles. This gives 3 estimates for each orientation pair, and a total of 18 trans-
lation estimates. The orientation images Ok are computed using the orientation
field z at level 1 in the Gaussian pyramid, the parameter α found empirically is
put to 8.6 in equation 2.

In the processing of the 18 estimates of (dx, dy)T we obtain new estimates
stemming from within and between orientation images. First, within an orienta-
tion image, we take away one estimate out of 3. The one which is most dissimilar
to the other two is disregarded. Second we keep 3, i.e. the 3 orientation images
which have minimum variance in their estimates. Third we keep the two ori-
entation images that are closest in the mean of their estimates. Now we have
two orientation images, and two estimates of translation for each object. Fourth
we take as the final estimate the mean of the two estimates belonging to the
orientation image that shows minimum variance.

Figure 7 shows the result. The distance metric is the Euclidean distance
between the true translation and the estimated translation. If we assume that
the error in the translation estimate is acceptable if the euclidean distance d ≤ 15
pixels (we name this “correct” estimation) the above method finds the true
translation in 588 trials out of 935 possible trials. In figure 6 the histogram of
the error for the “correctly” estimated translation parameters is shown. The
mean value of the error is approximately 6 ± 3 pixels.

For each test fingerprint (a total of 135 tests, 7 estimates in each test) the
possible outcomes that are “correct”, i.e. d ≤ 15, is in the range [0 7]. To the
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Fig. 7. Results from method 2. Left: Distances from true translation. Right: Histogram
number of outcomes (maximum =7 and minimum=0)

right in Figure 7 is the histogram for this test. The mean value is 4.3 which means
that in the mean approximately 4 estimates out of 7 are “correct” for each test
fingerprint by using method 2 in isolation on fingerprints that are rejected by
method 1.

4.3 Registration Using the Combined Methods

Using method 1 we detect the position of an SP (core or delta, or both) in 665
fingerprints out of 800 with an acceptable error in distance of 5 ± 3 pixels. In
[4] we have shown that using SP-registration in isolation an unbiased alignment
error with a standard deviation of 13 pixels (which approximately is the average
wavelength in the fingerprint) can be achieved. We also present a performance
measure of the estimation of the geometric orientation of an SP to be unbiased
with a standard deviation of less than 4◦. Using SP-registration with the 665
correctly extracted SPs, and assuming the same alignment error as in [4], we
achieve a registration performance of 83% for SP-registration in isolation.

The alternative method (method 2) running on the 135 fingerprints missed
by method 1 estimates correctly 588 trials out of 945 possible trials (62%) with
a mean error of 6 ± 3 pixels. With this performance for method 2, we esti-
mate the translation parameter in an acceptable way for 84 fingerprints of 135,
missed by method 1. The 135 fingerprints were not compensated for orientation
differences. However, for the 84 fingerprints in which a “correct” translation es-
timate was found, the orientation difference is small (because of how the trans-
lation estimation was implemented) and therefore also the rotation difference is
small. Accordingly, it can be concluded that a registration performance of 62%
is achieved with this method in isolation with an alignment error of similar order
as for method 1.

To conclude, by using method 1 and method 2 jointly we estimate the trans-
lation parameter “correctly” for 749 (665 + 84) fingerprints out of total 800,
yielding an identification performance of 94%. This is done without use of minu-
tiae, and without rotation compensation for method 2.
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5 Conclusion and Future Work

In this paper a multi-expert registration system is built using non-minutiae fea-
tures which makes the suggested method fully complementary to minutiae based
methods.

The registration performance for the method registration by symmetry points
was 83% when running in isolation. Combined with the method registration by
1D projections of orientation images the registration performance was increased
to 94%. This shows that a combination of registration methods, i.e to use a
one modality multi-expert registration system, instead of using one registration
method in isolation increase the system registration performance. The achieved
uncertainty (one standard deviation) of 13 pixels in the alignment error is ap-
proximately of the same size as other studies used, e.g. [16].

The 94% performance in the estimation of the translation parameter was
achieved when the fingerprints for method 2 were not compensated for rotation
differences. Before estimating the translation we can compensate for the rotation
differences between the test and the template orientation images by a rough
orientation estimation technique, such as orientation histogram correlation. This
should increase the performance of registration for method 2.
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Abstract. In the present paper we address the fingerprint classifica-
tion problem with a structural pattern recognition approach. Our main
contribution is the definition of modified directional variance in orien-
tation vector fields. The new directional variance allows us to extract
regions from fingerprints that are relevant for the classification in the
Henry scheme. After processing the regions of interest, the resulting
structures are converted into attributed graphs. The classification is fi-
nally performed with an efficient graph edit distance algorithm. The
performance of the proposed classification method is evaluated on the
NIST-4 database of fingerprints.

1 Introduction

Fingerprint classification refers to the process of assigning fingerprints in a con-
sistent and reliable way to classes. The main objective is to reduce the com-
plexity of the general fingerprint identification problem, where a fingerprint is to
be matched against large databases of fingerprints. The fingerprint classification
problem is considered to be difficult because of the large within-class variability
and the small between-class separation. For many years, classification methods
from various pattern recognition areas have been proposed, commonly divided
into rule-based, syntactic, statistical, and neural network based approaches [1, 2].
Although the classification problem is intrinsically of structural nature, it was not
until recently that classification systems based on structural pattern recognition
methods have been developed [3–5]. In comparison to state-of-the-art classifica-
tion methods, structural approaches often fall behind in terms of performance.
Yet, in the context of multiple classifier combination, structural algorithms have
proven effective in improving existing classification methods [5, 6]. We further-
more believe that the strength of structural algorithms has not yet been fully
exploited in fingerprint recognition.

In fingerprint identification or verification, where identical fingerprints are
to be matched, one usually focuses on local characteristics, such as minutiae
points. Conversely, in fingerprint classification, the problem is often addressed
by extracting and representing global characteristics, such as the ridge flow or

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 191–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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singular points [1, 2]. In the present paper, we propose an image filter based on a
new definition of directional variance. Following the Galton-Henry classification
scheme of five classes, we use the filter to extract regions that are relevant for the
classification. Our second contribution consists in applying edit distance based
graph matching to the classification problem after extracting the characteristic
regions.

In Section 2, the directional variance filter on orientation vector fields is
described. A brief review of error-tolerant graph matching follows in Section 3.
Section 4 gives a number of experimental results, and some concluding remarks
are provided in Section 5.

2 A Directional Variance Algorithm

The key procedure of a large number of fingerprint classification algorithms is
based on the robust detection of singular points of the ridge orientation vector
field [2]. To assign fingerprints to one of the five classic Henry classes, it is in
most cases sufficient to know the number and position of singular points [7, 8]. In
this paper, we propose an algorithm for the reliable computation of a directional
variance value measured at every position of the ridge orientation field. The
variance is defined such that high variance regions correspond to relevant regions
for the fingerprint classification task, including singular points.

Weakly related to the statistical variance, we define the directional variance
of the ridge orientation field at position (x, y) by

σ2
x,y =

1
1 − n

∑
i,j

sin2(αi,j − ᾱx,y) , (1)

where αi,j denotes the vector at position (i, j) of the vector field and the sum-
mation is performed over a window of size n around (x, y). The average orienta-
tion ᾱx,y of the local window around position (x, y) is computed by taking into
account that two vectors pointing in opposite directions represent the same ori-
entation [9, 10]. The circular nature of the orientation vectors is also accounted
for in the sine term; vectors αi,j that are orthogonal to the local average ᾱx,y

contribute maximally and vectors close to the local average contribute minimally
to the variance.

From Eq. 1 it follows that the directional variance is expected to be low
everywhere in smooth orientation fields. But in the local neighborhood of sin-
gular points, orientations do not follow a single predominant direction, which is
equivalent to a high directional variance. In experiments we could confirm this
behavior.

Our objective in this paper is not to detect singular points, but rather to
extract regions that allow us to discriminate between fingerprint classes. For this
purpose, we propose to use a modified directional variance measure, which differs
from the directional variance in Eq. 1 in the computation of the local average
orientation ᾱx,y. In a first step, all orientations are normalized to an angle range
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Fig. 1. a) Two vectors representing two ridge orientations, b) the corresponding nor-
malized vectors, and c) their vector sum

of I = [−π/2, π/2], which corresponds to a vector range of I ′ = R+
0 × R. The

normalization of two orientation vectors and the normalization range I (see
the shaded area) is illustrated in Fig. 1a,b. Normalization consists in reversing
any vector that is located outside the shaded area. We proceed by defining
the average direction of a number of normalized orientation vectors by their
vector sum. In Fig. 1c, the sum of two normalized vectors is illustrated. For
a set of vectors in horizontal direction, the vector sum will clearly point in a
horizontal direction as well. For a set of vectors in vertical direction, however,
the vector sum will not point in vertical direction, but be close to the horizontal
direction, as some vectors will point upwards and some will point downwards due
to the normalization procedure. In this case, the mean direction ᾱx,y does not
correspond to the local orientations, which results in a high directional variance.
Hence in addition to singular points, the modified directional variance is also
responsive to vertical orientation regions. In other words, the proposed new
directional variance can be used as a filter that will emphasize not only singular
points, but also areas with vertical ridge orientation.

d

c

a) b)

Fig. 2. Left loop fingerprint image a) with core point (c), delta point (d), and marked
vertical orientations and b) visualization of the modified directional variance

A closer examination reveals that different fingerprint classes exhibit different
characteristics of singular points and vertical orientation regions. Arch finger-
prints, for instance, contain no singular points and no vertical ridges, except
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a) b) c)

Fig. 3. a) Original fingerprint image, b) visualization of the modified directional vari-
ance (bright colors indicate high variance), c) binarized image

for strongly rotated fingerprints. Loop fingerprints, on the other hand, are char-
acterized by a global ridge loop, a core point, and a delta point [7]. The key
observation is that one can reach the core point from the delta point via locally
almost vertical ridge segments, which is due to the nature of the ridge flow around
the delta point and the core point. An illustration of this observation is provided
in Fig. 2, where the vertical orientation segments are clearly visible in the loop
fingerprint image and in the image resulting from applying the directional vari-
ance filter. The same properties are also present in right loop, whorl, and tented
arch fingerprints. In a number of experiments, it turns out that the directional
variance filter detects the connection between core and delta point much more
reliably than a filter simply enhancing vertical orientations. In contrast to other
classification methods, the directional variance approach does not solely rely on
the detection of singular points, but can also be employed if singular points are
not present in the image or distorted by noise.

After filtering the fingerprint, the resulting image is binarized and under-
goes a noise removal procedure. The extracted regions can then be used for the
purpose of classification. Possible classification criteria include the number of
extracted regions and the position and main direction of the regions. An illus-
tration of the extraction of the characteristic regions in a whorl image is shown
in Fig. 3. It is easy to verify that the ending points of the two extracted regions
correspond to the four singular points, and the regions to the vertical orienta-
tion areas of the ridge orientation field. Further examples from the left loop, right
loop, and whorl class are shown in Fig. 4. To perform the actual classification
based on the extracted regions, various classifiers could potentially be employed.
One such method based on graph matching is described in the following sections.

3 Error-Tolerant Graph Matching

Graph matching refers to the process of evaluating the structural similarity of
attributed graphs, that is, the similarity with respect to nodes, edges and at-
tributes attached to nodes and edges. A large number of graph matching methods
from various research fields have been proposed in recent years [11], ranging from
isomorphism-based systems to algorithms based on the spectral decomposition of
graph matrices and the definition of positive definite kernel functions on graphs.
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Fig. 4. Visualization of the modified directional variance for left loop (L), right loop
(R), and whorl (W) fingerprints
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Fig. 5. Sample prototype graphs for the left loop (L), right loop (R), whorl (W), and
tented arch (T) class
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3.1 Graph Edit Distance

One of the most intuitive error-tolerant graph matching approaches consists in
the computation of the graph edit distance [12, 13]. The graph edit distance is
defined in the context of a basic distortion model, where structural distortions
are performed by edit operations on graphs. The standard set of edit operations
comprises a node insertion, a node deletion, a node substitution, an edge inser-
tion, an edge deletion, and an edge substitution operation. A sequence of edit
operations (e1, . . . , el) transforming graph g into graph g′ is termed an edit path
from g to g′, and E(g, g′) denotes the set of edit paths from g to g′. Given a cost
function c : E(g, g′) → R+ ∪ {0} assigning non-negative costs to edit paths, we
can then define the edit distance of g and g′ by

d(g, g′) = min
p∈E(g,g′)

c(p) . (2)

The edit distance of two graphs is thus given by the least expensive transforma-
tion of the first graph into the second graph in the underlying distortion model.
The cost function is usually defined on single edit operations with respect to the
attributes attached to nodes and edges.

An edit distance based system can be tailored to a specific application by
adjusting the cost functions accordingly. The basic idea is that weak distortions
should result in low costs, whereas strong distortions should correspond to higher
costs. The cost functions implicitly define, for instance, when the removal of a
node n followed by the insertion of another node n′ is less expensive than the
substitution of n with n′, and therefore preferred in an optimal edit path. In
other words, the edit distance is derived from the most reasonable explanation
of the structural differences of two graphs in the edit operation framework.

The actual computation of the edit distance is performed by constructing
and traversing a search tree. In spite of pruning criteria and look-ahead tech-
niques, however, the computational complexity both in terms of running time
and memory requirements is high – in fact, it is exponential in the number of
nodes of both graphs. For unconstrained graphs of arbitrary size, the edit dis-
tance approach is largely unfeasible. Therefore, a fast approximate version of the
edit distance algorithm for large graphs is employed in the experiments of this
paper. A brief description of the algorithm follows in the next section.

3.2 Approximate Graph Edit Distance

The development of efficient graph matching algorithms for special classes of
graphs, for instance bounded-valence graphs, trees, or planar graphs, has been
an issue in the graph matching literature for years [11]. In the graph edit distance
context an efficient approximate algorithm has recently been proposed that turns
out to be very fast and sufficiently accurate for certain graph problems [14].
This approximate algorithm requires the graph nodes to be embedded in the
plane. That is, for every node a meaningful position attribute providing a spatial
context needs to be present. For graphs extracted from images it is usually easy
to derive such a node embedding. Examples include graphs representing interest
points and their relations, or region adjacency graphs.
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Instead of exploring the full search space, only a subset of all edit paths is
considered in the approximate algorithm. Starting from an initial node substi-
tution n → n′, the least costly transformation from the neighborhood of n to
the neighborhood of n′ is computed by optimizing local minimum-cost criteria.
The computation is performed by means of an efficient cyclic string match-
ing algorithm based on dynamic programming. The result is a valid edit path
between two graphs, but not necessarily the optimal one. To account for the
dependence on the initialization, the computation is carried out for a number
of initial substitutions, and the minimum cost edit path among them is kept. In
contrast to the exponential computational complexity of the exact edit distance,
the approximate algorithm runs in polynomial time. In practical experiments,
the approximation has shown to be feasible and fast, even for large graphs with
more than 200 nodes and edges, whereas the exact edit distance algorithm can
only be computed for graphs with a size of about 10 nodes [14]. In the following,
the approximate edit distance will be used to obtain distance values between
fingerprint graphs and subsequently perform the classification.

3.3 Fingerprint Graph Representation and Edit Cost Function

From the results of the region extraction process based on the modified direc-
tional variance filter described in Section 2, an attributed graph can be extracted
in various ways. In this paper, we follow a simple method to generate structural
skeletons. We proceed by applying a one-pass thinning operator [15] to the ex-
tracted regions and represent ending points and bifurcation points of the result-
ing skeleton by graph nodes. Additional nodes are inserted along the skeleton at
regular intervals. An attribute giving the position of the corresponding pixel is
attached to each node. Edges containing an angle attribute are used to connect
nodes that are directly connected through a ridge in the skeleton. An illustration
of several graphs of this kind is given in Fig. 5. The simple edit cost function we
employ assigns constant costs to insertions and deletions independent of involved
attributes; substitution costs are defined proportional to the Euclidean distance
of attributes.

4 Experimental Results

The NIST-4 database [16] consists of 4,000 grayscale images of fingerprints with
class labels according to the five most common classes of the Galton-Henry clas-
sification scheme: arch, tented arch, left loop, right loop, and whorl. We proceed
by extracting an attributed graph from every image as described previously to
obtain 4,000 graphs. On the average, these graphs contain 6.1 nodes and 10.3
edges. To classify fingerprint graphs by means of the edit distance, a set of refer-
ence graphs for each class needs to be defined. Although an automatic method
would be desirable, it proved efficient in recent studies [17, 18] to use a manual
construction procedure for this purpose. Adopting a similar approach, we define
prototype graphs by manually selecting promising candidates from a training
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set of graphs. Where appropriate, a few nodes are deleted from prototype can-
didates to provide for class representatives as general as possible. By means
of this procedure we obtain about 60 prototypes overall. The classification can
then be performed based on the nearest-neighbor paradigm: An input graph is
assigned the class of the most similar prototype graph. The structural similar-
ity is derived from the corresponding approximate graph edit distance between
prototype graph and input graph. An illustration of some prototype graphs is
provided in Fig. 5.

The first 1,000 fingerprints from the database are used for the development
of the class prototypes and are therefore considered a Training set. The remain-
ing 3,000 fingerprints constitute the independent Test set 1, and the subset of
Test set 1 consisting of the last 2,000 fingerprints of the database is termed Test
set 2. The classification rates obtained on the various data sets are summarized
in Table 1, where GED refers to the graph edit distance approach proposed
in this paper, MASKS, RNN, and GM refer to graph matching approaches re-
ported in [18] using dynamic masks, recursive neural networks, and graph edit
distance, respectively, whereas MLP refers to a non-structural neural network
approach [19].

From the experimental results we find that the proposed method performs
clearly better than the best graph matching approach reported in [18]. A com-
parison of the training error and test error reveals that a slight overfitting occurs.
However, the ability of the graph matching approach to generalize well on unseen
data seems to be sufficiently strong. Using the approximate matching algorithm,
the classification runs very fast in comparison to other graph edit distance meth-
ods. On a regular workstation it takes 27 minutes to conduct a (non-optimized)
graph classification of all 4,000 fingerprints of the NIST-4 database. Although the
exact edit distance computation would be feasible for these graphs, experiments
indicate that the classification takes by far longer (100h instead of 3 minutes for
500 graphs) and results in a lower classification rate.

It is well known that the definition of adequate cost functions is crucial for
the performance of a graph edit distance based classification system. In our ex-
periments, we used simple edit costs based on constant costs and Euclidean dis-
tances. One major drawback of this edit cost function, and thus a shortcoming of
our classification approach, is that all costs are defined in a location-independent
way; that is, the information where in the attribute space an edit operation oc-
curs is not taken into account. For a number of graph matching problems, it
turns out that location-dependent edit cost functions automatically learned be-
forehand from a sample set of graphs can significantly improve the recognition
performance [20], which may also be of interest in future investigations in the
context of fingerprint graph classification.

5 Conclusions

In the present paper we propose a fingerprint classification system by means
of error-tolerant graph matching. Our main contribution is an algorithm for
the extraction of regions in the ridge orientation field that are relevant for the
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Table 1. Fingerprint classification rate on the NIST-4 database

Data set Classifier 5 classes

Training set GED 82.6
Test set 1 GED 80.27
Full database GED 80.85

Test set 2 GED 80.25
RNN [5, 18] 76.75
MASKS [17, 18] 71.45
GM [18] 65.15
MLP [18, 19] 86.01

classification. Extracted regions correspond to singular points and characteris-
tic connections between core and delta points. To assign one of the five most
common Henry classes to fingerprints, we use a graph edit distance approach. In
experiments on the NIST-4 fingerprint database, the proposed method is found
to outperform graph matching systems reported in recent years. In the future
we intend to address the classification problem based on the proposed direc-
tional variance with non-structural classifiers and study whether combinations
of classifiers may lead to more robust performance results. In addition we plan
to investigate if more complex edit cost functions than the one used in this paper
could further improve the classification accuracy.
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Abstract. This paper proposes a new feature extraction method for
face recognition. The proposed method is based on Local Feature Anal-
ysis (LFA). LFA is known as a local method for face recognition since
it constructs kernels which detect local structures of a face. It, however,
addresses only image representation and has a problem for recognition.
In the paper, we point out the problem of LFA and propose a new fea-
ture extraction method by modifying LFA. Our method consists of three
steps. After extracting local structures using LFA, we construct a sub-
set of kernels, which is efficient for recognition. Then we combine the
local structures to represent them in a more compact form. This results
in new bases which have compromised aspects between kernels of LFA
and eigenfaces for face images. Through face recognition experiments,
we verify the efficiency of our method.

1 Introduction

For face recognition, feature extraction is required to represent high dimensional
image data into low dimensional feature vectors. In general, there are two ap-
proaches to feature extraction, a global and a local method. The most famous
one among the global methods is Principal Component Analysis(PCA) [1]. PCA
for face recognition is known as a global method since it extracts face features
using the bases which describe a whole face. The bases are eigenvectors of the
covariance matrix of face images and thought as face models, called eigenfaces.
By projecting a face image onto the eigenfaces, the linear combination weights
for eigenfaces are calculated. These weights are used as representations of a face.
Eigenface method is simple and fast, but there are limitations in recognition
under illumination and pose variation.

On the contrary, it is known that local methods are robust to such varia-
tions. One of the methods, we consider in this paper, is Local Feature Analy-

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 219–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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sis(LFA) [2]. LFA is referred to as a local method because it constructs a set
of kernels which detect local structures such as nose, eye, jaw-line, and cheek-
bone. It, however, addresses only image representation and has a problem to
be used for recognition. In this paper, we point out the problem of LFA and
present a new feature extraction method for face recognition by modifying LFA.
This results in new bases for feature extraction which have compromised aspects
between kernels of LFA and eigenfaces.

The rest of the paper is organized as follows. Fisher Score and LFA will be
briefly reviewed in Sec. 2. In Sec. 3, we propose our method. In Sec. 4. experi-
mental results are given to verify the efficiency of our method. And conclusions
are drawn in Sec. 5.

2 Backgrounds

In this section, we will give brief overview of LFA and Fisher Score, which are
main ingredients of our method.

2.1 Local Feature Analysis

LFA is a topographic representation based on second-order statistics [2] [3]. The
kernels of LFA are derived by enforcing topology into eigenvectors of PCA. Then
selection, or sparsification, step is used to reduce and decorrelate the outputs.

Let x and y in a parenthesis indicate indexes of elements of vectors and ma-
trices and suppose that we have N eigenvectors, Ψ r, and a set of V -dimensional
input images, {φt}n

t=1. Then a kernel is defined as follows

K (x, y) =
N∑

r=1

Ψ r (x)
1√
λr

Ψ r (y) (1)

where λr and Ψ r denotes rth eigenvalue and eigenvector of covariance matrix
of face images. And the output for tth input image, Ot, and correlation of the
outputs, P , are written as

Ot (x) =
V∑

y=1

K (x, y)φt (y) =
N∑

r=1

At (r)√
λr

Ψ r (x) (2)

P (x, y) = 〈Ot (x) Ot (y)〉 =
N∑

r=1

Ψ r (x)Ψ r (y) (3)

where At (r) =
∑V

y=1 Ψ r (y)φt (y).
In a matrix form, a set of kernels, the output matrix, and the covariance

matrix are written as

K = ΨΛΨT (4)
O = KT Φ (5)
P = ΨΨT (6)
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where Ψ = [Ψ1 . . .ΨN ], Λ = diag
(

1√
λr

)
, and Φ = [φ1 · · ·φn] (diag (di) de-

notes the matrix with the elements d1, d2, . . . on the leading diagonal and zeros
elsewhere). The rows or columns of K contain kernels since K is symmetric.
For clarity, we consider that the columns of K contain kernels. The kernels are
bases like eigenfaces. The difference is that the kernels of LFA have spatially lo-
cal properties(see Fig. 3), and are topographic in the sense that they are indexed
by spatial location.

Note that the number of kernels constructed by LFA is the same as the input
dimension, V . The dimension of the outputs is reduced by choosing a subset of
kernels, M. M is constructed by adding iteratively the kernel corresponding to
the output with the largest mean reconstruction error across all of the images [3].

At each step, the point added to M is chosen as the kernel corresponding to
location, x,

argmax
x

〈‖Ot (x) − Orec
t (x) ‖2〉 (7)

where Orec
t (x) is the reconstruction of the output, Ot (x). The reconstruction

of tth output is

Orec
t (x) =

|M|∑
m=1

C (m,x)Ot (ym) (8)

where C (m,x) is the reconstruction coefficient and ym ∈ M.
For all images, the reconstruction is written in a matrix form as follows

Orec = CT O (M, :) . (9)

O (M, :) denotes the subset of O corresponding to the points in M for all n
images. And, C is calculated from:

C = P (M,M)−1
P (M, :) . (10)

2.2 Fisher Score

Fisher Score is a measure of discriminant power. It estimates how well classes
are separated from each other by the ratio of the between-class scatter and the
within-class scatter [4].

For the c class problem, suppose that we have a set of n d-dimensional samples
x1, . . . , xn and ni in the subset Xi labelled ci. Then, between-class scatter, SB,
and within-class scatter, SW , are defined as

SW =
c∑

i=1

∑
x∈Xi

(x − mi) (x − mi)
T (11)

SB =
c∑

i=1

ni (m − mi) (m − mi)
T (12)



222 Yongjin Lee, Kyunghee Lee, and Sungbum Pan

where

mi =
1
ni

∑
x∈X

x, m =
1
n

c∑
i=1

nimi .

A simple scalar measure of scatter is the determinant of the scatter matrix.
Using this measure, Fisher Score is defined as

J =
|SB |
|SW | (13)

where | · | denotes determinant.

3 Local and Global Feature Extraction

In this section, we address the problems of kernel selection of LFA. Then we
propose a new feature extraction method based on LFA. Our method consists
of three steps: construction, selection, and combination of local structures. The
last step causes reduction of dimensions in outputs in a more compact form.

3.1 LFA

As mentioned in previous section, LFA chooses a set of kernels whose outputs
produced the biggest reconstruction error in the sense of minimum reconstruction
error. Although mean reconstruction error is a useful criterion for representing
data, there is no reason to assume that it must be useful for discriminating
between data in different classes. This problem can be easily verified through an
experiment with face images which include some background.

An example which addressed the problem is shown in Fig. 1. We used the
first 120 eigenvectors to construct a set of 120 kernels. Dots are placed in their
locations on the mean of face images and the order of the first 25 are written. It
can be seen that kernels which belong to the outside of the face are also selected.
It aims at reducing reconstruction error on a whole picture not on a face. Note
that it is difficult to select kernels more than the number of eigenvectors used
for kernel construction since the algorithm involves matrix inversion and may
cause rank deficiency(see Eq. 10).

3.2 Proposed Method

After constructing kernels using LFA, we calculated their Fisher Scores(Eq. 13)
using the outputs. In Fig. 2, the score values are displayed on the location of
the corresponding kernels. It shows that kernels belonging to the meaningful
areas for recognition, such as eyebrow, nose, cheekbone, and jaw-line, received
higher scores than the rest. This verifies the usefulness of Fisher Score for kernel
selection. But kernel selection by Fisher Score does not regard the redundancy
between outputs of kernels. To cover the meaningful area of a face, a large number



Local and Global Feature Extraction for Face Recognition 223

123 45

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Fig. 1. The locations of 120 kernels selected according to minimum reconstruction error

Fig. 2. Left: The Fisher Scores of the kernels. White color is corresponding with larger
magnitude. Right: The locations of the first 1500 kernels selected according to Fisher
Score

of kernels are required. However, this problem can be solved by overlaying the
set of local structures onto a single sheet, composite template1.

Suppose that we choose a subset, I, of column vectors(i.e., kernels) from the
matrix K in Eq. 4 according to Fisher Score and their elements are denoted by
K (:, xi). We compose a composite template, g, by linear combination of local
structures as follows.

g =
|I|∑
i=1

wiK (:, xi) (14)

where wi is a linear combination weight and xi ∈ I.
However, we do not want to lose information by combining them. We, thus,

select the combination weights, wi, so as to maximize the entropy of the outputs
of g [5]. For simplicity, we assume Gaussian density for the outputs. Other crite-
rions and density assumptions can be used for different combination strategies.

Let st be the final output for the tth input, φt,

st = gT φt =
|I|∑
i=1

wiOt (xi) . (15)

1 We call our method and derived bases composite template, because the bases of our
method consist of a set of local structures
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Without loss of generality, we assume zero mean for s.

p (s) =
1√
2πσ

exp
[
− s2

2σ2

]
(16)

where σ2 is the variance of s. Then, the entropy of density for s is written as

H (p (s)) = −
∫

p (s) log p (s) ds (17)

=
1
2

log σ2 +
1
2

log 2π +
1
2

Since the last two terms are constants, we only concern the variance, σ2. Maxi-
mization of Eq. 17 is equivalent to the maximization of σ2. It can be rewritten
as

σ2 =
1
n

n∑
t=1

s2
t

=
1
n

n∑
t=1

⎡⎣ |I|∑
i=1

wiOt (xi)

⎤⎦2

(18)

=
|I|∑
i=1

|I|∑
j=1

wiP (xi, xj)wj

= wT P (I, I) w

where wT = [w1 . . . w|I|].
The linear combination weights, w, which maximizes the above equation can

be easily estimated, if we constrain wT w = 1, since P (I, I) is symmetric. In
this case, it is equivalent to carry out PCA for the outputs from I. This makes
it clear of how many composite templates, g, should be constructed and how we
construct them in the framework of information theory. The maximum number(
also to be believed as optimal) of composite templates is N since a set of kernels,
K, the outputs, O, and the covariance matrix, P (I, I), are all based on the N
eigenvectors, i.e., their rank is N . By constructing N composite templates, we
can keep all information. Practically, N is much smaller than |I|.

Remark. The Fig. 3 shows eigenfaces, kernels, fisherfaces [6] and composite tem-
plates. Eigenfaces and kernels are at the extreme sides, one is global and the other
is local. Our composite templates, which are constructed by combining kernels,
show intermediate aspects between kernels(local) and eigenfaces(global). Fisher-
faces, which also use Fisher Score, are somehow similar to composite templates.
It can be, however, thought that fisherfaces are constructed by combining the
global structures(i.e., eigenfaces) since Fisher Liner Discriminant(FLD) is ap-
plied after the dimension of the images is reduced using PCA.
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(a)

(b)

(c)

(d)

Fig. 3. (a) The first 12 eigenfaces. (b)The kernels of LFA selected manually. (c) The
first 12 fisherfaces. (d)The first 12 composite templates

4 Experiments

In this section, we verify efficiency of our suggested method through face recog-
nition experiments. The data used in the experiments is consisted of 55 people
from our research institute. Example faces are shown in Fig. 4. The 20 pictures
were taken for each person in a normal office. The images from 20 people were
used to construct bases for feature extraction and the images from the rest were
used for training(gallery) and test(probe). 10 images per person were used for
training and test respectively. The size of image is 64 × 64. Using Euclidean
distance, the face recognition experiments were conducted.
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Fig. 4. Example faces in our database

We carried out experiments for each feature extraction method: (a) eigenface,
(b) LFA, (c) fisherface, and (d) composite template. 120 eigenvectors were used
to construct a set of kernels for both LFA and composite template. Then 120 and
1500 kernels were chosen by their own methods. The positions of the selected
kernels can be seen in Fig. 1 and Fig. 2. In fisherface, the dimension of the
images was reduced into 120 using PCA, and then FLD was applied. The bases
constructed by each method are shown in Fig. 3.

The performance for each method is shown in Table 1 and Fig. 5. Fig. 5
shows recognition rate as increasing the number of features. For the rank 1, the
best recognition rates of eigenface, LFA, fisherface, and composite template are
61.43%, 62.57%, 79.14%, and 86.57%, respectively. In LFA and fisherface, we
increased the number of the eigenvectors, but could not obtain a better result.
Additionally, we conducted the experiments that FLD was applied to the outputs
of all kernels without feature selection. But almost the same results as fisherface
were obtained. The explicit exclusion of the unnecessary features through the
selection step may be one of the reasons for success of the proposed method.

To achieve the best recognition rate in each method, 144, 120, 17, and 84 fea-
tures were needed. Note that the number of fisherfaces is bounded on the number
of classes(people), which are used in basis construction. Although LFA gave a
poor result, our method showed the best performance among the methods. It
can be also seen that the size of kernels chosen by Fisher Score was reduced
effectively and performance of composite template was in stable condition after
120 features as discussed in the previous section. The number is the same as the
size of the eigenvector set used for kernel construction.
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Table 1. Accuracy(%) which test images are matched within rank 1, 2, 3, 4, 5, 10
and 20 using the number of features in the first row. The numbers in the first column
are the minimum number of features with the best performance for the rank 1. (a)
eigenface, (b) LFA, (c) fisherface, and (d) composite template

Rank (a): 144 (b): 120 (c): 17 (d): 84

1 61.43 62.57 79.14 86.57
2 73.43 67.71 86.86 89.14
3 77.43 71.43 89.71 90.57
4 80.86 74.00 92.00 93.43
5 83.71 77.71 93.71 95.14

10 92.29 86.57 98.57 98.86
20 98.86 97.43 99.71 99.71
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Fig. 5. Accuracy(%) which test images are matched at rank 1 as increasing the number
of features

5 Conclusions

By modifying LFA suitable for recognition, we propose a new feature extraction
method for face recognition. Our method consists of three steps. First we ex-
tract local structures using LFA and select a subset of them, which is efficient for
recognition. Then we combine the local structures into composite templates. The
composite templates represent data in a more compact form and show compro-
mised aspects between kernels of LFA and eigenfaces. Although LFA is originally
problematic for recognition, in the experiments the proposed method has shown
better recognition performance than fisherface.
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Abstract. In this paper, we present a novel approach of using Earth
Mover’s Distance for video-based face recognition. General methods can
be classified into sequential approach and batch approach. Batch ap-
proach is to compute a similarity function between two videos. There are
two classical batch methods. The one is to compute the angle between
subspaces, and the other is to find K-L divergence between probabilistic
models. This paper considers a most straightforward method of using dis-
tance for matching. We propose a metric based on an average Euclidean
distance between two videos as the classifier. This metric makes use of
Earth Mover’s Distance (EMD) as the underlying similarity measure-
ment between two distributions of face images. To make the algorithm
more effective, dimensionality reduction is needed. Fisher’s Linear Dis-
criminant analysis (FLDA) is used for linear transformation and making
each class more separable. The set of features is then compressed with a
signature, which is composed of numbers of points and their correspond-
ing weights. During matching, the distance between two signatures is
computed by EMD. Experimental results demonstrate the efficiency of
EMD for video-based face recognition.

1 Introduction

Recently, more and more researchers are focusing on face recognition from video
sequences [1][2][3][4][5][6], which is very useful in applications of surveillance and
access control. Compared to still-based face recognition technologies, multiple
frames and temporal information facilitate the process of face recognition. The
discriminative information can be integrated across the video sequences. How-
ever, poor video quality, large illumination and pose variations, partial occlusion
and small size image are the disadvantages of video-based face recognition. To
overcome above problems, many approaches, which attempt to utilize multi-
ple frames and temporal information in video, are proposed. Based on whether
the temporal information is utilized or not, these schemes can be divided into
sequential approach and batch approach.

Sequential approach assumes temporal continuity between two adjacent sam-
ples. The continuity property propagates face position and identity frame by
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frame. The previous tracking and recognition result can be utilized for current
face tasks. Zhou[2] proposes a tracking-and-recognition approach, which uti-
lizes a very powerful unified probabilistic framework to resolve uncertainties in
tracking and recognition simultaneously. Lee[3] represents each person with an
appearance manifolds expressed as a collection of pose manifolds. In recogni-
tion, the probability of the test image from a particular pose manifold and the
transition probability from the previous frame to the current pose manifold are
integrated. Liu[4] applies adaptive HMM to perform video-based face recognition
task.

The other is batch approach, which assumes independence between any two
samples, thus the dynamics of image sequences are ignored. It is particularly
useful to recognize a person from sparse observations. The main idea of batch
approach is to compute the similarity between two videos. For instance, Mu-
tual Subspace Method (MSM)[5] defines the similarity by the angle between two
subspaces spanned by the basis of image sets. Shakhnarovich [6] used multivari-
ate Gaussian models to represent the densities of face sets, and K-L divergence
between models is used for matching.

The main problems of the above batch methods are heavy computational cost
and not precise models. It is not efficient to estimate the subspace or Gaussian
model directly in image space. Moreover, they are not considering the complex
data distribution of video data. Both of the subspace and the Gaussian model are
only effective to the convex data sets. But in video, head poses, face expressions
and illumination change constantly, the shape of data distribution is largely
non-convex, more robust model is needed.

Our algorithm is a novel method of batch approaches. In the paper, in-
stead of modeling the data distribution directly in high dimensional image space,
we firstly reduce the dimensionality. There we use Fisher’s Linear Discriminate
(FLDA)[7] to map sets of images to groups of points in low-dimensional feature
space. With a linear transformation, FLDA makes sets of images more compact
and separable. Furthermore, it reduces the computational consuming. Each video
yields a set of points in feature space. We consider a more reasonable model to
estimate the distribution of each set. The match of videos can be viewed as the
geometric match of sets in feature space. We use the conception of signature
to represent each set. By clustering algorithm, the points in a set are grouped
into several clusters. The signature is composed of means and weights of these
clusters. In fact, it reflects complex data distribution of the set in feature space.
So the match problem turns to be the distance measurement of two signatures.
Earth Mover’s Distance (EMD) is proposed for this purpose. EMD is based on
an optimization method for the transportation problem[8]. It computes the mini-
mum work done by moving the weights of one signature to another. EMD is good
metric for the comparison of two distributions and in addition, it is adaptive for
partial matching, since some faces with large pose variations are thought to be
useless and should be discarded in matching. However, when partial matching,
EMD is not a metric. In our method, with FLDA for linear transformation, face
images are well represented and the computational cost becomes low. In addition,
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each distribution of observations in feature space can be efficiently modeled as a
signature and the similarity of two videos can be easily and accurately estimated
by EMD.

2 Earth Mover’s Distance for Recognition

Earth Mover’s Distance is a general metric to compare two distributions that
have the same weights. To accommodate pairs of distributions that are ”not
rigidly embedded”[12], the definition of EMD is:

EMD(A,B) = minf∈FEMD(A, f(B)) (1)

where A and B are two distributions. The purpose of this equation is to seek a
transformation f that minimizes EMD(A,B) . ”FT iteration”[12] is proposed
to the solution of object function f . In this paper, considering its application to
video-based face recognition, we define it as:

EMD(A,B) = max
g∈G

EMD(g(A), g(B)) (2)

where g is a linear transformation to project two distributions onto feature space
so as to maximize EMD(A,B).

2.1 Linear Transformation

As mentioned above, considering the efficiency, the techniques of linear subspace,
e.g., PCA[10], FLDA[7] and ICA[11], are taken into account. For simplicity and
validity, we use FLDA. In FLDA, between-class matrix Sb and within-class ma-
trix Sw are defined as:

Sb =
H∑

i=1

Ni(mi −m)(mi −m)T (3)

Sw =
H∑

i=1

∑
xk∈Li

(xk −mi)(xk −mi)T (4)

where mi is the mean of the image set Li , and Ni is the number of images in
Li.

The linear transformation matrix W maximizes the following optimal crite-
rion:

W = argmaxφ
|ΦTSbΦ|
|ΦTSwΦ| (5)

For video-based face recognition, Sw is generally a full rank matrix. So W can
be obtained by seeking the eigenvectors of S−1

w Sb directly.
Using linear transformation, the dimensionality of video data is much re-

duced. It preliminary solves the problem of heavy computation for video-base
face recognition. Furthermore, with FLDA, some variations contained in video
are modelled, so the sets of images become compact and separable.
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2.2 Earth Mover’s Distance

After linear transformation, we obtain two feature distributions g(A) and g(B).
In order to define the similarity function f(A,B) between two videos, we intro-
duce the notion of Earth Mover’s Distance (EMD). EMD is a general distance
measure with application to image retrieval[12][13] and graph matching [16][17].
It is proved much better than other well-known metrics (e.g., Euclidean distance
between two vectors). The name is suggested by Stolfi for road design[15].

Given a set of points in feature space, we represent the set with a signature.
The signature is composed of numbers of clusters of similar features in a Eu-
clidean space. Each cluster is attached to a weight, which reflects the ratio of
the number of features in this cluster to the total number of features in the set.
During the process of video-based face recognition, each video corresponds to a
feature distribution in feature space and it can be modelled as a signature. For
simplicity and efficiency, we apply K-Means algorithm[14] for clustering. Each
cluster contributes a pair (μ, pμ), where μ is the mean of the cluster and pμ is the
weight of the cluster. For videos, poses and expressions change constantly. The
images in a video form a complex manifold in high dimensional image space. It
can not be simply expressed by a single subspace or a single multivariate Gaus-
sian model. Since clustering algorithm is used, signature can well represent the
overall feature distribution in a set. In addition, with clustering, some degree of
variations, e.g., illumination, poses and expressions, can be tolerated. Moreover,
changing the number of clusters, it provides a compact and flexible method to
represent data distribution.

Assume two distributions g(A) and g(B). We can imagine g(A) is a mass of
earth, and g(B) is a collection of holes. EMD is a measurement of the minimal
work needed to fill the holes with earth. This is the reason why it is named ”Earth
Mover’s Distance”. Figure 1 shows an example with three piles of earth and two
holes. When g(A) and g(B) are represented with signatures, EMD is defined
as the minimal ”cost” needed to transform one signature to the other. EMD
can be formalized as the following linear programming problem: Let g(A) =
{(μ1, pμ1), . . . , (μm, pμm} and g(B) = {(ν1, pν1), . . . , (νn, pνn}, where μi, νj are
the mean vectors of clusters of g(A) and g(B), respectively, and pμi , pνj is their
corresponding weight. The cost to move an element μi, to a new position νj is
the cost coefficient cij , multiplied by dij , where cij corresponds to the portion
of the weight to be moved, and dij is the Euclidean distance between μi and
νj . EMD is the sum of cost of moving the weights of the elements of g(A) to

Fig. 1. An example of EMD
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those of g(B). Thus the solution to EMD is to find a set of cost coefficients cij

to minimize the following function:

m∑
i=1

n∑
j=1

cijdij (6)

subject to: (i) cij ≥ 0, (ii)
∑m

i=1 cij ≤ pνj , (iii)
∑n

j=1 cij ≤ pμi , and (iv)∑m
i=1

∑n
j=1 cij = min(

∑m
i=1 pμi ,

∑n
j=1 pνj ). Constraint (i) indicates only posi-

tive quantity of ”earth” is allowed to move. Constraint (ii) limits the quantity
of earth filled to a ”hole”. Each hole is at most filled up all its capacity. Con-
straint (iii) limits the quantity of earth provided to holes. Each pile of earth
provides at most its capacity. Constraint (iv) prescribes that at least one signa-
ture contributes all its weights. If the optimization is successful, then EMD can
be normalized as:

EMD(A,B) = EMD(g(A), g(B)) =
min(

∑m
i=1

∑n
j=1 cijdij)

min(
∑m

i=1 pμi ,
∑n

j=1 pνj )
(7)

As illuminated above, EMD reflects the average ground distance between
two distributions. The cost of moving indicates the nearness of the signatures
in Euclidian space. In our method, after linear transformation with FLDA, cor-
responding to each distribution, a signature is built with K-Mean algorithm as
shown in Figure 2. Each signature contains a set of mean feature vectors and
their corresponding weights. In Figure 2, the mean of each cluster is labelled
with a red ’�’ and the weight is denoted under the corresponding image. With
more clusters are used, more precise the model is, and more difficult the prob-
lem of linear optimization is to solve. Particularly, if some weights of clusters
are smaller than a threshold, we discard these clusters since it contributes a
little for matching. For videos, these cluster generally consist of faces under bad
condition, which deviate far away from normal face clusters. EMD provides a
natural solution to this kind of partial matching. However, EMD with partial
matching is not a metric for the distance measure of two distributions. Based on
the above description, the similarity function between the training video A and
the testing video B can be defined as:

f(A,B) = exp(−EMD(A,B)
σ2

) (8)

where σ is a constant for normalization. The value of the function changes from
0 to 1. Bigger value means more similarity between A and B.

3 Experimental Results

We take a combined database to evaluate the performance of our algorithm. Two
experiments are performed. The first experiment fixes the sizes of image sets,
and compares the recognition rate with changing the number of eigenvectors or
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Fig. 2. A signature for video-based face recognition

features. The second experiment changes the sizes of image sets and records the
recognition results. The methods are used for comparison is listed as follows:
• Mutual Subspace Method (MSM);
• K-L divergence for classification in original image space (K-L);
• K-L divergence in FLDA feature space (FLDA+K-L);
• EMD in FLDA feature space (FLDA+EMD);
• EMD in original image space (EMD).

We apply the following experimental methods for these algorithms. For MSM,
K-L and EMD, we evaluate their performance directly in high dimensional im-
age space. For the other two methods, we firstly reduce dimensionality based on
FLDA. For FLDA+K-L, Gaussian function is used to model the set of feature
data and K-L divergence between Gaussian models are estimated for classifica-
tion. For FLDA+EMD, video’s matching is based on the measurement of Earth
Mover’s Distance in the reduced dimensionality space. The label K is assigned
to the testing video if the following formula is satisfied:

K = argmaxAf(A,B) (9)

where A is the reference video in training sets, B is the querying video, and
f(A,B) is the similarity function.

3.1 The Combined Database

We use a combined database to evaluate the performance of our algorithm. The
database can be divided into two parts: (i) Mobo (Motion of Body) database.
Mobo database was collected at the Carnegie Mellon University for human iden-
tification. There are 25 individuals in the database. (ii) Our collected database.
This part is collected from advertisements, MTV and personal videos. There are
25 subjects in the database. Totally, our combined database contains 50 subjects,
and each subject has 300 face images. Figure 3 shows some faces cropped from
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Fig. 3. Some cropped faces from sequences

sequences in the database. Using the very coarse positions of eyes, we normalize
it to 30×30 pixels and use it for experiments. Some location errors, various poses
and expressions can be observed in the database.

3.2 Recognition Rate vs. Number of Eigenvectors or Features

In this experiment, 60 frames of a video are for training and the remaining are for
testing. The recognition results are shown in Figure 4. In Figure 4, the remaining
frames in a video are divided into 4 testing sets. Each set contains 60 frames.
The number of features is changing from 2 to 24. When more features are used,
no changes can be observed.

Three methods, i.e., MSM, FLDA+K-L, FLDA+EMD, are compared in the
experiment. Those methods have a common that the similarity function can
be computed with changeable number of eigenvectors or features. For MSM,

Fig. 4. Recognition rate vs. Number of features
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we change the number of eigenvectors to obtain the recognition rate. For other
methods, we change that of features. When we use EMD for matching, only 3
clusters in a signature are used. Even more clusters are taken, no significant
improvements of recognition rate are made. From Figure 4, we note that the
recognition performance of FLDA+EMD is the best. Especially when less than
8 eigenvectors or features are for the experiment, FLDA+EMD outperforms
MSM and FLDA+K-L. It is worth noting that the reason why FLDA+EMD is
better than FLDA+K-L is that the Gaussian model for K-L divergence is too
simple to reflect the data distribution in feature space, while the signatures are
competent for this task. We also note that MSM is better than FLDA+K-L for
less than 4 or 5 eigenvectors or features. With the increasing of eigenvectors or
features, FLDA+K-L will be better.

3.3 Recognition Rate vs. Size of Sets

In the experiment, fixing the number of eigenvectors as their maximal value
and changing the size of the sets, we evaluate all the five algorithms in image
space. They are: MSM, K-L, FLDA+K-L, FLDA+EMD and EMD. The different
partition method of the sets in a video are listed as follows:
(i). A set of 60 images is for training, 8 sets of 30 images are for testing;
(ii). A set of 60 images is for training, 4 sets of 60 images are for testing;
(iii). A set of 100 images is for training, 5 sets of 40 images are for testing;
(iv). A set of 100 images is for training, 4 sets of 50 images are for testing.

The recognition result is shown in Table 1. From this table, we know that
the recognition rate of FLDA+EMD is higher than the others. We also note
that FLDA+K-L is better than K-L and FLDA+EMD is better than EMD.
This phenomenon demonstrates that FLDA is an effective method to reduce
dimension and make the features more discriminative. In addition, though EMD
directly in image space is not comparable to MSM, but it is superior over K-L.
It also demonstrates EMD is an effective metric for classification.

Table 1. Recognition rate vs. Size of sets

Training size Testing size MSM K-L FLDA+K-L FLDA+EMD EMD

60 8×30 95% 70.5% 96% 98% 87%
60 4×60 98% 66% 98% 99% 90%
100 5×40 97% 90% 98% 99% 91%
100 4×50 97% 90% 97% 100% 92%

4 Conclusions

In this paper, we consider a most straightforward method of using distance
for matching. The similarity function is established based on the computation
of Earth Mover’s Distance (EMD) between two distributions. The features are
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obtained by mapping the images from high dimensional image space to low
dimensional FLDA feature space. Each set is represented with a signature. The
solution to EMD is a linear optimization problem to find the minimal work
needed to fill up one signature with the other. Experimental results show the
performance of EMD and compare it to other batch methods. In future, we
will consider the updating method to improve the representative capability of
signatures. Moreover, as in [4], time information and transformation probability
will be considered to build a more reasonable model to represent a video.
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Abstract. We report on a system for person identification based on
face images. The system uses sequences of visual wavelength intensity
and thermal image pairs as input and carries out classification with a
set of expert classifiers (such as ANN or SVM) for each input signal
separately. The decisions of the classifiers are integrated both over the
two signals and over time as new image pairs arrive, using stochastic
recursive inference based on Bayes formula. Our experimental results
indicate that both recognition and rejection rates are higher than those
for the expert classifiers alone.

1 Introduction

Image-based face recognition systems have reached a high level of performance
and technical sophistication, and several commercial systems have appeared on
the market. However, benchmark tests indicate that there are still unsolved
problems [1]. Some of these problems are:

– Robustness against illumination-, head pose-, and distance-to-face changes
is still not high.

– Robustness against change in facial expression is still difficult to realize.
– Robustness against simple forgeries, such as presenting photos instead of

real faces to the system, is still difficult to achieve.
– Achieving very high recognition rates for registered faces and very high re-

jection rates for unregistered faces is still unaccomplished.

Partly because of these problems, the conviction of many researchers in the
field that face recognition should be viewed as just one of several components
of a comprehensive biometric person identification system is gaining support.[2,
3] With such systems it may not be necessary to aim at close-to-perfect face
identification rates. Nonetheless, we take the stance that it is worth the effort
to gain a deeper understanding of face recognition methodologies and to further
develop the capabilities of face identification technology.

In this paper we present an approach to face identification which uses a richer
input data representation than is usually used. Although we have no intention
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to provide solutions for the facial expression problem in this paper, we intend to
show that a richer input data representation in conjunction with an appropriate
signal and decision fusion algorithm can be effective for overcoming the high
recognition and rejection rates problem. Our method also provides (at least par-
tial) solutions for some of the other problems. In Section 2 we discuss the utility
of a specific richer input data representation, in Section 3 we introduce our face
identification approach in more detail, and in Section 4 we present experimental
results in order to demonstrate the effectiveness of the proposed method. The
presented face identification system can be thought of as an extension of an
earlier system we described in [4].

2 Face Recognition Based on Multiple Signals

In recent years there have been various efforts to improve the recognition rates
of face recognition systems; for example, multiple classifier systems have been
applied [5] or methods for information fusion have been explored [6]. These
methods were shown to raise the recognition rate, but not enough to achieve
reliable face recognition in many application areas. As an extension of these
ideas, we propose to combine the usual light intensity face images with thermal
images, and in addition use image sequences instead of single still images for
recognition. Furthermore, we suggest to utilize range data at the preprocessing
stage. The motivation for this proposal is as follows:

In [7] it was shown that thermal facial images can be used for face recog-
nition, although the recognition rate was not very high. Furthermore, a good
deal of the visual information in thermal images seems to be complementary to
that of visual spectrum images. Using thermal imagery also helps alleviate the
problem of changing facial appearance due to changes of illumination direction.
Thermal imagery also can be useful for making face recognition more robust
against forgeries, and it enables the system to function in darkness, although at
reduced reliability.

Using image sequences instead of single still images provides more informa-
tion mainly due to head pose variation, which increases the statistical confidence
of recognition results. The idea of using faces in motion for face recognition has
been discussed in [8], but the number of concrete studies is still limited.

The advantage of using range data is due to the fact that range data allow
us to determine the apparent size and position of face image frames within scene
images more accurately.

In order to capture this kind of input data we use an image acquisition system
which consists of a camera that is sensitive in the far infrared wavelength band
for capturing thermal image sequences and a stereo camera which takes color
image sequences in the visible spectrum of the scene. The stereo camera provides
color and light intensity images together with range data. The two cameras have
parallel lines-of-sight in the same direction. Thermal images and visual spectrum
images are synchronized and mutually registered. Image registration is carried
out by using the range data from the stereo camera system. Face images are cut
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out from the scene images by first determining the “center-of-neck” reference
point of a person in the image and then determining a face frame which is
positioned relative to this point. This computation, too, is based on 3D point
stereo measurements as well as 2D image data (see [4]). As a result, all images
can be aligned with respect to the common center-of-neck reference points of the
images.

3 Hybrid System of Trainable Classifiers
and Stochastic Decision Fusion
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Fig. 1. System for face identification

Since in our system the
input data are tempo-
ral sequences of mutu-
ally registered intensity
and thermal image pairs,
we need an algorithm
for (a) integrating in-
formation from both in-
tensity and thermal im-
ages and (b) sequentially
integrating the informa-
tion from the incoming
image pairs. Our pro-
posal for a system with
this capability is pre-
sented in this section.
The system structure is
shown in the diagram on
the left, and its func-
tion is summarized be-
low.

3.1 System Function

At the start, a face image pair from the input image sequence is fed into all
classification channels in parallel, assuming that each channel has been trained
as an “expert” for identifying just one target person1. It makes a decision about
whether the presented image pair represents the target person for which it has
been trained, or not. Each classification channel includes two trainable classi-
fiers (such as ANNs or SVMs or any other appropriate classifier), one for the
intensity image and the other one for the thermal image. The two classifiers
make binary decisions about whether the images are instances of the channel’s

1 Details on training are given below
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target person or not. These decisions are combined in the following stage by us-
ing Bayes formula. For this purpose the prior class probabilities and likelihoods
of decision occurrence obtained during the training phase are used. A more de-
tailed discussion of this issue is deferred until after the description of the training
process.

This computation is carried out for the same input image pair in every clas-
sification channel separately, leading to as many posterior probabilities as there
are classification channels. Then the next image pair from the sequence is fetched
and processed in the same way, leading to an update of all the channel posterior
probabilities. When after a certain number of iterative steps the channel prob-
ability of one of the channels supersedes those of all other channels, the target
person of this channel is determined as the identity of the present input image
sequence2.

This type of system is a type of modular classification system which combines
the decisions from individual experts based on the performance statistics of the
expert classifiers.

3.2 System Training

The system is trained with two data sets. Set No.1 includes just nine light
intensity-thermal image pairs for each person registered in the face database.
These nine image pairs represent faces that are oriented in the characteristic
directions “frontal, left, right, up, down, left-down, left-up, right-down, right-
up”. These images are manually selected from training image sequences with
the aim of making the expert classifiers head-pose invariant (see [4]). Set No.2
consists of general intensity-thermal face image pair sequences of all persons
registered in the database.

Training is carried out in two phases. In Phase 1 only the expert classifiers are
trained with training data set No.1. An individual data configuration is prepared
for each expert classifier in the following way: Half of the data consist of the data
of the expert classifier’s target person, and the other half consists of data from
all the other persons in the database. This way, the training process can be kept
balanced. Furthermore, for some types of classifiers (such as ANNs or SVMs) it is
necessary to alternate target person data and non-target person data. Separate
data configurations for light intensity image data and thermal image data are
provided.

In Phase 2, all the image pairs of training data set No.2 are fed into all
expert classifiers in order to obtain their decisions as to whether the images are
instances of their respective expert classifiers’s target person or not. When an
expert classifier that is in charge of target person h makes a correct decision, the
evidence for person h is {eh,L = 1, eh,I = 1}, otherwise 0. Based on this evidence,
the following classifier performance probabilities are computed: p(eh,L|h) is the
likelihood that the classifier in charge of target person h indeed makes a decision

2 A discussion of possible conditions for terminating the recognition process is included
in Section 3.3
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for person h when the light intensity image L of person h is presented; p(eh,I |h) is
the corresponding likelihood for the case of the infrared image; and p(h|eh

k), k = 0
is the a priori probability of the occurrence of the face of a particular person h
before any evidence has been collected (i.e. at time k = 0).

These probabilities are approximated as frequencies of occurrence. Assuming
that the number of persons registered in the face database (or equivalently, the
number of classification channels) is H and the number of images contained in
each training image sequence is K, the probabilities are estimated as

p(eh,L|h) ≈ N(eh,L ≡ 1)
K

(1)

p(h|eh
0 ) =

1
H

(2)

where N() is a function which counts how often the condition expressed by the
function argument is true over the entire length of image sequence.

3.3 Bayesian Decision Fusion

When the system has to classify new face image pairs from the input image
sequence, the posterior probabilities that the face images are those of a given
channel’s target person h are computed by evaluating Bayes’ formula for each
classification channel. For these computations we can take a narrow, or local,
view, namely that the computation is limited to the data directly relevant within
each classification channel, or a wider, global view according to which the compu-
tation comprises all data across classification channels. If we take the local view,
Bayes formula for the classification channel that is in charge of target person h
takes the following form:

p(h|eh
k+1, e

h,L, eh,I) =
p(eh,L|h) · p(eh,I |h)

A
· p(h|eh

k) (3)

A = p(h|eh
k) · p(eh,L|h) · p(eh,I |h) + p(¬h|eh

k) · p(eh,L|¬h) · p(eh,I |¬h) (4)

It should be noted that this is a recursive formulation, in which eh,L and eh,I

represent the evidence that person h is depicted in the presented image pair
{Lh

k+1, I
h
k+1}, and eh

k represents the accumulated evidence for person h up to,
but not including the present image pair. The computed posterior probability
p(h|eh

k+1, e
h,L, eh,I), which at the next iteration step replaces the probability of

the accumulated evidence p(eh
k), represents the stochastic fusion of the evidences

for person h up to the present image pair. In this case, p(h|eh
k , e

h,L, eh,I) +
p(¬h|eh

k , e
h,L, eh,I) = 1 holds.

If we take the global view, Bayes formula has to be modified as follows:

p(h0|eh0
k+1, e

h0,L, eh0,I) =
p(eh0,L|h0) · p(eh0,I |h0)

B
· p(h0|eh0

k ) (5)
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B =
H∑

h=1

p(h|eh
k) · p(eh,L|h) · p(eh,I |h) (6)

The difference to the former formulation is mainly in the normalizing factor B.
In this case,

∑H
h=1 p(h|eh

k , e
h,L, eh,I) = 1 holds.

The decision stage makes the final decision about the identity of the person
based on the computed posterior probabilities. As the decision rule we use the
integrals of the posterior probabilities for each classification channel computed
over a preset length of the image sequence, and the target person of the chan-
nel with the highest integral value is used as the identifier of the input image
sequence.

4 Experimental Results

We have carried out a series of face recognition experiments using the proposed
method. We also investigated which one of the system components contributes
most to the success of the method.

4.1 Experimental Environment

Fig. 2. Thermal imager (left) and
stereo camera (right)

All images were acquired indoors, and the
camera was kept stationary. The Digiclops
Stereo Vision System made by Point Grey
Research was used for acquiring the light in-
tensity image sequences and 3D data points
of the scene, and the Thermal Imager made
by Mitsubishi Corporation was used for the
acquisition of thermal image sequences (see
Fig.2). The distance between camera and
subject was limited to 1 to 3 Meters and the
time delay between acquisitions from the two
cameras was kept small. Image processing in-
cluded background-frame-differencing (see [4] for details).

4.2 Configuration of Expert Classifiers Used in Experiments

As expert classifiers we used multilayer feed-forward neural networks (NN). This
choice was motivated by the known ability of NNs to identify persons from their
face (light intensity) images with reasonably high accuracy (about 90 %). The
structure of the NNs and the size of the input face images was determined during
a preliminary experimental phase with the objective of obtaining reasonably high
recognition rates and generalization ability, but not at the expense of overly long
training time requirements. As a result, the images were sub-sampled to a size
of 25 × 25 pixels, and the resulting NNs had a (625-225-1) neurons structure.
Examples of input images are shown in Fig. 3 and 4.
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Fig. 3. Input faces for training, oriented in
nine directions

Fig. 4. Examples of intensity-
thermal image pairs

4.3 Data Sets Used for Experiments

The light intensity-thermal image pair sequences were taken with the subjects
facing the camera system in a generally frontal view, but they were allowed to
rotate their heads freely within a ±45◦ angular range in both horizontal and
vertical directions. All face images were automatically cut out from the scene
images using the automatically determined neck reference point. The nine image
pairs of Training Data Set No.1 (see Section. 3.2) representing nine facial orien-
tations were selected by hand for each of the 30 subjects for training the expert
classifiers. In addition, image pair sequences of all 30 subjects were acquired in
which the subjects are moving their heads arbitrarily, and each one having a
total length of 50 image pairs. The first 20 image pairs of these 30 sequences
were used as Training Data Set No.2 for training the likelihood values in Bayes
formula. The latter 30 image pairs of the 30 sequences were assigned to Recog-
nition Data Set A, which was used for carrying out recognition experiments. In
addition, a Recognition Data Set B was created by conjoining Recognition Data
Set A and Training Data Set No.2.

4.4 Results of Experiments with the Proposed Method

We conducted Recognition Experiment A by using the two recognition meth-
ods described by (3) and (5) and using Recognition Data Set A as input data.
The obtained recognition rates are shown in Table 1. These rates were computed
as follows: First the output posterior probabilities were integrated over the 30
image pairs of a given input image sequence for each classification channel sep-
arately, and the recognized person identity was determined as the ID of the
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Table 1. Recognition rates for proposed method

Recog. rate due to (3) Recog. rate due to (5)

Exp. A 100.0 % 96.67%
Exp. B 96.67% 100.0%

target person from the channel with the highest integral value of posterior prob-
ability. Then the recognition rate was computed from the thus obtained correct
recognition results divided by the number of input image sequences (here: 30).

Next we carried out Recognition Experiment B with Recognition Data
Set B. This result is also included in Table 1. Inspecting the results of Table
1 reveals that the method using (3) does better than the method using (5) in
Experiment A, but with Experiment B, this is reversed. The probable cause for
this is the insufficient number of image pairs contained in the Training Data Set
No.2 used for training the likelihood values (only 20). However, the obtained
recognition rate is very high.

The decisive factor for the success of this method is the stochastic fusion of
evidence. This can be inferred from Fig. 5, where typical examples are shown
for two image pair sequences and both recognition methods. The curves in each

(a) Method using (3) (b) Method using (5)

(c) Method using (3) (d) Method using (5)

Fig. 5. Evolution of posterior probabilities
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graph show the posterior probability variations in all classification channels.
It can be observed that the posterior probabilities evolve as new image pairs
are processed. The thick lines represent the posterior probability curves of the
channel which was in charge of identifying the person of the input image pair
sequence. From these results we can verify that the posterior probability of the
channel whose target person ID correctly provides the ID of the person depicted
in the input image sequence (shown as thick lines) tends to converge to 1.0
after some initial period of fluctuations, whereas the posterior probabilities of
all other channels tend to drift toward 0. This behavior could be verified for all
test sequences.

On average, a stable state is reached after about 20 input image pairs. This
“settling time”, of course, depends on a number of factors, such as the quality
of the expert classifiers used or the threshold value against which the integral
values are judged with respect to deciding whether a stable state was reached.

In the remainder of this section we present the results of additional experi-
ments with which we attempt to analyze which system components contribute
most to the success of this face recognition method.

4.5 Results for Expert Classifiers Only

First we tested the face recognition capability of the NN-based expert classi-
fiers alone, using the following procedure: All images of Recognition Data Set
B (containing 50 image pairs) were used as input to each of the 30 NNs. The
recognition rate for a given NN was computed from the number of images Ra

that were correctly classified (i.e. e=1) when images of the target person of that
NN were presented, divided by the number of images in the sequence (here: 50).
The total recognition rate was computed by summing all correctly classified im-
ages from each classification channel and dividing them by the total number of
all images included in all sequences (here: 1500). Likewise, the rejection rate was
computed by summing all correctly classified images (i.e. e=0) when images of
persons other than the target person were presented to the NNs and dividing
the sum by the total number of all such images included in all sequences (here:
43500).

The obtained recognition rates were 78.1% for light intensity images and
75.0% for thermal images, and the rejection rates were 89.53% for light intensity
images and 86.6% for thermal images. These rates are well below 100%, but also
well above the randomness level of 50%.

4.6 Contribution of Light Intensity – Thermal Image Fusion

In order to investigate how much “light intensity – thermal” image fusion con-
tributes to the success of the method, we deactivated the recursive integration
of evidence obtained from successive image pairs in (3) and (5), leaving only
the fusion of eh.L and eh.I active. We presented the image pairs of Recognition
Data Set B as input, computed the posterior probabilities for each image pair,
and counted the number of correct decisions. We obtained a recognition rate
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of 59.8% when (3) was used and 51.5% when (5) was used. The drop in the
recognition rate, as compared with results for expert classifiers only, is probably
due to classifier-image pairings that do not match very well.

4.7 Contribution of Temporal Integration of Image Sequences

In order to investigate how much the temporal integration of image sequences
contributes to the success of the method, we deactivated the multi-signal (i.e.
intensity-thermal images) fusion feature in Bayes formula and computed the
posterior probabilities separately for light intensity and thermal images. Phase
2 system training was also carried out separately for light intensity and thermal
images. Recognition was carried out as described in Section 3.3 The obtained
recognition rates for light intensity images were as follows:

90.0% for (3) and Recognition Data Set A;
46.4% for (5) and Recognition Data Set A;
76.6% for (3) and Recognition Data Set B;
96.6% for (5) and Recognition Data Set B.

The obtained recognition rates for thermal images were as follows:

73.3% for (3) and Recognition Data Set A;
13.3% for (5) and Recognition Data Set A;
83.3% for (3) and Recognition Data Set B;
90.0% for (5) and Recognition Data Set B.

In this case, there are recognition rates which are significantly lower than those
for expert classifiers only, but also significantly higher ones have been obtained.
Temporal integration obviously introduces a tendency to push the results to-
wards the extremes due to the feedback-effect included in the recursive Bayes
formulation. It should be noted that the deactivation of the second signal obvi-
ously leads to overall lower recognition results in comparison with the proposed
method.

5 Conclusions

The experimental results for the proposed face recognition system which is based
on recursive stochastic fusion of two kinds of signals and the results from expert
classifier sets indicate that very high recognition rates and rejection rates can
be achieved, even though the respective rates for the expert classifiers’ alone
are not very high. Using long enough image pair sequences in conjunction with
reasonably good expert classifiers should always allow us to achieve close to
perfect recognition rates, as the information from new images is accumulating
and gradually pushing the decision toward the correct person ID. The greatest
contribution to the success of this method is due to the temporal fusion of
information in image sequences, but the addition of a second image signal (here
the thermal signal) also contributes significantly to that success. The second



Face Recognition Based on Bayesian Fusion of Multiple Signals 249

signal has a stabilizing effect on the recognition results, and it should be noted
that close to perfect recognition results could only be achieved when the second
signal was activated. We expect even better results from the use of better expert
classifiers which we are currently testing in our laboratory.
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Abstract. We studied natural relative deformations of fingerprints us-
ing the methods of elasticity theory [1,2]. As shown by experiments, the
registration of deformations results in almost 3 times improvement for
direct overlap matching. Principal components of deformations (eigen
deformations) are obtained here from the statistics of genuine matches
of fingerprints from several public available databases [3,4]. Energy and
cross-compatibility analysis for eigen deformations bases carried out on
different datasets are adduced in couple with the examples of implemen-
tations where dimensionality reduction in the representation of elastic
deformations yields significant advantage.

1 Introduction

As known, the elastic deformation (ED) is the basic distortion factor that nega-
tively affects the performance of fingerprint verification [5-8]. In spite of existence
of developed theory of elastic deformations, it is rarely applied to the real-time
systems due to computational complexity.

There are different approaches to registration of elastic deformations. One of
the first approaches was introduced by D.J. Burr [9], and used the concept of
“rubber masks”. The way suggested by A.M. Bazen and S.H. Gerez [10, 11] is
based on the thin-plate spline (TPS) models, firstly applied to biological objects
by F.L. Bookstein [12]. This method requires determining correspondent points
in two compared images (matching point) and it suffers from the lack of precision
in case of few matching points. Modifications of TPS (approximate thin-plate
splines and radial based function splines) were introduced by M. Fornefett, K.
Rohr and H. Stiehl [13],[14]. They consider deformations of biological tissues. But
this way also requires many matching points (more then 100) what is virtually
impossible in fingerprint applications, because number of minutiae in fingerprint
image rarely exceeds 50. This fact makes TPS and its variants hardly applicable
to fingerprint deformations registration.

Very interesting empirical approach has been suggested by R. Cappelli, D.
Maio and D. Maltoni [15]. They developed analytical model of fingerprint defor-
mation, however not specifying the algorithm for its registration.

Solid state mechanics [1,2] defines ED in linear approximation as a solution
of Navier linear PDE:

μ∇2u + (λ + μ)∇divu + F = 0. (1)

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 250–259, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where u is the vector of displacement; F is the external force. Coefficients λ and
μ are the Lame’s elasticity constants. These parameters can be interpreted in
the terms of Young’s modulus E and Poisson’s ratio ν

E =
μ (3λ + 2μ)

(λ + μ)
, (2)

ν =
λ

2 (λ + μ)
. (3)

In [16] we have proposed an algorithm for registration of ED, when a set of
mated minutiae is known, using numerical solution of Navier PDE (1) by finite
elements method (FEM). There we gave the examples of its implementation
and statistical analysis of the distribution of deformation energy for the exist-
ing available fingerprint databases [3,4]. The obtained statistics of ED energy
distribution allows the estimating of natural limits for possible deformations.
In [17] we have proposed one more very simple method based on the convolu-
tion with point spread function, and we also estimated theoretical limitations
for linear model as the values of some natural parameters such as mean local
stretch and averaged discrepancy through image field in fingerprints intersection
area. Here, firstly we demonstrate the ROC for direct overlap method before
and after the registration of deformations, then we use principal components
analysis (PCA) to reduce dimensionality in ED representation, and finally we
propose a number of possible applications for the compact ED representations.
The analysis has been performed using public available databases FVC2002 [3],
the cross-compatibility of the obtained bases of eigen deformations being pointed
out.

2 Performance Evaluation

For the evaluation of deformation registration performance we used best fit di-
rect overlap of binary images. This matching method was selected as the most
independent on specific minutiae extraction and comparison technique. However,
to reduce computational expenses we used Biolink algorithm [18] for primary ap-
proximation. An example of direct overlapping of fingerprints before and after
nonlinear deformations registration is demonstrated on Fig.1. As one can see,
registration of deformations based on proposed model of fingerprint distortions
visually corresponds to the real physical processes.

The performance was evaluated on public available FVC2002 databases DB1
and DB3. These fingerprint bases have different quality and size of stored fin-
gerprints. DB1 contains of images of average size, captured by optical scan-
ners; number of deformed fingerprints is relatively great. DB3 fingerprints were
obtained from capacity devices. Their size and consequently deformations are
sufficiently smaller than for DB1.

We solve equation (1) looking for a minimum of the functional [16] where
the main information for deformation registration is pair-wise correspondence of
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Fig. 1. Direct overlapping of fingerprints. Example 1: capacity scanner, moderate de-
formation (a – without, b – with registration of nonlinear deformations). Example 2:
optical scanner, strong deformation (c – without, d – with registration of nonlinear
deformations)

fingerprint minutiae. It means that nominally deformations might be registered
in impostor matches as well. The average improvement of coefficients of image
correlation and average distance between minutiae is shown in the table 1. In
impostor matches the improvement of distance (discrepancy) between minutiae is
rather irrelevant, because the algorithm of minutiae configuration matching uses
great number of characteristics besides minutiae distance. The image correlation
appears to be a more informative index of deformation registration performance
[20].

Table 1. The average improvement of the basic parameters after ED registration
(genuine/impostor)

Index DB1 DB3

Binary Correlation (relative increase) +24% / –41% +7.8% / –55%

Binary Correlation (absolute increase) +5.8 / –2.2 +1.7 / –3.7

Average distance between minutiae 4.9 / 11.8 4.8 / 7.6
without registration of deformations (pixels)

Average distance between minutiae 2.5 / 5.2 2.6 / 5.1
with registration of deformations (pixels)

The FAR and the FRR of fingerprint recognition by direct overlap with
and without deformations are presented in the Fig.2. In the experiment carried
out performance improvement from deformation registration is less than the
method’s capability, because the minutiae extraction and minutiae matching
algorithms may add their errors.

As clear from ROC presented in the Fig.2, the registration of deformations
brings sufficient recognition performance improvement, especially on DB1, where
the deformation factor is considerable.
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Fig. 2. Fingerprint recognition by direct overlap with deformation registration

3 Eigen Deformations and Reduction of Dimensionality

Further on we consider all deformations over image area of 300x400 pixels size
with 500dpi resolution that corresponds to the averaged natural application area.
Direct representation of deformations as displacement vector at each pixel has
huge dimension and make any further work virtually impossible. Even assuming
that we interpolate the local displacement function (deformation) by the nodes
of a very sparse grid, say 16 pixels apart, it would require storing of 468 values
of 2D vector components, that significantly complicates the analysis.

Following traditional principal components analysis (PCA) scheme [19], one
might represent all the valued in nodes as one 936 dimensional vector, find eigen
values and eigen vector of correlation matrix that has been calculated on gen-
uine matches, and then select the first n eigen vectors correspondent to the first
n eigen values taken in the descending order, so as to make the residual vari-
ance being no greater than, for example, 1%. As computational experiments had
shown, we need approximately 30 principal components to cover 99% of overall
variance, and the cumulative variance distribution has very slight slope, i.e. the
effective dimensionality is rather great. Moreover, the first eigen deformation
look somewhat weird. The reason is both in the loss of robustness (due to rela-
tively small training set, each FVC2002 database provides us with 2800 genuine
matches) and in linear relations between spatial locations being inadequate to
represent the nature of fingerprints deformations.

To reduce the dimension and consequently increase robustness, we initially
perform 2D DFT for both vertical and horizontal components of displacement
function. Analysis showed that 92 components (46 per each displacement com-
ponent) of lower frequencies cover approximately 93% of the entire image energy
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and 98% of the image energy in the internal area (without 16 pixel wide margins
where side effects dominate).

To obtain principal deformations, we finally performed PCA in the 92D spec-
tral space. It must be mentioned, that obtained deformation was normalized with
respect to rigid movement, i.e. integral shift and rotation were subtracted from
displacement field.

As soon as spectral eigen vectors had been obtained, we perform the reverse
Fourier transform to get the correspondent eigen vectors in the initial space. As
a result, the first 20 eigen vectors covers more than 98% of overall variance in
the initial space, while 4 first eigen vectors cover 85% of variance (Fig. 3).

Fig. 3. Cumulative percent of variance of principal deformations for FVC2002
Databases

The 4 principal deformations for all 3 databases are presented in the Fig. 4. As
one can see, the outlook of the first 4 components coincides for all 3 datasets used
(Db1, Db2, Db4). At the same time their order varies what is normal because
it depends on application style of current DB clients. The first component is a
micro rotation and appears due to the impossibility of precise factorization for
integral rotation and border effects. It should be pointed out, that the dispersion
of the displacement through the image for this component is one order less to
the dispersion for the next 3 components. Thus we have an unexpected fact: the
influence of the main component in each pixel is far below the intensity of the
significant distortion while integrally it dominates.

The remaining 3 principal components are absolutely natural: torsion and
traction along two axes. The qualitative description of the main deformations
for fingerprints has been given earlier [15], however here we obtained them as a
result of the precise statistical experiment and as a set of orthonormal vectors
(the principal components are othonormal in the spectral space because of PCA



Principal Deformations of Fingerprints 255

Fig. 4. Four principal deformations for FVC Databases

properties, at the same time obtained correspondent principal deformations are
orthonormal in the initial space because the DFT is a unitary transformation).

Since the set of the initial n eigen deformations is orthonormal, any defor-
mation D can be expanded in the eigen deformation set:

D =
n∑

i=1

ciPDi + εn =def Dn + εn, (4)

where coefficients are standard inner product ci =< D,PDi > if displacement
field is represented as vector. The discrepancy norm εn is equal to

||εn||2 = ||D||2 −
n∑

i=1

c2i (5)
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and not zero as far as principal deformations set is not full basis (its size is
not greater than 92 while the possible dimension of deformation space in our
experiment is 24000).

To support the visual equivalence (or cross-compatibility) of principal compo-
nents obtained from different databases, we carried out the following experiment.
Deformations obtained from genuine matches for each FVC2002 database were
approximated by three sets of principal deformations, correspondent to each
base. In that case we get three different approximations for each deformation.
As the indices of quality of approximation the following distances between initial
deformation and restored deformation (Dn) are used:

1. Mean absolute difference depending on number n of principal components
involved

2. Mean relative area of exact approximation where deformation restored with
pixel wise precision

3. Mean relative discrepancy (||εn||2/||D||2)
The results presented in the Fig.5 reveal similar approximation characteristic

of principal deformations obtained from different bases confirming that charac-
ter of principal deformations is independent on the database while quantative
specification of deformation sufficiently varies among the databases. The DB1
images tends to be most deformed (mean displacement is about 0.5 mm, while
“immobile”, in sense of [15], area is less then 45% of the entire image) while DB4
synthetic fingerprints having almost the same size as DB1 ones approximately 2
times less deformed.

4 Possible Implementations

The reducing in dimensionality enables or facilitates the solution of many applied
problems. Let us enlist some of them.

1. Synthetic databases generation
Although deformation character for synthetic database Db4 is almost iden-
tical to the other FVC databases and main deformations (up to slight asym-
metry) almost coincide, it is hard to imagine how much effort its creation
required from the authors. Now, having principal components and their stan-
dard deviations (PCA eigen values), it is very easily to generate the set of
deformations with statistical features being equal to the natural ones. It may
be done by a direct sum of principal deformations multiplied by random val-
ues that are distributed with corresponding standard deviations and zero
means.

2. Simulating of multiple applications at enrollment phase
Since in modern biometric systems it is regarded as improper to ask a client
for multiple applications while being enrolled, the additional information
may be obtained by artificial applications being simulated in a way similar
to 4.1.
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Fig. 5. Quality of deformation approximation

3. On-line template improvement
An interesting approach has been proposed in [11] to find the most effective
deformation, i.e. actually to approximate the initial (in some sense “unde-
formed”) state of the fingerprint that already had been enrolled. For this
purpose the collection and analysis of the deformations registered during
each genuine match is required. The solution becomes certainly more ef-
fective after the abrupt reduction of dimensionality using suggested eigen
deformation technique.
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5 Conclusion

We have obtained principal components of plain fingerprint deformations based
on the statistics from several public available databases. The initial 4 princi-
pal deformations provide about 80% precision of representation and have an
illustrative interpretation: micro movement that compensates matching inaccu-
racy, torsion and orthogonal tractions, 8 eigen vectors give 90% precision, and
20 – up to 96%. After 10th component we have practically only analytic basis
(harmonics).

We must underline that intrinsic dimension of real plain fingerprint deforma-
tion is not greater than 10–15 because the 10–15 principal components describe
deformation to high degree of accuracy. Residual part is almost noise component
that appears due to minutiae extraction inaccuracy.

It has been demonstrated that the bases obtained on different datasets cor-
relate almost absolutely. We gave a number of applications where the reducing
in dimensionality is crucial.
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Abstract. In this paper, we propose a new scheme that a user enrolls
his fingerprint images sequentially captured by rolling and sliding his
finger, thus continuously contacting on the sensor. We also developed
an image-fusion algorithm to mosaic the images obtained by the en-
rollment scheme. Conventional fusion algorithms for fingerprint images
are based on large-sized sensors, and they are easily failed to combine
images if there are not enough common areas among images. Our en-
rollment scheme assures that the common area between two sequential
images is large enough to be combined even with a small-sized sensor.
Experimental results show that average combined images are 1.91 times
larger than a single image, and success rate for combining is 2.3 times
higher than a conventional dab approach.

1 Introduction

Nowdays small sized sensors have been spread more and more for fingerprint
recognition. One advantage of small sensors (e.g., solid-state sensors) is that they
can be used with many applications (e.g., laptops, cellular phones). However,
information about the fingerprint is limited due to the small physical size of the
sensing area , as shown in Fig. 1.

(a) (b)

Fig. 1. Fingerprint Sensors: (a) a large sensor(sensing area 16×16mm), (b) a small
sensor(sensing area 6.5×6.5mm)

The small overlap between the template impression and the query impression
due to the small sensing area, produces inferior recognition performance, for ex-
ample, a higher rate of false rejects. To overcome this problem, some researchers
have explored the field of fingerprint fusion. The fingerprint fusion algorithm can

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 260–269, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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be categorized largely into two types. The first type fuses feature sets from sev-
eral fingerprint images; the second type produces a mosaicked fingerprint image
with several images. At the feature level, the fusion algorithm is very simple,
and also, its recognition performance is better than that of a non-fusion system.
However, it is difficult to apply it to the systems which use features different from
those used in the feature level fusion algorithm. It is also difficult to add new fea-
tures to the system. Several researchers have studied fusion systems at an image
level. Jain and Lee captured several impressions by dabbing a finger on a small
sensor and made a mosaicked image by using a rigid transform [1],[2]. Ratha
captured sequential impressions by rolling a finger on a large sensor. The larger
sensor can cover a whole fingerprint so we can mosaic sequential impressions
easily by stitching without calculating the transform among the fingerprints [3].

The multiple impressions captured by the dab approach (as used by Jain
and Lee) are very hard to be mosaicked when the overlap between two images
is very small, as shown in Fig. 2(a). In addition, the dab approach has little
effect on two impressions obtained from a similar portion of a finger, as shown
in Fig. 2(b). Otherwise, the rolling approach (suggested by Ratha) is able to
acquire a whole fingerprint, but it requires a large sensor, as shown in Fig. 2(c).
It therefore cannot be applied to systems that use a small sensor.

(a) (b) (c)

Fig. 2. Mosaicked images of previous algorithms: (a) small overlap area, (b) large
overlap area, (c) rolled image with a large sensor

To capture a whole fingerprint with a small sensor we present a new enroll-
ment scheme and propose a new mosaicking algorithm which mosaics sequential
images captured by our enrollment scheme.

Our paper is organized as follows. In Section 2, we describe our enrollment
scheme and our system flow chart. In Section 3, we describe an image selection
method that rejects a low-quality image from a sequence and a simple stitching
method. In Section 4, we describe the image mosaicking process that calculates
the local transform parameters between sequential images and warps one image
to the other. The experimental results are shown in Section 5. Finally, conclusions
appear in Section 6.
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2 Fingerprint Enrollment and System Flow Charts

To capture a whole fingerprint image with a small sensor, we present a new
enrollment scheme as shown in Fig. 3. The user puts the left side of his finger
on a small sensor, as shown in Fig. 3(a). The user rolls the finger on the sensor
until the right part of the captured image contains the foreground region of a
fingerprint, as shown in Fig. 3(b). The user then slides the finger on the sensor
horizontally to acquire the part of the fingerprint that has not yet been captured,
as shown in Fig. 3(c) and 3(d). Finally the user rolls the finger again to capture
the right side of the finger, as shown in Fig. 3(e). Using this enrollment scheme,
we are able to capture sequential images of a fingerprint and mosaic the sequence
to produce a whole fingerprint. By using our enrollment scheme, we can obtain
a wider fingerprint area with a small sensor than by using the dab approach.

��� ��� ��� ��� ���

Fig. 3. New Enrollment Scheme

(a) (b)

Fig. 4. The images captured by sliding vertically: (a) samples captured by sliding
vertically, (b) the mosaicked image

We have explained how to acquire the horizontal region of a finger, as shown
in Fig. 3. We can also acquire the vertical region of a finger by sliding a finger
on the sensor vertically, as shown in Fig. 4. Furthermore, we can acquire a whole
fingerprint by combining the horizontal region with the vertical region of a finger.
The algorithm used to mosaic images captured by rolling and sliding a finger
on the sensor horizontally is very similar to the algorithm that mosaics images
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Fig. 5. The system flow chart

captured by sliding the finger vertically. In this paper, we will explain only the
former algorithm.

Fig. 5 shows the flow chart of our algorithm. In the preprocessing procedure,
we segment foreground (fingerprint) and background areas in each frame and
reject the motion blurred image. If the translation between the previous frame
and the current frame doesn’t occur, our algorithm stitches the current frame to
the previous one without alignment. If the translation does occur, the algorithm
aligns the current frame to the previous one. To mosaic two images, our algorithm
uses the global transform parameter to align one image to the other (roughly)
and then uses the local transform parameters to align the local image blocks of
one image to those of the other image. The corresponding points are considered
to be the center points of each block. Finally, we warp one image to the other
with these corresponding points and mosaic the two images. Each procedure of
our algorithm is explained in greater detail in the following sections.

3 Preprocessing

In the preprocessing procedure, we first segment foreground and background
areas in an image using the block variance of the image. After the segmentation,
we find the mean and variance of the foreground area and normalize the image,
as suggested in [4].

In our enrollment scheme, it is possible that a few images become blurred.
Blurring occurs when a user slides his finger very fast on the sensor. These
motion-blurred images are rejected by thresholding the median value of the
tenengrad of each image [5]. (The tenengrad refers to the magnitude of the
gradient of an image.) The median value of the tenengrad is computed as

T = med

⎛⎝ 1
N ×N

N×N∑
i,j∈Fbk

Gx(i, j)2+Gy(i, j)2

⎞⎠ (1)

The gradients Gx and Gy of an image are calculated by the sobel gradient
algorithm. and then the median value of the tenengrad is calculated in the fore-
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ground area blocks. Fbk means the foreground area and the size(N×N) of each
block is 8*8 pixels. Fig. 6 shows the median tenengrad values of each frame. In
Fig. 6 the tenengrads of motion-blurred images at frame number 17,79,92 are be-
low the threshold (150) that is defined by using 2400 samples. While the image at
frame number 33 has a very high tenengrad value. After rejecting motion-blurred
images, we check if the translation between the current frame and the previous
one has occurred. If there has been no translation, we stitch the current frame
to the previous one to expand a foreground area by using the center method as
proposed in [3]. To check the occurrence of the translation, we check whether the
SAD (Sum of Absolute Difference) in the common foreground region between
two frames is below the threshold or not. If the translation has occurred, we
mosaic two frames by using the warping method. In the following section, our
image mosaicking procedure is explained in more detail.

(17)(17) (92)(92)

threshold

(33)(33)

The Median Tenengrad of a image sequence

(79)(79)

Image Frame Number

M
ed

ia
n

 T
en

en
g
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d

Fig. 6. The Median tenengrad of a image sequence

4 Image Mosaicking

The image mosaicking procedure is divided into three parts. The first part in-
volves searching for a global translation vector, the second part involves hierar-
chical block matching to find a local translation vector of each image block, and
the third part involves the warping and assigning of gray-values to pixels which
are found at the boundary between the two frames.

4.1 Searching for a Global Translation Vector

We do not consider the rotation parameter between two frames because users
slide their fingers horizontally on the sensor. We use the block-matching algo-
rithm proposed by Chen et al to find a global translation vector and local ones
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[6]. Chen’s algorithm allows the translation vector to be searched in a global
minimum (like the full-search algorithm). Processing time can be reduced by
about 1/10 when using Chen’s algorithm. Even though many algorithms are
faster than Chen’s algorithm, most of them do not guarantee the global min-
imum solution. Furthermore, these searching algorithms are more likely to be
trapped in a local minimum in fingerprint images than in other images, because
the local patterns of a fingerprint image are very similar to each other.

4.2 Hierarchical Block Matching

After finding a global translation vector, we have to find the local translation
vectors hierarchically, as shown in Fig. 7. When the user slides the finger on
the sensor, plastic distortion caused by rubbing is inevitable. This makes it hard
to align one image to the other exactly when using a global translation vector.
To solve this problem, we divide an image into several blocks and find the local
translation vector of each block. We then warp one image to the other with these
local translation vectors. To find these local translation vectors, we align two
frames (roughly) with a global translation vector and set the common foreground
area between two frames. The common area is divided into four sub-blocks and
each sub-block is divided into four high-level blocks until the smallest block size
becomes 16×16 pixels, as shown in Fig. 7. The size of each block is a multiple
of 2, so if the size of the common area is not a multiple of 2, the sub-blocks
overlap. The smaller the sub-block size, the larger the probability of incorrect
searching of the sub-block translation vector. This incorrect searching can be
due to image noise, plastic distortion and simple patterns in a small area of a
fingerprint image. To find the vectors correctly we implemented a regularization
step on the Bayesian theory. The translation vector of the sub-block i in level
l+1 is computed as

tl+1,i = arg max
tk
l+1,i

(
P

(
tk

l+1,i
/tl,i/2

))
= arg max

tk
l+1,i

(
P

(
tl,i/2/t

k
l+1,i

)
· P (tk

l+1,i
)
)
(2)

P
(
tl,i/2/t

k
l+1,i

)
=

1√
2πσ2

e
−
∥∥tl,i/2−tk

l+1,i

∥∥2

2σ2 (3)

P (tkl+1,i) =
1

N(Sl+1) − 1

⎛⎜⎝1 − SAD(tkl+1,i)∑
tx
l+1,i

∈Sl+1

SAD(txl+1,i)

⎞⎟⎠ (4)

We assume that the A-posterior PDF (Probability Density Function) of the
translation vector is Gaussian and find the MAP (Maximum A-posterior Prob-
ability) solution for the local translation vector. In Eq. 3 tk

l+1,i
is the kth trans-

lation vector of the block i in level l+1 and the A-posterior probability in the
translation vector tl,i/2 of the parent block i/2 in level l, is computed as Eq. 3.
The prior probability of the translation vector tkl+1,i is P (tkl+1,i) and the size of
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the searching area for the translation vector is N(Sl+1). We find the translation
vector of each sub-block in each level hierarchically through Eq. 2, as shown in
Fig. 7. We define the plastic distortion of each block as the difference between
the local translation vector and the global one. The center points of each smallest
sub-block are the corresponding points between two images, which can be used
in the image warping procedure.
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Fig. 7. Hierarchical structure for searching the local translation vector

4.3 Warping and Gray-Value Assignment

After the block translation vectors are estimated, local distortions are compen-
sated for using the point-based warping technique. Every center point of every
block is considered a corresponding point when image Q is warped. That is,
points derived from a global translation vector are utilized as destination points
while source points are defined as translated points by the local translation
vectors, as shown in Fig. 8. In the warping procedure, we use the 2-pass mesh-
warping algorithm [7]. This algorithm includes Fant’s resampling algorithm and
uses cublic spline as the interpolation method. The 2-pass mesh-warping algo-
rithm is simple and well-suited to our algorithm because the center points of the
sub-blocks have a lattice structure. After performing the warping procedure, we
stitch the image Q to the image P by using the center method as suggested in
[3]. Finally, we obtain a mosaicked image from images P and Q. We obtain a
wide fingerprint image from an image sequence by applying our algorithm, as
shown in Fig. 9.

5 Experimental Results

To collect the fingerprint images, we used 4 enrollment schemes as follows

1. An image for each finger enrolled by using the dab approach
2. A mosaicked image with images enrolled by using the dab approach [2].
3. A rolled image enrolled by rolling a finger on a large sensor [3].
4. A mosaicked image with sequential images enrolled by our enrollment scheme.
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Fig. 8. Illustration of the warping scheme

Fig. 9. The mosaicked image with a fingerprint sequence

We enrolled 100 fingers through 4 enrollment schemes. For the 1st and the 2nd
enrollment sheme we capture 1000 images (10 images per a finger) and for the
3rd one we capture 100 rolled images (an image per a finger) and for the last
one we capture 100 sequences (a sequence per a finger). The number of images
belong to a sequence becomes different by each person. We use the ACCO 1394
sensor whose image size is 600×600 with 500 dpi resolution [8]. For the 1st,
the 2nd and the 4th enrollment shemes, we clipped the center region of an
image whose size is 192×192. Instead of a small sensor, we used the ACCO
1394 sensor because its frame per second is enough to acquire sequential images
enrolled by our enrollment scheme.

We compare the mosaicking success rate of Lee’s algorithm [2] with ours as
shown in Table. 1.

The success rate of Lee’s algorithm varies according to the base image to
which the algorithm align other images. Lee’s algorithm has no method how
to select the base image among several images, so we select an image among
10 images as a base image and align others to the image for Lee’ s algorithm

Table 1. Mosaicking Success Rate

# of images 2 4 6 8 10 our algorithm

Random 0.48 0.279 0.197 0.147 0.48
Optimum 0.85 0.76 0.62 0.48 0.38

0.88
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Table 2. The size of foreground area and number of minutiae

and execute this procedure 10 times per a finger by changing the base image.
In Table. 1, # of images is the number of images successfully mosaicked and
Random is the mosaicking success rate when we select a base image randomly
and Optimum is the success rate when we select a base image to align others
as well as possible. The success rate of our algorithm is independent of the base
image, because our algorithm aligns the other images to the first enrolled image
from a sequence. The mosaicking success rate of our algorithm is higher than
Lee’s algorithm because our enrollment scheme can assure that the common area
between images exists when a user slides his finger properly. In our algorithm 12
sequences among 100 sequences fail to be mosaicked because of the low quality
of images, the severe plastic distortion and blurred images. Especially if the
number of blurred images from a sequence is too large, the sequence is hard to
be mosaicked because the common area between images becomes small.

Table 1 shows that the images captured by the dab approach are hard to be
mosaicked due to the small common area between images. To show that our en-
rollment scheme can acquire a wider area of a fingerprint than the dab approach,
we measured the average size of the foreground area and the average number
of minutiae from an image enrolled by the dab approach, the mosaicked image
of Lee’s algorithm, a rolled image and the mosaicked image of our algorithm as
shown in Table. 2. In Table. 2 the size is the number of pixels of a foreground
area. Table. 2 shows that the average foreground area of the images mosaicked
by our algorithm is smaller than that of the rolled image but larger than that of
the images mosaicked by Lee’s algorithm.

6 Conclusions and Future Works

We have described a new enrollment scheme and a non-minutiae based mosaick-
ing algorithm for the sequential fingerprint images. Our enrollment scheme has
the larger foreground area than that of Lee’s algorithm and also the mosaick-
ing success rate of our algorithm is higher than Lee’s algorithm because Lee’s
algorithm doesn’t consider the plastic distortion and the common area between
images enrolled by the dab approach doesn’t exist or is too small to be mo-
saicked. The algorithms which align images by using minutiae or a core point,
may show the low mosaicking success rate in case that captured images have
small number of minutiae or no core point [1],[2].

We can aquire the wide foreground area of a fingerprint but the image qual-
ities of our mosaicked images are worse than the rolled images because of the
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accumulation of the registraion error, the severe plastic distortion and the mo-
tion blurring. In the future, we will try to solve those problems. Also to obtain
the foreground area as large as that of a rolled image, we will try to combine the
mosaicked image enrolled by rolling and sliding horizontally with the mosaicked
image enrolled by sliding vertically.

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation
(KOSEF) through Biometrics Engineering Research Center at Yonsei University.

References

1. A.K. Jain and A. Ross, “Fingerprint mosaiking” Proc. International Conference on
Acoustic Speech and Signal Processing(ICASSP), vol. 4, pp.4064-4067, 2002

2. Dongjae Lee, Sanghoon Lee, Kyoungtaek Choi and Jaihie Kim, “Fingerprint fu-
sion based on minutiae and ridge for enrollment” LNCS on Audio-and Video-Based
Biometric Person Authentication, vol.2688, pp.478-485, Jun. 2003

3. N.K. Ratha, J.H. Connell and R.M Bolle, “Image mosaicing for rolled fingerprint
construction” Pattern Recognition, Proceedings. Fourteenth International Confer-
ence on, vol.2 , pp.1651-1653, Aug. 1998

4. Lin Hong, Yifei Wan and A.K. Jain, “Fingerprint Image Enhancement Algorithm
and Performance Evaluation” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.20, No. 8, pp.777-789, Aug. 1998

5. NK Chern, PA Neow and MH Ang Jr, “Practical issues in pixel-based autofocusing
for machine vision” Int. Conf. On Robotics and Automation, pp.2791- 2796, 2001

6. Yong-Sheng Chen, Yi-Ping Hung and Chiou-Shann Fuh, “Fast block matching al-
gorithm based on the winner-update strategy” IEEE Transactions on Image Pro-
cessing, vol. 10, No. 8, pp.1212- 1222, Aug. 2001

7. George Wolberg, “Digital image warping” IEEE Computer Society Press, 1988
8. http://www.hbs-jena.com



Minutiae Matching Based Fingerprint
Verification Using Delaunay Triangulation

and Aligned-Edge-Guided Triangle Matching

Huimin Deng and Qiang Huo

Department of Computer Science, The University of Hong Kong, Hong Kong
{hmdeng,qhuo}@cs.hku.hk

Abstract. This paper presents a novel minutiae matching approach to
fingerprint verification. Given an input or a template fingerprint image,
minutiae are extracted first. Using Delaunay triangulation, each finger-
print is then represented as a special connected graph with each node
being a minutia point and each edge connecting two minutiae. Such a
graph is used to define the neighborhood of a minutia that facilitates
a local-structure-based matching of two minutiae from input and tem-
plate fingerprints respectively. The possible alignment of an edge in in-
put graph and an edge in template graph can be identified efficiently.
A global matching score between two fingerprints is finally calculated
by using an aligned-edge-guided triangle matching procedure. The effec-
tiveness of the proposed approach is confirmed by a benchmark test on
FVC2000 and FVC2002 databases.

1 Introduction

Fingerprint matching is a difficult problem that has been studied for several
decades. Among many approaches proposed, minutiae-based approach remains
the most popular one [12]. For this type of approaches, minutiae (typically ridge
endings or ridge bifurcations) are extracted first from given input and template
fingerprint images. The fingerprint matching problem is then cast as a problem
of matching two sets of planar point patterns. Again, many approaches have
been proposed (e.g., [6, 7, 14, 15] and many references in [12]). Among them, we
are particularly interested in those approaches that take advantage of strength
offered by 1) using a local-structure-based matching for an efficient pre-alignment
of two fingerprints or an early rejection of very different fingerprints, and 2) using
a global minutiae matching strategy to consolidate the result of local matching
and derive a global matching score of two fingerprints.

For example, in [7], the local structure is formed by the concerned minutia
and its k-nearest neighbor minutiae (k=2 in practice). Local minutia matching
consists of comparing two local minutiae structures characterized by attributes
that are invariant with respect to global transformation such as translation,
rotation, etc. The best matching minutiae pair is then selected and used for
registering the two fingerprints. In the global matching stage, the remaining
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aligned pairs are compared and a final score is computed by taking into account
the different contributions from the above two matching stages. In [15], the local
structure is defined more formally by using a graph notation (i.e., a star). All the
minutiae within a pre-specified distance from the concerned minutia are treated
as its neighbors. Some follow-up works of the above two approaches are reported
in literature. For example, in [16], core points are used as reference points to
speed up the initial local structure matching. In [9], more minutiae pairs are
used as reference pairs to guide the consolidation step that improves robustness
when the best-matching minutiae pair is unreliable.

Inspired by the above works, in this paper, we propose a new minutiae match-
ing approach that also uses both local and global structures, but is different from
the previous works in the following aspects:

– The neighborhood of a minutia is defined by the result of Delaunay triangu-
lation of minutiae;

– In the local structure matching, instead of finding best-matching minutiae
pair(s), we try to find the possible best-matching edge pairs;

– A global matching score between two fingerprints is calculated by using an
aligned-edge-guided triangle matching procedure.

In the following section, we describe the details of our proposed approach.
In Section 3, we report the benchmark test results on FVC2000 and FVC2002
databases. Finally, we conclude the paper in Section 4.

2 Our Approach

2.1 Minutiae Extraction

Given an input or a template fingerprint image, minutiae are extracted first.
In literature, there are mainly two kinds of minutiae extraction approaches: one
will go through enhancement, binarization and thinning, and minutiae extraction
(e.g., [5, 6]); the other extracts the minutia directly from gray scale image (e.g.,
[8, 10]). It was reported in literature and observed in our preliminary experiments
that the former approach may create some spurious minutiae, while the latter
may miss some genuine minutiae. To obtain the main minutiae structure, we
adopted an approach similar to the ones in [5, 6] for minutiae extraction. Each
extracted minutia, Mk, is represented as a feature vector:

Mk = (xk, yk, θk, tk)T

where xk, yk are its location coordinates, θk is its orientation defined as the local
ridge orientation of the associated ridge, and tk is the minutia type (0 for ridge
ending, 1 for ridge bifurcation). The original ridge orientation is in the range
of [0, π), but is mapped to the range of [0, 2π) as described in [7]. Ridge count
between two minutiae in a fingerprint is recorded for future use.
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Fig. 1. A fingerprint image (left) and its representation using the Delaunay triangula-
tion of the minutiae (right)

2.2 Delaunay Triangulation

After the above minutiae extraction step, we obtain two sets of minutiae for
the input and template images respectively. Using Delaunay triangulation (e.g.,
[1, 2, 13]), each fingerprint can be represented as a special connected graph
with each node being a minutia point and each edge connecting two minutiae.
Figure 1 gives an example of a fingerprint image and its representation using
the Delaunay triangulation of the minutiae. Delaunay triangulation has certain
desirable properties, including 1) the Delaunay triangulation of a non-degenerate
set of N minutiae points is unique, can be computed efficiently in O(N logN)
time, and produces O(N) triangles, 2) missing or spurious minutiae points affect
the Delaunay triangulation only locally, and 3) the triangles obtained are not
“skinny”.

As described in the next subsection, such a graph representation can be used
to define the neighborhood of a minutia that facilitates a local-structure-based
matching of two minutiae from input and template fingerprints respectively. It
also constrains the number of edges to be examined.

2.3 Using Local-Structure-Based Matching
to Find Possible Alignment of Edge Pairs

Our local-structure-based matching algorithm is inspired by [7], but we use it in
a different way. In our approach, the local structure is formed by the concerned
minutia and its adjacent minutiae in Delaunay triangulation representation. An
example is illustrated in Fig. 2. Given such a local structure, the relation between
the minutia Mk and one of its neighboring minutia Mj can be characterized by
the following feature vector:

Vkj = (dkj , θkj , φkj , rckj , tk, tj)T (1)
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Fig. 2. The local structure of a minutia Mk

where dkj =
√

(xk − xj)2 + (yk − yj)2 is the distance between minutiae Mk and
Mj , θkj = θk−θj is the direction difference between the orientation angles θk and
θj of Mk and Mj, φkj = arctan( yk−yj

xk−xj
) − θk is the direction difference between

the orientation angle θk of Mk and the direction of the edge connecting Mk to
Mj , rckj is the ridge count between Mk and Mj , tk and tj are the minutiae types
of Mk and Mj respectively. Note that the above definition of dkj , θkj , φkj , rckj

applies to any directed edge connecting a minutia Mk to another minutia Mj ,
and will be used in the next subsection.

Let’s use M I
p and MT

q to denote the minutiae in input and template images
respectively, and use N I

p and NT
q to denote the corresponding numbers of neigh-

boring minutiae. We define a similarity measure between an edge −→
pi in the input

fingerprint and an edge −→
qj in the template fingerprint as follows:

SE(−→pi,−→qj) =

{
TH1−W T |Vpi−Vqj |

TH1
if WT |Vpi − Vqj | < TH1

0 otherwise
(2)

where W is a weighting vector, TH1 is a threshold, M I
i and MT

j are neighboring
minutiae of M I

p and MT
q respectively. Given two local structures with central

minutiae of M I
p and MT

q , we can calculate a N I
p × NT

q similarity score matrix
SE(·, ·). By following the same strategy in [7], SE(·, ·) is modified according to
the following rule:

If ∃k{SE(−→pk,−→qj) > SE(−→pi,−→qj)} or ∃k{SE(−→pi,−→qk) > SE(−→pi,−→qj)},
then, SE(−→pi,−→qj) = 0; Otherwise, no change is made.

The matching score of two local structures with central minutiae of M I
p and MT

q

is then defined as follows:

SL(M I
p ,M

T
q ) =

∑NI
p

i=1

∑NT
q

j=1 SE(−→pi,−→qj)
min{N I

p , N
T
q } . (3)
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This score will be used in the following procedure to find the possible matching
edges in input and template fingerprints respectively:

Step 1: Initialization of Edge-Pair Set:
If the number of extracted minutiae in a fingerprint image is below a thresh-
old THnum, all the possible edges connecting two minutiae are considered;
otherwise, only those edges in Delaunay triangulation are considered. Fur-
thermore, remove those edges with a length less than a threshold THedge.
Consequently, two sets of initial edges, EI and ET are formed for input
and template fingerprints respectively. Therefore, the initial set of possible
aligned edge pairs is EP = EI × ET .

Step 2: Edge-Pair Pruning:
Remove edge pair {(−→pq,−→ab)|−→pq ∈ EI ,

−→
ab ∈ ET } from EP , if any of the fol-

lowing six conditions is satisfied:

|dpq − dab| > THd (4)
|θpq − θab| > THθ (5)
|φpq − φab| > THφ (6)

|rcpq − rcab| > THrc (7)
SL(M I

p ,M
T
a ) < THSL (8)

SL(M I
q ,M

T
b ) < THSL (9)

where THd, THθ, THφ, THrc, THSL are thresholds to be set empirically.
Step 3: Termination:

The remaining edge pairs in EP are considered as possible aligned edges.

2.4 Aligned-Edge-Guided Triangle Matching

Using each pair of possible aligned edges in EP as reference edges, a matching
score between input and template fingerprints can be calculated by using the
following Aligned-Edge-Guided Triangle Matching procedure:

Step 1: Sort other minutiae in each fingerprint in ascending order of their an-
gles subtended by the reference edge with the edges connecting the initial
minutia point in the reference edge to the minutiae concerned. An example
is illustrated in Fig. 3. In this figure, we use −−→

AB to denote the reference
edge in the input fingerprint, and

−−−→
A′B′ to denote the reference edge in the

template fingerprint. Minutiae in both fingerprints are sorted with respect
to the reference edges as {C,D, · · ·} and {C′, D′, · · ·} respectively.

Step 2: Connect other minutiae in each fingerprint with the minutiae of the
reference edge to form triangles as illustrated in Fig. 3.

Step 3: For each unexamined pair of triangles, say, �ABC and �A′B′C′ as
illustrated in Fig. 3, do the following:
– If |� ABC − � A′B′C′| < THang, set the matching score of two triangles,

ST (�ABC,�A′B′C′) to zero, i.e., ST (�ABC,�A′B′C′) = 0, and go
to Step 4; Otherwise,
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Fig. 3. Aligned-edge-guided triangle matching

– If |dAC − dA′C′ | ≤ THd and |θAC − θA′C′ | ≤ THθ and |φAC − φA′C′ | ≤
THφ and |rcAC − rcA′C′ | ≤ THrc and |dBC − dB′C′ | ≤ THd and |θBC −
θB′C′ | ≤ THθ and |φBC − φB′C′ | ≤ THφ and |rcBC − rcB′C′ | ≤ THrc,
set

ST (�ABC,�A′B′C′) = 0.5 + 0.5SL(C,C′),

and go to Step 4; Otherwise, set ST (�ABC,�A′B′C′) = 0, and go to
Step 4;

Step 4: If all possible pairs of triangles have been examined, go to Step 5;
Otherwise, go to Step 3.

Step 5: If ∃P{ST (�ABC,�A′B′P ) > ST (�ABC,�A′B′C′)} or
∃P{ST (�ABP,�A′B′C′) > ST (�ABC,�A′B′C′)}, set
ST (�ABC,�A′B′C′) = 0.

Step 6: The matching score between input and template fingerprints based on
the aligned edge pair (−−→AB,

−−−→
A′B′) is calculated as follows:

SG(−−→AB,
−−−→
A′B′) =

1
MN

{2+
∑

{P �=A,B}

∑
{P ′ �=A′,B′}

ST (�ABP,�A′B′P ′)} (10)

where M and N are the total number of minutiae in the input and template
fingerprints respectively.

Once the above Aligned-Edge-Guided Triangle Matching procedure has been
applied to all possible pair of aligned edges in EP , we can calculate the final
matching score of the input and template fingerprints as follows:

Matching Score(input, template) = max
{(−−→AB,

−−−→
A′B′

)∈EP}
SG(−−→AB,

−−−→
A′B′) . (11)
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Table 1. A summary of benchmark testing performance in terms of equal error rate
(EER in %) of our algorithm on FVC2000 and FVC2002 databases, and its comparison
with that achieved by the best performing algorithms from other academic institutions
in FVC2000 and FVC2002 competitions

Benchmark EER (in %)
Databases Our Algorithm Reference Algorithm

FVC2000 DB1 2.80 7.60
DB2 2.75 2.75
DB3 7.46 5.36
DB4 2.86 5.04

FVC2002 DB1 1.82 2.36
DB2 1.52 2.35
DB3 4.94 6.62
DB4 2.29 3.70

3 Experimental Results

We have performed a benchmark test of our proposed fingerprint matching algo-
rithm on FVC2000 [3, 11] and FVC2002 [4] databases by following exactly the
protocol specified by the FVC2000 and FVC2002 organizers. Table 1 summa-
rizes the equal error rates (EER in %) achieved by our algorithm on different
sub-corpora of the above two databases. Tables 2 and 3 summarize a snapshot
of the false acceptance rate (FAR in %) and false rejection rate (FRR in %) at
several operational points achieved by our algorithm on FVC2000 and FVC2002
respectively. Note that we used the following single setting of control parameters
for all the experiments:

– In Eq. (2), TH1 = 36, W = (1, 0.3 ∗ 180/π, 0.3 ∗ 180/π, 3, 6, 6)T ;
– In the procedure of finding the possible matching edges described in Section

2.3, THnum = 20, THedge = 15, THd = 8, THθ = π/6, THφ = π/6,
THrc = 3, THSL = 0.2;

– In the procedure of Aligned-Edge-Guided Triangle Matching described in
Section 2.4, THang = π/6. THd, THθ, THφ, THrc, THSL are set as the
above.

For comparison, in Table 1, we also quote the best performance achieved on
the same databases by research groups from academic institutions who partic-
ipated FVC2000 and/or FVC2002 competitions [3, 4]. The performance of our
algorithm is very encouraging. The “Response Time” for matching an input and
a template fingerprint, excluding time for minutiae extraction, is, on the aver-
age, approximately 0.079 seconds on a Pentium III 933MHz notebook running
Windows XP OS under a normal work load.

4 Summary

We have proposed a novel minutiae matching approach to fingerprint verifica-
tion. Given an input or a template fingerprint image, minutiae are extracted
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Table 2. A summary of the false acceptance rate (FAR in %) and false rejection rate
(FRR in %) at several operational points achieved by our algorithm on FVC2000

DB1 FAR 0.38 0.87 2.70 8.59 26.77
FRR 5.93 4.50 2.89 1.93 0.89

DB2 FAR 0.20 0.69 1.94 5.82 18.55
FRR 5.75 4.43 3.46 2.57 1.29

DB3 FAR 1.98 3.33 6.53 11.90 28.93
FRR 11.93 10.32 8.39 6.50 3.96

DB4 FAR 0.38 1.17 2.54 5.03 11.23
FRR 6.07 4.29 3.14 2.29 1.32

Table 3. A summary of the false acceptance rate (FAR in %) and false rejection rate
(FRR in %) at several operational points achieved by our algorithm on FVC2002

DB1 FAR 0.14 0.38 2.18 6.22 28.44
FRR 5.18 3.50 1.45 1.39 0.54

DB2 FAR 0.02 0.38 1.80 8.34 34.81
FRR 4.18 2.39 1.25 0.68 0.18

DB3 FAR 0.36 1.43 4.12 20.30 60.38
FRR 10.93 7.82 5.75 2.89 1.18

DB4 FAR 0.24 0.75 1.72 7.03 29.72
FRR 5.64 4.00 2.86 1.36 0.64

first. Using Delaunay triangulation, each fingerprint is then represented as a
special connected graph with each node being a minutia point and each edge
connecting two minutiae. Such a graph is used to define the neighborhood of a
minutia that facilitates a local-structure-based matching of two minutiae from
input and template fingerprints respectively. The possible alignment of an edge
in input graph and an edge in template graph can be identified efficiently. A
global matching score between two fingerprints is finally calculated by using an
aligned-edge-guided triangle matching procedure. The effectiveness of the pro-
posed approach is confirmed by a benchmark test on FVC2000 and FVC2002
databases. Our future works include 1) improving minutiae extraction algorithm,
especially for low quality fingerprint images, 2) refining our matching algorithm
to speed up the matching process, 3) improving the robustness of our matching
algorithms, 4) investigating the sensitivity of different settings of control param-
eters on matching performance, 5) investigating in depth the pros and cons of
our approach versus other approaches, 6) conduct benchmark testing on more
databases.
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Abstract. A novel fingerprint matching algorithm is proposed in this paper. The
algorithm is based on the minutiae local structures, that are invariant with respect
to global transformations like translation and rotation. The match algorithm has
been implemented inside a smartcard over the Java CardTM platform, meeting the
individual’s need for information privacy and the overall authentication proce-
dure security. The main characteristic of the algorithm is to have an asymmetric
behaviour, in respect to the execution time, between correct positive and nega-
tive matches. The performances in terms of authentication reliability and speed
have been tested on some databases from the Fingerprint Verification Competi-
tion 2002 (FVC2002). Moreover, our procedure has shown better reliability re-
sults when compared with related Java CardTM algorithms.

1 Introduction

The term “biometrics” is commonly used today to refer to the authentication of a person
by analyzing the physical characteristics (like fingerprints) or behaviour characteristics
(like voice or gait). Fingerprint matching is one of the most diffused biometric tech-
niques used in automatic personal identification or verification, because of its strong
reliability and its low implementation cost.

Performing a biometric verification inside a smart card is notoriously difficult, since
the templates tend to eat-up a large part of the card’s memory, while the biometric verifi-
cation algorithms are almost beyond the processing capabilities of standard processors.
With Match On Card (MOC) technology the fingerprint template is stored within the
card, unavailable to the external applications and the outside world. In addition the
matching decision is securely authenticated internally by the smartcard itself: in this
way, the card only trusts itself for eventually unblocking stored sensitive information,
such as digital certificates or private keys for digital signature. Our verification MOC
algorithm has been developed to work in this very strictly bounded environment.

The algorithm is based on some minutiae characteristics (ridge pattern micro char-
acteristics) and more precisely on their local structure information, so there is no need
to pre-align the processing fingerprint templates, that would be a difficult task to im-
plement inside a smartcard. Moreover it shows an asymmetric execution time between
correct positive matches (same fingerprint) and correct negative matches (two different
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fingers), and this because the match procedure stops immediately when few minutiae
pairs result in a positive match. If this check doesn’t succeed, for example if the two
fingers are different or if the two acquisitions of the same finger are very disturbed, the
procedure is fully executed lasting longer.

2 Background

The most evident structural characteristic of a fingerprint is the pattern of interleaved
ridges and valleys that often run in parallel; at local level, other important features
called minutiae refer to ridge discontinuities. Most frequently the minutiae types can be
individuated by terminations, where a ridge line ends, and bifurcations, where a ridge
bifurcates forming a “Y”. The minutiae can be used in fingerprint matching since they
represent unique details of the ridge flow and are considered as a proof of identity.

The template, in its generic definition, is a mathematical representation of the fin-
gerprint “uniqueness” to be used later during the matching phase: the template acquired
during enrollment is defined as the reference template and it is in some way associated
with the system user identity, while the template acquired during the verification phase
is defined as the candidate template.

Matching the templates represents an extremely difficult problem because of the
variability in different impressions of the same fingers; most important affecting factors
introduced during image acquisition are the displacement and the rotation depending on
the different positioning of the finger on the acquisition sensor, non-linear distortions
due to the skin plasticity and partial overlap, since a part of the fingerprint can fall
outside of the acquisition area and therefore different samples of the same finger could
correspond only on a smaller area.

The algorithms used to resolve fingerprint matching can be classified [1] in three
main branches: correlation-based [6], where the match is performed by superimposing
two fingerprint images and computing the correlation between corresponding pixels (in
this case the template is directly the finger image); minutiae-based, whose theory is fun-
damentally the same as for manual fingerprint examiners, and ridge feature-based [5],
where the fingerprints are compared in terms of ridge pattern features other than the
minutiae or pixels intensity, like texture information or sweat pores.

Focusing on the minutiae based algorithms, the match procedure essentially consists
in finding the maximum number of corresponding minutiae between two templates; this
problem can be addressed also as a more general point pattern matching problem [13].
We can subdivide minutiae matching class into two more branches: global minutiae
matching [3] requires a first fingerprint alignment phase that subsequently permits to
match the aligned templates. In local minutiae matching [4] two fingerprints are in-
stead compared according to their local minutiae structures, which are characterized
by attributes invariant with respect to global transformations such as translations or ro-
tations. Local matching supplies simplicity, low computational complexity and higher
distortion tolerance, while a global matching grants a high distinctiveness.

Regarding smartcard related work, in [10] is described a very simple O(n2) match-
ing algorithm, where n is the minutiae number in one template. For a given minutia in
the reference template, the algorithm finds all the minutiae in the candidate template



An Asymmetric Fingerprint Matching Algorithm for Java CardTM 281

for which the distance between position coordinates and the difference in orientation
angles are below the predefined thresholds. If more than one can be matched with the
same reference minutia, this conflict is resolved by choosing the geometrically nearest.

One specific algorithm for fingerprint matching on the Java CardTM platform, using
a feature extraction environment similar to ours, is described in [11]; it uses two distinct
algorithms on different feature types (hybrid matcher) and at the end the overall score
is calculated as a linear combination of the two independent sub-scores. The first algo-
rithm is based on the minutiae features and a graph structure is built starting from the
core point position in the fingerprint, then visiting the neighbor minutiae; the matching
procedure has been inspired from the point-pattern matching algorithm in [12] and its
purpose is to find a spanning ordered tree touching as many nodes as possible in the
two graphs. The second algorithm is a ridge feature-based and has been implemented
as described in [5]; this algorithm is very fast and can be easily implemented on a
smartcard, since the match consists only in finding the euclidean distance between two
feature vectors.

3 Our Matching Algorithm

3.1 Features

In our algorithm implementation we have adopted the NIST Fingerprint Image Soft-
ware (NFIS) [2], an open source toolkit which includes the MINDTCT minutiae data
extractor used to extract the minutiae from a given fingerprint image. We have used this
information to derive additional features directly used in our matching algorithm; these
features are computed for each minutia in respect to its neighbors, and so each neighbor
is described by the following four features (see also Fig. 1):

– the euclidean distance between the central minutia and its neighbor minutia (seg-
ment D in Fig. 1); referred to as Ed in the rest of the paper.

– the angle between segment D and the central minutia ridge direction (angle α in
Fig. 1); latterly referred to as Dra.

– the difference angle between central minutia and neighbor ridge orientation angle
(θ1 − θ2 in Fig. 1); latterly referred to as Oda.

– the ridge count between central and neighbor minutiae: given two points a and b,
the ridge count between them is the number of ridges intersected by the segment
ab (in Fig. 1 ridge count value is 1); latterly referred to as Rc.

Choosing the maximum number of the neighbors is very important for the system
reliability performances (but in contrast with the matching speed), and so we have de-
cided to increase this number from the default MINDTCT value (5) to the new value of
8. We have also modified the MINDTCT C source code to consider only the neighbors
with a minimum reliability threshold: the modified MINDTCT finds for every minutia
its eight nearest neighbors in respect to the euclidean distance, with a good reliability
estimation given by a predefined threshold value. If the number of neighbors for a minu-
tia found in this way is low (i.e. less than 5), then the neighbors are searched again with
a lower reliability threshold (the reliability evaluation is found by MINDTCT); we have
introduced all these changes to build a “good” neighborhood with more information,
enough to face the possible lack of some minutiae in the template.



282 Stefano Bistarelli, Francesco Santini, and Anna Vaccarelli

Fig. 1. Features graphical description

3.2 Algorithm Description

Our proposed matching algorithm computes how much the neighborhood of a minutia
in the candidate template is similar to the neighborhood of each minutia in the reference
template; after this scan, the two most similar minutiae are matched and then discarded
from subsequent scan phases concerning other different minutiae of the candidate tem-
plate. All these similarity measures are summed together during the process, and at the
end the algorithm can decide if the two templates match by applying a threshold on this
global score. Our procedure is based on the minutiae local structures (Section 2).

But as said before, matching on smartcard environment is bounded by the low com-
putational complexity due to the hardware simplicity (CPU limitations first of all), and
thus waiting for a complete minutiae match could lead to a waiting time too long for the
user. In our algorithm we solve this problem by stopping the computation as soon as it
is possible to assert, with satisfactory confidence, that the considered templates belong
to the same fingerprint. To realize this improvement, our algorithm stops as soon as it
finds some minutiae pairs (i.e. a number between 2 and 5) matching with a very good
similarity measure, or even promptly when only the last examined minutiae pair has a
matching value less than a very rigourous threshold; otherwise, if these two conditions
are not fulfilled, the algorithm explores all the minutiae pairings space. This relaxation
showed a very good security performance in our tests and provided an evident speed
improvement in the matching decisions regarding positive matches (Section 4). The
delay for unsuccessful matches scanning all the minutiae list is not of much interest,
because it is clearly more important to gain a high execution speed while verifying the
true card-owner identity than quickly rejecting an impostor!

As input, the matching procedure receives both the neighbor features information
for the one by one candidate minutia to be matched, and the entire reference template.
The algorithm scans sequentially the minutiae of the reference template until a good
match for the input minutia is found (reference 1 in Fig 2). Both candidate and reference
minutiae lists are stored according to the increasing minutia reliability value: in this way
we try to stop the procedure more quickly by scanning a reduced portion of the template
minutiae lists, since a minutia with a high reliability in a given template, if not cut away
by partial overlapping (Section 2), will have probably a high reliability also in other
templates obtained from the same finger. So the stopping conditions can be met earlier
than in a casual disposition of the minutiae in the list. Moreover, it is obviously better
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to prematurely stop the procedure with few but “good” minutiae than with low quality
ones. The chosen matching minutia in the reference template is then marked as “already
matched” and it is not considered in the successive iterations.

To compute the dissimilarity between two minutiae in different templates, the algo-
rithm uses the information about the neighbor features and executes the following four
steps in sequence (4 in Fig 2):

1. To find the difference in absolute value between corresponding features: EdDiff
=| Ed1 − Ed2 |, rcDiff =| Rc1 − Rc2 |, draDiff =| Dra1 − Dra2 | and
odDiff =| Oda1 −Oda2 |.

2. To check that every feature difference value is below the corresponding acceptance
threshold; if only one difference value exceeds the relative threshold, the two neigh-
bors cannot correspond in the two neighborhoods (edDiff must not be greater
than edDiffThr, rcDiff than rcThr, edDiff than draThr and odDiff than
odThr). The set of the four feature difference thresholds can be globally defined as
the features bounding box, which makes the algorithm tolerant to small non-linear
distortions.

3. To multiply each feature difference for the relative weight value: edWghtDiff =
edDiff∗edWght, rcWghDiff = rcDiff∗rcWght, odWghtDiff = odDiff
∗odWght and draWghtDiff = draDiff ∗ draWght. The different weight val-
ues are necessary to attribute more importance to the features that match better, for
example the euclidean distance. To obtain each weight value, we have also divided
by the respective feature difference bounding box threshold, since we want these
differences to be normalized and homogenous.

4. To sum together all the four weighted differences to represent the global dissim-
ilarity between the two neighbors: NeighDissimilarity = edWghtDiff +
rcWghtDiff + draWghtDiff + odWghtDiff .

Following these steps, the algorithm finds for the first neighbor (in the casual neigh-
borhood order) of the reference minutia, the most similar neighbor in the input minutia
among those satisfying the bounding box checks; the most similar is the one for which
the algorithm finds the lowest NeighDissimilarity value. The chosen most similar neigh-
bor in the reference minutia is then marked and not considered while matching other
neighbors. The obtained NeighDissimilarity value is then added to the global similarity
score between the minutiae, MinDissimilarity. The procedure is repeated exactly for all
the other neighbors (excluding the already marked ones, 3 in Fig 2) or until the required
minimum number N (i.e. 4) of neighbors is matched. At the end of the two neighbor-
hoods scanning (at the end of the for, 2 in Fig 2), if the procedure has found less than N
matching neighbor pairs between the two minutiae (6 in Fig 2), then these two minutiae
are not considered as matching because their neighborhoods agree on too few evidences
to be a reliable matching minutiae pair, even if the NeighDissimilarity value is very low.
At the same time, this procedure stops immediately as we match the previous N thresh-
old value of neighbors (5 in Fig 2), because we have seen that stopping before the whole
neighborhood scan is sufficient to grant a good reliability and, meanwhile, the match
time is considerably speeded up.

The MinDissimilarity score between the minutiae is finally divided by the number
of matched neighbor pairs and then added to the global dissimilarity value between the
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{MINUTIAE MATCHING PROCEDURE}

- Input:* one candidate template minutia m1;
* minutiae list of the reference template;

1 For each minutia m2 in reference template not yet matched{
2 For each neighbor n2 of minutia m2 {

- MinDiff = upperLimit;
- ChosenNbr= null;

3 For each not already matched neighbor n1 of m1 {
4 - Executes the four steps between the n1-n2

corresponding features (directly processes next n1
if the bounding box rejects the controls);

If (NeighDissimilarity < MinDiff) {
- MinDiff = NeighDissimilarity;
- ChosenNbr = n1; }

}
If (ChosenNbr != null) {

- ChosenNbr is marked as "matched";
- MinDissimilarity += MinDiff;
- number of matched neighbors NM= NM + 1; }

5 If (NM > N)
- m1 and m2 are "matched": break from this For;

}
6 If (NM < N)

- Continue with the next minutia m2
else {

7 - m1 and m2 are "matched": TemplDissimilarity+=
(MinDissimilarity \ NM);

- break from this For;
}

}
- m1_m2_MatchCost = MinDissimilarity \ NM;
If (m1 and m2 are "matched") {
- MinutiaeNMatched++;
- Mark reference minutia m2 as "matched";

8 If (m1_m2_MatchCost < VeryOptValue)
- STOP: the match is accepted;

If (m1_m2_MatchCost < OptValue)
- OptMinNumber++;

9 If (OptMinNumber == OptNumberThreshold)
- STOP: the match is accepted;

}
- Process another minutia m1 if no stopping condition
has occurred or if m1 and m2 are not "matched";

Fig. 2. Matching core function; text reference is in the first column

candidate and reference templates (7 in Fig 2): the TemplDissimilarity; the same algo-
rithm is then executed for the next candidate template minutia in reliability order. When
all of the input minutiae have been processed, this global TemplDissimilarity value on
templates is divided by the number of matched minutiae MinutiaeNMatched, finding in
this way the mean. A comparison between a match threshold and this mean value can
consequently be used to decide if the two templates belong to the same fingerprint (if
the mean is below the threshold): lower TemplDissimilarity expresses more affinity.

That, therefore, is the full algorithm description, but as said before, the matching
procedure will probably end before the complete minutiae list of the candidate template
has been processed: if at the end of the minutiae matching routine the dissimilarity value
between two matched minutiae is “very good”, that is below a tightening threshold Opt-
Value, the counter OptMinNumber is incremented and as soon as it reaches a predefined
constant value corresponding to the threshold OptNumberThreshold, the whole match-
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ing procedure can be stopped with a positive result (8 in Fig 2). The algorithm can be
positively stopped also as soon as it finds only one minutiae pair with an “exceptionally
good” MinDissimilarity value below the VeryOptValue threshold (9 in Fig 2), which is
intended to be much stricter than the previous OptValue.

The described algorithm complexity is O(n2), where n is the number of the minutiae
in a single template, even if in practice, the approach of stopping the computation with
few minutiae shows a significant speed improvement.

3.3 Algorithm Implementation

The fingerprint matching algorithm described in Sec. 3.2 has been fully developed in
Java CardTM using the Java CardTM 2.1.2 API and finally deployed on Cyberflex Access
32Kb Java CardTM with the Cyberflex Access SDK (version 4.3). The chosen smart-
card has 32Kbyte of EEPROM, about 1Kbyte of RAM memory distributed between the
transaction mirror, stack and transient space, 8 bit CPU at up to 7.5Mhz external clock
frequency and the transmission protocol used is the T=0 at 9600 bit/sec.

The algorithm has been developed by implementing the Java CardTM Biometric
API [9] realized by Java Card ForumTM (JCF): this application programming interface
ensures the interoperability of many biometric technologies with Java CardTM and al-
lows multiple independent applications on a card to access the biometric functionalities
(like verification); this is ideal to secure the digital signature, storing and updating ac-
count information, personal data (i.e. health information) and even monetary value.
Clearly, our application manages even the enrollment and match requests coming from
the external PC applications through several Card Acceptance Device (CAD) sessions.

Java CardTM technology [7] adapts the JavaTM platform for the use on smartcards,
smart buttons or other simple devices, like USB tokens. This adaptation produces a
global reduction of the platform functionalities and its result is a substantial decreasing
of the expressive capacity. Benefits and drawbacks are identical to those of its “mother
technology”: high portability and programming/developing quickness, but also a re-
duced execution speed due to the additional bytecode interpretation layer.

Due to the environment constraints like the EEPROM space, we have limited the
maximum number of minutiae forming the template to the 20 most reliable, and the
neighbor feature values have been sampled to be then stored in the low capacity Java
CardTM data types as byte type (the maximum minutia occupation is 40 byte).

4 Performance Results

To measure the performance, we used the Finger Verification Competition 2002 [8] edi-
tion (FVC2002) fingerprint databases, which, as we know, is the only public benchmark
(together with the other editions of the same contest, FVC2000 and FVC20041) allow-
ing the developers to unambiguously compare their algorithms. In particular, we have
adopted the two databases respectively collected using the optical sensor “FX2000” by

1 We have used the databases from FVC2002 since the FCV2004 collections were granted to us
only a few weeks ago. For the permission to use these collections, we acknowledge Raffaele
Cappelli, Dario Maio and Davide Maltoni from the Biometric Systems Lab (University of
Bologna)
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Biometrika and the optical sensor “TouchView II” by Identix; each of the databases is
100 fingers wide and 8 impressions per finger deep. Moreover, we have analyzed our
algorithm in respect to the one described in [11], using the proprietary image database
provided to us by the authors2 and made up of about 550 samples collected using the
FX2000 optical scanner model; henceforth referred to as the “Hybrid Database”.

The most important biometric systems evaluation parameters are the False Accep-
tance Rate (FAR), False Rejection Rate (FRR), the Equal-Error Rate (EER), which de-
notes the error rate for which FAR and FRR are identical, and the Receiver Operating
Characteristic (ROC) curve. Other interesting performance indicators can be derived to
show the algorithm’s behaviour for applications that need high security: for example,
the FAR100 (lowest achievable FRR for a FAR ≤ 1%), FAR1000 (lowest FRR for FAR
≤ 0.1%) and ZeroFAR (the lowest FRR for FAR = 0%). Another important factor to be
considered, especially for MOC algorithms, is clearly the average matching time.

The test distribution between positive and negative matches can greatly influence
the declared performances, so we decided to run the same tests as the FVC2002 compe-
tition [8] between the same fingerprint images: 2,800 iterations to find FRR and 4,950
to find FAR. The same test distribution criteria of FVC2002 were adopted also for the
Hybrid Database (1,485 FAR tests and 2,449 for FRR). We also kept the same algorithm
parameters configuration during the tests of all these three image collections. However,
better results could be obtained by suitably adapting the parameters to each database.
In Table 1 we present the obtained reliability results, where “-” means that the score is
not achievable with the particular parameter configuration used.

Table 1. Overall performance results of our algorithm

Fingerprint database EER FAR100 FAR1000 ZeroFAR

FVC2002 FX2000 8.5% 10.6% 12.5% -
FVC2002 TouchView II 8.5% 10.6% 12.3% -

Hybrid Database 0.48% 0.44% 0.53% 0.57%

Fig. 3 shows the FAR-FRR and the ROC curves for the tests on the FVC2002
FX2000 database. The strange shape of the graph lines (in respect to classic ones) comes
from the decision to stop the algorithm even with few but “good” minutiae pairs. This
decision is independent from the final matching score and so setting the match thresh-
old to a low or a high value does not correspondingly results in a FAR or a FRR of 0%
and 100%. For example, the FRR curve in Fig. 3 starts with a match threshold equal to
0 from about 14% and not 100%, since most of the matches has been however accepted
using one of the stopping conditions described in Sec. 3.2. Moreover, these conditions
introduce only less than 5% errors in the total of the false matches accepted.

For our main parameters configuration and our purposes we were essentially inter-
ested in giving the best FAR1000 performance, but we have tested other configurations
that can improve EER to about 7% or take ZeroFAR to 15.6%.

In Fig. 4 we report, for two databases, the algorithm match time distribution with
respect to the correct FRR tests. We can observe that an on card matching time of about

2 For the permission to use their fingerprint database, we thank Tommaso Cucinotta and Ric-
cardo Brigo from ReTiS Lab of Sant’Anna School of Advanced Studies (Pisa)
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Fig. 3. FAR-FRR curves and ROC for FVC2002 FX2000 database

1-8 seconds is obtained for nearly all of the matches (about 90% for the Hybrid Db.).
We have noticed that the minimum time of 1 second has been achieved frequently in
these tests and can be obtained even more often using a good enrollment fingerprint
image, since in this case the two stopping conditions of Sec. 3.2 can be met very often.
The maximum time is instead about 45 seconds, but this result is obtained only when
the two acquisitions belong to different fingerprints (not interesting for our purposes)
or they are very disturbed: this prevents the algorithm for quickly stopping without
exploring all the minutiae pairings (image quality affects the average match time).

All the tests have been run on a PC with JavaTM , but using the exact same Java
CardTM code downloaded in the card, since the second language is a subset of the first;
in this way the same security performances are fully achievable even on the smartcard.
We derived the matching time for the card application from the average time needed
to match one single minutia on the card (measured directly in this environment), and
multiplying for the minutiae number needed to stop the match (calculated in PC tests).

We have also compared our work on the Hybrid Database provided by the authors
of [11], developed to be executed in a similar Java CardTM environment. Results show
that we nearly halved the EER percentage of 0.8% achieved by that algorithm, obtaining
a value of 0.48% (Table 1). Our algorithm is better also for the matching execution time:
1-8 seconds for nearly all of the matches (ours), against 11-12 seconds in [11].

It is important to point out that using a good quality enrollment image considerably
improves the overall security performances: FAR1000 value can be reduced to about
5-6% as measured from other tests, mitigating also the partial overlapping problem.
The hypothesis of having a good quality template is not too restrictive and it is easily
applicable, since the enrollment phase is accomplished only one time at the release of
the smartcard and the quality of the enrolling image can be easily checked. Therefore,
using a good image at enrollment improves both reliability and speed performances.

5 Conclusion

In this paper we have proposed a new fingerprint matching algorithm tolerant to typical
problems such as rotation, translation and ridge deformation. Our procedure achieves
a very good speed performance for the Java CardTM platform restrictions: 1-8 seconds
for most of the positive match tests. The high reliability, as determined from our anal-
ysis, can be further greatly improved using a good enrollment image, thus scoring a
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Fig. 4. Average smartcard match time on correct FRR tests, sampled in time intervals

FAR1000 result of about 5-6%, which makes the algorithm implementation feasible in
the live-scan applications for identity verification (like a MOC system). Our procedure
is stopped as soon as the two templates are considered to belong to the same finger,
and so the algorithm stops before in correct FRR tests and later in correct FAR ones,
showing an asymmetric behaviour.

References

1. D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of Fingerprint Recognition,
Springer, 2003, ISBN 0-387-95431-7.

2. User’s Guide to NIST Fingerprint Image Software (NFIS), NISTIR 6813, National Insitute
of Standards and Technology.

3. J.H.Wegstein, An Automated Fingerprint Identification System, U.S. Government Publica-
tion, Washington, 1982.

4. N. K. Ratha, R. M. Bolle, V. D. Pandit, V. Vaish, Robust Fingerprint Authentication Using
Local Structural Similarity, IEEE 2000.

5. A. K. Jain, S. Prabhakar, L. Hong and S. Pankanti, Filterbank-based Fingerprint Matching,
IEEE Transactions on Image Processing, Vol. 9, No.5, pp. 846-859, 2000.

6. T. Hatano , T. Adachi, S. Shigematsu, H. Morimura, S. Onishi, Y. Okazaki, H. Kyuragi, A
Fingerprint Verification Algorithm Using the Differential Matching Rate, ICPR02, III vol-
ume: pp. 799-802, 2002.

7. C. Enrique Ortiz, An Introduction to Java CardTM Technology, Part 1-2-3, 2003.
8. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman and A. K. Jain, FVC2002: Second Finger-

print Verification Competition, Proc. of International Conference on Pattern Recognition, pp.
811-814, Quebec City, August 11-15, 2002.

9. Java CardTM Biometric API White Paper (Working Document), Version 1.1, NIST/Biometric
Consortium, 2002.

10. Y.S.Moon, H.C. Ho, K.L. Ng, A Secure Card System with Biometric Capability, IEEE Con-
ference on Electrical and Computer Eng., Volume 1, pp 261-266, 1999.

11. T. Cucinotta, R. Brigo, M. Di Natale, Hybrid Fingerprint Matching on Programmable Smart-
Cards, TrustBus 2004, Springer LNCS volume 3184/2004 p. 232.

12. P. B. van Wamelen, Z. Li, S. S. Iyengar, A Fast Algorithm for the Point Pattern Matching
Problem, 2000.

13. S. Bistarelli, G. Boffi, F. Rossi, Computer Algebra for Fingerprint Matching, Proc. Interna-
tional Workshop CASA’2003, Springer LNCS vol. 2657 2003.



Scenario Based Performance Optimisation
in Face Verification Using Smart Cards

Thirimachos Bourlai, Kieron Messer, and Josef Kittler

Centre of Vision, Speech and Signal Processing
School of Electronics and Physical Sciences

University of Surrey
Guildford GU2 7XH, UK

{t.bourlai,k.messer,j.kittler}@surrey.ac.uk

Abstract. We discuss the effect of an optimisation strategy to be applied to im-
age data in a smart card based face verification system. Accordingly, we pro-
pose a system architecture considering the trade-off between performance ver-
sus the improvement of memory and bandwidth management. In order to estab-
lish the system limitations, studies were performed on the XM2VTS and FERET
databases demonstrating that, spatial and grey level resolution as well as JPEG
compression settings for face representation can be optimised from the point of
view of verification error. We show that the use of a fixed precision data type
does not affect system performance very much but can speed up the verification
process. Since the optimisation framework of such a system is very complicated,
the search space was simplified by applying some heuristics to the problem. In
the adopted suboptimal search strategy one parameter is optimised at a time. The
optimisation of one stage in the sequence was carried out for the parameters of
the subsequent stages. Different results were achieved on different databases, in-
dicating that the selection of different optimum parameters for system evaluation
may call for different optimum operating points.

1 Introduction

Designing an automatic personal identity verification system based on facial images is
a challenging task [10, 11]. In a conventional architecture of a face verification system,
the biometric template is stored in a database on the server where the verification is also
carried out. Although acceptable for some applications, this mode of operation raises
many privacy and security issues, which compromise user acceptability. To alleviate
these problems, a favoured system setup was proposed in [2] where the biometric tem-
plate is stored on a smart card together with the verification algorithm. In this novel
distributed architecture (see Figure 1) the decision making is carried out on the smart
card itself. No user data ever leaves the card for a verification making the system more
secure and user friendly.

However, due to the severe constraints and limitations that small computing plat-
forms often impose (such as low computational power, small storage capacity and poor
communication bandwidth of the smart card), special considerations of the system de-
sign issues have to be made:

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 289–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Proposed smart card face verification system

– The verification algorithm needs to be computationally simple.
– The size of the biometric template to be stored on the card needs to small.
– The amount of probe image data transferred to the smart card needs to be limited.
– Smart cards do not yet have floating point co-processors so the number of mathe-

matical operations need to be limited and number bit representation reduced.

In order to identify an optimised trade off between the computational complexity of the
system (server or smart card) and the system performance (as measured by the veri-
fication error), many experiments have been performed. In our previous work [3], we
determined the lowest number of bits needed for the template stored on the card; the
minimum amount of data a probe image can be represented with and whether the per-
formance is affected by using fixed point arithmetic. This was done independently for
each of these parameters. We demonstrated that in general the computational complex-
ity of our face verification system could be safely reduced without an corresponding
increase in the verification error.

In [2] it has already been demonstrated that CS-LDA [5] is a computationally sim-
ple face verification algorithm that can be effectively used on smart cards. CS-LDA also
achieves very low verification error rates. However, to enable the technique to run on
smaller and cheaper cards the matching algorithm can be speeded up by reducing the
bit resolution of the mathematical operations. In our experiments it has been found that
one can significantly reduce the bit resolution without error degradation.

In practice, the storage and communication requirements of the system can be de-
creased. Therefore, the combined reduction of both spatial and grey level resolutions
was investigated for the normalised face images, along with the use of the baseline
JPEG compression scheme on both template and probe images [1]. Again it has been
found that, in most cases examined, the spatial resolution can be significantly reduced
and high compression rates can be used without any considerable increase in the ob-
served error rates.

In this paper we revisit the performance versus computational complexity trade-off
concerns and establish a optimisation methodology for combining and selecting all of
these system parameters jointly. Since the optimisation framework of such a system
is very complicated in terms of performance and computational cost, the search space
was simplified by applying some heuristics to the problem. In the adopted suboptimal
search strategy one parameter is optimised at a time. The optimisation of one stage
in the sequence was carried out for the parameters of the subsequent stages. We also
demonstrate that these optimum parameters change for each operational scenario as
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different optimum operating points were identified when using different configurations
and images from the XM2VTS and FERET datasets.

The rest of the paper is organised as follows. In the next section the database and
protocols used in our experiments will be described. In Section 3 the experiments and
results are presented before finally, some conclusions are made.

2 Databases and Protocols

For the purpose of this study, XM2VTS and FERET face databases were used in the
experiments. XM2VTS is a multi-modal database consisting of face images, video se-
quences and speech recordings taken from 295 subjects at one month intervals. In this
database, the data acquisition was distributed over a long period of time that resulted
in significant variability of appearance of clients, e.g. changes of hair style, facial hair,
shape and presence or absence of glasses (see Figure 2). The XM2VTS [6] database
contains 4 sessions. During each session two head rotation and and ”speaking” shots
(subjects are looking just below the camera while reading a phonetically balanced sen-
tence) were taken. From the ”speaking” shot a single image with a closed mouth was
chosen. Two shots at each session, with and without glasses, were acquired for people
regularly wearing glasses.

Fig. 2. Sample images from XM2VTS database

For the purpose of personal verification, a standard protocol for performance as-
sessment has been defined. This is the Lausanne protocol[4], which splits randomly all
subjects into a client and impostor groups. The client group contains 200 subjects and
the impostor group is divided into 25 evaluation and 70 test impostors. Eight images
from 4 sessions are used. 200 subjects were used for training, that results in a total of
600/800 face images for configuration C1/C2.

From the sets containing the face images, training, evaluation and test set is built.
There exist two different protocol configurations that differ by selecting particular shots
of people into the training, evaluation and test sets. The training set is used to construct
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client models; the evaluation set produces client and impostor access scores (used to
compute a client-specific or global threshold that determines acceptance or rejection
of a person); and the test set is selected to simulate realistic authentication tests where
impostor’s identity is unknown to the system. According to the Lausanne protocol the
threshold is set to satisfy certain performance levels on the evaluation set. Finally, the
performance measures of the verification system are the FA and FR rate as explained
above. The XM2VTS protocol is an example of a closed-set verification protocol where
the population of clients is fixed; system design can be tuned to the clients in the set.

FERET is a program ran from 1993 through 1997, that was sponsored by the De-
partment of Defence’s Counterdrug Technology Development Program through the De-
fence Advanced Research Products Agency (DARPA). The primary aim was to develop
automatic face recognition capabilities that could be employed to assist security, intel-
ligence and law enforcement personnel in the performance of their duties. The FERET
image database [7] was assembled to support government monitored testing and evalu-
ation of face recognition algorithms using standardised tests and procedures. The final
database consists of 14051 eight-bit grey scale images of human heads with views rang-
ing from frontal to left and right profiles.

The images were collected in 15 session, acquired in a semi-controlled environment
but using the same physical setup in each photography session to maintain a degree of
consistency. However, because the equipment had to be reassembled for each session,
there was variation from session to session (see Figure 3). Images of an individual were
acquired in sets of 5 to 11 images. Two frontal views were taken labelled fa and fb,
where we have a different facial expression. For 200 sets of images, a third frontal im-
age was taken, labelled as fc, using a different camera and different lighting. The rest
of the images were collected at various aspects between right and left profile. Simple
variations to the database were added by the photographers by taking a second set of
images for which the subjects were asked to put on their glasses and/or pull their hair
back. In some cases a second set of images of a person was taken on a later date (dupli-
cate set). Such a set includes variations in pose, scale, illumination and expression of a
face. The total number of clients that results in a total of 3570 face frontal images (used
for training) is 1201 subjects.

Fig. 3. Sample of frontal images from FERET database [7]

3 Experiments and Results

Our face verification system has been evaluated via a set of experiments using both the
XM2VTS and FERET data sets in a total of four different testing configurations:
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– XM2VTS C1 Configuration I for the XM2VTS database.
– XM2VTS C2 Configuration II for the XM2VTS database.
– FE-XM2VTS C1 Configuration I for the XM2VTS database but with FERET data

set used to generate the initial statistical model.
– FE-XM2VTS C2 Configuration II for the XM2VTS database but with FERET data

set used to generate the initial statistical model.

The first two test protocols represent a closed-set protocol where all the enrolled clients
are known to the system. The second two protocols represent an open set protocol -
clients are not known to the system prior to enrolment. The system performance levels
of the verification system were measured in terms of half-total error rate (HTER) on the
test set of each protocol obtained using the EER threshold determined from the ROC
curve computed on an independent evaluation set. Both ROC curves on the evaluation as
well as on the test set would produce additional information about the system behaviour.
However, because of the lack of space, these curves could not be included.

3.1 Optimisation Framework

The optimisation framework of our smart card face verification system in terms of per-
formance and computational cost is very complicated because it includes a large number
of degrees of freedom. It consists of 4 different testing configurations, 8 grey level reso-
lutions (8bpp down to 1bpp), 16 spatial resolutions (110x102 down to 8x7), n-bit preci-
sion fixed point numbers (n = [1−16]), and finally 4 different operational stages where
JPEG compression is applied using 19 different quality factors ranging from 5 to 100.
Obviously, global optimisation requires an exhaustive search of 622592 experiments,
which renders the effort not feasible. This is without including the pre-processing pa-
rameters that (for instance) a different filtering technique would introduce i.e. mask size
and variance, or the number of PCA components necessary for achieving an optimum
performance. In order to simplify the search space and to find a reasonable solution to
such a problem some heuristics were applied. In the adopted suboptimal search strategy
one parameter is optimised at a time. The optimisation of one stage in the sequence was
carried out for the parameters of the subsequent stages set out as follows:

– The optimum grey level and spatial resolution for each dataset scenario was identi-
fied without applying any compression.

– Joint optimisation of JPEG compression quality factor and operational scenario (per
testing configuration) was performed under the condition of fixed spatial resolution
of 55x51 and grey level resolution kept to maximum (8bpp).

– The determined optimal JPEG compression operational scenario was applied and
the optimal compression quality factor was identified under the condition of using
the optimal spatial resolution and grey level resolution kept to maximum (8bpp).

– The optimum n-bit precision fixed point number was identified to lie within the
range n = [5 − 14] independently of the other parameters. This parameter was
applied at the end of the previous stage (avoiding also to introduce statistical errors
to all stages).
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By adopting such a strategy, interesting results were obtained and in general dif-
ferent operating points were defined for the different testing configurations. But most
importantly, the number of the experiments performed was limited to 1200 (approxi-
mately 519 times less computational effort).

3.2 Grey Scale Resolution

In this experiment we investigated the effect on performance by altering the grey-scale
pixel resolution of the (55x51) normalised probe images in the training set. Since an 8
bit camera is used, the initial performance of our system was measured by using 8 bits
per pixel for each face image. Then, the grey-scale resolution was reduced by a factor of
1bpp each time before building the PCA and LDA model. Both protocols in XM2VTS
database were tested when this dataset was used exclusively and when FERET was used
for training and XM2VTS for testing.

Table 1. Results obtained on XM2VTS when grey-scale resolution was reduced. (FE-XM2VTS
= FERET was used for training and XM2VTS for testing)

Precision XM2VTS C1 XM2VTS C2 FE-XM2VTS C1 FE-XM2VTS C2
8bpp 0.04588 0.02644 0.06816 0.04028
7bpp 0.06149 0.03859 0.08804 0.04888
6bpp 0.1773 0.14641 0.188 0.1645
5bpp 0.3835 0.3438 0.3282 0.3396
4bpp 0.4718 0.44 0.4203 0.4436
3bpp 0.5042 0.4868 0.459 0.4826
2bpp 0.5106 0.5002 0.4808 0.495
1bpp 0.5108 0.50735 0.4888 0.4982

From the results obtained (see table 1), it was concluded that the use of 8-bit grey-
scale pixel resolution yields the best overall performance. However, system behaviour
suggests that performance could be further improved if more than 8bpp are used.

3.3 Spatial Resolution

In this experiment the optimum spatial resolution for each dataset and configuration
was obtained. The initial raw face images of both XM2VTS and FERET datasets were
geometrically and photometrically normalised to a spatial resolution that was varied
from 110x102 down to 8x7. The grey-scale resolution was kept at 8 bpp. Table 2 shows
a summary of the results obtained.

For the XM2VTS database the image size can be reduced from 110x102 to 18x16
(CI) and to 40x37 (CII) for each configuration respectively. Over 38(5) times less data
need to be sent to the smart card. Therefore, the computation load for the template
matching on the smart card is significantly reduced while the performance is slightly
improved. Comparable results are observed when FERET was used for training and
XM2VTS (CI) for testing. However, in configuration CII an optimum operating point
was obtained at almost the highest resolution, suggesting the need for another strategy
to be adopted in order to minimised data transfer and processor load.
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Table 2. Results obtained on XM2VTS when different spatial resolution was used. (FE-XM2VTS
= FERET was used for training and XM2VTS for testing)

IMAGE SIZE XM2VTS C1 XM2VTS C2 FE-XM2VTS C1 FE-XM2VTS C2

8x7 0.08025 0.08863 0.10091 0.11121
10x8 0.05482 0.06218 0.07652 0.07703

13x11 0.05296 0.04642 0.07053 0.06392
15x13 0.04662 0.03802 0.07319 0.05735
18x16 0.03977 0.03208 0.06524 0.04980
20x18 0.04340 0.03114 0.06811 0.04535
25x23 0.04190 0.02575 0.06014 0.04675
30x28 0.04025 0.02758 0.06248 0.04121
40x37 0.04225 0.02214 0.06281 0.04304
55x51 0.04588 0.02644 0.06816 0.04028
61x57 0.04409 0.02465 0.06828 0.03891
70x65 0.04494 0.02343 0.06951 0.03805
80x75 0.04777 0.02535 0.06788 0.03472
90x85 0.04711 0.02522 0.06994 0.03367

100x93 0.04680 0.02524 0.07248 0.03177
110x102 0.04647 0.02350 0.07437 0.03559

3.4 Fixed Point Arithmetic

In the absence of a floating point co-processor on the smart card, the use of the built-
in simulated floating point unit will result in an increase of the overall computational
cost on the card. By using n-bit precision data types on the server instead, we are able
to use integers on the smart card, which can be extremely advantageous in terms of
computational speed. Therefore, in this experiment the trade-off between performance
and bit precision for the verification function parameters was investigated when using
fixed point arithmetic for authentication. These parameters are the client specific LDA
transformation matrix a, the client mean vector μi and the global mean μ =

∑N
j=1 zi,

where N is the size of the training set and zi are the training images. The basic idea
behind that was to change the precision of the CSLDA transformation that is actually
sent on the smart card for on-card verification based on the distance metric dc given in
the following equation:

dc =
∣∣aT

i z − aT
i μi

∣∣ (1)

where z is the probe image and μi is the client mean.
Based on the results acquired (see Figure 4), the optimum n-bit precision was iden-

tified to lie within the range n = [5 − 14]. Specifically, 10-bit precision is the optimum
one for the reference resolution 55x51 on both datasets. Note that fixed point numbers
introduce some statistical errors, which do not necessarily affect negatively the perfor-
mance results.

3.5 Compression

In this experiment, the optimum JPEG compression parameters were identified on the
optimum operational stage obtained. Further to being an international standard, JPEG
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Fig. 4. Results obtained on the XM2VTS when fixed point arithmetic was applied. (a) Overall
results, (b)/(c) (5-14)-bit on CI/CII respectively

was selected because it can make a claim to high visual fidelity, satisfactory error re-
silience and generality (that is, the ability to efficiently compress different types of
imagery across a wide range of bit rates). Moreover, JPEG boasts a very low computa-
tional complexity, especially compared to methods like JPEG2000. Among many JPEG
compression schemes, the baseline mode was used; it is very easy to implement and port
on a small platform while it still achieves high compression/decompression speed. In
order to prove that JPEG was the most appropriate selection for our experiments, we
considered the evaluation study on the comparison between different still image coding
standards [8]. The results of this work show that the choice of the ’best’ standard is
application dependent [9] and in cases where the interest lies in a low complexity, lossy
compression scheme, JPEG provides a satisfactory solution.

For this experiment, a spatial resolution of 55x51 was used in order to study the
effect of using JPEG compression at four different operational stages.

1. On probe images of all experimental sets, training, evaluation and testing set;
2. On probe images of only evaluation and testing set. This was deliberately chosen

because it would be interesting to witness the effect of compression on the overall
performance only in the case where probe images are sent to the smart card and
training remains unaffected;

3. On templates;
4. On both probes (training and testing) and templates.

Different quality settings for the compressor were used. Image quality was traded-off
against file size by adjusting those settings. In all cases, the range of the quality factor
was modified from 5 to 100. In order to identify the optimum JPEG scenario, the sys-
tem was evaluated based on the comparison between the initial HTER and the average
HTER for all quality values (5-100) in each JPEG scenario. However, we also took into
consideration the consistency of the good performance results in each scenario. Based
on the results given in Figure 5 we identified JPEG scenario one as the optimum in
the case of XM2VTS and scenario two in the case where FERET was used for system
training. Some example cases are also given in Figure 6.

3.6 Suboptimal Search Strategy Results

The final results obtained are brought together in table 3. There we can see the initial
performance results and the results acquired after applying the new optimum parameters
step by step. It is demonstrated that the use of such a combined parameter strategy
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Fig. 5. Performance evaluation in XM2VTS and FERET-XM2VTS of all four JPEG scenarios

Fig. 6. Example cases of system behaviour on the different databases used. (a) JPEG scenario 3
on XM2VTS and (b) JPEG scenario 4 on FERET-XM2VTS

does not result in performance degradation and can become extremely advantageous
when high resolution images are identified as the optimum ones in terms of system
performance.

Interesting results were obtained by applying the proposed combined strategy.
XM2VTS CI behaved better in low resolution images where the initial performance was
improved by 13.4% only by fine tuning the resolution. It is obvious a higher-resolution
image can tolerate more compression and that JPEG does not work well with extremely
low resolutions where the byte file size of a JPEG compressed image increases due to
the overhead of the JPEG file format. (A JPEG image has a specific internal structure
that is common to all JPEG files. Part of this internal structure is known as the file
”header”, which basically contains information about the image file: its size, dimen-
sions, etc.). In such an extreme case, by using fixed point arithmetic without JPEG we
can achieve both performance improvement and system acceleration. Better overall re-
sults were achieved in configuration II (it has a bigger training set the CI and is more
representative of a real system), where the optimum spatial resolution was identified to
be a much higher one (40x37). By combining an 11-bit precision and JPEG compres-
sion on a relatively medium resolution, the performance increases by about 20% with
an additional increase of system speed, both by the use of fixed point numbers and by
decreasing about the size of the probe images sent to the card by a factor of three. An
additional advantage is the improved overall memory management within the system
through the compression of the probe images on the training set.

An expected degradation of performance was introduced by using FERET for train-
ing and XM2VTS for testing. Configuration one (CI) produced relatively the same re-
sults as before. However, in configuration two (CII), the optimum resolution was almost
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Table 3. Best cases in both databases when the combined strategy was used (PROT = Protocol,
PR = Probes, TE = Templates, Tr = Train, Te = Test, QUAL = quality, IBFS/CBFS P/T = Ini-
tial/Compressed Byte File Size for Probes/Templates, RESOL = resolution, FPN(n) = n-bit fixed
point number)

DATABASES PROT Case QUAL IBFS P/T CBFS P/T RESOL FPN(n) HTER
XM2VTS CI - - - - 55x51 - 0.04588
XM2VTS CI - - - - 18x16 - 0.03977
XM2VTS CI PR/Tr/Te 65 288 429 18x16 - 0.04292
XM2VTS CI PR/Tr/Te 65 288 429 18x16 10 0.04267

XM2VTS CII - - - - 55x51 - 0.02644
XM2VTS CII - - - - 40x37 - 0.02213
XM2VTS CII PR/Tr/Te 20 1480 532 40x37 - 0.02128
XM2VTS CII PR/Tr/Te 20 1480 532 40x37 11 0.02127

FERET-XM2VTS CI - - - - 55x51 - 0.06816
FERET-XM2VTS CI - - - - 25x23 - 0.06014
FERET-XM2VTS CI PR/Te 35 575 475 25x23 - 0.05964
FERET-XM2VTS CI PR/Te 35 575 475 25x23 10 0.05964

FERET-XM2VTS CII - - - - 55x51 - 0.04028
FERET-XM2VTS CII - - - - 100x93 - 0.03177
FERET-XM2VTS CII PR/Te 45 9300 1579 100x93 - 0.03136
FERET-XM2VTS CII PR/Te 45 9300 1579 100x93 13 0.03137

the highest one (100x93) of the investigated range and the overall benefit of the JPEG
compression efficiency to the system was highlighted. In both configurations, the over-
all trend remained similar to the one we had when XM2VTS was exclusively used. Par-
ticularly, in the case of FERET-XM2VTS and CI the performance increased by 12.5%
and in CII by more than 22%. The overall results are summarised in table 3 and some
particular examples are provided in Figure 7.

4 Conclusions

A suboptimal optimisation strategy for a smart card face verification system has been
proposed. The effect of different parameters on the system performance was investi-
gated in such a way that the search space was simplified. The benefits of optimisation
can be further appreciated when fusion methods are to be incorporated onto the smart
card and therefore an increased number of biometric templates have to be stored on the
card.

The system was evaluated on different datasets and configurations hoping to achieve
good and consistent results across all testing configurations for the same parameter set-
ting. However, it transpired that each testing configuration required different parameter
setting under the exception of grey level resolution and fixed point number representa-
tion. Since an 8 bit camera is used, system behaviour suggests that maximum perfor-
mance is achieved at 8bpp and could possibly be further improved if higher resolution
was available. The 10-bit fixed point number representation would provide optimal set-
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Fig. 7. The effect on XM2VTS (a),(b) top and FERET (c),(d) bottom, face databases when using
the combines strategies

ting for all testing configurations, while speeding up the verification process. However,
the optimum spatial resolution, JPEG compression quality factor as well as JPEG oper-
ational scenario differ from one experimental condition to another. Note that a quality
threshold has been identified, below which, not only the performance can degrade but
the amount of data to be stored can actually increase due to the overhead of the JPEG
file format. Above that, there is a surprisingly wide quality range where compression
does not seem adversely to affect performance, and for specific scenarios it may even
improve system performance. Generally speaking, when operating at the limit of the
quality settings good performance can be achieved, as well as gain in memory size and
transfer speed.

An interesting example of such a strategy is when XM2VTS (CII) is used. In this
case, the system speed is doubled and performance is improved by more than 16% only
by the selection of an optimum resolution. Another 4% in performance can be gained
by using JPEG while increasing system speed about three times more. Finally, the use
of 11-bit precision, does not degrade performance as well as offering a significant relief
on its complexity.
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Abstract. Vulnerabilities in biometric systems including spoofing has
emerged as an important issue. The focus of this work is on characteri-
zation of ‘perspiration pattern’ in a time-series of fingerprint images for
liveness detection. By using information in the high pass bands of the im-
ages the similarity score for the two images is calculated to determine the
uniqueness of the perspiration pattern. In this wavelet-based approach,
the perspiration pattern is characterized by its energy distribution in the
decomposed wavelet sub bands. We develop a similarity matching tech-
nique that is based on quantifying marginal distribution of the wavelet
coefficients. The similarity match technique is based on Kullback-Leibler
distance, which is used to decide ‘uniqueness’ associated with the per-
spiration pattern. Experimental results show good separation resolution
in similarity scores of inter (43 subjects) and intra (12 subjects over 5
months) class comparisons. This may be considered as a robust liveness
test for biometric devices.

1 Introduction

Biometrics are gaining popularity over conventional identifiers for doing personal
identification. Unfortunately, with increased technological advancement, spoof-
ing into a fingerprint identification system has become easier. Among various
fingerprint security issues, it is of particular interest to check whether source
of input signal is a live genuine finger, in order to make the system intelligent
enough to be able to differentiate it from a signal originating from a spoof or a
cadaver. This security test added as supplement to the authentication is termed
as “liveness” detection [1], [2]. It has been demonstrated that perspiration can
be used as a measure of “liveness” detection in case of fingerprint matching sys-
tems [3],[4],[5],[6],[7]. Unlike cadaver or spoof fingers, live fingers demonstrate
a distinctive spatial moisture pattern, when in physical contact with the cap-
turing surface of the fingerprint scanner. This is demonstrated in Figure (1). In
this paper, it is shown that this pattern, called as ‘perspiration pattern’, may
be unique in itself across individuals. Testing of this hypothesis is performed
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using similarity measurements in the wavelet sub-bands. Kullback-Leibler dis-
tance on wavelet sub bands is applied and the similarity score obtained is used
to demonstrate “uniqueness” associated with the perspiration pattern [8].

Live Finger − First Image Live Finger − Second Image

Fig. 1. The fingerprints captured as a time sequence. The left figure is captured at
zeroth second, while the right is captured after five seconds. Perspiration is observed
as time progresses in live fingers

All natural images are by default, non-stationary, and contain several sub-
images which can be exploited by varying the scale of analysis. Without extract-
ing the exact positioning of these sub-images, direct matching of the images is
not efficient. Wavelets are used to do this extraction.

In this paper, a simple sub-image decomposition using Daubechies orthogonal
filters is designed. Sub-image decomposition parameters are computed to match
high frequency components of the images, in order to enhance similarity score
calculations. If the difference parameters are close to zero, two images are similar.
Histograms of all the sub-images are calculated before performing matching.

2 Data Collection

The data required for this work was collected at Clarkson University and West
Virginia University. Protocols for data collection from the subjects were followed
that were approved by the Clarkson University and West Virginia University
Institutional Review Board (IRB) (HS#14517 and HS#15322).

Data previously collected in our lab is used to test interclass similarity scores.
This data set is diverse as far as age, sex, and ethnicity is concerned. This data
set is comprised of different age groups (11 people between ages 20-30 years, 9
people between 30-40, 7 people between 40-50, and 6 people greater than 50),
ethnicities (Asian-Indian, Caucasian, Middle Eastern), and approximately equal
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Table 1. Data set: Distribution

Live Capacitive DC Electro-optical Optical Time
Precise Biometric Ethentica Secugen span

Inter-class 31 30 30

Intra-class 12 12 12 5 months

numbers of men and women. The data was collected using three different finger-
print scanners, with different underlying technologies. Three scanners from three
different companies namely Secugen (model FDU01), Ethentica (model Ethen-
ticator USB 2500)and Precise Biometrics (model PS100) with optical, electro-
optical and capacitive DC technique of capturing fingerprint respectively, were
chosen. Following table summarizes this data.

For analyzing intra class similarity data was collected from 12 subjects, over
a period of 5 months. The subjects were asked to give their fingerprint samples
at three visits and every time time-series capture was obtained three times. So,
for 12 classes 9 intra class patterns were obtained.

3 Perspiration Pattern Extraction Algorithm

The algorithm is given in detail in [5],[6],[7]. The algorithm uses Daubechies
wavelet-based approach to decompose 0 second image and second image at either
2 or 5 seconds. Maxima energy extraction is done after initial image enhancement
for both the images. Multiresolution analysis is used to process LP information,
while wavelet packets are used to extract information form HP bands. Only
those coefficients are retained which experience more than 40% change in the

~

MRA
Sub-bands

MRA
Sub-bands

Packet
Sub-bands

Packet
Sub-bands

Image : 0 th second Image : 5 th second

Thresholding (    coefficients > 40%) 

Normalization

~

MRA
Sub-bands

MRA
Sub-bands

Packet
Sub-bands

Packet
Sub-bands

Image : 0 th second Image : 5 th second

Thresholding (    coefficients > 40%) 

Normalization

Fig. 2. Algorithm to extract perspiration pattern. Four sub-bands each form Multires-
olution analysis and wavelet packets are shown separately
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energy content. Normalization is done by the energy content of the later image
to account for pressure variations. The entire algorithm in snap shot is given in
Figure (2).

Total energy associated with the changing coefficients, normalized by total
energy of the second image is used as a measure to decide the “liveness” associ-
ated with the scanner. It is given by following formula,

Formula: “liveness measure”

e% = (
∑

energy of sub bands of the thresholded difference image∑
energy of sub bands of the image captured after five seconds

) × 100

(1)
The retained coefficients relate directly to the perspiration pattern as shown

in the reconstructed images in Figure (3). The following section describes the
sub-level decomposition using wavelets. The scales selected for the algorithm are
2 and 3 respectively for mulriresolution analysis and wavelet packet analysis,
respectively. The basis is formed by ψ as well as φ.

(a) (b) (c)

Fig. 3. (a)-(b)-(c) show perspiration patterns for three different subjects. Although
these patterns are directly related to the energy changes, they are not normalized and
hence are not exactly the same energy measures as given in formula (1)

4 Sub-level Decomposition of Images
and Pattern Characterization

Assuming existence of nested sequences of subspaces {Vj}∞j=−∞ the selected set
of Daubechies scaling functions is {φ(x− k)}k∈Z is an orthonormal basis,i.e.,∫ ∞

−∞
φ(x − k)φ(x − k′)dx =

{
0, k = k′, k, k′ ∈ Z
1, k = k′ (2)
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For the vector space Vj spanned by the discrete scaling functions {φ(2jx−k)},
fj(x) ∈ Vj [9],

fj(x) =
∑

k

αj,k2
j
2φ(2jx− k) (3)

αj,k =
∫ ∞

−∞
f(x)2

j
2φ(2jx− k)dx (4)

and the set {φ(2jx− k)} constitutes the basis.
Now Vj ∈ Vj+1, and Vj+1 has better refinement than Vj . This “difference” is a

subset of Vj+1 spanned by the discrete wavelets of the subspace Wj , gj(x) ∈ Wj ,

gj(x) =
∑

k

βj,k2
j
2ψ(2jx− k) (5)

βj,k =
∫ ∞

−∞
f(x)2

j
2ψ(2jx− k) (6)

The basis {ψ(2jx − k)} of this vector space Wj are always orthogonal to the
scaling functions {φ(2jx− k)} of Vj on (−∞,∞),∫ ∞

−∞
2

j
2φ(2jx− k)2

j
2ψ(2jx− k′)dx = δk,k′ (7)

4.1 Orthogonal Wavelet Filters

The wavelet filters LPk,l,LPk,l,HPm,l and HPm,l form an orthogonal filter set if
they satisfy following conditions,

< LPk,l, LPk′,l >= δk,k′ (8)
< HPm,l, HPm′,l >= δm,m′ (9)

< LPk,l, HPm,l >= 0 (10)

where, LPk,l and HPm,l stand for low pass and high pass decomposition filters,
respectively; while,LPk,l and HPm,l are reconstruction filters, respectively. Low
pass filters come form φ functions, while high pass filters come form ψ functions.

If the base image is denoted by IM1
i,j , then applying both low as well as

high filters in horizontal and vertical directions would result in four sub-bands,
namely LL, HL, LH and HH. They can be written as,

LL0
k,k′ =

∑
i,j

L̃Pk,i
˜LPk′,jIM

1
i,j (11)

LH0
k,m =

∑
i,j

L̃Pk,i
˜HPm,jIM

1
i,j (12)

HL0
m,k =

∑
i,j

H̃Pm,iL̃Pk,jIM
1
i,j (13)

HH0
m,m′ =

∑
i,j

H̃Pm,i
˜HPm′,jIM

1
i,j (14)
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Here, LL0
k,k′ is the low frequency component, LH0

k,m, HL0
m,k, HH0

m,m′ are
the high frequency components in horizontal, vertical and diagonal directions,
respectively, after decomposing the image. Since, the filters used are orthogo-
nal filters, as they follow properties in equation (2), the original image can be
reconstructed from these sub-bands using following reconstruction formulae [10],

IM1
i,j =

∑
i,j L̃Pk,i

˜LPk′,jIM
1
i,j +

∑
i,j L̃Pk,i

˜HPm,jIM
1
i,j +∑

i,j H̃Pm,iL̃Pk,jIM
1
i,j +

∑
i,j H̃Pm,i

˜HPm′,jIM
1
i,j

This formula, after extending it to the respective levels of decomposition for
MRA and packet analysis, can be used to visualize the perspiration pattern, after
doing the thresholding. By the end of the process we will have 1 LL band and
7 high pass bands, coming from MRA and packet analysis. Sub-band alignment
is performed as the complete algorithm itself is sub-band oriented. The MRA
uses LL band and computes IM−1

i,j , while packet analysis gives IM−2
i,j , where the

basis is adaptive and is calculated using Shannon entropy [7]. Thus, for MRA
we get our output from V−2 ⊕ W−2 ⊕ W−1 and for packet analysis we get our
output from V−3⊕W−3⊕W−2⊕W−1. Essentially, after thresholding, the method
measures energy at the output of filter banks as extracted perspiration pattern.
The main idea behind the algorithm is that energy distribution in energy domain
identifies a pattern [7].

5 Similarity Measurement

The energy distribution described above is the pattern being considered to an-
alyze similarity between inter and intra class perspiration patterns, score based
on the ‘Kullback-Leibler’ distance between two images is calculated [8]. The
Kullback-Leibler distance is essentially a relative entropy between two densities
d1 and d2, and is given as [11],

D(d1||d2) =
∫

f log
d1

d2
(15)

where, densities d1 and d2 represents two images under consideration. This is
an attempt to characterize the perspiration pattern via marginal distributions
of their wavelet sub-band coefficients [12].

Generalized Gaussian density (GGD) is defined as,

p(x;α, β) =
β

2αΓ (1/β)
e−(

|x|
α )β

(16)

where, Γ (.) is the Gamma function, so,

Γ (z) =
∫ ∞

0

e−ttz−1dt, z > 0
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Here, α is variance and β is inversely proportional to the decreasing peak fre-
quency. A good probability density function (PDF) approximation for the mar-
ginal density of coefficients at a particular sub-band (2 for MRA and 3 for
packets for this algorithm), is achieved by adaptively varying α and β of GGD.
Marginal distributions give better representation of of perspiration pattern than
the wavelet sub-band energies.

Using equations (15) and (16), closed form of the KLD is given as [12],

D(p(.;α1, β1)||p(.;α2, β2)) = log(
β1α2Γ (1/β2)
β2α1Γ (1/β1)

) + (
α1

α2
)
Γ ((β2 + 1)/β1)

Γ (1/β1)
− 1

β1

(17)
The similarity measurement between two wavelet sub-bands can be computed
very efficiently using the model parameters.

The overall distance between the images can be given as follows,

D(IM1, IM2) =
∑

j

D(p(.;αj
1, β

j
1)||p(.;αj

2, β
j
2)) (18)

This is because of the scalable nature of the wavelet transform. The wavelet
coefficient in different sub-bands are independent, and so to find the overall
score, individual KLDs are summed up. Here, j is the sub-band level [13],[12].

6 Experimental Results

The experimental calculations are done on the data set mentioned in section (2).
Statistical independence of the perspiration patterns is directly proportional
to the degrees of freedom used for doing similarity analysis. Moreover more
degrees of freedom results in a more complex system. We continued to use 10000
maximum energy extracted points by the algorithm in [5]. 820 interclass and 72
intra-class combinations were exploited. As, for the intra-class scores, as the data
collection was performed over 5 months, consistency factor of the perspiration
pattern is also studied. No environmental conditions are tested intentionally.

The wavelet coefficients obtained from the algorithm [5], were used for further
processing. The similarity score between the images is calculated using equation
(17). This form of KLD is easy to implement and is found better than other close
techniques like Bhattacharya coefficient [11]. A smaller similarity score indicates
a better match. The in-band matching is done for individual bands, and then
the scores are added and normalized. No further thresholding is implemented as
the coefficients are already thresholded.

Results are shown in Figure (4). The normalized rates are plotted on the
y-axis and normalized similarity scores are plotted on x-axis. Inter class dis-
tribution is observed to be very much random, while intra class distribution is
observed to be very much similar. Hardly any variation in the intra-class distri-
bution is observed, thus confirming the consistency in the perspiration pattern
of the 12 subjects over the period of 5 months. Distinct separation between the
two classes is seen.
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Fig. 4. Results of characterization of perspiration pattern. Similarity scores for inter
and intra-class patterns. The similarity score is normalized. The intra class can be seen
very similar, and inter class can be seen distributed around 0.6, and hence very much
random

7 Conclusion

The perspiration pattern was observed to be ‘unique’, for the limited data set.
The pattern also showed good consistency within the same class when monitored
over 5 months. It is required to explore this matter with much wider data set,
for different environmental conditions, to see the exact relation between sweat
pores and this pattern. Previous work in liveness using perspiration pattern used
general features across all the subjects to specify liveness. By expecting a specific
liveness pattern from an individual, the liveness algorithm may be more robust
to attacks. Beyond its possibility as a biometric alone or more promisingly in
conjunction with fingerprint, it can certainly play a significant role in ‘liveness’
detection associated with the fingerprint scanners.
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On Finding Differences Between Faces
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Abstract. This paper presents a novel approach for extracting charac-
teristic parts of a face. Rather than finding a priori specified features
such as nose, eyes, mouth or others, the proposed approach is aimed at
extracting from a face the most distinguishing or dissimilar parts with
respect to another given face, i.e. at “finding differences” between faces.
This is accomplished by feeding a binary classifier by a set of image
patches, randomly sampled from the two face images, and scoring the
patches (or features) by their mutual distances. In order to deal with
the multi-scale nature of natural facial features, a local space-variant
sampling has been adopted.

1 Introduction

Automatic face analysis is an active research area, whose interest has grown in
the last years, for both scientific and practical reasons: on one side, the problem
is still open, and surely represents a challenge for Pattern Recognition and Com-
puter Vision scientists; on the other, the stringent security requirements derived
from terroristic attacks have driven the research to the study and development
of working systems, able to increase the total security level in industrial and
social environments.

One of the most challenging and interesting issue in automatic facial analysis
is the detection of the “facial features”, intended as characteristic parts of the
face. As suggested by psychological studies, many face recognition systems are
based on the analysis of facial features, often added to an holistic image analysis.
The facial features can be either extracted from the image and explicitly used
to form a face representation, or implicitly recovered and used such as in the
PCA/LDA decomposition or by applying a specific classifier.

Several approaches have been proposed for the extraction of the facial fea-
tures ([1–5], to cite a few). In general terms, all feature extraction methods are
devoted to the detection of a priori specified features or gray level patterns such
as the nose, eyes, mouth, eyebrows or other, non anatomically referenced, fidu-
cial points. Nevertheless, for face recognition and authentication, it is necessary
to also consider additional features, in particular those features that really char-
acterize a given face. In other words, in order to distinguish the face of subject
“A” from the face of subject “B”, it is necessary to extract from the face image
of subject “A” all features that are significantly different or even not present in
face “B”, rather than extract standard patterns.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 329–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This paper presents a novel approach towards this direction, aiming at “find-
ing differences” between faces. This is accomplished by extracting from one face
image the most distinguishing or dissimilar areas with respect to another face
image, or to a population of faces.

2 Finding Distinguishing Patterns

The amount of distinctive information in a subject’s face is not uniformly dis-
tributed within its face image. Consider, as an example, the amount of infor-
mation conveyed by the image of an eye or a chin (both sampled at the same
resolution). For this reason, the performance of any classifier is greatly influ-
enced by the uniqueness or degree of similarity of the features used, within the
given population of samples. On one side, by selecting non-distinctive image ar-
eas increases the required processing resources, on the other side, non-distinctive
features may drift or bias the classifier’s response.

This assert is also in accordance with the mechanisms found in the human
visual system. Neurophysiological studies from impaired people demonstrated
that the face recognition process is heavily supported by a series of ocular sac-
cades, performed to locate and process the most distinctive areas within a face
[6–10].

In principle, this feature selection process can be performed by extracting
the areas, within a given subject’s face image, which are most dissimilar from
the same areas in a “general” face. In practice, it is very difficult to define the
appearance of a “general face”. This is an abstract concept, definitely present in
the human visual system, but very difficult to replicate in a computer system.
A more viable and practical solution is to determine the face image areas which
mostly differ from any other face image. This can be performed by feeding a
binary classifier with a set of image patches, randomly sampled from two face
images, and scoring the patches (or features) by their mutual distances, com-
puted by the classifier. The resulting most distant features, in the “face space”,
have the highest probability of being the most distinctive face areas for the given
subjects.

In more detail, the proposed algorithm extracts, from two face images, a set
of sub-images centered at random points within the face image. The sampling
process is driven to cover most of the face area1. The extracted image patches
constitute two data sets of location-independent features, each one characterizing
one of the two faces. A binary Support Vector Machine (SVM) [16, 17] is trained
to distinguish between patches of the two faces: the computed support vectors
define a hyperplane separating the patches belonging to the two faces. Based
on the distribution of the image patches projected on the classifier’s space, it is
possible to draw several conclusions. If the patch projection “lies” very close to
the computed hyperplane (or on the opposite side of the hyperplane), it means
1 A similar image sampling model has been already used in other applications such

as image classification (the so called patch-based classification [11–14]) or image
characterization (the epitomic analysis proposed by Joijc and Frey in [15])
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that the classifier is not able to use the feature for classification purposes (or
it may lead to a misclassification). On the other hand, if the patch projection
is well located on the subject’s side of the hyperplane and is very far from the
separating hyperplane, then the patch clearly belongs to the given set (i.e. to
that face) and it is quite different from the patches extracted from the second
face.

According to this intuition, the degree of distinctiveness of each face patch
can be weighted according to the distance from the trained hyperplane. Since the
classifier has been trained to separate patches of the first face from patches of the
second face, it is straightforward to observe that the most important differences
between the two faces are encoded in the patches far apart from the separating
hyperplane (i.e. the patches with the highest weights).

In this framework the scale of the analysis is obviously driven by the size of
the extracted image patches. By extracting large patches only macro differences
are determined, loosing details, while by reducing the size of the patches only
very local features are extracted, loosing contextual information. Both kinds of
information are important for face recognition. A possible solution is to perform
a multi scale analysis, by repeating the classification procedure with patches at
different sizes, and then fusing the determined differences. The drawback is that
each analysis is blind, because no information derived from other scales could be
used. Moreover, repeating this process for several scales is computationally very
expensive.

A possible, and more economic, alternative to a multi-scale classification, is
to extract “multi-scale” patches, i.e. image patches which encode information
at different resolution levels. This solution can be implemented by sampling the
image patches with a log-polar mapping [18]. This mapping resembles the distri-
bution of the ganglion cells in the human retina, where the sampling resolution
is higner in the center (fovea) and decreases toward the periphery. By this re-
sampling of the face image, each patch contains both low scale (high resolution)
and contextual (low resolution) information.

The proposed approach for the selection of facial features consists of three
steps:

1. two distinct and geometrically disjoint sets of patches are extracted, at ran-
dom positions, from the two face images;

2. a SVM classifier is trained to define an hyperplane separating the two sets
of patches;

3. for each of the two faces, the face patches are ranked according to the dis-
tances from the computed hyperplane.

The processes involved by each step are detailed in the remainder of the paper.

2.1 Multi-scale Face Sampling

A number of patches are sampled from the original face image, centered at
random points. The randomness in the selection of the patch center assures that
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the entire face is analyzed, without any preferred side or direction. Moreover, a
random sampling enforces a blind analysis without the need for a priori alignment
between the faces.

The face image is re-sampled at each selected random point following a log-
polar law [18]. The resulting patches represent a local space-variant remapping of
the face image, centered at the selected point. The analytical formulation of the
log-polar mapping describes the mapping that occurs between the retina (retinal
plane (x, y)) and the visual cortex (log-polar or cortical plane (log(ρ), θ)). The
derived logarithmic-polar law, taking into account the linear increment in size
of the receptive fields, from the central region (fovea) towards the periphery, is
described by the diagram in figure 1(a).

(a) (b)

Fig. 1. (a) Retino-cortical log-polar transformation. (b) Arrangement of the receptive
fields in the retinal model

The log-polar transformation applied is the same described in [18] which
differs from the models proposed in [19, 20]. The parameters required to define
the log-polar sampling are: the number of receptive fields per eccentricity (Na)
and the radial and angular overlap of neighboring receptive fields (Or and Oa).

For each receptive field, located at eccentricity ρi and with radius Si, the
angular overlap factor is defined by K0 = Si

ρi
. The amount of overlapping is

strictly related to the number of receptive fields per eccentricity Na. In particular
if K0 = π

Na
all receptive fields are disjoint. The radial overlap is determined by:

K1 =
Si

Si−1
=

ρi

ρi−1
.

The two overlap parameters K0 and K1 are not independent, in fact:

K1 =
ρi

ρi−1
=

1 + K0

1 −K0
.

As for the angular overlap, the radial overlap is not null only if:

K1 <
1 + K0

1 −K0
.
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Given the log-polar parameters Na, Or , Oa, K0 and K1 are computed as:

K0 = π
Oa

Na
, K1 =

Or + K0

Or −K0
.

The image resolution determines the physical limit in the size of the smallest
receptive fields in the fovea. This, in turn, determines the smallest eccentricity:

ρ0 =
S0

K0

Defining ρ0 ∈ [0.5 − 5], the original image resolution is preserved.

2.2 The SVM Classifier

In the literature Support Vector Machines have been extensively employed as
binary classifiers in face recognition and authentication [21, 22], object classifi-
cation [23], textile defects classification [24] and other applications as well.

The SVM classifier holds several interesting properties: quick training process
[25], accurate classification, and, at the same time, a high generalization power
[17]. Moreover, only two parameters need to be set: the regularization constant
C and the size of the kernel for the regularization function.

In the proposed approach the Radial Basis Function (RBF) regularization
kernel has been adopted, because it allows the best compromise between clas-
sification accuracy and generalization power. In order to obtain an acceptable
generalization from the input data, the value of sigma has been carefully deter-
mined.

The set of log-polar image patches, sampled from each face image, are firstly
vectorized and subsequently fed to a Support Vector Machine [16, 17]. As the
SVM is a binary classifier, the data from the two subjects are used to build
a set of support vectors able to distinguish them. Therefore, according to the
procedure adopted to build a classifier for authentication purposes, the patches
from one subject are used to represent the “client” class, while the patches from
the second subject represent the “impostor” class.

2.3 Determining Face Differences

The SVM classifier, obtained from the input patches, defines an hyperplane sep-
arating the features belonging to the two subjects. The differences between the
two subjects could be determined, for each correctly classified patch, from the
absolute distance from the hyperplane: higher distances identify more charac-
teristic facial features.

More formally, let C(x) be the class assigned by the trained SVM to an
unknown patch x, then:

C(x) = sign(f(x)) (1)
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where f(x) represents the distance between the point x and the hyperplane
represented by the SVM. When using a kernel K(xi,xj), the distance f(x) is
computed as

f(x) = b +
D∑

i=1

αiC(xi)K(x,xi) (2)

where b and αi are parameters determined in the training phase, and xi are the
points of the training set.

Given the trained SVM, the weight ω of the patch Pi belonging to the face
k is computed as follows:

ω(Pi) =
{ |f(Pi)| if C(Pi) = k

0 otherwise (3)

This analysis is repeated for both faces. It is important to note that the
patches which are in the uncorrect side of the hyperplane are discarded (weight
equal to 0), since the classifier could not provide any useful information about
them (it is not able to correctly classify those patches).

3 Experimental Results

In order to verify the real applicability of the proposed method, two experiments
were performed. In the first experiment a synthetic artifact (a black dot) is added
to a face image and this is compared against the original image (see Fig. 2). In
the second experiment two face images from two different subjects are compared
(see Fig. 3). In both experiments gray level images were used, with a resolution
of 310x200 pixels. The images have been re-sampled, at random positions, with
1000 log-polar patches. Each log-polar patch has a resolution of 23 eccentricities
and 35 receptive fields for each eccentricity, with an overlap equal to 10% along
the two directions. The Radial Basis Function (RBF) regularization kernel has
been adopted for the SVM, with parameters σ = 400 and C = 10.

The results of the synthetic experiment is displayed in Fig. 2. To facilitate the
understanding of the computed image differences, only the first ten patches with
higher weights (distances from the computed hyperplane) are displayed. From
the sequence of patches resulting in figure 2 the black dot is clearly identified.

In the experiment performed on two real face images, the 52 patches with
higher distances for each face have been considered. The computed results are
shown in Fig. 4 and 5.

In order to facilitate the visualization, similar patches have been grouped
together, using the K-means method [26]. For the first face, six semantically dif-
ferent regions have been found, whereas in the second face nine different regions
were considered. For each patch retained in the figure, the number of similar
patches in the group is displayed. From these pictures some relevant differences
between the two faces are detected. In the first face, for example, the forehead
(both right and left part), the nose and the eyes are clearly identified. It is worth
noting that also the fold of the skin on the right cheek is detected. As for the
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Fig. 2. Synthetic experiment. (top) The two images used in the experiment. (bottom)
The 10 most weighted patches extracted when comparing the two faces. Only the
patches related to the modified face are displayed

Fig. 3. (left) Original images used in the comparison experiment. (right) Random
image points used for sampling the space-variant patches

second person (Fig. 5) the eyeglass are clearly identified as distinctive features
(both right, left, upper and central parts). In fact, 27 out of the first 52 most
weighted patches are located on them. Another distinctive pattern is the shape
of the mouth, together with the chin, and the shape of the forehead.

As it can be noted, the extracted patterns seem to have some complemen-
tarities for the two faces. In fact, some distinctive areas are still present in both
faces (regions around the eyes and the nose) while other distinctive and subtle
details are preserved.
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(a) (b)

Fig. 4. Results of the detection of the most distinguishing features for the first face.
Similar patches have been grouped together. (a) The representative patches (the num-
ber of components of each group is displayed below the patch) and (b) the location of
the patches on the face

(a) (b)

Fig. 5. Results of the detection of the most distinguishing features for the second
face. Similar patches have been grouped together. (a) The representative patches (the
number of components of each group is displayed below the patch) and (b) the location
of the patches on the face

4 Conclusions

In this paper a new approach for finding differences between faces has been
proposed. A Support Vector Machines classifier is trained to distinguish between
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two sets of space-variant patches, randomly extracted from two different face
images. The “distinctiveness” of each patch is computed as the distance from
the separating hyperplane computed from the support vectors.

Even though the experiments performed are very preliminary, already demon-
strate the potential of the algorithm in determining the most distinctive patterns
in the analyzed faces. The proposed approach can be very effective to tailor the
face representation according to the most distinctive features of a subject’s face,
for recognition purposes.

A future development of this research includes the combination of the ex-
tracted features, which could be performed by “back propagating” the patches
weights to the face, to build a true “difference map”.

Another interesting issue is the comparison of more than two faces, i.e. finding
the differences between a given face and the rest of the world. In this way it may
be possible to extract the general characteristic features of any given face. This
can be achieved by choosing the negative examples in the SVM training as
formed by all patches randomly sampled from several different faces. A further
issue could be the investigation of different sampling techniques, i.e. methods
that could reduce the number of samples needed to significantly cover the whole
face.
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Abstract. In this work, we propose a face detection method based on
the Gentle AdaBoost algorithm which is used for construction of binary
tree structured strong classifiers. Gentle AdaBoost algorithm update val-
ues are constructed by using the difference of the conditional class proba-
bilities for the given value of Haar features proposed by [1]. By using this
approach, a classifier which can model image classes that have high de-
gree of in-class variations can be constructed and the number of required
Haar features can be reduced.

1 Introduction

Classical object detection schemes necessitate complex and computationally
heavy classifiers for face detection in gray level images. Since the face detec-
tor is applied at each location and scale it requires significant computational
power. However most of the locations in the searched scene do not contain any
face and in fact the odds of finding a face at any one location is very small. Thus
most of the non-face blocks can be eliminated with very simple classifiers. To
find an efficient alternative to this exhaustive search approach, a rejection based
classification approach is used to eliminate rapidly non-face regions in an image.
Based on such a rejection strategy, Viola and Jones [1] used cascaded non-face
rejection stages with low face elimination rate. Their algorithm consisting of
simple classifiers are based on easily computable Haar features yield good detec-
tion with low false alarm rate. The required number of Haar features using their
approach depends on the target false alarm rate. Liehart [6] made performance
comparison of boosting algorithms using haar feature based binary-output weak
classifiers.

Various extensions of this detector structure have been proposed in [2],
[3] and [4]. For example Wu [4] has proposed a multi-view face detector using
Real AdaBoost confidence-rated Look-Up-Table (LUT) classifiers to detect faces
under rotation and pose variations. Our work is in the same line as the Viola-
Jones scheme. The contribution consists in the use of a simple real valued Gentle
AdaBoost (GAB) algorithm procedure to construct cascaded classifier structure.
The GAB approach helps to reduce the required number of Haar features vis-a-
vis the boosting approach that instead uses binary output weak classifiers. Using
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LUT based confidence values for each Haar feature the information wasted in the
binary weak classifier DAB approach can be utilized in the cascaded classifier
training. We also used classifier output propagation as proposed in [4] to further
reduce the number of features.

The rest of the paper is organized as follows: in Section 2 we define the GAB
procedure. In Section 3, we define the GAB based Haar feature selection and
strong classifier construction. In Section 4, we show we can the use of previous
classifier output in the following classifier construction. In Section 5 we give
experiments and results, and finally in Section 6 the conclusions.

2 GAB Algorithm

Boosting is a classification methodology which applies sequentially reweighted
versions of the input data to a classifier algorithm, and taking a weighted ma-
jority vote of sequence classifiers thereby produced. At each application of the
classification algorithm to the reweighted input data, classification algorithm
finds an additional classifier fm (x) at stage m. GAB algorithm is a modified
version of the Real AdaBoost (RAB) algorithm and it is defined in Figure 1.
The main difference between GAB and RAB is the way it uses the estimates of
the weighted class probabilities to update the weak classifier functions, fm (x).In
GAB the update is given by fm (x) = Pw(y = 1|x)−Pw(y = −1|x), while in the
RAB algorithm is given by half the log-ratio fm (x) = 1

2 log
Pw(y=1|x)

Pw(y=−1|x) [5]. Log-
ratios can be numerically unstable, leading to very large update values, while
the update in GAB lies in the range [-1,1]. This more conservative algorithm has
classification performance similar to RAB algorithm, and outperforms it both
especially when stability problems arise.

GAB Algorithm

1. Start with weights wi = 1/N, i = 1, ..., N, F (x) = 0.
2. Repeat for m = 1, 2, . . . , M .

(a) Estimate fm (x) by weighted least squares fitting of y to x.
(b) Update F (x) ← F (x) + fm (x)
(c) Set wi ← wi exp [−yi.fm (xi)] , i = 1, 2, . . . , N, and renormalize so that∑

i
wi = 1.

3. Output the classifier sign [F (x)] = sign
[∑M

m=1
fm (x)

]
.

Fig. 1. The GAB algorithm allows for the estimator fm (x) to range over real numbers

3 GAB Based Haar Feature Selection

In the original algorithm the simple weak classifiers are built by simply compar-
ing the Haar features to a threshold and thereby producing binary outputs. The
feature and its threshold are selected to yield the minimum error at every stage.
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(a) Likelihood values of a typical chosen Haar feature by GAB algorithm for two object classes.

The corresponding Haar feature is shown in the upper left of the figure
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(b) GAB update values fm (x) = Pw(y = 1|x) − Pw(y = −1|x)
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(c) Binary output of the classifier in the case a simple threshold based weak classifier is used

Fig. 2. Comparison of GAB update scheme (Fig. a,b) to the simple binary output
scheme (Fig. c)
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In contrast, in GAB based feature selection mechanism the weak classifiers are
not forced to yield the binary outputs, instead they give the values of the update
functions fm (x) at finite number of samples. The comparison of the update val-
ues for the binary case and GAB-based case is shown for a typical chosen Haar
feature in Figure 2. We use the GAB training algorithm described in Figure 1 to
construct a strong stage classifier using confidence values fm (x) for each feature.
Under equal prior probabilities for the object classes, the update fm (x) is given
by

fm (x) = Pw(y = 1|x) − Pw(y = −1|x)

=
Pw(x|y = 1)P (y = 1) − Pw(x|y = −1)P (y = −1)
Pw(x|y = 1)P (y = 1) + Pw(x|y = −1)P (y = −1)

=
Pw(x|y = 1) − Pw(x|y = −1)
Pw(x|y = 1) + Pw(x|y = −1)

(1)

where Pw(x|y = ±1) are the likelihood values computed by using histograms of
feature values x for two different object hypothese. Histogram bins are updated
by summing the sample weights of the training set. The subscript w denotes
the likelihood values with respect to updated sample weights at each boosting
round.

A stage of Haar feature classifier construction
using GAB

1. Start with weights wi = 1/2p and 1/2l where p and l are the number of positive
and negatives class samples.

2. Repeat for m = 1, 2, . . . , M .
(a) For each Haar feature j, fm (x) = Pw(y = 1|x) − Pw(y = −1|x) using only

the feature j values.
(b) Choose the best feature confidence set of values fm (x) giving the minimum

weighted error em = Ew

[
1(yi �=sign[fm(xi)])

]
for all feature j.

(c) Update F (x) ← F (x) + fm (x)
(d) Set wi ← wi exp [−yi.fm (xi)] , i = 1, 2, . . . , N, and renormalize so that∑

i
wi = 1.

3. Output the classifier sign [F (x)] = sign
[∑M

m=1
fm (x)

]
.

Fig. 3. At each iteration AdaBoost finds a set of update values fm (x) which use the
values of the feature corresponding to the minimum error

GAB algorithm chooses the best Haar feature resulting with the minimum
weighted error em = Ew

[
1(yi �=sign[fm(xi)])

]
from among all available features.

The chosen update values are accumulated in the classifier output F (x) value.
The output of the classifier, Fm (x), is thresholded by Tm such that the desired
target false alarm rate, f , and detection rate, d , of the classifier is achieved. We
also used the approach in [4], where the previous stage classifier output,Fm (x),
is inputted to the next stage classifier. According to this, in the training process,
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Fig. 4. Propagating the classifier output to the next stage classifier, the previous stage
classifier outputs are used to compute the posterior class probabilities of the object
classes, Pw(x|y = 1) and Pw(x|y = −1), the update values computed from them is
used as an update corresponding to the first feature of the classifier

classifier output values for the training samples of the next stage is used to
prepare the posteriori class probabilities of the object classes. Thereby the first
update value f1 (x) value of the succeeding classifier is computed by using the
histogram values resulting from the classifier outputs of the previous stage. In
this sense each previous stage conveys its accumulated information to the next
stage classifier. A cascaded classifier is produced by this kind of GAB procedure
as illustrated in the Fig 4.

4 Experiments

Figure 5 illustrates a chosen Haar feature, its corresponding posterior class prob-
abilities as a function of feature values. The rightmost figure shows the classifier
output as more and more classifiers are added, abscissa indicates the training
sample index. Adding more features, samples of two classes can be separated
from each other by simply thresholding the final classifier output F (x).

We implemented GAB algorithm for near frontal face detection in cluttered
scenes. For training we used about 10000 aligned face and 6000 non-face images
with the size of 24x24 at each stage training. Face images contain near frontal
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Fig. 5. First column shows the Haar features selected by GAB, second column shows
the posterior class probabilities of the object classes, Pw(x|y = 1) and Pw(x|y = −1),
for the corresponding Haar feature, the last column shows classifier output values F (x)
values for the training samples after being updated with each fm (xi)

faces which are subject to ±15◦ inplane rotations and in the range of ±30◦ out-
of-plane rotations. The number of points to sample the GAB update functions,
fm (xi), used in our work is 64 and the false alarm probability was chosen as 10−6.
These values are stored for each selected feature. In test process, these stored
Look-Up Table (LUT) values of the update functions are used to compute the
confidence values of each computed feature values. On the same training set, we
trained the cascaded structure by using the proposed LUT-based GAB procedure
and threshold-based Discrete AdaBoost (DAB) approach . The number of total
features produced by GAB based procedure is about 20 percent of the DAB
based training case for the same overall target detection and false alarm rate.
We tested two methods on the CMU test set containing 503 faces in the 130
images. The number of features and False Alarm (FA)/Detection Rates (DR)
are given in Table 1 for the two methods.

As seen from Table 1, not only the LUT-based GAB method performance is
higher than the DAB method and also requires much fewer feature as compare
to the DAB method, but about one fifth of the number of features the detection
performance is even better.
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Table 1. Performance and number of feature comparison for the methods. FA : False
Alarm, DR : Detection Ratio

Method Number of FAs/DR Number of total features

LUT-based GAB 15/85.2% 531

DAB 15/80.1% 2652

5 Conclusions

In this work, we developed a simple and efficient LUT-based GAB training pro-
cedure using Haar like features for the near frontal face detection. We tested and
compared two methods on the public common test set, CMU test set. This pro-
cedure necessitates significantly fewer features with respect to the DAB-based
training case for the near frontal face detection problem. We plan to use this
approach to implement a rotation invariant multi-view face detection system.

References

1. Viola, P., Jones, M.: Rapid Object Detection Using A Boosted Cascade of Simple
Features. IEEE Conference on Computer Vision and Pattern Recognition, (2001).

2. Li, S. Z.: Statistical Learning of Multi View Face Detection. ECCV 2002, Copen-
hagen, Denmark.

3. Viola, P., Jones, M.: Fast Multi View Face Detection. Technical Report TR2003-96,
July 2003, Mitsubishi Electric Research Laboratories.

4. Wu, B., Ai, H., Huang, C.: Fast Rotation Invariant Multi-View Face Detection based
on Real Adaboost. AFG’04, May 17-19, 2004, Seoul, Korea.

5. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic regression: a Statitical
View of Boosting. Technical Report, Standford University, August 17, 1998.

6. R. Liehart, A. Kuranov, V. Pisarevsky, Empirical Analysis of Detection Cascades
of Boosted Classifiers for Rapid Object Detection, MRL Tech report, 2002.



cswmzuo@163.com 

csdzhang@comp.polyu.edu.hk 



=

= =
−−=

= =
−−=

=
−−=

−= ννν

=
=

ν



=

=

Λ=

= Λ
= −=

=

−=

°





σ

πσ
+−=

>σ
σ

×σ
×

=

⊗=

′∗′=′′
′′′′′′=

× ×

=σ



± °
± °



×

≈

=σ







An Integrated Prediction Model for Biometrics

Rong Wang, Bir Bhanu, and Hui Chen

Center for Research in Intelligent Systems University of California,
Riverside Riverside, California 92521, USA

{rwang,bhanu,hchen}@vislab.ucr.edu

Abstract. This paper addresses the problem of predicting recognition perfor-
mance on a large population from a small gallery. Unlike the current approaches
based on a binomial model that use match and non-match scores, this paper
presents a generalized two-dimensional model that integrates a hypergeometric
probability distribution model explicitly with a binomial model. The distortion
caused by sensor noise, feature uncertainty, feature occlusion and feature clutter
in the gallery data is modeled. The prediction model provides performance mea-
sures as a function of rank, population size and the number of distorted images.
Results are shown on NIST-4 fingerprint database and 3D ear database for various
sizes of gallery and the population.

1 Introduction
The goal of pattern recognition is to classify patterns into a number of classes. Patterns
can be images, signals or any other type of measurements that need to be classified [1].
Currently, in order to ensure the high confidence in security, biometrics (e.g. finger-
print, palm, face, gait, signature and speech) are used. Depending on application there
are two kinds of biometric recognition systems: verification systems and identification
systems [2]. A verification system stores users’ biometrics in a database. Then it will
compare a person’s biometrics with the stored features to verify if this person is who
she/he claims to be. This is a one-to-one matching problem. The system can accept or
reject this person according to the verification result. An identification system is more
complex, where for a query the system searches the entire database to find out if there
are any biometric features saved in the database that can match the query. It conducts
one-to-many matching [2].

Usually a biometric recognition system consists of three stages: image acquisition,
feature extraction and matching. Distortion often occurs in these stages which is caused
by the sensor noise, feature uncertainty, feature occlusion and feature clutter. In a bio-
metric recognition system before we can widely use the recognition algorithm we need
to evaluate its performance on a large population. Since we have very limited data, we
can build a statistical model which is based on a small gallery to estimate its perfor-
mance on large population. Considering the distortion problem that may occur in large
population we present an integrated model which considers the distortion to predict
the large population performance from a small gallery. Unlike the previous approaches
based on a binomial model that use match and non-match score distributions, we present
a generalized two-dimensional model that integrates a hypergeometric model explicitly
with a binomial model.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 355–364, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Our paper is organized as follows. In section 2 we present the related work. In
section 3 we describe the distortion model which includes uncertainty, occlusion and
clutter. The detail of the integrated model are given here. Results are shown in section 4.
The integrated model is tested on NIST-4 fingerprint database and 3D ear database
for various sizes of small gallery and the large population. Conclusions are given in
section 5.

2 Related Work

Until now the prediction models are mostly based on the feature space and similarity
scores [3]. Tan et al. [4] present a two-point model and a three-point model to esti-
mate the error rate for the point based fingerprint recognition. Their approach not only
measures minutiae’s position and orientation, but also the relations between different
minutiae to find the probability of correspondence between fingerprints. They assume
that the uncertainty area of any two minutiae may overlap. Hong et al. [5] present a
method to predict the upper and lower bound for object recognition performance. They
consider the data distortion problem in the prediction. In their method performance is
predicted in two steps: compute the similarity between each pair of model; use the sim-
ilarity information along with the statistical model to determine an upper and lower
bound for recognition performance. Johnson et al. [6] build a cumulative match charac-
teristic (CMC) model that is based on the feature space to predict the gait identification
performance. Mahalanobis distance and L2 norm are used to compute similarity within
the feature space. They make an assumption about the density that the population vari-
ation is much greater than the individual variation. When this assumption is invalid this
approach cannot be used.

Wayman [7] and Daugman [8] develop a binomial model that uses the non-match
score distribution. This model underestimates recognition performance for large gal-
leries. Phillips et al. [9] create a moment model, which uses both the match score and
the non-match score distributions. Since all the similarity scores are sampled indepen-
dently, their results underestimate the identification performance. Johnson et al. [10]
improve the moment model by using a multiple non-match scores set. They average
match scores on the whole gallery. For each match score they count the number of
non-match scores that is larger than this match score, which leads to an error. In reality
the distribution of match score is not always uniform. Grother et al. [11] introduce the
joint density function of the match and non-match scores to solve the underestimation
problem.

In this paper we present a generalized two-dimensional model that integrates a hy-
pergeometric model with a binomial model to predict the large population performance
from a small gallery. It considers the data distortion problem in the large population. The
number of distorted images follows hypergeometric distribution. Like Hong et al. [5]
our distortion model includes feature uncertainty, occlusion and clutter. The distortion
model needs users to define some parameters, such as feature uncertainty probability
density function (PDF), occlusion amount, clutter amount, clutter region, and clutter
PDF etc. Then according to the different numbers of distorted images we get the dis-
tributions of match score and non-match score. After this we use the CMC curve [6]
to rank all these scores. A CMC curve can show different probabilities of recognizing
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biometrics depending upon how similar the features for this query biometrics are in
comparison to the other biometrics in the gallery. Finally we use a binomial distribu-
tion to compute the probability that the match score is within rank r. In this paper we
consider the performance when the rank r = 1.

3 Technical Approach
We are given two sets of data: gallery and probe. Gallery is a set of biometric templates
saved in the database. For each individual there is one template saved in the gallery.
Probe is a set of query biometrics. Large population is the unknown data set whose
recognition performance needed to be estimated based on the given gallery and probe
set.

3.1 Distortion Model

Our distortion model includes feature uncertainty, occlusion and clutter. Assume F =
{f1, f2, · · · , fk} is feature set of the biometrics, where fi = (x, y, t), x and y represent
feature’s location, t represents feature’s other attributes except for location. Then the
distortion algorithm [5] does the following:

a) Uncertainty: Assume the uncertainty PDF follows uniform distribution. It rep-
resents how likely each feature is to be perturbed. We replace each feature fi = (x, y, t)
with f

′
i which is chosen uniformly at random from the set

{(x′, y′, t′), (x′, y′) ∈ 4NEIGHBOR(x, y), (1 − α)t ≤ t′ ≤ (1 + α)t}
where α is a coefficient, usually 0 ≤ α ≤ 1. 4NEIGHBOR(x, y) means 4 points
around (x,y), they are {(x− 1, y), (x + 1, y), (x, y − 1), (x, y + 1)}. The unit is pixel.

b) Occlusion: Assume the number of features to be occluded is O. Uniformly choose
O features out of the k features, remove these features.

c) Clutter: Add C additional features, where each feature is generated by picking a
feature according to the clutter PDF from the clutter region (CR). The clutter PDF
determines the distribution of clutter over the clutter region. Clutter region is used to
determine where clutter features should be added. The clutter region typically depends
upon the given model to be distorted. We usually use a bounding box to define the
clutter region

CR = {(x, y, t), xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, tmin ≤ t ≤ tmax}
where xmin and xmax represent the minimum and maximum value of x, the same
definition for ymin, ymax, tmin and tmax.

We define the distortion region of feature f , denoted by DR(f), as the union of all
features that could be generated as uncertain version of f . In order to simplify, we use
uniform PDF for uncertainty and clutter. In fact other PDF s are also possible and can
be implemented.

3.2 Prediction Model

Our two-dimensional prediction model considers the distortion problem which is much
more conform with the reality than our previous work [3]. Assume we have two kinds
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of different quality biometric images, group #1 and group #2. Group #1 is a set of
good quality biometric images without distortion. Group #2 is a set of poor quality
biometric images with feature uncertainty, occlusion and clutter. In general, the size of
these two groups are N1 and N2. We randomly pick p images from group #1 and group
#2. Then the number of distorted images y which are chosen from group #2 should
follow hypergeometric distribution.

f(y) =
CN1

p−yCN2
y

CN1+N2
p

(1)

where

CN1
p−y =

N1!
(p− y)!(N1 − p + y)!

CN2
y =

N2!
y!(N2 − y)!

CN1+N2
p =

(N1 + N2)!
p!(N1 + N2 − p)!

where N1 + N2 is the total number of images in these two groups, p− y is the number
of images chosen from group #1.

In order to simplify the description we assume sizes of gallery and probe set are
all n. For each image in the probe set we compute the similarity scores with every
image in the gallery. Then we have one match score and n − 1 non-match scores for
this image. Here we assume that the match score and the non-match score are inde-
pendent. Thus for a given number of distorted images we get a set of match scores
Mi = [mi,1,mi,2, · · · ,mi,n] and a set of corresponding non-match scores

NMi =

⎡⎢⎣ ni,1,1 · · · ni,n,1

...
. . .

...
ni,1,(n−1) · · · ni,n,(n−1)

⎤⎥⎦
where i represents the number of images selected from group #2, i = 1, 2, · · · , n. Now
for a given number of distorted images i, jth image has a set of similarity scores which
include one match score and n− 1 non-match scores

Sij =
[
mi,j ni,j,1 · · · ni,j,(n−1)

]
where i = 1, 2, · · · , n, j = 1, 2, · · · , n.

If we have enough match scores and non-match scores then we can estimate their
distributions. From above we know that the similarity score distributions depend not
only on the similarity scores but also on the number of images with distortion. Here
we assume ms(x|y) and ns(x|y) represent the distributions of match scores and non-
match scores given the number of distorted images. Assume if the similarity score is
higher then the biometrics are more similar. The error occurs when a given match score
is smaller than the non-match score. For a given number of distorted images the prob-
ability that the non-match score is greater than or equal to the match score x is NS(x)
where
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NS(x) =
∫ ∞

x

ns(t|y)f(y)dt (2)

Then the probability that the non-match score is smaller than the match score is 1 −
NS(x).

Here we assume that the similarity score distributions are similar for small gallery
and large population. If the size of large population is N , then for jth image we can
have a set of similarity scores, which include one match score and N − 1 non-match
scores. We rank the similarity scores in decreasing order. Then for a given number of
images with distortion the probability that the match score x rank r is given by the
binomial probability distribution

CN−1
r−1

(
1 −

∫ ∞

x

ns(t|y)f(y)
)N−r (∫ ∞

x

ns(t|y)f(y)
)r−1

(3)

Integrating over all the match scores, for a given number of images with distortion the
probability that the match scores rank r can be written as∫ ∞

−∞
CN−1

r−1

(
1 −

∫ ∞

x

ns(t|y)f(y)
)N−r (∫ ∞

x

ns(t|y)f(y)
)r−1

ms(x|y)f(y)dx

(4)
We integrate over all the number of images chosen from group #2, the probability that
the match scores rank r can be written as∫ ∞

−∞
CN−1

r−1

(
1 −

∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)N−r

(∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)r−1 n∑
y=0

ms(x|y)f(y)dx (5)

In theory the match scores can be any values within (−∞,∞). We get the probability
that the match scores are within rank r is

P (N, r) =
r∑

i=1

∫ ∞

−∞
CN−1

r−1

(
1 −

∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)N−r

(∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)r−1 n∑
y=0

ms(x|y)f(y)dx (6)

Considering the correct match take place above a threshold t, the probability that the
match score is within rank r becomes

P (N, r, t) =
r∑

i=1

∫ ∞

t

CN−1
r−1

(
1 −

∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)N−r

(∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)r−1 n∑
y=0

ms(x|y)f(y)dx (7)
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For the problem where rank r = 1 then the prediction model with the threshold t
becomes

P (N, 1, t) =
∫ ∞

t

(
1 −

∫ ∞

x

n∑
y=0

ns(t|y)f(y)

)N−1 n∑
y=0

ms(x|y)f(y)dx (8)

In this model we make two assumptions: match scores and non-match scores are
independent and their distributions are similar for large population. In this model N
is the size of large population whose performance needs to be estimated. Small size
gallery is used to estimate distributions of ms(x|y) and ns(x|y) .

4 Experimental Results

In this section we verify our model on NIST-4 fingerprint database and ear database for
different sizes of small gallery and large population. Then we compare the performance
of our integrated model with our previous binomial model on the NIST-4 fingerprint
database.

4.1 Integrated Prediction Model

Fingerprint Database: All the fingerprints we use in the experiments are from NIST
Special Database 4 (NIST-4). It consists of 2000 pairs of fingerprints, each of them is
labeled ‘f’ or ‘s’ that represent different impressions of a fingerprint followed by an
ID number. The images are collected by scanning inked fingerprints from paper. The
resolution of the fingerprint image is 500 DPI and the size is 480× 512 pixels. Figure 1
is a pair of fingerprints from NIST-4 database.

f0006_09 s0006_09

Fig. 1. Sample images from NIST-4

Usually the minutiae features are used for fingerprint recognition which can be ex-
pressed as f = (x, y, c, d), where x and y are the locations of the minutiae, c is the class
of minutiae, and d is the direction of minutiae. We define the percentage of minutiae
with distortion for one fingerprint as g. In our experiments we choose g = 5%, 7%, and
8% respectively. By applying distortion model to these 2000 pairs of fingerprints ac-
cording to different distortion percentages, we get 6000 pairs of distorted fingerprints.
Assume the number of minutiae is numj , usually one pair of fingerprints have different
number of minutiae so j = 1, 2, · · · , 4000. The distortion model is as following:
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(a) Uncertainty: Uniformly choose U = g × numj minutiae features out of the
numj replace each fi = (x, y, c, d) with f

′
i chosen uniformly at random from the set

{(x′, y′, c′, d′), (x′, y′) ∈ 4NEIGHBOR(x, y), c′ = c± 1, d′ = d± 3◦}

where i = 1, 2, · · · , U .
(b) Occlusion: Uniformly choose O = g×numj minutiae features out of the numj

remove these minutiae.
(c) Clutter: Add C = g×numj additional minutiae, where each minutiae is gener-

ated by picking a feature uniformly at random from the clutter region. Here we choose
the clutter region as

CR = {(x, y, c, d), 50 ≤ x ≤ 450, 60 ≤ y ≤ 480, c = {0, 1, 2, 3, 4}, 10◦ ≤ d ≤ 350◦}

In our experiments we use the uniform distribution as the uncertainty PDF and the
clutter PDF . The number of features with uncertainty, occlusion and clutter are the
same. By adding different percentage of minutiae with distortion g we have four groups
of fingerprint images, each group has 2000 pairs of fingerprints. Group #1 is the original
fingerprints in NIST-4, group #2 is the fingerprints with g = 5% , group #3 with g =
7%, and group #4 with g = 8% .

Assume our small galley size n = 50. We randomly pick up 50 fingerprints pairs
from group #1 and group #2. Then the number of fingerprints chosen from group #2
which denoted by y follows hypergeometric distribution,

f(y) =
C50

y C50
50−y

C100
50

(9)

Now we have 50 pairs of images including the original images and the distorted im-
ages. The images labeled with ‘f’ are used as the gallery and the others labeled with ‘s’
are used as the probe set. We use fingerprint verification approach which based on the
triplets of minutiae to compute the similarity scores for these fingerprints [12]. Then we
get the distributions of the match score and the non-match score. Figure 2 is the distri-
butions of the match score and the non-match score for different number of distorted
images. From Figure 2 it’s clear that these distributions depend not only on similarity
scores also on the number of distorted images. Here we choose the threshold for correct
match t = 12. For the verification problem we consider the case when rank r = 1. This
small gallery n = 50 applies in the integrated prediction model which can predict the
large population performance, here we choose N = 6000. Now we get the prediction
result for g = 5%. By repeating the above process we get the estimation results for
g = 7% and g = 8%. Average these three prediction values we get the estimation re-
sult for large population N = 6000. We choose different size of small gallery n = 70.
By repeating the above process we obtain the estimation results for large population.
Figure 3 shows the absolute error between the predicted and experimental verification
performance. The absolute error is smaller than 0.08 when the population size is larger
than 1000. That means our integrated prediction model can efficiently predict the fin-
gerprint recognition performance for large population.
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Fig. 2. Similarity scores distributions. (a) Match scores distribution. (b) Non-match scores distri-
bution
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Fig. 3. Absolute error between the integrated prediction model and experimental fingerprint
recognition performance

model_1 test_1 model_2 test_2

Fig. 4. Sample images from 3D ear database

Ear database: Ear data we use in this experiment are acquired by using Minolta Vivid
300. The image contains 200× 200 grid points which has 3D coordinate (x, y, z). This
data set has 52 subjects and every subject has two range images which are taken at
different viewpoints. Figure 4 shows two pairs of ear. We add Gaussian noise N(0, σ =
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Table 1. Prediction using the integrated model and experimental ear recognition performance

Gallery Size Experiment Prediction
50 88.00% 83.28%

Table 2. Predicted ear recognition performance for different sizes of large population by the
gallery of 52 objects

Gallery Size Prediction Results
100 81.67%
150 81.22%
200 81.07%
250 81.01%
300 80.99%

0.6mm) to these images. Then we have two image groups: group #1 has 52 images
without noise, group #2 has 52 images with Gaussian noise. We randomly choose 52
images from these two image groups as our small gallery we can predict the recognition
performance for different large population sizes. Table 1 shows the comparison of the
predicted and actual recognition performance with rank r = 1. The error between them
is 0.0472 which indicate that our integrated prediction model can predict ear recognition
performance for large population. Table 2 shows predicted recognition performance for
different sizes of large population by the small gallery of 52 objects.

4.2 Comparison with Previous Work

In our previous work [3], we use binomial model to predict the fingerprint recognition
performance when rank r = 1. In this model the prediction problem is expressed as:

P (N, r, t) =
∫ ∞

t

(
1 −

∫ ∞

x

ns(t)dt
)N−r

ms(x)dx (10)

Compared with equation ( 8) binomial model did not consider the distortion problem
in large population. Figure 5 is the prediction error between the integrated model and
the binomial model under the same small gallery size for fingerprint database. The
prediction error made by integrated model is much smaller than that of the binomial
model which indicate that the integrated model is suitable for the distortion problem.

5 Conclusions

We have presented an integrated model which can predict large population performance
from a small gallery. This model considers the distortion problem which happens in
large population. Results are shown on NIST-4 fingerprint database and 3D ear database
for various sizes of small gallery and population. From the above results we can see that
compared with previous approaches our model improve the prediction results and can
be used to predict the large population performance. In this paper we mainly focused on
the biometrics recognition system, in fact this prediction model can be used to predict
other kind of object recognition system.
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Fig. 5. Prediction error between the integrated model and the binomial model for fingerprint
recognition performance
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Abstract. This paper is framed in the field of statistical face analy-
sis. In particular, the problem of accurate segmentation of prominent
features of the face in frontal view images is addressed. Our method
constitutes an extension of Cootes et al. [6] linear Active Shape Model
(ASM) approach, which has already been used in this task [9]. The tech-
nique is built upon the development of a non-linear appearance model,
incorporating a reduced set of differential invariant features as local im-
age descriptors. These features are invariant to rigid transformations,
and a subset of them is chosen by Sequential Feature Selection (SFS) for
each landmark and resolution level. The new approach overcomes the
unimodality and gaussianity assumptions of classical ASMs regarding
the distribution of the intensity values across the training set. Validation
of the method is presented against the linear ASM and its predecesor,
the Optimal Features ASM (OF-ASM) [14] using the AR and XM2VTS
databases as testbed.

1 Introduction

In many automatic systems for face analysis, following the stage of face detection
and localization and before face recognition is performed, facial features must be
extracted. This process currently occupies a large area within computer vision
research.

A human face is part of a smooth 3D object mostly without sharp bound-
aries. It exhibits an intrinsic variability (due to identity, gender, age, hairstyle
and facial expressions) that is difficult if not impossible to characterize analyti-
cally. Artifacts such us make-up, jewellery and glasses cause further variation. In
addition to all these factors, the observer’s viewpoint (i.e. in-plane or in-depth
rotation of the face), the imaging system, the illumination sources and other
objects present in the scene, affect the overall appearance. All these intrinsic
and extrinsic variations make the segmentation task difficult and discourage a
search for fixed patterns in facial images. To overcome these limitations, statisti-
cal learning from examples is becoming popular in order to characterize, model
and segment prominent features of the face.

An Active Shape Model (ASM) is a flexible methodology that has been used
for the segmentation of a wide range of objects, including facial features [9]. In

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 365–375, 2005.
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the seminal approach by Cootes et al. [6] shape statistics are computed from a
Point Distribution Model (PDM) and a set of local grey-level profiles (normalized
first order derivatives) is used to capture the local intensity variations at each
landmark point. In [5] Cootes et al. introduced another powerful approach to
deformable template models, namely the Active Appearance Model (AAM). In
AAMs a combined PCA of the landmarks and pixel values inside the object is
performed. The AAM handles a full model of appearance, which represents both
shape and texture variation.

The speed of ASM-based segmentation is mostly based on the simplicity of
its texture model. It is constructed with just a few pixels around each landmark
whose distribution is assumed to be gaussian and unimodal. This simplicity, how-
ever, becomes a weakness when complex textures must be analyzed. In practice,
its local grey-levels around the landmarks can vary widely and pixel profiles
around an object boundary are not very different from those in other parts of
the image. To provide a more complete intensity model, van Ginneken et al. [14]
proposed an Optimal Features ASM (OF-ASM), which is non-linear and allows
for multi-modal intensities distribution, since it is based on a k-nearest neigh-
bors (kNN) classification of the local textures. The main contribution of that
approach is an increased accuracy in the segmentation task that has shown to
be particularly useful in segmenting objects with textured boundaries in medical
images. However, its application to facial images is not straightforward. Facial
images have a more complicated geometry of embedded shapes and present large
texture variations when analyzing the same region for different individuals. In
this work we will discuss those problems and develop modifications to the model
in order to make it deal with face complexities, as well as the replacement of the
OF-ASM derivatives so that the intensity model is invariant to rigid transfor-
mations. The new method, coined Invariant Optimal Features ASM (IOF-ASM)
will also attack the segmentation speed problem, mentioned as a drawback in
[14]. The performance of our method is compared against both the original ASM
and the OF-ASM approaches, using the AR [11] and XM2VTS [12] databases
as test bed. Experiments were split into segmentation accuracy and identity
verification rates, based on the Lausanne protocol [12].

The paper is organized as follows. In Section 2 we briefly describe the ASM
and OF-ASM, while in Section 3 the proposed IOF-ASM is presented. In Section
4 we describe the materials and methods for the evaluation and show the results
of our experiments and Section 5 concludes the paper.

2 Background Theory

2.1 Linear ASM

In its original form [6], ASMs are built from the covariance matrices of a Point
Distribution Model (PDM) and a local image appearance model around each of
those points.

The PDM consists of a set of landmarks placed along the edges or contours
of the regions to segment. It is constructed by applying PCA to the aligned set
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of shapes, each represented by a set of landmarks [6]. Therefore, the original
shapes ui and their model representation bi are related by the mean shape u
and the eigenvectors matrix Φ:

bi = ΦT (ui − u), ui = u + Φbi (1)

It is possible to use only the first M eigenvectors with the largest eigenvalues.
In that case (1) becomes an approximation, with an error depending on the
magnitude of the excluded eigenvalues. Furthermore, under the assumption of
gaussianity, each component of the bi vectors is constrained to ensure that only
valid shapes are represented:

bm
i ≤ β

√
λm 1 ≤ i ≤ N, 1 ≤ m ≤ M (2)

where β is a constant, usually set between 1 and 3, according to the degree of
flexibility desired in the shape model and λm are the eigenvalues of the covariance
matrix.

The intensity model is constructed by computing second order statistics for
the normalized image gradients, sampled on each side of the landmarks, per-
pendicularly to the shape’s contour. The matching procedure is an iterative
alternation of landmark displacements based on image information and PDM
fitting, performed in a multi-resolution framework. The landmark displacements
are provided using the intensity model, by minimizing the Mahalanobis distance
between the candidate gradient and the model’s mean.

2.2 Optimal Features ASM

As an alternative to the construction of normalized gradients and to the use of
the Mahalanobis distance as a cost function, van Ginneken et al. [14] proposed
to use a non-linear gray-level appearance model and a set of features as local
image descriptors. Again, the landmark points are displaced to fit edge locations
during optimization, along a profile perpendicular to the object’s contour at
every landmark. However, the best displacement here will be the one for which
everything on one side of the profile is classified as being outside the object,
and everything on the other side, as inside of it. Optimal Features ASMs (OF-
ASMs) use local features based on image derivatives to determine this. The idea
behind that is the fact that a function can be locally approximated by its Taylor
series expansion provided that the derivatives at the point of expansion can
be computed up to a sufficient order. The set of features is made optimal by
sequential feature selection [8] and interpreted by a kNN classifier with weighted
voting [3], to hold for non-linearity.

3 Invariant Optimal Features ASM

3.1 Multi-valued Neural Network

In our approach we used a non linear classifier in order to label image points near
a boundary or contour. In principle, any classifier can be used, as long as it can
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cope with the non-linearity. Between the many available options, our selection
was the Multivalued Neural Network (MVNN) [2], mainly based on the need to
improve segmentation speed. This is a very fast classifier, since its decision is
based only on a vector multiplication in the complex domain. Furthermore, a
single neuron is enough to deal with non-linear problems [1], which avoids the
need for carefully tuning the number of layers (and neurons in each of them)
that characterizes multi-layer perceptron networks.

The MVNN will have as many inputs as the number of features selected for
each landmark (say NF ), all of them being integer numbers, and a single integer
output. The classification is performed by a single neuron, which for every input
xk finds a corresponding complex number on the unit circle:

qk = exp(j2πxk) 1 ≤ k ≤ NF (3)

xk being the k-th input variable value (discrete), qk its corresponding complex-
plane representation, NF the number of inputs (features) and j the imaginary
unit

√−1. Then, the neuron maps the complex inputs to the output plane by
means of the NF -variable function fNF :

fNF (z) = exp(j2π
k

NO
) when 2π

k

NO
≤ arg(z) < 2π

k + 1
NO

(4)

z = w0 + w1q1 + w2q2 + ... + wNF qNF (5)

where wk are the network weights learnt during the training phase. The fNF ’s
image is a complex plane, which has been divided into NO angular sectors, like
a quantization of arg(z). In other words, the neuron’s output is defined as the
number of the sector in which the weighted sum z has fallen. Notice that the
number of sectors of the input and output domains does not need to be the
same.

3.2 Irreducible Cartesian Differential Invariants

A limitation of using the derivatives in a cartesian frame as features in the
OF-ASM approach is the lack of invariance with respect to translation and
rotation (rigid transformations). Consequently, these operators can only cope
with textured boundaries with the same orientations as those seen in the training
set. To overcome this issue we introduce a multi-scale feature vector that is
invariant under 2D rigid transformations.

It is known [7][15] that Cartesian differential invariants describe the differ-
ential structure of an image independently of the chosen cartesian coordinate
system. The term irreducible is used to indicate that any other algebraic invari-
ants can be reduced to a combination of elements in this minimal set. Table 1
shows the Cartesian invariants up to second order.

To make our approach invariant to rigid transformations we use these invari-
ants at three different scales, σ = 1, 2 and 4. The zero order invariants were
not used since the differential images are expected to provide more accurate and
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Table 1. Tensor and Cartesian formulation of invariants

Tensor Formulation 2D Cartesian Formulation

L L

Lii Lxx + Lyy

LiLi L2
x + L2

y

LiLijLj L2
xL2

xx + 2LxyLxLy + L2
yL2

yy

LijLji L2
xx + L2

xy + L2
yy

stable information about facial contours (edges). For each landmark and reso-
lution level, a sequential feature selection algorithm [8] was used to reduce the
size of the feature vector. In this way, only a subset of the invariants drove the
segmentation process.

3.3 Texture Classifiers for IOF-ASM

IOF-ASM is basically an improved OF-ASM. The first two improvements are
the new and much faster classifier and the use of features invariant to rigid
transformations of the input image. Only one improvement is left that we will
be stated below.

Let us look back for a moment at OF-ASM. Its training is based on a land-
marked set of images for which all of the derivative images are computed and
described by local histograms statistics. The idea behind this method is that,
once trained, texture classifiers will be able to label a point as inside or outside
the region of interest based on the texture descriptors (the features) or, ideally,
on a smaller (optimal) subset of them. Therefore, labelling inside pixels with 1
and outside pixels with 0 and plotting the labels corresponding to the profile
pixels, the classical step function is obtained, and the transition will correspond
to the landmark position.

Nevertheless, there are a couple of reasons why this will not happen. The first
one is that certain regions of the object are thinner than the size of the grid,
and then the correct labelling of the points will look more like a bar than like
a step function. An indicative example arises when the square grid is placed on
the eyes or eyebrows contours, especially if using a multiresolution framework,
as ASM does (Fig. 1). Another problem is that the classifiers will not make a
perfect decision, so the labelling will look much noisier than the ideal step or
bar. Moreover, Fig. 1 illustrates how, for certain landmarks where there is a high
contour curvature (i.e mouth/eyes/eyebrows corners), most of the grid points lie
outside the contour, promoting quite an unbalanced training of the classifiers.

To tackle these problems, in our IOF-ASM we introduced new definitions of
input and output of the classifiers. For each landmark, instead of the Gaussian
weighted histograms used in OF-ASM, we place a square grid, with a subgrid at
each cell of the main grid. In other words, in previous approaches fixed positions
along the normal were used to sample pixels. We extended this approach and
defined a grid with its center on the landmark. Then for each cell of this grid we
use a classifier, whose inputs are taken from a subgrid centered at each of the
cells of the main grid.
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Fig. 1. A typical eyebrow image and a 5x5 grid with the arrow indicating the normal
to the contour (Left); The same grid in the mouth corner, where only 3 points lie inside
the lip (Center); and the typical graphs of the profiles for OF- and IOF-ASM (Right)

Regarding the outputs, the bi-valued labelling (inside-outside) is replaced
with the distance of the pixels to the landmarked contour. Then, for each cell of
the main grid the classifiers are trained to return the distance to reach the land-
mark. Since those centers are placed along normals to the contour, the typical
plot of the labels will take a shape of letter ”V”, with its minimum (the vertex)
located at the landmark position, irrespective of which region is sampled or its
width relative to the grid size.

At matching time, this labelling strategy allows for introducing a confidence
metric. The best position for the landmark is now the one which minimizes the
profile distance to the ideal ”V” profile, excluding the outliers. An outlier here
is a point on the profile whose distance to the ideal one is greater than one. It
can be easily understood by noticing that such a point is suggesting a different
position to place the landmark (i.e. its distance would be smaller if the V is
adequately displaced). If the number of outliers exceeds 1/3 of the profile size,
then the image model is not trustworthy and the distance for that position is
set to infinity. Otherwise, preference is given to the profiles with fewer outliers.
The function to minimize is:

f(k) = NOL +
1

NP −NOL

NP −NOL∑
i=1

|pi − vi| (6)

where k are the candidate positions for the landmark, NOL is the number of
outliers, NP the profile size, and p and v are the input and ideal (V) profiles,
respectively.

4 Experiments

The performance of the proposed method was compared with the ASM and
OF-ASM schemes. Two datasets were used. The first one is a subset of 532
images from the AR database [11], showing four different facial expressions of
133 individuals. This database was manually landmarked with a 98-point PDM
template that outlines the eyes, eyebrows, nose, mouth and face silhouette. The
second dataset is the XM2VTS [12] database, composed of 2360 images (8 for
each of 295 individuals).
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Fig. 2. Mean fitting error performance in 532 frontal images of the AR database

Both segmentation accuracy and identity verification scores have been tested.
In order to make verification scores comparable between the two datasets, the AR
images were divided into five groups, preserving the proportions of the Lausanne
Protocol [12] (configuration 2) for the XM2VTS database. In this way, we came
out with 90 users (two images/each for training, one for evaluation and one for
testing), 11 evaluation impostors (44 images) and 32 test impostors (128 images).
It must be pointed out that the individuals on each group were randomly chosen,
making sure that there is the same proportion of men/women in all of them.
Moreover, they are also balanced in the amount of images per facial expression.

4.1 Segmentation Accuracy

The segmentation accuracy was tested on the AR dataset only, since this task
needs the input images to be annotated. For the same reason, all models con-
structed in our experiments were based on the Training Users group of the AR
dataset. Table 2 summarizes the parameters used by the 3 compared models. Ad-
ditionally, we use 150 PCA modes for the PDM, β = 1.5 (see (2)) and a search
range of ±3 pixels along the profiles at each resolution. The segmentation results
are displayed in Fig. 2. The displayed curves show the mean Euclidean distance
(± the standard error) between the segmentation using the corresponding model
and the manual annotations for each landmark, normalized as a percentage of
the distance between the true centers of the eyes. The mean eyes-distance in the
AR dataset is slightly greater than 110 pixels, so the curves give the fitting error
approximately in pixel units.
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Table 2. Parameters used to build the statistical models

Parameter ASM OF-ASM IOF-ASM

Profile length 8 n/a 7

Grid size n/a 5 × 5 7 × 1

Each grid point n/a α = 2σ 7 × 5 patch

Resolutions 4 5 5

Selected features n/a 6 of 36 70 of 420
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Fig. 3. Segmentation errors vs. PDM flexibility (Left) and vs. rotation angles of the
input images (Right)

It is clear from Fig. 2 that OF-ASM produces a segmentation error signifi-
cantly larger than the other methods, due to the problems that were previously
discussed, mainly regarding shape complexity. On the other hand, IOF-ASM
outperforms ASM in all regions, and the difference is statistically significant in
several landmarks. The average improvement of IOF-ASM with respect to the
ASM segmentation is of 13.2%, with a maximum and minimum of 28.5% and
5.2% in the eyes and silhouette contour respectively.

Fig. 3 (Left) shows further comparison of ASM and IOF-ASM accuracy when
varying the PDM flexibility parameter β (see (2)). It can be seen that as β
increases, the difference between the error of both models tends to grow. At
the same time, the PCA reconstruction error introduced by the PDM decreases,
so the segmentation relies more on the image model precision. This behavior
enforces the hypothesis of performance improvement in favor of IOF-ASM.

The three models are always initialized with their mean shape centered at
the true face centroid (according to the annotations) and scaled to 80% of the
mean size of the faces in the database. Notice in Table 2 that the image model
search range for all models is ±3 pixels per resolution level, giving a total of
±3×2NR−1 pixels, for NR resolutions. Considering such initialization, the initial
distance between the model landmarks and the annotated positions will be up
to 68 pixels in the lower lip and the chin, and up to 40 pixels in the rest of the
face, so NR should be fixed at least to 5. However, in our experiments the best
performance for ASM was obtained with 4 resolutions, and therefore we used
this value.
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Table 3. Identity Verification Scores

Database Set Parameter ASM IOF-ASM

AR Evaluation EER 3.3% 3.3%
Test FAR 3.6% 3.9%

FRR 3.3% <1%

XM2VTS Evaluation EER 11.0% 6.8%
Test FAR 10.9% 6.9%

FRR 12.8% 7.3%

4.2 Rotation Invariance

It was emphasized in Section 3.2 that the IOF-ASM features extracted from the
images are invariant to rigid transformations. ASM exhibits the same invariance,
but OF-ASM does not. To verify this fact we repeated the experiments of the
previous section but using rotated versions of the images, ranging from -60 to
+60 degrees. The PDM was constructed from the rotated images, such that
the starting shape (based on the mean shape) was also rotated. But the image
models were not changed (i.e. they were based on the non-rotated images) so
that their invariance is the only thing to test.

The results of the experiment are presented in Fig. 3 (on the right). As
expected, there is a clear increment of the segmentation error in the OF-ASM as
the rotation angle departs from zero. On the other hand, the ASM and IOF-ASM
performance is only marginally affected.

4.3 Identity Verification

Once demonstrated that IOF-ASM is more accurate in segmenting facial images,
there is the question of weather or not it will improve recognition tasks as well.
The development of a state-of-the-art classifier is beyond the scope of this pa-
per. Our approach consisted of a whitened angle classifier, known to be a good
choice for PCA-based metrics [13]. In order to obtain the inputs for the classifier
the final shape matched by the model is used to warp image pixels into some
mean shape. Then, texture parameters are computed from it using PCA. In our
experiments, the warping was done by means of a Delaunay triangulation.

The error rates obtained with this strategy are presented in Table 3. The
evaluation sets Equal Error Rate (EER) [4] were used to fix the working point
of the classifier and get the False Acceptance (FAR) and False Rejection (FRR)
rates from the test sets. Despite the fact that AR database error rates of ASM
and IOF-ASM are comparable, the DET curves [10] in Fig. 4 show that there
is some advantage for IOF-ASM, especially in the test set. These curves are not
needed for the XM2VTS database, since the error rates differ significantly.

5 Summary and Conclusions

In this paper a new segmentation method has been presented to solve some
limitations of its predecessor, the OF-ASM approach. The main contributions
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Fig. 4. DET curves for the AR Evaluation (Left) and Test (Right) Sets

introduced here are the rigid transformations invariance, the ability to deal with
shape complexities (such as multiple embedding) and the speed up of the seg-
mentation process (up to 5 times with the AR database training set), by means
of faster texture classifiers.

Experiments were presented showing that the non-linear intensity model out-
performed the linear one, and yielded smaller segmentation error, especially when
matching the eyes, eyebrows and some points of the lips, where the pixel value
distributions are expected to be clearly non-unimodal. The invariance under 2D
rotations was also successfully tested on a wide angles range.

The influence of the accuracy improvement respect to the ASM was reported
on identity verification. The IOF-ASM demonstrated superior performance both
in the AR database, partially used to construct the model, and the XM2VTS
database, whose images were not involved in the model construction.
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Towards Scalable View-Invariant Gait Recognition:
Multilinear Analysis for Gait

Chan-Su Lee and Ahmed Elgammal
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Abstract. In this paper we introduce a novel approach for learning view-inva-
riant gait representation that does not require synthesizing particular views or any
camera calibration. Given walking sequences captured from multiple views for
multiple people, we fit a multilinear generative model using higher-order singular
value decomposition which decomposes view factors, body configuration factors,
and gait-style factors. Gait-style is a view-invariant, time-invariant, and speed-
invariant gait signature that can then be used in recognition. In the recognition
phase, a new walking cycle of unknown person in unknown view is automatically
aligned to the learned model and then iterative procedure is used to solve for
both the gait-style parameter and the view. The proposed framework allows for
scalability to add a new person to already learned model even if a single cycle of
a single view is available.

1 Introduction

Human gait is a valuable biometric cue that can be used for human identification sim-
ilar to other biometrics such as faces and fingerprints. Gait has significant advantages
compared to other biometrics since it is easily observable in an unintrusive way and
is difficult to disguise [4]. Therefore, gait recognition has a great potential for human
identification in public spaces for surveillance and for security [4, 10, 11, 21]. A fun-
damental challenge in gait recognition is to develop robust recognition algorithms that
can extract gait features that are invariant to the presence of various conditions which
affect people appearance. As a challenging problem in gait recognition, different condi-
tions such as view, clothing, walking surface, and shoe type were presented in the NIST
dataset [21]. Many gait recognition algorithms assume constrained conditions to reduce
various sources that influence recognition accuracy. Two typical assumptions are fixed
view, especially side view, and constant speed.

Generally, appearance-based approaches have been favorable in gait recognition [3,
9, 10, 13, 16–21, 24, 26, 30, 31] because, in typical application scenarios, people might
be at a distance from the camera which inhibits accurate fitting of 3D models. Therefore,
many gait recognition research focus on extracting view-based invariant gait signature
for use in identification. Several attempts have been made to achieve view-invariant gait
recognition [2, 8, 12, 23], mainly based on synthesizing side-view images from multiple
views. For example, Shakhnarovich [23] used image-based visual hull to render a side
view from multiple cameras. Kale [12] also presented the view invariant gait recognition
algorithm by synthesizing a side view using perspective projection methods and optical
based structures.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 395–405, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper we introduce a novel approach for learning view-invariant gait signa-
ture that does not require synthesizing particular views and doesn’t require any camera
calibration. Instead, in the learning phase, multiple views are used to extract an invariant
gait signature while in recognition phase, any single view can be used to extract the gait
signature directly. Given walking sequences captured from multiple views for multiple
people, first we learn a nonlinear generative model for each walking cycle which en-
ables re-sampling the cycle into temporally aligned gait cycles. Then we fit a multilinear
generative model using higher-order singular value decomposition (HOSVD) [14] that
decomposes view factors, body configuration factors, and gait-style factors. Gait-style
is a view-invariant, time-invariant, and speed-invariant gait signature that can then be
used in recognition. In the recognition phase, a new walking of unknown person in un-
known view is aligned to the learned model and then iterative procedure is used to solve
for both the gait-style and the view. Related work in using mulitlinear analysis for gait
includes [27]

One important feature of the proposed framework is it’s scalability to include new
people. Given a learned model we can add a new person to the model even if only
single view is available for that person, i.e., one cycle gait sequence from one of the
multiple possible views is need to include new people to the database. This is a very
important feature since in realistic scenarios, it is not always possible to have multiple
view sequences of each person to be included in the database. Experimental results
using CMU Mobo gait database and NIST-USF database [21] are reported in this paper.

The organization of the paper is as follows: In Section 2, we introduce temporal
normalization of gait and cycle detection. Section 3 describes decomposition of gait-
style, view, and body configuration parameters, estimation of style, and its application to
gait recognition. Experimental results are described in Section 4 prior to the conclusion
in Section 5.

2 Temporal Normalization by Manifold Embedding
and Re-sampling

2.1 Input Representation

The inputs to the training and recognition phases are sequences of human silhouettes
detected using background subtraction. We represent each shape instance (silhouette)
as an implicit function y(x) at each pixel x such that y(x) = 0 on the contour, y(x) > 0
inside the contour, and y(x) < 0 outside the contour. We use a signed-distance function
such that

y(x) =

⎧⎨⎩
dc(x) x inside c
0 x on c
−dc(x) x outside c

where the dc(x) is the distance to the closest point on the contour c with a positive
sign inside the contour and a negative sign outside the contour. Such representation
impose smoothness on the distance between shapes. Given such representation, each
input silhouette is represented as a d-dimensional vector, i.e., a point y ∈ Rd where d
is the the dimensionality of the input space. Implicit function representation is typically
used in level-set methods.
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2.2 Temporal Normalization and Re-sampling

In order to achieve the training and recognition we need to obtain temporally aligned in-
put silhouettes, i.e, obtaining body poses in correspondence during the gait cycle given
any input sequence captured at any frame rate with any walking speed. To achieve this
task we use any given input sequence to learn a nonlinear generative model that can be
used to synthesize silhouettes at any temporal instance within the gait cycle.

The human gait evolves along a one-dimensional manifold embedded in a high di-
mensional visual space. Only one degree of freedom controls the walking cycle, which
corresponds to the constrained body pose as a function of time. Such manifold is non-
linear and can be twisted on the high dimensional space given viewpoint, person shape,
and clothing [5, 6]. Therefore, we embed each gait cycle temporally on a unit circle,
which is a topologically homeomorphic one-dimensional manifold embedded in a two-
dimensional Euclidean space.

In order to obtain synthesized gait poses, we learn a nonlinear mapping function
from the manifold embedded on a unit circle and the input silhouettes. Learning non-
linear mapping is necessary since the manifold is embedded nonlinearly and arbitrar-
ily into a unit circle. We use generalized radial basis function (GRBF) [22] to learn
this mapping as a collection of interpolation functions. Let N equally spaced cen-
ters along a unit circle be {tj ∈ R2, j = 1, · · · , N} and given a set input images
Y = {yi ∈ Rd, i = 1, · · · ,M} and let their corresponding embedding along the unit
circle be X = {xi ∈ R2, i = 1, · · · ,M}, we can learn interpolations in the form

fk(x) = pk(x) +
N∑

i=1

wk
i φ(|x − ti|), (1)

that satisfies the interpolation condition yk
i = fk(xi) where yk

i is the k-th pixel of input
silhouette yi, φ(·) is a real valued basic function, wk

i are real coefficients, pk(·) is a
linear polynomial, and | · | is the norm on R2. The mapping coefficients can be obtained
by solving a linear system [5]. Such mapping can be written in the form of a generative
model as

f(x) = B · ψ(x), (2)

which nonlinearly maps any point x from the two dimensional embedding space into the
input space. Therefore, the model can be used to synthesize N intermediate silhouettes
at N standard time instances equally spaced along the unit circle. Re-sampling gait from
the embedding space enables us to find temporally well aligned gait poses invariant to
different walking speed and frame rate using equally spaced N embedding points.

2.3 Gait Cycle Detection in Arbitrary Views

Detection of gait cycles is essential for training and recognition. Typically, for side or
frontal views, cycles can be detected using features such as width or height of bounding
box, correlation of image sequences, etc, [1, 3]. However, detecting cycles in arbitrary
views are difficult. The generative model, described above, facilitates detecting accurate
gait cycles in any view given that the model parameter is learned on that particular view.
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Fig. 1. Cycle detection in different view

Given an input sequence yi, i = 1, · · · ,M we need to find k∗ ≤ M such that
y1, · · · , yk corresponds to a full cycle. This can be achieved by finding k∗ that mini-
mizes the error between an input sequence of length k and model synthesized image
sequence, of length k as well, starting from the same point. i.e., we need to find k∗ such
that

k∗ = arg min
k

=
1
k

k∑
j=1

||f(xk
j ) − yj ||

where xk
j is a point on a unit circle with coordinate xk

j = [cos(2π · j/k + δ) sin(2π ·
j/k + δ)].

To show examples of generative model-based cycle detection, we used CMU Mobo
gait data set which shows accurate detection of cycle in different views like side view,
front-left view and front views within 1 ∼ 2 frames error. Fig. 1 shows four different
view silhouette images (sampled at every 4th frames in the figure). Mean error are
shown as a function of k in the range from 10 to 100. Even though we learned generative
model for each view from one person, it performs accurately in segmenting cycles at
different people.

3 Gait Style and View Decomposition

We model gait image sequences by three components: gait style: time-invariant and
view-invariant personalized style of the gait which can be used for identification similar
to in [16], gait pose: time-dependent factor representing body configuration during the
gait cycle, and gait view: view-dependent factor representing variations of view.

3.1 Multilinear Model for Gait Analysis

Given different people walking sequences from different views, we detect gait cycles
using gait cycle detection algorithm in Section 2.3. After cycle detection for every
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person, each cycle is used to learn the generative model described by equation 2 and
re-sampled with the same number of temporally aligned poses. Therefore, the training
data consists of Ns gait cycles1, each captured from Nv different views, and each con-
sists of Np silhouette images representing aligned body poses. Each silhouette image is
represented as a d dimensional vector using the representation described in section 2.
The whole collection of aligned cycles for all different people and views is arranged
into order four tensor (4-way array) D with dimensionality Ns ×Nv ×Np × d.

The data tensor D can be decomposed to parameterize orthogonal style, view, and
pose factors using higher-order singular value decomposition (HOSVD). Higher-order
singular value decomposition (HOSVD) is a generalization of SVD for multilinear
model analysis by [14, 27, 28]. Multilinear model is a generalization of linear model
(one-factor models) and bilinear model (two-factor models) [25] into higher-order ten-
sor decomposition (multi-factor models). The data tensor D is decomposed to establish
forth-order tensor using HOSVD which yields the decomposition

D = Z ×1 S ×2 V ×3 P ×4 M , (3)

where S, V , P , and M are orthogonal matrices with dimensionality Ns ×Ns, Nv ×
Nv, Np × Np, d × d corresponding to style, view, pose, and image orthogonal bases
respectively. Z is a core tensor with the same dimensionality as the data tensor D which
represents the interaction of the gait style, view, pose, and image pixel subspaces2.

(a) Style clusters:
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Fig. 2. Tensor analysis: 4 people with 6 cycles each from 4 different views. (a) First three style
parameters for 6 gait cycles of each person. Each person’s style shows good clustering within the
person and good separation between different persons. (b)Four different view vectors, which are
orthogonal to each others.

The orthogonal Ns × Ns matrix S spans the space of gait style parameters. In the
style basis matrix S = [s1s2 · · ·ss]T , each vector si represents a style parameter of
person i as an Ns dimensional vector. This parameterization of the gait style indepen-
dent of the view and body configuration is the basic feature we use in the recognition.
Fig. 2 shows an example of the decomposition of gait style. We use 4 people from

1 Each person can be represented by multiple cycles in the training data. So Ns represents the
total number of cycles for all people.

2 Reduced dimensional approximation can be achieved using higher-order orthogonal iteration
method [15][29]



400 Chan-Su Lee and Ahmed Elgammal

CMU-Mobogait data set with 6 cycles each from 4 different views to fit the model. As
apparent in the figure, gait style parameters estimated from the different cycles of each
person are clustered together in the style space.

Equation 3 can be rewritten as a generative model to synthesize gait cycles given
any style vector s and view vector v. This can be achieved by defining a new core tensor
B = Z ×3 P ×4 M. Therefore, gait cycle images can be synthesized as Dsv where

Dsv = B ×1 s ×2 v (4)

3.2 Gait Style Estimation from Unknown View and Style

Given images y1, · · · , yk representing a full gait cycle from unknown view with k
frames, estimation of gait style is required for person identification. First, the sequence
is used to learn a generative model in the form of Equation 2 and then the model is
used to re-sample p gait images, i1i2 · · · ip, which are aligned with gait poses used in
multilinear analysis. By stacking the gait images into a matrix D = [i1i2 · · · ip], the
estimation of style and view can be formulated as solving for s and v that minimize
error

E(s,v) = ||D − B ×1 s ×2 v||, (5)

where D is d × Np matrix. If the view vector v is known, we can obtain closed form
solution for s. This can be done by evaluating the product H = B × v and unfolding
the tensor H into a matrix by style-mode, i.e., H(1) = unfolding(H, 1). Matrix
unfolding operation is explained in the appendix of this paper. The dimensions of H(1)

is Ns × (Nv × Np × d). Solution for s can be obtained in closed form by solving the
linear system D = H(1)

T s. Therefore estimation of s can be obtained by

s =
(
H(1)

T
)+

D (6)

where + is matrix pseudo-inverse operation using singular value decomposition (SVD).
Similarly, we can analytically solve for v if the style vector s is known by forming a
tensor G = B ×1 v and forming its view-mode unfolding G(2). Therefore, we can
obtain the view as

v =
(
G(2)

T
)+

D (7)

Iterative estimation of s and v using (6) and (7) leads to local minima for the error in
(5). We can start initial style estimation by mean style s = (

∑Ns

i=1 s
i)/Ns.

Given the estimated gait style vector s, and different people’s gait style vectors
learned in the training, the recognition is a typical pattern classification problem. For the
experimental results shown in this paper we used two simple classification approaches:
Nearest Neighbor and Nearest class mean which shows very good recognition results.
However, more sophisticated classification methods can be used to achieve even better
results. The proposed framework can easily scale to include new people. Given a new
person, theoretically, only one cycle from a single view is required to be able to solve for
the person style parameter which can then be added to the trained database. In Section 4
we show experimental evaluation of the scalability and generalization of the model to
learn style parameters from a single view and to recognize at different views.
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(a) L2 distance to each style vector in iteration:
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Fig. 3. Measurement of distance to style and view

Fig. 3 shows an example of the iterative estimation of view and gait style parameters.
In this experiment we used 8 people with 4 different views from the Mobogait dataset
to learn the model. The figure shows the change in the Euclidean distance to each mean
style vector and mean view vector with the iterations. In this figure, a side view cycle
for the first person was used for testing. It shows convergence to the correct style and
view from the first iteration.

4 Experimental Results

We demonstrate the performance of the proposed algorithms on two databases: one is
CMU mobo database and the other is USF-NIST gait database. In the preprocessing
step, we applied median filter to remove noisy holes and spots. Bounding boxes which
cover each person silhouettes were found and normalized to fixed size. Each silhouette
shape is represented by a signed-distance function as described in section 2.

Experiment 1: Recognition of Gait in Different Speeds and Views: In this experi-
ment we used CMU Mobo database, which has slow and fast walking sequences on a
treadmill with six different views [7], to test gait recognition in different speeds and
views. We chose a subset of 18 subjects which provided silhouettes for all different
views and allowed finding proper bounding box for the subjects. Four different views
(profile view, front-right view, front view, front-left view) were selected for multilinear
gait analysis. Three cycles of slow walk for each person are used to learn the multilin-
ear model parameters. In summary, the training data contains 18 people, 3 cycles each,
from 4 views. Each person style is represented by the mean of the three style vectors
obtained from three training cycles.

For evaluation we used three different slow-walk cycles and three fast-walk cycles
for each of the 18 people with 4 views each. Overall there are 216 slow-walk evalua-
tion cycles and 216 fast-walk evaluation cycles. For each evaluation cycle we estimate
the view and the style of parmeteters of gait as described in Section 3.2. Finally, peo-
ple are identified by finding closest style class mean. Table 1 shows the experiment
result. For the slow-walk we achieve 100 % correct recognitions for all the views. For
the fast-walk, we achieve around 90 % accuracy in average. The results shows fairly
consistent recognition for all the different views. In both cases we achieve 100% view
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Table 1. Gait recognition in different view and speed (CMU Data)

View class slow walking sequences fast walking sequences Collins[3] (fast walking)
1(profile) 100% 88.9% 76%

2(front-right) 100% 88.9% N/A
3(front) 100% 92.6% 100%

4(front-left) 100% 88.9% N/A
Average 100% 90.0% 88%

identification. Even though we perform recognition for each cycle without knowing the
view label, our results show better identification than template matching of key frames
by Collins [3], shown in the forth column, which is tested for profile and front view
separately using whole sequences.

Experiment 2: Generalization and Scalability Across Different Views: We evaluate
the scalability of the proposed framework, i.e., Given a learned model, can we extend
it to recognize a new person from different view points given that only one gait cycle
from a single view is available for that person for training?

To evaluate this, we performed a new experiment by learning the model with a
subset of subjects. Among 18 subjects, we learned the model using only eight subjects’
slow walk sequences from 4 views. For the rest 10 subjects, only a single cycle data of
slow walk from one view was given. We used this single view cycle to estimate gait style
parameters. All the estimated style parameters are used as a database for recognition.
The recognition is then evaluated using a test set consisting of 3 different slow-walk
cycles and 3 fast-walk cycles from 4 views for all the 18 people.

Table 2 shows recognition results. We repeated the experiment by varying the view
used in training for the 10 people with each single view cycle. Results show general
identification capability to unknown views using style learned from a specific view.
This clearly shows that the gait-style parameter is invariant to different view point. The
identification performance varies across different views and the view used for train-
ing shows better performance on trained view class than others. Others, which do not
learned style at all for the views,still, shows potentials for gait recognition. The per-
formanace can be improved by using multiple cycles in the style estimation for given
views.

Table 2. Gait recognition across different views(CMU Data)

View class V1:slow V2:slow V3:slow V4: slow V1:fast V2:fast V3:fast V4:fast
V1(profile) 96.3% 72.2% 53.7% 75.9% 53.7% 55.6% 40.7% 55.6%

V2(front-right) 72.2% 88.9% 59.3% 66.7% 53.7% 64.8% 48.2% 63.0%
V3(front) 51.9% 66.7% 90.9% 57.4% 50.0% 59.3% 92.6% 53.7%

V4(front-left) 59.3% 75.9% 70.7% 98.1% 46.3% 46.3% 55.6% 63.0%
Average(all) 69.9% 75.9% 68.7% 87.5% 50.9% 56.5% 59.3% 58.8%

Experiment 3: Recognition of Gait with Continuous Variation of Views (USF
dataset): In this experiment we use NIST-USF Gait database [21] to evaluate perfor-
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Table 3. Comparison of Recognition with Baseline (USF Data)

Difference Probe Set Baseline Nearest Mean Nearest Neighbor Kale [13]
View GAL 73% 86% 96 % 89 %
Shoe GBR 78% 82% 86 % 88 %

Shoe, view GBL 48% 68% 75 % 68 %
Surface CAR 32% 32% 43 % 35 %

Surface, shoe CBR 22% 43% 43 % 28 %
surface, view CAL 17% 25% 21 % 15 %

Surface, shoe, view CBL 17% 25% 29 % 21 %

mance of gait recognition with continuous variation of the view due to the elliptical
course that people used in capturing the database. We arbitrary select 28 people for
a preliminary evaluation. We choose GAR, which is the gait sequence in grass sur-
face, shoes type A, and right camera sequences, as a gallery set and tested by seven
probe sets with variants in view, shoe and surface. Seven cycles were detected from
the gallery sets and the probe sets. Three representative cycles of different views were
selected from each sequence of gallery sets to learn the model.

For recognition we evaluated two classifiers for each estimated gait-style parameter
for each test cycle: nearest style class mean (Model Style) and nearest neighbor style
(Gallery styles). In both cases, we used majority vote from different test cycles to de-
termine final person id. Results are shown in Table 3 and Fig. 4. Table 3 also shows
recognition results reported in baseline evaluation [21] and recognition results reported
using HMM by Kale et al in [13].

5 Conclusion

We presented a new framework to gait recognition which first uses a nonlinear genera-
tive model to re-sample gait sequences and then uses multilinear analysis to decompose
view-invariant time-invariant gait parameters for identification. We showed promising
human identification results in different views and speeds in CMU dataset. In USF
dataset, which has continues view point variations within each probe set, also shows
improvement in identification using the proposed view invariant iterative style estima-
tion framework. We used very simple classification algorithms for identification from
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the estimated gait style parameters. Recognition can be further improved by employ-
ing more sophisticated classification algorithms such as support vector machine (SVM)
using style vectors. In the future we plan to report gait recognition for larger data sets.

Appendix

Matrix unfolding operation: Given an r-order tensor A with dimensionsN1×N2×· · ·×
Nr, the mode-n matrix unfolding, denoted by unfolding(A, n), is flattening A into a
matrix whose column vectors are the mode-n vectors [14, 27]. Therefore, the dimension
of the unfolded matrix A(n) is Nn × (N1 ×N2 × · · ·Nn−1 ×Nn+1 × · · ·Nr).
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Abstract. Building access control represents an important application
for biometric verification but often requires greater accuracy than can
be provided by a single verifier. Even as algorithms continue to improve,
poor samples and environmental factors will continue to impact per-
formance in the building environment. We aim to improve verification
accuracy by combining decisions from multiple verifiers spread through-
out a building. In particular, we combine verifiers along the path traced
out by each subject. When combining these decisions, the assumption of
conditional independence simplifies implementation but can potentially
lead to suboptimal performance. Through empirical evaluation of two
related algorithms, we show that the assumption of conditional indepen-
dence does not significantly impact verification accuracy. We argue that
such a small reduction in accuracy can be attributed to the relative ac-
curacy of each verifier. As a result, decisions can be combined using low
complexity fusion rules without concerns of degraded accuracy.

1 Introduction

Combining decisions from a small number of biometric verifiers is a common
strategy for improving verification accuracy [1–3]. In most contexts, the set of
verifiers being combined is carefully selected during the design of a system, and
all verifiers share a single location. For example, a system might use face and
fingerprint as in [3]. In the following, we investigate the slightly different problem
of combining biometric verifiers distributed throughout a secure building. One
can envision a scenario in which a biometric verifier is placed at each secure
door to assist in deciding whether the door should be unlocked for a particular
subject.

As a subject passes through multiple secure doors, he traces a path of veri-
fication attempts. A building access control system is able to observe this path
by forcing each subject to claim his or her identity with a key card. Rather
than relying only on local decisions from each verifier, the access control system
can construct a more informed decision using information from all verifiers in a
path. This scenario differs from the standard combination of multiple biometric
verifiers because the path differs from subject to subject and varies over time.
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A path may include multiple modalities, multiple algorithms, or even multiple
instances of identical devices. If verifiers from different vendors are combined,
they might provide different types of verification results (e.g., match scores as
opposed to binary decisions). If multiple instances of a single verifier appear in a
path, their decisions may be correlated. We expect these identical verifiers to be
common in buildings, where there is a significant motivation for access control
systems to rely on a small number of verifier models. In particular, this simplifies
purchase, installation and continued support of the system.

To ensure verification results of the same type, we restrict our analysis to
decision level fusion [4], and assume that each verifier is assigned a pair of error
rates based on testing by its respective vendor. These error rates correspond
to the false accept rate (FAR), the rate at which an imposter is accepted as
authentic, and false reject rate (FRR), the rate at which an authentic claimant is
rejected. In general, joint characterizations of the error rates will not be available
for the ensemble of verifiers. For example, the rate at which verifier A accepts
a claimant and verifier B rejects that same claimant are not known because A
and B are tested by different vendors.

Previously, we have described a technique for combining the decisions made
along a path using these marginal error rates and an assumption of conditional
independence [5]. In the following, we evaluate the impact of this assumption
on the error rates of fused decisions. First, we show that multiple instances of
the same verifier can be moderately correlated. Then, we evaluate two strategies
that differ only in whether or not conditional independence is assumed. This
evaluation suggests that the independence assumption does not significantly alter
verification accuracy when combining verifiers at the decision level.

Domingos and Pazanni have previously suggested that scenarios exist in
which a classifier that assumes conditional independence is optimal even for
highly correlated data [6]. In contrast, we have found evidence that, for our
problem, moderate correlation has a negligible impact on accuracy even when
the conditions set forth in [6] are not met. This scenario occurs when combining
decisions from relatively accurate verifiers rather than raw features. While it is
possible for the conditional independence assumption to lead to suboptimal de-
cisions, such decisions become increasingly rare with more accurate verifiers and
longer paths. This observation permits a significant simplification of combination
strategies while maintaining high accuracy.

2 The Building Environment

Combining biometric verifiers along a subject’s path differs from a traditional
multi-biometric system in several ways. One major difference is that verifiers
may be purchased from multiple vendors, making joint training infeasible prior
to system installation. As a result, joint characterizations of verifier error rates
are not available. The internal operation of verifiers might also be opaque to
protect the intellectual property of each vendor. In many cases, this concern
leads to verifiers that provide only a decision – sometimes without even providing
a configurable verification threshold.
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When installing biometric verifiers throughout a building, system integrators
are likely to use only a small number of distinct verifier models. This implies
that any given path is likely to include multiple instances of the same veri-
fier. Intuitively, two identical verifiers are likely to make errors on the same
subject, violating the conditional independence assumption employed in [5] and
elsewhere. For this reason, we expect that combination strategies assuming con-
ditional independence will be outperformed by those that do not rely on such
an assumption. Contrary to this expectation, our evaluation demonstrates only
a marginal difference in verification accuracy.

In this paper, we assume the following: each verifier emits only a decision, and
both FAR and FRR measurements are provided for each verifier. We choose this
model based on the fact that vendors are not likely to expose the internals of their
product. Some devices might provide match scores, and this information could be
exploited using class conditional score models. We do not explore this possibility
under the assumption that vendors are not likely to provide compatible or even
accurate score models.

3 Correlation Measurements

To assess the degree of independence among decisions from multiple biometric
verifiers, we measured the correlation coefficient for decisions from pairs of bio-
metric verifiers. Our data consists of match scores that were generated by several
algorithms against the XM2VTS database [7]. We refer to the scores from a single
algorithm as a score set. Each score set represents a different algorithm entered
in the face verification competition held at ICPR2000 [8]. Because all score sets
were generated from the same database, we can use this data to estimate the de-
gree of correlation between multiple verifiers on the same subjects. To construct
decisions from these scores, we applied a maximum likelihood (ML) criterion to
Gaussian Mixture Models for imposter and authentic score distributions. The
associated thresholds and error rates for each verifier are listed in Table 1.

Table 1. Local thresholds and corresponding error rates

Algorithm Threshold FAR FRR

AUT1 0.5359 0.0352 0.0825

EPFL 0.4334 0.0321 0.1225

USYD1 0.6785 0.1004 0.1525

SURREY2 0.1677 0.0422 0.0775

There are three scenarios where we expect to find correlation between verifier
decisions. The first scenario is when two different verifiers observe the same
subject (Fig. 1a). In this case, a particular authentic claimant might be difficult
to verify or an imposter might resemble one of the valid subjects. The second
scenario is when two identical verifiers observe the same subject (Fig. 1b). Each
verifier captures a different sample so that different decisions are possible. In
this case, errors inherent to this specific verification algorithm will occur at
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Fig. 1. Scenarios in which two verifiers construct two distinct decisions

both verifiers. The third scenario is when two different verification algorithms
observe the same image (Fig. 1c), but this scenario will not occur in the building
access context that we are investigating because each verifier will capture a new
biometric sample. We do not expect to find correlation between two different
modalities, and, for this reason, focus our attention here on face verification.

Without any additional processing, the XM2VTS score sets represent the
third scenario described above. If the scores from each set are stored in the same
order, then the nth decision from two different sets will correspond to the same
image. To generate decision pairs corresponding to scenarios (a) and (b) in Fig. 1,
we observe that the XM2VTS database contains multiple face images for each
subject. By carefully permuting the order of scores such that the nth decision
from two different sets correspond to different images of the same subject, we can
construct scenarios (a) and (b). Specifically, a pair of score sets with one set in
the original order and one set in the permuted order represents the combination
of two decisions made from different samples of the same subject. Scenario (a)
can be emulated when the pair is formed from an original set and the permuted
variant of another set. Scenario (b) can be emulated when the pair is formed
from an original set and its own permuted variant. It is also possible to construct
independent verifiers by permuting the order such that each subject is aligned
with scores from another subject. We call both procedures score permutation.

With score permutation defined, it is straightforward to calculate the cor-
relation coefficient between two different biometric verifiers in each correlation
scenario. We choose this metric over others presented in [9] because it is normal-
ized according to individual verifier accuracy – allowing for comparison across
different pairs of verifiers. Following [9], we construct the correlation coefficient
using (1). In this equation, ui represents the decision made by verifier i.

a = P{ u1 = accept, u2 = accept }, b = P{ u1 = accept, u2 = reject }
c = P{ u1 = reject, u2 = accept }, d = P{ u1 = reject, u2 = reject }

ρ =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
(1)
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Fig. 2. Decision correlation for pairs of verifiers

There are actually two correlation coefficients for each pair of verifiers: one
each from the imposter and authentic distributions. Both correlation coefficients
are presented in Fig. 2, where the values of a, b, c, and d have been calculated
using relative frequency estimates over the training data. Due to the relatively
small number of authentic images, error bars have been included for the 95%
confidence interval surrounding each authentic correlation coefficient.

It is clear from Fig. 2 that significant correlation exists between decisions
from two identical verifiers, but correlation between two different verifiers is
either small or statistically insignificant. Also apparent from this figure is that
correlation among imposter decisions is stronger than for authentics in the case
of identical verifiers – possibly indicating some repeatable impersonations.

4 Fusion Strategies

We have implemented an evaluation tool that combines decisions using two dif-
ferent algorithms: one that assumes conditional independence and another that
does not. Both of these operate by estimating the class conditional probabil-
ity (i.e., likelihood) for a path of decisions and emitting a maximum likelihood
estimate of the underlying class (authentic or imposter). The only difference be-
tween the two algorithms is the use of a conditional independence assumption
in the first. Both algorithms rely on the likelihood ratio test in (2) below.

P{u | ω1 }
P{u | ω0 }

u0=1

≷
u0=0

WSEC (2)

In (2), u is a vector of local verifier decisions, ω1 designates the authentic
class and ω0 designates the imposter class. The output u0 is the path decision,
and WSEC defines the relative importance of each type of error. If both false
accept and false reject errors are equally important, then WSEC has a value of
1. A large WSEC value indicates that false accept errors are more costly than
false reject and vice versa.
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If we assume conditional independence, then the likelihood in (2) can be
expanded into a product of marginal likelihoods (3). Each of these marginal
likelihoods can in turn be constructed from FAR and FRR estimates for each
verifier. We note that this is simply a Naive Bayes Classifier that operates on
local verifier decisions and refer to it hereafter as NB.

P{u | ωi } =
N∏

i=1

P{ ui | ωi } (3)

P{ ui | ω1 } =
{

FARi ui = 0
1 − FARi ui = 1

P{ ui | ω0 } =
{

1 − FRRi ui = 0
FRRi ui = 1

Without the conditional independence assumption, we are forced to estimate
the joint likelihood for the vector of decisions u. For the purposes of evaluation, it
is feasible to operate on one path at a time and measure the relative frequency
of each possible decision vector. This approach is possible because the set of
possible decision vectors is manageable given the length of our test paths. For
long paths, the number of possible vectors increases exponentially and training
data is usually insufficient to estimate the likelihood of each vector. We refer
to this estimation of the full likelihood expression as Full Bayes or simply FB.
This strategy is defined precisely in (4), where Nu | ωi

represents the number of
times the vector u is produced by class ωi and Nωi represents the total number
of vectors from class ωi.

P{u | ωi } =
Nu | ωi

Nωi

(4)

The FB approach enables decision combination without the assumption of
conditional independence for evaluation, but it does not represent a viable strat-
egy for combining decisions in a building environment. Recall that verifiers
may be purchased from multiple vendors and evaluated against different test
databases. Furthermore, training is required for each possible path through a
building, making this solution intractable in practice. The primary purpose of
this approach is to evaluate the performance impact of estimating a joint prob-
ability distribution rather than assuming conditional independence.

5 Evaluation

We have evaluated the accuracy of decision fusion both with and without the
conditional independence assumption using the score sets introduced in Sect. 3.
For reference, we have also evaluated the accuracy of a Support Vector Machine
(SVM) [2, 10] and a majority vote. The SVM operates on decisions that are
represented as ±1, and the majority vote accepts a subject as authentic when
more than half the verifiers in a path accept that subject.
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Noting that the most significant correlation occurs when combining two iden-
tical verifiers, we have constructed 9 example paths in which the first two steps
use score sets from the same verifier and the second two steps use score sets
from two distinct verifiers. The paths are enumerated in Table 2. The intent is
to construct a scenario in which knowledge of the correlation between the first
two verifiers will change the path decision at the fourth step.

Table 2. Example paths for evaluating fusion strategies

ID Step 1 Step 2 Step 3 Step 4

1 EPFL EPFL USYD1 AUT1

2 EPFL EPFL USYD1 SURREY2

3 EPFL EPFL AUT1 SURREY2

4 AUT1 AUT1 USYD1 EPFL

5 AUT1 AUT1 USYD1 SURREY2

6 AUT1 AUT1 EPFL SURREY2

7 USYD1 USYD1 EPFL AUT1

8 USYD1 USYD1 EPFL SURREY2

9 USYD1 USYD1 AUT1 SURREY2

Only two decisions are available for each authentic subject in the test set,
so only two permutations are possible while maintaining realistic correlation
(scenarios (a) and (b) in Fig. 1). We are thus forced to permute each of these
pairs such that the first pair is completely independent of the second. We believe
that this is a reasonable transformation given the observation that the correlation
between distinct verifiers is relatively small to begin with.

To calculate local thresholds and estimate likelihoods, we have used training
data from each score set (called the “evaluation set” in [7]). Verification accuracy
is then calculated over the test set. In this paper, we present accuracy in terms
of the Weighted Error Rate (WER) [11], which is simply a weighted average of
FAR and FRR based on the security parameter WSEC appearing previously in
(2). The WER is defined as

WER =
WSEC · FAR + FRR

WSEC + 1
. (5)

Error rates for path decisions at the final step of each path are presented in
Fig. 3 with path numbers presented along the abscissa. For visual clarity, a line
has been drawn to connect the error rates from each combination strategy. This
line does not imply any logical connection from one path to the next.

Fig. 3 indicates that FB does, in fact, outperform NB for some paths; how-
ever, the difference in accuracy is negligible. In several paths (1, 7, 8, and 9) there
is no difference in accuracy between the two algorithms. This occurs because the
USDY1 algorithm performs significantly worse than the others. As a result, both
fusion strategies give scores from USYD1 a small weight and favor the decisions
of the second two verifiers. Correlation only serves to further reduce the weight
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Fig. 3. Verification accuracy at the fourth step of example paths

of the USYD1 pair, so the second two verifiers continue to dominate. The re-
maining paths show an average difference in error rates of 0.5%. In these paths,
the difference results from an increase in FAR and a corresponding decrease in
FRR. Because one type of error is traded off for another, there is little change
in the observed WER.

6 Discussion

In Sect. 5, we showed that even for significantly correlated decisions, the con-
ditional independence assumption has a minimal impact on the weighted error
rate. This result is rather surprising, but it can be explained based on two key
observations: 1) only a small number of vectors are affected by the conditional
independence assumption and 2) those vectors are ambiguous in the sense that
they may have been generated by either authentic claimants or imposters.

For both the FB and NB strategies described in Sect. 4, the likelihood ratio
test in (2) implicitly specifies a function mapping from local decision vectors u
to a path decision u0. We call this function the fusion rule and define Ff (u) and
Fn(u) as the fusion rules specified by FB and NB, respectively.

For a given path, there may be decision vectors on which Ff (·) and Fn(·) dis-
agree. We label the set of all such decision vectors D as defined in (6) and refer
to D as the disagreeing set. For WSEC set to 1 and similar error rates at each
verifier, the vectors mostly likely to be in D are those ambiguous vectors con-
taining the same number of accept and reject decisions. Because each individual
verifier has a relatively low error rate, such vectors are unlikely to occur.

D = {u : Ff (u) = Fn(u) } (6)

To demonstrate the small size of D for WSEC set to 1, we calculated the
relative frequency of vectors in D for the paths from Table 2. These rates are
presented in Fig. 4, which lists path numbers along the abscissa. As can be seen
in the figure, vectors in D represent less than 2% of all vectors in both the
training and test sets. Furthermore, we found that for the paths evaluated, D
contained at most one unique vector – specifically the (accept, accept, reject,
reject) vector.
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Fig. 4 also demonstrates that even with the joint characterization used by
FB, the problem is not separable – making some number of errors unavoidable.
For the correlation structure imposed in Sect. 5, we see that FB favors imposters
for the (accept, accept, reject, reject) decision vector. We conclude that NB dis-
agrees because it ignores the correlation between the first two decisions. Clearly,
deciding to accept this vector was a poor choice for Path 4. Even for paths 2, 5,
and 6, deciding to accept this vector will result in some number of false accept
errors. These results are skewed by rather extreme the correlation scenario we
have selected. In general, we expect any decision for vectors in D to lead to a
tradeoff between a similar number of false accept and false reject errors.

The conclusion to be taken from Fig. 4 is that accounting for correlation be-
tween decisions minimally impacts verification accuracy. This is true because the
conditional independence assumption only changes the fusion rule for ambiguous
decision vectors (i.e., those that are generated by imposters and authentics with
a similar likelihood). For relatively accurate verifiers, such ambiguous vectors are
rare. The verifiers we evaluate here have a measured WER of between 0.06 and
0.13 (WSEC = 1), and we expect such ambiguous decision vectors to become
increasingly rare with improved verifier accuracy and longer paths.

7 Conclusion

In the preceding, we have defined two closely related strategies for combining de-
cisions from multiple biometric verifiers. One (Naive Bayes) assumes conditional
independence, while the other (Full Bayes) does not. Evaluating each against
score sets from the XM2VTS database, we show that the conditional indepen-
dence assumption does not significantly impact accuracy. Further analysis of the
fusion rules generated by each strategy indicates that the decision vectors for
which the two approaches disagree are both unlikely to occur and are generated
by imposters and authentics with near equal likelihood. This trend can be at-
tributed to the relatively high accuracy of each individual verifier. Based on this
observation, we claim that decision fusion strategies can safely ignore moderate
levels of correlation without significantly impacting accuracy.
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Abstract. Human gait properties can be affected by various environmental con-
texts such as walking surface and carrying objects. In this paper, we propose
a novel approach for individual recognition by combining different gait classi-
fiers with the knowledge of environmental contexts to improve the recognition
performance. Different classifiers are designed to handle different environmental
contexts, and context specific features are explored for context characterization.
In the recognition procedure, we can determine the probability of environmental
contexts in any probe sequence according to its context features, and apply the
probabilistic classifier combination strategies for the recognition. Experimental
results demonstrate the effectiveness of the proposed approach.

1 Introduction

Current image-based individual human recognition methods, such as fingerprints, face
or iris biometric modalities, generally require a cooperative subject, views from certain
aspects and physical contact or close proximity. These methods can not reliably rec-
ognize non-cooperating individuals at a distance in the real world under changing en-
vironmental conditions. Gait, which concerns recognizing individuals by the way they
walk, is a relatively new biometric without these disadvantages. However, gait also has
some limitations, it can be affected by clothing, shoes, or other environmental contexts.
Moreover, special physical conditions such as injury can also change a person’s walking
style. The large gait variation of the same person under different conditions (intention-
ally or unintentionally) reduces the discriminating power of gait as a biometric and it
may not be as unique as fingerprint or iris, but the inherent gait characteristic of an in-
dividual still makes it irreplaceable and useful in many visual surveillance applications.

In traditional biometric paradigms, individuals of interest are represented by their
biometric examples in the gallery data. In general, the gallery examples are obtained un-
der the similar environmental condition (context) and the number of examples for each
individual is limited to one. This setup is good for strong biometrics such as iris and fin-
gerprint, where the inherent discriminating features are abundance. Even if the context
changes, there are still enough features to distinguish one individual from others.

This setup may not be appropriate for gait recognition. Human gait properties can
be affected by various environmental contexts such as walking surface, carrying objects
and environmental temperature. The change of an environmental context may intro-
duce a large appearance change in the detected human silhouette, which may lead to
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a failure in recognition. The large gait variation of the same individual under different
contexts requires more gallery examples of all individuals from all possible different
environmental contexts. However, this requirement is unreal due to the complexity of
real-world situations. Due to the difficulty of gait data acquisition, gait gallery examples
are generally obtained under one or several environmental conditions and the number
of examples for each individual is also very limited. Moreover, The environmental con-
texts are too rich in the real world to be entirely included in a gallery dataset.

Different gait recognition approaches (classifiers) character gait properties from dif-
ferent aspects. It is difficult to find a single classifier to effectively recognize individuals
under all environmental contexts without gallery examples from these contexts. One
classifier may be insensitive to the change of one context, while another classifier may
be insensitive to the change of another context. If we can detect the environmental con-
texts of a given probe gait example, it is possible to combine these classifier to improve
the recognition performance.

In this paper, we propose a context-based human recognition approach by proba-
bilistically combining different gait classifiers under different environmental contexts.
The basic idea is illustrated in Figure 1. First, context properties are learned from con-
text training examples to construct context detectors. The contexts of a given probe gait
examples are then obtained by these context detectors. Assuming that all gait gallery
examples are obtained under the similar environmental contexts, the context changes
between the probe example and gallery examples are obtained. With the gait classi-
fiers designed for individual recognition under different environmental context changes,
these classifiers are probabilistically combined to recognize the probe individual based
on the detected context changes.

2 Related Work

In recent years, various approaches have been proposed for human recognition by gait.
These approaches can be divided into two major categories: model-based approaches
and model-free approaches.

Model-based gait recognition approaches focus on recovering a structural model of
human motion. Niyogi and Adelson [1] find the bounding contours of the walker, and
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fit a simplified stick model on them. A characteristic gait pattern in spatiotemporal vol-
ume is generated from the model parameters for recognition. Yoo et al. [2] estimate hip
and knee angles from body contour by linear regression analysis. Then trigonometric-
polynomial interpolant functions are fitted to the angle sequences, and the parameters
so-obtained are used for recognition. Bhanu and Han [3] propose a kinematic-based
approach to recognize individuals by gait. The 3D human walking parameters are esti-
mated by performing a least squares fit of the 3D kinematic model to the 2D silhouette
extracted from a monocular image sequence. Human gait signatures are generated by
selecting features from the estimated parameters.

Model-free approaches make no attempt to recover a structural model of human mo-
tion. Little and Boyd [4] describe the shape of the human motion with a set of features
derived from moments of a dense flow distribution. Shutler et al. [5] include velocity
into the traditional moments to obtain the so-called velocity moments (VMs). BenAb-
delkader et al. [6] use height, stride and cadence for to identify human. Sundaresan
et al. [7] proposed a hidden Markov models (HMMs) based framework for individual
recognition from their gait. Huang et al. [8] propose a template matching approach by
combining transformation based on canonical analysis, with eigenspace transformation
for feature selection. Similarly, Wang et al. [9] generate boundary distance vector from
the original human silhouette contour as the template, which is used for gait recognition
via eigenspace transformation. Phillips et al. [10] propose a direct template matching
approach to measure the similarity between the gallery and probe sequences by com-
puting the correlation of corresponding time-normalized frame pairs. Similarly, Collins
et al. [11] first extract key frames from a sequence, and the similarity between two se-
quences is computed from the normalized correlation on key frames only. Tolliver and
Collins [12] cluster human silhouettes of each training sequence into k prototypical
shapes. Silhouettes in a testing sequence are also classified into k prototypical shapes
that are used to compare with those in training sequences.

3 Technical Approach

In this section, we describe the proposed context-based classifier combination for indi-
vidual recognition by gait. The context investigated in this paper is the walking surface
type, but the approach could be extended to other contexts. The system diagram is
shown in Figure 2.

3.1 Gait Representation

We assume that silhouettes have been extracted from original human walking sequences.
A silhouette preprocessing procedure [10] is then applied on the extracted silhouette se-
quences. It includes size normalization (proportionally resizing each silhouette image so
that all silhouettes have the same height) and horizontal alignment (centering the upper
half silhouette part with respect to its horizontal centroid). In a preprocessed silhouette
sequence, the time series signal of lower half silhouette size from each frame indicates
the gait frequency and phase information. We estimate the gait frequency and phase by
maximum entropy spectrum estimation [4] from the obtained time series signal.
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Fig. 2. Diagram of context-based classifier combination for individual recognition by gait. The
context investigated in this diagram is the walking surface type

Given the preprocessed binary gait silhouette images Bt(x, y) at time t in a se-
quence, the grey-level gait energy image (GEI) is defined as follows [13]

G(x, y) =
1
N

N∑
t=1

Bt(x, y) (1)

where N is the number of frames in the complete cycle(s) of a silhouette sequence,
t is the frame number in the sequence (moment of time), x and y are values in the
2D image coordinate. It reflects major shapes of silhouettes and their changes over the
gait cycle. We refer to it as gait energy image because: (a) each silhouette image is the
space-normalized energy image of human walking at this moment; (b) GEI is the time-
normalized accumulative energy image of human walking in the complete cycle(s); (c)
a pixel with higher intensity value in GEI means that human walking occurs more fre-
quently at this position (i.e., with higher energy). In comparison with binary silhouette
sequence, GEI representation saves both storage space and computation time for recog-
nition and is less sensitive to silhouette noise in individual frames. We use GEI as the
gait representation for individual recognition in this paper.

3.2 Walking Surface Type Detection

Various environmental contexts have effect on silhouette appearance: clothing, shoes,
walking surface, camera view, carrying object, time, etc. Among these contexts, slight
camera view changes may be neglected. Irregular changes in clothing, shoe, carrying
object and time generally cannot be detected. When the same person walks on differ-
ent surface types, the detected silhouettes may have large difference in appearance. For
example, silhouettes on the grass surface may miss the bottom part of feet, while silhou-
ettes on the concrete surface may contain additional shadows. In these cases, silhouette
size normalization errors occur, and silhouettes so-obtained may have different scales
with respect to silhouettes on other surfaces. Figure 3 shows the GEI examples of three
people walking on grass or concrete surfaces in USF HumanID database.

Considering the lower body part difference in silhouettes of people walking on grass
and concrete surface, we use the silhouette energy in the lower body part as the indicator
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Fig. 3. GEI examples of three people (rows) waling on different surface types. First four examples
in each row are on the grass surface, and the others are on the concrete surface

of the walking surface type. Let the bottom row be the first row and leftmost column be
the first column in the image coordinate, the surface type indicator is defined as

s(G,NTOP ) =

∑NTOP

i=1

∑NCOL

j=1 G(i, j)∑NROW

i=1

∑NCOL

j=1 G(i, j)
, (2)

where G is a GEI example with the size of NROW ×NCOL, and NTOP is the number
of rows from the bottom. Assuming s has a Gaussian distribution for both grass GEI
examples and concrete GEI examples, the class-conditional probability functions are
estimated from the context training examples as follows

p(s|grass) =
1√

2πσgrass

exp
{
− (s− μgrass)2

2σ2
grass

}
p(s|concrete) =

1√
2πσconcrete

exp
{
− (s− μconcrete)2

2σ2
concrete

}
(3)

where μgrass and σgrass are the sample mean and sample standard deviation of s for
training examples on the grass surface, and μconcrete and σconcrete are the sample mean
and sample standard deviation of s for training examples on the concrete surface. These
distributions are different for different NTOP values. The optimal NTOP for discrimi-
nating these two surface types is estimated by maximizing the Bhattacharyya distance
with respect to NTOP :

B =
(μgrass − μconcrete)2

4(σ2
1 + σ2

2)
+

1
2

ln
σ2

1 + σ2
2

2σ1σ2
. (4)

The Bhattacharyya distance is used as a class seperability measure here. The Bhat-
tacharyya distance of the two distribution with respect to different NTOP values is
shown in Figure 4(a). The estimated distribution for optimal NTOP = 6 is shown in
Figure 4(b).
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Fig. 4. (a) The Bhattacharyya distance of the two distribution with respect to different NTOP

values. (b) The estimated distributions of p(s|grass) and p(s|concrete) for NTOP = 6

According to the Bayes rule, we have the following probabilities for probabilistic
classifier combination

P (grass|s) =
p(s|grass)P (grass)

p(s)

P (concrete|s) =
p(s|concrete)P (concrete)

p(s)
. (5)

3.3 Classifier Design

In this paper, we use the real gait classifier for recognizing probe examples having no
surface type change with respect to gallery examples, and synthetic gait classifier for
recognizing probe examples having the surface type change [13].

The real GEI templates for an individual are directly computed from each cycle of
the silhouette sequence of this individual. They are used as the input of real classifier
for recognizing probe examples having no surface type change with respect to gallery
examples.

A statistical feature extraction method by combining PCA and MDA is used for
learning real gait features from training real templates. Let mri be the mean of real
feature vectors belonging to the ith class (individual) in the gallery set. Given a probe
example P , {Rj}, j = 1, . . . , n, are its real gait templates. The corresponding real
feature vector set is obtained as follows

{R̂P } : r̂j = TrRj , j = 1, ..., n

where Tr is the learned transformation matrix for real feature extraction. The dissimi-
larity between the probe example and each gallery class is then measured by

D(R̂P , ωi) =
1
n

n∑
j=1

||̂rj − mri||, i = 1, ..., c (6)
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where c is the number of classes in the gallery set. The real classifier is

Decide P ∈ ωk if D(R̂P , ωk) =
c

min
i=1

D(R̂P , ωi). (7)

Although real gait templates provide cues for individual recognition, all the tem-
plates from the same sequence are obtained under the ”same” physical conditions. If
the condition changes, the learned features may not work well for recognition. Let R0

be the GEI template computed all cycles of a given silhouette sequence. Assume that k
bottom rows of R0 are missed due to some kind of environmental conditions. Accord-
ing to the silhouette preprocessing procedure in Section 3.1, the remaining part needs
to be proportionally resized to fit to the original height. In the same way, we can gener-
ate a series of new synthetic GEI templates corresponding to different lower body part
distortion with the different values of k. The synthetic templates expanded from the
same R0 have the same global shape properties but different bottom parts and different
scales. Therefore, they provide cues for individual recognition that are less sensitive to
surface type changes.

A similar statistical feature extraction method by combining PCA and MDA is used
for learning synthetic gait features from synthetic templates. Let msi be the mean of
synthetic feature vectors belonging to the ith class (individual) in the gallery set. Given
a probe example P , {Sj}, j = 1, . . . ,m, are its synthetic gait templates. The corre-
sponding synthetic feature vector set is obtained as follows

{ŜP } : ŝj = TrSj , j = 1, ...,m

where Ts is the learned transformation matrix for synthetic feature extraction. The dis-
similarity between the probe example and each gallery class is then measured by

D(ŜP , ωi) =
1
m

m∑
j=1

||̂sj − msi||, i = 1, ..., c (8)

where c is the number of classes in the gallery set. The synthetic classifier is

Decide P ∈ ωk if D(ŜP , ωk) =
c

min
i=1

D(ŜP , ωi). (9)

3.4 Probabilistic Classifier Combination

Given a probe example, the probabilities of different surface types are obtained in Equa-
tion (5). The dissimilarities of the probe example of each class in the gallery set are
obtained in Equation (6) and (8), respectively. Notice that the real classifier is designed
for recognizing probe examples having no surface type change with respect to gallery
examples, and the synthetic gait classifier is designed for recognizing probe examples
having the surface type change. If walking surface of gallery examples are grass, the
combined dissimilarly is measures as follows

D(P, ωi) = P (grass|s)D̄(R̂P , ωi) + P (concrete|s)D̄(ŜP , ωi)

= P (grass|s) D(R̂P , ωi)∑c
j=1 D(R̂P , ωj)

+ P (concrete|s) D(ŜP , ωi)∑c
j=1 D(hatSP , ωj)
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Table 1. Twelve experiments designed for human recognition in USF HumanID database

Experiment Size of Difference between
Label Probe Set Gallery and Probe Sets

A 122 View
B 54 Shoe
C 54 View and Shoe
D 121 Surface
E 60 Surface and Shoe
F 121 Surface and View
G 60 Surface, Shoe and View
H 120 Briefcase
I 60 Shoe and Briefcase
J 120 View and Briefcase
K 33 Time, Shoe and Clothing
L 33 Surface and Time

for i = 1, ..., c, where D̄ is the normalized dissimilarity. Assuming P (grass) =
P (concrete), we have

D(P, ωi) = P (s|grass) D(R̂P , ωi)∑c
j=1 D(R̂P , ωj)

+ P (s|concrete) D(ŜP , ωi)∑c
j=1 D(ŜP , ωj)

(10)

for i = 1, ..., c. The combined classifier based on surface context is

Decide P ∈ ωk if D(P, ωk) =
c

min
i=1

D(P, ωi). (11)

4 Experimental Results

Our experiments are carried out on the USF HumanID gait database [10]. This database
consists of people walking in elliptical paths in front of the camera. For each person,
there are up to 5 covariates: viewpoints (left/right), shoe types (A/B), surface types
(grass/concrete), carrying conditions (with/without a briefcase), and time and clothing.
Twelve experiments are designed for individual recognition as shown in Table 1. The
gallery set contains 122 sequences. Individuals are unique in the gallery and each probe
set, and there are no common sequence among the gallery set and all probe sets. The
walking surface type in the gallery set is grass.

Phillips et al. [10] propose a baseline approach to extract human silhouette and
recognize people in this database. For comparison, they provide extracted silhouette
data which can be found at the website http://marathon.csee.usf.edu/GaitBaseline/. Our
experiments begin with these extracted binary silhouette data (version 2.1) that are up-
dated on September 5, 2003. The performance of their baseline algorithm are shown in
Table 2. In this table, rank1 means that only the first subject in the retrieval rank list is
recognized as the same subject as the query subject, and rank5 means that the first five
subjects are all recognized as the same subject as the query subject. The performance
in the table is the recognition rate under these two definitions.
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Table 2. Comparison of recognition performance among different approaches on silhouette se-
quence version 2.1 (Legends: baseline - USF baseline algorithm [10]; real - real classifier; syn-
thetic - synthetic classifier; context - proposed context-based approach, this paper)

Rank1 Performance Rank5 Performance
baseline real synthetic context baseline real synthetic context

A 73% 89% 84% 90% 88% 93% 93% 93%
B 78% 87% 93% 91% 93% 93% 96% 94%
C 48% 78% 67% 80% 78% 89% 93% 89%
D 32% 36% 53% 56% 66% 65% 75% 81%
E 22% 38% 55% 57% 55% 60% 71% 76%
F 17% 20% 30% 27% 42% 42% 53% 53%
G 17% 28% 34% 36% 38% 45% 53% 50%
H 61% 62% 47% 60% 85% 87% 79% 90%
I 57% 59% 57% 62% 78% 79% 81% 84%
J 36% 58% 40% 57% 62% 81% 65% 84%
K 3% 3% 21% 9% 3% 6% 33% 18%
L 3% 6% 24% 12% 15% 9% 42% 27%

We carry out experiments of human recognition by the real classifier, the synthetic
classifier and the combined classifier based context according to rules in (7), (9), and
(10), respectively. Table 2 shows the recognition performance of USF baseline algo-
rithm and our proposed approaches. Note that the rank1 and rank5 performance of
proposed classifiers is better than or equivalent to that of baseline algorithm on all ex-
periments.

The performance of the synthetic classifier is significantly better than that of the real
classifier on experiments D-G and L, where the surface type of probe examples is differ-
ent from that of gallery examples. In other experiments where the surface type of probe
examples is the same as that of gallery examples, the performance of the real classifiers
is better on A, C and G-J, but a little worse on B and K. These results demonstrate the
our designed real and synthetic classifiers is suitable for their desired contexts.

The combined classifier based on the surface context achieves better performance
than individual real feature classifier and synthetic classifier in most experiments. It
is shown that the combined classifier takes advantage of merits in individual classi-
fiers based on the detected context information. In this paper, we only detect and use
the specific context information about the walking surface type, and only design two
classifiers for it. If we can detect or obtain more context information such as carrying
objects, clothing and time, and design the corresponding classifiers, we expect further
improved combination results.

5 Conclusions

In this paper, we propose a context-based human recognition approach by probabilis-
tically combining different gait classifiers with different environmental contexts. First,
context properties are learned from context training examples to construct context de-
tectors. The contexts of a given probe gait examples are then obtained by these context
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detectors. With the gait classifiers designed for individual recognition under different
environmental context changes, these classifiers are probabilistically combined to rec-
ognize the probe individual based on the detected context changes. Experimental results
show that the combined classifier takes advantage of merits in individual classifiers
based on the detected context information.
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Abstract. In this paper we show the feasibility of template protect-
ing biometric authentication systems. In particular, we apply template
protection schemes to fingerprint data. Therefore we first make a fixed
length representation of the fingerprint data by applying Gabor filter-
ing. Next we introduce the reliable components scheme. In order to make
a binary representation of the fingerprint images we extract and then
quantize during the enrollment phase the reliable components with the
highest signal to noise ratio. Finally, error correction coding is applied to
the binary representation. It is shown that the scheme achieves an EER
of approximately 4.2% with secret length of 40 bits in experiments.

1 Introduction

Biometrics identify/authenticate people on what they are rather than on what
they have (tokens) or what they know (passwords). Since biometric properties
can not be lost or forgotten in contrast to tokens and passwords, they offer an
attractive and convenient alternative to identify and authenticate people.

When the reference information, captured during the enrollment phase, is
not properly protected some privacy problems arise. The main risks are given
by: i) Biometrics contain sensitive information about people [Bolling, P65]. ii)
Once compromised, the templates are compromised forever and can not be reis-
sued [S99]. iii) Biometric data stored without protection can be used to perform
cross-matching between databases and track peoples behaviour. iv) Many bio-
metric identifiers can be forged based on template information [MMJ03]. This
problem received recently a lot of attention [JS02, TG04, LT03, DRS04, JW99,
Sou98].

Two equivalent approaches, Helper Data and Fuzzy Extractors, were pro-
posed to solve this privacy problem [TG04, DRS04]. In these papers the theory
of template protection has been developed and some algorithms were proposed.
In [TVI04] these algorithms were applied to ear identification and a satisfactory
performance (EER=3%, secret length=100) was achieved.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 436–446, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper, we present an implementation of template protection for fin-
gerprint based authentication. We present an algorithm based on helper data
consisting of two parts. The first part identifies the reliable components with a
high signal to noise ratio in the analog picture of a Gabor-filtered fingerprint. By
applying quantization, a binary representation is made of the fingerprint. The
second part of the helper data maps the binary representation onto a code word
of an error-correcting code which is further used to correct the noise remaining
after quantization.

2 Preliminaries

2.1 Biometric Verification

The biometric system that is considered in this paper is a verification system.
As usual it consists of two phases. In the enrollment phase (executed at a Cer-
tification Authority (CA)), reference measurements are taken, the features are
extracted, and the template is stored in e.g. a database in a properly protected
way. During the verification phase, a live biometric measurement is compared to
the template that is retrieved from the database using a claimed identity. Due
to noise (caused by scratches, weather conditions, partial impressions, elastic
deformations, etc.) the measurements taken during the enrollment and verifica-
tion phase are different. This degrades the performance of a biometric verifica-
tion system. In order to measure the performance, two different error rates are
commonly used. The False Acceptance Rate (FAR) is the probability that an
impostor is falsely accepted as a genuine user. The False Rejection Rate (FRR)
is the probability that a genuine user is falsely rejected by the system. The Equal
Error Rate (EER) is the error rate at the point of operation where FAR is equal
to FRR.

2.2 Template Protection

Biometric data (and their extracted features) are modeled as k-dimensional ran-
dom variables with entries in R. The extracted features during the enrollment
phase are denoted by X and those extracted during the verification phase by
X ′. The data during the verification phase are modeled as a noisy version from
those measured during the enrollment phase [TG04].

The core algorithm of a template protecting biometric system extracts a
secret from the biometric data. Generally speaking such an algorithm is built
on a Secret Extraction Code [TG04] or equivalently a Fuzzy Extractor [DRS04].
For the sake of simplicity we describe the algorithm in terms of a shielding
function [LT03], which generates a special set of secret extraction codes [TG04]
but has all necessary properties. A shielding function G : Rk×{0, 1}k → {0, 1}K

extracts a secret of length K from the biometric as follows. Given a randomly
chosen secret S ∈ {0, 1}K and a biometric X ∈ Rk, helper data W ∈ {0, 1}k is
computed such that G(X,W ) = S (equivalently the equation G(X,W ) = S is
solved for W ). A shielding function is called δ-contracting if for all X ′ that lie
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within a ball of radius δ of X we have G(X ′,W ) = G(X ,W ) = S. The function
G is called ε-revealing if the helper data W leaks less than ε bits on S (in the
information theoretic sense), i.e. I(W ;S) ≤ ε. It is the goal to design the system
such that W leaks also a minimal amount of information on X; i.e. I(W ; X)
has to be minimized. It was shown in [LT03] that for a shielding function G,
I(W ; X) can not be made equal to zero.

During the enrollment phase the features X of Alice’s biometric are ex-
tracted, a secret S is randomly choosen and the helper data W is computed.
Then, a one-way hash function H is applied to S and the data (Alice,W,H(S))
is stored in a database.

During the verification phase, (at the sensor) a noisy version X ′ of Alice’s
biometric X is measured. When Alice claims her identity the helper data W is
passed onto the sensor. The sensor computes S′ = G(X ′,W ) and H(S′). At the
database H(S′) is compared to H(S). If both are equal access is granted and if
they are unequal no access is granted. Note that in contrast to usual practice in
biometrics (”fuzzy matching”) an exact match is performed. We stress that the
helper data is sent over a public channel, i.e. W can be captured by an attacker.
The system is however designed such that the knowledge ofW provides a minimal
amount of information on X and S [LT03, TG04, DRS04]. For basic examples of
template protecting biometric verification systems, we refer to [TG04, DRS04].

2.3 Fingerprint Feature Extraction

In this section we present a fixed length feature vector representation, of which
the elements can be compared one by one directly. The selected feature vector
describes the global shape of the fingerprint by means of the local orientations
of the ridge lines.

In order to allow for direct comparison of the feature vectors, without re-
quiring a registration stage during matching, the feature vectors have to be pre-
aligned during feature extraction. For this purpose, the core point (i.e. the up-
permost point of the innermost curving ridge) is used. These core points are au-
tomatically extracted using a likelihood ratio-based algorithm that is described
in [Baz04].

To describe the shape of the fingerprint, we extract two types of feature
vectors from the gray scale fingerprint images. The first feature vector is the
squared directional field that is defined in [Baz02]. It is evaluated at a regular
grid of 16 by 16 points with spacings of 8 pixels, which is centered at the core
point. At each of the 256 positions, the squared directional field is coded in
a vector of two elements, representing the x- and y-values, resulting in a 512-
dimensional feature vector. An example fingerprint and its directional field are
shown in Figures 1a and 1b respectively.

The second feature vector is the Gabor response of the fingerprint, which is
discussed in [BV04]. After substraction of the spatial local mean, the fingerprint
image is filtered by a set of four complex Gabor filters, which are given by:

hGabor(x, y) = exp
(
−x2 + y2

2σ2

)
· exp (j2πf · (x sin θ + y cos θ)) (1)
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(a) (b)

(c) 0 (d) 1
4
π

(e) 1
2
π (f) 3

4
π

Fig. 1. (a) Fingerprint image, (b) its directional field and (c)-(f) the smoothened ab-
solute values of Gabor responses for different orientations θ

The orientations θ are set to 0, π/4, π/2, and 3π/4, the spatial frequency f is
tuned to the average spatial ridge-valley frequency (f = 0.11), and the width of
the filter σ is set such that the entire orientation range is covered (σ = 3.5). The
absolute values of the output images are taken, which are subsequently filtered
by a low-pass Gaussian window. The resulting images are shown in Figures 1c
to 1f.

Again, samples are taken at a regular grid of 16 by 16 points with spacings
of 8 pixels and centered at the core point. The resulting feature vector is of
length 1024. This feature vector is inspired by FingerCode [Jai00], but it can be
calculated more efficiently since a rectangular grid is used rather than a circular
one, and it performs better.

The resulting feature vector that is used for matching is a concatenation of
the squared directional field and the Gabor response. It describes the global
shape of the fingerprint in 1536 elements.

3 Integration of Template Protection
with Fingerprint Verification

From each user we use M measurements of his/her biometric for enrollment. The
enrollment phase comprises five steps: Feature Extraction, Statistical Analysis,
Quantization, Selecting Reliable Components and Creating Helper Data. These
steps are described in detail in Section 3.1.

In the verification phase the biometric of a user is measured. Then, feature
extraction and quantization are performed and using the helper data the noise
is removed and the secret reconstructed. The details are explained in section 3.2.
The complete scheme is shown in Fig. 2.
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Fig. 2. Overview of the reliable components scheme

3.1 Enrollment

Feature Extraction. At the input of the scheme, we consider a set of biometric
enrollment measurements F = {Fi,j}i=1..N,j=1..M where a subscript i, j denotes
the j-th enrollment measurement of the i-th user. Thus N is the number of users
and M the number of enrollment measurements per user such that F consists
of NM digital images of fingerprints. In the Feature Extraction block (depicted
as ’Feat. Extr.’ in Fig. 2) feature vectors X are extracted from these images,
according to the method described in Section 2.3. The set of NM feature vectors
is denoted as X = {Xi,j}i=1..N,j=1..M , where Xi,j ∈ Rk denotes the j-th feature
vector of the i-th person with components (X i,j)t where t = 1 . . . k.

Statistical Analysis. Firstly, we compute the estimated mean feature vector
μi of person i and the mean μ of all enrollment feature vectors as follows,

μi =
1
M

M∑
j=1

Xi,j , μ =
1
N

N∑
i=1

μi . (2)

Secondly, we compute estimates of the within-class covariance matrix Σw and
the between-class covariance matrix Σb,

Σw =
1

NM

N∑
i=1

M∑
j=1

(X i,j−μi)(Xi,j−μi)T , Σb =
1
N

N∑
i=1

(μi−μ)(μi−μ)T . (3)
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Quantization. In Fig. 2, the quantization block is denoted by ‘Q’. In this block
a binary representation (bit string) is derived from the input feature vectors of
person i denoted as Xi = {X i,j}j=1...M . The ‘Select User i’ block in Fig. 2 selects
these feature vectors from the total set X . The quantization of Xi is based on the
mean μ 1 determined in the ‘Statistical Analysis’ block. A binary string Q(Xi,j)
is constructed from the feature vector Xi,j where each bit (Q(Xi,j))t is defined
as (for t ∈ {1, . . . , k})

(Q(Xi,j))t =

{
0 if (X i,j)t ≤ (μ)t

1 if (X i,j)t > (μ)t .
(4)

Selecting Reliable Components. In this step we look for the reliable com-
ponents in the M bit strings Q(Xi) = {Q(Xi,j)}j=1...M of user i. The block
‘Reliable Bits’ of Fig. 2 determines the K most reliable components (or bits) for
user i and creates a first set of helper data W1i. K is a fixed parameter2 that
matches the length of the codewords that are going to be used in the ‘Creating
Helper Data’ step. The reliable components are defined as follows.

The t-th component of Q(Xi,j) for a fixed user i = 1, . . . , N is called reliable,
if the values (Q(Xi,j))t for j = 1 . . .M are all equal. The boolean vector Bi ∈
{0, 1}k denotes the reliable bits. Its t-th entry equals one if the t-th component of
Q(Xi,j) is reliable otherwise the t-th entry is zero. For user that have less than
K reliable components, we additionally define soft reliable components. Define
p-soft reliable components of user i as the values t for which M − p of the values
(Q(Xi,j))t for j = 1 . . .M are equal. The boolean vector B

(p)
i ∈ {0, 1}k denotes

these p-soft reliable bits.

Creating Helper Data. The helper data of our scheme consists of two parts.
The first part, denoted by the vector W1 is determined as follows. We define
the Signal-to-Noise Ratio vector ξ ∈ Rk by the following equation,

(ξ)t =
(Σb)t,t

(Σw)t,t
, t ∈ {1, . . . , k}. (5)

1. For each user i we determine the K most reliable components with the
highest Signal-to-Noise Ratio based on the vectors ξ, Bi and B

(p)
i : first

the reliable components (indicated by Bi) with the highest ξt value are
chosen. If the chosen amount of components is less than K, the p-soft reliable
components with the highest ξt value are added (for successively p = 1, 2, . . .)
until a total amount of K components is chosen. The positions of these chosen
components are stored in the vector W1i ∈ NK .

1 Instead of the mean, the median can be used too. This leads to the same results
2 The value of K is chosen in such a way that the vast majority of users have more

than K reliable components
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2. For each user i, we select the bits indicated by helper data W1i and combine
these bits into a new vector Zi. More precisely, (Zi)t = (Q(X i,j))(W1i)t

.
(This step corresponds to the ‘Select’ box in Fig. 2).

3. Let C be an ECC 3 with parameters (K, s, d) where K denotes the length of
the code words, s the number of information symbols and d the number of
errors that can be corrected. For each user i, a secret Si ∈ {0, 1}s is randomly
choosen 4 and encoded into the codeword Ci ∈ C. The second part of the
helper data W2i is then given by W2i = Ci⊕Zi (where ⊕ stands for bitwise
XOR).

Finally the secret Si is hashed using a cryptographic (one-way) hash function
H and the values W1i, W2i and H(Si) are stored in the database (indicated
with ‘DB’ in Fig. 2), linked to user i. Note that the secret size equals the number
of information symbols s in the (K, s, d) code C.

3.2 Verification

During the verification phase a noisy biometric F ′
i of user i is measured. On

F ′
i the following computations are performed. i) Features are extracted from F ′

i

and a feature vector X′
i is obtained. ii) In the quantization block a bit string is

derived by comparing the value of each component (X′
i)t with the mean value

(μ)t according to Eq. 4 (where Xi,j is replaced by X′
i and Q(Xi,j) is replaced

by Q(X′
i)). iii) The first helper data vector W1i from the database is used

to select K components from Q(X′
i) which yields a bit string Z ′

i. iv) Then,
Z ′

i ⊕W2i = Ci ⊕ (Zi ⊕ Z ′
i) is computed and the errors are corrected such that

C′
i is obtained. v) Finally S′

i is obtained by decoding C′
i and H(S′

i) is compared
to H(Si) stored in the database. If both values match, user i is authenticated.

4 Results

4.1 Fingerprint Databases

To compare the performance of the matching algorithms with and without
template protection, we applied the recognition algorithms to two fingerprint
databases.

i) The first fingerprint database we used is the second FVC2000 [Mai00]
database. This database contains 8 images of 110 different fingers. The 8-bit
gray scale fingerprint images were captured using a capacitive sensor with a
resolution of 500 dpi. The image size is 256 by 364 pixels. We use six fingerprints
per person during enrollment, two fingerprints per person during verification.

ii) The second fingerprint database is collected at the University of Twente
using an optical digitalPersona U.are.U sensor. This database contains 5 images
of 500 different fingers. The resolution of the images is 500 dpi, the bit-depth is
8 bit, and the image size is 452 by 492 pixels. We used 4 fingerprints per person
during enrollment, and one fingerprint per person for verification.
3 ECC stands for Error Correcting Code
4 This is indicated by the Random Number Generator (RNG) block in Fig. 2
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4.2 Classification Without Template Protection

For comparison we implemented a likelihood ratio-based verification scheme. For
the first database this yields an EER = 1.4% and for the second database an
EER = 1.6% 5 The results are shown in Fig. 3.
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Fig. 3. Likelihood ratio-based results on databases 1 (left) and 2 (right)

4.3 Classification Results of the Reliable Component Scheme

In this section we give the results of the proposed Reliable Components Scheme
for the databases described in Section 4.1.

The ECC we use is a binary BCH code described by the triplet (K, s, d).
Since BCH codes do not exist for all triplets (K, s, d) we choose from the list
of possible BCH codes the one that maximizes the performance. This choice is
made as follows. For a set of test users, we investigate how the performance
depends on the used BCH code. Fix K as explained in the enrollment procedure
according to a valid BCH code. For our fingerprint databases, K = 511 is a good
choice since the vast majority of users have more than 511 reliable components6.
For this value of K consider the set of possible BCH codes B corresponding to
all possible values of d (see also Figure 2).

i) For each possible value of d (according to K) choose a code B(d) from B.
ii) Perform enrollment i.e. determine S,W1,W2.
iii) Perform the verification phase and compute the FAR(d) and the FRR(d) for

that value of d.
5 For database 1, we used nPCA = 100, nLDA = 60, λW = 0.5 and threshold of −36.

For database 2, we used nPCA = 100, nLDA = 50, λw = 0.5 and a threshold of −35.
(nPCA,nLDA = 50 stand for the dimension after the PCA and LDA transformation
respectively and λw is a regularization constant)

6 On average a user has ≈ 800 reliable components. When selecting K = 511, on
average 13 users will have less than 511 reliable bits (in both databases) and hence
their helper data vector W 1i also contains 1-soft reliable bits
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As mentioned in section 4.1, we split the fingerprint database in a set of en-
rollment measurements and a set of verification measurements. The dependence
of the FAR and the FRR on d is shown in Fig. 4 for one particular split. Clearly,
when d is small the FAR will be small but the FRR will be rather high because
the system is sensitive to noise. The results that we present here, are calculated
by averaging over all possible splits:

(
8
6

)
= 28 different splits for database 1 and(

5
1

)
= 5 splits for database 2. On average, the EER is achieved for d ≈ 86 and

d ≈ 102 for database 1 and 2 respectively.
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Fig. 4. Left: FAR and FRR as a function of d for database 1, where the training
set consists of measurements {2, 3, 4, 5, 6, 7} and the verification set of measurements
{1, 8}. Right: FAR and FRR as a function of d for database 2, where the training set
consists of measurements {1, 2, 3, 4} and the verification set of measurement {5}

The BCH code that is closest to our (on average) required error correcting ca-
pability has parameters (511, 76, 85) for database 1 and parameters (511, 40, 95)
for database 2. Fig. 5 summarizes the resulting FRR and FAR that can be
achieved using these codes in columns 3 and 4. Furthermore the results for a
few other codes (with error correcting capability close to the required average)
are displayed. The figure shows that the average EER that can be achieved for
database 1 is close to 5.3% and for database 2 around 4.5%. It turns out that
many false acceptances and false rejections occur for certain people that have
some low quality pictures in the original fingerprint database. For example, some

ECC (K,s,d) FRR FAR FRR* FAR*

Database 1 (511,85,63) 0.099 0.025 0.069 0.029
(511,76,85) 0.054 0.052 0.035 0.058
(511,67,87) 0.052 0.055 0.034 0.061

Database 2 (511,49,93) 0.054 0.032 0.048 0.033
(511,40,95) 0.054 0.035 0.048 0.036
(511,31,109) 0.041 0.055 0.035 0.056

Fig. 5. Summary of the results for the two databases, for several selections of ECCs.
(*): The columns FRR* and FAR* show the results if badly enrolled users are not
taken into account
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users have measurements where the core is on the edge of the picture or where no
ridges can be distinguished. Users with such pictures amongst their enrollment
data, will often have less than 511 reliable bits (and soft reliable bits are added).
In a practical situation, these low quality pictures can easily be avoided during
enrollment by visually checking the image quality of each enrollment measure-
ment and repeating a measurement if the quality is too low. We tested this idea
by leaving out users for which W1i contains also soft reliable bits (see section
3.1). The results in terms of FAR and FRR are printed in the last two columns
of Fig. 5. The performance for database 1 has improved, achieving an EER of
about 4.5%. For database 2 the result is only slightly better with an EER of
about 4.2%.

It follows from the results that the Reliable Components Scheme degrades the
classification performance when compared to the likelihood ratio based scheme
but performance is still of the same order (from a security point of view).

5 Security Analysis

The helper data consists of two parts (W1 and W2) which are used for re-
liable feature extraction and noise correction on discrete data respectively, we
discuss the information leakage by both parts. We present the analysis under
the assumption that the quantized strings Q(X) are randomly distributed over
{0, 1}511 7. It follows from results in [TG04], that H(S|W2) = H(S), i.e. W2
leaks no information on S. It follows from the assumption on the distribution
of Q(X) that W1 does not provide information on S. Hence, the scheme is
0-revealing. It follows from the results in [TG04] that for the discrete case
H(Q(X)|W ) ≥ H(Q(X)) − (K − s) when a (K, s, d) BCH code is used. For
database 1 using a (511,76,85) code, this implies that the helper data W2 re-
veals 435 bits and for database 2 using a (511,40,95) code it reveals 471 bits.
We note however that given the helper data W2, the space of quantized finger-
prints Q(X) is still sufficiently large (276 and 240 respectively) to make an attack
exploiting the helper data infeasible. Again from the assumption on the distri-
bution of Q(X) it follows that W1 does not increase the information leakage
substantially.

6 Conclusions

We showed in this paper, that template protecting biometric authentication
techniques can be efficiently implemented with a performance of EER ≈ 4.2%
and secret size ≈ 40 bits on fingerprints. The main idea consist of splitting the
helper data in two parts, one part determines the reliable components and the
other part allows for noise correction on the quantized representations.

7 We can not prove this at the moment and need more data to compute the distribution
of the strings Q(X). The presented analysis gives however a good idea of how the
security of the system has to be analyzed



446 Pim Tuyls et al.

References

[Baz02] A.M. Bazen and S.H. Gerez, Systematic Methods for the Computation
of the Directional Field and Singular Points of Fingerprints IEEE Trans.
PAMI,2002, 24, 7, 905-919.

[Baz04] A.M. Bazen and R.N.J. Veldhuis, Detection of cores in fingerprints with
improved dimension reduction Proc. SPS 2004, 41-44, Hilvarenbeek, The
Netherlands,

[BV04] A.M. Bazen and R.N.J. Veldhuis, Likelihood Ratio-Based Biometric Verifi-
cation, IEEE Trans. Circuits and Systems for Video Technology, 2004, 14,
1, 86-94.

[Bolling] J. Bolling, A window to your health, In Jacksonville Medicine, 51, Special
Issue: Retinal deseases.

[DRS04] Y. Dodis, L. Reyzin, A. Smith, Fuzzy Extractors: How to generate strong
secret keys from biometrics and other noisy data, In Advances in Cryptology
- Eurocrypt’04, LNCS 3027, 523–540, 2004.

[Jai00] A.K. Jain and S. Prabhakar and L. Hong and S. Pankanti, Filterbank-Based
Fingerprint Matching, IEEE Trans. Image Processing, 2000, 9, 5, 846-859.

[JPP04] U. Uludag, S. Pankanti, S. Prabhakar, and A.K. Jain, Biometric Cryptosys-
tems: Issues and Challenges, In Proceedings of the IEEE, Vol. 92, 6, June
2004.

[JS02] A. Juels, M. Sudan, A Fuzzy Vault Scheme Proceedings of the 2002 Inter-
national Symposium on Information Theory (ISIT 2002), Lausanne.

[JW99] A. Juels and M. Wattenberg, A fuzzy commitment scheme, 6th ACM
Conference on Computer and Communication Security, p. 28-36, 1999.

[LT03] J.-P. Linnartz and P. Tuyls, New shielding functions to enhance privacy
and prevent misuse of biometric templates, 4th International Conference
on Audio- and Video-Based Biometric Person Authentication, 2003.

[Mai00] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman and A.K. Jain, FVC2000:
Fingerprint Verification Competition, IEEE Trans. PAMI, 2002, 24, 3, 402-
412.

[MMJ03] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition, Springer-Verlag New-York 2003.

[P65] L. Penrose, Dermatoglyphic topology, Nature, 205, (1965) 545-546.
[S99] B. Schneier, Inside risks: The uses and abuses of Biometrics, Communica-

tions of the ACM, 42, p136, 1999.
[Sou98] C. Soutar, D. Roberge, S.A. Stojanov, R. Gilroy and B.V.K. Vijaya Ku-

mar, Biometric Encryption-Enrollment and Verification Procedures, Proc.
of SPIE, Vol. 3386, 24-35, April 1998.

[TG04] P. Tuyls and J. Goseling, Capacity and Examples of Template Protect-
ing Biometric Authentication Systems, Biometric Authentication Workshop
(BioAW 2004), LNCS 3087, 158–170, Prague, 2004.

[TVI04] P. Tuyls, E. Verbitskiy, T. Ignatenko, D. Schobben and T.H. Akkermans
Privacy Protected Biometric Templates: Ear Identification Proceedings of
SPIE, Vol. 5404, 176-182, April 2004.



adamskong@ieee.org 
csdzhang@comp.polyu.edu.hk 

mkamel@uwaterloo.ca 





×

θψ θ

ψ

= =

= = =

∩

⊗∩∩
=

( )
⊗ ∩





= =

=

=
= =

=
=

=

=∋

==

=< −=≥

−=≥

−==∀≥

−−=<



−−=<

×



×
×
×
×
×





hongo03,daigo}@matsumoto.elec.waseda.ac.jp 
takashi@mse.waseda.ac.jp

http://www.matsumoto.elec.waseda.ac.jp/ 

=××∈ϕγ



∈ ∈
γ ϕ

==

==

=×
−
−

×
−
−

=

θ

=+=



=

<<−

≥<+

=×

>

=

−

−

−

π

π

π

θ

=××∈ϕγθ

=××∈φδη

=
+≤≤

+≤≤
−=

+

+
ηθ

=
+≤≤

+≤≤
−=

+

+

=
+≤≤

+≤≤
−=

+

+

=
+≤≤

+≤≤
−=

+

+
δγ

=
+≤≤

+≤≤
−=

+

+
φϕ



−=

−
−

−−
+−=

=

++ ηθ

=ε

( ) ( ) ( )≠
=

ε

ε
εα −

=

α−=+

( ) = α

( )( )=



=

+=

=

( ) ( )
( )

( )
= =

=

===
=

( )
( )( )

( )( )
= =

==

( )
( )>

≤



( )
( )>

≤





= =





MOC via TOC Using a Mobile Agent Framework

Stefano Bistarelli1,2, Stefano Frassi2, and Anna Vaccarelli2
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Abstract. A novel protocol is proposed to address the problem of user
authentication to smartcards using biometric authentication instead of
the usual PIN. The protocol emulates expensive Match On Card (MOC)
smartcards, which can compute a biometric match onboard, by using
cheap Template on Card (TOC) smartcards, which only store a biometric
template. The biometric match is performed by a module running on
the user’s workstation, authenticated by a mobile agent coming from a
reliable server. The protocol uses today’s cryptographic tokens without
requiring any HW/SW modifications.

1 Introduction

Smartcards are currently used as a secure and tamper-proof device to store sen-
sitive information such as digital certificates and private keys. Access to smart-
cards has historically been regulated by a trivial means of authentication: the
Personal Identification Number (PIN). A user gains access to a card if he/she
enters the right PIN. Experience shows that PINs are weak secrets in the sense
that they are often poorly chosen, and that they are easy to forget.

Biometric technologies have been proposed to strengthen authentication
mechanisms in general by matching a stored biometric template to a live biomet-
ric template [1, 2]. In the case of authentication to smartcards, intuition imposes
the match to be performed by the smartcard chip. However, this is not always
possible because of the complexity of biometric information such as fingerprints
or iris scans, and because of the still limited computational resources offered by
currently available smartcards.

In general, three strategies of biometric authentication can be identified.

Template on Card (TOC). The biometric template is stored on a hardware
security module (smartcard or USB token). It must be retrieved and trans-
mitted to a different system that matches it to the live template acquired
from the user by special scanners. Cheap memory-cards with no or small
operating systems are generally sufficient for this purpose.

Match on Card (MOC). The biometric template is stored on a hardware se-
curity module, which also performs the matching with the live template.
Therefore, a microprocessor smartcard is necessary, which must contain an
operating system running a suitable match application.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 464–473, 2005.
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System on Card (SOC). This is a combination of the two previous technolo-
gies. The biometric template is stored on a hardware security module, which
also performs the matching with the live template, and includes the biometric
scanner to acquire, select, and process the live template.

Clearly, the third of the strategies sketched out above is the best in terms of
security as everything takes place on card. Embedding a biometric reader on a
smartcard offers all the privacy and security solutions but, unfortunately, it is
expensive and presents more than one realization problem.

The benefits derived from MOC cards are valuable in themselves: using its
own processing capabilities the smartcard decides if the live template matches the
stored template closely enough to grant access to its private data. Nevertheless
this scheme presents a danger: we have no certainty that a biometric reading has
been collected through live-scan and there is the risk of an attacker’s sniffing the
biometric and later using it to unlock the card in a replay attack.

In the present setting, how can we implement biometric authentication on
smartcards that are already commercially available?

We address this issue by developing a novel protocol that employs inexpensive
TOC cards as if they were MOC cards and that counterbalances the MOC
technology’s drawbacks; the requirements of the present work are to employ
common crypto smartcards without modifying the code inside them and without
asking the user directly for the PIN.

This paper is organized in the following way: Section 2 illustrates the se-
curity problems using TOC for authenticating a user to a smartcard. Section
3 sketches out the adopted solution. The protocol is introduced in Section 4,
while implementation details are described in Section 5. Section 6 illustrates the
solved/unsolved security problems. Finally, Section 7 concludes the paper and
proposes possible future works.

2 Security Problems Using TOC Technology

Before describing the protocol, we would like to explain some problems related
to the use of TOC technology for authenticating a user to a smartcard (SC).
There are several points of attack in the use of TOC technology without securing
the data transmission between the biometric device, the smartcard reader and
the local host that carries out the biometric match. Consequently, we have to
consider some aspects before designing our secure protocol.

The idea of using TOC technology to authenticate a user to a SC (without
security concerns) is:

1. A cryptographic application asks the user to authenticate himself to the SC
via a specific API call.

2. Verification Module reads the biometric template from the SC.
3. A real time template is acquired from the user using a biometric scanner.
4. A biometric match between the two templates is performed on the local host.
5. If the biometric match is successful then the actual PIN is submitted to the

card to unlock the crypto chip.
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Fig. 1. A TOC Protocol

A diagram of the protocol is illustrated in Fig. 1.
The major problems of the above protocol are:

– The enrollment template stored inside the smartcard could be eavesdropped
at step 2.

– The real time template could be eavesdropped at step 3.
– The smartcard doesn’t trust the module performing the match at step 4.
– Where to store the secret login data (PIN) used to actually log the user into

the cryptographic chip (we don’t want to ask the user for it).

The first two points are critical if it is possible for an attacker to use the smart-
card (after he/she has stolen it) for a replay attack sending again the eaves-
dropped data directly to the verification module. In this case, there is no secu-
rity mechanism to verify that the biometric verification data are derived from
an actual live presentation to the biometric sensor. To solve these problems we
could encrypt the data exchanged between the devices and the crypto library or
find a way to trust the module that acquires the live template.

SC is unable to authenticate the verification module. Maybe using a kind of
challenge-response protocol: the module requests a random to the SC and this is
returned encrypted with a shared secret key. Now the dilemma is where to store
the key on the host.

The only method to unlock the private area of the chip is to supply the exact
PIN to the SC. If the PIN is correct then the SC trusts the module that has
performed the local biometric match.

Therefore, the crucial point is the last one: where to store the secret PIN1.
An obvious method is to store the PIN inside the compiled Crypto Module. This
is not a good solution because a malicious user might do reverse engineering on
the library and find the secret. Every place inside the user’s file system is not
secure if a malicious program has manipulated the host, so the safest place is
inside a protected remote Server.
1 In a previous work [3], a similar problem has been investigated developing a compa-

rable protocol. In that case, the user was asked directly for the PIN and there was
the need to install a piece of code into the smartcard to carry out the protocol
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3 The Adopted Solution

Now the problem to solve is how the remote Server can send critical data to an
unknown remote host. This is like a black box and the server does not know if
a malicious entity is running on that client.

A mutual authentication by establishing a SSL connection between the client
and the server is a good solution, but like the PIN, there is always the recurrent
problem of where to store the certificate/private key of the client (we don’t want
to use another smartcard [11] and we want to avoid asking the user for another
PIN to unblock this private key).

We chose to adopt another solution: using a Mobile Agent framework. If the
server cannot trust applications running on the client, it will trust the code that
it launches to the client: a mobile agent.

A remote agent, launched from the secure server, will try to authenticate
the module that executes the biometric match on the client; if the result of the
authentication is positive then the server sends the secret PIN to the client via
a previously opened secure connection.

The chosen framework was SeMoA [6] (Secure Mobile Agents). It is a run-
time environment for Java-based mobile agents in development at the Fraunhofer
Institute for Computer Graphics, with its main focus on security.

A Mobile Agent is a software entity that is not bound to the host where
it begins execution, but has the unique ability to travel across a network and
perform tasks on machines that provide agent-hosting capability. Unlike remote
procedure calls, where a process invokes procedures of a remote host, process
migration allows executable code to travel autonomously and to interact with the
hosting machine’s resources, including other mobile agents. Therefore, a Mobile
Agent framework has to cope with various security threats [8]: malicious agents
might try to break into the server in order to harm other agents or to gain
unauthorized system access. A malicious host could tamper with agents. Agents
might be sniffed while they are transferred over the network.

Many open source agent development frameworks are available on the inter-
net: we decided to adopt SeMoA because it focuses on security and tries to solve
the above-mentioned problems.

4 Protocol Description

This section presents the protocol. It illustrates the interactions among the main
entities (details will be introduced in section 5). Description of the entities:

– Client: the user’s workstation
• Application: the user application that requires the access to the smart-

card through the Crypto Module (for instance a digital signature appli-
cation).

• Crypto/Verification Module: the main entity used to access the smart-
card and to perform the local biometric match (it implements the client-
side protocol).
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• SeMoA Framework: the runtime environment for the Mobile Agent com-
ing from the Server.

– Server: the secure host where the secret login data is contained
• SeMoA Framework: the runtime environment for the Service implement-

ing the protocol.
• MOC Service: the Service which accepts connections and implements the

protocol.
• MOC Agent: the Mobile Agent that is launched by Moc Service, gets to

the Client and comes back with the result of the authentication.

A diagram can be defined as in Fig. 2.

Fig. 2. The Protocol

1. User application requires access to the private space of the smartcard through
a particular Crypto API call.

2. The Crypto Module (CM) opens an encrypted connection to the Moc Service
(MocS) running on the Server (MocS is authenticated via SSL).

3. After the connection has been established, CM generates a large Random
value and stores it inside itself (value used by the mobile agent at step 7).

4. Finally, CM sends the Random and the smartcard Serial Number to MocS:
if the subsequent controls succeed, CM will receive the secret login data at
step 9, otherwise MocS will close the connection.

5. In the meantime, the Verification Module executes a biometric match be-
tween the template stored inside the smartcard and the live acquired one.

6. MocS stores the Random previously received within a MOC Mobile Agent
and launches it to the Client address over a new encrypted channel; after
this, MocS begins to wait for the return of the Agent.

7. Now the MOC Agent is migrated on the client:
– It tests the validity of the modules residing on the user’s workstation

checking their digital signature.
– It checks that the random inside itself has the same value as the random

contained in CM .
– It ensures that the biometric match executed at step 5 is successful.

If all the previous controls are positive then we can trust the CM module
that has started the protocol.
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8. The Agent comes back to the Server and returns the result to MocS.
9. If the result is positive then MocS sends, on the same connection opened at

step 2, the secret login data (PIN)2 correlated to the Serial Number received
at step 4. Otherwise, it closes the connection with the client.

10. In the last step, CM unlocks the private area using the received PIN and
confirms to the user application the success of the Crypto API call made at
step 1.

5 Implementation

The protocol and all the entities have been developed and deployed on a Windows
2000 Professional workstation, so some details are particular to this architecture.
As regards the hardware, the biometric scanner employed is an FX2000 produced
by Biometrika srl [12], while the smartcard used is a Cyberflex e-gate produced
by Schlumberger [13]. (As we will see later, it is possible to employ any kind of
biometric device or smartcard without modifying the protocol by only changing
the respective library.)

The principal technology employed, besides SeMoA, is the PKCS#11 stan-
dard [7], which has been used as the Crypto module. We have chosen this solution
because this is the most widespread de-facto standard in today’s cryptographic
tokens. The PKCS#11 standard specifies an API, called “Cryptoki” (crypto-
graphic token interface), to interface the devices that hold cryptographic infor-
mation and that perform cryptographic functions. The Cryptoki is important
because it isolates an application from the details of the cryptographic device.

The standard employed to perform all the required biometric operations is
BioAPI [4]. This API is intended to provide a high-level generic biometric
authentication model, covering the basic functions of Enrollment, Verification,
and Identification.

Another technology we have used to implement this protocol has been the
Java Native Interface (JNI) [9]. This was used to exchange data between the
MOC Mobile Agent (which runs in a Java virtual machine) and the dlls (which
are native libraries) at step 7 of the protocol.

Figure 3 describes the protocol in more detail. The previous client’s Crypto-
Verification module has been separated in four different dynamic link libraries
(dll):

1. PKCS#11 module: this is the library provided by the smartcard manufac-
turer. This dll permits user authentication to the smartcard using the normal
PIN. Therefore it is possible to switch from a smartcard brand to another
by only changing this module.

2 The PIN can be delivered directly by the Agent at the end of step 7 (only if all the
checks are positive). We have avoided this solution because even though it is the
fastest, it is the least safe too: the agent might be tampered with by a malicious
entity, to extract the PIN
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2. Crypto Wrapper: this is a dll wrapper to the PKCS#11 module; all the API
calls are proxied to the manufacturer’s dll except for the C Login function:
this is the point where the client-side protocol is implemented.

3. Verification module: it performs the local biometric match via the BioAPI
library. Also in this case it is possible to use another Biometric device by
only changing the Biometric Service Provider (BSP) dll.

4. JNI stub: this module is used by the Java Mobile Agent to access the Crypto
Wrapper and the Verification module. It works with JNI.

Inside the server there is a certification authority (CA) which is used to issue
certificates for the users. The CA also issues Attribute Certificates containing
the enrolled biometric template [1]; they are stored in the smartcards along with
the x509 user’s certificates.

Every client’s dll which performs the protocol is digitally signed [5] by the
Server’s private key, so that the components can mutually authenticate each
other and the Mobile Agent can check their validity.

Fig. 3. The detailed Protocol

5.1 Detailed Protocol

1. The user application requires access to the smartcard via a C Login call.
(The application needs, for instance, to use the user’s private key stored in
the smartcard). The call corresponds to a C Login(NULL), where NULL
means that biometric authentication is requested (no PIN is given).

2. The Crypto Wrapper (CW ) opens a SSL connection to the Moc Service
(MocS) running on the Server. Naturally, an encrypted connection is used
to avoid sniffing the data when the secret login PIN is sent over the channel.
We use SSL server authentication to check the server’s identity. (NO SSL
client authentication, because there would be the recurrent problem of where
to store the client’s private key.)
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3. After the connection has been established, the CW generates a large random
value and stores it inside a Shared Data Section [10]: all the processes that
will use this module, will access the same variable. In this way, we can detect
possible malicious modules that try to start the protocol. (The only module
that is permitted to start the protocol is the CW ). The random will be
checked by the mobile agent at step 7.

4. Finally, the CW sends the Random and the smartcard Serial Number3 to
MocS: if the subsequent controls succeed, the CW will receive the secret
login data at step 9, otherwise MocS will close the SSL connection.

5. In the meantime, the Verification Module (VM) executes a biometric match
between the template stored in the smartcard and the live acquired one.
VM reads the Attribute Certificate stored inside the smartcard, verifies its
validity and extracts the biometric template. Then, VM acquires the live
template from the scanner via the BioAPI module only if the BSP’s digital
signature is correctly verified.

6. MocS generates a MOC Mobile Agent, signs it, and launches it to the Client
address (the Random previously received has been stored inside the Agent);
after this, MocS begins to wait for the return of the Agent. Also in this case,
the agent is sent over an encrypted channel.

7. Now the MOC Agent is migrated on the client. The SeMoA environment
checks the digital signature of the Agent to see if it comes from the trusted
Server; if so, then:
– The Agent tests the validity of the dlls checking their digital signature

(the dlls reside on the user’s workstation at a precise path).
– Using Java Native Interface, it checks that the random inside itself has

the same value as the random contained in the CW . The Agent reads
the random value using a new function created in the CW .

– Using Java Native Interface, it ensures that the biometric match executed
at step 5 is successful.

The check of the random value has been employed to verify that the correct
CW has started the protocol. If the random is different, it means that a
malicious entity is trying to deceive the Server to steal the secret PINs.
The digital signature of the modules is checked to ensure that only trusted
dlls are carrying out the protocol. Finally, the last check verifies that the
proper user is accessing the smartcard. If the above checks are positive only
then we trust the CW module that has started the SSL connection.

8. The Agent comes back to the Server and returns the result to MocS.
9. If the result is positive then MocS sends, on the same SSL connection opened

at step 2, the secret login data (PIN) correlated to the Serial Number received
at step 4. Otherwise, it closes the connection with the client.

10. In the last step, CW unlocks the private area using the received PIN (it
performs a C Login(PIN) calling the PKCS#11 module) and confirms to
the user application the success of the C Login call made at step 1.

3 There is a DataBase installed inside the Server which contains the corresponding
unique PIN for every serial number. The serial is used at step 9
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6 Security Problems Resolved

If the attacker has not stolen the user’s smartcard, he could try to get possession
of the PINs residing in the safe Server:

– If no smartcard is inserted, the protocol will not start.
– If a wrong or malicious dll dealing with the communication with the SC is

installed, the Mobile Agent will notice it.
– If a different module from CW tries to connect to MocS, the Mobile Agent

will notice it using the random comparison.
– If he is using a brand new smartcard, with a proper serial number, the server

will not return the PIN: the malicious user is not able to pass the local
biometric match. (Inside the smartcard there is not an Attribute Certificate
containing the fingerprint template issued by the Server’s CA).

If the attacker has stolen the user’s smartcard and the right dlls are installed:

– he could try to change the template stored in the SC: he cannot do this, be-
cause the biometric template is contained in an Attribute Certificate signed
by the Server CA.

– Even if a biometric template has been previously sniffed, it is not possible to
inject it within the Verification Module: before the VM acquires a template
from the biometric device, it verifies that the Biometric Service Provider dll
is the trusted one via digital signature (no more replay attacks).

6.1 The Two Feasible Attacks

The possible attacks to the implemented protocol concern how the PIN is trans-
mitted in the final step, and the malicious host threats [8] in a mobile agent
framework. In the first case, the PIN could be sniffed if the channel between the
SC reader and the host is not protected. If the attacker has stolen the user’s
SC, he could bypass all the protocol and use only the manufacturer PKCS#11
library. We assume that this is not possible because we rely on the smartcard
producer’s Crypto Module (a trusted path between the SC and the host should
be employed).

The other way to attack this protocol is modifying the SeMoA framework
and/or the Java Virtual Machine on the client’s workstation. This is a common
problem in the Mobile Agent Systems field [8]. In our case, an attacker succeeds
if he is able to alter the Mobile Agent’s return value with a positive result even if
the checks on the client are negative. This problem can be solved by employing a
mutual authentication protocol between the client/server SeMoA environments,
using a secure trusted hardware: it would be used to store the framework private
key and to check the validity of the agent runtime environment.
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7 Conclusions

Modern, inexpensive TOC smartcards cannot compute a biometric match like
MOC smartcards. We have developed a protocol, which simulates the MOC
strategy through the use of TOC cards. In practice, the actual match is delegated
to a module of the card host after an authentication performed by a mobile agent
coming from a secure server.

The design we have presented has been fully implemented using the SeMoA
framework, which provides an open source mobile agent system, and through two
de-facto standards such as PKCS#11 and BioAPI, respectively used to commu-
nicate with the crypto smartcard and to interact with the biometric functions.
The use of these standards lead to an implementation where any smartcard and
any biometric device can be used.

Potential future works will concern addressing the issues described in Section
6.1 (local PIN sniffing and malicious host attack), and adapting the protocol in
other areas where the entity performing the biometric match is not trusted.
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Abstract. This study investigates a new confidence criterion to improve fusion
via a linear combination of scores of several biometric authentication systems.
This confidence is based on the margin of making a decision, which answers the
question, “after observing the score of a given system, what is the confidence
(or risk) associated to that given access?”. In the context of multimodal and in-
tramodal fusion, such information proves valuable because the margin informa-
tion can determine which of the systems should be given higher weights. Finally,
we propose a linear discriminative framework to fuse the margin information
with an existing global fusion function. The results of 32 fusion experiments car-
ried out on the XM2VTS multimodal database show that fusion using margin
(product of margin and expert opinion) is superior over fusion without the mar-
gin information (i.e., the original expert opinion). Furthermore, combining both
sources of information increases fusion performance further.

1 Introduction
Biometric authentication (BA) is a process of verifying an identity claim using a per-
son’s behavioral and physiological characteristics. Compared to traditional authentica-
tion methods such as keys and PIN numbers, biometric authentication has the advan-
tages that it is not susceptible to misplacement or forgetfulness. Unfortunately, its accu-
racy and reliability still need to be improved to make the system practical in day-to-day
applications.

One way to increase its performance accuracy is to combine several biometric sys-
tems. In this paper, we show how multimodal or intramodal fusion BA system can be
improved by using a new confidence measure based on margin. This quantity can be
interpreted as “how confident we are that a given access is correct after observing the
score”. It is bounded between zero and one; when it is zero, a given access has 50%
chance of being correctly classified. The greater the confidence, the higher the chance
that the given access is correct. We show that this margin-derived confidence can be
used in fusion of multimodal biometric systems. The margin-derived confidence can
be used to modify the fixed decision boundary. This is done by a linear combination
between the confidence-derived function and the fixed discriminative function. The for-
mer function is adaptive, i.e., it changes after observing the access scores. In contrast,
the latter function is fixed once (hence non-adaptive) and applied to all accesses.

Improving fusion with quality has already been examined by several authors. Toh et
al. [1] fused fingerprint and speech systems using a modified multivariate polynomial

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 474–483, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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regression function to take the quality information into account. Bigun et al. [2] also
fused fingerprint and speech systems but using a statistical model (that reconciles expert
opinions) modified to take the quality into account. Fierrez-Aguilar [3] fused fingerprint
and speech systems, with quality derived from fingerprint, using a modified Support
Vector Machine algorithm. Garcia-Romero et al. [4] considered quality in speaker au-
thentication task using the first formant. Fusion is done so as to favour speech frames
with high quality. Hence, instead of taking the average Log-Likelihood Ratio (LLR)
over the entire utterance frames, a weighted LLR (by quality) is used. All these studies
provide empirical evidences that quality information can improve the performance of
single-modal and multimodal biometric systems.

We propose to derive a quality index based on margin. This margin is a function
of False Acceptance and False Rejection Rates, which themselves are estimated from a
set of expert scores. The main advantage of margin-derived quality is that no additional
(and often independent) system is needed to estimate the quality, as compared to the
previously mentioned approaches1.

Section 2 presents the proposed idea of margin and compares it with existing margin
definitions in the literature. Section 3 presents how confidence can be integrated with
existing fusion functions. Section 4 presents briefly the 32 fusion problems based on the
XM2VTS database and Section 5 discusses a pooled EPC curve as a performance visu-
alisation tool. Experiments are reported in Section 6. This is followed by conclusions
in Section 7.

2 Margin as Confidence
Given an acquired biometric feature x, an opinion of a BA system y(x) as a function
of x and a preset threshold Δ, a biometric system makes its decision based on the
following decision function:

F (x) =
{
accept if y(x) > Δ
reject otherwise.

(1)

Since x is present in y(x) and variables derived from it, we simply write y instead of
y(x). The system may make two types of mistakes: false acceptance (FA) and false
rejection (FR) as a function of threshold Δ. By tracing this function empirically from
a development set, and normalising them using the total number of impostor and client
accesses, respectively, one obtains the false acceptance rate (FAR) and false rejection
rate (FRR) curve as a function of threshold Δ. FAR and FRR are defined as follows:

FAR(Δ) =
number of FAs(Δ)

number of impostor accesses
, (2)

FRR(Δ) =
number of FRs(Δ)

number of client accesses
. (3)

1 The additional measurement system may provide additional degree of freedom to describe the
biometric classes if the system output is independent of the original feature sets. However, in
most situations, the additional system derives the quality information from the same feature
sets as those used by the verification system, e.g., [1, 2]. Regardless of how the quality infor-
mation is derived (from the feature sets or from the scores as proposed here), we conjecture
that the quality information can provide better information regarding the separation decision
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Fig. 1. (a) FAR and FRR as a function of the threshold in the score space. (b) The derived margin
based on (a)

A commonly used point to examine the quality of performance is to evaluate the value
FAR = FRR. This is the Equal Error Rate (EER) point and it assumes that the costs
of FA and FR are equal, and that the class prior probabilities (of client and impostor
distributions) are also equal.

The empirical procedure to find Δ that satisfies the EER criterion (on the training
set) is:

Δ∗ = argmin
Δ

|FAR(Δ) − FRR(Δ)| . (4)

We define the margin as:

M(Δ) = |FAR(Δ) − FRR(Δ)|. (5)

By replacing Δ by y, we effectively evaluate the margin of the output y. FAR, FRR
and margin are shown in Figure 1. The margin derived this way simply tells us how
much confident we are given an opinion y. The further it is from the decision boundary
Δ∗, the more confident we are. Note that because FAR and FRR are cumulative density
functions, they are confined in the range [0, 1]. Hence, the margin defined here is also
confined in the range [0, 1]. The additional scores that are needed to derive the margin
function can either be obtained from additional biometric data or cross-validated data
(not used to train the underlying systems) in case the additional data is not available.

Note that the margin defined here is different from the concept of margin in the
boosting [5] or Vapnik’s margin slack variable [6]. Several definitions of margin are
defined in [7, Sect. 2]. Suppose that the target output is tp and the output of a system
is yp for the p-th example. tp takes on {−1, 1}, each representing a class (impostor or
client here). Using this notation, margin in boosting for a given example p is:

margin(yp) = (yp −Δ∗)︸ ︷︷ ︸ tp, (6)

whereas, Vapnik’s margin slack variable for a given example p is:

ξp = max(0, γ − (yp −Δ∗)︸ ︷︷ ︸ tp), (7)
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where γ > 0 is known as target margin and is fixed a priori. Note that in our nota-
tion, the subtraction in the underbraced term yp −Δ∗ is to make sure that the decision
boundary has a value of 0 (normally, the Δ∗ has already been absorbed by the output of
the system as a bias term; in our context, this bias term corresponds to −Δ∗). Briefly,
margin(yp) measures how far an example is from the decision boundary. The further it
is, the better. Negative margin in this case implies wrong classification of example p. In
Vapnik’s margin, ξp measures how much example p fails to have a margin of γ from the
hyperplane. If ξp > γ then example p is misclassified by yp −Δ∗. The difference be-
tween Vapnik’s margin slack variable and margin in boosting is that the former takes the
target margin into account whereas the latter does not. Both of these margin definitions
can only be calculated supposing that the target output (class-label) is known. In fact,
they are used to select examples that are difficult to classify. They are only important
during the training phrase. Our proposed definition of margin does not require the target
output (although the margin function is constructed from a labeled training set). Fur-
thermore, it is used exclusively during testing, which differs from the rest of the margin
definitions. Perhaps the most remarkable difference is that this margin is based on FAR
and FRR, with minimum at EER. The aforementioned margins are also valid but they
do not optimise EER directly. Despite their different usages, one similarity among all
these margins is that they all have to be derived from labeled (training) data.

In the next section, we will propose a method to incorporate the margin-derived
confidence measure into an existing fusion function.

3 Combining a Priori Weights with Confidence
3.1 General Fusion Function

The most used form of fusion function in biometric authentication is perhaps a linear
combination of several expert opinions passed through an activation function. Suppose
y′j is the j-th opinion and αj is the weight associated to y′j , respecting the constraint
that

∑
j αj = 1. The combined opinion of M base experts, yCOM can be written as:

yCOM = f

⎛⎝ M∑
j=1

αjy
′
j

⎞⎠ (8)

where f is an activation function. Suppose that there are N biometric systems but there
are M ≥ N opinions. The number of opinions can be more than the number of systems
because we assume here that each system can give more than one opinion, derived in
one way or another. For instance, for the case of fusing two systems with output y1 and
y2, we could have:

y′j ∈ {y1, y2, y
2
1 , y

2
2 , y1y2, 1}, (9)

where 1 is a bias term, and

f(z) =
1

1 + exp[−a(z − b)]
, (10)

which yields a polynomial logistic regression function (with a = 1, b = 0). The full
expansion of polynomial is exponential with respect to its degree. In [8], a reduced
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polynomial expansion is used to reduce the complexity (the degree of freedom of the
classifier) and to make it practical enough for fusion problems. When y′j is defined as:

y′j ∈ {yi|i = 1, . . . , N} (11)

and using Eqn. (10) with a = 1, b = 0, one obtains a logistic regression function [9] In
this study, we concentrate on the linear function f , i.e., f(z) = z (a linear function) and
establish a means to combine margin-derived confidence with a fixed discriminative
function. We will show how the form of fusion in Eqn. (8) occurs naturally.

3.2 Fusion Function with Quality

In the literature, to the best of our knowledge, there are two forms to integrate the
quality information with an a priori weight that modifies αi in Eqn. (8). Suppose that
wj is the a priori weight (found by optimising Equal Error Rate, for instance) and qj is
the quality associated to y′j . The two forms that incorporate the quality information are
as follow:

αj ∝ wj + qj (12)

and
αj ∝ wj × qj (13)

Note that in the absence of the quality information, we have αj ∝ wj . The usage of
Eqn. (12) can be found in [1] using a reduced polynomial expansion of logistic regres-
sion function, i.e., using Eqn. (9) for the case of polynomial degree 2 and Eqn. (10).
In the mentioned work, only polynomial up to degree 3 was examined. Experiments
were conducted on fusion of fingerprint and speech biometrics with quality information
obtained only from the fingerprint.

The usage of Eqn. (13) was found in [10, 11]. In [10], a speech expert (j = 1) and a
lip expert (j = 2) were fused. Suppose that yk

j is the j-th opinion given that the access
is k = {C, I}, i.e., client or impostor. Suppose that yk

j is generated from a normal
distribution with mean μk

j and variance (σk
j )2, i.e., yk

j ∼ N (
μk

j , (σ
k
j )2

)
. In [10], w1 is

defined as:

w1 =
ζ2

ζ1 + ζ2
(14)

where,

ζj =

√
(σC

j )2

NC
+

(σI
j )2

NI
(15)

and NC is the total number of client accesses and NI is the total number of impostor
accesses. By the summation constraint, w2 = 1 − w1. ζj is called the standard error.
In [10], it was assumed that this error gives relative discrimination of an expert. High ζj

indicates that expert j has high class dependent variance and hence, lower performance.
As a result, its weight is lowered and the other expert’s weight is increased2. qj is
defined as:

qj ∝ |MC
j (yj) −MI

j(yj)|, (16)

2 Although this criterion is valid, examining class-dependent variance is not sufficient; the mean
difference is an important factor [12]
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where

Mk
j (yj) =

(yj − μk
j )2

(σk
j )2

(17)

for k = {C, I} and
∑

j qj = 1. Note that in this context, only the speech expert
(j = 1) can be corrupted by noise whereas the lip expert (j = 2) stays intact. It was
demonstrated experimentally [10] that under clean conditions, q1 is relatively large (as
compared to q2) whereas under noisy conditions, q1 is relatively small.

In [11], face and speech experts are fused and the speech expert is susceptible to
noise whereas the face expert remains intact. The quality of the speech signal is esti-
mated by using a statistical model (Gaussian Mixture Model) from the unvoiced part
of speech frames. The unvoiced part of speech was obtained from the speech features
right before an utterance begins. The output of the model (Log-Likelihood Ratio, LLR)
is normalised into the range [0, 1] by using a sigmoid function, as shown in Eqn. (10).
a and b were tuned by heuristics, such that qj is close to one for good quality speech
and close to 0 for bad quality speech. According to the authors, the likelihood normal-
isation step is necessary because the normalised LLR is used directly to influence the
a priori weight. wj |∀j are estimated using standard methods to minimise Equal Error
Rate (EER), to be discussed in the later section.

We will use the method in Eqn. (12) because, as will be shown, it can be used to
fuse different information sources. Furthermore, the multiplicative effect in Eqn. (13)
can adversely influence αj drastically as compared to Eqn. (12). To begin with, we
consider a linear function of f , i.e., f(z) = z. We wish to fuse existing weight wi with
quality qi for all i = 1, . . . , N . Hence, αi can be written as:

αi = β1,iwi + β2,iqi (18)

where βi control the contribution between the a priori weight wi and the quality infor-
mation qi. Using f(z) = z, Eqns. (8) and (18), we obtain:

yCOM =
∑

i

(β1,iwj + β2,iqi)yi

=
N∑

m=1

(
β1,mwm︸ ︷︷ ︸ ym︸︷︷︸

)
+

N∑
n=1

(
β2,n︸︷︷︸ qnyn︸︷︷︸

)
(19)

where the four under-braces in Eqn. (19) can be written in the form of Eqn. (8). with y′j
defined by:

y′j ∈ {yi, qiyi|i = 1, . . . , N}
Hence, fusion of a priori weight with the quality information can be performed by a
linear combination of yi and qiyi, for all i. The corresponding weights αj can be found
using standard methods such as Fisher-ratio or linear regression. The use of non-linear
solutions is direct. For instance, one can use a Multi-Layer Perceptron with y′j |∀j as
an input vector. Standard Support Vector Machine (SVM) algorithm with a polynomial
kernel can also be used to classify the secondary features, thus, eliminating the need
to create a dedicated classifier to fuse the quality information, as in [1] or to apply
heuristics, as in [10, 11].
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4 Database

The XM2VTS database [13] contains synchronized video and speech data from 295
subjects, recorded during four sessions taken at one month intervals. On each session,
two recordings were made, each consisting of a speech shot and a head shot. The speech
shot consisted of frontal face and speech recordings of each subject during the recital
of a sentence. The database is divided into three sets: a training set, an evaluation set
and a test set. The training set was used to build client models, while the evaluation set
was used to compute the decision thresholds as well as other hyper-parameters used by
classifiers and normalisation. Finally, the test set was used to estimate the performance.
The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70
test impostors. There exists two configurations or two different partitioning approaches
of the training and evaluation sets. They are called Lausanne Protocol I and II (LP1
and LP2). The most important thing to note here is that there are only 3 samples in
LP1 and 2 samples in LP2 for client-dependent adaptation and fusion training. Instead
of reimplementing base experts and applying them on this database, we used scores
from [14]. The score files are made publicly available and are documented in [15]3.
There are altogether 7 face experts and 6 speech experts for LP1 and LP2, respectively.
By combining 2 baseline experts at a time according multimodal or intramodal fusion
problems, 32 fusion experiments are further identified. The 13 baseline experiments
have 400× 13 = 5,200 client accesses and 111,800× 13 = 1,453,400 impostor accesses.
The 32 fusion experiments have 400 × 32 = 12,800 client accesses and 111,800 × 32
= 3,577,600 impostor accesses.

5 Evaluation Using Pooled EPC Curves

Perhaps the most commonly used performance visualising tool in the literature is the
Decision Error Trade-off (DET) curve [16]. It has been pointed out [17] that two DET
curves resulting from two systems are not comparable because such comparison does
not take into account how the thresholds are selected. It was argued [17] that such
threshold should be chosen a priori as well, based on a given criterion. This is because
when a biometric system is operational, the threshold parameter has to be fixed a priori.
As a result, the Expected Performance Curve (EPC) [17] was proposed. We will adopt
this evaluation method, which is also in coherence with the original Lausanne Protocols
defined for the XM2VTS database. The criterion to choose an optimal threshold is
called weighted error rate (WER), defined as follows:

WER(α,Δ) = αFAR(Δ∗) + (1 − α) FRR(Δ∗), (20)

where FAR and FRR are False Acceptance Rate and False Rejection Rate, respectively.
Note that WER is optimised for a given α ∈ [0, 1]. Let Δ∗

α be the threshold that min-
imises WER on a development set. The performance measure tested on an evaluation
set at a given Δ∗

α is called Half Total Error Rate (HTER), which is defined as:

HTER(α) =
FAR(Δ∗

α) + FRR(Δ∗
α)

2
. (21)

3 Accessible at http://www.idiap.ch/∼norman/fusion
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The EPC curve simply plots HTER versus α, since different values of α give rise to
different values of HTERs. The EPC curve can be interpreted in the same manner as
the DET curve, i.e., the lower the curve is, the better the performance but for the EPC
curve, the comparison is done at a given cost (controlled by α). Furthermore, one can
plot a pooled EPC curve from several experiments. For instance, in order to compare
two methods over M experiments, only one pooled curve is necessary. This is done
by calculating HTER at a given α point by taking into account all the false acceptance
and false rejection accesses over all M experiments. The pooled FAR and FRR across
j = 1, . . . ,M experiments for a given α ∈ [0, 1] is defined as follow:

FARpooled(α) =

∑M
j=1 FA(Δ∗

α(j))
NI ×M

, (22)

and

FRRpooled(α) =

∑M
j=1 FR(Δ∗

α(j))
NC ×M

, (23)

where Δ∗
α(j) is the optimised threshold at a given α, NI is the number of impostor

accesses and NC is the number of client accesses. FA and FR count the number of
false acceptance and the number of false rejection at a given threshold Δ∗

α(j). The
pooled HTER is defined similarly as in Eqn. (21).

6 Experimental Results

Figure 2 shows both pooled EPC and ROC curves calculated from all 32×3 fusion ex-
periments using original expert opinion (y′j ∈ {yi|∀i}), margin (y′j ∈ {M(yi)yi|∀i})
and both (y′j ∈ {yi,M(yi)yi|∀i}). The ROC curves were plotted using FAR and FRR
defined in Eqns. (22 and 23), whose common threshold was adjusted on a development
(training) set. Note that for all these experiments, αj |∀j were set to be equal. This re-
duces the fusion into the mean operator4. As can be seen, fusion with margin is better
than the one using only the original expert opinions. Combining the two actually im-
proves the performance even further. In fact, this improvement is significantly better
than fusion using the original expert opinions across different α values according to
the HTER significant test [18] with 95% of confidence. As a control experiment, we
also performed fusion with y′j ∈ {yi,M(yi)|∀i} using weighted sum. As expected,
this approach does not improve the performance because M(yi) does not contain any
discriminative information. As a result, this control experiment is worse than using
y′j ∈ {yi|∀i} with EPC ranging between 1.5% and 3% of HTER (not shown here).

7 Conclusion

In this study, we proposed to use margin as a measure of confidence. When fusing two
system opinions, their derived margins provide a relative information to which system

4 In this database, weighted sum fusion with weights optimised using Fisher-ratio did not pro-
vide better performance than the mean operator
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Fig. 2. Pooled (a) EPC and (b) ROC curves of fusion experiments using original expert opinion
(labeled as “orig”), product of expert opinion with margin (labeled as “margin”), and combination
of both information (labeled as “margin+orig”), all using the mean operator. According to the
HTER significant test, the “margin+orig” curve is always better than the “orig” curve, at different
α, at 95% of confidence. These experiments were carried out on the XM2VTS database using 32
intramodal and multimodal fusion datasets, and each dataset contains the scores of two experts.
Note that both (a) EPC and (b) ROC curves are consistent in that “margin+orig” is the lowest
curve (for EPC) or closest to the origin (for ROC), implying the best generalisation performance
among the three curves

is more important. This margin definition has the property that it is confined in the range
[0, 1], because it is derived from the distance between two cumulative density functions.
Hence, margin can be used as a quality index. To the best of our knowledge, using mar-
gin to boost fusion has not been found in the literature yet. The second contribution
of this work is the analysis of fusion function and how the quality information can be
integrated with a priori weights of an existing fusion function. Suppose that yi is the
i-th opinion of an expert system and qi is the associated quality. The fusion problem
now can be treated as a fusion of {yi, qiyi|∀i}. This has the same effect as modifying
the a priori weight by adding qi directly. 32×3 intramodal and multimodal fusion ex-
periments were carried out on the XM2VTS multimodal database. Using pooled EPC
curves (which summarise over each of the 32 experiments), we show that fusion using
the confidence enhanced opinion yiqi is better than using the original opinion yi. Fur-
thermore, combining the two, i.e., {yi, yiqi} improves the performance even further,
and significantly, over different operating costs.
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Abstract. The use of biometrics for identity verification of an individual
is increasing in many application areas such as border/port entry/exit,
access control, civil identification and network security. Multi-biometric
systems use more than one biometric of an individual. These systems are
known to help in reducing false match and false non-match errors com-
pared to a single biometric device. Several algorithms have been used
in literature for combining results of more than one biometric device.
In this paper we discuss a novel application of random forest algorithm
in combining matching scores of several biometric devices for identity
verification of an individual. Application of random forest algorithm is
illustrated using matching scores data on three biometric devices: fin-
gerprint, face and hand geometry. To investigate the performance of the
random forest algorithm, we conducted experiments on different subsets
of the original data set. The results of all the experiments are exception-
ally encouraging.

1 Introduction

The use of biometrics for identity verification is becoming popular in many ap-
plication areas such as border/port entry/exit, access control, civil identification
and network security. It is well-known that no device capturing a single bio-
metric trait works optimally in every application domain. Besides, unimodal
biometric systems have limitations caused by noisy data, susceptibility to spoof
attacks, instability of biometric characteristic due to environmental or physical
factors [1]. By installing more than one biometric device and combining tests of
several biometric traits, multi-biometric systems can overcome some of the lim-
itations of single biometric devices and improve the small but significant failure
rates of individual biometrics [2].

The critical issue in multimodal biometrics is to integrate the classification
power of multiple devices, i.e., fuse information. Many fusion techniques have
been proposed so far. These methods include: majority voting [3] [4] [5], Bayesian
methods [3] [6] [8], logistic regression [3] [9], k-nearest neighbor [9], fuzzy inte-
gral [3] [10] [11], Dempster-Shafer theory [8], neural network [3] [12], classifica-
tion tree [9] [13], linear discriminant function [13], sum rule [13] [14] [15], and
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some simple combination techniques such as: min rule, max rule and product
rule [14] [15]. Some of these schemes have been proved effective in improving
the classification performance. However, there is no consensus on the best fusion
technique.

Ross and Jain [13] experimentally explored two different approaches to in-
formation fusion: combination and classification [7] at matching scores lev-
els. They indicated that the combination rule outperforms the classification ap-
proach. Classification trees and k-nearest neighbors are examples of the classifi-
cation approach which finds the class label of an object on the basis of observed
matching score vectors obtained from several modalities. The combination meth-
ods, such as the sum rule, derive a single scalar score from the matching score
vector and the decision is based upon this single number.

The purpose of this paper is to contribute a novel application of random
forests [18] in information fusion for user verification to investigate the per-
formance potential of classification techniques. Information fusion from three
biometric devices: face, hand geometry and fingerprint has been implemented.
Random forests algorithm integrates information at the matching score level to
build many tree classifiers, which subsequently form a “forest”. The performance
of random forest fusion algorithm is investigated using different training sets and
independent testing sets.

The remainder of this paper is organized as follows. In the second section, the
classification tree algorithm is described. Being an extension of the standard clas-
sification tree algorithm, the random forest algorithm is summarized in Section
3. Section 4 presents the experimental data. The system performance measures
used in this paper are defined in Section 5. The methodology of the experiments
is outlined in Section 6. Section 7 summarizes the experimental results.

2 Classification Trees

A classification tree is a tree-structured classifier built through a process known
as recursive partitioning. The popular tree classifiers are CART, C4.5, QUEST,
and FACT. Some of the classifiers create binary trees and some of them are
able to generate multi-branch trees. All the classification tree algorithms focus
on constructing a tree-like classification rule based on a given training data
consisting of known class-labeled cases. But, different tree classifiers run different
algorithms to handle issues in tree construction such as node splitting criterion,
split stopping rule and pruning criterion.

Fig. 1 shows a tree generatedby rpart programinR (http://www.r-project.org).
The topmost node is called root which contains the entire sample of 10, 300 cases.
The leaves of tree are called terminal nodes (represented by rectangles). They are
tagged with class labels. Child nodes are formed by splitting their parent nodes.
Each internal node “contains” a subset of the entire sample and also contains a
rule which determines in which child node a particular case will fall. Following
the rules specified by the tree, a case will finally reach one of the terminal nodes.
The class label attached to such terminal node is assigned to each case that falls
in it.
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To choose the best split at a node, the algorithm searches through all the
values at each variable. The main idea is to attain as homogeneous a set of labels
as possible in each partition, so that the cases in each of the children nodes are
more homogeneous than the cases in its parent node. Two well-known impurity
based split selection methods are gini index and entropy. Both are measures
of homogeneity of cases in a node. The smaller the measurement, the purer the
cases; zero if all the cases belong to the same class. Suppose that a collection C
consists of n cases from k classes. Gini index is defined as: gini(C) = 1−∑

i p
2
i ,

and the entropy is entropy(C) = −∑
i pilog pi, i = 1, 2, . . . , k, where pi is the

proportion of cases in C belonging to class i. In this paper, we rely on gini
index as the split criterion to grow tree(s). The variable and cutoff for splitting
a node are chosen so that the children nodes have as small a combined gini as
possible. The same process is continued at the subsequent nodes and a full tree
is generated.

Fig. 1. A tree-structured classifier produced by R program for the data with binary
predicted classes: genuine user and imposter. The numbers in each node are counts of
genuine/imposter cases in that node. Underneeth each terminal node is the class label
that dominates the cases in that node

The tree is grown to a point where the terminal nodes contain no more than
a specified minimum number of cases or the significant majority of cases in the
terminal nodes belong to the same class. Once a full tree is grown from the
training data, the pruning starts. Pruning is a process of cutting back the tree
branches to improve the predictive performance.

Classification tree algorithm has the advantage over other classification tech-
niques because it provides an insight into the predictive structure of the data [21].
But it also has some disadvantages. One major problem associated with a classi-
fication tree is its instability, caused by the hierarchical structure of the tree [26].
Classification trees are very sensitive to small changes in the data set. A small
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change or an error made in the root node split will be carried down through the
whole tree, resulting in a different tree structure. Therefore, perturbations in
the learning set can cause significant changes in the constructed tree [22]. One
way to reduce the variability and improve accuracy is to grow an ensemble of
heterogeneous trees [25], as explained below.

3 Random Forests

Random forests (RF) algorithm was developed by Leo Breiman (Breiman 2001).
It is an ensemble method in the sense that instead of growing a single classifica-
tion tree, we could build hundreds to thousands of trees. An improved classifier
is obtained by integrating tree models in the forest. Each single tree is grown as
follows [19]:

1. Take a bootstrap sample from the original data and the root node of the
tree contains this sample instead of the original data.

2. At each node of the tree, except for the terminal nodes, randomly select a
subset of the predictors, the locally optimal split is based on only this feature
subset. Grow the tree as large as possible with no pruning.

Every tree in a forest of N trees represents a classification rule. Given a new
case with matching score vector x = {x1, x2, . . ., xP }, we begin with Tree 1 in
the forest. The search starts from the root, the splitting rule is applied and the
case is sent to one of the children nodes according to the rule. This is repeated
until the terminal node is reached and the class label attached to the terminal
node is assigned to this case. Thus, Tree 1 has made its decision. Then we go
to Tree 2, follow the same procedure and find the class label for this case. Upon
visiting N trees in the forest, we have N votes that the case belongs to either
of classes. In a sense, each tree raises its own voice and “fights” with others to
form the majority. Fig. 2 shows the construction of a random forest.

The procedure for growing a single tree outlined above randomize the se-
lection of inputs in model building. Consequently, the trees will have different
structures. Low correlation lowers the classification error rate of RF [20]. The
first source of randomization is called bootstrap aggregating or, simply, bagging.
A bootstrap sample is a random sample taken from the the original dataset with
replacement. By taking bootstrap samples of the training data, multiple versions
of a classifier are formed [22]. Different trees are built from different bootstrap
samples. For each bootstrapped sample, about one-third of the cases are not
used in the tree construction. These left-out cases are called out-of-bag (OOB)
cases. They play an important role in algorithm’s performance assessment. The
random feature set selection at each node is another source of randomization in
RF algorithm. In the standard classification tree algorithms, such as CART, the
best split at a node is obtained by searching through all available predictors.
In RF, the split at each node of a tree is only based on a random subset of the
predictors. A new set of attributes is selected randomly for every split performed
in RF nodes.
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Fig. 2. Construction of Random Forest

Random forest algorithm overcomes instability, the main disadvantage of the
classification tree algorithm. Voting among trees built from different bootstrap
samples of the original data stabilizes the classifier and improves the perfor-
mance of the forest over a single tree. The advantages of random forest in-
clude [17] [18] [19]: ease to use; robustness with respect to noise; faster tree
construction due to the absence of tree pruning; built-in cross validation by
using OOB cases to estimate test error rates; most importantly, high levels of
predictive accuracy without overfitting.

From a single run of random forest, we can obtain a wealth of information
such as classification error rate, variable importance ranking and proximity mea-
sures. A detailed description can be found in [19].

In RF, the OOB cases can be used to obtain an unbiased estimate of the
test set error [19]. For each single tree in the forest, OOB cases are evaluated
by the tree to test its classification capabilities. The test case is classified into
the class having the most votes from individual trees. Comparison between this
classification result and the known class label of the case provides an estimate
of the error rate on the test set. An unbiased estimate of the misclassification
rate is thus obtained automatically as a part of the run of the RF classification
algorithm.

4 Experimental Database

The database of multimodal matching scores was collected at Michigan State
University1. There are 500 genuine scores and 12,250 imposter scores obtained
from each of three modalities: face, hand geometry and fingerprint. More in-
formation about this data set can be found in [13]. The data frame consists of
1 Data used with permission
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values from three attributes and a class label Y = {Genuine, Imposter} for each
case. In our process of building the random forest classifier, unlike in combina-
tion approaches, no data normalization or transformation is applied. We used
original matching scores to build the model.

Most of the classification algorithms in use aim at minimizing overall error
rate [16]. With an imbalanced data set, the algorithm tends to keep the misclas-
sification error rate low on the large class while letting the smaller class have a
relatively higher error rate. A balanced random forests algorithm can always be
generated with proper sampling technique [23].

Four experiments are reported in this paper. The data sets used in each
experiment are random samples from the original dataset (see Table 1). For
each experiment, two types of tests were performed: internal testing and external
testing. In internal testing, OOB cases were used to obtain an unbiased estimate
of the misclassification rates internally during the run of the RF algorithm. In
external testing, a data set disjoint from the training set is randomly selected
and used for performance evaluation. Comparison between such classification
rules and the true class labels produces an estimate of the error rates. We call
these error rates external testing rates. In Table 1 and in the reminder of this
paper, external testing is also called “separate” testing, to indicate separation
between score samples in training subsets and evaluation subsets.

Table 1. Experimental Data Sets Description. Balanced sets have equal number of
genuine and imposter cases

Experiment 1:
Internal testing set 1: random sample of size 200 (balanced set)
Separate testing set 1: random sample of size 800 (balanced set)

Experiment 2:
Internal testing set 2: random sample of size 400 (balanced set)
Separate testing set 2: random sample of size 600 (balanced set)

Experiment 3:
Internal testing set 3: random sample of size 600 (balanced set)
Separate testing set 3: random sample of size 1,000 (200 genuine and 800 imposter
scores, disjoint from the internal test data)

Experiment 4:
Internal testing set 4 : random sample of size 1,250 (250 genuine and 1,000 imposter
scores)
Separate testing set 4: random sample of size 3,250 (250 genuine and 3,000 imposter
scores, disjoint from the internal test data)

5 System Performance Measures

To evaluate the performance of random forest classifier in biometric score fu-
sion, measurements such as Genuine Accept Rate (GAR) and False Accept Rate
(FAR) are used. GAR is the probability that a genuine individual is (correctly)
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accepted by the multi-biometric system. FAR measures the chance of an intruder
being falsely accepted by the system as genuine. As with any biometric system,
we prefer classification performance achieving a high GAR and a low FAR.

6 Methodology

Random forests algorithm integrates information at the matching score level as
it builds each single tree in the forest. The construction of a forest is a random
process. This results in the most significant drawback of random forests - its lack
of reproducibility. We conducted four different experiments. To better investigate
the performance of random forest classifier, we repeated each experiment 20
times. A 100 cutoffs were used to produce the GARs and FARs for each instance
of an experiment.

We used R program which implements Breiman’s random forest algorithm.
Random forest algorithm avoids overfitting, meaning that the error rate stabilizes
as more trees are added to the forest [24]. In our experiments, 500 trees generated
sufficient overall classification accuracy in all experiments.

Prediction of a class that an individual case belongs to is determined either
by majority voting between the trees (Default setting, cutoff = (0.50, 0.50)),
or by user-defined thresholds. In random forest algorithm, cutoff is a vector
of length equal to the number of classes. In the context of biometrics, cutoff
is a two element vector. The “winning” class for a given case is the one with
the maximum difference between the proportion of the votes and the cutoff. By
majority voting rule, the class which wins at least 50% of the votes cast by the
trees is the winner.

User-specified thresholds are more flexible. Suppose the cutoff is defined as
a vector (c1, c2). Let the proportion of votes for two classes {1, 2} be (p1,
p2), where p1 + p2 = 1. If p1 − c1 > p2 − c2, or, in a different notation, if
p1 > 1+c1−c2

2 , then class 1 is the overall RF decision for the given case. User-
specified cutoffs are very useful when the misclassification cost varies significantly
among classes [17]. In many biometric applications, such as financial services,
access control to sensitive spaces and criminal identification, the misclassification
cost is heavily unbalanced. In such cases, falsely accepting an imposter might
imply very high risks (or costs or damages). For example, if it is very expensive
to misclassify a case as belonging to class c1, then by assigning a low threshold
to class c1, we could reduce the overall misclassification cost.

7 Experiments and Results

Due to the space constrains, we do not report the experimental results at all
thresholds within each trial. One of the best thresholds for each experiment
and the majority voting scheme are reported. The thresholds are the best in a
sense that they yield the largest sum of sensitivity (GAR) and specificity (1-
FAR). As mentioned above, at each cutoff point, the experiment is conducted
20 times. Consequently, 20 internal and separate test results are generated at
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Table 2. Random Forests Algorithm Results - Experiment 1

Internal Testing Separate Testing
Cutoff Quartiles GAR (%) FAR (%) GAR (%) FAR (%)

If PG > 50%, vote for genuine; Maximum 100.00 0.00 99.75 0.25
Otherwise, vote for imposter. Median 100.00 0.00 99.75 0.50

Minimum 100.00 0.00 99.50 1.00

If PG > 47%, vote for genuine; Maximum 100.00 0.00 100.00 0.25
Otherwise, vote for imposter. Median 100.00 0.00 99.75 0.50

Minimum 100.00 0.00 99.50 0.50

Table 3. Random Forests Algorithm Results - Experiment 2

Internal Testing Separate Testing
Cutoff Quartiles GAR (%) FAR (%) GAR (%) FAR (%)

If PG > 50%, vote for genuine; Maximum 100.00 0.50 100.00 0.00
Otherwise, vote for imposter. Median 99.50 0.50 100.00 0.00

Minimum 99.50 1.00 100.00 0.67

If PG > 53%, vote for genuine; Maximum 100.00 0.00 100.00 0.00
Otherwise, vote for imposter. Median 99.50 0.50 100.00 0.00

Minimum 99.50 1.00 100.00 0.33

Table 4. Random Forests Algorithm Results - Experiment 3

Internal Testing Separate Testing
Cutoff Quartiles GAR (%) FAR (%) GAR (%) FAR (%)

If PG > 50%, vote for genuine; Maximum 100.00 0.00 100.00 0.75
Otherwise, vote for imposter. Median 100.00 0.33 100.00 0.88

Minimum 99.67 0.33 100.00 0.88

If PG > 47%, vote for genuine; Maximum 100.00 0.00 100.00 0.75
Otherwise, vote for imposter. Median 100.00 0.33 100.00 0.88

Minimum 100.00 0.67 100.00 0.88

any given threshold. The sums of sensitivity and specificity were calculated by
internal testing to rank the cutoff values. At each cutoff, 20 experiments result
in 20 trials. Only the best rate (maximum), the most typical (median) rate and
the worst (minimum) rate are reported herein. We similarly report the results
obtained by separate (external) testing methodology. Tables 2 - 5 summarizes
the results. Cutoffs are stated in terms of proportion of votes in favor of genuine,
denoted by PG.

The results we obtained are clearly very encouraging. In many cases, even
the experiments resulting in minimum performance appear to be better than
the ones obtained by the combination approaches on the same data set [13].
However, given that random forests do depend on training, it is possible that a
somewhat different performance results could be obtained from other biometric
matching score data sets. Certainly, we plan to perform additional studies and
a more comprehensive evaluation in the near future.
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Table 5. Random Forests Algorithm Results - Experiment 4

Internal Testing Separate Testing
Cutoff Quartiles GAR (%) FAR (%) GAR (%) FAR (%)

If PG > 50%, vote for genuine; Maximum 99.60 0.10 98.80 0.20
Otherwise, vote for imposter. Median 99.60 0.10 98.80 0.20

Minimum 99.20 0.10 98.80 0.23

If PG > 44%, vote for genuine; Maximum 99.60 0.10 98.80 0.20
Otherwise, vote for imposter. Median 99.60 0.10 98.80 0.20

Minimum 99.60 0.30 98.80 0.23
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Abstract. Multi-biometric 2D and 3D ear recognition are explored. The
data set used represents over 300 persons, each with images acquired on
at least two different dates. Among them, 169 persons have images taken
on at least four different dates. Based on the results of three algorithms
applied on 2D and 3D ear data, various multi-biometric combinations
were considered, and all result in improvement over a single biometric.
A new fusion rule using the interval distribution between rank 1 and rank
2 outperforms other simple fusion rules. In general, all the approaches
perform better with multiple representations of a person.

1 Introduction

Fingerprints, face and iris have received wide attention both in academic research
and in the biometrics industry. Fingerprint and iris are considered as generally
more accurate than face, but face is more flexible for use in surveillance scenarios.
However, face by itself is not yet as accurate and flexible as desired. Ear images
can be acquired in a similar manner to face images, and at least one previous
study suggests they are comparable in recognition power [1], so additional work
on ear biometrics has promise to lead to increased recognition flexibility and
power.

Three algorithms have been explored on 2D and 3D ear images, and based
on that, three kinds of multi-biometrics are considered: multi-modal, multi-
algorithm and multi-instance. Various multi-biometric combinations all result
in improvement over a single biometric. Multi-modal 2D PCA together with 3D
ICP gives the highest performance. To combine 2D PCA-based and 3D ICP-
based ear recognition, a new fusion rule using the interval distribution between
rank 1 and rank 2 outperforms other simple combinations. The rank one recog-
nition rate achieves 91.7% with 302 subjects in the gallery. In general, all the
approaches perform much better with multiple images used to represent one sub-
ject. In our dataset, 169 subjects had 2D and 3D images of the ear acquired on at
least four different dates, which allows us to perform multi-instance experiments.
The highest rank one recognition rate reaches 97% with the ICP approach used
to match a two-image-per-person probe against a two-image-per-person gallery.
In addition, we found that different fusion rules perform differently on different
combinations. The min rule works well when combing the multiple presenta-
tions of one subject, while the sum rule works well when combining multiple
modalities.
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2 Data Acquisition

All the images used in this paper were acquired at the University of Notre
Dame in 2003-2004. In each acquisition session, the subject sat approximately
1.5 meters away from the sensor, with the left side of the face facing the camera.
Data was acquired with a Minolta Vivid 910 range scanner. One 640x480 3D
scan and one 640 x 480 color image are obtained near simultaneously.

The earliest good image for each of 302 persons was enrolled in the gallery.
The gallery is the set of images that a “probe” image is matched against for
identification. The latest good image of each person was used as the probe for
that person. This results in an average of 4.3 weeks time lapse between the gallery
and probe. Including the images for multi-instance experiments, there are a total
of 942 pairs of 3D and 2D images used in this work (302+302+169+169). A
subset of 202 persons of data was used in initial experiments to explore algorithm
options.

3 Algorithms

Three different algorithms have been examined. The PCA (Principle Compo-
nent Analysis) based approach has been widely used in face recognition [2–4].
In our experiments, a standard PCA based algorithm [5] is used on both 2D
and 3D ear data. Based on the observation that edge images of the range im-
age are much cleaner than for the 2D edge images, we develop an edge-based
Hausdorff distance method for 3D ear recognition using the range image. Also,
Besl and McKay’s classic ICP algorithm [6] has been applied on 3D ear data.
Approaches considered include a PCA (“eigen-ear”) approach with 2D intensity
images, achieving 63.8% rank-one recognition; a PCA approach with range im-
ages, achieving 55.3%; Hausdorff matching of edge images from range images,
achieving 67.5%, and ICP matching of the 3D data, achieving 84.1%. Results
of these four single-biometric experiments are represented as CMC curves in
Figure 1 [7].

4 Multi-biometrics

Recently, multi-biometrics have been investigated by several researchers [8–
11]. Multi-biometrics can be divided into three simple classes, according to
the method of combination. These are multi-modal, multi-algorithm and multi-
instance. In general, multi-modal uses different modalities of biometrics, like
face, voice, fingerprint, iris and ear of a same subject. Also we consider that for
a given biometric, the data from different sensors are one kind of multi-modal,
like 2D intensity data and 3D range data. Multi-algorithm uses different algo-
rithms on the same data. For example, we can use both PCA and ICP on 3D ear
data. Multi-instance has more than one representation for a given subject. For
example, if we took three 2D ear images of the same person on different dates,
then the three images together can be treated as a representation of this person.
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Fig. 1. Performance of Different Approaches

A complex combination can involve more than one kind of multi-biometrics. For
example, we can combine 2D PCA and 3D ICP, which includes both multi-modal
and multi-algorithm biometrics.

4.1 Fusion Levels and Score Normalization

Each simple biometric has four steps: (1) obtain the data from the sensor, (2)
extract the interesting area or features from the raw data, (3) compare the data
to a group of enrolled data to obtain the matching score and (4) determine the
correct or incorrect matching based on the matching score [12]. Based on these
different steps, there are several possible fusion levels. Sensor level fusion com-
bines the raw sensor outputs. Feature extraction level fusion combines multiple
extracted features from each biometric. Matching score level fusion combines the
matching scores from each biometric. Decision level fusion uses the results from
different biometrics and makes the final decision based on all of them.

In our study, the fusion rules work at the matching score level. Since each sim-
ple biometric has different meaning, range and distribution of matching scores,
score normalization is required in order to combine them. In our experiments,
min-max score normalization has been applied on all the results before we do
the fusion: s′ = (s−min)/(max−min).

4.2 Multi-modal Biometrics

Multi-modal biometrics in this paper refers to the combination of 2D intensity
data and the 3D range data. There are three algorithms based on 3D range data,
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and one on 2D intensity data. Therefore, the combinations include 2D PCA with
3D ICP, 2D PCA with 3D PCA, and 2D PCA with 3D edge-based approach.

First, two simple fusion rules are tried on all three combinations. As shown
in Table 1, the sum rule performs much better than the min rule. This result is
similar to the conclusion in [4, 11]. Also an advanced sum rule is tested. The rank
one matching in each modality is given an additional weight, which measures the
distance between itself and the rank two match. The advanced sum rule yields
better results than the simple sum rule.

Table 1. Fusion on Multiple Modalities (302 subjects)

Multi-modals MIN Simple SUM Advanced Sum

2D PCA + 3D ICP 76.4% 81.1% 82.5%
2D PCA + 3D PCA 72.2% 78.8% 79.1%
2D PCA + 3D Edge 73.5% 80.5% 82.5%

The sum rule adds individual matching scores from different matches. Equal
weights are assigned to each modality without any bias. However, in general,
some modalities have better performance than others. In order to show the bias
of several modalities, different weights are assigned to individual modalities. We
test the weight assignment by using 202 subjects on 2D PCA combining with
3D ICP. As shown in Table 2, the highest performance is 93.1%, obtained when
the weight of ICP is 0.8, and the weight of PCA is 0.2.

Table 2. Different Weights for Fusing the ICP and PCA results

Weight Weight Performance Performance

2D PCA 3D ICP (202 Subjects) (302 subjects)

1 0 71.4% 63.6%
0 1 85.1% 84.1%

0.9 0.1 73.3% 66.9%
0.8 0.2 76.7% 68.9%
0.7 0.3 78.2% 73.8%
0.6 0.4 81.7% 78.5%
0.5 0.5 84.2% 82.5%
0.4 0.6 86.6% 88.7%
0.3 0.7 89.1% 90.7%
0.2 0.8 93.1% 90.4%
0.1 0.9 91.6% 86.4%

Applying the same weighted sum rule to the other two combinations, the best
performance is obtained when there is equal weight for each modality. This is



Multi-biometrics 2D and 3D Ear Recognition 507

because 2D PCA, 3D PCA and edge-based approaches have similar performance.
The rank one recognition is 79.1% when combining 2D PCA and 3D PCA, and
it is 82.5% when combining 2D PCA and 3D edge-based algorithm. CMC curve
are shown in Figure 2.
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Fig. 2. Multi-modal Biometrics Performance

Our third combination rule is based on the analysis of the interval between
rank 1 and rank 2 in both PCA and ICP results. Figure 3 shows that the overlap
area between the correct matches and incorrect matches is much less in ICP than
in PCA, which means that it is easier to use a threshold to separate the correct
and incorrect matches in the ICP than in the PCA results.
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Fig. 3. Relationship Between Correct Matches and Incorrect Matches

Figure 4 shows the probability distribution of the different intervals between
the correct matches and incorrect matches. In general, the greater the gap be-
tween the rank 1 and rank 2, the higher the possibility that it is a correct match.
When the interval in ICP is greater than 0.2, they are all correct matches. The
corresponding value in PCA is 0.002. For both ICP and PCA, we split the inter-
val range into 10 steps. All the interval values are placed into these 10 steps. The
percentage of the correct over incorrect matches in each interval step is shown
in Table 3.
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Fig. 4. Interval Distribution Between Correct Matches and Incorrect Matches

Table 3. Fraction of the Correct Match in the Different Interval Level

1 2 3 4 5 6 7 8 9 10

PCA 0.4250 0.7429 0.8333 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ICP 0.2222 0.5319 0.9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

When an interval falls into a certain range, we can determine the possibility
that it is a correct or incorrect match from Table 3. Using this information we
can combine the PCA and ICP in a smarter way. Before the combination, the
interval between the rank 1 and rank 2 is computed first for each comparison in
the ICP and PCA. Then the corresponding percentage of the correct match and
incorrect match is obtained according to Table 3. Using this strategy to combine
the PCA and ICP results on 202 subjects, the rank one recognition rate is 93.1%,
which is the same as the best results obtained from the simple weight scheme
shown in table 2.

Till now, all the results are calculated from 202 subjects. Since the small
dataset has a distribution similar to the larger dataset (302 subjects), we predict
the distribution of the larger dataset by using the value in Table 3. The rank one
recognition rate is 91.7%, which is even better than the results (90.1%) using
simple weighted sum scheme. Thus it seems that performance may be increased
by using a smart fusion step. However the increase is not statistically significant
and this issue deserves further exploration.

4.3 Multi-algorithm Biometrics

Three different algorithms have been developed to use on the 3D data. These are
the ICP-based algorithm, PCA-based algorithm and edge-based algorithm. After
score normalization, the weighted sum rule is used for combinations. Rank one
recognition rates are demonstrated in Table 4. The best performance is achieved
when combining ICP and edge-based algorithm on the 3D data.
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Table 4. Multi-algorithm Biometrics Using Weighted Sum Rule

3DICP 3DPCA 3DEdge Performance

ICP + PCA 0.90 0.10 87.70%
ICP + Edge 0.80 0.20 90.2%
PCA + Edge 0.40 0.60 69.9%

From Table 1, if we only consider with those not so good performance, like
2D PCA, 3D PCA and 3D edge-based approach, the multi-modal biometrics has
better performance than the multi-algorithm.
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Fig. 5. Multi-algorithm Biometrics Performance

4.4 Using Multiple Images to Represent a Person

In general, approaches perform better with a multiple-sample representation of
a person, and scale better to larger datasets. We have 169 subjects that have at
least 4 good images in both 2D and 3D data. Each pair of 2D and 3D images
were taken on a different date. In this section, we will concentrate on the multi-
galleries or multi-probes using 2D PCA and 3D ICP algorithms.

For each subject, there are four 2D and 3D images available. We consider
three possible multiple-instance representations based on these images. These
are (a) 1 in the gallery and the other 3 images in the probe, (b) 2 in the gallery
and the other 2 in the probe, and (c) 3 in the gallery and the other 1 in the
probe. Two fusion rules, min and sum, are attempted to combine the results,
shown in Table 5. It is interesting here that we have multi-instance better than
multi-modal. Using one gallery and one probe for these 169 subjects, the rank
one rate is 73.4% for 2D PCA, and 81.7% for 3D ICP. Combining the results of
2D PCA and 3D ICP, the best performance obtained is 88.2%.

In the multi-galleries and multi-probes experiments, the best performance is
achieved when 2 images are put into the gallery and the other 2 put into the
probe. This is true in both 2D PCA and 3D ICP algorithms. This combination
gives us 4 matches, whereas the other combinations give 3 matches. Also we
noticed that the min rule is much more powerful than the sum rule in the 3D
ICP performance, while it has similar performance to the sum rule in the 2D PCA
performance. We attribute the performance of the min rule to the possibility of
minimizing “outliers”in the 3D matching.
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Table 5. Fusion on Multiple Galleries and Probes (169 Subjects)

2D PCA 3D ICP

1G1P 73.4% 81.7%

MIN SUM MIN SUM

1G3P 82.2% 83.4% 95.3% 81.1%
2G2P 84.0% 87.5% 97.0% 81.7%
3G1P 81.7% 80.5% 91.1% 81.7%

Matching of 3D ear images has many sources of “outliers”. There can be
outlier noise in a given 3D image, such as a “spike” from 3D sensing. Also in
matching one 3D image to another, incorrect point correspondences may arise,
possibly due to points existing in one scan but not the other. Increasing the
number of representations for a certain person in both the gallery and probe
gives a better chance to find the correct correspondence between the points.
Thus, the performance increases significantly in the ICP experiment.

5 Summary and Discussion

We find that multi-modal, multi-algorithm or multi-instance improve perfor-
mance over a single biometric. The combination of the 2D PCA and 3D ICP
gives the highest performance of any pairs of biometrics considered. Three dif-
ferent multi-biometric combinations were considered. All result in improvement
over a single biometric. Among the four single modal ear biometrics, the ICP-
based recognition outperforms the other three methods. And it is expected that
the best combination includes the ICP as one of the components. Multi-modal
with 2D PCA and 3D ICP gives the highest performance. As to the other three
not as good methods, multi-modal biometrics turns out to have better perfor-
mance than the multi-algorithm biometrics.

The fusion experiments on multi-modal, multi-algorithm and multi-instance
biometrics yield different results. The sum rule outperforms the min rule on
multi-modal and multi-algorithm biometrics, while the min rule performs well
on the multi-instance biometrics, especially when using the ICP algorithm. Min
rule has the power to reduce the noise from the original data, which is suitable for
the application to multi-instance biometrics. The new fusion rule we introduced
in combining 2D PCA and 3D ICP is based on analyzing the interval between
rank one and rank two. And the performance result is the best of the fusion rules
we used.

The multi-modal 3D ICP plus 2D PCA recognition was 87.7% on the 302
person dataset, as listed in Table 4. It is useful to ask how a multi-modal result
compares to the multi-instance results for the individual modals. The multi-
modal approach represents a person by two images, in both the gallery and as a
probe. If we look at the two-image representation in each of the individual imag-
ing modes, we get 87.5% for 2D PCA and 97% for 3D ICP on the subset of 169
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of the 302 persons, Table 5. The multi-modal result for this same subset of 169
persons is 88.2%. Thus we find that the multi-modal result barely improves over
the two-image 3D ICP result, and that the four-image 3D ICP result for multi-
instance is substantially better than the multi-modal result. This is a different
relative performance than found by Chang [13] in a study of multi-modal face
recognition, where multi-modal 2D + 3D performance was greater than multi-
image 2D or multi-image 3D. However, our work differs in several potentially
important respects. One is of course that we study ear recognition rather than
face recognition. But also, Chang used the same PCA-based approach for both
the 2D face and the 3D face recognition, whereas we use an ICP approach for our
3D recognition. This is important because it appears in our results that the ICP-
based approach is substantially more powerful than the PCA-based approach for
3D. Another potentially important difference is that in our multi-image results,
the two images used to represent a person are taken at different times, at least a
week apart. Chang used images from the same acquisition session in his multi-
image results. It is quite possible that images taken on different days give a more
independent sample, and so better performance.

6 Improved ICP Algorithm

The multi-biometric results presented in previous sections indicate that 3D shape
matching with an ICP-based approach has strong potential for ear biometrics.
Therefore, after the results in previous sections were completed, considered var-
ious refinements to this approach, several of which were incorporated into an
improved algorithm. The amount of the ear shape used in the gallery and probe
representations was adjusted to reduce interference from the background. An
step to remove outlier point matches was added to reduce the effects of incorrect
correspondences. Our improved algorithm produces substantially better results.
Using the 302-person dataset, with a single 3D ear scan as the gallery enrollment
for a person, and a single 3D ear scan as the probe for a person, the new algorithm
achieves 98.7% rank-one recognition. This performance from a single modality
and algorithm is high enough that a larger and more challenging data set is
needed in order to experimentally evaluate its use in possible multi-biometric
scenarios. We are currently developing such a dataset for future experiments.
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Abstract. In this paper, we present the biometric authentication sys-
tem based on the fusion of two user-friendly biometric modalities: Iris
and Face. Using one biometric feature can lead to good results, but there
is no reliable way to verify the classification. In order to reach robust
identification and verification we are combining two different biometric
features. we specifically apply 2-D discrete wavelet transform to extract
the feature sets of low dimensionality from iris and face. And then to
obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Di-
rect Linear Discriminant Analysis (DLDA) is used in our multimodal
system. This system can operate in two modes: to identify a particular
person or to verify a person’s claimed identity. Our results for both cases
show that the proposed method leads to a reliable person authentication
system.

1 Introduction

Biometric authentication, which identifies an individual person using physio-
logical and/or behavioral characteristics, such as iris, face, fingerprints, hand
geometry, handwriting, retinal, vein, and speech, is one of the most reliable and
capable than knowledge-based(e.g., password) or token-based(e.g., a key) tech-
niques, since biometric features are hardly stolen or forgotten. However, recog-
nition based on any one of these modalities may not be sufficiently robust or else
may not be acceptable to a particular user group or in a particular situation or
instance.

Current approaches to the use of single biometrics in personal identity au-
thentication are therefore limited, principally because no single biometric is gen-
erally considered both sufficiently accurate and user-acceptable for universal
application. Multimodal biometrics can provide a more balanced solution to the
security and convenience requirements of many applications [1], [2], [3]. How-
ever, such an approach can also lead to additional complexity in the design and
management of authentication systems. Additionally, complex hierarchies of se-
curity levels and interacting user/provider requirements demand that a system
is adaptive and flexible in configuration.

There are three main strategies to build multimodal biometric systems. The
first method is to apply decision fusion which means combining accept or reject

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 513–522, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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decisions of unimodal systems [4]. The other method to construct a multimodal
system is using the feature fusion. This means that features extracted using
multiple sensors are concatenated. Finally there is the confidence level fusion
which means combining matching scores reported by multiple matchers [5].

Our methodology to build multimodal biometric system focuses on the Fea-
ture level fusion using face information in combination with iris. Iris and face can
be used efficiently in multimodal system because face recognition is friendly and
non-invasive whereas iris recognition is one of the most accurate biometrics [1].
When we construct the multimodal system using the feature fusion, one of the
most important things we have to consider is a dimensionality of the biometric
feature set. It has a disadvantage that the size of the combined feature set is
normally large. In recognition systems using the biometric features, one may
try to use large feature set to enhance the recognition performance. However,
the increase in the number of the biometric features has caused other problems.
For example, the recognizer using higher dimension feature set requires more
parameters to characterize the classifier and requires more storage. Thus, it will
increase the complexity of computation and make its real-time implementation
more difficult and costly. Furthermore, a larger amount of data is needed for
training. The system we propose is given in Fig. 1 and the dimensionality of the
biometric feature set is reduced efficiently in each step.
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Fig. 1. Bimodal biometric system using Iris and Face

This paper is organized as follows. Section 2 briefly describes image prepro-
cessing to obtain Iris and face images. In section 3, we overview a multilevel
two-dimensional Discrete Wavelet Transform (DWT) to extract feature vectors
from the iris and face images. we will form a Joint Feature Vector(JFV) from the
two biometric feature vectors. Also, we describe the Direct Linear Discriminant
Analysis(DLDA) scheme [6] to linearly transform the joint feature vector to new
feature space with higher separability and lower dimensionality. The same oper-
ations of DWT and DLDA are performed in training as well as testing phases.
Experimental results and analysis will be stated in section 4, and finally the
conclusions are given in section 5.
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2 Image Preprocessing

The images acquired from an image acquisition device always contain not only
the appropriate images but also some inappropriate ones. Therefore, we need
to check the quality of eye image to determine whether the given images are
appropriate for the subsequent processing or not and then to select the proper
ones among them in real time. Some images ascertained as inappropriate ones
are excluded from the next processing [7].

(a) (b) (c) (d)

Fig. 2. Examples of images with bad quality: (a)the images with the blink (b)the
images whose the pupil part is not located in the middle (c)the images obscured by
eyelids or the shadow of the eyelids (d)the images with severe noises

The images excluded from the subsequent processing include as follows; the
images with the blink (Fig. 2(a)), the images whose the pupil part is not located
in the middle and some parts of the iris area disappear (Fig. 2(b)), the images
obscured by eyelids or the shadow of the eyelids (Fig. 2(c)), and the images with
severe noises like Fig. 2(d). Fig. 2 shows the examples of images with bad quality.

Fig. 3. (a)Original eye image (b)Image of the inner boundary and outer boundary
(c)Image of the collarette boundary (d)localized iris image

An iris area can be localized from the eye image passed in the quality check
step by separating the part of an image between the inner boundary and outer
boundary. Fig. 3 shows the results of finding the inner boundary, the outer
boundary and the collarette boundary in the eye image and the image of iris area,
where is used in feature extraction, localized by using these boundaries [7], [8].
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In this experiment, we just use the localized face images from Olivetti-Oracle
Research Lab(ORL)without any preprocessing [9]. The IIS face database accessi-
ble at http://smart.iis.sinica. edu.tw/ is also used without any preprocessing [10].

3 Feature Extraction

Most applications emphasize finding a feature set that produces efficient and
implementable results. If the dimension of features defining a problem is too high,
we must select a robust set of features from an initial set to provide appropriate
representation. We have chosen the DWT and DLDA approach to obtain a
robust and lower dimensional set of features with high discriminating power.
Our previous works have already shown that DWT+DLDA approach can be
successfully used on unimodal biometric data [11].

3.1 Wavelet Transform

The hierarchical wavelet functions and its associated scaling functions are to de-
compose the original signal or image into different subbands. The decomposition
process is recursively applied to the subbands to generate the next level of the
hierarchy. The traditional pyramid-structured wavelet transform decomposes a
signal into a set of frequency channels that have narrower bandwidths in the
lower frequency region [12]. The DWT was applied for texture classification and
image compression because of its powerful capability for multiresolution decom-
position analysis. The wavelet decomposition technique can be used to extract
the intrinsic features for the recognition of persons by their biometric data. We
employ the multilevel 2D Daubechies wavelet transform to extract the iris and
face features. Using the wavelet transform, we decompose the image data into
four subimages via the high-pass and low-pass filtering with respect to the col-
umn vectors and the row vectors of array pixels. Fig. 4 shows the process of
pyramid-structured wavelet decomposition.

In this paper, we use the statistical features and the two or three-level lowest
frequency subimage to represent unimodal biometric feature vectors, thus sta-
tistical features were computed from each subband image. First, we divide the
subimages into local windows in order to get robust feature sets against shift and
noisy environment. Next, we extract first-order statistics features, that is, mean
and standard deviation from local windows on the corresponding subimages to
represent feature vectors. Generally, the mean extracts low spatial-frequency fea-
tures and the standard deviation can be used to measure local activity in the
amplitudes from the local windows [13]. Also, low frequency components rep-
resent the basic figure of an image, which is less sensitive to varying images.
The feature vectors composed of these features include both local and global
information . The level of low frequency subimage chosen to extract the feature
vector depends on size of the image. If the size is smaller then our localized iris
image and ORL face, the one or two-level lowest frequency subimage might be
have higher discriminating power. That is the reason why we choose three-level
decomposition on the iris image and ORL face and two-level on the IIS face.
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DWT

(a) Iris

DWT

(b) Face

Fig. 4. Example of a three-level wavelet transform of the iris and face images

After the iris and face feature vector are extracted by wavelet transform, the
original iris image vector of 7,200 dimensions is transformed to the feature vector
of 116 dimensions. Also, the ORL face vector of 10,304 dimensions and IIS face
vector of 3,600 dimensions are reduced to 168 dimensions and 241 dimensions
respectively. For fusion we use concatenation between the iris and face feature
vectors. So we can form a Joint Feature Vector(JFV) y and construct biomodal
model using JFV. However, the dimensionality of JFV is too high to reduce the
recognition time and save memory.

3.2 Direct Linear Discriminant Analysis

To further reduce the feature dimensionality and enhance the class discrimina-
tion, we apply the Direct Linear Discriminant Analysis(DLDA). By using DLDA,
we can extract a Reduced Joint Feature Vector(RJFV) z with higher discrimi-
nating power and lower dimensionality then the Joint Feature Vector(JFV) y.

Existing LDA methods first use PCA to project the data into lower dimen-
sions, and then use LDA to project the data into an even lower dimension [14].
The PCA step, however, can remove those components that are useful for dis-
crimination. The key idea of DLDA method is to discard the null space of
between-class scatter Sb – which contains no useful information – rather than
discarding the null space of Sw , which contains the most discriminative infor-
mation [6]. Each scatter is given as follows:

Sb =
J∑

i=1

ni(μi − μ)(μi − μ)T , Sw =
J∑

i=1

∑
x∈Ci

(x− μi)(x− μi)T

where ni is the number of JFVs in class i, μi is the mean of class i, μ is the
global mean, and J is the number of classes.

The DLDA method is outlined below. We do not need to worry about the
computational difficulty that both scatter matrices are too big to be held in
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memory because the dimensionality of input data is properly reduced by wavelet
transform.

First, we diagonalize the Sb matrix by finding a matrix V such that

V TSbV = D

where the columns of V are the eigenvectors of Sb and D is a diagonal matrix
that contains the eigenvalues of Sb in decreasing order. It is necessary to discard
eigenvalues with 0 value and their eigenvectors, as projection directions with a
total scatter of 0 do not carry any discriminative power at all [6].

Let Y be the first m columns of V ( an n ×m matrix, n being the feature
space dimensionality),

Y TSbY = Db (m×m)

where Db contains the m non-zero eigenvalues of Sb in decreasing order and the
columns of Y contain the corresponding eigenvectors.

The next step is to let Z = Y D1/2 such that ZTSbZ = I. Then we diagonalize
the matrix ZTSwZ such that

UT (ZTSwZ)U = Dw (1)

where UTU = I. Dw may contain zeros in its diagonal. We can sort the diagonal
elements of Dw and discard some eigenvalues in the high end, together with the
corresponding eigenvectors.

We compute the LDA matrix as

A = UTZT (2)

Note that A diagonalizes the numerator and denominator in Fisher’s criterion.
Finally, we compute the transformation matrix(3) that takes an n×1 feature

vector and transforms it to an m× 1 feature vector.

zreduced = D
−1/2
b Ay (3)

where z is a Reduced Joint Feature Vector and y is a Joint Feature Vector.

4 Experimental Results

4.1 Biometric Database

� Face Database

• ORLFace We used face images from Olivetti-Oracle Research Lab(ORL) [9].
The ORL data set consists of 400 frontal faces: 10 tightly cropped images
of 40 subjects with variations in poses, illuminations, facial expressions and
accessories. The size of each image is 92 × 112 pixels, with 256 grey levels
per pixel.
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• IISFace The IIS face database is accessible at http://smart.iis.sinica. edu.tw/
[10]. We sampled frontal face images of 100 subjects from the IIS face
database, each subject having 10 images with varying expressions. The size
of each image is 92 × 104 pixels, with 256 grey levels per pixel.

� Iris Database. Eye images were acquired through CCD camera with LED
(Light-Emitting Diode) lamp around lens under indoor light. The size of eye im-
ages is 320×240 pixels with 256 grey intensity values, and the size of normalized
iris images is 225 × 32 pixels.

• Iris1. This data set consists of 1000 iris images acquired from 100 indi-
viduals. They are good quality images which pass Image Quality Checking
Step(IQCS) of high level.

• Iris2. Iris2 consists of 1000 iris images containing some bad quality ones
acquired from 100 individuals. They are iris images which pass Image Quality
Checking Step(IQCS) of low level.

• Iris3. Iris3 is composed of 400 good quality images sampled from Iris1 to
combine with ORLFace.

• Iris4. Iris4 is composed of 400 iris images containing some bad quality ones
sampled from Iris2 to combine with ORLFace.

4.2 Identification and Verification Results on Each Database

In this work, we randomly choose five images per person for training from
face and iris, the other five for testing. To reduce variation, each experiment
is repeated at least 20 times. We used the following recognition method be-
cause it well suit with DWT+DLDA method and is very fast and simple. The
training data and test data are transformed by transformation matrix (3), and
assign the test data x to the class of its nearest mean, where we say that
μi ∈ {μ1, μ2, · · · , μJ} is a nearest mean to x if

D(μi, x) = minkD(μk, x), k = 1, 2, · · · , J (4)

where D is Euclidean distance measure.
Table 1. shows the identification rates of unimidal and multimodal systems

vs. dimension of biometric feature for IISFace and Iris data.
Table 2. shows the identification rates of unimidal and multimodal systems

vs. dimension of biometric feature for IISFace and Iris data.
As can be seen from Table 1. and 2., the multimodal systems using RJFV

of face and iris outperform the unimodal systems. In addition, the identification
rates for IIS+Iris1 and IIS+Iris2 are 99.12% and 98.4% over 30 and 35 feature
dimension, respectively. For ORL+Iris3 and ORL+Iris4, they are 99.7% and
98.7% over 20 and 10 feature dimension, respectively. It shows that the multi-
modal system using RJFV can achieve much better identification rate over much
lower feature dimension than unimodal system. From the results of IIS+Iris2 and
ORL+Iris4, we can also see the proposed system can achieve better performance
than unimodal system even though one biometric feature set is poor.
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Table 1. Person identification rate for IISFace and Iris data(%)
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Table 2. Person identification rate for ORLFace and Iris data(%)
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Two commonly used error measures for a verification system are False Ac-
ceptance Rate(FAR) – an imposter is accepted – and False Rejection Rate(FRR)
– a client is rejected. If one wants to compare different biometric systems, it is
problematic that value ”similarities” or, inversely, ”distance” are defined very
differently, and therefore threshold values often have incomparable meanings.
This difficulty is avoided by Receiver Operating Characteristic(ROC) Curve, in
which the similarity threshold parameter is eliminated and FRR is seen as a
function of FAR. The results of the person verification experiments are shown
in Fig. 5. As can be clearly seen, the proposed system using RJFV of face and
iris performs considerably better than the unimodal system even though one
biometric feature set is poor. It is important to point out that the considerable
performance improvement was achieved, although only low dimensional features
and poor features were used. Our proposed system can provide users with strong
authentication and enhanced convenience for security and reduce verification
time.
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(a) IISFace and Iris (b) ORLFace and Iris

Fig. 5. Receiver Operating Characteristic(ROC) Curves

5 Conclusion

In this paper, we have shown that the use of data fusion allows to improve sig-
nificantly the performance of multimodal identification systems. We have also
shown that Iris and face can be used efficiently in multimodal system. The
grey-level images of iris and face can be simultaneously acquired and used to
achieve the performance that may not be possible by single biometric alone. In
addition, the DWT+DLDA method has been used to obtain the Reduced Joint
Feature Vectors(RJFV) with higher discriminating power and lower dimension-
ality. These methods of feature extraction well suit with multimodal system as
well as unimodal system while allowing the algorithm to be translation and ro-
tation invariant.For future works, it is necessary to conduct experiments on a
large number of data so as to verify the efficiency and robustness of our ap-
proach. Other techniques for feature extraction and pattern matching can be
handled from this point of view so as to propose the efficient methods for a
reliable human recognition system.
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Abstract. An on-line signature verification system exploiting both lo-
cal and global information through decision-level fusion is presented.
Global information is extracted with a feature-based representation and
recognized by using Parzen Windows Classifiers. Local information is
extracted as time functions of various dynamic properties and recog-
nized by using Hidden Markov Models. Experimental results are given
on the large MCYT signature database (330 signers, 16500 signatures)
for random and skilled forgeries. Feature selection experiments based on
feature ranking are carried out. It is shown experimentally that the ma-
chine expert based on local information outperforms the system based
on global analysis when enough training data is available. Conversely,
it is found that global analysis is more appropriate in the case of small
training set size. The two proposed systems are also shown to give com-
plementary recognition information which is successfully exploited using
decision-level score fusion.

1 Introduction

Automatic extraction of identity cues from personal traits (e.g., signature, fin-
gerprint, voice, and face image) has given raise to a particular branch of pattern
recognition, biometrics, where the goal is to infer identity of people from bio-
metric data [1]. The increasing interest on biometrics is related to the number
of important applications where an automatic assessment of identity is a crucial
point. Within biometrics, automatic signature verification has been an intense
research area because of the social and legal acceptance and widespread use of
the written signature as a personal authentication method [2]. This work is fo-
cused on on-line signature verification, i.e., the time functions of the dynamic
signing process (e.g., position trajectories, or pressure versus time) are available
for recognition.
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periments on the complete set are carried out, obtaining experimental evidence
on the individual relative discriminative power of the proposed and the exist-
ing features, and iii) a non-parametric statistical recognition strategy based on
Parzen windows is used, obtaining remarkable performance in the common case
of small training set size.

Feature extraction. The complete set of global features is given in Table 1.
Note that an on-line signature acquisition process capturing position trajec-
tories and pressure signals both at pen-down and pen-up intervals is sup-
posed. Otherwise, the feature set should be reduced discarding features based
on trajectory signals during pen-ups (e.g., features 32 and 41). Even though
the given set has demonstrated to be robust to the common distortions en-
countered in the handwritten scenario, note that not all the parameters are
fully rotation/scale invariant, so either a controlled signature acquisition is
assumed (as in MCYT database, where users where asked to sign within grid
guidelines) or translation/rotation registration should be performed before
computing them. Although pen inclination has shown discriminative power
in some works [16], and pen inclination signals are available in MCYT [15],
no features based on pen inclination are introduced in the proposed set (as
pen inclination turned out to be highly unstable in previous experiments
[9]). The features in Table 1 are sorted by individual inter-user discrimina-
tive power as described in Sect. 5.2.

Similarity computation. Given the feature vectors of the training set of sig-
natures of a client C, a non-parametric estimation λPWC

C of their multi-
variate probability density function is obtained by using Parzen Gaussian
Windows [17]. On the other hand, given the feature vector oT of an input
signature and a claimed identity C modelled as λPWC

C , the following similarity
matching score is used

sPWC = p
(
oT |λPWC

C
)

(1)

which is consistent with Bayes estimate in case of equal prior probabili-
ties [17].

3 Machine Expert Based on Local Information

A brief description of the local function-based approach is given in this section,
for more details we refer to [8, 9].

Feature extraction. Signature trajectories are first preprocessed by subtract-
ing the center of mass followed by a rotation alignment based on the av-
erage path tangent angle. The signature is parameterized then as the fol-
lowing set of 7 discrete-time functions {x[n], y[n], p[n], θ[n], v[n], ρ[n], a[n]},
n = 1, . . . , Ns, sampling frequency = 100 Hz., and first order time deriva-
tives of all of them, totaling 14 discrete functions; Ns, p, θ, v, ρ and a
stand respectively for signature time duration in time samples, pressure,
path tangent angle, path velocity magnitude, log curvature radius and total
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Table 1. Set of global features considered in this work sorted by individual discrimina-
tive power as described in Sect. 5.2 (T denotes time interval, t denotes time instant, N
denotes number of events, θ denotes angle, bold denotes novel feature, italic denotes
adapted from [3–5], roman denotes extracted from [3–5]). Note that all notations are
either defined or referenced somewhere in the table (e.g., j is defined and referenced in
4, Δ is defined in 15, histograms in 51, 61, 70, 93, . . . are referenced in 34, etc.)

Ranking Feature Description Ranking Feature Description

1 signature total duration Ts 2 N(pen-ups)
3 N(sign changes of dx/dt and dy/dt) 4 average jerk j̄ [3]
5 standard deviation of ay 6 standard deviation of vy

7 (standard deviation of y)/Δy 8 N(local maxima in x)
9 standard deviation of ax 10 standard deviation of vx

11 jrms 12 N(local maxima in y)
13 t(2nd pen-down)/Ts 14 (average velocity v̄)/vx,max

15
Amin=(ymax−ymin)(xmax−xmin)

(Δx=
∑pen-downs

i=1 (xmax |i−xmin |i))Δy
16 (xlast pen-up − xmax)/Δx

17 (x1st pen-down − xmin)/Δx 18 (ylast pen-up − ymin)/Δy

19 (y1st pen-down − ymin)/Δy 20 (Tw v̄)/(ymax − ymin)
21 (Tw v̄)/(xmax − xmin) 22 (pen-down duration Tw)/Ts

23 v̄/vy,max 24 (ylast pen-up − ymax)/Δy

25 T((dy/dt)/(dx/dt)>0)
T((dy/dt)/(dx/dt)<0) 26 v̄/vmax

27 (y1st pen-down − ymax)/Δy 28 (xlast pen-up − xmin)/Δx

29 (velocity rms v)/vmax 30
(xmax−xmin)Δy
(ymax−ymin)Δx

31 (velocity correlation vx,y)/v2
max [4] 32 T (vy > 0|pen-up)/Tw

33 N(vx = 0) 34 direction histogram s1 [4]
35 (y2nd local max − y1st pen-down)/Δy 36 (xmax − xmin)/xacquisition range
37 (x1st pen-down − xmax)/Δx 38 T (curvature > Thresholdcurv)/Tw

39 (integrated abs. centr. acc. aIc)/amax [4] 40 T (vx > 0)/Tw

41 T (vx < 0|pen-up)/Tw 42 T (vx > 0|pen-up)/Tw

43 (x3rd local max − x1st pen-down)/Δx 44 N(vy = 0)
45 (acceleration rms a)/amax 46 (standard deviation of x)/Δx

47 T ((dx/dt)(dy/dt)>0)
T ((dx/dt)(dy/dt)<0) 48 (tangential acceleration rms at)/amax

49 (x2nd local max − x1st pen-down)/Δx 50 T (vy < 0|pen-up)/Tw

51 direction histogram s2 52 t(3rd pen-down)/Ts

53 (max distance between points)/Amin 54 (y3rd local max − y1st pen-down)/Δy

55 (x̄ − xmin)/x̄ 56 direction histogram s5
57 direction histogram s3 58 T (vx < 0)/Tw

59 T (vy > 0)/Tw 60 T (vy < 0)/Tw

61 direction histogram s8 62 (1st t(vx,min))/Tw

63 direction histogram s6 64 T (1st pen-up)/Tw

65 spatial histogram t4 66 direction histogram s4
67 (ymax − ymin)/yacquisition range 68 (1st t(vx,max))/Tw

69 (centripetal acceleration rms ac)/amax 70 spatial histogram t1
71 θ(1st to 2nd pen-down) 72 θ(1st pen-down to 2nd pen-up)
73 direction histogram s7 74 t(jx,max)/Tw

75 spatial histogram t2 76 jx,max
77 θ(1st pen-down to last pen-up) 78 θ(1st pen-down to 1st pen-up)
79 (1st t(xmax))/Tw 80 j̄x
81 T (2nd pen-up)/Tw 82 (1st t(vmax))/Tw

83 jy,max 84 θ(2nd pen-down to 2nd pen-up)
85 jmax 86 spatial histogram t3
87 (1st t(vy,min))/Tw 88 (2nd t(xmax))/Tw

89 (3rd t(xmax))/Tw 90 (1st t(vy,max))/Tw

91 t(jmax)/Tw 92 t(jy,max)/Tw

93 direction change histogram c2 94 (3rd t(ymax))/Tw

95 direction change histogram c4 96 j̄y
97 direction change histogram c3 98 θ(initial direction)
99 θ(before last pen-up) 100 (2nd t(ymax))/Tw
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acceleration magnitude. A claim-dependent linear transformation is finally
applied to each discrete-time function so as to obtain zero mean and unit
standard deviation function values.

Similarity computation. Given the parameterized enrollment set of signa-
tures of a client C, a left-to-right Hidden Markov Model λHMM

C is esti-
mated [17]. No transition skips between states are allowed and multivariate
Gaussian Mixture density observations are used. On the other hand, given
the function-based representation OT of a test signature (with a duration of
Ns time samples) and a claimed identity C modelled as λHMM

C , the following
similarity matching score is used

sHMM =
1
Ns

log p
(
OT |λHMM

C
)

(2)

4 Fusion of Global and Local Information

Two sound theoretical frameworks for combining classifiers with application to
biometric verification are described in [10] and [11]. More recent works are re-
viewed in [1]. These works conclude that the weighted average is a good way of
combining the similarity scores provided by the different experts (under some
mild assumptions that may not hold in practice).

In this work, fusion strategies based on the max and sum rules [11] are
compared. Similarity scores given by the global and local experts are normalized
to zero mean and unit standard deviation before fusion.

5 Experiments

5.1 Database and Experimental Protocol

All the signatures of the MCYT database [15] are used for the experiments (330
signers with 25 genuine signatures and 25 skilled forgeries per signer –forgers are
provided the signature images of the clients to be forged and, after training with
them several times, they are asked to imitate the shape with natural dynamics,
i.e., without breaks or slowdowns). Two examples of genuine signatures (left and
central columns) and one forgery (right column) are given in Fig. 2.

Signature corpus is divided into training and test sets. In case of considering
skilled forgeries, training set comprises either 5 or 20 genuine signatures and test
set consist of the remaining samples (i.e., 330×20 or 330×5 client, respectively,
and 330×25 impostor similarity test scores). In case of considering random forg-
eries (i.e., impostors are claiming others’ identities using their own signatures),
client similarity scores are as above and we use one signature of every other user
as impostor data so the number of impostor similarity scores is 330 × 329.

Overall system performances using a posteriori user-independent decision
thresholds are reported by means of DET plots [19]. Average EER tables for
a posteriori user-dependent thresholds are also given following the operational
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Two genuine signatures (left and central columns) and one skilled forgery (right col-
umn) for a client using name and complex flourish [18]. The function-based description
used for local recognition is depicted below each signature.
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Best individually performing global features, i.e., 1st versus 2nd (left), and 3rd versus
4th (right), are depicted for all the signatures of the user above. Features from the
genuine signatures and forgery above are highlighted.

Fig. 2. Signature examples from MCYT corpus together with their extracted features

procedure proposed in [20] for computing the individual EER of each user. For
more details on a priori and a posteriori decision thresholding techniques and
their application to signature verification, we refer the reader to [14].

5.2 Feature Selection

Due to the high number of proposed features (100), and the large number of
signatures considered (16500), features have been ranked according to scalar
inter-user class separability. Feature selection is then based on selecting an in-
creasing number of ranked features.

For each feature Fk, k = 1, . . . , 100, we compute the scalar Mahalanobis
distance [17] dM

i,Fk
between the mean of the Fk-parameterized training signatures

of client i, i = 1, . . . , 330, and the Fk-parameterized set of all training signatures
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Fig. 3. Verification performance using a posteriori user-independent decision thresh-
olding for an increasing number of ranked global features

from all users. Features are then ranked according to the following inter-user
class separability measure S(Fk)

S(Fk) =
330∑
i=1

330∑
j=1

|dM
i,Fk

− dM
j,Fk

| (3)

5.3 Results

In Fig. 3, verification performance results in four common conditions (few/many
training signatures and skilled/random forgeries) are given for i) the global ex-
pert with an increasing number of ranked global features, ii) the local expert,
and iii) their combination through max and sum rules.

Worth noting, the system based on global analysis outperforms the local ap-
proach when training with 5 signatures, and the opposite occurs when training
with 20 signatures. The two systems are also shown to provide complementary
information for the verification task, which is well exploited in the cases of small
and large training set sizes using the max and sum rules respectively. Also in-
terestingly, we have found a good working point of the combined system in the
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Fig. 4. Verification performance for a posteriori user-independent decision thresholding

four conditions depicted in Fig. 3 when using the first 40 ranked features for
the global approach. This is highlighted with a vertical dashed line. Detection
trade-off curves for this working point are given in Fig. 4.

Verification performances of individual and combined systems for a posteriori
user-independent and user-dependent decision thresholds are given in Tables 2
and 3. User-dependent decision thresholding leads to error rates significantly
lower than user-independent decision thresholding. This effect has also been
noticed in previous works [7, 14]. When using user-dependent thresholds and for
the four conditions considered, the local approach is found to outperform the
global one and the sum rule performs better than the max rule. Also remarkably,
the global approach is found to be robust to the score misalignment produced
by the strong user-dependencies found in signature recognition, as performance
difference between using user-dependent and user-independent thresholds is not
as high as the one found for the local approach.

6 Conclusions

An on-line signature recognition system based on fusion of local and global
analysis of input signatures has been described. Global analysis is based on
a novel feature-based description of signatures and non-parametric statistical
modeling based on Parzen windows. Local analysis relies on a function-based
approach and parametric statistical modeling through Hidden Markov Models.

Feature selection and performance experiments are conducted on the large
MCYT database comprising 16500 different signatures from 330 contributors.
Verification performance on random and skilled forgeries has been given for
user-specific and global decision thresholds. The machine expert based on global
information is shown to outperform the system based on local analysis in the
case of small training set size and user-independent thresholds. It has been also
found to be quite robust to the severe user-dependencies encountered in signature
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Table 2. Verification performance with 5 training signatures for a posteriori user-
independent and user-dependent decision thresholding. Average EERs in %

skilled forgeries random forgeries
user-indep. user-dep. user-indep. user-dep.

Local (HMM) 9.39 2.51 4.86 0.59

Global (40 Feat. + PWC) 6.89 5.61 2.02 1.27

Combined (MAX) 5.29 2.39 1.23 0.41

Combined (SUM) 6.67 2.12 2.14 0.24

Table 3. Verification performance with 20 training signatures for a posteriori user-
independent and user-dependent decision thresholding. Average EERs in %

skilled forgeries random forgeries
user-indep. user-dep. user-indep. user-dep.

Local (HMM) 2.60 0.51 0.39 0.0041

Global (40 Feat. + PWC) 5.21 2.38 1.58 0.3180

Combined (MAX) 2.30 0.53 0.33 0.0064

Combined (SUM) 1.70 0.55 0.18 0.0005

recognition. The two proposed systems are also shown to give complementary
recognition information which has been exploited with simple rules. Relative im-
provements in the verification performance as high as 44% (for skilled forgeries)
and 75% (for random forgeries) have been obtained as compared to state-of-the-
art works1.

Future work includes applying feature subset selection methods to the pro-
posed set of global features, and exploiting the user-dependencies found in the
global and and local approaches through target-dependent score normalization
procedures [14] and user-dependent fusion approaches [22].
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Abstract. Human recognition from arbitrary views is an important task for many
applications, such as visual surveillance, covert security and access control. It has
been found to be very difficult in reality, especially when a person is walking at
a distance in read-world outdoor conditions. For optimal performance, the sys-
tem should use as much information as possible from the observations. In this
paper, we propose an innovative system, which combines cues of face profile and
gait silhouette from the single camera video sequences. For optimal face profile
recognition, we first reconstruct a high-resolution face profile image from several
adjacent low-resolution video frames. Then we use a curvature-based matching
method for recognition. For gait, we use Gait Energy Image (GEI) to character-
ize human walking properties. Recognition is carried out based on the direct GEI
matching. Several schemes are considered for fusion of face profile and gait. A
number of dynamic video sequences are tested to evaluate the performance of our
system. Experiment results are compared and discussed.

1 Introduction

It has been found to be very difficult to recognize a person from arbitrary views in real-
ity, especially when one is walking at a distance in real-world outdoor conditions. For
optimal performance, the system should use as much information as possible from the
observations. A fusion system, which combines face and gait cues from low-resolution
video sequences, is a practical approach to accomplish the task of human recognition.

The most general solution to analyze face and gait information from arbitrary views
is to estimate 3-D models. However, the problem of building reliable 3-D models for
articulating objects like the human body remains a hard problem. In recent years, the
way to perform integrated face and gait recognition without resorting to 3-D mod-
els has made some progress. In [1], Kale et al. present a view invariant gait recogni-
tion algorithm and a face recognition algorithm based on sequential importance sam-
pling. The fusion of frontal face and gait cues is in the single camera scenario. In [2],
Shakhnarovich et al. compute an image-based visual hull from a set of monocular views
of multiple cameras. It is then used to render virtual canonical views for tracking and
recognition. A gait recognition scheme is based on silhouette extent analysis. Eigen-
faces are used for recognizing frontal face rendered by the visual hull. In a later work
[3], Shakhnarovich et al. discuss the issues of cross-modal correlation and score trans-
formations for different modalities and present the probabilistic settings for the cross-
modal fusion.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 533–543, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Most gait recognition algorithms rely on the availability of the side view of the
subject since human gait or the style of walking is best exposed when one presents
a side view to the camera. For face recognition, on the other hand it is preferred to
have frontal views analyzed. The requirement of different views is easily satisfied by an
individual classifier, while it brings some difficulties to the fusion system. In Kale’s and
Shakhnarovich’s fusion system, both of them use the side view of gait and the frontal
view of face. So in Kale’s work [1], only the final segment of the NIST database can
present a nearly frontal view of face, while in Shakhnarovich’s work [2][3], multiple
cameras must be used to get both the side view of gait and the frontal view of face
simultaneously.

In this paper, an innovative system is proposed, which combines cues of face profile
and gait silhouette from the single camera video sequences. We use face profile instead
of frontal face in the system since a side view of face is more probable to get than a
frontal view of a face when one exposes the best side view of gait to the cameral. It
is very natural to integrate information of the side face view and the side gait view.
However, it is hard to get enough information of a face profile directly from a low-
resolution video frame for recognition tasks. To overcome this limitation, we use super-
resolution algorithms for face profile analysis. We first reconstruct a high-resolution
face profile image from several adjacent low-resolution video frames. The approach
relies on the fact that the temporally adjacent frames in a video sequence, in which
one is walking with a side view to the camera, contain slightly different, but unique,
information for face profile. Then we extract good features from the high-resolution face
profile images. Finally, a curvature-based matching method is applied [4]. For gait, we
use Gait Energy Image (GEI) to characterize human walking properties [5]. Recognition
is carried out based on the direct GEI matching.

Face profile cues and gait cues are considered being integrated by several schemes.
The first two are SUM rule and PRODUCT rule [6]. We assume features of face profile
and features of gait we use statistically independent, so matching scores reported by
the individual classifier can be combined based on Bayesian Theory. The last one is an
indexing-verification scheme, which consolidates the accept/reject decisions of multiple
classifiers [7]. The overall technical approach is shown in Fig. 1.

2 Technical Approach

2.1 High-Resolution Image Construction for Face Profile

Multiframe resolution enhancement, or super-resolution, seeks to construct a single
high-resolution image from several low-resolution images. These images must be of
the same object, taken from slightly different angles, but not so much as to change the
overall appearance of the object in the image. The idea of super-resolution was first
introduced in 1984 by Tsai and Huang [8] for multiframe image restoration of band-
limited signals. In the last two decades, different mathematical approaches have been
developed. All of them seek to address the question of how to combine irredundant im-
age information in multiple frames. A good overview of existing algorithms is given by
Borman and Stevenson [9] and Park et al. [10]. In this paper, we use an iterative method
proposed by Irani and Peleg [11][12].
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Fig. 1. Technical approach for integrating face profile and gait in video

The Imaging Model. The imaging process, yielding the observed image sequence gk,
is modeled by:

gk(m,n) = σk(h(Tk(f(x, y))) + ηk(x, y)) (1)

where

1. gk is the sensed image of the tracked object in the kth frame.
2. f is a high resolution image of the tracked object in a desired reconstruction view.

Finding f is the objective of the super-resolution algorithm.
3. Tk is the 2-D geometric transformation form f to gk, determined by the computed

2-D motion parameters of the tracked object in the image plane (not including the
decrease in sampling rate between f and gk). Tk is assumed to be invertible.

4. h is a blurring operator, determined by the Point Spread Function of the sensor
(PSF). When lacking knowledge of the sensor’s properties, it is assumed to be a
Gaussian.

5. ηk is an additive noise term.
6. σk is a downsampling operator which digitizes and decimates the image into pixels

and quantizes the resulting pixels values.

The receptive field (in f ) of a detector whose output is the pixel gk(m,n) is uniquely
defined by its center (x, y) and its shape. The shape is determined by the region of
the blurring operator h, and by the inverse geometric transformation T−1

k . Similarly,
the center (x, y) is obtained by T−1

k ((m,n)). An attempt is made to construct a higher
resolution image f̂ , which approximates f as accurately as possible, and surpasses the
visual quality of the observed images in {gk}.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The six low-resolution face profile images resized by using bilinear interpolation (a-f)

The Super Resolution Algorithm. The algorithm for creating higher resolution im-
ages is iterative. Starting with an initial guess f (0) for the high resolution image, the
imaging process is simulated to obtain a set of low resolution images {g(0)

k }K
k=1 corre-

sponding to the observed input images {gk}K
k=1. If f (0) were the correct high resolution

image, then the simulated images {g(0)
k }K

k=1 should be identical to the observed image

{gk}K
k=1. The difference images {gk − g

(0)
k }K

k=1 are used to improve the initial guess
by ”backprojecting” each value in the difference images onto its receptive field in f (0),
yielding an improved high resolution image f (1). This process is repeated iteratively to
minimize the error function:

e(n) =

√√√√ 1
K

K∑
k=1

‖gk − g
(0)
k ‖2

2 (2)

The imaging process of gk at the nthiteration is simulated by:

g
(n)
k = (Tk(f (n)) ∗ h) ↓ s (3)

where ↓ s denotes a downsampling operator by a factor s, and * is the convolution
operator. The iterative update scheme of the high resolution image is expressed by:

f (n+1) = f (n) +
1
K

K∑
k=1

T−1
k (((gk − g

(n)
k ) ↑ s) ∗ p) (4)

where K is the number of low resolution images. ↑ s is an upsampling operator by a
factor s, and p is a ”backprojection” kernel, determined by h and Tk as explained below.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The edge images of six low-resolution face profiles

Fig. 4. The reconstructed high-resolution face profile and its edge image

The averaging process reduces additive noise. The algorithm is numerically similar to
common iterative methods for solving sets of linear equations, and therefore has similar
properties, such as rapid convergence.

In our system, we reconstruct a high-resolution face profile image from six adja-
cent video frames. It relies on the fact that the temporally adjacent frames in a video
sequence, in which one is walking with a side view to the camera, contain slightly
different, but unique, information for face profile. We assume that six low-resolution
face profile images have been localized and extracted from six adjacent video frames.
We then align these six low-resolution face profile images using affine transformation.
Finally, we apply the super resolution algorithm above to construct a high-resolution
face profile image from the six aligned low-resolution face profile images. The reso-
lution of the original low-resolution face profile images is 70x70 and the resolution of
the reconstructed high-resolution face profile image is 140x140. Figure 2 shows the six
low-resolution face profile images from six adjacent video frames. For comparison, we
resize the six low-resolution face profile images by using bilinear interpolation. Figure
3 shows the corresponding edge images of six low-resolution face profiles. Figure 4
shows the reconstructed high-resolution face profile image and its edge image. From
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these figures, we can see that the reconstructed high-resolution image is much better
than any of the six low-resolution images. It is clearly shown in the edge images that
the edges of the high-resolution image are much smoother and more reliable than that
of the low-resolution images. This explains why we need to apply super resolution al-
gorithm to our problem. Using the reconstructed high-resolution image, we can extract
good features for face profile matching.

2.2 Face Profile Recognition

Face profile is an important aspect for the recognition of faces, which provides a com-
plementary structure of the face that is not seen in the frontal view. For face profile
recognition, we use a curvature-based matching approach [4], which does not focus on
all fiducial point extraction and the determination of relationship among these fiducial
points like most of current algorithms do, but attempt to use as much information as a
profile possesses. The scale space filtering is used to smooth the profile and then the cur-
vature of the filtered profile is computed. Using the curvature value, the fiducial points,
including the nasion and throat can be reliably extracted using a fast and simple method
after pronasale is decided. Then a dynamic time warping method is applied to compare
the face profile portion from nasion to throat based on the curvature value. Figure 5
shows the extracted face profile and the absolute values of curvature. Figure 6 gives an
example of dynamic time warping of two face profiles from the same person.

Fig. 5. The extracted face profile and the absolute values of curvature

Fig. 6. The similarity matrix (left) and the dynamic programming matrix (right)
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From the similarity matrix in Fig. 6, we can see a light stripe (high similarity values)
approximately down the leading diagonal. From the dynamic programming matrix in
Fig. 6, we can see the lowest-cost path between the opposite corners visibly follows the
light stripe, which overlay the path on the similarity matrix. The least cost is the value
in the bottom-right corner of the dynamic programming matrix. This is the value we
would compare between different templates when we are doing classification.

Fig. 7. The Gait Energy Images

2.3 Gait Recognition

Gait Frequency and Phase Estimation. Regular human walking can be considered as
cyclic motion where human motion repeats at a stable frequency. Therefore, it is possi-
ble to divide the whole gait sequence into cycles and study them separately. We assume
that silhouette extraction has been performed on original human walking sequences,
and begin with the extracted binary silhouette image sequences. The silhouette prepro-
cessing includes size normalization (proportionally resizing each silhouette image so
that all silhouettes have the same height) and horizontal alignment (centering the upper
half silhouette part with respect to its horizontal centroid). In a preprocessed silhouette
sequence, the time series signal of lower half silhouette part size from each frame indi-
cates the gait frequency and phase information. The obtained time series signal consists
of few cycles and lots of noise, which lead to sidelobe effect in the Fourier spectrum.
To avoid this problem, we estimate the gait frequency and phase by maximum entropy
spectrum estimation.

Gait Representation. Given a preprocessed binary gait silhouette sequence B(x, y, t),
the grey-level gait energy image (GEI) is defined as follows [5]:

G(x, y) =
1
N

N∑
t=1

B(x, y, t) (5)

where N is the number of frames in the complete cycle(s) of a silhouette sequence, t is
the frame number of the sequence (moment of time), x and y are values in the 2D image
coordinate. Figure 7 is some examples of the Gait Energy Images pairs. As expected, it
reflects major shapes of silhouettes and their changes over the gait cycle. We refer to it
as gait energy image because: (a) each silhouette image is the normalized gait (human
walking) area; (b) a pixel within the silhouette in a image means that human walking
occurs at this position and this moment; (c) a pixel with higher intensity value in GEI
means that human walking occurs more frequently at this position (i.e., with higher
energy).
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GEI has several advantages over the gait representation of binary silhouette se-
quence. GEI is not sensitive to incidental silhouette errors in individual frames. The
robustness could be further improved if we discard those pixels with the energy values
lower than a threshold. Moreover, with such a 2D template, we do not need to consider
the normalized time moment of each frame, and the incurred errors can be therefore
avoided.

Direct GEI Matching. One possible approach is recognizing individuals by measur-
ing the similarity between the gallery (training) and probe (testing) templates. Given
GEIs of two gait sequences, Gg(x, y) and Gp(x, y), their distance can be measured by
calculating their normalized matching error:

D(Gg, Gp) =

∑
x,y |Gg(x, y) −Gp(x, y)|√∑
x,y Gg(x, y)

∑
x,y Gp(x, y)

, (6)

where
∑

x,y |Gg(x, y) − Gp(x, y)| is the matching error between two GEIs,∑
x,y Gg(x, y) and

∑
x,y Gp(x, y) are total energy in two GEIs, respectively.

2.4 Integrating Face Profile and Gait for Recognition at a Distance

Face profile cues and gait cues are considered being integrated by several schemes.
Commonly used classifier combination schemes are obtained based on Bayesian The-
ory, where the representations are assumed conditionally statistically independent. Un-
der different assumptions, there are PRODUCT rule, SUM rule, MAX rule, MIN rule,
MEDIAN rule and MAJORITY VOTE rule [6]. We employ SUM rule and PRODUCT
rule in our fusion system, with which the similarity scores obtained individually from
face profile classifier and gait classifier are combined. Before the similarity scores are
combined, it is necessary to map the scores obtained from the different classifiers to
the same range of values. Some of the commonly used transformations include lin-
ear, logarithmic, exponential and logistic. We use exponential transformation here. The
combined similarity score is ranked, which is the result of the fusion system.

The last one is an indexing-verification scheme. In a biometric fusion system, a less
accurate, but fast and simple classifier can pass on a smaller set of candidates to a more
accurate, but time-consuming and complicated classifier. In our system, the face profile
classifier passes on a smaller set of candidates to the gait classifier. Then the result of
the gait classifier is the result of the fusion system.

3 Experimental Results

The data is obtained by Sony DCR-VX1000 digital video camera recorder. We collect
28 video sequences of 14 people walking outside and exposing a side view to the cam-
era, at about 30 frames per second. The shutter speed is 1/60 and the resolution of each
frame is 720x480. The distance between people and the instrument is about 7 feet. Each
of the persons has two sequences. For 4 of the subjects, the data was collected on two
separate days and about 1 months apart. Figure 8 shows the six adjacent video frames
of one person.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Six adjacent video frames (a-f)

Table 1. Experimental Results

Combination scheme
Recognition rate

Gait Face profile Integration
No combination 85.7% 64.3%

SUM rule 100%
PRODUCT rule 92.9%

Indexing-verification 92.9%

From each sequence, we construct one high-resolution face profile image and one
GEI. Since there are two sequences per person, we totally obtain 28 high-resolution face
profile images and 28 GEIs for 14 people. Recognition performance is used to evalu-
ate the significance of our method, the quality of extracted features and their impact
on identification. The results for our database are shown in Table 1. We can see that
64.3% people are correctly recognized (5 errors out of 14 persons) by face profile and
85.7% people are correctly recognized by gait (2 errors out of 14 persons), respectively.
For the fusion schemes, the best performance is achieved by the SUM rule at 100%
accuracy. The PRODUCT rule and the indexing-verification scheme obtain the same
recognition rate at 92.9%. When we use the indexing-verification scheme, we choose
the first three matching results of the face profile classifier as candidates. Then the gait
classifier measures the similarity between the corresponding GEI of the testing people
and the corresponding GEI of the training people in the candidate list.

There are two people who are not correctly recognized by gait, but when the face
profile classifier is integrated, the recognition rate is improved. It is because the clothes
of these two people are very different in the training and the testing video sequence,
the GEI method can not recognize them correctly. However, the face profiles of these
two people don’t change so much in the training and the testing sequences. It shows
that face profile is a useful cue for the fusion system. On the other hand, since the
face profile classifier is comparatively sensitive to the variation of facial expression and
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noise, the face profile classifier can not get a good recognition rate by itself. When the
gait classifier is combined, the better performance is achieved.

Through the experiments, we can see that our fusion system using face profile and
gait is very promising. The fusion system has better performance than either of the
individual classifier. It shows that our fusion system is relatively robust in reality under
different conditions. Although the experiments are only done on a small database, our
system has potential since it integrates cues of face profile and cues of gait reasonably,
which are independent biometrics.

4 Conclusions

This paper introduces a practical system combining face profile and gait for human
recognition from video. For optimal face profile recognition, we first reconstruct a high-
resolution face profile images, using both the spatial and temporal information present
in a video sequence. For gait recognition, we use Gait Energy Image (GEI) to charac-
terize human walking properties. Serval schemes are considered for fusion. The exper-
iments show that our system is very promising. Moreover, it is very natural to integrate
information of the side face view and the side gait view. However, several important is-
sues that will concern some real-world applications are not addressed in this paper. For
example, one problem is how to extract face profile images from video camera auto-
matically and precisely in crowded surveillance applications. Another problem is how
to pick up the different frames for the super-resolution algorithm so that the optimal
face profile can be reconstructed. These topics will be considered in the future.
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Abstract. In this paper we present a unique approach to personal iden-
tification which utilized finger surface features as a biometric identifier.
Finger surface features are extracted from dense range images of an in-
dividual’s hand. The shape index (a curvature-based surface represen-
tation) is used to represent the surfaces of the index, middle, and ring
fingers of an individual. This representation is used along with a correla-
tion coefficient based matcher to determine similarity. Our experiments
make use of data from 223 subjects possessing a 16 week time lapse
between collections. We examine the performance of individual finger
surfaces in a verification context as well as the performance when us-
ing the three finger surfaces in conjunction. We present the results of
our experiments, which indicate that this approach performs well for a
first-of-its-kind biometric technique.

1 Introduction

Usually a biometric system performs one or both of the following tasks: en-
rollment (registration) and verification (authentication). The enrollment task
involves entering users into the system. A biometric sensor is used to obtain
one or more samples of the selected biometric identifiers. These identifiers are
digitized for feature extraction. The extracted features are stored within the sys-
tem as a template. The collection of templates of enrolled subjects is sometimes
referred to as the gallery. Verification is concerned with the confirmation or de-
nial of an individual’s identity. The individual asserts his or her identity, and a
decision is made based upon the chosen biometric identifier. During verification,
the user is scanned by the biometric sensor, and the same features captured at
enrollment are extracted from the digitized identifier and converted into a tem-
plate. Each template collected along with an associated identity claim is called a
probe. This template is then compared to the stored templates for a match. The
quality of a match is quantified by a matching score S. We assume that larger
values of S indicate better match quality. The decision of whether a match ex-
ists is made by comparing the matching score S to a decision threshold value
T. If S ≥ T, the identity claim is assumed true and so reported. Verification
is considered a 1:1 matching problem because the feature template is compared
to only one reference template. Based on whether the identity claim originates
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from an enrollee or impostor, the system either correctly or incorrectly accepts
or rejects the identity claim.

Other research efforts have investigated the use of finger characteristics as
biometric features. Commonly used finger characteristics include finger length
and width. A number of research efforts have examined the effectiveness of using
these as biometric features. Jain et al. [1] developed a system that used mea-
surements of the fingers and hand to establish identity. Sanchez-Reillo et al. [2]
used a similar approach. Another characteristic used in prior research is that of
finger shape. Jain and Duta [3] investigated the use of hand and finger shape
extracted from the hand’s silhouette as a biometric identifier. Very little work
has been performed in 3D hand biometrics. Lay [4] used a grating pattern pro-
jected on the back surface of the hand and its distortion by the hand’s shape as
a biometric identifier. Our work represents the first to use the fine finger surface
features such as skin folds and crease patterns extracted from dense range data
as a biometric identifier. A curvature based representation is extracted from the
registered finger images and used to generate a feature template. This template
is matched against stored templates using correlation.

This paper, which is adapted from [5], is organized as follows. We begin
by providing details of the data collection and preprocessing procedures. We
continue with a discussion of techniques used for matching score calculation
as well as the biometric fusion rules implemented. Verification experiments are
presented, which demonstrate the performance of our technique. We concluded
with a summary of our results and suggestions for future research.

2 Data Collection

Our hand data collections were part of a large multimodal database assembly
effort which has been underway since early 2002. For hand data collection the
Minolta 900/910 sensor was used [6]. This sensor captures both a 640×480 range
image and a registered 640×480 24-bit color intensity image nearly simultane-
ously. During data collection, the sensor is positioned approximately 1.3m from
a flat wall which has been covered with a black piece of cloth. Black cloth was
chosen as the background to simplify the hand data segmentation task discussed
later. Prior to data collection, the subject was instructed to remove all jewelry.
The presence of jewelry during range image capture causes the emitted light
from the sensor to scatter when contact is made with the reflective surface of
the jewelry. The result is missing or inaccurate range image data near and at that
location. The subject was instructed to place his or her right hand flat against
the wall with the fingers naturally spread as the image is captured. Between
image captures, the subject is instructed to remove his or her hand from the
wall and then return it to approximately the same position.

Figure 1(a) shows a sample 640x480 color image of a hand. Figure 1(b) is a
pseudo intensity of the same hand rendered using the 640x480 range image as a
polygonal mesh. Figure 1(c) depicts the surface detail detected near a knuckle.
Our only requirement for hand placement is that the fingers are placed such
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(a) Intensity Image
Sample

(b) Range Image
Sample

(c) Range Image
Detail at Finger
Knuckle

Fig. 1. Sample Intensity/Range Images and Range Image Detail

that there is space between two adjacent fingers. By contrast, finger guide pegs
were required for precise hand placement is past efforts [1–3]. Our database of
collected data was obtained from male and female subjects between the ages of
18 and 70 from various races. The majority of our data was collected from adults
between the ages of 18 and 24. Data collection was performed on three separate
weeks. During the first week, two images from 132 subjects were collected. Three
images were collected a week later from the same 132 subjects. The third week of
data collection took place approximately 16 weeks later. During the third week,
three images were collected from 177 subjects of which 86 had participated in
data collections during the prior two weeks. Hence, our efforts yielded a total of
1,191 hand range images.

3 Preprocessing

A number of preprocessing tasks are required prior to performing our exper-
iments. All of the source code required for preprocessing was written in the
MATLAB 6.5 programming language for easy prototyping. The four required
tasks were data re-sampling, hand segmentation, finger extraction, and feature
template generation.

3.1 Data Re-sampling

Due to slight variations in sensor position from week to week, the pixel spacing
between adjacent range image pixels varied. The sampling interval values tended
to cluster around 0.425mm. We re-sampled the range images on a 0.4mm grid
(in both the x and y directions) to obtain a consistent sampling interval for all
of the range images.

3.2 Hand Segmentation

In order to work with only the range image pixels lying on the surface of the
hand, the task of hand segmentation was required. To simplify this task, the
intensity image of the hand was used. There is a pixel to pixel correspondence
between intensity and range images. Therefore, we employed a combination of
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edge and skin detection techniques to the intensity image to reliably segment
the hand from the image, thereby allowing for segmentation in the range image.
The RGB color space skin detection rules specified in Kovac̆ et al. [7] along with
an implementation of a Sobel edge detector comprise the segmentation module.

The results of the segmentation module is a binary image of the hand. The
binary image is traversed to extract the pixels lying on the hand silhouette’s
contour. Afterwards the contour of the hand’s silhouette is computed. The sur-
faces of the index, middle, and ring fingers are denoted as α, β, γ respectively
and are used in our experiments.

3.3 Finger Extraction

The convex hull of the contour of the hand’s silhouette is used to locate the
valleys between the fingers represented as circles in Figure 2(a). The valley po-
sitions are used as segment boundaries allowing for α, β, and γ to be extracted
and processed individually. Once α, β, and γ are extracted, we connected the
pixels determined to be segment boundaries. We fill in this closed curve, pro-
ducing a binary finger mask, as depicted in Figure 2(c). The shaded areas of
Figure 2(b) represents the extracted finger pixels. We lessen the effects of noisy
range data at the edges of the fingers by removing a two pixel wide portion
of the finger mask perimeter. To address finger pose variations, finger masks
along with their corresponding range pixels are rotated so that the major axis of
the finger mask is coincident with the horizontal axis in an output finger range
image. Following rotation, the finger mask pixels along with the corresponding
range data is placed in a 80×240 finger image in which the finger mask is cen-
tered vertically and positioned five pixels from the right in the output image.
The output finger images are used to generate the feature templates, which are
used for comparisons.

(a) Finger Valley Lo-
cations

(b) Extracted Finger
Pixels

(c) Finger Mask Example

Fig. 2. Finger Valley Locations, Extracted Finger Pixels, and Finger Mask Example

3.4 Feature Template Generation

For each valid pixel of the finger mask in the output image, a surface curvature
estimate is computed with the corresponding range data. Valid pixels of the
finger mask are those in which the data at the corresponding pixel location in
the range image lies on a finger surface and has been marked as valid by the
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sensor in the original range image. The linear regression technique, summarized
in Flynn and Jain [8], is employed for this task. At each finger surface point of
interest p , we obtain a set of points Sp which neighbor it. We estimate the surface
normal and two orthogonal vectors which span the tangent plane centered at p .
A bi-cubic Monge surface

z = f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + qxy + gy2 + hx + iy + j (1)

is then fit to Sp using linear regression. From the result, we calculate analytically
the partial derivatives fx, fy, fxy, fxx, and fyy to obtain the principal curvature
values, κmin and κmax using the formula

κmin,max =
fxx + fyy + fxxf

2
y + fxxf

2
x − 2fxfyfxy

2(1 + f2
x + f2

y )
3
2

±
√√√√(

fxx + fyy + fxxf2
y + fyyf2

x − 2fxfyfxy

2(1 + f2
x + f2

y )
3
2

)2

− fxxfyy − f2
xy

(1 + f2
x + f2

y )2
. (2)

These estimates of curvature contain noise. It has been suggested that the
range data be smoothed prior to curvature estimation in order to limit the effects
of noise. It was determined that if this approach is used in our application, many
of the fine finger surface features are smoothed from the data. This problem is
addressed by choosing a relatively large number of points for the Monge surface
fit. The window used for determining neighboring points was varied from 3×3 to
15×15 pixels corresponding to a 2D extent of 1.2mm×1.2mm and 6mm×6mm.
The optimal window size was chosen as 9×9 or 81 points which corresponds to a
2D extent of 3.6mm×3.6mm. By using a larger number of points during surface
fitting, the range data is implicitly smoothed. We found that if more than 81
points are used to fit the surface, many fine surface features are smoothed out
from the range data.

The computed principal curvature values were then used to compute the
Shape Index SI value at each pixel, given by the formula:

SI =
1
2
− 1

π
arctan

(κmax + κmin)
(κmax − κmin)

κmax ≥ κmin, (3)

SI is a scalar in [0,1] with values that allow shape classification. Shape index
was first proposed by Keonderink [9] and has been used successfully by Dorai
and Jain [10, 11] for free-form surface representation as well as global object
recognition.

In the rare case in which the computed principal curvature values are equal,
thereby forcing the shape index formula to be undefined at a particular pixel,
the shape index value at that pixel is assigned the value of zero. A zero value
indicates that the surface at this pixel location is planar which is consistent with
the case of equal principal curvature values.
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4 Matching Technique

The match score is the sample correlation coefficient given by the formula:

CC(SIP , SIG) =∑
(i,j)
valid

(
SIP (i, j) − SIP ) ∗ (SIG(i, j) − SIG

)
√(∑

(i,j)
valid

(SIP (i, j) − SIP )2
)
∗

(∑
(i,j)
valid

(SIG(i, j) − SIG)2
) , (4)

where SIP (i, j), SIG(i, j) are valid shape index values and SIP , SIG are the
sample mean shape index values in the probe and gallery images, respectively.
The resulting match score lies on the interval of [-1,1] where a larger value
indicates a better match.

Accurate match score calculation for each technique is dependent on proper
alignment of the finger images. During preprocessing, care was taken to auto-
matically align and center the finger mask in each output image. During each
matching attempt, the number of overlapping pixels in the gallery and probe
image is computed for three vertical offsets (+1 pixel, no offset, -1 pixel) and
the offset that maximizes the number of pixels in the overlap is employed during
match score computation. On average, the set of overlapping pixels consists of
approximately 18,500 pixels. We also experimented with horizontal shifting of
images but found that it did not improve matching performance and hence was
not required.

5 Score-Level Fusion Rules

In addition to examining each individual finger’s performance as a biometric,
biometric fusion at the score level is implemented as described in Ross and
Jain[12] and Hong et al. [13]. The matching score for each finger is treated as
an output from a separate biometric system. The multiple scores are then fused
into one overall match score using fusion rules proposed by Kittler et al.[14]. The
first of three score fusion rules implemented is the average fusion rule defined as

FSavg =
1
N

(
n∑

i=1

αi +
n∑

i=1

βi +
n∑

i=1

γi

)
, (5)

where α1,..n, β1,..n, and γ1,..n are the match scores calculated for each finger and
N = 3n, which is the total number of match scores calculated during a single
verification attempt. As stated earlier, we perform experiments involving the use
of multiple probe and gallery samples. Therefore, n is equal to the product of the
number of probe and gallery samples used during a single verification attempt.
The second fusion rule implemented is the median fusion rule defined as

FSMedian = Median {α1, α2, ..αn, β1, β2, ..βn, γ1, γ2, ..γn} , (6)
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where α1,..n, β1,..n, and γ1,..n are the match scores calculated for each finger and
FSMedian is the median valued match score of all match score calculated during
a single verification attempt. The final fusion rule implemented is the maximum
fusion rule defined as

FSMax = Max {α1, α2, ..αn, β1, β2, ..βn, γ1, γ2, ..γn} , (7)

where α1,..n, β1,..n, and γ1,..n are the match scores calculated for each finger and
FSMax is the maximum valued match score calculated during a single verification
attempt.

6 Experiments

Verification experiments involved the use of an open universe model, as described
by Phillips et al.[15]. In this model, a subject in the probe set may or may
not be present in the gallery set. The experiments used a probe set of 177
subjects and a gallery of 132 subjects. Of the subjects used, 86 are present in
both the probe and gallery sets. Therefore, a total of 223 unique subjects were
used for these experiments, many more than in previous related work. Eight
images were collected for each subject yielding a total of 1,784 hand images each
producing three finger images for a total of 5,352 finger images available for
experimentation. A total of 168 verification experiments were performed.

The probe and gallery images of our experiments possessed a relatively long
time lapse between their collection in order to evaluate the stability of the ex-
tracted features over time. During a verification attempt, only comparisons be-
tween images of the same finger type are performed. The following sections
present the results of using each of the matching techniques for verification as
Receiver Operating Characteristic (ROC). The match threshold was varied from
0 to 1 in increments of 0.01 for curve generation. At each threshold value the
False Acceptance Rate (FAR) and False Rejection Rate (FRR) are calculated.
For each experiment configuration we use the Equal Error Rate (EER) to quan-
tify verification performance.

6.1 Group A Experiments

For this configuration, a single probe image is compared to a single gallery image
during each verification attempt. For each experiment, templates from 132 probe
subjects are compared to templates of 177 gallery subjects which result in a total
of 23,364 performed verification attempts. Of these attempts, 86 are genuine and
23,278 are impostor. The false acceptance rates (FAR) and false rejection rates
(FRR) are computed for each threshold value and plotted as a ROC curve in
Figure 3. Each curve represents the average of fifteen experiments. As expected,
the fusion rule experiments exhibit better performance than the single finger
experiments. Figure 3(b) provides a close view of the graph region where the
equal error rates lie. The lowest equal error rate obtained is approximately 9%
and achieved by the average fusion rule. The set of fusion rules experiments
exhibited better performance than any of the single finger surface experiments.
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Fig. 3. Verification Performance: Group A Experiments

6.2 Group B Experiments

During this set of experiments, the number of gallery samples used during match
score calculation was increased in an effort to reduce the equal error rate. During
the single finger surface experiments, the overall match score is computed as the
average of the matching scores computed during that verification attempt. In
contrast, during the fusion rule experiments the overall match score is computed
according to fusion rule. This experiment configuration involved comparing a
single probe image to either two or three gallery images during each verification
attempt. The curves of the ROC plot in Figure 4 represent the average of six
experiments. There was not a significant difference in performance when using
either two or three gallery samples which may indicate that there was not a
significant amount of variation present between the gallery sample images. The
Group B experiments obtained a lowest equal error rate of about 7% as compared
to 9% obtained during Group A experiments, as shown in Figure 4(b). The fusion
rules continued to outperform the single finger type experiments.
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Fig. 4. Verification Performance: Group B Experiments
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6.3 Group C Experiments

Three probe image samples were compared to a single gallery image sample dur-
ing this set of experiments. The curves of the ROC plot in Figure 4 represent
the average of five experiments. A slight decrease in equal error rate occurred
using this configuration as compared to the previous experiment group. The
lowest equal error rate was attained using the average fusion rule and was ap-
proximately 6%. This performance improvement over the Group A experiments
would suggest the existence of variation between probe image samples collected
from the same subject.

6.4 Group D Experiments

The final experiment configuration involved utilizing all images collected during
a single session in the probe and gallery sets. Three probe image samples are
compared to all five of the gallery image samples collected 16 weeks prior. The
result of a single experiment is presented in Figure 6. Using this experiment con-
figuration, we achieved an equal error rate of 5.5% using both the maximum and
average fusion rule, as shown in Figure 6(b). This slight performance improve-
ment in performance over the experiments performed in the pervious section
suggests that there is exists a significant amount of variation between images in
the gallery set.
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7 Conclusions and Future Work

The results of an initial research effort in the use of 3D finger surface as a bio-
metric identifier were presented. Shape index was shown to be a suitable surface
representation for this application. The relatively low equal error rates obtained
during our experiments utilizing time lapsed data suggest that finger surface fea-
tures displayed little change over time. To address variations in collected sample
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Fig. 6. Verification Performance: Group D Experiments

images, multiple probe and gallery image samples were used during matching
score calculations. This approach yielded an increase in verification performance.
Other research has shown that biometric systems which use multiple modalities
can achieve better performance than single modality based systems. These re-
sults indicate that further research is required. Future work would involve the
fusion of features detectable in 2D images with those extracted from the range
data. These features would include finger shape, skin color and texture, as well
as skin crease patterns. Because our data collection efforts involve obtaining
both range and intensity images using a single sensor, it would be logical that
perhaps the information obtained from these two modalities should be combined
for identity verification purposes. In addition, the combination of finger surface
and other biometric identifiers such as 2D/3D face data and palm print could
also result in performance increases.

Acknowledgements

The research presented in this paper was supported by the Defense Advanced
Research Projects Agency and the Office of Naval Research under grant N00014-
02-1-0410, and by the National Science Foundation under grant EIA-0130839.

References

1. Jain, A. K., Ross, A., and Pankanti, S.: A Prototype Hand Geometry-Based Ver-
ification System. In: Proc. of 2nd Int’l Conference on Audio- and Video-based
Biometric Person Authentication(AVBPA), Washington D.C. (1999) 166–171

2. Sanchez-Reillo, R., Sanchez-Avila, C., and Gonzalez-Marcos, A.: Biometric Identi-
fication through Hand Geometry Measurements. IEEE Trans. on Pattern Analysis
and Machine Intelligence 22 (2000) 1168–1171

3. Jain, A. K. and Duta, N.: Deformable Matching Of Hand Shapes For Verification.
In: Proceedings of International Conference on Image Processing. (1999) 857–861



554 Damon L. Woodard and Patrick J. Flynn

4. Lay, Y. L.: Hand Shape Recognition. Optics and Laser Technology 32 (2000) 1–5
5. Woodard, D. L.: Exploiting Finger Surface as a Biometric Identifier. PhD thesis,

The University of Notre Dame, Notre Dame, IN 46556, USA (2004)
6. Konica Minolta Website: http://konicaminolta.com. Accessed (2004)
7. Kovac̆, J, Peer, P. and Solina, F.: Human Skin Colour Clustering for Face De-

tection. In Zajc, Baldomir, ed.: EUROCON 2003 - International Conference on
Computer as a Tool, Ljubljana, Slovenia (2003)

8. Flynn, P. J. and Jain, A. K.: On reliable curvature estimation. Proc. IEEE Conf.
Computer Vision and Pattern Recognition 89 (1989) 110–116

9. Koenderink, J. J. and van Doorn, A. J.: Surface shape and curvature scales. Image
and Vision Computing 10 (1992) 557–564

10. Dorai, C. and Jain, A. K.: COSMOS-A Representation Scheme for Free-Form
Surfaces. In: International Conference on Computer Vision. (1995) 1024–1029

11. Dorai, C. and Jain, A. K.: COSMOS-A Representation Scheme for 3D Free-Form
Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (1997)
1115–1130

12. Ross, A. and Jain, A. K.: Information Fusion in Biometrics. Pattern Recognition
Letters 24 (2003) 2115–2125

13. Hong, L., Jain, A. K., and Pankanti, S.: Can Multibiometrics Improve Performance.
Technical Report MSU-CSE-99-39, Department of Computer Science, Michigan
State University, East Lansing, Michigan (1999)

14. Kittler, J., Hatel, M., Duin, R.P.W., and Matasm, J.: On Combining Classifiers.
IEEE Trans. on Pattern Analysis and Machine Intelligence 20 (1998) 226–239

15. Phillips, P. J. and Moon, H., Rizvi, S. A. and Rauss, P. J.: The FERET Evaluation
Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22 (2000) 1090–1104



Palmprint Authentication
Based on Orientation Code Matching

Xiangqian Wu1, Kuanquan Wang1, and David Zhang2

1 School of Computer Science and Technology,
Harbin Institute of Technology (HIT), Harbin 150001, China

{xqwu,wangkq}@hit.edu.cn
http://biometrics.hit.edu.cn

2 Biometric Research Centre, Department of Computing,
Hong Kong Polytechnic University, Kowloon, Hong Kong

csdzhang@comp.polyu.edu.hk

Abstract. This paper presents a novel approach of palmprint authen-
tication by matching the orientation code. In this approach, each point
on a palmprint is assigned a orientation. And all point orientations of
a palmprint constitute a palmprint orientation code (POC). Four direc-
tional templates with different directions are devised to extract the POC.
The similarity of two POC is measured using their Hamming distance.
This approach is tested on the public PolyU Palmprint Database and
the experimental results demonstrate its effectiveness.

1 Introduction

Computer-aided personal recognition is becoming increasingly important in our
information society. Biometrics is one of the most important and reliable meth-
ods in this field [1, 2]. Within biometrics, the most widely used biometric feature
is the fingerprint [3, 4] and the most reliable feature is the iris [1, 5]. However, it
is very difficult to extract small unique features (known as minutiae) from un-
clear fingerprints [3, 4] and the iris input devices are expensive. Other biometric
features, such as the face and the voice, are as yet not sufficiently accurate. The
palmprint is a relatively new biometric feature. Compared with other currently
available features, palmprint has several advantages [6]. Palmprints contain more
information than fingerprints, so they are more distinctive. Palmprint capture
devices are much cheaper than iris devices. Palmprints contain additional dis-
tinctive features such as principal lines and wrinkles, which can be extracted
from low-resolution images. By combining all features of palms, such as palm
geometry, ridge and valley features, and principal lines and wrinkles, it is possible
to build a highly accurate biometrics system.

Many algorithms have been developed for palmprint recognition in the last
several years. Han [7] used Sobel and morphological operations to extract line-
like features from palmprints. Similarly, for verification, Kumar [8] used other
directional masks to extract line-like features. Wu [9] used Fisher’s linear dis-
criminant to extract the algebraic feature (called Fisherpalms). The performance
of these methods are heavily affected by the illuminance. Zhang [10, 11] used

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 555–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



556 Xiangqian Wu, Kuanquan Wang, and David Zhang

2-D Gabor filters to extract the texture features (called PalmCode) from low-
resolution palmprint images and employed these features to implement a highly
accurate online palmprint recognition system. In this paper, we encoded a palm-
print using the orientation information of its points. This code is called palmprint
orientation code (POC). In the matching stage, the POCs are matched according
to their Hamming Distance.

When palmprints are captured, the position, direction and amount of stretch-
ing of a palm may vary so that even palmprints from the same palm may have
a little rotation and translation. Furthermore, palms differ in size. Hence palm-
print images should be orientated and normalized before feature extraction and
matching. The palmprints used in this paper are from the Polyu Palmprint
Database [12]. The samples in this database are captured by a CCD based palm-
print capture device [10]. In this device, there are some pegs between fingers to
limit the palm’s stretching, translation and rotation. These pegs separate the
fingers, forming holes between the forefinger and the middle finger, and between
the ring finger and the little finger. In this paper, we use the preprocessing tech-
nique described in [10] to align the palmprints. In this technique, the tangent
of these two holes are computed and used to align the palmprint. The central
part of the image, which is 128 × 128, is then cropped to represent the whole
palmprint. Such preprocessing greatly reduces the translation and rotation of
the palmprints captured from the same palms. Figure 1 shows a palmprint and
its cropped image.

The rest of this paper is organized as follows. Section 2 discusses POC extrac-
tion. Section 3 presents the similarity measurement of POCs. Section 4 contains
some experimental results. And in Section 5, we provide some conclusions.

(a) Original Palmprint (b) Cropped Image

Fig. 1. An example of the palmprint and its cropped image

2 Orientation Code Extraction

In this section, we devise several directional templates to define the orientation
of each pixel. The 0◦-directional template is devised as below:

T0◦ =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎦ (1)
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And the α-directional template (Tα) is obtained by rotate T0◦ with Angle α.
Denote I as an image. The magnitude in the direction α of I is defined as

Mα = I ∗ Tα (2)

where “∗” is the convolution operation. Mα is called the α-directional magnitude
(α-DM).

Since the gray-scale of a pixel on the palm lines is smaller than that of the
surrounding pixels which are not on the palm lines, we take the direction in
which the magnitude is minimum as the orientation of the pixel. That is, the
orientation of Pixel (i, j) in Image I is computed as below:

O(i, j) = argmin
∀α

Mα(i, j) (3)

O is called the Palmprint Orientation Code (POC). Four directional templates
(0◦, 45◦, 90◦ and 135◦) are used to extract the POC in this paper.

The size of the preprocessed palmprint is 128×128. Extra experiments shows
that the image with 32 × 32 is enough for the POC extraction and matching.
Therefore, before compute the POC, we resize the image from 128 × 128 to
32 × 32. Hence the size of the POC is 32 × 32.

Figure 2 shows an example of the POCs, in which (a) is the original palm-
print, (b) is POC (the different orientations are represented by the different
grayscales ) and (c)–(f) are the pixels with the orientation 0◦, 45◦, 90◦ and 135◦,
respectively. This figure shows that the POC keeps the most information of the
palm lines.

Figure 3 shows some examples of the POCs, in which (a) and (b) are from
a palm while (c) and (d) are from another palm, and (e)-(h) are their POCs.
According to this figure, POCs from the same palms are very similar while the
ones from different palms are quite different.

3 Similarity Measurement of POC

Because all POCs have the same length, we can use Hamming distance to define
their similarity. Let C1, C2 be two POCs, their Hamming distance (H(C1, C2))
is defined as the number of the places where the corresponding values of C1 and
C2 are different.

The matching score of two POCs C1 and C2 is then defined as below:

S(C1, C2) = 1 − H(C1, C2)
N

(4)

where H(C1, C2) is the Hamming distance of C1 and C2; N is the size of a POC.
Actually, S(C1, C2) is the percentage of the places where C1 and C2 have the
same orientation.

Obviously, S(C1, C2) is between 0 and 1 and the larger the matching score,
the greater the similarity between C1 and C2. The matching score of a perfect
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(a) (b)

(c) (d) (e) (f)

Fig. 2. An example of POC. (a) the original palmprint. (b) POC; (c)–(f) the pixels
with the orientation 0◦, 45◦, 90◦ and 135◦, respectively

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Some examples of POCs. (a) and (b) are two palmprint samples from a palm;
(c) and (d) are two palmprint samples from another palm; (e)-(h) are the POCs of
(a)-(d), respectively
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Matching Results of Figure 3. (a)-(f) are the matching results of Figure 3(e)
and 3(f), Figure 3(e) and 3(g), Figure 3(e) and 3(h), Figure 3(f) and 3(g), Figure 3(f)
and 3(h), Figure 3(g) and 3(h), respectively

match is 1. Figure 4 is the matching results of Figure 3. In this figure, the white
points of the images represent that the orientation of the corresponding places
in C1 and C2 are same. Their matching scores are listed in Table 1. This figure
and table show that the matching scores of the POCs from the same palms are
much larger than that of the ones from different palms.

Table 1. Matching Scores of the POCs in Figure 2

No. of POCs Figure 3(e) Figure 3(f) Figure 3(g) Figure 3(h)

Figure 3(e) 1 0.80 0.21 0.21

Figure 3(f) - 1 0.21 0.23

Figure 3(g) - - 1 0.86

Figure 3(h) - - - 1

4 Experimental Results

We employed the PolyU Palmprint Database [12] to test our approach. This
database contains 600 grayscale images captured from 100 different palms by a
CCD-based device. Six samples from each of these palms were collected in two
sessions, where three samples were captured in the first session and the other
three in the second session. The average interval between the first and the second
collection was two months. Some typical samples in this database are shown in
Figure 5, in which the last two samples were captured from the same palm at
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Some typical samples in the Polyu Palmprint Database

different sessions. According to this figure, the lighting condition in different
sessions is very different.

In order to investigate the performance of the proposed approach, each sam-
ple in the database is matched against the other samples. The matching between
palmprints which were captured from the same palm is defined as a genuine
matching. Otherwise, the matching is defined as an impostor matching. A to-
tal of 179, 700 (600 × 599/2) matchings have been performed, in which 1500
matchings are genuine matchings. Figure 6 shows the genuine and impostor
matching scores distribution. There are two distinct peaks in the distributions
of the matching scores. One peak (located around 0.7) corresponds to genuine
matching scores while the other peak (located around 0.3) corresponds to impos-
tor matching scores. The Receiver Operating Characteristic (ROC) curve, which
plots the pairs (FAR, FRR) with different thresholds, is shown in Figure 7. For
comparisons, the FusionCode method [11], which is an improvement of the Palm-
Code algorithm [10], is also implemented on this database. In the FusionCode
method, each sample is also matched with the others. The ROC curve of the Fu-
sionCode method is also plotted in Figure 7 and the corresponding equal error
rates (EERs) are listed in Table 2. According to the figure, the whole curve of
the POC approach is below that of the FusionCode method, which means that

Table 2. EERs of Different Palmprint Recognition Methods

Method POC FusionCode

EER (%) 0.73 0.77
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the performance of the proposed approach is better than that of the FusionCode
method. In the future, we will investigate the fusion of the POC and the Fusion-
Code, which is expected to further improve the performance of both the POC
approach and the FusionCode method.

5 Conclusion and Future Work

A novel approach to palmprint authentication is presented in this paper. The
palmprint orientation code (POC) is extracted using four directional templates.
The similarity of the POCs is defined using their Hamming distance. The exper-
imental results clearly shows the effectiveness of this approach.

In future, we will test the POC approach on a large database and investigate
the fusion of the POC and FusionCode.
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Abstract. In recent years, research in speaker verification has expended
from using only the acoustic content of speech to trying to utilise high
level features of information, such as linguistic content, pronunciation
and idiolectal word usage. Phone based models have been shown to be
promising for speaker verification, but they require transcribed speech
data in the training phase. The present paper describes a segmental
Gaussian Mixture Models (GMM) for text-independent speaker verifi-
cation system based on data-driven Automatic Language Independent
Speech Processing (ALISP). This system uses GMMs on a segmental
level in order to exploit the different amount of discrimination provided
by the ALISP classes. We compared the segmental ALISP-based GMM
method with a baseline global GMM system. Results obtained for the
NIST 2004 Speaker Recognition Evaluation data showed that the seg-
mental approach outperforms the baseline system. It showed also that
not all of the ALISP units are contributing to the discrimination between
speakers.

1 Introduction

Traditional speaker verification systems are limited to the use of frame-based
spectral features that are basically modeled globally via Gaussian Mixture Mod-
els (GMM). In such systems the linguistic structure of the speech signal is not
taken into account and all sounds are represented using a unique model. Hence
the phoneme-specific information is ignored. Various studies [1–4] have shown
that voiced phones and fricatives are the most effective broad speech classes for
speaker discrimination.

Among the previous work, [5] used phoneme-specific Hidden Markov Models
(HMMs) for modeling the target speakers. [6] and [7] used a speaker verifica-
tion system based on broad phonetic categories and achieved an improvement
over the baseline system. [8] compared GMM and HMM system across different
phonemes. In [8], GMM and HMM were compared, and unlike in the above cited
works, phonetic information was used only during the scoring phase. [9] intro-
duced a phonetic class-based GMM system based on a tree-like structure, which
� Supported by the Swiss National Fund for Scientific Research, No. 2100-067043.01/1
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outperformed a single GMM modeling. Closer to what is presented in [9], are
the works done by [10] and [11], where phoneme-adapted GMMs were built for
each speaker. [10] and [11] concluded that the phoneme-adapted GMM system
outperformed the phoneme independent GMM system. In order to apply such
techniques, a phone recognizer is needed. Building the phone recognizer, requires
transcribed databases. Transcribing databases is an error-prone and expensive
task. To avoid this problem, we propose to use Automatic Language Indepen-
dent Speech Processing (ALISP) tools [12]. The segmentation can be obtained
automatically on speech data without any transcriptions.

In [13] and [14] we have already used the ALISP data-driven speech segmen-
tation method for speaker verification, clustering the speech data in 8 classes.
Classifying speech in only 8 speech classes, did not lead to a good coherence of
the speech classes. In [15], we have used a finer segmentation of the speech data
into 64 speech classes, and a Dynamic Time Warping (DTW) distortion measure
for the distance between two speech patterns. In the present work we present
an ALISP-based GMM system in which 64 models are built for each speaker.
This paper focuses on building and testing ALISP-specific GMMs and secondly
how the independent ALISP units scores can be combined to achieve a better
performance compared to modeling all speech classes in a single model.

Even though it is possible to use structural Gaussian Mixture Models [16, 17]
to perform better and efficient (fast) speaker verification systems, the idea of
using data-driven speech segmentation is to be able to further exploit high level
informations [18, 19] with no need of transcribed databases.

The outline of this paper is the following: In Section 2 more details about
the proposed method are given. Section 3 describes the database used and the
experimental protocol. The evaluation results are reported in Section4. The con-
clusions and perspectives are given in Section 5.

2 Systems Description

2.1 Baseline GMM System

The baseline system is based on Gaussian Mixture Models [20] in which the
multivariate distribution distribution of the feature vectors is modeled with a
weighted distributions. Two gender-dependent background models are created
and each speaker model is obtained by adaptation of the matching gender back-
ground model.

For each frame yt in the test segment a score is calculated using the log-
likelihood ratio of the speaker likelihood to the background likelihood

syt = log p(yt|X) − log p(yt|X) (1)

where X and X denote the client and the world models respectively. The fi-
nal score Λj is obtained by summing the frames’ scores and normalizing by T ;
the total number of frames in the test utterance j:
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Λj =
1
T

T∑
t=1

syt (2)

2.2 ALISP-Based GMM System

This approach aims to model the different speech sounds separately by using a
data-driven speech segmentation. The goal is to further enhance the performance
of the system by exploiting the speaker discriminating properties of individual
speech classes. This system is composed of the following four stages.

First the speech data is segmented using a data-driven segmentation Auto-
matic Language Independent Speech Processing (ALISP) tools [12]. This tech-
nique is based on units acquired during a data-driven segmentation, where no
phonetic transcription of the corpus is needed. In this work we use 64 classes.
The modeling of the set of data-driven speech units, denoted as ALISP units,
is achieved through the following stages. After the pre-processing step for the
speech data, first Temporal Decomposition is used, followed by Vector Quantiza-
tion providing a symbolic transcription of the data in an unsupervised manner.
Hidden Markov Modeling is further applied for a better coherence of the initial
ALISP units.

Secondly and after the segmentation of the speaker and non-speaker speech
data, the ALISP-specific background models and speaker models are built using
the feature vectors for the given ALISP class. In this segmental approach we
represent each speaker by 64 GMMs each of them models an ALISP class. The
speaker specific 64 models were adapted from the 64 gender and ALISP class
dependent background models.

During the test phase, each test speech data is first segmented with the
64 ALISP HMM models. Then, each ALISP segment found in the test utterance
is compared to the hypothesized speaker model and to the background model of
the corresponding ALISP class. The segmental scores are calculated using the
log-likelihood ratio of the speaker likelihood to the background likelihood.

Finally, and after the computation of a score for each ALISP segment, the
segmental scores are combined together to form a single recognition score for
the test utterance. In this work linear summation and Multi-Layer Perceptrons
(MLP) [21] are used to combine the individual scores for the ALISP segments.

3 Experimental Setup

All experiments are done on the NIST’2004 data which is split into two different
subsets: the Development-set and the Evaluation-set, used to test the perfor-
mance of the proposed system. We use the “8sides-1side” NIST’2004 protocol in
which we dispose of 40 minutes of data to build the speaker model and 5 minutes
for the test data (including silences).

The speech parameterization is done with Mel Frequency Cepstral Coeffi-
cients (MFCC), calculated on 20 ms windows, with a 10 ms shift. For each frame
a 15-element cepstral vector is computed and appended with first order deltas.
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Cepstral mean substraction is applied to the 15 static coefficients and only bands
in the 300-3400 Hz frequency range are used. The energy and delta-energy are
used in addition during the ALISP units recognition.

During the preprocessing step, after the speech parametrization, we separated
the speech from the non-speech data. The speech activity detector is based on a
bi-Gaussian modeling of the energy of the speech data [22]. Only frames higher
than a certain threshold are chosen for further processing. Using this method,
56% of the original NIST 2004 data are removed.

In the baseline GMM1 system two gender-dependent background models are
built and for each target speaker, a specific GMM with diagonal covariance
matrices is trained via maximum a posteriori (MAP) adaptation of the Gaussian
means of the matching gender background model. The two gender-dependent
background models (with 512 Gaussians) are trained using 5 iterations of the
Expectation Maximization (EM) algorithm.

In the ALISP-based GMM system, the ALISP-specific models are trained
using the same configuration as the global GMM system except the number of
mixtures. In the segmental GMM system, each ALISP unit model had only 32
mixtures, because there was not enough data to keep the mixture count at 512. If
an ALISP class does not occur in the training data for a target, the background
model of this class becomes that target’s model.
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Fig. 1. Speaker verification results for the global GMM system and the segmental
system using (a) a linear summation (b) an MLP for the segmental scores fusion on
the evaluation data set (subset of NIST’04)

The gender dependent background models for the GMMs and the gender
dependent ALISP recognizers, are trained on a total of about 6 hours of data
from (1999 and 2001) NIST data sets.
1 Based on the BECARS package [23]
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The MLP is trained on the development set. Since the ALISP units do not
always occur in the test data, not all of the ALISP units scores were available for
each speaker. For training the MLP, the missing scores were replaced by zero.

4 Experimental Results

We present in this section results for “8sides-1side” NIST 2004 task on the evalu-
ation data set. For this task we dispose of 40 minutes to build the speaker model
and 5 minutes for the test data (including silences). Performance is reported in
term of the Detection Error Tradeoff (DET) curve [24]. Results are compared
via Equal Error Rates (EER): the error at the threshold which gives equal miss
and false alarm probabilities.

Figure 1 (a) shows the speaker verification results for the global and the
segmental ALISP-based GMM systems. The best performing system in the fig-
ure 1 (a) is a linear summation of the segmental scores from the segmental
system. The EER was reduced from 12.4% to 11.7% and improvement in the
region favoring false alarms is also visible.

The individual performances of the ALISP classes are given in Figure 2.
This shows that certain ALISP classes perform better than others. Hence, we
can say that a linear summation of the segmental scores does not lead to an
optimal solution. Therefore an MLP was applied to the merging of the ALISP
segmental scores in order to improve the performance of the segmental system.
Figure 1 (b) shows that using an MLP instead of the simple summation brings
17% of improvement in performance, in term of Equal Error Rates, over the
baseline system.

As interesting question is, whether all ALISP segments are useful for speaker
modeling or whether it is better to ignore some of them when doing speaker

Fig. 2. Individual performances for each ALISP class for male in the development data
set (subset of NIST’04)
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Fig. 3. Speaker verification results for the segmental ALISP-based GMM system using
the sum rule for the fusion of all ALISP classes and of only the 38-best classes on the
evaluation data set (subset of NIST’04)

verification. Figure 3 shows that using a subset of the most discriminative ALISP
units (the top 38) gives better performance than using all of the ALISP classes.
Here the ALISP units are sorted by their individual performances and the score
of the 38 best ALISP units are combined using a linear summation to produce
the final score. These 38 ALISP classes account for about 56% of the total
segments in the corpus. Since correct transcriptions of the evaluation data are
not available, we cannot compare the correspondence of ALISP units and the
usual phonetic units. Figure 4 summarizes the results of the global and the
segmental ALISP-based systems.

5 Conclusions and Perspectives

In this paper we have presented a speaker verification system based on data-
driven (ALISP) segmentation, instead of the phonetic segmentation. We demon-
strated that the ALISP segments could capture speaker information. Thirty eight
ALISP units were in fact contributing most to the discrimination between speak-
ers. The segmental ALISP GMM system provided better performance compared
to the global GMM system. We have shown that applying both linear weighting
to the ALISP units and non linear weighting by using an MLP gave an improve-
ment in performance over the baseline system which models all speech sound
with a single model.

This system could be improved by varying the mixture sizes across the ALISP
classes and by normalizing the segmental scores using the Tnorm and Znorm
techniques. HMMs could also be used instead of the GMMs in order to capture
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Fig. 4. Speaker verification results for the global GMM system, the segmental system
using an MLP for combining scores of all ALISP classes and the segmental system using
a linear summation of the 38 best ALISP units on the evaluation data set (subset of
NIST’04)

and take advantage of sequential information. We are also investigating the fusion
of this system with others systems treating high level information provided by the
ALISP sequence and which is related to the speaker style. The great advantage
of the proposed method is that it is not grounded on the usage of transcribed
speech data.
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Abstract. This paper first compares performances of two authentica-
tion methods using ear images, in which feature vectors are extracted by
either principal component analysis (PCA) or independent component
analysis (ICA). Next, the effectiveness of combining PCA- and ICA-
based ear authentication methods is investigated. In our previous work,
we proposed an audio-visual person authentication using speech and ear
images with the aim of increasing noise robustness in mobile environ-
ments. In this paper, we apply the best ear authentication method to our
audio-visual authentication method and examine its robustness. Exper-
iments were conducted using an audio-visual database collected from 36
male speakers in five sessions over a half year. Speech data were contam-
inated with white noise at various SNR conditions. Experimental results
show that: (1) PCA outperforms ICA in the ear authentication frame-
work using GMMs; (2) the fusion of PCA- and ICA-based ear authenti-
cation is effective; and (3) by combining the fusion method for ear images
with the speech-based method, person authentication performance can
be improved. The audio-visual person authentication method achieves
better performance than ear-based as well as speech-based methods in
an SNR range between 15 and 30dB.

1 Introduction

In the IT/network society of today, accurate and convenient person authentica-
tion has become increasingly necessary. In order to achieve a high performance,
various multimodal biometric authentication methods have been proposed[1–7].

Speech is one of the most useful and effective biometrics for authentication
in mobile/ubiquitous environments. However, since its performance deteriorates
due to additive noise and session-to-session variability of voice quality, combina-
tion with other biometric features is needed for improving the performance.

Along this line, various audio-visual biometric authentication methods have
been proposed[1–4]. Although most of them use “face” information in combina-
tion with speech, the face features also change due to make-up, mustache, beard,
hair styles and so on, and derives degradation of the performance. Therefore, it
is worth investigating other biometric features with high permanence.
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Fig. 1. Multimodal person authentication system using speech and ear images

Since ear shapes are unique to each individual and hardly change over time[8,
9], utilizing ear information is expected to achieve reliable and robust person
authentication. [6] reported that combination of ear and face information is ef-
fective in biometric authentication. Since ear images can be captured using a
small camera installed in a mobile phone, ear information can be more easily
used in mobile environments than other biometrics, such as fingerprints, irises,
or retinas, which require special equipment. From this point of view, we pre-
viously proposed an audio-visual speaker verification method using ear shape
information in combination with speech signal[7].

In our previous method[7], ear features were built by an “eigen-ear” approach
based on principal component analysis (PCA) in the same way as eigen-face ap-
proach is used in face recognition[10], and improved the performance of authen-
tication obtained using only speech. On the other hand, it has been reported
that independent component analysis (ICA)[11] can outperform PCA in face
recognition[12] and palmprint recognition[13]. This paper applies the ICA to ex-
traction of ear features in our multimodal authentication method, and compares
the performances of ICA- and PCA-based authentication methods. Addition-
ally, the two ear authentication methods are combined, and the effectiveness is
investigated.

Our authentication method and audio-visual database are described in Sec-
tion 2. Section 3 reports experimental results and Section 4 concludes this paper.

2 System Structure and Database

Figure 1 shows our multimodal person authentication system using speech and
ear images. Audio and visual data are respectively converted into feature vectors.
Each set of features is compared to both a claimed person model and a speaker
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independent (SI) model to calculate a posterior probability. The audio and visual
scores are integrated after appropriate weighting, and a decision is made whether
he/she should be accepted as a true speaker or rejected as an impostor, by
comparing the integrated score with a preset threshold value.

2.1 Integrated Score

The posterior probability of being a claimed speaker Sc after observing a bio-
metric feature set x, is denoted by p(Sc|x). Since x is composed of speech (audio)
features xs and ear (visual) features xe, p(Sc|x) can be transformed as follows:

p(Sc|x) = p(Sc
s|xs) · p(Sc

e|xe) (1)

where Sc
s and Sc

e represent the claimed speaker’s speech and ear models, respec-
tively. The Bayes’ Rule derives the following equation:

p(Sc|x) =
p(xs|Sc

s)p(S
c
s)

p(xs)
· p(xe|Sc

e)p(S
c
e)

p(xe)
(2)

where p(xs|Sc
s) and p(xe|Sc

e) are likelihood values with claimed speaker’s speech
and ear models, respectively. The probabilities in the denominator are approxi-
mated by using likelihood values for the general speaker’s speech model p(xs|Sg

s )
and ear model p(xe|Sg

e ):

p(Sc|x) ≈ p(xs|Sc
s)p(S

c
s)

p(xs|Sg
s )p(Sg

s )
· p(xe|Sc

e)p(S
c
e)

p(xe|Sg
e )p(Sg

e )
(3)

∝ p(xs|Sc
s)

p(xs|Sg
s )

· p(xe|Sc
e)

p(xe|Sg
e )

(4)

Equation (4) is derived based on the assumption that observations of all the
claimed speakers are equally probable. Since an SI model made by many speak-
ers can be used as the general model, a posterior probability for each claimed
speaker’s model is calculated by the product of likelihood values normalized by
the SI models. By defining authentication scores for speech (ps) and ear (pe) as

pm = log p(xm|Sc
m) − log p(xm|Sg

m) (m = s, e) (5)

an integrated score pse which balances the effectiveness of speech and ear features
can be modeled by the following equation:

pse = λsps + λepe (λs + λe = 1) (6)

where λs and λe are audio and visual weights, respectively.

2.2 Audio-Visual Database

Recording Conditions. Audio-visual data[7] were recorded in five sessions at
intervals of approximately one month. In this paper, data from 36 male speakers



Multimodal Speaker Verification Using Ear Image Features 591

were used, in which each speaker uttered 50 strings of four connected digits in
Japanese at each session. Speech data were sampled at 16kHz with 16bit resolu-
tion. One right ear image for each speaker, with no obscuring hair, was taken by
a digital camera with 720×540 pixel resolution at each session. The camera was
positioned perpendicular to the ear with the distance of approximately 20cm to
take the whole ear image.

Training and Testing Data. The database was divided into three groups of 12
speakers. The three groups were assigned to training, testing, and development
sets. The development set was used for adjusting parameters such as weights
and thresholds. By rotating the roles of the three groups, six experiments were
conducted. The set of data recorded at sessions 1∼3 was used for training; and
that recorded at sessions 4 and 5 was used for testing and development. The
SI model was trained using the utterances by 12 speakers in the training set.
All the speakers in the testing data other than the claimed speaker himself were
used as impostors.

White noise was added to the audio data for training at a 30dB SNR level to
increase the robustness against noisy speech, and testing data were contaminated
with white noise at 5, 10, 15, 20, and 30dB SNR conditions.

As image data, we first extracted gray-scaled ear images with 80×80 pixel
resolution. The ear location and rotation in the image were manually adjusted.
In order to increase the robustness of visual models, the following variations were
given to training data:

1. Shifting the ear location in vertical and horizontal directions within ±6 pixels
at a 2 pixel interval. Consequently, 49 variations were made for each ear
image.

2. Rotating the ear images within ±30 degrees at one degree intervals. Accord-
ingly, 61 variations were made for each ear image.

Both operations together made approximately 9,000 (= 3 sessions × 49 × 61)
ear images for training each speaker’s model. For testing and development data,
we applied only the rotating operation.

All ear images were filtered by Laplacian-Gaussian filtering, and then circu-
larly sampled and digitized for reducing hair effects as well as avoiding window
shape effects caused by rotation of the images.

2.3 Audio and Visual Features

Audio featureswere 25-dimensional vectors consisting of 12MFCCs, 12ΔMFCCs,
and Δ log energy. The frame shift and the analysis window length were 10ms
and 25ms, respectively.

For ear images, subspaces were built by using principal component analysis
(PCA) and independent component analysis (ICA). Although there are a number
of algorithms for performing ICA, the FastICA algorithm[14] was chosen, since
it provides the best results for face authentication[12]. Before applying the ICA
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(a) PCA

(b) ICA

Fig. 2. Examples of the five basis vectors obtained by PCA and ICA

algorithm to the data, centering and whitening processes were conducted for
reducing the computational complexity of the ICA. PCA and ICA were applied
to the 12 ear images in the training set recorded at the first session. The original
ear images with no shifting or rotation were used for the analysis. Figure 2 shows
examples of the five basis vectors obtained by PCA and ICA.

Effective basis vectors were selected from 12 vectors by the greedy algorithm
to minimize the equal error rate (EER) for the development set. Then, ear images
were converted into ear features by projecting the images on a subspace built
by the selected basis vectors. Consequentially, the average number of dimensions
for ear features extracted by PCA and ICA were 8.5 and 9.0, respectively.

2.4 Speech and Ear Models

Audio features were modeled by digit-unit HMMs. Each digit HMM has standard
left-to-right topology with n × 3 states, where n is the number of phonemes in
the digit. The authentication score for the speech features represented in Eq. (4)
is calculated as follows:

p(xs|Sc
s)

p(xs|Sg
s )

=
Σwp(xs|Sc

s, w)p(w)
Σwp(xs|Sg

s , w)p(w)

≈ maxw p(xs|Sc
s, w)

maxw p(xs|Sg
s , w)

(7)

where w is a string of four connected digits.
Visual features were modeled using GMMs. In each testing experiment, 61-

feature vectors converted from the rotated images were input to the GMMs. Log
likelihood values calculated for the claimed speaker and the SI models were used
to obtain the authentication score for each ear image according to the Eq. (5).
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Table 1. Error rates (%) in person authentication using ear images extracted by PCA
and ICA for development and test sets. “PCA+ICA” indicates error rates of a fusion
method integrating visual scores obtained from the PCA- and ICA-based methods

dev. set test set

PCA 6.5 11.3
ICA 12.4 14.2

PCA+ICA 6.3 9.8

3 Experimental Results

3.1 Authentication Using Ear Images

First, an experiment using only ear images was conducted. Table 1 shows error
rates by PCA- and ICA-based authentication for the development and test sets.
The number of mixtures for speaker GMMs and SI GMM, the number of dimen-
sion of feature vectors, and the threshold for authentication were optimized to
minimize the EER for the development set. “PCA+ICA” indicates error rates
by the fusion method; that is, PCA- and ICA-based visual scores were integrated
with appropriate weights, λPCA and λICA (λPCA +λICA = 1), and used for the
authentication. λPCA and λICA were also optimized for the development set.

The table shows that PCA outperforms ICA in person authentication using
ear images. The best performance is obtained by using the fusion technique; 6.3%
error rate for the closed condition and 9.8% error rate for the open condition
were obtained.

3.2 Multimodal Authentication Using Speech and Ears

Audio-visual authentication results for the test set in various SNR conditions
are shown in Fig. 3. Since the fusion method “PCA+ICA” showed the best
performance for authentication using ear images, it was used in this experiment.
The audio and visual weights (λs and λe) and the threshold were optimized
to minimize the EER for the development set at each condition. The number
of mixtures in the audio HMMs was determined based on experimental results
using only speech at 30dB SNR condition. Results using only speech (λs = 1.0)
and only ear (λs = 0.0) are also shown for the purpose of comparison.

It is clearly shown that multimodal authentication is more robust than speech-
only methods where the performance significantly degrades with noise. The mul-
timodal method outperforms both speech- and ear-only methods when the SNR
is 30, 20, and 15dB. The combination of speech and ear images is most effective
when the SNR is 30dB; an error rate of 0.26% is obtained which is 67.9% lower
than the speech-only method and 97.3% lower than the visual-only method.

Figure 4 shows examples of DET curves with various authentication methods
at 15dB SNR. In this experiment, all the control parameters except thresholds
were determined to minimize the EER for the development set. Effectiveness of
combining speech and ear information is also shown in this figure.
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Fig. 3. Results of multimodal person authentication for test set in various SNR con-
ditions
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4 Conclusions

This paper has applied an ICA-based feature extraction technique to our multi-
modal authentication method using speech and ear images.

First, an ICA-based ear authentication method was compared with a PCA-
based method. Experimental results show that PCA outperforms ICA in the
framework using GMMs. Since the performance of the ICA method varies largely
according to task, data size, and details of the algorithm, we need to conduct
further experiments before generalizing the conclusion. Our future research in-
cludes applying an alternative ICA algorithm rather than the
FastICA and increasing the ear image data for evaluation.

It was confirmed that the fusion of PCA- and ICA-based ear authentication
methods is effective, which indicates that the two authentication methods are
fairly independent.

It was also confirmed that, by using the fusion method for ear authentication
and combining it with speech information, our multimodal method becomes
more robust than the speech-only method in various SNR conditions.

Our future work also includes improving authentication performance using
ear information by increasing the robustness against ear image variation caused
by tilt of camera and developing an automatic ear-area detection method.
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Abstract. This paper deals with a problem of recognition by gait when
time-dependent covariates are added, i.e. when 6 months have passed
between recording of the gallery and the probe sets. We show how recog-
nition rates fall significantly when data is captured between lengthy time
intevals, for static and dynamic gait features. Under the assumption that
it is possible to have some subjects from the probe for training and that
similar subjects have similar changes in gait over time, a predictive model
of changes in gait is suggested in this paper, which can improve the recog-
nition capability. A small number of subjects were used for training and
a much large number for classification and the probe contains the co-
variate data for a smaller number of subjects. Our new predictive model
derives high recognition rates for different features which is a consider-
able improvement on recognition capability without this new approach.

1 Introduction

Recently much attention has been devoted to use of human gait patterns as
biometric. Gait recognition aims to discriminate individuals by the way they
walk and has the advantage of being non-invasive, hard to conceal, being readily
captured without a walker’s attention and is less likely to be obscured than other
biometric features. Approaches to gait recognition can be broadly classified as
being model-based and model-free. Model-based methods [3, 5, 10] model the
human body structure and extract image features to map them into structural
components of models or to derive motion trajectories of body parts. Model-
free methods [1, 2, 4, 23] generally characterise the whole motion pattern of the
human body by a compact representation regardless of the underlying structure.
In this paper we employ the model-based (dynamic) method of Wagg and Nixon
[22] and the model-free (static) method of Veres et al [20].

However, in these works only databases recorded over a short time interval
were evaluated. Some studies over a more lengthy time interval were reported
for face recognition. In [19] images of 240 distinct subjects were acquired under
controlled conditions, over a period of ten weeks. They showed that there was
not a clearly decreasing performance trend over a period of ten weeks and con-
cluded that reduction in degradation is small enough as to be nearly flat over this
time period. Other studies have shown that over a period of years, face recog-
nition performance degrades linearly with time [16]. Some studies were done to
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show effects of ageing on face recognition [6–8]. In [6] a systematic method for
modelling appearance variation due to ageing is presented. It was shown that
ageing variation is specific to a given individual, it occurs slowly and it is af-
fected significantly by other factors, such as the health, gender and the lifestyle
of the individual. Taking this into consideration, reasonably accurate estimates
of age can be made for unseen images. In [7, 8] face identification experiments
are presented, where the age of individuals in the gallery is significantly different
than the age of individuals in the probe. It was demonstrated that automatic age
simulation techniques can be used for designing face recognition systems, robust
to ageing variation. In this context, the perceived age of subjects in the gallery
and probe is modified before the training and classification procedures, so that
ageing variation is eliminated. O’Toole et al. [14, 15] use three-dimensional facial
information for building a parametric 3D face model. They use a caricature al-
gorithm in order to exaggerate or deemphasize distinctive 3D facial features; in
the resulting caricatures, the perceived age is increased or decreased according to
the exaggeration level, suggesting that 3D distinctive facial features are empha-
sized in older faces. Some recent efforts [9] were made to improve age estimation
by devoting part of the classification procedure to choosing the most appropri-
ate classifier for the subject/age range in question, so that more accurate age
estimates can be obtained.

In this paper we consider a gait recognition problem when two databases
(the gallery and probe) were recorded with a time interval of 6 months between
the finish of recording the first database (gallery) and the start of recording the
second database (probe), i.e. time-dependent covariates are added. Moreover,
some extra covariates were added in the second database such as different shoes,
clothes, carrying different bags. In real life the need to analyse such databases
arises in security of access to a company or an embassy for example. It is possible
to record people walking normally as a gallery, but later it will be necessary to
recognize these people in different clothes, shoes, possibly carrying luggage and
when time passes. It is shown that in this case correct classification rates fall sig-
nificantly and recognition becomes unreliable. Similar results were obtained for
the HumanID Gait Challenge Problem [17], where recognition fell from 82% to
6% after 6 months. Some other recent works reported a significant fall in recog-
nition capability over a lengthy time interval [11–13]. Under the assumptions
that we can have records of people walking normally from the probe and similar
people have similar changes in gait, the predictive model of gait changes is sug-
gested in this paper as way to increase CCRs when analysis is needed over time.
The predictive model is based on available records both from the gallery and the
probe and a prediction matrix is constructed for these subjects. Then prediction
matrix is generalised for all subjects in the gallery and predicted gallery is ob-
tained. The probe is analysed via the predicted gallery and CCRs are calculated.
To show robustness of the suggested approach the predictive model was appllied
both on static and dynamic feature sets. We show that CCRs can be increased
by several times when using the new predictive model.
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Section 2 describes the suggested prediction model for changes in gait over
lengthy time interval. The methodology of constructing feature sets is presented
in Section 3. Experimental results are presented and described in Section 4.
Section 5 concludes this paper.

2 Prediction of Time-Variant Covariates

The idea of our approach was inspired by work of Lanitis et al [8] where it was
shown that reasonably accurate estimates of age can be made for unseen images.
In case of recognition by gait over a lengthy time interval we assume that it is
possible to predict the gallery over the given time interval and achieve good
recognition results by analysing the probe via the predicted gallery. In this case
the training set consists of a set of subjects from the gallery and the same set of
subjects from the probe. The probe was recorded some time later after finishing
recording the gallery. In the general case the predicted gallery can be defined as

Ĝ = G + Q, (1)

where Ĝ is the predicted gallery, G is the gallery and Q is a prediction matrix.
Let the gallery and the probe be divided into groups, where a number of

groups corresponds to a number of subjects and each group represents feature
vectors for a given subject. Let us consider at first the case when the number of
groups (subjects) in the gallery equals the number of groups (subjects) in the
probe and the groups (subjects) are the same. At first we sort the records of the
subjects according to their groups and note the number of records per subject.
Then the prediction matrix Q is constructed as follows. At first for each group
in the probe and gallery the mean of the group is calculated

x̄j
p =

1
nj

p

nj
p∑

i=1

xj
pi and x̄j

g =
1
nj

g

nj
g∑

i=1

xj
gi, (2)

where x̄j
p is the mean of group j in the probe, x̄j

g is the mean of group j in the
gallery, j = 1, . . . , ng, where ng is a number of groups, nj

p and nj
g is a number

of records in the jth group of the probe and of the gallery, respectively, xj
pi and

xj
gi are records for ith subject in jth group in the probe and gallery respectively.

Then the prediction matrix for each group is calculated as

Qj = e(x̄j
p − x̄j

g), j = 1, . . . , ng, (3)

where e is a positive unit vector of (nj
g × 1), and the final prediction matrix is

Q = [Q1;Q2; . . . ;Qng ]. (4)

For the more general case when a number of groups in the gallery is not the
same as a number of groups in the probe and/or subjects are not the same both
in the gallery and in the probe, the prediction matrix is constructed as follows.
Here we present a case when a number of groups in the gallery is more than a
number of groups in the probe. Two assumptions are made in this case
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1. Every subject in the probe exists in the gallery.
2. The gait of the similar subjects will change in a similar manner with time.

We are looking forward to gathering more data to provide a theoretical analysis
or statistical observation to support the second assumption.

The gallery and probe are divided into groups. The gallery is rearranged in
such a way that the first ng will be the groups which are in the probe, and the
last ndg groups are not in the probe. The number of groups in the gallery is
ngg = ng + ndg. Then the final prediction matrix is calculated as

Q = [Q1;Q2; . . . ;Qng ,Qng+1, . . . ,Qngg ]. (5)

The means of all groups in the probe and the gallery are calculated and prediction
matrices for coincidental groups are taken as (3) in this case. The differences
will be for groups in the gallery which do not exist in the probe. Further the
calculation of the prediction matrices for such groups is presented. To be able to
distinguish means of groups belonging only to the gallery from the means of the
groups existing in the probe we will denote them as x̄dj

g , where dj = 1, . . . , ndg.
Then taking into consideration assumption 2, we can first compare the means of
groups existing both in the probe and in the gallery with the means of groups
existing only in the gallery. For each x̄dj

g find the first nearest neighbour from
x̄j

g by using formula

find k such as k = j : {min
j

|x̄j
g − x̄dj

g |, j = 1, . . . , ng}. (6)

Then the predicted matrix for a given group is

Qng+dj = Qk + e|x̄k
g − x̄dj

g |, (7)

where e is of (nk
g × 1).

After the prediction matrix is obtained, the predicted gallery is calculated
as (1) and the probe is classified via the predicted gallery. In some cases it is
possible that the number of records per subject is much higher than the number
of records used for calculation of prediction matrix. In this case the probe is
divided into parts: one used for training and classification and second used only
for classification. The suggested approach to predict changes of gait over lengthy
time interval was applied to recognition by gait later in the paper.

3 Methodology

Two databases were analysed in the paper, both comprising indoor (studio) data
since the purpose of this paper is to investigate a gait recognition problem. The
first database, called the large database (LDB), consists of 115 subjects walking
normally. The database arrangements are described elsewhere [18]. The LDB can
be used to determine which image information remains unchanged for a subject
in normal conditions and which changes significantly from subject to subject, i.e.
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a) b) c) d)

Fig. 1. Average silhouette representing subject 46: a) LDB, b) SDB, walking normally,
c) SDB, carrying a bag, d) SDB, wearing trench coat

it represents subject-dependent covariates. The small database (SDB) consists
of a sample of 10 subjects from the LDB. Each subject was filmed wearing a
variety of footwear, clothes and carrying various bags. They were also filmed
walking at different speeds. In this case the covariate factor is more complicated
than decribed in Section 2, since it does not only depend on the subjects, but
on the other factors mentioned above. Each subject’s data was captured during
one continuous filming session. Examples of features from the LDB and the SDB
is presented in Fig. 1. The figure shows subject 46’s data recorded in the LDB
and in the SDB walking normally, carrying a bag and wearing a trench coat.

The SDB is intended to investigate the robustness of biometric techniques
to imagery of the same subject in various common conditions (carrying items,
wearing different clothing or footwear). It worth noticing that sequence of film-
ing data was LDB first and then SDB with approximately 6 months difference
between recording LDB and SDB, i.e. time-dependent covariates are also added.

For brevity we shall not fully describe the extraction methods, complete ex-
planations of the techniques used can be found in [20, 22]. These techniques
yield two feature vectors for each database: the dynamic vector consists of 73
parameters describing joint rotation models of the limbs together with normal-
ized information about the subject’s speed and gait frequency; the static method
consists of a 4096 dimensional vector derived from the subject’s silhouette accu-
mulated over a sequence of images.

4 Experimental Results

In this section we present the results of an experimental assessment of the per-
formance of the suggested predictive model in the tasks of recognizing people
over lengthy time interval by gait, i.e when SDB was analysied via LDB S/L,
and of predicting the future changes in gait. The system was tested on five dif-
ferent conditions. For the first we performed leave-one-out experiments using
all our training silhouettes. The training set consists of 10 subjects belonging
both to LDB and SDB, i.e. S10/L10. This experiment tested the accuracy of
our approach in prediction of gait changes over time in subjects who had al-
ready provided training silhouettes. In the second experiment we are testing
the predictive model for a case when the testing set was 10 subjects from the
SDB walking normally but recorded 1 hour later in comparision to the training
set, i.e. S10(1)/L10. This experiments shows how robust the predictive model is
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to extra small time intervals, which were not taking into consideration during
training. For the third experiment we added 105 new subjects to the gallery
and tested how our approach will work when many more subjects are available
for recognition in gallery than were used in training, i.e. S10/Lall. In fourth
experiment the training set was kept the same, but at the classification stage
non time-dependent covariates are added to the probe, i.e. Sall/L10. This test
showed how adding extra covariates which were not used in training will affect
the performances of the predictive model. The last experiment investigates the
performance of the predictive model when only 10 subjects from the gallery and
the probe are available for training, but 105 subjects are added to the gallery
and 12 different experiments affecting a gait of a subject are added to the probe
at classification stage, i.e. Sall/Lall.

To show the robustness of the suggested approach the prediction was applied
to both the static stat and dynamic dyn features of gait. The reduced datasets
were used for representing both static and dynamic part of gait, since it was
shown [20] that recognition rates are little changed if a subset of the features is
used. Different dimensionality reduction techniques were chosen for dynamic and
static parts of gait due to their different performance on different datasets. The
reduction techniques were applied only to training sets (not on whole databases)
and choice of reduction technique was made accordingly, i.e. the best from the
point of view of the training set. Static feature set dimensionality reduction
was achieved by one-way ANOVA (analysis of variance), and the backwards
feature selection algorithm [21] was used for the dynamic feature set. In case of
dimensionality reduction by ANOVA the features are selected which satisfy the
condition i : Fi > k1(max(F ) −min(F )), where F is the F-statistic, and k1 is
a coefficient. In our case k1 = 0.2 was chosen for the best classification results.
And by correct classification rate, CCR is understood a correct classification
rate obtained by by comparison SDB (to mean probe) via LDB (gallery) if not
mentioned otherwise. The CCR was calculated using Euclidean distance as it is
the most popular distance metric in gait recognition literature and the 1-nearest
neighbour rule. To show the influence of time and not a degradation of data
quality on recognition, the CCR is calculated for each database separately, i.e.
the LDB is analysed via LDB (Lall/Lall) and SDB via SDB (Sall/Sall). The
results are presented in Table 1 and show acceptable CCRs for both dynamic
and static feature sets. The CCR’s are consistent with the size of the database
and we are able to recognise people, that means that both sets of data are good.

Table 1. Analysis of databases without time-dependent covariates

Lall/Lall Sall/Sall

stat 98.47% 99.90%

dyn 72.32% 90.24%

CCRs for original and reduced datasets when SDB via LDB analysed are
presented in Table 2, i.e. when LDB is considered as the gallery and SDB is



Modelling the Time-Variant Covariates for Gait Recognition 603

Table 2. CCRs for static and dynamic features before training

Dataset number of features S10/L10 S10(1)/L10 S10/Lall Sall/L10 Sall/Lall

stat 4096 62.10% 64.93% 43.84% 47.61% 22.54%

stat 174 70.32% 68.24% 42.47% 51.73% 20.74%

dyn 73 19.18% 22.27% 8.68% 16.41% 5.30%

dyn 34 28.77% 33.65% 20.09% 28.81% 13.50%

considered as the probe. A subject in the probe can wear normal shoes, clothes
and walk normally or can walk slower/faster than normal, wear different shoes,
raincoat or even carry a bag/rucksack. We try to match this subject in the probe
to a subject in the gallery who walks normally, wears normal shoes and normal
clothes (no raincoat) and does not carry any bags. Training is done only for 10
subjects walking normally in both databases. Analysis is done when all features
are taken into consideration in the probe and the gallery and when a reduced
set of features is considered. In Tables 2 it can be seen that as soon as time-
dependent covariates are added to analysis the fall in CCR is very noticeable. In
some case the recognition rate approaches chance. The significant reduction in
feature space is achieved without significant loss in CCR, and in some cases the
visible increase in CCR can be seen. At the same time the CCRs are very low even
in the best case especially when all subjects and all experiments are considered
and something should be done to improve CCR. One of the ways is to use the
suggested predictive model. It was noticing that if for static features the small
time interval in experiments S10/L10 and S10(1)/L10 does not cause noticable
change in the recognition cability, in case of dynamic features the difference in
CRR is almost 17% whcih can cause the noticable reduction in CCR on the
testing set in comparison with the training set. However CCRs are affected not
only by time-dependent covariates but adding extra subjects in the gallery and
by adding non time-dependent covariates to the probe. In this paper we try
to remove time-dependent covariates, but the influence of non time-dependent
covariates will remain since it was assumed that only some records/subjects are
available for training.

Results of applying the predictive model to the training set and later to
the whole databases are presented in Table 3. When only the training set is
considered (S10/L10), 99.54% CCR is achieved for static features and 90.41%
CCR for dynamic features which is expected as the predictive model was built
on these sets and these numbers verify the linear model suggested for prediction
in the paper. However, there is a drop in CCRs when experiment S10(1)/L10 is
considered, i.e. when the testing and the training set recorded with time interval
1 hour. In the case of static features the drop can be considered insignificant
and we can say that this experiment is verified the predictive model for static
features. In the case of dynamic features it is almost a 10% drop, which can
be explained by the lower CCR due to differences between the training set and
testing set, see Table 2. However, for both static and dynamic features, CCRs are
much higher after training than they were before training for this experiment.
Moreover, when more subjects are added to the gallery, the predictive model
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can cope with this situation quite well. Only insignificant reduction in CCRs
are presented for experiment S10/Lall for both the dynamic and static feature
sets. Also CCRs are decreasing with adding extra covariates to the training sets
( more subjects, different experiments or both), the final results are much better
than before training. When all subjects and experiments are analysed the CCR
of 65.44% is achieved for static features which is practically three times more
than was before training. In case of dynamic features the increase in CCR is
almost four times which is very significant.

Table 3. CCR for different datasets after applying predictive model

Dataset S10/L10 S10(1)/L10 S10/Lall Sall/L10 Sall/Lall

stat 99.54% 94.79% 96.35% 76.80% 65.44%

dyn 90.41% 82.46% 88.21% 62.66% 50.24%

Table 3 shows that the suggested prediction approach is able to correct time-
dependent variances and even produces good results when the gallery is much
bigger than training set. However, it is not able to take into account the non time-
dependent covariates in the probe. Therefore some extra efforts are needed to
improve CCRs in such cases, which can be different predictive models, different
classifiers, or fusion algorithms. We did not use sophisticated classifiers in this
paper so we can verify the suggested linear model for the given problem.

5 Conclusions

This paper deals with a problem of increasing correct classification rate when
time-dependent covariates (6 months passed between the finish of recording the
gallery and the start of recording the probe) together with some other covariates
such as variety of footwear, clothes and carrying different bags are added to an
analysed database for gait recognition. We have shown that CCRs are very
low in this case. In this paper we suggest to use the prediction of gait over
the given time interval. One assumption made for the predictive model is that
similar subjects will have similar changes in gait over a lengthy interval. The
predictive model is based on estimation of differences between the means of
subjects in the gallery and the probe and incorporation of these differences in
prediction of the feature vectors in the gallery over the given time interval. Then
the predicted gallery is compared with the probe and cross-validation is done.
The experimental results showed that good results can be achieved both on the
training set and the testing set and when extra subjects are added to the gallery
and/or extra covariates are added to the probe. The predictive model allows good
estimation of gait even when extra subjects are added to the gallery. However,
the results are less impressive (though very good in comparison with the results
achieved without prediction) when extra covariates are added to the probe such
as wearing different shoes/clothes, wearing bags and walking faster/slower. To
increase the CCR still further in such cases different approaches can be used:
better predictive model, different classifiers or fusion.
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Photometric Normalisation for Face Verification
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Abstract. Further to previous work showing the superiority of the pre-
processing algorithm developed by Gross and Brajovic, we propose im-
provements that remove the need for parameter selection. In extensive
experimentation on the XM2VTS database, the Yale B database and the
BANCA database, we show that our method of automatic parameter se-
lection can produce better results than setting the parameter to a single
value for the whole database.

1 Introduction

The benefits of using a face as a biometric is in the ease with which a face
image can be captured. That is, from a distance with a non-intrusive camera.
Unfortunately, the ease of capturing an image of a persons face is twinned with
associated problems due to the nature of the image capture. The image of the
face varies with the angle of the camera and with the illumination of the face.
In fact, it is true that in general the variation between images of different faces
is smaller than that of the same face taken in a variety of environments [2]. As
a result, the popular appearance based methods suffer. Although they perform
well on images of faces captured in environments similar to that of the training
set, they lack the ability to extrapolate to novel conditions.

There are two approaches to this problem. Firstly, we can attempt to model
the variation caused by changes in illumination, so as to generate a template that
encompasses all possible environmental changes. Secondly, we can try and remove
the variation and normalise the input images to some state where comparisons
are more reliable. Belhumeur and Kriegman used the former approach [5]. The
illumination cone method attempts to model the set of images of an object that
can be generated by all possible light source combinations. They showed that this
set of images forms a low dimensional convex cone, and demonstrated that the
cone could be derived from nine images [14]. Unfortunately, this method requires
training images to be illuminated by point light sources in a particular configu-
ration. Basri and Jacobs and also Ramamoorthi have shown in recent work, that
spherical harmonics can be used to represent more complicated lighting config-
urations [4, 17]. Using a second order model it is possible to represent over 98%
of the possible variation in the reflectance function in a nine dimensional linear
subspace. Three dimensional information about the face is required for a sub-
ject template using this method and as such a large amount of training data is
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needed. Vasilescu and Terzopolous have extended the principal component anal-
ysis method, eigenfaces, as developed by Turk and Pentland [19], into a multi-
model representation [20]. The eigenfaces method cannot differentiate between
variance caused by inter-subject variation from variance caused by intra-subject
variation. As a solution, the tensorfaces representation uses N-mode singular
value decomposition where image changing factors such as subject, illumination,
pose and expression are represented independantly. They have shown that this
approach can represent a face in fewer components than the eigenfaces method.
This method also requires a large amount of training data.

The second approach to the illumination problem was to use pre-processing
to remove the effects of illumination before verification. This removes the need for
large amounts of training data. Land [13] showed that an image could be thought
of as the product of two functions, reflectance and luminance. The reflectance
function is dependant only upon the albedo of the face and the luminance func-
tion is determined by the surface normals of the face and by the position of
the light source. The luminance function was then estimated as a low pass ver-
sion of the original image, thus finding the reflectance function by dividing the
image by the luminance function. Rahman [16] improved upon Lands work by
estimating the luminance function as a weighted combination of images gener-
ated by convolving the original image with Gaussians of varying widths. Two
well known methods for photometric normalisation are homomorphic filtering
and histogram equalisation. Homomorphic filtering takes the log of the image
to seperate the reflectance and luminance functions before low pass filtering is
carried out and the exponential of the result is taken. The output image has nor-
malised brightness and amplified contrast [8]. Histogram equalisation improves
the contrast in an image. The histogram of pixel intensities in a poorly illu-
minated image is generally skewed towards the lower values. As a result, the
majority of pixel intensities occur over a small range with little contrast. Using
histogram equalisation, the pixel intensities are mapped to an even distribu-
tion, thus improving the contrast. Gross and Brajovic estimated the luminance
function as an anisotropically smoothed version of the original image [9]. The
smoothing was modulated by edge features in the original image, in such a way
as to preserve the structure of important features. Unfortunately, as we shall
show, face verification rates are very sensitive to the amount of smoothing and
as yet there is no method of calculating the amount of smoothing needed.

1.1 Previous Work

Previous work by the authors [18] compared five photometric normalisation algo-
rithms. A method based on principal component analysis, multiscale retinex [16],
homomorphic filtering [8], a method using isotropic smoothing to estimate the
luminance function and Gross and Brajovic’s method using anisotropic smooth-
ing [9]. Three contrasting databases were used in the experiment. The Yale B
database has only ten subjects but contains a large range of illumination con-
ditions [7]. The images in the XM2VTS database were all captured under a
controlled environment in which illumination variation is minimised [15]. The
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BANCA database contains much more realistic illumination conditions [12]. The
methods were tested extensively on the three databases using numerous proto-
cols. The results showed that the anisotropic method yields the best results
across all three databases.

1.2 Overview of This Paper

In this paper, we present and evaluate an automatic method for selecting the
smoothing parameter for the pre-processing algorithm of Gross and Brajovic.
The next section details the photometric normalisation algorithm. Section 3
describes the face databases how they were used for testing. Section 4 presents
the results of the various face verification tests and we conclude with section 5.

2 The Photometric Normalisation Algorithm

2.1 The Existing Method

The existing normalisation method as presented by Gross and Brajovic [9] is
based on the assumption that an image, I(x, y), of a scene is the product of two
functions, namely reflectance R(x, y) and luminance L(x, y) [10].

I(x, y) = L(x, y).R(x, y) (1)

Firstly, the luminance function is dependant only on the geometric proper-
ties of the scene (i.e. the surface normals and the position of the light source
or sources). Secondly, the reflectance function is dependant on the reflectivity
or albedo of the surface. Clearly of these two functions, the reflectance func-
tion is invariant to illumination and therefore a desriable function to use as a
representation.

The method proposed, first estimates the luminance function, and uses that
to modify the image to estimate the reflectance function. The luminance function
was estimated as an anisotropically smoothed version of the original image. This
smoothing is modulated by a measure of local contrast, such as Webers local
contrast, in such a way as to not smooth along prominent features. This is a
more sophisticated method than Land’s gaussian smoothing [13] and produces a
more realistic luminance function. Whereas gaussian smoothing removes all high
frequency components, this varying smoothing function retains the structure of
the edges of important features, such as the outline of the nose and eyes.

The smoothing of the original image is carried out by minimizing the cost
function in equation 2. This is carried out using multigrid methods [1, 6].

J(L) =
∫

y

∫
x

ρ(x, y)(L − I)2dxdy + λ

∫
y

∫
x

(L2
x + L2

y)dxdy (2)

where ρ is Webers local contrast between a pixel a and its neighbour b in either
the x or y directions. It is the contrast between two neighbouring pixels, weighted
by the local illumination value.
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ρ a+b
2

=
|Ia − Ib|

min(Ia, Ib)
(3)

The cost function has two conflicting terms. The first is the difference term,
which increases cost as the luminance function differs from the original image.
The second cost is a gradient term, which penalizes large gradients in the lumi-
nance function. Two variables control the balance between these two costs. The
local contrast variable ρ is determined by the original image. Changing the value
of λ therefore allows us to control the amount of smoothing carried out.

An illustration of the process is shown in figure 1.

Fig. 1. Example of the anisotropic smoothing method. Left: Original image. Middle:
Estimate of luminance function. Right: Estimate of reflectance function. Image taken
from the YaleB database

We found that including histogram equalisation as a final step in the image
processing significantly improved verification results.

2.2 Drawbacks of the Method

There is a single parameter, λ, that controls the performance of the normalisa-
tion. λ determines the amount of smoothing used in estimating the luminance
function. In first presenting the method, Gross and Brajovic tuned the value of
the smoothing parameter by hand for each individual image. For the purposes
of comparing this normalisation with other methods, we found a single opti-
mal value of the parameter for each database tested. Clearly, neither of these
approaches are sufficient for a fully automated face verification system. In this
paper, we show that the error rates of verification are sensitive to correct param-
eter selection and present a method of finding the optimal value of λ for each
probe image presented to the system.

2.3 The Face Verification Software

For the purposes of verification we generated scores using a system developed
by Kittler et al [12]. When a probe image claims an identity, the data is first
projected into a PCA subspace and then into a client specific LDA subspace.
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In this subspace, the probe image is then compared with both the mean of the
data representing the client whose identity is being claimed and the mean of the
data representing an imposter class. These two comparisons are then fused to
generate a score. The score is then compared with a threshold (see section 3)
and the claim either accepted or rejected.

2.4 The Modified Method

We propose that the score function described in section 2.3 can be used to
evaluate the standard of processing as a function of λ. Figure 2 shows an example
of how the score changes as a function of λ.
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Fig. 2. Claim score as a function of λ

We can see that the score quickly rises to a maximum value and then gradu-
ally declines. This maximum value corresponds to the value of λ where the probe
image is most similar to the gallery image.

When a claim is made, the probe image would be pre-processed a number
of times, with differing values of λ. The score would be calculated for each
processed image and the maximum used for comparison with the threshold. For
the purpose of this paper, a fixed set of λ values were used, but it would be
possible for a search routine to find the maximum score without processing the
probe image for every value of λ in the set. However, in addition to finding the
maximum score, we also evaluated a similar method that found the mean of
all of the scores generated. In this way, the score is in effect the integral of the
graph, shown in figure 2, over the range of the set of λ values.

We now assess the effect on face verification rates of using the two methods.

3 Testing

3.1 The Databases

The normalisation was tested on three contrasting databases, The Yale B data-
base (using frontal poses only), the XM2VTS database and the BANCA database.

The Yale B database contains 64 different illumination conditions for 10 sub-
jects. The illumination conditions are a single light source, the position of which
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varies horizontally (from -130◦ to 130◦) and vertically (from –40◦ to 65◦). The
database was split in to two groups of five subjects. Because of the limited size
of the database, the verification software was trained (PCA and Client Specific
LDA subspaces were generated) on the BANCA database. The frontally illumi-
nated images were used as the gallery images and the remaining images were
used as probes. Each probe image made a claim to each of the five gallery im-
ages in its group. A score was generated describing the level of belief in each
claim (see section 2.3). Using the resulting scores for each group, the threshold
corresponding to the equal error rate, where false acceptance rate equals false
rejection rate, was found. This threshold was applied to the alternate subset to
find the error rate of verification for that group. The error rates for the two
groups were averaged to find a final total error rate.

The XM2VTS database contains images of 295 subjects, captured over 4
sessions in a controlled environment. The database uses a standard protocol.
The Lausanne protocol splits the database randomly into training, evaluation
and test groups [15]. The training group contains 200 subjects as clients, the
evaluation group contains an extra 25 subjects as impostors and the testing group
another 70 subjects as impostors. There are two configurations of the XM2VTS
database, C1 and C2, differing in the way in which images were selected for the
training, evaluation and test sets.

The BANCA database [3] was captured over twelve sessions in three dif-
ferent scenarios and has a population of 52 subjects (26 male and 26 female).
Sessions 1–4 were captured in a controlled scenario, sessions 5–8 were captured
in a degraded scenario which was captured using a simple web cam and session
9–12 were captured in an adverse scenario. The controlled scenario was a well lit
(frontally) environment and the subjects maintain a constant pose. Images were
captured with a high quality camera. The degraded scenario was similar to the
controlled scenario, except the images were captured with an inexpensive web
camera. The adverse scenario again used the high quality camera, but the light-
ing and the pose of the subject were not constrained. The BANCA database has
seven configurations of training and testing data incorporating different permu-
tations of data from the twelve sessions. The seven configurations are Matched
Controlled (MC), Matched Degraded (MD), Matched Adverse (MA), Unmatched
Degraded (UD), Unmatched Adverse (UA), Pooled test (P), and Grand test (G).
The content of each configuration is described by table 1. T represents clients
for training, I impostors for testing and C represents clients for testing.

As with the Yale B test, the XM2VTS and BANCA databases are split into
two groups. The subspaces for each group were generated using images from
the other and the thresholds were found in the same manner as with the YaleB
database.

4 Results

In this section we present results showing the accuracy of face verification. We
show how this accuracy varies with the value of the parameter λ and compare
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Table 1. How different sessions are used for the protocols of the BANCA database

Session MC MD MA UD UA P G

1 TI T T TI TI

2 CI CI CI

3 CI CI CI

4 CI CI CI

5 TI I I TI

6 CI CI CI CI

7 CI CI CI CI

8 CI CI CI CI

9 TI I I TI

10 CI CI CI CI

11 CI CI CI CI

12 CI CI CI CI

these results with those generated by taking the maximum score as a function of
λ (denoted Max) and with those generated by averaging over the range of values
of λ (denoted Mean).

Table 2 shows the error rates for the Yale B database. The lowest error rate
for a fixed value of λ occurs at λ = 2, giving an error rate of 14.28%. Taking
the λ corresponding to the maximum score for each image, gives an error rate of
14.31%. Although this value is slightly higher, it does not require any additional
training. Taking the mean score across the images yields the best result of 14.16%
error rate.

Table 2. Error rates (%) for fixed values of lambda and for the two combination
methods of the Yale B database

Lambda 0.5 1 1.5 2 2.5 3 Max Mean

T 18.95 16.33 14.32 14.28 14.43 15.70 14.31 14.16

Table 3 shows the error rates for the two configurations of the XM2VTS
database. The best accuracy for configuration one, attained through using a
single value of λ occurs at λ = 7 giving an error rate of 3.73%. For configuration
two, the lowest error rate is 3.44%, but this occurs at λ = 8. Clearly, it is not
possible to achieve both these results by using a single value of λ. Using the value
of λ corresponding to the maximum score, gives error rates of 3.15% and 2.83%,
an improvement over using the optimum fixed λ values for either configuration
one or two. Using the mean score across the different values of lambda also yields
improved results, but not better than the using the maximum score.

Table 4 shows the error rates for the seven different protocols of the BANCA
database. Using a single value of λ for the whole database can yield some very
good results for certain protocols. However, that value of λ does not necessarily
generate the best result on another protocol. For example, taking λ equal to
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Table 3. Error rates (%) for fixed values of lambda and for the two combination
methods for both configurations of the XM2VTS database

Lambda 3 4 5 6 7 8 9 10 Max Mean

C1 9.22 7.41 5.94 5.41 3.73 3.97 6.80 4.50 3.15 3.56
C2 7.39 7.25 5.41 4.40 3.70 3.44 3.48 3.65 2.83 3.08

11 gives the best score for the Matched Controlled protocol (MC), but using
this value of λ on the Pooled protocol (P) gives error of 13.18% in comparison
with 11.79%, the best error rate for that protocol. The strategy of taking the
maximum value yields very good results for each protocol. Although it does not
always show higher accuracy than using an individual value of λ, it does remove
the need for finding λ and also removes the problem of the variation in results
across different protocols.

Table 4. Error rates (%) for fixed values of lambda and for the two combination
methods for each of the protocols of the BANCA database

λ 4 5 6 7 8 9 10 11 12 13 14 Max Mean

MC 5.82 5.22 5.22 4.79 4.78 4.92 4.73 4.65 5.42 5.69 5.53 4.84 4.44
MD 5.10 4.70 4.41 4.28 4.15 3.91 3.81 3.49 4.46 4.34 3.78 4.15 3.51
MA 8.13 7.68 7.60 7.58 8.25 7.44 6.78 7.26 6.97 6.97 6.60 6.27 6.20
UD 8.51 8.61 7.63 8.54 8.30 7.85 8.93 9.05 9.47 9.34 9.01 7.98 7.58
UA 19.10 19.79 18.97 18.89 19.04 20.34 20.59 20.77 20.51 20.69 20.03 17.95 18.14
P 12.07 12.52 11.79 11.85 11.94 12.15 12.87 13.18 13.09 13.25 13.02 11.64 11.35
G 3.71 3.55 3.46 3.26 3.22 3.16 3.01 3.00 3.17 3.41 3.33 2.77 2.56

The results demonstrate the large variation of the optimal value of λ. The
optimal value of λ is shown to be 2 for the Yale B database, the two configurations
of the XM2VTS database give an optimal value of 7 and 8. For the BANCA
database the optimal value of λ varies between 6 and 14 depending on the
chosen protocol. Also, the results show that a change in λ can give rise to a
large change in verification error rate. For example, the optimal value of λ for
the unmatched degraded protocol of the BANCA database occurs at λ = 6. For
a change in λ of ± 1, the error rate increases by more than 10%.

5 Conclusions

We have presented a method of selecting the parameter value for the photometric
normalisation algorithm on an image by image basis. The parameter is selected
by evaluating the quality of a number of pre-processed images of varying λ,
and the image with the maximum score is used for verification. This evaluation
is carried out using a score function based on client specific linear discriminant
analysis. In addition we have evaluated a method that uses a number of processed
images and finds the mean of the resulting scores.
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The methods have been extensively tested on three contrasting databases.
Results from all three databases illustrate the sensitivity to the selection of the
value of λ. It has also been shown that for using a fixed value of λ, optimal
parameter selection differs greatly as a results of different configurations of the
training, evaluation and testing data. As such, although the results for fixed λ
show the error rates given by the optimally tuned pre-processing algorithm, it
is not necessarily the case that the correct value of λ will be found accurately.

Results from the Yale B database have shown that using the mean method
yields better results than using a fixed value of λ. Using the max method yields
results that are nearly as good as using the fixed optimal value of λ, however
does not suffer from the previously mentioned problem of finding this value. The
XM2VTS and BANCA databases show significant improvements using both the
max method and the mean method. In the case of the XM2VTS database, the
max method performs better and in the case of the BANCA database, the mean
method performs better.

The max method has additional advantages over the mean method. For the
purposes of the evaluation, a number of pre-defined values of λ were used, from
which the max value of the score was found and the mean value of the score
calculated. For the mean value to be a valid comparison it must always be
calculated over the same range of values of λ. In contrast, the max value can be
found using a search for the peak in the score versus λ function. Once the peak
has been found, it is no longer necessary to process more images. As such it may
require fewer evaluations.
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Effects on Face Recognition Systems
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Abstract. It is claimed that eye location accuracy is very important
to face recognition system performance. In most systems, the eye lo-
cations are the most significant facial landmark for the preprocessing
step. Eye location estimates can be assessed in absolute terms (e.g.,
proximity to known eye location) and also in application-specific terms
(e.g., performance of a system that employs the location). This paper
assesses an automatic commercial eye-finding system in absolute and
application-specific terms, using four different face recognition systems
and a database of thousands of images. A pilot study on the time-lapse
effect suggests that with the time-lapse increasing, the face recognition
performance will degrade. Our experiments examine this effect by us-
ing a large image dataset, which has a time-lapse up to two years, with
250 subjects and 64300 probes. Experiment results show eye location
accuracy is significant to face recognition system performance. Different
systems can have different level of sensitivity, and the system using local
feature analysis is less sensitive to eye location accuracy. Also all the
algorithms tested in this study show that time-dependency exists in face
recognition system.

1 Introduction

Appearance-based and geometry-based techniques are the major approaches em-
ployed in face recognition. Regardless of the approaches, accurate registration
is a crucial issue. In most cases, eyes can be the most reliable features for the
image registration, in that eye positions are not easily affected by other face
changes; the interocular distance can be used to normalize the face image and
the orientation of the interocular line can be used to correct the head pose.
Also, the eye is often viewed as the most important feature of the face. Hjelmas
et al. [1] proposed a face recognition system, which employed eyes as the only
facial feature to recognize the face, and it obtained a surprisingly high correct
classification rate of 85%.

As the results of the importance of accurate eye locations, there have been
many novel automatic eye extraction or eye location detection algorithms devel-
oped during the last twenty years, such as eigenfeature-based methods [2], de-
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formable template-based methods [4] [5] [6] [7], Gabor wavelet filter methods [8],
variance projection function algorithms [9], and the neural network method [2].

In recent years, there are some researchers starting to explore how the eye
location accuracy affects the face recognition system performance. Marques et
al. [14] conducted a study on eigenface-based face recognition. Their experimen-
tal results suggest that the eigenface algorithm is more sensitive to eye positions
that deviate above or below the enrolled reference than those that deviate left or
right from the enrolled reference. Riopka and Boult [15] conducted an eye pertur-
bation sensitivity analysis. The experimental results strengthened the conclusion
that the eye localization is important to the accuracy of face recognition sys-
tems and also suggested that the correct measurement of eye separation is more
important than the correct eye location. As the result of that, they predicted
that for better recognition performance, improving the eye localization accuracy
might be more effective than improving the face recognition engine itself. In this
paper, we examine the effect of eye location accuracy on face recognition sys-
tems’ performance and sensitivities of different face recognition systems to the
eye location accuracy.

Besides eye location accuracy, the time-laspe effect is another important fac-
tor, which is crucial to the face recognition system to be used in the really world.
Previous pilot study, based on a relatively small and short time-lapse database,
suggests that with time-lapse increasing, the face recognition performance will
degrade[3] [12]. Our experiment examined this effect by using a large image
dataset, which has a time-lapse up to two years for 250 subjects and 64300
probes.

To examine both the eye location accuracy and time-lapse effects, four dif-
ferent face recognition systems are chosen for this study, Principal Components
Analysis (PCA), Elastic Bunch Graph Matching (EBGM), Principle Compo-
nent Analysis followed by Linear Discriminant Analysis (PCA+LDA), and the
FaceIt system (version G5). The first three systems are implemented in soft-
ware distribution at the Colorado State University [10], while the fourth one is
a commercial face recognition system from Identix [11]. In this study, all the
facial images are drawn from the database developed at the University of Notre
Dame [12].

The remainder of this paper is organized as follows. Section 2 summarizes the
four different face recognition systems used in this study. Section 3 describes the
data collection, eye locating techniques employed and the evaluation of the au-
tomatic eye location system’s performance. Section 4 shows the extensive exper-
imental results and discussion. The conclusion and future work are summarized
in Section 5.

2 Face Recognition Algorithms

Four different systems, PCA, PCA+LDA, EBGM and FaceIt, are chosen for this
study. They are described briefly below.
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2.1 PCA

PCA method implements nearest-neighbor search in a projection space to per-
form recognition. By using the training images, PCA projects images into a sub-
space, where the first dimension of this subspace captures the greatest amount
of variance among the images and the last dimension of this subspace captures
the least amount of variance among the images. After the subspace is created,
both gallery images and probe images are projected into the eigenspace. Finally,
probe images are identified by comparing them with the projected gallery im-
ages using nearest-neighbor search and the one with the highest similarity is the
identified subject.

2.2 PCA+LDA

The PCA approach optimizes variance among the images, while Fisher’s linear
discriminant optimizes discrimination characteristics. The LDA method groups
images of the same class and separates images of different classes. Images are
projected from N-dimensional space (where N is the number of pixels in the
image) to C-1 dimensional space (where C is the number of classes of images).
The LDA method finds a linear transformation that maximizes the between-
class variance and minimizes the within-class variance, to distinguish different
subjects. By using the PCA+LDA algorithm [13], a PCA subspace will be built
by a set of training images, and then all the training images are projected to
the PCA subspace and are grouped according to subject identity. Each subject
is treated as a distinct class and the LDA basis vectors are computed. The test
images are projected into this subspace and identified using a nearest-neighbor
search.

2.3 Elastic Bunch Graph Matching (EBGM)

This method recognizes faces by comparing the facial features and computing
the similarity of two images [16]. First, the algorithm locates landmarks on the
image, such as the eyes, nose and mouth, which are referred as facial features. The
Gabor jet, which is the Gabor wavelet convolution at these points, is computed
are used to represent a landmark. Then a face graph is created for each image.
The nodes of the face graph are placed at the landmark locations, and each node
contains a Gabor jet extracted from that location. Finally, the similarity of two
images is computed, which is a function of the corresponding face graph, and
the classification is based on this similarity.

2.4 FaceIt

FaceIt uses local feature analysis (LFA), which is more robust to facial expression
changes or other extrinsic variations such as lighting changes [11]. LFA uses
statistical techniques to encode facial features, and all the facial shapes can be
well represented. In FaceIt’s implementation of LFA, there are two factors used
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to determine the identity of the subject. One is the characteristic elements of
the face, and the other one is geometric combination of these elements, such as
the relative position. Three steps needed to accomplish the recognition process.
First, the eye location needs to be provided or computed for all the images.
Second, templates need to be generated for all the gallery images. Third, the
matching process is conducted by comparing each pair of the probe image and
the gallery template. The template has the highest similarity is the recognized
subject.

3 Face Image and Eye Location Data Sets

3.1 Image Data

The image data used in this study were collected from Fall 2002 to Spring 2004 at
the University of Notre Dame, which form a component of a large database and
support a two-year longitudinal (time-lapse) study of face recognition systems’
performance [12]. Approximately 200 experimental subjects were photographed
weekly with a high-resolution (1704× 2272) color digital camera (Canon Power-
Shot G2 was used) under four different controlled lighting and expression com-
bination conditions, FA|LF, FA|LM, FB|LF, FB|LM [12]. FA refers to a neutral
expression and FB is a smile. LF denotes FERET-style facial illumination (two
side-lights) and LM denotes side plus center lighting.

3.2 Eye Location Data

In this study, two different eye location sets are provided for each facial image.
They are generated by different methods and of different accuracy. The first
method is called ground truth writing, which is to locate eye positions manually
by using trained human annotators. In ground truth writing, a human operator
manually marks the eye pupil center along with the nose tip and the center of
the mouth. The eye coordinates obtained in this way are called truth writing
(TW) coordinates. Figure 1(a) depicts those marked locations, while the nose
tip and mouth center are not used in this study. The second method is called
automatic eye locating, which is to locate eyes automatically by using the eye
finder function provided by FaceIt system. Representative output from FaceIt
appears in Figure 1(b). The eye coordinates generated by this way are called
automatic coordinates.

3.3 Eye Location Accuracy Measurements

Comparing these two different eye location sets, the truth writing coordinates are
more accurate and treated as the accurate reference locations. For the automatic
coordinates, Figure 2 shows some eye location examples and Figure 3 shows
the scatter plot for the deviations of the automatic eye coordinates from truth
writing coordinates. From the plot, we can tell that there is no bias of the
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(a) Eye locations from truth writing. (b)Eye locations from FaceIt.

Fig. 1. Two ways to generate eye locations

Fig. 2. Examples of inaccurate eye locations generated by FaceIt

Fig. 3. Scatter plot for deviations of automatic eye coordinates from TW eye coordi-
nates

deviation for either the right eye or the left eye. Also three metrics, as shown
below, are used for the quantitative estimation of the accuracy of the automatic
eye location.

Metric 1. ERMS , the average of two Root Mean Square (RMS) values, ERMS;L

and ERMS;R, is used to indicate the disparities between automatic coordinates
and TW coordinates. ERMS;L is the disparity for the left eye, and ERMS;R is
for the right eye. ERMS is given by
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ERMS = 1
2 (ERMS;L + ERMS;R) ,

where

ERMS;L =
√

1
N

∑N
i=1((xiL;T − xiL;A)2 + (yiL;T − yiL;A)2) ,

ERMS;R =
√

1
N

∑N
i=1((xiR;T − xiR;A)2 + (yiR;T − yiR;A)2) ,

(xiL;T , yiL;T ) and (xiR;T , yiR;T ) are TW coordinates of the left and right eyes,
and (xiL;A, yiL;A) and (xiR;A, yiR;A) are the corresponding coordinates.

Metric 2. ERMS;max is the RMS error for the larger disparity value comparing
two eye coordinates on a facial image.

ERMS;max =
√

1
N

∑N
i=1 max(DistanceL, DistanceR) ,

where

DistanceL = (xiL;T − xiL;A)2 + (yiL;T − yiL;A)2 ,
DistanceR = (xiR;T − xiR;A)2 + (yiR;T − yiR;A)2 .

Metric 3. ERMS;mid is the RMS deviation of the interocular midpoint, which
is determined by the distance between the TW coordinates and automatic coor-
dinates.

ERMS;mid =
√

1
N

∑N
i=1((xiM ;T − xiM ;A)2 + ((yiM ;T − yiM ;A)2) ,

where

xiM :T = xiL;T +xiR;T
2 ,

yiM :T = yiL;T +yiR;T
2 .

A summary of the accuracy measurement for the automatic eye coordinates
appears in Table 1. These values show the average disparities from FaceIt eye
coordinates to TW eye coordinates by using three different metrics. This mea-
surement is done on the original images.

Table 1. Automatic Eye Location Accuracy relative to TW coordinates in pixels

ERMS ERMS;max ERMS;mid

Disparities 14 16 11

4 Face Recognition Experiments

In this section, we will examine the effect of eye location accuracy on face recog-
nition systems’ performance as well as the time-lapse effect. The performance of
four face recognition systems, PCA, PCA+LDA, EBGM and FaceIt, are com-
pared.
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Fig. 4. Time lapse distribution for all subjects’ participation

4.1 Experiment Data

All the experiment data we used in this experiment are the images taken from
Fall 2002 to Spring 2004. 691 subjects are involved. Figure 4 shows the time-lapse
distribution for all subjects’ participation. In this study the expression changing
factor is excluded, so all the images we use here are taken from subjects with
regular expression (FA|LF or FA|LM). To avoid the performance bias, none of the
subjects involved in training are used in testing. We divided the whole dataset
into two subsets, one set is used as training data and the other one is used as
testing data. We chose the 250 subjects who participated in image acquisition
over the longest time period as testing subjects, and the remaining 441 subjects
were used for the training dataset.

Gallery Data. All the gallery images are FA|LF images. In order to extensively
explore the time lapse effect, the experiment is conducted in two ways. One is
called the fixed-gallery experiment and the other one is called the running-gallery
experiment. The primary difference between them is how the gallery dataset is
configured.

1.Fixed Gallery: For fixed gallery, the gallery contains the earliest image of
each of the 250 testing subjects, and the probe contains all the remaining images
of these 250 subjects. Each subject has one image in the gallery set. Each probe
is an image of a subject which is acquired five or more days after the gallery
image.

2.Running Gallery: In the running gallery test, the gallery contains multiple
sub-gallery sets and the experiment result for each sub-gallery set will be col-
lected to make the overall performance result. A total of 10 sub-gallery sets are
included. The first sub-gallery set contains the earliest images of 250 subjects,
and the corresponding probe set contains all the remaining images of these sub-
jects. Each probe is an image of a subject, which is acquired five or more days
after the gallery images take. The second sub-gallery set contains the second ear-
liest images of these 250 subjects, and in the same manner, the corresponding
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Fig. 5. Fixed-gallery test with 7555 probes
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Fig. 6. Running-gallery test with 64300 probes

probe set contains all the subsequent images of subjects taken after images in
the sub-gallery set. The rest of the sub-gallery and sub-probe sets are configured
in the same way as the first two. The performance results for the running gallery
test, shown in the later figure, are the averaged results of the 10 sub-experiments.

Probe Data. All the probe images are FA|LF images. In fixed probe set, a total
of 7555 images for the 250 testing subjects are included. For the running probe
set, a total of 64300 probe images for the 250 testing subjects are included. Each
subject has more than one image in the probe set. The time lapse distribution of
the fixed probe set and running probe set are shown in Figure 5(a) and Figure
6(a).

Training Data. All face recognition systems used here except FaceIt need
training data. Table 2 shows the configurations for the training datasets for
different FR systems. For PCA and LDA, all the training data are taken from
the images acquired at the University of Notre Dame, as we described above. For
EBGM, the training data are the FERET images, and along with each image
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Table 2. The Training Data Configurations

FR Systems Subj. Num. Image Type Num of Images per Subj. Size

PCA 441 FA|LF 1 441

LDA 200 FA|LF or FA|LM 15 3000

EBGM 70 FERET Data 1 70

25 feature points are manually extracted as well as Gabor jets. Based on the
previous study [16], a training dataset size of 70 was chosen for EBGM, and this
training dataset is accessible at [10].

4.2 Experiment Results

Experimental results are shown in Figure 5(b) and Figure 6(b). First, the results
suggest that eye location accuracy is significant to face recognition engines and
the algorithms show different sensitivities to eye location accuracy. FaceIt system
has the least sensitivity to eye location accuracy with the best performance.
EBGM also shows the relatively low sensitivity. However its performance is the
worst one in this experiment. We suspect the performance of EBGM can be
improved by using an optimized configuration. For PCA and LDA, both systems
can be strongly affected by the eye location accuracy. The experimental results
suggest that the local feature analysis, which is used by EBGM and FaceIt, is
much less sensitive to eye location accuracy. Second, the result of the running-
gallery test shows a relatively clear trend of time-lapse effect. All the algorithms
used here indicate that with time-lapse increasing the face recognition system
performance decreases.

5 Conclusion

In this study, we examined the effect of eye location accuracy on face recognition
systems. Experimental results showed that the eye location accuracy is one of the
factors to affect the systems’ performance. The sensitivity of different systems
can vary, and our experimental results suggest that local feature analysis is
less sensitive to eye location accuracy than global feature analysis. We can also
conclude that the time-lapse does affect the face recognition performance.
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Abstract. We propose a relevance feedback system for retrieving a men-
tal face picture from a large image database. This scenario differs from
standard image retrieval since the target image exists only in the mind
of the user, who responds to a sequence of machine-generated queries
designed to display the person in mind as quickly as possible. At each
iteration the user declares which of several displayed faces is “closest” to
his target. The central limiting factor is the “semantic gap” between the
standard intensity-based features which index the images in the database
and the higher-level representation in the mind of the user which drives
his answers. We explore a Bayesian, information-theoretic framework for
choosing which images to display and for modeling the response of the
user. The challenge is to account for psycho-visual factors and sources of
variability in human decision-making. We present experiments with real
users which illustrate and validate the proposed algorithms.

Keywords: relevance feedback, mental image retrieval, Bayesian infer-
ence

1 Introduction

Traditional image retrieval is based on “query-by-example”: starting from an ac-
tual image, the objective is to find the images in the database which are visually
similar to the query image. Striking results are obtained in special domains, e.g.,
in comparing paintings, plants and landscapes using the IKONA system [1].

However, in many cases of interest there is no physical example to serve as
the query image [2]. Instead, knowledge about the target is based entirely on
the subjective impressions and opinions of the user. In other words, the stan-
dard query image is replaced by a “mental image”. To be concrete, we shall
concentrate throughout on face images, although all the algorithms we develop
could be applied in other domains, for instance to images of clothes, houses,
funitures or paintings. Mental face retrieval has extensive applications in secu-
rity, e-business, web-based browsing and other areas. Here, as the realization
of a study conducted jointly with the SAGEM group, we propose a system for
retrieving a mental face image using Bayesian inference and relevance feedback.
It is based on an interactive process designed to incrementally obtain knowledge
about the target from the responses of the user to a series of multiple choice

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 637–646, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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questions. The objective is to minimize the number of iterations until a face is
displayed whose identity corresponds to the mental image.

Thus relevance feedback refers to a series of queries and answers. The query
is simply a set of displayed images from the database. The answer is the feedback
provided by the user. Usually, the opinions or impressions of the user concern-
ing both his target and the displayed images are of high-level, semantic nature,
and hence “mental matching” involves human memory, perception and opinions
[3, 4]. On the other hand, the representation of the images in the database is
generally based on low-level signatures rather than semantic content. This “se-
mantic gap” greatly complicates the task. Indeed the face recognition problem,
which is arguably easier, remains largely unsolved, at least with large databases.

Still, if the display and answer models are constructed to explicitly address
the issue of coherence, it is possible to incrementally obtain knowledge about
the target image. The accumulation of information is represented by an evolving
probability distribution over the database, whose entropy is hopefully diminish-
ing (although not monotonically) as information is acquired from the answers.
This process of alternating between query and answer is iterated until the user
recognizes one of the displayed images as his target, at which point the search ter-
minates. The two primary challenges in mental picture retrieval are then deciding
which images to display at each iteration (the “display model”) and account-
ing for the difference between mental matching and signature-based matching
(i.e., between mental and feature-based metrics) in designing the conditional
probability distribution for the answers given the target (the “answer model”).

In our framework, both the target and answers to queries are treated as
random variables; the probability distribution of the target evolves over time
based on the accumulated evidence from the user’s responses. A natural choice
for the images to display at each iteration is then the set which maximizes the
mutual information between the target and response given all previous answers.
As this optimization problem is intractable, a heuristic solution is proposed based
on an “ideal” answer model which puts the user and system in synchrony. In
addition, in order to find image representations which cohere as much as possible
with human decision making, we compare several traditional face recognition
signatures. Based on this analysis as well as data collected from human responses,
in particular declaring which among a set of displayed images is “closest” to
a given target, an answer model is designed for a comparative response. The
feasibility of the whole system is demonstrated by estimating mean search times
and other summary statistics from mental retrieval experiments with real users.

Whereas there has been considerable work done on face retrieval in the stan-
dard setting of query-by-example [5, 6], little has been reported in the case of
mental images. Navarret et al. proposed an algorithm based on self- organizing
maps [7]; see also the work on “retrieval of ambiguous target” in [8]. Of course,
there are many articles on relevance feedback [9], however, most of them involve
“category search”, which is different from “target search” in the case of mental
face retrieval. In our view, the benchmark work on “target search” for mental
images is Cox et al [10]; see also the model proposed by Geman and Moquet
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[11] for the toy application of mental polygon retrieval. By concentrating on the
interactive process and specializing to target search and pairwise comparison
tests, the authors in these studies were able to develop ties with Bayesian in-
ference and information theory. However, the answer model in [10], basically
a blurring of the actual metric used by the system in comparing two images,
is not sufficiently powerful to deal with face retrieval. Moreover, pairwise com-
parison search is not practical with large image databases. We believe our work
constitutes the first comprehensive study of mental face retrieval, both in terms
of mathematical foundations and experiments with real users.

The remainder of the paper is organized as follows. The formulation of the
problem in terms of Bayesian relevance feedback is described in Section 2. The
answer model and display model are explained in detail in Sections 3 and 4
respectively. In Section 5, we discuss signature extraction and analyze the co-
herence issue. Experimental results are presented in Section 6.

2 Bayesian Relevance Feedback Model

In the framework we propose, mental image retrieval will depend on solving two
difficult tasks:

– A Modeling Problem: Discovering answer models which match human
behavior;

– An Optimization Problem: Discovering approximations to the optimal
query.

Suppose there are N images in the database S, say I1, ..., IN . For simplicity, we
will identify S with the index set {1, 2, ..., N}. One image in the database, Y , is
the “target”, i.e., the variation on the mental picture assumed to belong S. In
the stochastic formulation, Y is a random variable with some initial distribution

p0(k) = P (Y = k), k ∈ S.

Information about Y is collected from a series of queries. Each query involves
two quantities: a subset D ⊂ S of n displayed images and the response of the
user, denoted by XD and taking values in a set A. Obviously n � N ; the choices
for n and A are important issues which will be discussed in the following sections.

The feedback from the user up to time (or iteration) t = 1, 2, ...,, is then

Bt =
t⋂

i=1

{XDi = xi}

where Di is the display at time i and xi is the user’s response. This is the history
of queries and answers during the first t iterations.

We wish to compute and update the posterior distribution,

pt(k) = P (Y = k|Bt), k ∈ S,
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the probability that image k is the target after t iterations. First, however, we
must specify the joint distribution of Y and the observations {XD1, ..., XDt}.
The posterior pt is then computed in the usual way. As in previous work, we are
going to assume the answers to the queries are conditionally independent given
the target Y . This is not an unreasonable assumption in practice. It follows that

P (Bt|Y = k) =
t∏

i=1

P (XDi = xi|Y = k).

The conditional response distribution, P (XD = x|Y = k) is what we call the
“answer model.”

Updating the posterior is now easy:

pt+1(k) = P (Y = k|Bt+1)
= P (Y = k|Bt, XDt+1 = xt+1)
∝ pt(k)P (XDt+1 = xt+1|Y = k)

In other words, updating pt(k) merely involves multiplying by the new evidence
P (XDt+1 = xt+1|Y = k) and re-normalizing.

3 Answer Model

Designing P (XD = x|Y = k) involves two primary decisions: determining the
set of possible responses x ∈ A and capturing the behavior of a user who has
image k in mind and is presented with the images in D and asked to respond.
This specification inevitably relies on the metric in the signature space, denoted
by d. More details about this metric is introduced in Section 5.

There are many possible choices for A. In all cases, the target is identified
if present, so let us assume that Y /∈ D. One could ask the user to supply a
rather precise measure of the degree of similarity between each displayed image
and his target. Somewhat less demanding, one could solicit a rough label for
each displayed image, such as “relevant” or “not relevant”. We have adopted
a still simpler scheme in which the user is simply asked to select the image
which is “closest” to his target. The price for simplicity is of course a decrease in
the amount of information conveyed, and hence in the reduction of uncertainty
about Y . Nonetheless, in our experiments, this model proved to be the most
practical, both mathematically and in terms of user psychology. It does not
unduly burden the user with complex decision-making, nor require any specific
knowledge of image representation, and it provides a natural way of bringing the
stored metrics into play. To make this precise, assume D = {s1, ..., sn} and set

A = {1, ...n, n+ 1, ..., 2n} (1)

For i ∈ {1, ..., n}, the response XD = i signifies that image si is not the target
but, in the opinion of the user, is the one closest to his target. Response i ∈
{n + 1, ..., 2n} signifies that image si−n is the target.



Experiments in Mental Face Retrieval 641

By definition of such comparative answer, if k ∈ D, we have

P (XD = i|Y = k) =
{

1 if k = si−n

0 otherwise

Otherwise, i.e., if k /∈ D, then for i ∈ {1, ..., n}:

P (XD = i|Y = k) =
φ(d(si, k))∑

sj∈D
φ(d(sj , k))

(2)

Ideally, the closer the image si ∈ D is to k in the stored metric, the more likely
the user is to choose it. Hence, we take φ to be monotonically decreasing. In our
experiments, we adopt a parametric form for φ and learn the parameters from
real data (collected user responses) by maximum likelihood estimation.

4 Display Model

One straightforward solution to determine Dt, the n images displayed at iteration
t, is to pick the n images which are most likely under the posterior distribution
pt. However, this simple strategy is far from optimal in terms of minimizing the
average search time (our ultimate goal) except near the end of efficient searches,
when pt is highly concentrated. Instead, as in other work, we adopt the powerful
(and time-independent) strategy of choosing Dt+1 to minimize the uncertainty
of the target given the search history Bt and new answer XDt+1 , measuring
uncertainty by entropy:

Dt+1 = arg min
D⊂S

H(Y |Bt, XD) (3)

Since the entropy H(Y |Bt) is independent of D, Eqn.(3) is equivalent to maxi-
mizing the conditional mutual information between Y and XD given Bt:

Dt+1 = arg max
D⊂S

I(Y ;XD|Bt) (4)

The mutual information is then computed relative to the joint distribution de-
termined by the answer model and the current posterior on the target.

4.1 Heuristic Solution

The minimization in Eqn.(3) is, unfortunately, a virtually intractable combina-
torial optimization problem since there are

(
N
n

)
choices for D ⊂ S. (Discarding

images already displayed makes little difference.) The algorithm we use is based
on an approximation to the corresponding optimization problem resulting from
the choice of an ideal answer model under which the user selects the displayed
image actually closest to his target using the system metric (or of course selects
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the target itself if present). Since Y determines XD+1, it is easy to see that Eqn.
(3) is equivalent

Dt+1 = argmax
D⊂S

H(XD|Bt) (5)

However, there is a natural heuristic for this combinatorial optimization problem.
Roughly speaking, since entropy is maximized at the uniform distribution,

and ignoring the case in which the target belongs to D, we want to choose n
images, call them {s1, ..., sn}, such that the Voronoi partition has cells of almost
equal mass under the posterior. A sequential, heuristic solution is then given by
the following algorithm:

1. The candidate set C1 for s1 consists of all images not previously displayed
through iteration t.

2. Select s1 to be the image k ∈ C1 which maximizes pt(k).
3. Order the images in C1 according to their distance to s1. Add these one-by-

one to a cluster initialized by {s1} until the mass of the cluster under pt

reaches 1
n .

4. Define the candidate set C2 for choosing s2, by removing the cluster from C1.
5. Select s2 to be the image k ∈ C2 which maximizes pt(k).
6. Divide all the images in C1 into two groups: those closest to s1 and those

closest to s2. Order the distances in the first group (respectively, second
group) according to their distance to s1 (resp. s2) and repeat the agglomera-
tion procedure in step 3 relative to both s1 and s2. This results two clusters
“centered around” s1 and s2, each with mass approximately 1

n .
7. Continue in this way until {s1, ..., sn} are chosen.

Although there is no guarantee to maximize entropy in Eqn (5), this heuristic
solution is fast, simple and achieves good performance in practice.

5 Signatures, Metrics and Coherence

Given our emphasis on retrieving mental images of faces, it would seem natural
to use signatures developed for face recognition and face retrieval with query-
by-example. As a result, we have analyzed several subspace-based signatures
applied in these areas, such as principle component analysis (PCA) [12], the
kernel versions of Fisher’s discriminant (KFDA) [13]. It should be emphasized
however, that in face recognition and retrieval, the target image is available and
hence its signature can be computed and directly compared with the signatures of
other stored images. In particular, there is no guarantee that effective signatures
for face recognition will also prove useful in mental retrieval.

We adopt the L1 distance (Performance with L2 is roughly the same) with
normalization by size of database and order of value in database as our metric.
One reason for the normalization is that standard signatures of the images in
S are sparsely scattered in a high-dimensional Euclidean space and there is
enormous variability among the distances between image pairs. Normalizing the
distance using the order statistics ameliorates this problem.
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Table 1. Face databases used in experiments

NAME #Subjects #Images Composition

FERET(A) 1199 1199 All FERET images

FERET(C) 808 808 Caucasian subset

FERET(SB) 512 512 Semantically balanced subset

FERET(W) 327 327 Caucasian female subset

FERET(SB+F) 531 531 FERET(SB)+ 19 extra (familiar) faces

We investigated the coherence between mental matching and metric-based
matching by collecting responses from various individuals. All the experiments in
this paper utilize subsets of the FERET database. Since the majority of people
in the FERET database are Caucasian, and since the response of most people
is heavily biased by semantics, we used the FERET(SB) (see Table 1) in the
coherence experiment. In FERET(SB), the distribution of ethnic (Asian, Black
and Caucasian) and gender categories (female and male) is roughly uniform.
Each data item consists of a triple (Y,D, XD) corresponding to a target, set of
displayed images and user response. The targets were sampled at random from S
and the number of displayed images is set to n = 8. (Using many fewer or many
more has adverse consequences with real users.) The answers are comparative, as
described in Section 3. Nine individuals (in the INRIA labs) produced a total of
989 data items (records). Statistics were collected on the rank of the user’s choice
in terms of the L1 distance between each display and the target. An example
experiment is shown in Fig.1, which compares PCA and KFDA under the L1

metric; both the density of rank and its cumulative distribution are shown. These
two signatures perform about the same. Neither can be said to be highly coherent
with mental matching as the probability that the user selects the closest image is
only roughly 0.2. Nonetheless, reasonable search times are obtained; see Section
6. Similar results are observed in other signature spaces. Henceforth, we fix our
distance to be the L1 metric on the KFDA image representation.
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Fig. 1. Results comparing PCA and KFDA. Left: The estimated probability that the
user selects the m’th closest image to his target according to the distance in signature
space; Right: The cumulative distribution function
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6 Experiments in Relevance Feedback

The web interface in the experiments is shown in Fig.2. Let T denote the num-
ber of iterations (query/response) until the target appears among the displayed
images. Given M tests (full searches), we estimate E(T ), the mean of T , and
P (T ≤ t), the (cumulative) distribution of T by their empirical statistics. That

is, if the M tests results in search times T1, ..., TM , then E(T ) = 1
M

M∑
m=1

Tm

and P (T ≤ t) = #{1≤m≤M|Tm≤t}
M . Evidently, we seek small values of E(T ) and

cumulative distributions P (T ≤ t) which climb as fast as possible.

Experiment I: Influence of the Answer Model
We designed answer models with varying degrees of “noise” in the sense of how
well decisions cohere with the actual metric on signatures. For answer model
defined in Eqn.(2), synchronization is controlled by the function φ(d) where
d = d(si, Y ), the distance between the “i’th” displayed image and the actual
target Y . The more rapidly φ(d) decreases (as d increases) the more likely is
the user’s answer to cohere with the signature metric. We did simulations with
four answer models, meaning the answers are generated by sampling from the
model. The response of the “ideal user” is always perfectly coherent with metric,
i.e., P (XD = i|Y = k) = 1 if d(si, k) < d(sj , k) for all si, sj ∈ D, i = j. This
represents the optimal performance obtainable. The other extreme is a random
response (φ(d) ≡ const); every displayed image is equally likely to be chosen
regardless of its distance to the target. Two cases in between, and far more
realistic, are φ(d) = 1

d and φ(d) = 1 − d; the former is evidently more coherent
than the latter. One simulation on FERET(A) (see Table 1) with M = 100 is
shown in Fig.3. In addition to the four (estimated) distribution function, the
(estimated) mean search time is listed in the legend box. Clearly the degree of
coherence with the metric on signatures characterizes the performance.

Experiment II: Sensitivity to the Size of the Database
To measure the effect of N = |S|, we used databases of increasing size: FERET(W)
(N = 327), FERET(SB) (N = 512), FERET(C) (N = 808) and FERET(A)
(N = 1199)(see Table 1). The curve in Fig.4 shows the variation of E(T ) with
N . The average search time grows slowly with N , roughly logarithmically.

Experiment III: Performance with Real Users
Tests with real users and a standard research database such as FERET is prob-
lematic since the user is not familiar with the people represented in the database.
Of course one can select an image at random and ask the user to “memorize it”
for few seconds, but this does not provide for a realistic scenario. Instead, we add
images of the faces of familiar people to the database and select these as the tar-
gets for our experiments with mental image retrieval. The results shown in Fig.5
are based on M = 78 complete searches conducted by 22 INRIA researchers
using the FERET(SB+F) database (see Table 1). For comparison, we show a
simulation under the same experimental setting (i.e., same answer and display
models) as well as the distribution corresponding to random display. In this case,
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it is easy to see that the cumulative distribution is linear, P (T ≤ t) = t×n
N , and

the E(T ) = Tmax(1+Tmax)n
2N , where Tmax is the maximum number of iterations

possible. The answer model uses a φ-function with the free parameters esti-
mated by maximum likelihood. Obviously, the proposed model far out-performs
a random response. More importantly, the absolute performance is quite rea-
sonable, with a mean search time of E(T ) ≈ 14.7 iterations and target recovery
in fewer than ten iterations in approximately one-half the searches. Fine-tuning
the model, such as finding metrics and signatures more coherent with mental
matching, would likely result in further improvements.

Fig. 2. The interface for experiments
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Fig. 5. Experiments in mental image
retrieval with familiar faces as targets

7 Conclusions and Future Work

We have constructed a Bayesian model for mental face retrieval within the frame-
work of relevance feedback. In deciding which faces to display to the user to
match to the mental picture, a heuristic solution has been proposed based on
the maximization of mutual information. The design of the answer model is
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motivated by the need to account for the variability in the responses of actual
users and the lack of a strong correlation between the basis for mental match-
ing and how images are compared using standard metrics on standard image
features. The performance of the system is validated in both simulations and in
experiments with real user tests, which demonstrate the feasibility of the pro-
posed model. Improvements are likely to result from metrics and features more
adapted to human decision making. Some degree of semantic annotation would
also increase efficiency, especially with much larger databases.
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A Fingerprint Matching Algorithm
Based on Radial Structure

and a Structure-Rewarding Scoring Strategy
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Abstract. This paper proposes a new fingerprint matching algorithm
for locally deformed fingerprints based on a geometric structure of minu-
tiae, called the radial structure, which is a collection of lines from a minu-
tia that connect its Voronoi neighbors. The proposed algorithm consists
of local matching followed by global matching, in both of which a new ro-
bust scoring strategy is employed. The local matching compares individ-
ual radial structures of a query and a template, and the global matching,
performed when the local matching fails, utilizes overall radial structures
of a query. The algorithm has been tested using the FVC2002 DB1 fin-
gerprint database on a Pentium-4 personal computer with 1.8 GHz clock
and 256 Mbyte RAM. The test results show that the average match-
ing time including preprocessing is 0.9 sec, and the equal error rate is
8.22%. It has been observed that the proposed algorithm has a smaller
equal error rate by 7.18% than Mital and Teoh’s. This is a substantial
improvement in the equal error rate on the angle-distance based algo-
rithm of Mital and Teoh. This improvement is attributed to the following
features of the proposed algorithm: the radial structure is obtained from
Voronoi neighboring minutiae, which results in more robustness to false
minutiae; and the scoring strategy rewards similarity in the geometric
structure rather than feature types as in Mital and Teoh’s algorithm.

1 Introduction

Fingerprint recognition is the most reliable and popular among various biometric
recognitions [1]. A typical automatic fingerprint identification system consists of
fingerprint acquisition, image preprocessing such as image enhancement and fea-
ture extraction, and matching. Fingerprint matching algorithms can be roughly
classified into the following three categories: minutia-based [2, 3]; ridge-based [4];
and hybrid methods [5]. Among these categories, the minutia-based algorithms
are the most common because they usually perform better in recognition accu-
racy and the processing time than the others.

Mital and Teoh proposed a minutiae-based matching algorithm in [6], which
uses five minutiae of its closest neighbors to form geometric structure along with
a scoring method. Their algorithm is simple, very effective, and rotationally
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invariant. However, it has the following two weak points. First, their algorithm
becomes sensitive to false minutiae because a false minutia is chosen, if it is
closer to true ones, for the structure construction. Second, their scoring method
penalizes too heavily discrepancy in the minutiae type between a query and a
template even though the geometric structures are the same or similar.

In this regard this paper proposes a matching algorithm that improves on
Mital and Teoh’s. The proposed algorithm constructs a geometric structure of a
minutia, called the radial structure, which consists of lines connecting its Voronoi
neighbors. In addition, the algorithm employs a scoring strategy that rewards
similarity in the geometric structure of a minutia, even when the feature types are
different unlike Mital and Teoh’s. Consequently, the combination of the radial
structure and the structure-rewarding scoring makes the proposed algorithm
robust to false minutiae.

To compare the proposed algorithm with the referenced algorithm of Mital
and Teoh’s, we have performed the cross experiment of four types using FVC2002
DB1 fingerprint database. The proposed algorithm has a higher recognition rate
by 7.18%: in the recognition rate, the proposed matching algorithm outper-
forms the reference by 2.61% while the proposed scoring method the reference
by 5.54%. From the experimental results, it has been found that the proposed
matching algorithm and scoring method are more robust to false minutiae than
the counterparts of the referenced algorithm. This improvement is attributed to
the following features of the proposed algorithm: the radial structure is obtained
from Voronoi neighboring minutiae, which results in more robustness to false
minutiae; and the scoring strategy rewards similarity in the geometric structure
rather than feature types as in Mital and Teoh’s.

The rest of the paper is organized as follows: Section 2 deals with Voronoi
diagrams and the definition of the radial structure; Section 3 describes the pro-
posed matching algorithm and the scoring method. Finally, Section 4 and 5
present experimental results and conclusions, respectively.

2 Background

2.1 The Definitions of the Voronoi Diagram and theRadial Structure

The Voronoi Diagram. In the plane the Euclidean distance between two
points p and q by dist(p, q) is defined:

dist(p, q) :=
√

(px − qx)2 + (py − qy)2.

P := {p1, p2, p3, ..., pn} is a set of n distinct points in the plane, each of these
points is called a site. We define the Voronoi diagram of P as the subdivision of
the plane into n cells, one for each site in P , with the property that a point q
lies in the cell corresponding to a site pi if and only if dist(q, pi) < dist(q, pj) for
each pj ∈ P with i = j. We denote the Voronoi diagram of P by V or(P ). The
cell that corresponds to a site pi is denoted V (pi), which we call the Voronoi cell
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of pi. The follows represent the properties of Voronoi diagram. Let P be a set of
n point sites in the plane. First, if all the sites are collinear, then V or(P ) consists
of n − 1 parallel lines and n cells. Second, the number of vertices in V or(P ) is
at most 2n − 5 and the number of edges is at most 3n− 6. Third, a point q is
a vertex of V or(P ) if and only if its largest empty circle Cp(q) contains three
or more sites on its boundary [7]. Figure 1 shows an example of the Voronoi
diagram on a fingerprint image after preprocessing.

Fig. 1. An example of the Voronoi diagram of a fingerprint

In this paper we use a modified plane sweep algorithm to construct Voronoi
diagram–Fortune’s algorithm. This algorithm is chosen because it has the
O(n log n) complexity while the half plane intersection algorithm has the com-
plexity of O(n2 logn) [7]. To introduce the sweep line algorithm, we consider the
several definitions. Parabolas are useful in this sweep line algorithm because for
any point pi, there is a parabola from the sweep line that every point on the
parabola is equidistant from both p and the sweep line. Now, we explain the
site event and circle event. As the sweep process, a new arc of some parabola
is added to wave-front (beach line) only when sweep line touches the some site.
This is called a site event. And, the only way that an arc can disappear from
the wave-front is when two other adjacent arcs intersect it at a common point.
This is called a circle event [8]. Figure 2 shows the breakpoint, wave-front (beach
line) and sweep line, and Figure 3 shows the site event and circle event.

The Radial Structure. The radial structure is defined as follows. Figure 4
shows an example of the radial structure. A set P := {p1, ..., pn} for n ∈ Z is a
fingerprint image consisting of n minutia points. The radial structure of point pi

∈ P , denoted R(pi), is defined to the set of all neighborhood minutiae sharing
the edge with minutia pi. We call the center minutia of R(pi) as ci, and the
neighborhood minutiae of R(pi) as ni out of order. So, an arbitrary R(pi) is
defined as follows R(pi) := {ci, n1, n2, ..., nj} for 2 ≤ j ≤ n. Figure 5 shows that
a radial structure consisting of center minutia and its neighbors in a fingerprint
image after Voronoi diagram is constructed. The minutiae are extracted in the
fingerprint image and the radial structures are formed for each R(pi) is saved



A Fingerprint Matching Algorithm Based on Radial Structure 659

Fig. 2. The sweep line algorithm

Fig. 3. The site event and circle event

Fig. 4. The correlation factor of the radial structure

with a text file with a form of following set to perform the matching stage.

R(pi) = {(cix, ciy, ciO, ciT ), (n1x, n1y, n1θ, niO, n1T ), ..., (njx, njy, njθ, niO, njT )}

3 The Proposed Matching Algorithm

The proposed matching algorithm proceeds in the following two stages.
Stage 1 : Search for the number CN of the radial structures which have scores

higher than a preset threshold TS by comparing radial structures of a query and
a template fingerprint image. If CN ≥ TN , we do not carry out second stage
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Fig. 5. A radial structure

Fig. 6. The comparison criteria of the radial structure

matching and display the same fingerprint image. These matching techniques
are useful to locally deformed fingerprint image. If first stage matching is not
employed, because total matching score is low, miss-match can occur in spite of
same fingerprint image. The basis about similarity of radial structure is shown
with Figure 6. Threshold (TS) is predefined by experimental result to be re-
peated, and threshold number (TN ) is defined following threshold:

TN = Total number of radial structure× 25
100

Stage 2 : If the number of similar radial structure is less than TN , the second
stage is performed. At the second stage, estimate the transformation parameters
by using three radial structures that scores highest at the first stage. The fol-
lowing pseudo code shows a method of extracting the translation and rotation
parameters between a query and a template. After extracting parameters, sim-
ilarity of two fingerprint images is decided on by translating and rotating the
query along the extracting parameters. Figure 7 is the flow chart for the process.
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Algorithm for extracting_parameters(query radial structure Qhi,
template radial structure Thi)
while i less than 3

do coincide Qhi’s center point and Thi’s center point
calculate the translation by subtracting Qhi from Thi
while Qhi’s neighbor is not empty

do rotate T as Qhi’s angle and score each stage
each score is stacked the temporary memory

do search the highest score from the temporary memory
calculate the angle as sum of rotation angle of
Qhi’s neighborhood

end of while
end of while

end of Algorithm

In Figure 7, CN is the number of the radial structures which has a higher score
than threshold TS between a query and a template, and S denotes the total
matching score.

Fig. 7. The proposed matching algorithm

4 Experimental Results

The proposed matching algorithm has been tested with the FVC2002 DB1 on
a Pentium-4 personal computer with 1.8 GHz clock and 256 Mbyte RAM. The
FVC2002 DB1 contains 800 impressions obtained from an optical sensor, with 8
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Table 1. The experimental results of the matching rate (%)

Matching � Scoring Proposed Mital and Teoh’s

Proposed 91.78 86.24

Mital and Teoh’s 89.17 84.60

impressions apiece from 100 fingers [9]. We carried out the experiment catego-
rized in Table 1 in order to compare the proposed algorithm and scoring method
with Mital and Teoh’s in [6]. Mital and Teoh’s algorithm uses a local feature
group, in which each of the extracted features is correlated with its five near-
est neighboring features to form a local feature group for a first stage matching.
Their algorithm is more sensitive than the proposed algorithm to a false minutia,
as an example in Figure 8 shows.

Fig. 8. The deformation of each structure when false minutiae is inserted

Each category in Table 1 was performed 2,800 times for genuineness, and
4,950 times for imposter. Figure 9 shows the distribution of the obtained match-
ing score and Table 1 the matching rate. Table 1 clearly shows that the proposed
algorithm outperforms Mital and Teoh’s.
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Fig. 9. The distribution of the matching score of the proposed (left) and Mital and
Teoh’s (right) algorithm

The proposed and Mital and Teoh’s algorithms are similar in the sense that
they both use a geometric structure of fingerprint minutiae, but they are dif-
ferent in the way of constructing the geometric structures and also in the scor-
ing method. First, the proposed algorithm constructs the radial structure using
Voronoi diagrams. Second, in the scoring method, the proposed algorithm gives
priority to the geometric structure rather than minutia types such as ridge end-
ing and bifurcation. Third, if a false minutia is inserted in the same geometric
structure, the proposed algorithm usually undergoes less deformation than Mital
and Teoh’s, although they suffer equally in the worst case.

5 Conclusions

This paper has proposed a fingerprint matching algorithm based on the ra-
dial structures of minutiae and a scoring method that rewards the geometric
structure. Numerical results have shown that the proposed algorithm has a sub-
stantially improved equal error rate on an angle-distance based algorithm. The
proposed matching algorithm and scoring method are found to be more robust
to the false minutiae because of the radial structure and structure-rewarding
scoring method. The proposed matching algorithm can be extended for higher
recognition accuracy. One extension may involve a combined radial structure,
which is a collection of radial structures of neighboring minutiae connected to a
principal minutia.
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Abstract. This paper presents an efficient minutiae-based fingerprint
representation and matching method using the distribution of distances
between points. The proposed method uses the distribution of pair-
wise distances between minutiae as fingerprint features. The fingerprint
matching between the input and the template fingerprints is performed
by considering the Euclidean distance between the distributions. Most
conventional minutiae matching methods require intensive comparing
in order to align the two fingerprints translationally and rotationally,
whereas the proposed method does not need such an intensive compari-
son procedure for the alignment. In addition, the feature vector generated
by the proposed method has a small and fixed length, which is more ad-
vantageous in some applications such as smart cards. The experiments
using the randomly generated 800 minutiae sets and our database con-
sisting of 800 fingerprints show that the proposed method can be used
effectively in applications that have limited memory and require high
speed.

1 Introduction

Fingerprints have been widely and successfully used as a means for human iden-
tification for more than a century. Among the various fingerprint features that
have been considered, minutia points have been shown to be one of the most
effective and discriminatory fingerprint features [1]. In most fingerprint-based
biometric systems using minutiae information, minutiae are extracted from an
input fingerprint, and then matching is performed by comparing the various
attributes of the minutiae between the input and the templates. Even though
the minutiae information is very compact and distinctive, minutiae matching
algorithms generally involve translational and rotational alignment or minutiae
pairing procedures because fingerprints are recored at different positions and
angles during their capture. Perhaps the simplest approach is to perform an ex-
haustive search to find the optimal alignment between the input and template
minutiae [2]. Other authors carry out the alignment using the Hough transform
[3]. Although there are many approaches to reduce computational complexity
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[4], most alignment procedures still require a fairly extensive search of the trans-
form space. Further complicating matters is that often there are differences in the
number of input and template fingerprint minutiae, which must be reconciled. In
addition, since coordinates and their attributes (such as the ridge directions on
the minutiae) need to be stored for each template, methods of this type implicitly
require a high storage capacity. In this paper we propose a new minutiae-based
fingerprint matching method that is based on a compact and fixed-size feature
vector and also employs an efficient alignment procedure. The proposed method
is based on Boutin and Kemper’s reconstruction theorems [5], [6] which show
that a geometrical configuration of points can be uniquely represented (accept-
ing a small number of exceptions) by the distribution of the pairwise distances
between the points. This representation has the attractive property that it is
translation, rotation, and scale invariant. Motivated by these properties, we fo-
cus on representing minutiae configurations using a distribution or histogram of
distances and analyzing its characteristics. The proposed method first extracts
an absolute reference point, and then establishes the region within a certain
distance from the reference point as a region of interest (ROI). Here, only the
minutiae in the ROI are considered for the later feature extraction. Given the
minutiae, the distribution of the quantized distances between all the possible
minutiae in the ROI is calculated. Thereafter, the distribution is smoothed to
reduce the effect of noise or nonlinear deformation, and treated as a normalized
feature vector. In addition, we use the number of the minutiae in the ROI as a
feature element in this vector to improve the accuracy. The rest of this paper is
organized as follows. The next section describes the proposed minutiae feature
representation in detail. In Section 3, the fingerprint matching method is ex-
plained. Section 4 presents the experimental results, followed by the conclusions
and future work in Section 5.

2 Fingerprint Minutiae Representation
Based on the Distribution of Distances

In this section, we briefly introduce Boutin and Kemper’s reconstruction theo-
rem, which underlies of the proposed method, and then describe the fingerprint
feature extraction algorithm in detail.

2.1 Reconstructing Point Configurations from Distances

An n-point configuration is a tuple of points P1,. . .,Pn ∈ Rm. To an n-point
configuration we associate the Euclidean distances di,j between each pair of
points Pi and Pj , and then consider the distribution of distances, i.e. the relative
frequencies of the value of the distances. For n fixed, the distribution of distances
is given by the set of numbers di,j possibly with multiplicities if some distances
occur several times. So considering the distribution of an n-point configuration
is equivalent to considering the polynomial

FPi,...,Pn(X) =
∏

1≤i,j≤n

(X − di,j) (1)
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Clearly the distribution of distances of a point configuration is invariant
under permutations of the points and under rigid motion (such as rotation,
translation, and reflection) of the point configuration. The question is whether
an n-point configuration is uniquely determined, up to a rigid motion, by the
distribution of its distances. In other words, if two point configurations have the
same distribution of distances, does it mean that they are the same, up to a
rigid motion? Boutin and Kemper [5], [6] have proved that the answer to this
question is yes for all but a very small set of exceptional point configurations.
More precisely, they have shown that the following holds.

Theorem 1 (Reconstruction Theorem). There exists a polynomial function
f in 2m variables such that if a point configuration P1,. . .,Pn ∈ Rm satisfies
f(P1, . . . , Pn) = 0, then this point configuration is uniquely determined, up to a
rigid motion, by the distribution of its distances.

This theorem implies that, except for a set of measure zero of point configu-
rations, all point configurations are uniquely determined by the distribution of
their distances. So, at least in theory, almost all point configurations are uniquely
reconstructable from the distribution of their distances. Even though there are
a few exceptions that cannot be reconstructed, the distribution of distances has
the attractive property that it is, for the most part, information preserving as
well as translation and rotation invariant. Generally there is no guarantee that
any feature vectors for fingerprint matching is a unique representation of the
pattern, and practically, one may not be able to reconstruct the original pattern
from the feature vectors. But, to the extent that the features are reasonably
distinct, such an approach is potentially very attractive [7]. Fig. 1 shows two
examples of n-point configurations in a plane together with their associated dis-
tributions. The work on which we report explores the application of pairwise
distance distributions as feature factors for minutiae matching, motivated by
the attracted invariance properties and the Boutin and Kemper’s reconstruction
theorem.

In this paper, we assume that minutiae information is already known and
focus on how to effectively represent and match the minutiae configurations.
Since there is typically great variety in the quality and position of acquired
input fingerprints, we employ a reference point around which we compute the
distribution. This variation in translational position can result in minutiae points
falling outside of the seen region. Because of this, we detect a reference point
such as core points, and compute the distributions relative to this point. Feature
vectors calculated in this way have a compact form, a fixed length, and are
rotationally invariant.

Feature vectors consist of 1) the number of the minutiae in the ROI and 2) the
smoothed distribution of the quantized distances between all possible minutia
points in the ROI.

2.2 ROI (Region of Interest) Detection

If the same minutiae sets are always obtained for the same finger, ROIs for
fingerprints do not have to be detected. However, it is difficult to expect such
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Fig. 1. (a), (c) Examples of a 50 point configuration and (b), (d) their associated
distributions of pairwise distances with bin size=10

situation in real fingerprint biometric systems. Therefore, in order to solve this
problem, the proposed method finds the ROI of a fingerprint using the reference
point information, and uses only the minutiae in the ROI for calculation of the
distribution. This approach has some disadvantages that it is not easy to locate
the reference point consistently and accurately and the minutiae outside the ROI
are not used. But it has the advantages that the procedure is simple and the
registration can be performed by storing the compact and fixed length feature
vector instead of all the minutiae coordinates.

In order to extract the reference point, the proposed method uses the Poincare
index based method [8]. Then the minutiae of interest are obtained by finding the
minutiae within a certain distance from the detected reference point as shown
in Fig. 2(a).

2.3 Feature Vector Generation

Once the minutiae in the ROI of an input fingerprint are found, the proposed
method calculates the histogram of the quantized distances between all the pos-
sible minutiae in the ROI. Let fk be the number of the distances in the range
corresponding to the k-th bin and let be the k-th value of the smoothed his-
togram. The k-th feature value of the feature vector, vk, is obtained as follows:

vk = M · f ′
k∑N

l=1 f
′
l

, k = 1, . . . , N (2)
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f ′
k =

⎧⎪⎨⎪⎩
fk+fk+1

2 , if k = 1
fk−1+fk+fk+1

3 , else if 2 ≤ k ≤ N − 1
fk−1+fk

2 , otherwise
(3)

where M and N are the normalization constant and the number of bins, re-
spectively. Due to nonlinear deformation of fingerprints, the distances between
the same minutiae pair are a bit different and the distances can be counted
in a different bin, usually one of the neighboring bins. To reduce the effect of
this problem, the calculated histogram is smoothed using Eq. 3. The full feature
vector V = (v0, v1, v2, . . . , vN ) is completed by filling the first feature value, v0,
with the number of the minutiae in the ROI. The number of minutiae is added
to a feature vector in order to improve accuracy. In the experiment each bin size
is empirically set to 25 pixels that are at least more than the smallest distance
between minutiae. A sample normalized histogram is graphically displayed in
Fig. 2(b).

Fig. 2. The minutiae in the ROI and the normalized histogram (distribution) of a
sample fingerprint. (a) Minutiae in the ROI (radius=100), (b) normalized histogram
(M=255, N=8)

3 Fingerprint Matching Using Histogram-Based Feature

Since fingerprint feature vectors are obtained using the minutiae in the regions
with the same area for the same finger, the number of the minutiae can be a
distinctive feature. Therefore the proposed method considers the minutiae num-
ber as critical information in calculating the matching distance. As mentioned
in Section 2.3, the first element (v0) of a feature vector is the number of the
minutiae in the ROI.

If we let vI
k, vT

k denote the input and template feature vectors, respectively,
the matching distance is calculated as follows:

d = w · ∣∣vI
0 − vT

0

∣∣ +
1
N

√√√√ N∑
k=1

(vI
k − vT

k )2, w ≥ 0 (4)
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where w is a weighting coefficient and N is the number of bins. The first term
of the distance measure in Eq. 4 is the weighted difference between the minu-
tiae numbers and the second term is the Euclidean distance between the two
histogram features. The larger w is used, the more the matching distance is
affected by the difference between the minutiae numbers.

4 Experimental Results

To analyze the characteristics of the distributions, we used randomly generated
minutiae information before using the real fingerprint minutiae. First, we selected
the first image of each class of the FVC2000 2a database [9], and then manually
detected the minutiae of 100 selected fingerprints. Allowing a certain amount of
tolerance from these manually detected minutiae, we generated additional 700
minutiae sets using a random number generator (see Fig. 3(a)). The tolerance
of 5 pixels means that the minutiae locations can be different up to 10 pixels of
each other in the same class.

First, we investigated how much the bin size affects the matching result. Fig.
3(b) shows the changes in the equal error rate (EER) according to the bin size
when the randomly generated sets of minutiae with the tolerances of 1 pixel and
5 pixels were used. In this experiment, we used not just the minutiae in the ROI
but all the minutiae information. We can see that there is the bin size with the
smallest error rate for each minutia set and the histogram-based feature tends
to be less sensitive to noise if the bin size is larger.

In an actual situation, genuine minutiae might be missed and spurious minu-
tiae might be detected during the automatic minutiae extraction stage. Therefore
we need to check out how much the minutiae detection errors affect the match-
ing result. In Table 1, we demonstrated the changes in the EER according to
the difference between the minutiae numbers. The difference range of 5 means
that the minutiae numbers can be different each other in the same class from 0
to 5. Since the average minutiae number of the 100 sample fingerprints used for
generating random minutiae is about 32 and the fingerprints with the minutiae
number less than 20 are over 12%, the proposed method is a bit sensitive to
missing of minutiae. However, when the number of missed minutiae was small,
the accuracy was good. The method (w = 2) using the number of minutiae to-
gether with the histogram feature outperformed the method (w = 0) using only
the histogram feature.

Table 1. Changes in the EER (%) according to the difference between the minutiae
numbers (bin size = 30, tolerance = 5). w=0 means that only histogram features are
used for matching

Difference range 0 1 2 3 4 5

w=0 3.12 6.24 8.64 12.30 16.33 18.04
w=2 0.59 2.51 4.00 6.66 10.30 11.87
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Fig. 3. (a) Tolerance range for random minutiae generation, and (b) changes in the
equal error rate according the bin size

For our experiments, we also collected 800 fingerprints (80 classes) using
a capacitive type low cost fingerprint sensor. The acquired fingerprint images
were 256 gray scale images and 364×256 in size. In the proposed method, if
the reference point of a fingerprint image is located near the image border, some
minutiae that are supposed to be on the image region might not be available and
this results in a bad matching result. Hence, when the subjects provided their
fingerprints we guided them to place their fingers in the center of the sensor. In
spite of our guidance, the reference points of some fingerprints were located near
the image borders. In this work, we manually detected the minutiae of all the
fingerprint images. Due to nonlinear deformation and reference point detection
error, the numbers of minutiae in the ROI can be different even between the fin-
gerprint images from the same finger. The larger radius value is used to establish
the ROI, the more minutiae may be employed for calculation of a feature vector.
In case that the radius is too large, the matching result can be worse because the
ROIs tend to exceed the image region, which means much different minutiae sets
could be compared even though the two fingerprints are from the same finger.
Therefore, the radius used to establish a ROI was empirically determined as 100
pixels considering the fingerprint image resolution.

In the experiment, the EER of the proposed method was 4.51%. We plotted
the ROC curve as well in Fig. 4. The accuracy of the proposed method might not
be considered enough high for the situation that the fingerprint minutiae were
extracted manually in the experiment, but the proposed method has several ad-
vantages over the most conventional minutiae-based methods in that it requires
much less and fixed size memory space and the matching speed is so high. The
methods that all the minutiae coordinates should be stored as the fingerprint
feature require at least 85 bytes (actually much more memory space is needed
because in general various attributes of the minutiae also are used as fingerprint
features) if we assume that the fingerprint image size is 364×256 and there are 40
minutiae on the image, whereas the feature vector of the proposed method needs
only 9 byte of memory space. The processing speed of the proposed method is
much faster than the matching methods performing an exhaustive search for the
alignment, because it is based on simple computation of the Euclidean distance.
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Fig. 4. ROC curve for the proposed method

5 Conclusion and Future Works

We have proposed a new fingerprint minutiae matching method using the distri-
bution of the pairwise distances between minutiae. The minutiae configuration
is easily represented as a compact and fixed length feature vector by calculating
the distances between all the possible minutiae pairs in the ROI and computing
their histogram. Mainly due to the intrinsic nature of the histogram-based rep-
resentation, the alignment between the input and template is easily solved and
the matching is performed by simply calculating the Euclidean distance between
the two feature vectors. In our method, the minutiae number information is also
used as a discriminatory feature to improve accuracy.

Experimental results conducted using our randomly generated 800 sets of
minutiae and 800 fingerprint images show that the proposed method not only
has a reasonable accuracy and a high processing speed but the feature vector
generated by the proposed method has a compact and fixed length. This result
demonstrates that the proposed method has a possibility that the histogram-
based feature is very effective for fingerprint minutiae matching and it can be
advantageous in some applications with a limited memory space. Since the pro-
posed method exploits the distances between minutia points as a key feature,
we need to develop a distance measure less sensitive to nonlinear deformation.
Besides, to improve the accuracy and practicability of the proposed method, an
algorithm robust to the minutiae detection errors is required to be added to the
current method.
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Abstract. This paper proposes an algorithm for generating a super-
template from multiple fingerprint impressions in fingerprint enrollment
for the purpose of increasing recognition accuracy. The super-template
is considered as a single fingerprint template which contains highly likely
true minutiae based on multiple fingerprint images. The proposed algo-
rithm creates the super-template, in which the credibility of each minu-
tia is updated by applying a successive Bayesian estimation (SBE) to
a sequence of templates obtained from input fingerprint images. Con-
sequently, the SBE assigns a higher credibility to frequently detected
minutiae and a lower credibility to minutiae that are rarely found from
the input templates. Likewise, the SBE is able to estimate the credibility
of the minutia type (ridge ending or bifurcation). Preliminary experi-
ments demonstrate that, as the number of fingerprint images increases,
the proposed algorithm can improve the recognition performance, while
keeping the processing time and memory storage required for the super-
template almost constant.

1 Introduction

In general, a fingerprint verification algorithm includes feature extraction and
matching processes. Feature extraction collects a set of features from a fingerprint
image, while the matching process makes the decision as to whether the two
feature sets are from the same finger or not. Although a lot of research has been
done on feature extraction[1–3], the results of this process are susceptible to be
affected by various conditions, such as the condition of the surface of the scanner
and the human skin, and the pressure imparted in making the impression. For
example, extracted minutiae contain not only genuine minutiae, but also dropped
minutiae (true minutiae not extracted by the algorithm), spurious minutiae (false
minutiae created by the algorithm), or altered minutiae (true minutiae with the
wrong type).

Hence, most feature extraction processes entail the removal of spurious and
altered minutiae[4–6]. Even though they are able to remove false minutiae,
minutia-removing algorithms generally cannot recover any dropped minutiae.
Moreover, their incomplete removal rules or prefixed threshold values can elim-
inate some genuine minutiae. In order to overcome these limitations in false

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 710–719, 2005.
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minutiae removal and true minutiae recovery based on a single fingerprint im-
age, multi-impression algorithms[7–10] have been proposed for the purpose of
creating a template(s) from multiple fingerprint images.

These multi-impression algorithms can be distinguished by the information
source that is used, i.e. images or features. Firstly, image-based algorithms uti-
lize minutiae information to compute a transformation matrix that defines the
spatial relationship among multiple impressions. Jain et al.[7] and Lee et al.[8]
determined the parameters of the matrix using minutiae from a pair of impres-
sions in their image fusion steps. Jain et al. modified an iterative closest point
algorithm, while Lee et al. suggested a distance map matching method for fine
alignment. These algorithms are expected to provide improved fusion perfor-
mance by using both image and minutiae information. On the other hand, the
computational cost and time are augmented due to the increase in the amount
of data.

Secondly, feature-based multi-impression algorithms can be expected to pro-
duce fast fusion results due to their requiring less memory and computation. Toh
et al.[9] and Jiang et al.[10] improved the credibility of the minutiae by applying
fusion techniques only after successful genuine matching, where the minutiae in
the enrolled template are updated on the basis of the input template. These
works are a special case of the feature-based algorithms, because they consider
only two templates, the enrolled template and the template input during the
authentication operation.

Meanwhile, multi-impression selection is a widely applied method in finger-
print enrollment, because of its simple logic and easy implementation, which
involves selecting K templates from N input fingerprints (K ≤ N). A case
study presented by Jain et al.[11] applies a selection scheme for choosing the K
templates out of N inputs and shows better performance than random selection.

In this paper, we propose a feature-level fusion algorithm for enrolling multi-
impressed fingerprints, in which a single super-template is generated from a set
of multiple templates. Unlike previous works[9, 10] on feature-level fusion, this
study focuses on enrollment processes dealing with an arbitrary number of input
multiple impressions. The proposed algorithm consists of input image selection
and template fusion. By using a similarity measure based on matching scores,
the image selection process chooses appropriate input images effectively, which
consequently improves the recognition performance. Then, the template fusion
process makes use of a successive Bayesian estimation (SBE) method[12, 13],
in order to update the credibility of each minutia based on a sequence of input
fingerprints, where the number of input fingerprints is unlimited. The detailed
processes of the algorithm are described in sections 2 and 3. The simulation
results are shown in section 4 and conclusions are drawn in the last section.

2 Fingerprint Image Selection

We assume that K fingerprint images belonging to the same finger are cap-
tured by a fingerprint scanner and that all of them are used for the process of
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template fusion. Providing that all of the input images are feature extractable,
the proposed fingerprint image selection algorithm examines whether the input
fingerprint images are acceptable or not.

The evaluation measure of the image selection algorithm is based on the sim-
ilarity between two input templates. In this study, similarity is measured by a
matching algorithm, which was previously used in a conventional authentication
system using single impression. Higher similarity implies more redundancy in the
feature information, which implies that only a small amount of new information
can be obtained by fusing these two input templates. On the other hand, the
fusion of two templates having lower similarity produces a large amount of new
information. In this case, it should be noticed that some of these pairs of input
templates may not be able to be correctly fused or may correspond to differ-
ent fingerprints that were mistakenly acquired during the input process, due to
human error.

The total number of all genuine matching cases among K fingerprint images
is KC2. We define the similarity, sij , as the matching score between the ith and
jth template, and the average similarity, Si, as the average value of all possible
sij for a fixed value of i. The similarity value sij has a scalar value, in the range
of zero to one. The value sij = 0 means that no similarity exists between the
templates, while sij = 1 indicates that the fingerprints contain perfectly identical
minutiae information.

The ith fingerprint image becomes the removal candidate which may be re-
jected from the input list, if it satisfies any of the following conditions. Firstly,
any of its similarity values sij is lower than the given threshold value thdiff .
This means that the templates will be rejected if they do not contain sufficient
information for updating the template, even if they are from the same finger.
When several removal candidates exist, the rejected fingerprint is determined by
comparison of the average similarity value Si. The fingerprint image which has
the minimum average similarity is removed from the input image list.

Secondly, the fingerprint image will also be removed from the input image
list, if any of the matching scores sij is bigger than the threshold, thsame, and
its average value Si is the maximum value among the removal candidates. In
this case, the fingerprint is assumed that the template do not have enough new
information.

The similarity checks refer to the comparison steps between the matching
score and the threshold values. If any fingerprints are rejected by the similarity
check, new fingerprint images will be acquired from the fingerprint scanner. For
each eliminated image, a new image will have to be scanned, and the similarity
check process will be repeated until the selection condition is fulfilled.

3 Super-template Generation

A super-template implies a superior feature set which is generated from multiple
fingerprint images by combining information from different inputs. The finger-
print feature set used in this study is a set of minutiae information, and the
super-template so obtained contains minutiae not only of larger areas, but also
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with higher credibility than that of the template obtained from any individual
input image. The super-template is created under the condition of an unknown
number of input images, by utilizing a sequential updating method.

In Fig. 1, the images on the upper row show the templates obtained from each
input image, and the images on the lower row visualize the process of updating
the super-template. The information contained in the super-template is improved
in the template fusion process, during which the credibility of each minutia in
the latest super-template is updated on the basis of the minutiae in the current
input image. The darker the area in the super-template, the higher the credibility
of the minutiae obtained by the fusion of the information contained in common
regions of the input images.

Reference template
registration

1st update N-th update

Template 
fusion

. .....

Template 
fusion

. .....

Fig. 1. Sequential updating for super-template generation

The super-template generation algorithm consists of 3 steps, namely the
selection of the reference template and updating order, template fusion, and
super-template creation. The template having the maximum average similarity
is chosen as the first template, and is called the reference template. This is the
template that has the biggest area in common with the other templates. The
updating order is determined by the similarity between the reference template
and the other templates. Those templates having higher similarity values will be
used in the updating process earlier than those templates having smaller values.

The minutiae of the inputs are registered in the updating minutiae set u =
{ui}. Here, u is a set of registered minutia ui, where

ui = (xi, yi, θi, ζi, pmi , pζi , hiti) (1)

is the minutia vector describing the location (xi, yi), the direction θi, and the type
ζi. Further, the probabilities, pmi and pζi are the credibility of the minutia ui and
its type, respectively, while hiti is the number of occurrences of the corresponding
minutia in the inputs. The segmentation information of the nth input image,
segn, is acquired using our feature extraction algorithm in the form of a chain
code representation [14]. The segmentation information of inputs, seg = {segn},
are also kept and used when the minutia credibility pmi is estimated.
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During the first update, there are no minutiae in the updating minutiae set
u. Therefore, the minutiae in the reference template are registered as initial
probabilities, as described in Eq. 2.

ui = (x(ref)
i , y

(ref)
i , θ

(ref)
i , ζ

(ref)
i , pmINIT , pζINIT , 1) (2)

where pmINIT and pζINIT are the initial probabilities of the true minutia and the
true type, respectively. These initial probabilities are highly related to the per-
formance of the feature extraction algorithm. Thus, their values were determined
by the evaluation of the feature extraction algorithm. The number of occurrences
hiti is set to 1 when the reference template is registered, and the segmentation
information of the reference fingerprint image is set to the value of seg0.

Figure 2 represents the process in which the information of the reference
template set u is updated by the nth input template tn. The pose transformation
parameter between the templates is determined by a matching algorithm. The
input template tn and its segmentation information are transformed by the
pose transformation parameter. Supposed that t∗n is the transformed template
obtained from tn. There are three cases of correspondence between the minutiae
in templates u and t∗n, namely minutiae having corresponding minutia, minutiae
only existing in template u and minutiae only existing in template t∗n.

Our proposed SBE method is applied in all three cases with different con-
ditions. The updating minutiae set u includes all of the minutiae obtained after
updating all of the inputs tn(n = 1, . . . ,K − 1) . The super-template selectively
contains higher credibility minutiae in the updating minutiae set u.

START

iu jm

nt
Determine alignment parameter

 between template        and            

*
nn tt

Search corresponding minutiae
and( )u∈iu ( )*

nt∈jm

Corresponding minutiae search 
result in         and 

Update credibility of the 
minutia

END

Only exist in
Minutia      and

is identical

u

Only exist in

Update credibility of 
minutia and minutia type
Update the position and 

angle of the minutia

Register          into

Update credibility of the 
minutia

jm

*
nt

*
nt u

u

u

Fig. 2. Flowchart of the template update
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In determining the pose transformation parameter between the templates u
and tn, the matching algorithm produces several candidates and estimates the
true parameters by matching their scores, which involves the repetition of the
same routine. In this study, a fast parameter estimation algorithm is used to
determine the value of the parameter [15]. This algorithm estimates the value
of the parameter by using the Parzen density estimation method. By applying
the pose transformation parameter, the nth input template tn is transformed to
t∗n and its segmentation information is transformed and registered to segn. This
segmentation information is applied when the minutiae are updated.

Suppose that C(·) represents a function deciding whether a pair of the minu-
tia ui(∈ u) and mj(∈ t∗n) are identical or not. We utilize the Bayesian prob-
ability modeling algorithm, which has a different distribution according to the
type observation [16]. By applying all cases of minutia ui(∈ u) and mj(∈ t∗n) to
function C(·), the minutiae in the templates u and t∗n are assigned to one of the
three cases, i.e., minutiae having corresponding minutia, minutiae only existing
in template u, and minutiae only existing in template t∗n. In the first two cases,
the credibility of the minutia is updated by the proposed SBE, while, in the last
case, a new minutia is registered into the updating minutiae set u. Based on
the nth observation of the minutia ui, its credibility is updated by the following
SBE rule:

p′mi
= p [g (ui) = TRUE|bn (ui)]

=
p [bn(ui)|g(ui) = TRUE] p [g(ui) = TRUE|bn−1(ui)]∑

g(ui)

p [bn(ui)|g(ui)] p [g(ui)|bu−1(ui)]
(3)

where the status of ui is given as

g(ui) =
{
TRUE if ui is true minutia
FALSE if ui is false minutia (4)

and the existence status in the nth template t∗n is defined as

bn(ui) =

⎧⎨⎩
CM if corresponding minutia of ui is found in this template
FG if ui is not CM but locates in the foreground region
BG if ui locates in the background region

.

(5)
The new credibility of minutiae ui is calculated by updating previous minutiae
credibility with nth observation status bn(ui). As found in Eq. (5), The observa-
tion status has three cases. The probability p [bn(ui) = BG|g(ui)] = 0.5 because
no evidence is discovered from the background region. However, the probabil-
ities p [bn(ui) = CM |g(ui)] and p [bn(ui) = FG|g(ui)] can be estimated by the
evaluation of feature extraction and matching algorithm performance.

By the same token as in Eq. (3), the credibility of the type of ui is updated
as

pζNEW = p [t(ζi) = CT |kn(ζi, ζj)]
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=
p [kn(ζi, ζj)|t(ζi = CT )] p [t(ζi) = CT |kn−1(ζi, ζj)]∑

t(ζi)

p [kn(ζi, ζj)|t(ζi)] p [t(ζi)|kn−1(ζi, ζj)]
(6)

where the status of the type ζi is defined as

t(ζi) =
{
CT if ζi is correct minutia type
IT if ζi is incorrect minutia type (7)

and the correspondence status between the type ζi of ui from the reference
template and the type ζj of mj from the nth template t∗n is defined as

kn(ζi, ζj) =
{
ST if the same type
DT if differenct type . (8)

All the probabilities used in Eq. (6) can be estimated by the evaluation of the
fingerprint recognition algorithm. By utilizing Eqs. (3) and (6), the credibility
of the minutia and minutia type can be estimated as following:

(Case 1) minutiae having corresponding minutia

The information of minutia ui is updated by the corresponding minutia mj . The
minutia position and direction are calculated by means of the following equation:

(x′
i, y

′
i, θ

′
i) =

(
xihiti + x∗

j

hiti + 1
,
yihiti + y∗j
hiti + 1

, tan−1

(
sin(θi)hiti + sin(θ∗j )
cos(θi)hiti + cos(θ∗j )

))
(9)

Equation (9) calculates the new position and direction by the arithmetic mean.
The credibility of the minutia ui is estimated by Eq. (3) with the condition
bn(ui) = CM . The credibility of the minutia type pζNEW is calculated by Eq.
(6) and the new type and its probability are defined as

(ζ′i, p
′
ζi

) =
{

(ζi, pζNEW ) if pζNEW ≥ 0.5
(ζj , 1 − pζNEW ) otherwise . (10)

This implies that the minutia type can be changed to another type when
the probability is less than 0.5, because there are only two possible types: ridge
ending and bifurcation. In the case where the type is changed, the probability
of the new type will be 1 − pζNEW .

(Case 2) minutiae only existing in the updating minutiae set u

The credibility of the minutia ui can be updated when the minutia only exists
in the template u. The credibility is estimated by Eq. (3) with the condition of
the segmentation information of the nth input image. The other information is
preserved, as shown in Eq. (11).

(x′
i, y

′
i, θ

′
i, ζ

′
i, p

′
ζi
, hit′i) = (xi, yi, θi, ζi, pζi , hiti) (11)
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(Case 3) minutiae only existing in the template t∗
n

A minutia only existing in template t∗n is registered in the updating minutiae
set u. When registering this minutia to the template u, all of the information
belonging to the minutia mj is preserved, except for the credibility of the minutia,
as shown in Eq. (12):

(x′
i, y

′
i, θ

′
i, ζ

′
i, p

′
ζi
, hit′i) = (x∗

j , y
∗
j , θ

∗
j , ζj , pζINIT , 1) . (12)

The credibility of the minutia type has an initial probability of pζINIT and the
number of occurrences is set to 1. However, the credibility of the minutia pmi is
recursively updated until all of the segmentation information seg0(n = 0, . . . , n)
has been applied to Eq. (3). The minutia credibility has an initial probability of
0.5, and is updated by these segmentation observations from the position using
Eq. (3).

After updating all of the inputs, the updating minutiae set u contains all of
the minutiae of the inputs. Among these minutiae, those that are found several
times in other templates have higher credibility p′mi

, while those minutiae that
are rarely found in other templates have lower credibility. However, those minu-
tiae that are posed in the background area of other inputs may have relatively
higher credibility.

In this paper, the super-template includes those minutiae having a higher
credibility than the given threshold. The information contained in the super-
template can be the same as that of the single input. Therefore, in our exper-
iments, an ordinary one-to-one matching algorithm can use the super-template
without modification.

4 Experimental Results

For the performance evaluation, this study utilizes the FVC2002 (The second
Finger-print Verification Competition) [17] DB2 SetA database for our experi-
ments. Each set consists of 100 fingers and 8 impressions per finger. With this
database configuration, if k is the number of templates used for enrollment, then
8Ck is the number of possible enrollments from a given finger and 8 − k is the
number of genuine matchings against an enrolled template. Therefore, the total
number of genuine matchings that can be performed is 100 × (8 − k) × (8Ck).
The first enrolled template is matched against the first image of the other fin-
gers in impostor matching. However, in the case of a single impression, we use
the FVC2002’s FMR (False Match Rate) and FNMR (False Non Match Rate)
testing methods [18].

Figure 3(a) shows the ratio of the EER in the case of multi-impression to
the EER in the case of single impression. In these experiments, the EER is
dramatically de-creased when more input impressions are applied. The DET
(Detection Error Trade-off) curves in Fig. 3(b) show this in more detail. For
most values of the authentication threshold, better accuracy is obtained when
more impressions are provided for fusion.
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(a) EER changes (b) DET curves

Fig. 3. Comparisons of recognition errors with various impressions

In addition, the proposed super-template generation algorithm offers the ad-
vantage of improved matching time and lower storage requirements. In our ex-
periments, the average matching time is similar to that of a single impression
template, regardless of the number of inputs.

5 Conclusions

In this paper, we proposed a super-template generation algorithm which used
multiple inputs from the same finger. A fingerprint image selection algorithm
was also proposed for the purpose of choosing the appropriate inputs. The tem-
plate fusion algorithm presented in this paper utilizes the successive Bayesian
estimation method. By utilizing this method, the algorithm can handle an un-
limited number of inputs by means of the sequential updating scheme. The
proposed algorithm not only achieves good recognition accuracy, but also keeps
the matching time and storage requirements. In the preliminary experiments,
the proposed algorithm shows a 60% decrease in EER as compared to the single
impression case for the enrollment of 3 templates. Better error reduction can be
obtained by merging a greater number of inputs.
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Abstract. In this paper, we propose a driver identification method that
is based on the driving behavior signals that are observed while the driver
is following another vehicle. Driving behavior signals, such as the use of of
the accelerator pedal, brake pedal, vehicle velocity, and distance from the
vehicle in front, are measured using a driving simulator. We compared
the identification rate obtained using different identification models and
different features. As a result, we found the non-parametric models to be
better than the parametric models. Also, the driver’s operation signals
were found to be better than road environment signals and car behavior
signals.

1 Introduction

With increased emphasis on the practicality and safety of vehicles, the recog-
nition of drivers and their driving behavior has gained importance. The ability
to recognize a driver and his/her driving behavior could form the basis of many
applications, such as, driver authentication for security purpose, the ability to de-
tect the driver becoming drowsy, and the customization of the vehicle’s functions
to suit that driver’s personal preferences. A key technology is “human behavior
signal processing” which involves the processing and recognition of human be-
havior signals such as the operation of the accelerator pedal. In this paper, we
present a driver identification method that is based on such behavior signals.

“Driving behavior” is a cyclic process, as described below (Fig.1).

1. The driver recognizes the road environment, consisting of, for example, the
road layout and the distance to the vehicle in front.

2. The driver decides the action that he/she should take, such as, accelerating,
braking, and/or steering.

3. The driver operates the accelerator pedal, brake pedal, and/or steering wheel.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 739–747, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Vehicle

DriverRecognition

Operation
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Fig. 1. Basic dynamics of driving behavior, vehicle status, and road environment

Driver’s
vehicle

Vehicle 
in front

)()( thtv +)(tv
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Fig. 2. Car following

4. The vehicle status (ex. velocity, yaw rate) changes according to the driver’s
operation.

5. The road environment (ex. distance to the vehicle in front) changes according
to the vehicle status.

The most elementary and familiar driving behavior is “car following”, which
involves maintaining a constant distance from the vehicle in front, and adjusting
the relative velocity accordingly (Fig.2).

In this figure, v(t) is the velocity of the driver’s vehicle, and h(t) is the
distance to the vehicle in front. The velocity of the vehicle in front is v(t)+ ḣ(t).
ḣ(t) is the temporal differential of h(t).

In this research, we aimed to identify a driver by using the driving behavior
signals that are observed while the driver is performing the “car following” task.

2 Driving Simulator

We used a driving simulator to collect the driving behavior signals. The driv-
ing simulator acquires signals corresponding to the operation of the accelerator
pedal, brake pedal, and steering wheel, calculate the corresponding vehicle be-
havior, and display a representation of the road environment on an LCD monitor
(Fig.3). The road is a two-lane highway with a layout recognizable as an actual
Japanese highway. The vehicle in front acts as if it were negotiating mild traffic
congestion.

3 Model Comparison

Two types of model can be used to process the behavior signals. The first is a
physical dynamic model. This model explicitly assumes some physical dynamics
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17” LCD monitor

PC
Windows2000

Sidewinder steering wheel

Fig. 3. Driving Simulator

between the observation variables. As the driver’s personality directly affects the
model parameters, we can identify the driver from those model parameters.

The second is a statistical, non-parametric model. This model assumes the
existence of a mathematical relationship between the observation variables, and
that the driver can be identified by using a statistical pattern recognition tech-
nique.

In the following paragraphs, we compare the two methods.

3.1 Stimulus-Response Model

Model. The most familiar model for car following is the “stimulus-response
model” [1][2][3]. A difference in the velocity of the vehicle in front, as well as
a change in the distance to that vehicle, act act as stimuli to the driver, who
responds by either accelerating or decelerating.

v̇(t + T ) = C1ḣ(t) + C2{h(t) −D} (1)

C1, C2 is the response sensitivity to the stimulus, D is the optimum distance
to the vehicle in front, and T is the response delay. These values may be the
constants or the functions of other variables. While many models have been
proposed to represent C1, C2, D, T , we chose to use the Helly model [4].

v̇(t + T ) = β1ḣ(t) + β2h(t) + β3v(t) + β4 (2)

T, β1, β2, β3, β4 are constant parameters As this is a linear model, the param-
eter estimation is stable and the physical meanings of these parameters can be
interpreted easily.

Experiment. We performed the experiment described below.

Test subjects. Eight males, all in their twenties, all holding driver’s
licenses

Task. Three minutes of car following
Sessions. Four attempts at each of two different road layouts (total of

eight sessions for each subject)
Measured signals. Velocity of driver’s vehicle, velocity of vehicle in

front, distance to vehicle in front
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Identification Method and Results. For the T parameter, we used a value
of 500ms, which we derived from other simple stimulus-response experiments.

The identification process is as follows.

1. Parameter vector x = (β1, β2, β3, β4)′ is calculated for the data obtained
from each session, using the least-square-error method.

2. For each driver c, the data obtained from the eight sessions was divided into
six blocks of learning data and two blocks of estimation data.

3. For each driver c, the average parameter vector μc and the covariance matrix
Σc are calculated using the parameter vectors x of the six blocks of learning
data.

4. For each block of estimation data, we calculated the Mahalanobis distance Dc

between the estimation data and the average for each driver. The estimation
data is identified as the driver having the least Mahalanobis distance.

Dc = (x − μc)′Σ−1
c (x − μc) (3)

A cross-validation test with the process above gave an identification rate of
43.8%.

3.2 Optimal Velocity Model

Model. Another model for the car following task is the “optimal velocity model”
[5]. This model assumes that a driver has his/her own optimal velocity for a
given distance to the vehicle in front, and accelerates/decelerates according to
the difference between the current velocity and the optimal velocity.

v̇(t + T ) = α{Vopt(h(t)) − v(t)} (4)

Vopt(h) = Vmax[1 − exp{−a(h− h0)}] (5)

Vopt(h) is the optimal velocity function , α is the sensitivity parameter, Vmax is
the maximum velocity, and a, h0 is the parameter that represents the driver’s
optimal velocity property.

Identification Method and Results. For the parameter T, Vmax, we used
500ms and 32m/s which we derived from another simple experiment.

The identification method is same as that described in Section 3.1. The pa-
rameter for identification is a, h0, α.

The identification rate was found to be 54.7% with a cross-validation test.

3.3 Gaussian Mixture Model

Model. The Gaussian Mixture Model (GMM) is well known and used in many
applications[6]. GMM is a statistical model that is a linear combination of Gaus-
sian basis functions. The output probability of a GMM λ to the observation
vector o is as follows:

b(o | λ) =
M∑

m=1

ωmNm (o) (6)
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λ = {ωm,μm,Σm | m = 1, 2, . . . ,M} (7)

where o is an observation vector, λ is a Gaussian mixture model, b() is an output
probability, M is the number of mixture functions, μm is the centroid vector of
the mth mixture function, and Σm is the covariance matrix of the mth mixture
function.

ωm is the mixture weight for the mth mixture function and satisfies the
following equation:

M∑
m=1

ωm = 1 (8)

Nm (o) is the mth mixture function and is defined by the equation below:

Nm (o) =
1√

(2π)D|Σm| · exp
{
−1

2
(o − μm)′ Σ−1

m (o − μm)
}

(9)

where Σm,Σ−1
m is the covariance matrix and the inverse of the covariance ma-

trix,and (o−μm)′ is the transpose of (o−μm) . In this work, we use a diagonal
matrix for Σm.

The likelihood of the model λ to the observation vector O = (o1, o2, ...) is
defined by the next equation:

P (O | λ) =
T∏

t=1

b (ot) =
T∏

t=1

M∑
m=1

ωm Nm (ot) (10)

Identification Method. The experimental data was the same as that described
in Section 3.1. The identification process is as follows:

1. For each driver c, the eight items of session data are divided into six blocks
of learning data and two blocks of estimation data.

2. For each driver c, we estimated the Gaussian mixture model λc. The mixture
weight ωm, centroid vector μm, and covariance matrix Σm are calculated us-
ing feature vectors o of six blocks of learning data with the EM algorithm.
The elements of the feature vector are some of v,Δv, h,Δh, where Δx repre-
sents the temporal change in value x and is calculated using the the following
equation:

Δx(t) =

∑K
k=−K kx(t + k)∑K

k=−K k2
(11)

where x(t) is the original feature, K is the time window duration (in this
work, 2K = 600ms). The mixture number is one of 2,4,8, and 16.

3. For each block of estimation data, we calculated the likelihood P (O|λc) for
each driver c. The estimation data is identified for the driver for whom the
likelihood is the greatest.

A cross-validation test was done using the above process.
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Fig. 4. Result of identification with Gaussian mixture model

Results. The identification results are shown in Fig.4. V is the velocity, H is the
distance to the vehicle in front, and Δ represents the temporal change. We can
see that the dynamic features are effective for the likes of speech recognition [7].
The best identification rate was 78%, which was obtained using V,ΔV,H,ΔH .

The stimulus-response model described in Section 3.1 uses the variable v, v̇, h,
ḣ and the identification rate was 43.8%. The identification rate of GMM using
a similar feature V,ΔV,H,ΔH was 78%. The optimal velocity model described
in Section 3.2 uses the variable v, v̇, h and the identification rate is 54.7%. The
identification rate of GMM using less feature V,H is 69%. In each case, the non-
parametric GMM model was found to be better than the parametric physical
model. This result suggests that:

– GMM can represent the underlying dynamics between features with the joint
distribution function.

– GMM can represent the non linearity and stochastic aspects with a proba-
bilistic distribution function.

4 Feature Comparison

In the previous section, we showed that the GMM model exhibits good identifi-
cation performance. In this section, then, we compare the features of GMM.

4.1 Experiment and Identification Method

To check the properties of the features, we performed another experiment.

Test subjects Twelve males, all in twenties, all holding driver’s license
Task Three minutes of car following
Sessions Four attempts at each of two different road layouts (total of

eight sessions for each subject)
Measured signals Driver’s vehicle velocity V , distance to the vehicle

in front H , accelerator pedal angle A, brake pedal angle B

The identification method was the same as that described in Section 3.3.
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Fig. 5. Identification result for single feature
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Fig. 6. Identification result for single feature

4.2 Single Feature

The identification results are shown in Fig. 5 and Fig. 6. V is the driver’s
vehicle velocity, H is the distance to the vehicle in front, A is the accelerator
pedal angle, B is the brake pedal angle, and Δ represents the temporal change.
This result shows that the accelerator pedal behavior signal offers the best means
of identification. We believe that the reason for this is as follows:

– As the accelerator pedal is operated directly by the driver, it is best at
preserving the personal property information.

– The accelerator pedal is operated more frequently than the brake pedal.
– As the vehicle velocity and the distance to the vehicle in front are both

results of the convolution of the driver’s operation, the physical properties
of the vehicle, and the properties of the vehicle in front (Fig. 7), the personal
property information can be unclear.

4.3 Multiple Features

Fig. 8 shows the results for multiple features. This result shows that the feature
of the accelerator pedal and the distance to the vehicle in front offer the best
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Fig. 8. Identification result for multiple features

combination. This is reasonable, because that these features provide the input
and the output for the driver (Fig. 7).

5 Conclusion and Future Work

We have proposed a driver identification method based on the driving behavior
signals that are observed while car following. The driving behavior signals of the
accelerator pedal, brake pedal, vehicle velocity, and distance to the vehicle in
front were measured using a driving simulator. We compared the identification
rate using different identification models and different features. We obtained two
results.

– Non-parametric models are superior to parametric models.
– A driver’s operation signals are better than the road environment signals

and vehicle behavior signals.

The physical model and statistical model is not competitive model. As the
next step of this research, we aim to analyze the underlying properties of the be-
havior signals, merge these two models, and develop a more precise identification
method.
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Abstract. Existing ear recognition approaches do not give theoretical or exper-
imental performance prediction. Therefore, the discriminating power of ear bio-
metric for human identification cannot be evaluated. This paper addresses two
interrelated problems: (a) proposes an integrated local descriptor for representa-
tion to recognize human ears in 3D. Comparing local surface descriptors between
a test and a model image, an initial correspondence of local surface patches is es-
tablished and then filtered using simple geometric constraints. The performance
of the proposed ear recognition system is evaluated on a real range image database
of 52 subjects. (b) A binomial model is also presented to predict the ear recogni-
tion performance. Match and non-matched distances obtained from the database
of 52 subjects are used to estimate the distributions. By modeling cumulative
match characteristic (CMC) curve as a binomial distribution, the ear recognition
performance can be predicted on a larger gallery.

1 Introduction

Ear is a viable new class of biometrics since the ear has desirable properties such as
universality, uniqueness and permanence [1]. For example, ear is rich in features; it is
a stable structure which does not change with the age; it doesn’t change its shape with
facial expressions, cosmetics and hair styles. Although it has above advantages over
other biometrics, it has received little attention compared to other popular biometrics
such as face, fingerprint and gait.

In recent years, some approaches have been developed for the ear recognition from
2D images. Burge and Burger [2] proposed an adjacency graph, which is built from
the Voronoi diagram of the ear’s edge segments, to describe the ear. Ear recognition is
done by subgraph matching. Hurley et al. [3] applied force field transform to ear im-
ages and wells and channels are shown to be invariant to affine transformations. Chang
et al. [4] used principal component analysis (PCA) to ear images. All of these works for
ear recognition have used 2D intensity images and therefore the performance of their
systems is greatly affected by imaging conditions such as lighting and shadow. How-
ever currently available range sensors can directly provide us 3D geometric information
which is insensitive to above imaging problems. Therefore, it is desirable to design a
human ear recognition system from 3D side face images obtained at a distance. In fact,
different methods to design biometrics system based on 3D data have been addressed
[5–10].

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 748–757, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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However, no existing ear recognition approaches gives theoretical or experimen-
tal performance prediction. Evaluation and prediction of the performance of biomet-
rics system to identify individuals is always considered in real world applications. Re-
searchers have built mathematical models to evaluate and predict the performance on
biometrics such as face, fingerprint, iris and gait. Bhanu et al. [11] develop a binomial
model to predict fingerprint recognition performance. Tan et al. [12] present a two-point
model and a three-point model to estimate the error rate for the point based fingerprint
recognition. Johnson et al. [13] build a CMC model that is based on the feature space to
predict the gait identification performance. Wayman [14] derives equations for the gen-
eral biometric identification system. Daugman [15] analyzes the statistical variability
of iris recognition using a binomial model. Johnson et al. [16] model a CMC curve to
estimate recognition performance for larger galleries. Grother et al. [17] introduce the
joint density function of the match and non-match scores to predict open- and closed-set
identification performance.

In this paper, we first introduce an integrated local surface descriptor for 3D ear
representation. A local surface descriptor is defined by a centroid, its surface type and
2D histogram. The 2D histogram consists of shape indexes, calculated from principal
curvatures, and angles between the normal of reference point and that of its neighbors.
The local surface descriptors are calculated only for the feature points which are defined
as the local minimum and maximum of shape indexes. By comparison of local surface
descriptors between a test and a model image, correspondences of local surface patches
are established and then filtered using simple geometric constraints. The initial transfor-
mation is estimated based on the corresponding surface patches and applied to randomly
selected locations of model ears. Iterative closest point (ICP) algorithm [18] iteratively
refines the transformation to bring model ears and test ear into best alignment. The root
mean square (RMS) registration error is used as the matching error criterion.

Next, a binomial model is presented to predict the proposed ear recognition perfor-
mance. We calculate the RMS registration errors between 3D ears in the probe set with
3D ears in the gallery. RMS errors are used as matching distances to estimate the dis-
tribution of match and non-match distances. Then the cumulative match characteristic
(CMC) curve is modeled by a binomial distribution and the probability that the match
score is within rank r can be calculated. Using this model we can predict ear recognition
performance for a large gallery.

2 Technical Approach

2.1 Feature Extraction

In our approach, feature points are defined as local minimum and maximum of shape
indexes, which can be calculated from principal curvatures. In order to estimate curva-
tures, we fit a quadratic surface f(x, y) = ax2 + by2 + cxy + dx + ey + f to a local
window and use the least square method to estimate the parameters of the quadratic
surface, and then use differential geometry to calculate the surface normal, Gaussian
and mean curvatures and principal curvatures [19].

Shape index (Si), a quantitative measure of the shape of a surface at a point p,
is defined by (1) where k1 and k2 are maximum and minimum principal curvatures
respectively. With this definition, all shapes are mapped into the interval [0, 1] [20].



750 Hui Chen, Bir Bhanu, and Rong Wang

Si(p) =
1
2
− 1

π
tan−1 k1(p) + k2(p)

k1(p) − k2(p)
(1)

Within a w × w window, the center point is marked as a feature point if its shape
index is higher or lower than those of its neighbors.

2.2 Local Surface Patches

We define a “local surface patch” as the region consisting of a feature point P and its
neighbors N. The neighbors should satisfy these two conditions,

N = {pixels N, ||N − P || ≤ ε1}
and acos(np•nn < A), (2)

where np and nn are the surface normal vectors at point P and N . The two parameters
ε1 and A are important since they determine how the local surface patch is resistant to
clutter and occlusion. Johnson [21] discussed the choices for the two parameters. For
every local surface patch, we compute the shape indexes and normal angles between
point P and its neighbors. Then we can form a 2D histogram. One axis of this histogram
is the shape index which is in the range [0,1]; the other is the dot product of surface
normal vectors at P and N which is in the range [-1,1]. In order to reduce the effect of
the noise, we use bilinear interpolation when we calculate the 2D histogram.

We also compute the centroid of local surface patches. We classify surface shape
of the local surface patch into three types: concave, saddle and convex based on shape
index value of the feature point. The shape index range and its corresponding surface
type are listed in Table 1 [22]. Note that a feature point and the centroid of a patch may
not coincide.

Table 1. Surface type Tp based on the shape index

Type tag (Tp) Si range Surface type
0 [0,5/16) Concave
1 [5/16,11/16) Saddle
2 [11/16,1] Convex

In summary, every local surface patch is described by a 2D histogram, surface type
and the centroid. The local surface patch encodes the geometric information of a local
surface.

2.3 Off-Line Model Building

Considering the uncertainty of location of a feature point, we repeat the above process
to calculate descriptor of local surface patches for neighbors of feature point P and save
these descriptions into the model database. For each model object, we repeat the same
process to build the model database.
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2.4 Surface Matching

Comparing Local Surface Patches. Given a test range image, we repeat the above
steps and get local surface patches. Considering the inaccuracy of feature points’ loca-
tion, we also extract local surface patches from neighbors of feature points. Then we
compare them with all of the local surface patches saved in the model database. This
comparison is based on the surface type and histogram dissimilarity. Since histogram
can be thought of as an approximation of probability distributed function, we use sta-
tistical method to assess the dissimilarity between two probability distributions. The
χ2 − divergence is among the most prominent divergence used in statistics to assess
the dissimilarity between two probability density functions. We use it to measure the
dissimilarity between two observed histograms Q and V, which is defined by (3) [23].

χ2(Q, V ) =
∑

i

(qi − vi)2

qi + vi
(3)

Figure 1 shows an experimental validation that the local surface patch has the dis-
criminative power to distinguish shapes. We do experiments under three cases. 1) a
local surface patch (Lsp1) generated for an ear is compared to another local surface
patch (Lsp2) corresponding to the same physical area of the same ear imaged at dif-
ferent viewpoints; a low dissimilarity exists. 2) The Lsp1 is compared to Lsp3 which
lies in different area of the same ear; the dissimilarity is high. 3) The Lsp1 is compared
to Lsp4 which lies in the similar area as the Lsp 1 but not the same ear, there exists a
higher dissimilarity than the first case. The experimental results suggest that the local
surface patch can be used for differentiation between ears. Table 2 lists the comparison
results.

Fig. 1. Experimental validation of discriminatory power of Local Surface Patches
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Table 2. Comparison results of local surface patches

Surface Type
Lsp1 Lsp2 Lsp3 Lsp4
Tp=0 Tp=0 Tp=2 Tp=1

χ2 − divergence
χ2(Lsp1, Lsp2) χ2(Lsp1, Lsp3) χ2(Lsp1, Lsp4)
0.479 1.99 0.984

Grouping Corresponding Pairs of Local Surface Patch. For every local surface
patch from the test ear, we choose the local surface patch from the database with min-
imum dissimilarity and the same surface type as the possible corresponding patch. We
filter the possible corresponding pairs based on the geometric constraints given below.

dC1,C2 = |dS1,S2 − dM1,M2 | < ε2, (4)

where dS1,S2 and dM1,M2 are Euclidean distance between centroids of two surface
patches. For two correspondencesC1 = {S1,M1} and C2 = {S2,M2} where S means
test surface patch and M means model surface patch, they should satisfy (4) if they are
consistent corresponding pairs. Thus, we use geometric constraints to partition the po-
tential corresponding pairs into different groups. The largest group would more likely
to be the true corresponding pair.

Given a list of corresponding pairs L = {C1, C2, . . . , Cn}, the grouping procedure
for every pair in the list is as follows: Initialize each pair of a group. For every group,
add other pairs to it if they satisfy (4). Repeat the same procedure for every group.
Select the group which has the largest size.

Aligning Model Ears with Test Ears. We estimate the initial rigid transformation
based on the corresponding local surface patches using quaternion representation [24].
Starting with the initial transformation, Iterative closest point (ICP) algorithm [18] is
run to refine the transformation by minimizing the distance between the control points
of the model ear and their closest points of the test ear. Since the ear is assumed to be in
the center of the image, the control points are selected around the center of the image.
Every time the control points are randomly selected from model ears and ICP is applied
to those points. We repeat the same procedure several times and choose the minimum
RMS error as the final result.

2.5 Prediction Model

The mathematical prediction model is based on the distribution of match and non-match
scores [11]. We use ms(x) and ns(x) to denote the distributions of match and non-
match scores. If the similarity score is higher, the match is closer. The error occurs when
any given match score is less than any of the non-match scores. The probability that the
non-match score is greater than or equal to the match score x is NS(x) computed by
(5).

NS(x) =
∫ ∞

x

ns(t)dt (5)
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The probability that the match score x has rank r exactly, is given by the binomial
probability distribution:

CN−1
r−1 (1 −NS(x))N−rNS(x)r−1 (6)

By integrating over all the match scores, we get∫ ∞

−∞
CN−1

r−1 (1 −NS(x))N−r
NS(x)r−1

ms(x)dx (7)

In theory the match scores can be any value within (−∞,∞). Therefore the proba-
bility that the match score is within rank r, which is definition of a CMC curve, is

P (N, r) =
r∑

i=1

∫ ∞

−∞
CN−1

i−1 (1 −NS(x))N−i
NS(x)i−1

ms(x)dx (8)

In above equations N is the size of large population whose performance needs to be
estimated. Here we assume that the match score and non-match score are independent
and the match and non-match score distributions are the same for all the persons. The
small size gallery is used to estimate distributions of ms(x) and ns(x).

For the ear recognition case, every 3D ear in the probe set is matched to every
3D ear in the gallery and the RMS registration error is calculated using the procedure
described in Section 2.4. The RMS registration error is used as matching error criterion.
In our case, the matching error is smaller, the match is closer. In order to use the above
prediction model, we modify the equations accordingly.

3 Experimental Results

3.1 Data Acquisition

We use real range data acquired using Minolta Vivid 300. The range image contains
200×200 grid points and each grid point has a 3D coordinate (x, y, z). There are 52
subjects in our database and every subject has two left side face range images taken at
different viewpoints. The ears are manually extracted from side face images. The data
is split into model and test sets. Each set has 52 ears. The extracted model ears and
corresponding test ears are shown in Figure 2 and Figure 3 respectively.

Fig. 2. 3D model ears shown as gray scale images
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Fig. 3. 3D test ears shown as gray scale images

(a) No added noise (b) σ = 0.6mm (c) σ = 1.0mm

Fig. 4. Test scans corrupted with Gaussian noise

3.2 Performance Evaluation

To test the proposed system’s performance, we add Gaussian noise to the test scans
along the viewing direction (Z-axis). The standard deviation of Gaussian noise we add
depends on the mesh resolution of test scans. However the mesh resolution is not well
defined. We use the Johnson’s definition [21] “Mesh resolution is defined as the median
of all edge lengths in a mesh”. Given a test range image, we triangulate it and get a
triangular mesh. Then we calculate the median of all edge lengths in the mesh. The
average median calculated from test scans is about 1.25mm. We add Gaussian noise
with σ = 0.6mm and σ = 1.0mm to test scans. Therefore, we have three probe
sets: one probe set has no added Gaussian noise; the second probe set has Gaussian
noise N(0, σ = 0.6mm); the third probe set has Gaussian noise N(0, σ = 1.0mm).
Examples of one test scan corrupted with Gaussian noise are shown in Figure 4.

The CMC curve is used to evaluate the system’s recognition performance. The rank-
1, rank-2 and rank-3 recognition rates for three probe sets are listed in Table 3. The
verification performance results are given by the receiver operating characteristic (ROC)

Table 3. Recognition results for three probe sets

Probe set Rank-1 Rank-2 Rank-3
No added noise 90.4% 96.2% 96.2%

N(0, σ = 0.6mm) 76.9% 86.5% 86.5%
N(0, σ = 1.0mm) 44.2% 61.5% 67.3%
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Fig. 5. ROC curve for three probe sets

curve which is defined as the plot of genuine acceptance rate against false acceptance
rate. Figure 5 shows the ROC curves for three probe sets. From Table 3 and Figure 5,
we can see that the performance of the proposed system degrades as the scene noise
increases. It’s reasonable since Gaussian noise corrupts the surface normals and shape
index resulting in the corruption of the local surface patch representation.

3.3 Prediction Results

Every 3D scan in three probe sets is matched to every 3D ear in the gallery and the RMS
registration error is calculated using the procedure described in Section 2.4. The RMS
registration error is used as the matching distance. Therefore, we obtain 52 true-match
distances and 2652 non-match distances for every probe set. The matching distance
distribution for true-match and non-match for three probe sets are shown in Figure 6.
Based on the distributions, we can predict CMC curve P (N, r) where r = 1, 2, 3 and
N is 52. We also calculate the CMC curve based on the experimental results for three
probe sets. The results of the directly calculated CMC curve and the predicted CMC
curve are shown in Table 4. Table 4 shows that the predicted CMC values are close
to the calculated CMC values, which demonstrates the effectiveness of our prediction
model. We’d like to predict CMC values for larger galleries from the original range
image database of 52 subjects. Table 5 shows the predicted CMC values for three probe

Table 4. Predicted and calculated CMC values for three probe sets on 52 subjects

Probe set
Rank-1 Rank-2 Rank-3

Predicted Calculated Predicted Calculated Predicted Calculated
No added noise 92.5% 90.4% 94.6% 96.2% 95.7% 96.2%

N(0, σ = 0.6mm) 80.4% 76.9% 83.9% 86.5% 85.8% 86.5%
N(0, σ = 1.0mm) 51.5% 44.2% 60.2% 61.5% 66.1% 67.3%
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Fig. 6. Matching distance distribution for match and non-match pairs for three probe sets: (a)
without added noise, (b) with Gaussian noise N(0, σ = 0.6mm), (c) with Gaussian noise
N(0, σ = 1.0mm)

Table 5. Predicted CMC values for three probe sets for larger galleries (Recognition rate shown
as percentage)

Probe set
N=100 N=200 N=300 N=400

R-1 R-2 R-3 R-1 R-2 R-3 R-1 R-2 R-3 R-1 R-2 R-3
No added noise 91.2 92.8 94.4 90.5 90.9 91.8 90.4 90.5 90.8 90.4 90.4 90.5

N(0, σ = 0.6mm) 78.3 80.9 83.6 77.1 77.9 79.3 76.9 77.1 77.6 76.9 76.9 77.1
N(0, σ = 1.0mm) 46.8 52.1 57.9 44.6 45.9 48.6 44.3 44.6 45.4 44.2 44.3 44.5

sets for different gallery size (N=100, 200, 300, 400). Confidence in prediction is of
interest and we plan to work on it.

4 Conclusions

In this paper, we first propose an integrated local descriptor for representation to rec-
ognize human ears in 3D. We evaluate the proposed ear recognition performance by
means of CMC and ROC curves on three different probe sets using a real range im-
age database of 52 subjects. One probe set has no added Gaussian noise; the second
probe set has Gaussian noise N(0, σ = 0.6mm); the third probe set has Gaussian noise
N(0, σ = 1.0mm). We obtain rank-one recognition rate of 90.4% for test scans without
added noise and the system’s performance degrades as the scene noise increases. We
also predict the ear recognition performance on larger galleries by modeling cumulative
match characteristic curve as a binomial distribution. The predicted rank-one recogni-
tion rate is 90.4% on test scans without added noise for a database of 400 subjects.
Table 5 demonstrates that we can predict the recognition performace for lager galleries.
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Abstract. DWT domain on-line signature verification method has bee
proposed. Time-varying pen-position signal is decomposed into sub-band
signals by using the DWT. Individual features are extracted as high fre-
quency signals in sub-band. By using the extracted feature, verification
is achieved at each sub-band and then total decision is done by combin-
ing such verification results. In this paper, we introduce a user weight-
ing fusion into the total decision for improving verification performance.
Through many verification experiments, it is confirmed that there is an
optimal weight combination for each user and verifiaction rate can be
improved when the optimal weight combination is applied. Such the op-
timal weight combination also becomes an individual feature which can
not be known by others.

1 Introduction

Recently, multiple biometric systems have been attracted attentions to improve
the performance of single biometric systems. Five scenarios of the multiple bio-
metric system are considered in [1], that is, multi-sensor system, multi-modal
system, multi-unit system, multi-impression system, and multi-matcher system.
Among of them, the multi-matcher system which uses multiple representation
and matching algorithm for the same input biometric signal is the most cost-
effective way to improve the performance of the biometric system [1]. In addition,
the multi-matcher system requires capturing biometrics only once.

We have proposed the on-line signature verification system in the Discrete
Wavelet Transform (DWT) domain [2, 3]. This system utilized only pen-position
parameter, that is, x and y coordinates since it was detectable even in portable
devices such as the Personal Digital Assistants (PDA). Each time-varying signal
of x and y coordinates was decomposed into sub-band signals by using the DWT.
Verification was achieved by using the adaptive signal processing in each sub-
band. Total decision for verification was done by averaging the verification results
of several sub-bands in x and y coordinates. Verification rate was about 95%,
which was improved by about 10% comparing with a time-domain verification
system.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 758–766, 2005.
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Our proposed system is regarded as the multi-matcher system. In general,
the multi-matcher system combines at most a few verification results [1]. On
the other hand, the verification of our proposed system is achieved at several
sub-bands in both x and y coordinates; therefore, there are much more verifi-
cation results than general multi-matcher systems. This enables to adopt more
unrestrained weighting of the verification results. If an optimal weighting for
each user (signature) is applied in the total decision, the verification rate is ex-
pected to be improved. In this paper, we introduce a user weighting fusion into
the total decision. Through many verification experiments, it is confirmed that
there is an optimal weight combination for each signature and the verifiaction
rate is improved when the optimal weight combination is applied. Moreover, the
optimal weight combination also becomes an individual feature which can not
be known by others.

2 On-Line Signature Verification in DWT Domain

2.1 On-Line Signature

The on-line signature is digitized with the electronic pen-tablet. Especially, we
utilize only pen-position parameter since it is provided even in such as the PDA
for handwriting or pointing. Actually, the pen-position parameter consists of
discrete time-varying signals of x and y coordinates, which are x∗(n

′
) and y∗(n

′
)

, respectively. n
′
(= 0, 1, · · · , Nmax−1) is a sampled time index. Nmax is the total

number of sampled data. As the one-line signature is a dynamic biometrics, each
writing time is different from the others. This results in the different number of
sampled data even in genuine signatures. Moreover, different writing place and
different size of signature cause variations in pen-position parameter. To reduce
such variations, pen-position data are normalized in general. The normalized
pen-position parameter is defined as

x(n) =
x∗(n) − xmin

xmax − xmin
· αx (1)

y(n) =
y∗(n) − ymin

ymax − ymin
· αy (2)

where n(= 0 ∼ 1) is a normalized sampled time index given by n = n
′
/(Nmax −

1). xmax and ymax are maximum and minimum values of x∗(n) and y∗(n), re-
spectively. αx and αy are scaling factors for avoiding underflow calculation in
sub-band decomposition described later.

However, such normalization makes the difference between a genuine signa-
ture and its forgery unclear. In addition, the on-line signature is relatively easy
to forge if the written signature is known. Easiness of imitating pen-position
data decreases the difference between the genuine signature and the forgery fur-
ther. Figure 1 shows examples of the time-varying signal of x coordinate in a
genuine signature and its forgery. The forgery data was obtained by tracing the
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Fig. 1. Examples of the time-varying signal of x coordinate

genuine signature. It is clear that to distinguish between the genuine signature
and the forgery is difficult by using the time-varying signal of the pen-position
parameter.

2.2 Feature Extraction by Sub-band Decomposition

In order to enhance the difference between a genuine signature and its forgery,
we have proposed to verify the on-line signature in DWT domain [2, 3]. In the
following, x(n) and y(n) are represented as v(n) for convenience. The DWT of
the normalized pen-position v(n) is defined as [4]

uk(m) =
∑

n

v(n)Ψk,m(n) (3)

where Ψk,m(n) is the wavelet function and · denotes the conjugate. k is a fre-
quency (level) index.

Moreover, it is well known that the DWT corresponds to the octave-band
filter bank. Figure 2 shows a parallel structure of the sub-band decomposition
where Md is a decomposition level and is set to guarantee the following relation

2Md+1 ≤ Ntmp < 2Md+2 (4)

Fig. 2. Parallel structure of sub-band decomposition by DWT
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Fig. 3. Examples of Detail

Ntmp is the number of sampled data of pen-position template described later.
Also, Md has the upper limit: Mmax

d . The synthesized signal vk(n) (k = 1, 2, · · · ,
Md) is called Detail. The Detail is the signal in high frequency band and so it
contains differences between signals. Therefore, we consider the Detail as an
enhanced individual feature in pen-position.

Figure 3 shows examples of the Detail [2, 3]. We can confirm that the dif-
ference between a genuine signature and its forgery become remarkable by the
sub-band decomposition even if the genuine signature is traced by the forger.

2.3 Verification System

Figure 4 shows a system overview. Pen-position, actually x and y coordinates
are separately processed in verification block. Figure 5 describes the verification
block. Firstly, the time-varying signal of x or y coordinate is decomposed into
Details and then each Detail is verified with a corresponding template using the
adaptive signal processing at each sub-band level.

Before verification, templates must be enrolled to be compared with input
signatures. As the template, T genuine signatures which have equal number of

Fig. 4. System overview



762 Isao Nakanishi et al.

Fig. 5. Verification block

strokes are prepared and then their pen-position parameter is decomposed into
sub-band signals by the DWT each other. Decomposition level is decided after
examinations of those genuine signatures. Extracted T Details are averaged at
the same level each other.

By the way, if the number of strokes in an input signature is different from
that in a template, it is natural to consider the input signature as a forgery.
However, not all genuine signatures have the same number of strokes. We adopt
the dynamic programming (DP) matching method to identify the number of
strokes in an input signature with that in a template. The procedure of the
stroke matching is omitted for lack of space. It is described in detail in [2, 3].

2.4 Verification Using Adaptive Signal Processing

After enrollment of the template, verification is achieved by using the adaptive
signal processing. The purpose of the adaptive signal processing is to reduce
the error between the input signal and the desired signal sample by sample [5].
When an input signal is of a genuine signature, the error between the input and
its template becomes small; therefore, adaptive weights are expected to converge
close on 1. Inversely, if the input signature is a forgery, adaptive weights converge
far from 1. In this way, the verification can be achieved by examining whether
converged value is nearly 1 or not [2, 3].

As the adaptive algorithm, we use a new kind of steepest descent algorithm
[5] defined as follows.

wk(n + 1) = wk(n) + μE [ek(n)vk(n)] (5)
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ek(n) = tk(n) − wk(n)vk(n) (6)

E [ek(n)vk(n)] =
1

Ntmp

Ntmp−1∑
l=0

ek(r − l) vk(r − l) (7)

μ = μ0/ {E [|vk(n)|]}2 (8)

E [|vk(n)|] =
1

Nin

Nin−1∑
l=0

vk(n− l) (9)

where Nin is the number of sampled data in an input Detail. Ntmp is the num-
ber of sampled data in a template. μ is a step size parameter which controls
the convergence in the adaptive algorithm. The step size parameter is normal-
ized by input power as shown in Eqs.(8) and (9), so that convergence is always
guaranteed. μ0 is a positive constant.

The verification is done in all sub-bands in parallel. After enough iterations
for convergence, wk(n) is averaged in past Ntmp samples and then we obtain the
converged value wk.

Total verification score (TS) is obtained by combining converged values at
several sub-band levels in x and y coordinates.

TS = cx

(
L−1∑
p=0

fp · wx
M−p

)
+ cy

(
L−1∑
p=0

fp · wy
M−p

)
(10)

cx + cy = 1, cx > 0, cy > 0, Σfp = 1, fp > 0

where wx
M−p and wy

M−p respectively denote the converged values of x and y
coordinates at level M − p. L is the number of used sub-band levels in decision
fusion. cx and cy are the weights for x and y coordinates, respectively and fp is
the weight for sub-band.

In our conventional results, we set cx = cy = 1/2 and fp = 1/L, that is, the
total verification score was obtained by averaging all converged values. In that
case, verification rate was about 95% [2, 3].

3 User Weighting Fusion

In our proposed system, total verification score is obtained by fusing 2×L con-
verged values. In other words, it is possible to set the weights more unrestrained
than the time-domain verification system which has only cx and cy.

There have been proposed many fusion methods such as the sum rule, the
minimum score, the maximum score and so on [6]. In this paper, we introduce
user weighting fusion into the total decision for verification. The total verification
score is re-defined as

TSi = ci
x

(
L−1∑
p=0

f i
p · wx

M−p

)
+ ci

y

(
L−1∑
p=0

f i
p · wy

M−p

)
(11)

ci
x + ci

y = 1, ci
x > 0, ci

y > 0, Σf i
p = 1, f i

p > 0
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where i (i = 1, 2, · · · , I) presents enrolled user (signature) identification num-
ber. In general verification systems, such a user identifier is used for one-to-one
matching between an input and its template [7]. The user weighting fusion en-
ables to set optimal weights for each user.

Next, in order to find such optimal weights, we carried out verification ex-
periments in various weight combinations. In this experiment, we assumed the
following severe situation. Before signing, the subjects were called upon to prac-
tice using the pen tablet for becoming skilled. This suppresses the variation of
signature due to inexperienced pen-tablet. When the subjects signed genuine
signatures, they were not able to refer to their already written signatures. This
tends to increase the intra-class variation in signatures of one individual. On
the other hand, assuming that the signature shape was easily imitated, forgers
were permitted to trace the genuine signature by putting the paper to which the
signature was written over the pen tablet.

On the above situation, we prepared an original database. Four subjects
were requested to sign their own signatures and then we obtained 118 genuine
signatures. The four subjects were labeled “a”, “b”, “c” and “d” in the following.
Five genuine signatures for each subject were used to make a template and the
remaining 98 genuine signatures were used for verification. Five subjects were
required to counterfeit the genuine signature 10 times each, so that 200 forgeries
were prepared in total.

Other conditions of simulation are summarized as follows.

– Scaling parameter: αx = αy = 100
– Wavelet function: Daubechies8
– Number of signatures for making a template: T = 5
– Upper limit decomposition level: Mmax = 8
– Number of processed level: L = 4
– Step size constant: μ0 = 0.0001
– Number of iterations: 105

The weight for pen-position was changed from 0.0 to 1.0 every 0.1. Also, three
combinations of weight for sub-band, (0.1, 0.2, 0.3, 0.4), (0.25, 0.25, 0.25, 0.25),
(0.4, 0.3, 0.2, 0.1) were examined. Totally 33 weight combinations were evaluated.
Verification performance was estimated by the Equal Error Rate (EER) where
the False Rejection Rate (FRR) is equal to the False Acceptance Rate (FAR).

Results are shown in Table 1. When the case of cx = cy = 0.5 and f3 = f2 =
f1 = f0 = 0.25 corresponds to the conventional setting. In that case, the total
EER was 5% [2, 3].

Next, we defined an optimal combination as the weights which achieved the
smallest EER and made it easier to set threshold value in total decision using
the FAR and FRR curves. The optimal weight combinations are summarized in
Table 2. Total EER was 4%. As a result, user optimal weighting improved the
total EER by 1%.

It is interesting that each user (signature) has different optimal weight combi-
nation and the EER can be greatly decreased when the optimal weight is applied.
Especially, the weight combination for user “b” is contrary to that for user “d”.
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Table 1. Weight combination vs. EER

Weights Weights
for for EER(%)

pen-position sub-band

cx cy f3 f2 f1 f0 a b c d

0.0 1.0 0.1 0.2 0.3 0.4 12.0 0.0 6.8 5.0

0.1 0.9 0.1 0.2 0.3 0.4 9.0 0.0 4.2 3.5

0.2 0.8 0.1 0.2 0.3 0.4 6.5 0.0 6.8 5.5

0.3 0.7 0.1 0.2 0.3 0.4 4.0 0.0 6.5 6.0

0.4 0.6 0.1 0.2 0.3 0.4 4.0 0.0 8.2 4.0

0.5 0.5 0.1 0.2 0.3 0.4 2.0 0.0 8.2 6.0

0.6 0.4 0.1 0.2 0.3 0.4 2.5 0.0 8.2 6.0

0.7 0.3 0.1 0.2 0.3 0.4 1.8 0.0 8.2 6.0

0.8 0.2 0.1 0.2 0.3 0.4 2.0 0.0 8.2 11.5

0.9 0.1 0.1 0.2 0.3 0.4 2.0 0.0 9.5 4.0

1.0 0.0 0.1 0.2 0.3 0.4 2.5 0.0 12.5 14.3

0.0 1.0 0.25 0.25 0.25 0.25 10.5 0.0 5.5 2.0

0.1 0.9 0.25 0.25 0.25 0.25 9.5 0.0 4.2 2.0

0.2 0.8 0.25 0.25 0.25 0.25 7.0 0.0 5.0 2.0

0.3 0.7 0.25 0.25 0.25 0.25 5.2 0.0 7.5 1.8

0.4 0.6 0.25 0.25 0.25 0.25 3.0 0.0 8.2 2.5

0.5 0.5 0.25 0.25 0.25 0.25 2.0 0.0 8.2 3.5

0.6 0.4 0.25 0.25 0.25 0.25 1.3 0.0 8.2 4.8

0.7 0.3 0.25 0.25 0.25 0.25 2.0 0.0 8.2 4.0

0.8 0.2 0.25 0.25 0.25 0.25 1.6 0.0 8.2 6.0

0.9 0.1 0.25 0.25 0.25 0.25 2.0 0.0 8.2 8.5

1.0 0.0 0.25 0.25 0.25 0.25 3.0 0.0 8.2 12.0

0.0 1.0 0.4 0.3 0.2 0.1 8.0 0.0 4.2 0.0

0.1 0.9 0.4 0.3 0.2 0.1 8.0 0.0 4.2 0.0

0.2 0.8 0.4 0.3 0.2 0.1 8.0 0.0 6.0 0.0

0.3 0.7 0.4 0.3 0.2 0.1 5.5 0.0 6.0 0.0

0.4 0.6 0.4 0.3 0.2 0.1 4.0 0.0 8.2 0.0

0.5 0.5 0.4 0.3 0.2 0.1 4.0 0.0 8.2 2.8

0.6 0.4 0.4 0.3 0.2 0.1 2.8 0.0 9.5 2.8

0.7 0.3 0.4 0.3 0.2 0.1 3.0 0.0 9.5 4.0

0.8 0.2 0.4 0.3 0.2 0.1 1.5 1.5 10.0 4.2

0.9 0.1 0.4 0.3 0.2 0.1 3.0 3.0 10.5 4.2

1.0 0.0 0.4 0.3 0.2 0.1 4.0 4.0 12.0 4.2

In the case of user “b”, verification results at lower levels have more effect on
verification performance than those at higher levels. Inversely, the verification
results at higher levels play an important role in the total decision in user “d”.
These matters depend on the figure of signature and the user’s habit in writing
process. In other words, the optimal weight combination is also an individual
feature which can not be known by others.
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Table 2. Optimal user weighting

Weights Weights
User for pen-position for sub-band EER

cx cy f3 f2 f1 f0 (%)

a 0.6 0.4 0.25 0.25 0.25 0.25 1.3

b 0.7 0.3 0.1 0.2 0.3 0.4 0.0

c 0.1 0.9 0.4 0.3 0.2 0.1 4.2

d 0.1 0.9 0.4 0.3 0.2 0.1 0.0

4 Conclusion

We introduced user weighting fusion into the total decision in the DWT domain
on-line signature verification. Verification experiments showed that there was
an optimal weight combination for each user and then verifiaction rate could be
improved when the optimal weights were applied. In addition, the optimal weight
combination is expected to be a new individual feature which can not be known
by others. As amount of data of optimal weight combinations is quite small, they
can be enrolled in the database as well as the template. It is easy to implement
the proposed optimal fusion method in the on-line signature verification system.

In this evaluation, we used not only genuine signatures but also their forg-
eries. However, it may not be realistic for a real system. It must be studied to
develop some statistical method for determining optimal weights by using only
genuine signatures. Moreover, we will study to implement our on-line signature
verification system in a portable device such as the PDA in the near future.
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Abstract. Gait as a motion-based biometric has the merit of being non-contact
and unobtrusive. In this paper, we proposed a gait recognition approach using
spectral features of horizontal and vertical movement of ankles in a normal walk.
Gait recognition experiments using the spectral features in term of the magni-
tude, phase and phase-weighted magnitude show that both magnitude and phase
spectra are effective gait signatures, but magnitude spectra are slightly superior.
We also proposed the use of geometrical mean based spectral features for gait
recognition. Experimental results with 9 subjects show encouraging results in the
same-day test, while the effect of time covariate is confirmed in the cross-month
test.

1 Introduction

Advances in sensor technologies enable us to create systems with a capability to sense
and collect information related to human activities within an operational space, and use
the information for surveillance or human machine interaction purposes. Such systems
need to be able to translate the sensor input into abstract descriptions about the human
subject or the activity involved. For example, a system with gait recognition capability
may tell who is doing a certain activity based on the observation of the person’s gait.

Gait recognition as a motion-based biometric has the merit of being non-contact and
unobtrusive. Therefore, privacy issues that often arise in biometrics using facial image
can be avoided. In addition, the process can be accomplished from a distance and the
subjects do not have to initiate or even be aware or distracted by the procedure.

Interests in gait recognition are supported by the experiments using Moving Light
Displays (MLDs), showing that while human cannot recognize gait from a single static
image in MLDs, a sequence of MLDs frames provides enough information for differen-
tiating gaits [1]. Further experiments also showed that from MLDs information human
could identify their friends and discriminate genders [2].

This paper focuses on using the foot motion pattern of normal walks for personal
identification. From the planar projections of the three-dimensional motions of fixed
points at left and right feet, such as ankle points, we extract spectral features which rep-
resent the horizontal and vertical dynamics of a gait and investigate the discriminatory
characteristics of these cues for personal identification. We also investigate how each
vertical and horizontal movement of the ankles contributes in identifying the individu-
als. Utilizing ankles points is advantageous, because the features are relatively easy to
track in a video input, and are not sensitive to changes in clothing styles.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 767–776, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Related Work

Gait holds individual specific characteristics in both the structural and transitional sense.
Each time capture of a gait represents the human body structure, which is static in na-
ture. The human gait also has the transitional characteristics that define the dynamics
of the changes in the gait structural view. Therefore, a gait can be represented as a
transition of poses in a state-space model [5], [7] or as a feature that reflects the spa-
tiotemporal distribution of the gait as a continuum [8], [9], [10].

There are two prominent methods for gait recognition: model-based and appearance-
based. In model-based approaches [3], [6], [12], the observation at each frame is fitted
into an explicit structural model of human body, and recognition is achieved from the
analysis of the trajectories of high-level body parts. Niyogi et al. [3] used a spatiotem-
poral analysis for gait detection and constructed a stick model of human body for gait
recognition. In [6], [12], the human thigh and lower leg are modeled as a pendulum
joint at the knee and the Fourier descriptions of the periodic change of thigh and lower
leg orientations are used to form gait signature. In the definition of gait signature, they
considered both the magnitude and the phase spectra, as the phase spectra of frequency
components of low magnitude are insignificant.

Appearance-based approaches mostly use silhouette features, and are more sensi-
tive to changes in clothing styles and noise in human segmentation process. Wang et
al. [10] used a distance signal to encode a silhouette into 1D form and then reduced the
dimensionality using Principal Components Analysis Method (PCA). Mowbray and
Nixon [11] described the boundary of a silhouette as Fourier descriptors. He [7] used
Hu moments to represent the silhouette at each frame and utilized HMM for the recog-
nition stage. Lee and Grimson [9] segmented a silhouette into seven blobs and then used
the moment features of each blob and the silhouette centroid height as the feature vec-
tor. To aggregate these appearance-based features across time in a gait sequence, they
proposed three methods: Gaussian representation, histogram representation and funda-
mental spectral decomposition. Their approach is robust for not systematically biased
motion segmentation noise, but cross-day evaluations showed that substantial changes
in clothing style result in poor recognition. The effects of time and other covariates on
gait recognition are investigated extensively in [14], using a baseline algorithm on a
large database.

MLDs has been used intensively for investigating the potential of spectral analysis
of gait for classification [13] and recognition [4]. Li and Holstein [13] showed that fre-
quency domain method can be used effectively for classifying periodic motions such as
walking, running, jumping and skipping. They utilized the power spectra of the vertical
components of 16 unidentified feature points of human body. The power spectrum of
each point is then reduced to into 7 dimensional features, expressing the average height
from the floor, the total activeness of the respective body part and the power distribution
in the neighborhood of the 1st to the 3rd gait-cycle (Gc). Lakany and Hayes [4] used the
trajectories of the head and 12 joints of a walking subject to recognize the walker. The
magnitude spectra of the trajectories are used as feature vectors for a neural network
built for discriminating walkers. Their experiments using a data set of 4 individuals
showed a promising result.
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Fig. 1. The motion capture environment

3 Data Acquisition

We acquired the 3D data used for our experiments using Vicon optical motion capture
system, which provides high accuracy positional measurements of markers attached to
the body. The capture environment is shown in Fig. 1.

Nine subjects (all males) were asked to walk in their normal speed. The subjects
are about 22-30 years old, 160-182 cm in height, and weight 54-130 kilograms. The
data were taken in four separate sessions. The first two sessions were taken on the same
day with a 30 minutes interval in between. The third and forth sessions were taken
on two separate days, three months after the first two sessions. Ten gait sequences per
person were sampled in a sampling rate of 60 Hz at each session. Some of the gaps
in point trajectories due to capture failures are filled by interpolation. We conduct our
experiments using 357 gait sequences that have trajectories of left and right ankles in
more than 64 consecutive frames. The average length of the sequences is 150 frames.

4 Spectral Features as Gait Representation

4.1 Spectral Analysis

Spectral analysis represents a time domain signal as the sum of its sinusoidal compo-
nents. The Fourier decomposition of a continuous time signal x(t) is given by

x(t) =
1
2π

∫ ∞

−∞
X(ω)ejωtdω, (1)

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt, (2)

where ω denotes the angular frequency of a sinusoidal component.
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4.2 Motion Signals and Spectral Features as Gait Representation

Among the temporal MLDs observations of N points Pi(t) = (xi(t), yi(t), zi(t))T ,
we will only consider the movement of the left and right ankles. Each displacement
vector ri(t) = Pi(t) − Pi(t − 1) approximates the velocity of a point at time t.
The displacement vectors should be expressed in a consistent coordinate system de-
fined by direction of the motion. In our approach, we only consider the projection of
the displacement vector onto a two dimensional plane that corresponds to the hori-
zontal and vertical movement of each point in reference to direction of the walk and
the ground level plane. We denote the left and right ankles displacement vectors as
si(t) = (hi(t), vi(t))T , (i = 1, 2), where hi(t) and vi(t) are the displacements in hor-
izontal and vertical directions. We will call them motion signals. Figure 2 shows the
position and displacement traces of left and right ankles.
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Fig. 2. Traces of (a) positions and (b) positional displacements of left and right ankles as a func-
tion of time, sampled in 60 Hz. (x1, z1), (x2, z2) are the planar positions and (h1, v1), (h2, v2)
are the positional displacements

We then use Discrete Fourier Transform to extract spatiotemporal features of the
movement in each direction of the two points. The spectral features from X(ω) are
defined as follows:

S1(X(ω)) = ||X̄(ω)||, (3)

S2(X(ω)) = ej arg(X̄(ω)), (4)

S3(X(ω)) = S1(X(ω)) · S2(X(ω)), (5)

where X̄(ω) is the normalized Fourier coefficient:

X̄(ω) =
1∫ ||X(ω)||dωX(ω). (6)

The normalization eliminates the need for depth compensation when a motion is
acquired using a video camera and the distance to the subject varies. S1 is the magnitude
spectrum, S2 is the phase spectrum and S3 is known as phase-weighted magnitude
spectrum [6]. The magnitude distributions of motion signals are only dominant in the
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lower frequency components and thus the elements of higher frequency components in
phase spectra are trivial. In S3, only the phases of frequency components with relatively
large magnitude will remain.

Phase spectra are not time shift invariant. Therefore, a uniform start point of each
motion sequence is required to create a valid phase spectra. However, instead of aligning
the start point of the motion signal (or the partial data block as explained later),we
shift the phases in S2 so that the phases of the fundamental frequency components are
equal. In other words, the phase spectra are defined relative to phase of the fundamental
frequency component.

In addition, for two signals that relate to the same motion, we can define a spectrum
that is a function of the dynamics of both signals. Consider X(ω) and Y (ω) to be the
Fourier coefficients of synchronized signals that belong to a motion. We propose the
use of the geometrical mean of X(ω) and Y (ω) to extract a more compact spectral fea-
ture for gait recognition. Using geometrical mean based spectral features offers another
simplification in that we do not need to have strict correspondence between signals and
their origins. This means, for example, that we do not have to differentiate between sig-
nals from the left and right ankles. Further, we can expect the geometrical mean to be
more stable against noise at the originating elements.

We defined the following spectral features to be extracted from two different motion
signals:

T1(X(ω), Y (ω)) =
√

||X̄(ω)|| ||Ȳ (ω)||, (7)

T2(X(ω), Y (ω)) = (ej arg(X̄(ω)Ȳ (ω)))1/2, (8)

T3(X(ω), Y (ω)) = T1(X(ω), Y (ω)) · T2(X(ω), Y (ω)), (9)

each of which corresponds to S1, S2 and S3 of the geometrical mean of X(ω) and
Y (ω).

In the spectral feature extraction, first we divide a motion signal into overlapping
blocks of a certain length (in our experiments, we set the length to 64 with 8 sampling
intervals in between). After shifting the average of signal at each block so that it aver-
ages to zero, we apply Hamming window to each data block in order to reduce DFT
leakage. The final spectral feature is the average of the spectral features from the data
blocks. Given that our data were taken at a sampling rate of 60 Hz, the fundamental
frequency and also the frequency resolution of the spectra produced is 60/64 ≈ 0.94
Hz, which is consistent to the gait cycle of approximately 1 Hz as reported in [13].

4.3 Foot Motion Spectral Features

We can consider each vertical and horizontal component of any ankles as an indepen-
dent entity, and use the spectral feature as a gait signature. Let the Fourier coefficients
of the motion signals be F = {V1(ω), V2(ω), H1(ω), H2(ω) }. For each non-empty el-
ement of the power set of F , we can apply any of (3), (4) or (5) to its elements and use
the concatenation of the results as the spectral feature. By concatenating only spectral
features of the same type, we can evaluate the characteristics of magnitude or phase
spectra as well as the contribution of each motion signals in discriminating individuals.
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Spectra from the average of Fourier coefficients can be used as more compact
spectral features of a gait. Given the Fourier coefficients of motion signal pairs G =
{ {X(ω), Y (ω) } |X(ω), Y (ω) ∈ F,X(ω) = Y (ω) }, we can apply the spectra of (7),
(8) or (9) to each element of non-empty elements of the super set of G, and concatenate
the results as spectral features.

5 Experimental Results

The data set of our experiments comprises of 9 individuals. We group the data from
the four separate sessions into 2 data sets, so that data taken at the same month are in
the same data set. Each data set has about 20 gait samples per subject. We evaluate the
spectral features based on the correct classification rates (CCRs) at same-day and cross-
month test. In same-day test, we use leave-one-out validation method on each data set
separately and average the CCRs. For the cross-month test, we alternately use one data
set as training data set and the other as the test set. The purpose of this test is to evaluate
the effect of time covariates in gait recognition, especially in its effects on each spectral
features. The results shown are the average CCRs from alternating data and training
data sets.

Individuals are recognized using a k-NN classifier (k=5 in our experiments), and
Euclidean distance is used for comparing similarity of features. We disregard the DC
component of Fourier decomposition, which corresponds to the average speed of move-
ments, and truncated the spectra into 8 or 16 lower harmonics. The 16 lower harmonics
represent the spectra of frequency components up to 15 Hz. We do not normalize the
spectra with regard to the period of the gait cycle, but leave the variation of the period
as a characteristic of an individual.

5.1 Same-Day Gait Recognition

Figure 3 shows the CCRs of the basic spectral features and Fig. 4 shows the CCRs of
the more compact spectral features based on geometrical mean at same-day test.

The chance recognition rate for 9 individuals is about 11%, and the experiments
show recognition rates up to 95%. Some characteristics that we observed here are:

– In general, the magnitude spectra show better discriminatory capability than phase
or phase-weighted magnitude spectra, while phase-weighted magnitude spectra do
not differ much from the phase spectra. The magnitudes of high order harmonics
are usually exponentially smaller relative to the magnitude of the peak harmonic.
Since we are using a k-NN classifier with Euclidean distance, a significant dif-
ference in the magnitudes of a higher order frequency component of two spectral
features may result in only a slight difference of distance between the features. Our
preliminary experiments show that using the spectra in logarithmic scale improves
the recognition results.

– Although the motions of left and right feet independently are more likely to be
identical for general population, using the motion signals from both feet is better,
implying that the difference of the motion of left and right feet is a good cue for
gait recognition.
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Fig. 3. CCRs for same-day test, using concatenation of basic spectral features. The CCR of
S1<Hx>S1<Vx> is the average of the CCRs of S1<H1>S1<V1> and S1<H2>S1<V2>. Sim-
ilarly S1<Hx>S1<Vy> represents S1<H1>S1<V2> and S1<H2>S1<V1>, which are the con-
catenation of magnitude spectra of different directional movement of different foot
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Fig. 4. CCRs for same-day test, using concatenation of geometrical mean based spectral features

– The magnitude spectra of vertical movement have better discriminatory capability
than those of horizontal movement. On the other hand, the phase related spectra
of horizontal movement perform better than the corresponding spectra of vertical
movement.
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– The compact representation of spectral features, as shown in Fig. 4, performs rea-
sonably good, especially for the magnitude spectra. For example T1<H1,H2>
T1<V1,V2> gives a CCR almost similar to S1<H1>S<H2>S1<V1>S1<V2>.

– The CCRs when using 16 lower harmonics are generally above the CCRs of spec-
tral features truncated to 8 lower harmonics. As more higher harmonics are incor-
porated into the spectral features, the identification rates tend to increase, but not
significantly.

5.2 Cross-Month Gait Recognition

Figure 5 and Fig. 6 show the CCRs at cross-month test. The discriminatory capability
characteristics of the types of spectral features as well as the horizontal and vertical
movement of the feet resemble that of Fig. 3 and Fig. 4.
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Fig. 5. CCRs for cross-month test, using concatenation of bacic spectral features

The best identification rates obtained for the cross-month test are about 60%, rel-
atively low compared to the test within the same data set. This drop of performance
reflects a change of walking pattern over time, but further analysis is needed to under-
stand the factors underlying this change, as well as how to extract the features of gait
specific to individuals that are persistent over time. Also we noticed that expressing the
magnitude in logarithmic scale improves the recognition rates.

6 Conclusions

The spectral features derived from horizontal and vertical motions of ankles during a
normal walk are effective gait signatures for personal identification. In experiments on a
database of 9 subjects, we achieved recognition rate up to 95% in same-day test, while
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Fig. 6. CCRs for cross-month test, using concatenation of geometrical mean based spectral fea-
tures

the best identification rates for cross-month test is about 60%. Furthermore, both the
magnitude and phase spectra are shown to be good candidates for gait signatures.

In the proposed method, each motion signal is analyzed independently and direct
information about interrelationships between motion signals are not represented in the
gait signatures. Therefore, the approach do not consider the configuration of left and
right feet during gait, but only the dynamics of both feet seen separately. Information
about the structure(shape) of gait can further be added to gait signatures to obtain a
better result.

Our model-based approach that utilizes foot motion is not sensitive to changes in
clothing styles. However, the effects of other covariates, such as footwear and walking
surface, as well as the performance for a larger data set need further investigation.

We have also evaluated the use of spectra from the geometrical mean of spectra of
two motion signals for gait recognition. This approach offers reduced dimensionality of
features, correspondence-free gait signature, and gives better or equal recognition rate
compared to concatenation of spectra.

Spectral features from motion signals can be extended into taking more feature
points, or using other motion signals accessible in data acquisition. In the implementa-
tion, gaits can be measured using video camera, laser range finder, or other alternative
sensing technologies. Works on sensing the trajectory of foot motion from a video input
are also necessary for a practical gait recognition system.
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Exploiting Glottal Information
in Speaker Recognition Using Parallel GMMs

Pu Yang, Yingchun Yang, and Zhaohui Wu
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Abstract. The information of the vocal tract and the glottis are two
kinds of sources which can characterize speakers. Though the former one
has archived quite good performance in automatic speaker recognition
(ASR) tasks, the glottal information behaves poorly when used individ-
ually. This work explores how to combining vocal tract and glottal infor-
mation in an efficient and effective way. Taking into account the short-
term correlation between them, our improved joint probability function
model of the corresponding features is first proposed. Then we present
a novel integrating system which uses parallel Gaussian Mixture Models
(GMM) grounded on this function. Together with the traditional GMM,
it also forms a hybrid model. Both methods were applied to YOHO and
SRMC corpus, and experimental works show promising results.

1 Introduction

Vocal tract is considered as the most important part of human phonation system.
Information from it has been popular adopted in many speaker identification or
verification systems because the envelop shape could provide speaker dependent
factors [1]. Glottis, on the other hand, is also a key part of human phonation
apparatus. This information reflects the vibration frequency of vocal tract which
is also known to carry specific speaker information [2] [3].

There are many speaker recognition systems that make use of either vocal
tract information or glottal information. Those based on vocal tract work well
when speech is recorded in clean conditions, but their performance drops con-
siderably when speech was recorded in hostility environments [4]. Meanwhile,
speaker recognition systems exclusively based on glottal information are more
robust to noise and channel distortions, but they can not do well when the num-
ber of speakers becomes large. So, incorporating glottal information and vocal
tract information in an effective and efficient way has become a major problem.

Various techniques have been investigated for handling this integration at
various levels. One kind of them is to fuse the short-term glottal features with
short-term vocal tract features at front-end as the input of classifier. Sonmez et
al. [5] and Shao et al. [6] are two examples. Another kind of integrations is to
model simultaneously the statistical distribution of the short-term vocal tract
features and the long-term glottal features. Peskin et al. fall into this category.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 804–812, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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They have exploited statistics of long-term glottal information to form certain
high-level model which acts as complementary part of vocal information based
model. Work of Arcienega et al. [8] also belongs to this kind. In spite of the
good performances of above systems, the complex mechanisms involved in speech
production imply dependence of glottis and vocal tract. And Ezzaidi et al. [9]
have contributed a great work about a rudimental model on such dependence.

In this paper, we have improved their joint probability function model that
takes into account the correlation between source and vocal tract information.
Some modifications have been added to the model for the sake of precise mod-
elling of glottal information and data consideration. Based on this improved
joint probability function, an integrating model which uses parallel GMMs is
then presented. And it shows good performance in the automatic speaker recog-
nition task, especially when combined with the traditional GMM model.

The remainder of this paper is organized as the following: section 2 gives
our proposed model. Then, the framework of speaker recognition is presented in
section 3. Experiments and discussions are done in section 4. Conclusions are
given in the final part.

2 Proposed Model

2.1 Motivation

It is easy to think that the speed of glottis vibration would metamorphose the
shape of vocal tract more or less. In [9], Ezzaidi and el. have illustrated the
role of glottal features when dependence of the glottal source and vocal tract
are maintained. They found that short-term glottal information and vocal tract
information could be jointly exploited and then established a probability model
of feature vectors assuming the priori knowledge of glottal information. That is,
each speaker is supposed to be defined by its probability function:

fs(xi, yj) = Ps(x̂ = xi, ŷ = yj) = fs(xi/yj)fs(yj). (1)

where x̂n are l-dimension MFCC [11] which are extracted from a windowed signal
centered at time nΔt. And ŷn is the one-dimension fundamental frequency which
is extracted simultaneously. And fs(yj) is a priori probability of a fundamental
frequency equal to yj, and fs(xi/yj) is a posteriori probability of observing a
MFCC vector equal to xi, given knowledge of the fundamental frequency yj .

However, their method treats every subspace of glottal information con-
tributes equally in speaker recognition and only considers the glottal distribution
within each interval. In practice, this means not only ignores the different con-
tributions each subspace may provide in recognition, but also loses sight of the
holistic distribution of glottal information which could better character speaker’s
identity than separateness’ does. What is more, such a linear division of glot-
tal information would lead to problem of data sparsity whatever in training or
testing process.

Due to the shortcomings described above, we should modify this joint func-
tion model in the following aspects:
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(1) Models trained from different subspaces of glottal information contributes
differently to speaker identity; the farer the subspace is from the average of
speaker’s glottal distribution, the less this model contributes to the final decision.

(2) The division of subspaces of glottal information should be based on its
distribution of the speaker instead of linear partition which holds no speaker
dependent information.

2.2 Subspace Divisions

In order to solve the fs(xi, yj),many efforts have been made on estimation and
integration of fs(xi/yj) . In previous work, the space (x, y) was divided linearly
into subspaces according to the fundamental frequency scale. That is, each sub-
space is continuous in scale and has an equal length of fundamental frequency
range. Section 2 has pointed out the problems of this method. So, as what is
mentioned early, we propose a new division way in which the speaker’s glottal
distribution could be utilized.

It is supposed that the fundamental frequency features ŷ of one speaker sat-
isfy a normal distribution N(μ, σ), with its mean value being μ and covariances
being σ. Its probability function can be written as:

fs(y) =
1√
2πσ

exp[− (y − μ)2

2σ2
]. (2)

Then we define Ik, k = 1, 2, . . . , N as sub-intervals of the fundamental fre-
quency set with total range being G. N is the number of intervals with

I1 ∪ I2 ∪ . . . ∪ IN = G. (3)

For each k ∈ {1, 2, . . . , N}, the subspace Ik can be written as:

Ik = [μ− βk, μ− βk−1) ∪ [μ + βk−1, μ + βk), (4)

where ∫ μ+βk

μ−βk

fs(y) =
k

N
. (5)

As described in Figure 1, each subspace Hk in the space (x, y) is associated
with a fundamental interval Ik. It can be inferred from the definition of Ik that
our division of Hk takes advantage of fundamental frequency’s distribution and
got equal features in every subspace. For each Hk, we suppose that the proba-
bility function fs(xi/yj) is independent of the fundamental frequency inside the
interval Ik. That is, inside an interval Ik the fundamental frequency is supposed
to act the same way for our model. So,

fs(xi/yj) = P (x̂ = xi/Ik, speaker = s with yj ∈ Ik). (6)

And we suppose that the priori probability of fundamental frequency equal
to yj can be viewed as the sum of probability of the fundamental frequency
within the interval which yj belongs to:
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Fig. 1. Subspace division based on the distribution of fundamental frequency

fs(yj) = P (ŷ = yj with yj ∈ Ik) ∼=
∑

yv∈Ik

P (ŷ = yv). (7)

According to the definition of Ik in Equation. (4) (5), we can get:

fs(xi, yj) = fs(xi/yj)fs(yj)

∼= fs(xi/yj)
∑

yv∈Ik

P (ŷ = yv) =
1
N

fs(xi/yj) (8)

So in each subspace Ik, we can use the observing fs(xi/yj) to train one model
λs,k, and the number of models of one speaker would be equal to N.

2.3 Fusion of Subspace Models

We fuse N models of subspaces using weighted-sum rule [12] at decision level.
Suppose the score subspace model λs,k of speaker s is scores,k. In order to dis-
tinguish the different contribution of different subspace, we put different weight
wkon them. The farther the subspace is from the mean of speaker’s distribution,
the less weight we give to it. So the final score of speaker s is:

scores =
N∑

k=1

(wk · scores,k). (9)

where 0 ≤ wN ≤ wN−1 ≤ . . . ≤ w1 ≤ 1.
There can be many realizations of wk that could satisfy the above restriction.

In the experiments, we used wk = 1/
√
k, k = 1, 2, . . . , N .
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3 Framework of Speaker Recognition

3.1 Parallel GMMs for SR

Based on the proposed model, we describe the framework of our parallel GMMs
speaker recognition system in this section.

As most automatic speaker recognition systems do, a Gaussian Mixture
Model (GMM) with mixture number of 32 is used as λ in our system [10]. At the
training stage, each speaker s gets parallel N GMM models (λs,1, . . . , λs,N ) from
every subspace of speech partitions of that speaker. These GMMs and his fun-
damental frequency distribution parameters (μs, σs) compose the whole model
of this speaker s; And for a certain speaker k, the test speech Z is also divided
based on (μs, σs). Then resulting speech partitions are put into one correspond-
ing GMM, λs,3 for example, of N parallel GMMs to get N scores, which are
finally fused by Equation. (9).

3.2 Combination with Traditional GMM

In order to explore the complementary performance between proposed parallel
GMMs and traditional GMM, we plan to combine their output scores. Suppose
λs is the traditional GMM of speaker s which is trained from all MFCC features
of whole fundamental frequency range. And its output score for a certain test
speech Z is written as t scores. Meanwhile, parallel GMMs’ output score for this
speech file Z is written as p scores. To combine traditional GMM with parallel
GMM, we use a trade of τ in getting the final testing score scores,

scores = τ · p scores + (1 − τ) · t scores. (10)

4 Experiments and Discussions

4.1 Speech Database

We use two speech corpus to evaluate our methods in speaker recognition. One
is the YOHO corpus [13] which has 138 speakers For each speaker in it, there
are 4 ENROLL sessions with 24 sentences each, and 10 VERIFY sessions with 4
sentences each. The other corpus SRMC (Speaker Recognition in Multi-Channel
Environment) [14]. It is a large multi-channel speech database which contains
two rounds speech data of 303 speakers. Its data was recorded from mobile
phone, PDA, telephone and microphone simultaneously. Each speaker in this
corpus has Personal Information (PI)session of 3 sentences, Paragraph (PR)
session of 1 sentence, and Mandarin Digit (MD), Dialect Digit (DD), Englisth
Digit (ED), Province Phase (PP), Free Talking (FT) session of 10 sentences
each. And here, we select all 138 speakers of YOHO corpus and all SRMC’s 303
speaker’s telephone channel data of the first round for our experiments.

Our speech was first passed through a pre-emphasize filter H(z) = 1 −
0.97z−1; then a sliding Hamming window of 32ms and a shift of 16ms was po-
sitioned on the signal, in which the features was extracted. Our vocal tract
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features vectors were composed by 16-dimension Mel Frequency Cepstral Coef-
ficients (MFCC). At the same time, the fundamental frequency was extracted
using the method which is based on Subharmonic-to-Harmonic Ratio (SHR) pro-
vided by Sun [15]. Only the problem of text-independent speaker identification
of close set was considered here.

4.2 Experiments’ Results

Two groups of experiments were performed. We firstly investigate the perfor-
mance of our parallel GMMs for speaker identification. Then, the experiments
of combination of parallel GMMs and traditional GMM were made to get the
best combination performance by variance with the tradeoff τ .

In the experiments, the number of subspace N of parallel GMMs is set to 3.
With the aim of overcoming the fundamental frequency estimation, we choose
an overlap of 10Hz between the subspaces.

Speaker Identification Using Parallel GMMs. In order to find out if the
parallel GMMs is robust under different number of speakers, we made experi-
ments on some subsets of two corpus. And in baseline method, we use 32-mixture
GMM as the classifier.

For YOHO corpus, one ENROLL session (24 sentences in total) was used
for training and all 10 VERIFY sessions (40 sentences in total) were used for
testing. We adopted first 30, first 50 and total 138 speakers subsets of YOHO in
experiments. TABLE 1 shows the results.

Table 1. Speaker Identification on YOHO

Method First30(%) First50(%) Total138(%)

GMM 94.1 93.0 85.9
Pal. GMMs 94.9 94.0 87.6

For SRMC corpus, our evaluations were carried out using first 50, first 100
and total 303 speakers of it. We select all sentences from PR session and PI
sessions (more than 1 minute) for training. And the remaining 50 sentences of
each speaker were all used for testing. The results of YOHO corpus are listed in
Table 2.

Table 2. Speaker Identification on SRMC

Method First50(%) First100(%) Total303(%)

GMM 85.0 81.1 73.2
Pal. GMMs 85.7 83.3 78.7
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There are two important points to be noted. Firstly, parallel GMMs obtains
higher identification rate than the traditional GMM in all cases. It is obvious
that taking into account the correlation of MFCC and fundamental frequency
will bring us improvements. Though the identification rate falls as the number of
speakers increase, traditional GMM decreases more rapidly than parallel GMMs.
We can find in Table 2 that, when identification rate descends from 85.0% to
73.2% in the traditional GMM, only 7.0% percent descends is found in parallel
GMMs. The similar cases can be found in all other sets of our experiments.

Secondly, the performances in two corpus differ slightly. In YOHO corpus,
performance gained by parallel GMMs increase stably in different sets. But
things were different in SRMC corpus. This can be explained by the effects
of different environments. YOHO corpus was constructed under ideal lab condi-
tion; however, SRMC corpus was recorded under daily communication condition,
which is prone to be affected by environments. So parallel GMMs, utilizing the
fundamental frequency information, would act better.

Fig. 2. Speaker identification rate with variance of the tradeoff τ

Combine Parallel GMMs with GMM. Performances of the combined model
according to Equation. (10) with variance of the tradeoff τ in speaker identifica-
tion task are demonstrated in Fig. 2. Experiments were done on SRMC corpus.

In fact, when τ = 0 or τ = 1, it degraded to parallel GMMs and traditional
GMM. From Figure 2, we can find that the identification rates are ascending
along with the increase of τ for all cases. And the best performances are all
achieved when τ = 0.6. The first 50 speakers’ subset get 87.2%, 85.5% for first
100 speakers and 83.6% for all 303 speakers. Then, there is a drop for each case.
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5 Conclusions

In this paper, we improved the joint probability function model, which takes into
account the correlation between glottal source and vocal tract information, due
to its flaws. And the parallel Gaussian Mixture Models was proposed in speaker
recognition task for sake of precise modelling of glottal information and data
consideration. Promising results of experiments on YOHO and SRMC corpus
are achieved, especially when applying the combination of parallel GMMs and
traditional GMM.
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Abstract. The verification performance of biometric systems is nor-
mally evaluated using the receiver operating characteristic (ROC) or
detection error trade-off (DET) curve. We propose two new ideas for sta-
tistical evaluation of biometric systems based on these data. The first is
a new way to normalize match score distributions. A normalized match
score, t̂, is calculated as a function of the angle from a representation
of (FMR, FNMR) values in polar coordinates from some center. This
has the advantage that it does not produce counterintuitive results for
systems with unusual DET performance. Secondly, building on this nor-
malization we develop a methodology to calculate an average DET curve.
Each biometric system is represented in terms of t̂ to allow genuine and
impostor distributions to be combined, and an average DET is then calu-
lated from these new distributions. We then show that this method is
equivalent to direct averaging of DET data along each angle from the
center. This procedure is then applied to data from a study of human
matchers of facial images.

1 Introduction

One common way to represent the performance of a biometric classification algo-
rithm is the detection error tradeoff (DET) curve. A sample population contain-
ing matching (genuine) and non-matching (impostor) image pairs is presented
to the biometric algorithm and the match score, t, calculated to estimate the
genuine (g(t)) and impostor (f(t)) match score distributions. From these distri-
butions, the DET is typically plotted as the false match rate (FMR) on the x-axis
against the false non-match rate (FNMR) on the y-axis, by varying a threshold τ ,
and calculating FMR(τ) =

∫ ∞
τ f(x)dx and FNMR(τ) =

∫ τ

−∞ g(y)dy. The DET
summarizes the verification performance of the biometric algorithm on the sam-
ple population on which it is calculated. Technology evaluations, such as the
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FRVT and FpVTE tests [14][15] use DET curves – or a variant, the Receiver
Operating Characteristic (ROC) – to describe their results.

Given its ubiquity, it is perhaps somewhat surprising that few statistical
methods have been proposed for analysis and interpretation of DET data in
biometric classification. On the other hand, there is a large body of research in
the statistical literature, e.g. Zhou et al. [19], and a growing body of work in
the machine learning/artificial intelligence literature, e.g. Hernández-Orallo et
al. [10]. ROC analysis is used in a wide variety of classification settings including
radiography, human perception, and industrial quality control. Zhou et al. ([19])
provide a excellent overview of this work. One limitation of inferential tools for
ROC’s is the common assumption of Guassian distributions for g(t) and f(t),
e.g. Green and Swets [6]. The methodology we propose here does not depend on
any distributional assumptions. Another focal area for this research has been the
area under the curve or AUC, e.g. Hanley and McNeil [9]. However, biometric
authentication has emphasized the equal error rate (EER) as an overall summary
of system performance rather than the AUC.

Although most of the literature analyses the ROC, we focus on DET curves
since they are more commonly used in biometric identification systems. Here we
are motivated to develop methods for a composite DET curve given classification
pairs from multiple sources FMR(τ), FNMR(τ) in which the original genuine
and impostor distributions are either lost, or the match score values, t, are
calculated in different spaces. Four types of DET or ROC averaging have been
proposed. Bradley [2] suggests using an average based upon the ith ordered
threshold in DET space. However, this method leads to difficulties when the
number of thresholds tested varies greatly from curve to curve. Vertical averaging
(along the FMR) has been suggested by Provost et al. [17], but this method is only
appropriate if one of the error rates is more important for some a priori reason.
When the data to be averaged have very different error rates this method can
produce very non-intuitive results, such as if one system reaches FNMR = 1.0
at non-zero FMR. Fawcett [5] proposes averaging at the thresholds; however,
this method fails when the systems use different match score scales. Finally,
Karduan et al. [12] proposed averaging the log-odds transformation of one error
rate given the other. In this paper we propose a new method for averaging based
on the radial sweep methodology of Macskassy and Provost [13]. This approaches,
described below, transforms each curve from the (FMR, FNMR) space to polar
coordinates.

In this paper we were specifically motivated by how to average the separate
DET curves of human volunteers who were asked to perform face recognition [1],
by evaluating the whether pairs of images were of the same individual. There
are few other reports of comparisons of human face recognition performance
to that of automatic systems. Burton and collaborators [3][8] compared PCA
based and graph-matching algorithms against human ratings of similarity and
distinctiveness, and human memory performance. These studies were focussed
on the extent to which automatic algorithms explain features of human perfor-
mance, rather than as a comparison of recognition performance levels. These
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studies did not pursue advanced statistical techniques to synthesize an average
masure of human performance. As is typical with data collected from subjective
evaluations, assessed values cannot be directly compared between participants.
However, in order to compare human face recognition performance levels to each
other and to those of automatic software, we wanted a way to calculate the com-
posite human face recognition performance. Because a DET is inherently a two
dimensional curve it is difficult to average the curves in a way that properly
maintains the importance of both dimensions. In order to address this problem,
we develop a technique to calculate an average DET based on regeneration of
normalized match scores and distributions. We then show that this is equivalent
to a geometrical averaging directly on the DET curves.

The rest of this paper is organized in the following manner. Our method for
a composite DET is described in section 2. We then apply this method to data
from a group of human subjects (section 3). Finally, in Section 4 and we discuss
the applicability of this technique for analysis and interpretation of biometric
system verification results.

2 Methods

We use the following notation. A collection of J biometric score distributions are
available; each is measured in terms of its own match score ti, i = 1 . . . nj. There
are no conditions on the match scores other than they be scalar, and increase
with match likelihood. The genuine and impostor distributions are represented
as fj(ti) and gj(ti), respectively for j = 1 . . . J . Based on these distributions,
the false match rate (FMRj) and false non-match rate (FNMRj) for biometric
system j may be calculated as

FMRj(τ) =
∫ ∞

τ−
fj(t)dt = 1 −

∫ τ+

−∞
fj(t)dt (1)

FNMRj(τ) =
∫ τ−

−∞
gj(t)dt (2)

by varying the threshold τ . Clearly, real biometric match score data are not
continuous, in which case sums must be used instead of integrals. In this case, it
is important that the calculation of either FMR or FNMR but not both, include
the distribution value at τ ; we include it in the FMR. Implicitly this assumes
that the decision process is to accept if the match score is greater than or equal
to the threshold, τ . This calculation is illustrated in Fig. 1.

2.1 Normalized Match Scores via Polar Coordinates

In order to perform further analysis on multiple DET curves, it is necessary to
calculate a normalized match score common to all curves. In this section, we
describe an approach, based on representing the curve in polar coordinates, as
illustrated in Fig. 1.
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Fig. 1. Calculation of FMR and FNMR from sample distributions and regeneration
of match score t using polar coordinates. Given the discrete genuine and impostor
distributions shown on the left, the DET curve on the right is calculated. From a
center at (c, c) an angle θ is calculated to each FMR,FNMR point. A normalized
match score t is then calculated from θ. In this example, the distributions are discrete,
and the DET curve uses a linear interpolation between points

We have FMR,FNMR coordinate pairs (xij , yij), i = 1, . . . , nj; j = 1, . . . , J
for a series of J DET curves. By the monotonicity of the DET curves, we know
that x1j ≤ x2j ≤ . . . ≤ xnjj and y1j ≥ y2j ≥ . . . ≥ ynjj .

We also assume that no other information is available that would assist us
in knowing how the knots in the splines are selected. These points are, as is
made clear below, a function of some threshold, τ . Equivalently, we are assuming
that no information is available concerning the threshold values. (For example, it
would be possible to assume that the thresholds are equally spaced and to derive
approximate genuine and imposter distributions following such an assumption.)

Thus, from the DET curve, we calculate an angle

θij = tan−1

(
c− xij

c− yij

)
. (3)

We define an angle with respect to the bottom-right of the DET, since at τ =
−∞, FMR = 1 and FNMR = 0. The DET curve moves left and upward with
increasing τ . The limits for θ are

θmin = tan−1

(
c− 1
c

)
(4)

θmax = tan−1

(
c

c− 1

)
(5)

Since we wish to calculate a normalized match score t̂ in the range 0, . . . , 1 from
θ, we define

t̂ =
θ − θmin

θmax − θmin
(6)
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Fig. 2. Reconstructed genuine, ĝ(t̂), and impostor, f̂(t̂), distributions: From the DET
curve of Fig. 1 the FMR (upper left) and FNMR (lower left) are calculated as a
function of the normalized match score t̂. From these curves, the impostor (upper
right) and genuine (lower right) distributions are calculated as − d

dt̂
FMR and d

dt̂
FNMR,

respectively

2.2 Distributions from DET Curves

In this section, we use the polar-coordinate representation, to reconstruct can-
didate genuine, ĝ(t̂), and impostor, f̂(t̂) distributions. Based on the equations 1
and 2, we calculate for each DET curve j.

fj(t̂) = −dFMRj

dt̂
(7)

gj(t̂) =
dFNMRj

dt̂
. (8)

Fig. 2 illustrates the calculations. Since FMR and FNMR data are not continuous,
but are sampled from the DET, the distributions must be defined in terms
of discrete approximations to the derivative. One consequence of the discrete
derivative is that ĝ and f̂ are noisy, but this does not matter for this application.

Using this calculation, we now have a collection of distributions ĝj, f̂j for
j = 1 . . . J , which are all based on the same match scores, t̂’s. It is thus possible
to combine the distributions, weighted by the number of samples in each (if
known). The number of samples in each genuine and impostor distribution are
represented as ng,j and nf,j , respectively. If the number of samples is unknown,
all n values are assumed to be equal. The combined distributions f̄ and ḡ are

f̄ =
1
Nf

J∑
j=1

nf,j f̂j (9)

ḡ =
1
Ng

J∑
j=1

ng,j ĝj (10)

where Nf =
∑

nf,j and Ng =
∑

ng,j .
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However, this expression may be shown to be equivalent to a direct averaging
of the DET curves in (FMR,FNMR) space, as follows:

ˆFNMR(t̂) =
∫ τ−

−∞
ḡ(t)dt (11)

=
∫ τ−

−∞

1
Ng

J∑
j=1

1
dt

dFNMRj(t)dt (12)

=
∫ τ−

−∞

1
Ng

J∑
j=1

ng,j
1
dt

dFNMRj(t)dt̂ (13)

=
1
Ng

J∑
i=1

ng,j(FNMRj(t̂) − FNMRj(−∞)) (14)

=
J∑

j=1

ng,j

Ng
FNMRj(t̂) (15)

Similarly,

ˆFMR(τ) =
J∑

j=1

nf,j

Nf
FMRj(t̂) (16)

Thus, the average DET at each angle θ can be calculated by a (possibly
weighted) average the distance of each curve from (c, c).

3 Results

This paper uses data from a comparison of human and automatic face recognition
performance [1]. This study investigated the ability of interested and motivated
non-specialist volunteers to perform face identification tasks matched against
performance by several commercial face recognition software packages. Images
were obtained from the NIST mugshot database [16]. Pairs of frontal pose face
images were randomly created from this database. Two-thirds of the pairs were
impostors (images of different persons), and one third were genuines (different
images of the same person). No special effort was made to select images of the
same gender or ethnicity for the impostor pairs.

Twenty one people (16 male, 5 female) participated in the experiments. They
were predominantly Caucasian and in the age range 20–40. Participants were
asked to log onto a web site, where an application server would present pairs
of face images, and the participant was asked whether they were from the same
person. Participants were not given any information about the distribution of
genuines and impostors, or any feedback about their success. Participants were
presented the following options: same, probably same, not sure, probably differ-
ent, or different. Each option was converted to a match score value (such that
different= 1 and same= 5).
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Fig. 3. Calculation of an average DET curve for human face recognizers. Individual
human DET curves are shown by symbols (circle=female, triangle=male). The average
curve (dotted line) is calculated using the method of this paper. For comparison, the
highest performing software available to us in 2003 is also shown (solid line)

4 Discussion

In this paper we have presented a new methodology for combining and averaging
DET or ROC curves. This approach was motivated by the need to create a
composite DET curve for human evaluators of human faces. This methodology
was developed independently of [13]; however, it uses the same basic technique
of radially sweeping across the DET curve to create a normalized match score.
This permits the creation of normalized distributions for FMR and FNMR that
are a composite of individual DET curves. This normalization is a significant
advance in and of itself and adds to a growing body of methods for this purpose
[11]. We have used this normalization to to average at normalized radial match
scores.

Several issues arise from radial sweeping of DET curves. The first is where
to locate the center of the sweeping. Because we would like the averaging to not
depend on which error rate is on which axis, we limited possible center points
to (c, c) for some constant c. It is immediately clear that choosing a center
along the FMR = FNMR line results in an average curve that is independent
of the selection of axes. We considered three possible values for c, 0, 1 and ∞.
Choosing c = 0, often resulted in composite or average curves that were counter-
intuitive because of the acute angles near the axes. This is especially important
for biometric systems which are often placed in settings where low FMR’s are
required. There was little difference between the curves when c = 1 and c = ∞.
However, we prefer c = 1 because the radial angles match the typical curvature
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of a DET curve and, hence, are more likely to be perpendicular to such curves.
The choice of c = ∞ results in averaging across parallel 45◦ lines.

Another issue is the choice of how to “average” the curves. Here we have
effectively taken an arithmetic average of the curves. Other choices are possible
including a weighted average, to account for database size or importance by
varying the weights to be given to each DET. An alternative would be to use a
radial median at each angle. This would results in a spline that is not as smooth
as the radial mean DET but which may be more robust to “outlying” DET
curves.

The question of inferential methods based on the radial mean DET is one
that is important for future study. Here we are interested in creating confidence
intervals for an individual curve (as in [13]) as well as being create a confidence
interval for the difference of two DET curves. Similarly we would like to create
tests for significant differences between two or more DET curves. It might also
be of interest to test a single observed DET against a hypothetical DET curve.
This last case may take the form of a Kolmogorov-Smirnov type test.
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Protection in Surveillance Applications
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Abstract. With the mass deployment of cameras, concern has risen
about protecting a person’s privacy as he goes about his daily life. Many
of the cameras are installed to perform surveillance tasks that do not re-
quire the identity of a person. In the context of surveillance applications,
we examine the trade-off between privacy and security. The trade-off is
accomplished by looking at quantitative measures of privacy and surveil-
lance performance. To provide privacy protection we examine the effect
on surveillance performance of a parametric family of privacy function.
A privacy function degrades images to make identification more diffi-
cult. By varying the parameter, different levels of privacy protection are
provided. We introduce the privacy operating characteristic (POC) to
quantitatively show the resulting trade-off between privacy and security.
From a POC, policy makers can select the appropriate operating point
for surveillance systems with regard to privacy.

1 Introduction

With the construction of large databases and mass deployment of devices capable
of collecting vast amounts of personnel data, we must deal with the issue of
privacy associated with the data collected. Here, privacy means the capability
to restrict or control the ability to positively identify a person.

There are many instruments for collecting data and information about a
person. Examples are: credit cards, brand loyalty cards, medical records, and
mobile phones. For our purposes in this paper, we will only consider cameras
and surveillance tasks. An example of a surveillance task is tracking a group of
people in a building. Privacy and surveillance tasks raise the following questions:
can one develop technology that prevents positive identification of a person, while
at the same time, allowing for the completion of a surveillance task that does
not require that a person be positively identified? For example, in tracking a
person’s movements, enough information is to needed to follow a person, but
not enough to identify the person.

Clearly there is a trade-off between privacy and completion of a surveillance
task. At one end of the spectrum, maximal privacy is assured when surveillance
cameras are not installed. However, there will be compromises to needed security
processes. At the other end of spectrum, maximal security protection is possible
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when the cameras are installed and the video imagery is not degraded. However,
in this case, privacy is the most compromised.

We approach the privacy protection problem by defining a parametric family
of privacy functions fα. A privacy function degrades an image or video sequence
with the goal of making identification harder. The more degradation of an image,
the greater the privacy afforded an individual, and the greater the difficulty of
the surveillance task.

The motivation for the design of our privacy functions are image compres-
sion techniques. Compression techniques have been adapted for pattern recogni-
tion. Eigenfaces is an adaptation of principal component analysis (PCA) for face
recognition [1]. The trade-off between privacy and security replaces the trade-off
between fidelity and space in compression.

Defining a family of privacy functions fα is only part of the process of in-
corporating privacy protection into surveillance. In order to perform a trade-off
between privacy and security, it is necessary to define a quantifiable privacy
measure P(fα). To define a privacy measure it is necessary to understand and
explicitly state the privacy requirements and assumptions. Next we define define
the surveillance task and a surveillance performance measure S(fα). A surveil-
lance performance quantifies the performance of the surveillance task,

To show trade-off between privacy and security, we introduction the privacy
operating characteristic (POC). The POC is produced by computing the privacy
and surveillance performance measures for different parameter values α of the
privacy functions. Each parameter value will produce a privacy measure and
surveillance performance measure. The set of privacy measures and surveillance
performance measures are plotted on a POC, which explicitly shows the trade-
off between privacy and security. The x-axis plots the privacy measure and the
y-axis plots the surveillance performance measure. The POC is analogous to a
receiver operating characteristic (ROC) from signal detection theory. From a
POC, policy makers can select the appropriate operating point for a surveillance
systems with regard to privacy.

In this paper we introduce a four step framework for incorporating privacy
concerns into a surveillance task. The steps are summarized below:

1. Define the privacy requirements and a privacy measure.
2. Define the surveillance task and measure of performance.
3. Define a parametric family of privacy functions.
4. Compute the trade-off between privacy levels and surveillance task perfor-

mance. Plot the trade-off on a privacy operating characteristic (POC).

The incorporation of privacy concerns into surveillance is a new area of re-
search. Newton, Sweeney, and Malin [2] introduced the concept of privacy func-
tions for de-identifying faces. Their privacy measure examines the de-identifying
faces and measures performance on closed-set identification, and does not ad-
dress the impact of privacy on surveillance tasks.

Because of the importance and impact of privacy concerns, Newton, Sweeney,
and Malin and this paper will likely be the start of a long discussion on how to
best incorporate privacy concerns into surveillance systems. This paper provides
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a basis for further research by quantitatively addressing the trade-off between
privacy and security. The major contributions of this paper are to:

1. provide a framework for incorporating privacy protection into surveillance
tasks,

2. characterize performance in terms of the trade-off between privacy and sur-
veillance,

3. introduce the privacy operating characteristic (POC) to show the trade-off
between privacy and surveillance, and

4. provide a detailed example of this framework.

The power of this framework will be shown by an example that models tracking
people in a building. The privacy requirement is that the people being tracked
cannot be positively identified. The surveillance task is that enough information
is maintained so that the people can be tracked as they move around a building.

2 Identification and Verification

The problem formulation of the example requires knowledge of the performance
metrics in face recognition and biometrics. The privacy measure is based on
the verification task in face recognition and the surveillance measure is based
on the closed-set identification task. The face recognition performance measures
are taken from the Sep96 FERET evaluation [3].

Some basic terms are introduced to describe how face recognition experiments
are conducted and performance is computed. A gallery is the set of known indi-
viduals. The images used to test the algorithms are called probes. The identity
of the face in a probe is not known to the algorithm. A probe is either a new
image of an individual in the gallery or an image of an individual not in the
gallery. A collection of probes is called a probe set.

The closed-set identification task returns the top match between a probe and
the images in a gallery. Performance for this task is the identification rate which
is the fractions of probes that are correctly identified.

In a typical verification task, a subject presents an image to a system and
claims to be a person in the system’s gallery. The presented biometric image
is a probe. The system then compares the probe with the stored image of the
subject in the gallery. Based on this comparison the claim is either accepted or
rejected.

Verification and false accept rates characterize verification performance. The
verification rate (VR) is the fraction of valid claims that are accepted; the false
accept rate (FAR) is the fraction of false claims that are accepted. Both these per-
formance rates cannot be maximized simultaneously; there is a trade-off between
them. Verification performance is reported by showing the trade-off between the
verification and false accept rates on a receiver operator characteristic (ROC).
The horizontal axis is the false accept rate and the vertical axis is the verification
rate.
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3 Problem Formulation

The goal of this paper is to provide a framework for the inclusion of privacy
protection into video surveillance tasks. We will demonstrate the framework by
an example. The example models the surveillance task of tracking a small group
of people around a building. To maintain the track of each person, the system
needs to be able to differentiate among the facial images of people in a small
group; however, the systems does not have to identify people in the group. In our
example, we model the group of people being tracked as a gallery of ten facial
still images. On the privacy side, the goal is to make it difficult to determine the
absolute identity of a person. The absolute identity means that we can identity
the face as belonging to a specific person. For example, the person in an image
is John Smith. The surveillance task is to maintain the relative identity of the
small group of faces. Determining the relative identity of a face means that given
a facial image of person in the group, we can correctly identify which person it
is from among the ten faces in the gallery.

We will now address the privacy part. To provide privacy protection, we
degrade the observed face image of a person gi by a privacy function fα. The
privacy function returns a degraded image gd

i = fα(gi). The privacy functions
are parameterized by α which allows for varying degrees of privacy. The goal
of a privacy function is to produce a degraded image gd

i that will attenuate the
ability to perform the absolute identification. Varying α allows for the trade-off
between privacy and surveillance.

The effectiveness of a privacy function fα at setting α is determined by a
privacy measure. The privacy measure presented in this paper models a scenario
where a person claims to be the same person as in image gd

i . The claimant and
the person in gd

i need not be the same person. In fact, the goal is to find a
privacy function fα such that one cannot accurately determine if the claimant
and the person in gd

i are the same. Let p be a facial image of the claimant. The
question then becomes, Are the faces in images gd

i and p of the same person?
This is equivalent to the open-set verification problem in biometrics. Since, a
ROC is a curve not a number, it cannot be a privacy measure. In this paper, we
present a privacy measure based on the ROC. Our privacy measure is not the
only possible measure. Future research, experiments, and experiences will guide
in the selection of appropriate privacy measures and under which situations a
particular privacy measure is applicable.

Our privacy measure P(fα) is the FAR that corresponds to a VR = 0.5.
A verification rate of 50% means that when gd

i and p are of the same person,
the decision is a random guess as to whether gd

i and p are the same face. The
corresponding FAR is the percentage of the population that is similar to looking
to the degraded image gd

i . Even if FAR is small, 1%-5%, this means that a face
recognition algorithm will report 2.5-12.5 million people in the U.S. has being
similar to gd

i .
When computing our privacy measure, gd

i is compared to p. Another option
is to compare gd

i and pd. The experiments in this paper use a PCA-based face



Privacy Operating Characteristic for Privacy Protection 873

recognition algorithm. With PCA-based face recognition algorithms, comparing
gd

i with p or pd produces the same result.
The second part of the problem is characterizing performance of the surveil-

lance task as a function fα. The surveillance task is modeled as a small closed-set
identification problem, with a gallery G = {g1, . . . , gN}. The gallery consists of
N people with one image per person. All images in the gallery are degraded by
the privacy function, which produces a degraded gallery Gd = {gd

1 , . . . , g
d
N}. Let

Pd = {pd
1, . . . , p

d
N} be a probe set were the probes have been degraded. All the

probes are images of a person in the gallery. The surveillance performance mea-
sure S(fα) for the surveillance task is the correct identification rate. In tracking
a person around a building, the gallery models the set of people that are in the
building. The probes model people being tracked, and is one of the inputs into
recording a track.

What makes these seemingly impossible goals feasible is the nature of the
two parts of problem. The first part concerns privacy, which is an open-universe
problem. The second part is the surveillance task, i.e., who is this person from
a small closed universe population.

4 Experiments

The experiments we performed show the both the effect of privacy functions
on face recognition performance and the plot the trade-off between privacy and
security on a POC.

The experiments in this paper are performed with images from the FERET
database. The FERET database provides a common database of facial images
for both development and testing of face recognition algorithms and has become
the de facto standard for face recognition from still images [3].

We report identification scores for two categories of probes. The first probe
set was the FB set. In this set, the gallery and probe images of a person were
collected on the same day under the same conditions. The second set were dup
I probes, which consist of duplicate images. A duplicate is defined as an image
of a person whose corresponding gallery image was taken on a different date or
under different conditions; e.g., wearing glasses or with hair pulled back.

The experiments in this paper are performed using a PCA-based face recog-
nition algorithm. PCA is a statistical dimensionality reduction method, which
produces the optimal linear least squared decomposition of a training set. Kirby
and Sirovich [4] applied PCA to representing faces and Turk and Pentland [1]
extended PCA to recognizing faces.

A PCA representation is characterized by a set of N eigenvectors (e1, ..., eN )
and eigenvalues (λ1, ..., λN ). In the face recognition literature, the eigenvectors
can be referred to as eigenfaces or eigenfeatures. We normalize the eigenvectors so
that they are orthonormal. The eigenvectors are ordered so that λi > λi+1. One
of the factors effecting the accuracy of a PCA-based face recognition algorithm
is the number of eigenfeatures in the representation [5]. A general rule of thumb
is to include the top 40% of eigenfeatures in the representation. Performance
increases as more eigenfeatures are added up to the 40% rule of thumb.
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Fig. 1. Closed-set identification performance as a function of the number of eigenfea-
tures in the representation. Results are given for the Sep96 FERET evaluation FB and
dup I probe sets. The horizontal axis is on a logarithmic scale

The increase in performance in closed-set identification as a function of the
number of eigenfeatures in the representation is shown in figure 1. Performance is
reported for the Sep96 FERET evaluation FB and dup I probe sets [3]. Figure 1
shows performance increasing for the FB probes from 17% for five eigenfeatures
to 82% for 200 eigenfeatures and from 3% to 44% for the dup I probes.

In our experiments, the privacy function is the number of eigenfeatures in the
representation. The privacy function fα represents a facial image by eigenfeatures
e1, . . . , eα. Strictly, fα filters an image through the eigenbasis e1, . . . , eα. For this
privacy function, a smaller α yields a greater level of privacy protection.

In computing a POC, we need two sets of performance figures. We will start
with the surveillance performance measure S(fα), which is the closed-set iden-
tification rate on a gallery of ten people. To provide a more reliable estimate
of performance, we report the average performance on four galleries. All four
galleries contain different people. Performance is computed for FB and dup I
probes. (These probe sets only contain probes of people in the gallery. They are
not the full Sep96 FERET FB and dup I probe sets.) Figure 2 shows S(fα) as
a function of α, the number of eigenfeatures in the representation. For a gallery
of ten, S(fα) saturates at 98% for FB probes with 15 eigenfeatures, and for dup
I probes reaches 90% at 60 eigenfeatures.

The second component of a POC is the privacy measure P(fα). Our privacy
measure is the false alarm rate that corresponds to a verification rate of 0.50.
Figure 3 plots average P(fα) for dup I probes as a function of the number of
eigenfeatures in the representation. Performance goes from a P(fα) = 11.3% for
five eigenfeatures to 2.8% for 15 eigenfeatures and 3.0% for 20 eigenfeatures.



Privacy Operating Characteristic for Privacy Protection 875

Fig. 2. The average surveillance performance measure S(fα) over four galleries of ten
people as a function of α, the number of eigenfeatures in the representation. The
horizontal axis is on a logarithmic scale

Fig. 3. Average privacy measure P(fα) as a function of α, the number eigenfeatures
in the representation. The horizontal axis is on a logarithmic scale
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Fig. 4. POC for the identification performance measure computed on FB probes and
the privacy measure computed on the dup I probes

Figure 4 is the POC for the trade-off between P(fα) and S(fα) on the dup I
probes. The x-axis is the privacy measure P(fα) and the y-axis is the surveillance
performance measure S(fα). Each point on the POC is the P(fα) and S(fα) for
α eigenfeatures in the representation. For example, the point with P(fα) = 0.11
and S(fα) = 0.85 was generated from a representation of 15 eignfeatures. The
P(fα) can be read from figure 3 and the S(fα) can read from figure 2. The
POCs are a merger of the curves in figures 2 and 3. In our POCs, the number
of eigenfeatures is the hidden parameter α.

We ran experiments on two categories of probe sets: FB and dup I cate-
gories. In computing a POC, the probe set categories for computing the privacy
measures and the surveillance measures, do not have to be same. The probe
categories are different because they model different operational scenarios. The
identification task models tracking were images of a person are acquired within
five to ten minutes of each other. The FB probe category fits this scenario. The
verification performance models the situation were someone claims to be the
person in a degraded image. The image of the claimant will most likely be taken
on a different day and under conditions than the gallery image. This situation
is modeled by using dup I probes. Computing the privacy measure from FB
probes models the situation were the claimant presents an image that comes
from the same video sequences as the gallery images. This would be a highly
unusual situation because the claimant would have to have direct access to the
surveillance video sequences.
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Fig. 5. POC for both identification performance and privacy measures computed on
dup I probes

Figure 5 plots the POC for identification performance and privacy measure
computed on the dup I probes. In Figure 5, the privacy and surveillance probe
sets are both from the same category. It is clear that the privacy-security trade-
off is much better for the FB probes in the surveillance task than the dup I
probes.

5 Conclusions

We have introduced the privacy operating characteristic (POC) to quantita-
tively show the trade-off between privacy and security. The POC is part of a
framework for incorporating privacy protection into surveillance applications.
A parametric family of privacy functions degrade images and video sequences
to provide varying levels of privacy protection. Changing the parameter pro-
duces different levels of privacy. The framework includes a privacy measure and
surveillance performance measure. A privacy measure assess the level of privacy
protection provided by a privacy function. A surveillance performance measure
assess the effectiveness of the surveillance task. Privacy measures and surveil-
lance performance measures quantify the effect of the privacy function on the
the privacy-security trade-off. This is plotted on a POC.

Our framework was illustrated by an example with experimental results pre-
sented in Section 4. The results in figures 4 and 5 show that using FB probes in
the surveillance task have a better privacy-security trade-off than dup I probes.
This provides very preliminary evidence that surveillance tasks that require
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tracking of people over short periods of time can be designed with privacy pro-
tection included. The ability to provide privacy protection when tracking people
over days or weeks will be a harder problem to solve.

This paper lays the basis for future research in privacy and security. Our
experiments report results for a classical face recognition algorithm, Eigenfaces.
One avenue of research is to design face recognition algorithms that explicitly
incorporate privacy consideration. Another avenue of research is to investigate
what consists a good privacy measure.

With the deployment of large number of video cameras and the increas-
ing sophistication of surveillance systems, it necessary that the computer vision
community address privacy issues. The computer vision community provides a
unique ability to look at technical issues associated with privacy and surveillance
and to develop privacy protection technology for incorporation into surveillance
systems.
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Abstract. In this paper, we present the results of our investigation of the use of
the visual characteristics of human hair as a primary recognition attribute for hu-
man ID in indoor video imagery. The emerging need for unobtrusive biometrics
has led to recent research interest in using the features of the face, gait, voice,
and clothes, among others, for human authentication. However, the characteris-
tics of hair have been almost completely excluded as a recognition attribute from
state-of-the-art authentication methods. We contend that people often use hair as
a principal visual biometric. Furthermore, hair is the part of the human body most
likely to be visible to overhead surveillance cameras free of occlusion. Although
hair can hardly be trusted to be a reliable long-term indicator of human identity,
we show that the visual characteristics of hair can be effectively used to unob-
trusively re-establish human ID in the task of short-term recognition and reac-
quisition in a video-based multiple-person continuous tracking application. We
propose new pixel-based and line-segment-based features designed specifically
to characterize hair, and recognition schemes that use just a few training images
per subject. Our results demonstrate the feasibility of this approach, which we
hope can form a basis for further research in this area.

1 Introduction

The emerging need for unobtrusive identification has led to recent research focusing
on identification based on face, gait, voice, and clothes, among others. We present the
results of our novel use of the visual characteristics of human hair as a primary recog-
nition attribute in midrange still and video indoor imagery. In addition, we discuss sce-
narios where such use may be feasible and synergistically advantageous in the context
of existing unobtrusive biometric tests.

Although often used by people as an important visual biometric, characteristics of
hair have been almost completely excluded as a recognition attribute for the computer-
based determination of human ID. Such exclusion is understandable in applications
where the time interval between enrollment and recognition can be very long, because
hair can be removed, substituted, recolored, or rearranged, and can hardly be trusted to
be a reliable long-term indicator of human identity. Nevertheless, we contend that there
are important applications where characteristics of hair can play a critical role in es-
tablishing human ID. One such application is video-based multiple-person continuous
tracking and reacquisition. In the context of people-tracking systems the term recog-
nition and reacquisition corresponds to the objective of reassigning a newly detected
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person or persons to their previously tracked identities as they emerge from blind spots
or separate from a group and/or occluding objects. Significant changes in the hair ap-
pearance of the people involved are not likely in such a short-term scenario, making
the visual characteristics of hair a promising attribute for recognition and reacquisi-
tion. Furthermore, the part of the human body that is most likely to be visible to the
commonly used overhead surveillance video cameras free of occlusion is the top of the
head, and correspondingly, hair. We show in this paper that visual characteristics of hair
can be effectively used to re-establish human ID in such an application.

2 Background and Previous Work

An average adult head typically contains 100,000 to 150,000 individual hair strands,
each with a diameter of approximately 20–200 μm [1]. This average hair width is too
small for each hair strand to be uniquely separable in images captured with consumer
grade image capture equipment. For instance, the still images used in this work were
captured by a still camera placed about 2 ft above the head of a person of average height.
The resolution for still images was 1600 × 1200, corresponding to approximately 250
μm of head surface per pixel (i.e., 100 dpi) in the image for the average-sized head.
Our video imagery, on the other hand, resulted in 720× 480 frame sizes at roughly 420
μm of head surface per pixel (i.e., 60 dpi) for the average head. Figures 1(a) and 1(b)
clearly bring out the effect of image resolution on the imaged appearance of hair. Both
images belong to the same subject. Furthermore, video imagery sometimes contained
artifacts due to motion blur.

(a) Hair patch from still
image of stationary sub-
ject (100 dpi)

(b) Hair patch from video
of moving subject (60 dpi)

Fig. 1. Imaged appearance of hair

Due to these and other issues, the use of hair as a biometric has been rare. To the
best of our knowledge, the dissertation by Jia [2] was the first effort that reported an
explicit attempt to use hair features, among many others, for enhancing face recognition.
The author focused mostly on facial and front-view hair and concluded that the use
of hair features is largely unreliable for the purposes of face recognition. We found
only one other paper [3] with a focus on using hair as one of the primary means of
person identification, which also chose an overhead view. However, the authors did
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not treat hair in any special way. The overhead view of the head was simply a part of
a blob delineated by background subtraction and containing shoulders and clothing
in addition to hair. The hair boundary was not explicitly located, and the extracted
features corresponded to the full extent of the blob and not just hair. The authors of [3]
focused solely on still images of stationary subjects, whereas the work presented here
has also been demonstrated successfully on low-resolution digital videos of subjects
walking below an overhead video camera mounted on a doorway. Our techniques are
therefore robust to the translational and rotational motion artifacts of the subject relative
to the light source(s) and the camera within the framework of the described scenario.
Another major difference is the availability and use of training images. The authors
of [3] employed 60 training images for each of 12 subjects. For the given scenario, it
is difficult, in general, to justify obtaining more than a few images of each person at
the enrollment stage. In this work, we propose a scheme that works with just a single
training image for each person and demonstrate reasonable accuracy. Subsequently, we
present another scheme that averaged fewer than four training images for each of 30
subjects. For unconstrained head rotation in still imagery, even under these much more
difficult conditions, our recognition rates were similar to those reported in [3].

To assist location of hair area and characterize hair features, the proposed approach
is partly based on previously published work on texture analysis demonstrated success-
fully on other domains such as satellite imagery. Texture analysis for hair needs to be
rotation invariant and multiresolution, since in a top-view scenario the distance (and
therefore, magnification) of the hair from the camera changes according to the person’s
height. Therefore, of the several dozen texture characterization methods available in the
published literature, we chose the multiresolution Rotation-Invariant Simultaneous Au-
toRegression (MR-RISAR) method proposed by Mao and Jain [4]. We also make use
of a line-texture operator [5][6][7] that generates a binary mask to assert whether or not
each pixel in the input image depicts a line point.

3 Approach

3.1 Hair Boundary Delineation

The number of skin pixels in the image is a measure of the degree of baldness and allows
us to reliably detect subjects that are almost completely bald and to delineate their head
areas. It is well known [8] that, regardless of race, human skin pixels in a color image
taken under normal indoor/outdoor illumination fall into a relatively tight cluster in 3D
RGB color space. We found that reasonably good skin detection usually results for the
following values: < IR

IR+IG+IB
= 0.45±0.09 >< IG

IR+IG+IB
= 0.33±0.05 >, where

IR, IG, IB are intensities in the R, G, B color channels. Since skin is smooth, bright, and
specular under illumination, we require that a skin pixel exceed a conservative intensity
threshold of 100 (for intensity range 0 – 255) and that adjacent skin pixels not differ in
intensity by more than 10%.

The hair region is seen to exhibit a very high density response to a line-texture op-
erator previously discussed in [5][6][7]. The binary image generated as a result of the
operator is then consolidated by the eight-connected grow/shrink sequence GGSSSGG.
We then apply a binary mask boundary-tracing algorithm, which often produces an
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overly detailed delineation of the desired hair region. This initial delineation is subse-
quently replaced by its convex hull. We observed that the largest circle that can be
embedded inside the unsmoothed boundary is often a better choice as a region for ex-
tracting hair features because it reduces contamination by the background. Figure 2
shows examples of our hair delineation results.

Fig. 2. Hair delineation results

3.2 Hair Feature Extraction

In the work reported here, we have investigated the use of two broad classes of features
to characterize hair in general and hair texture in particular. The first class of features is
based on sliding windows operating directly on a patch of pixels within delineated hair
regions. These pixel-based features treat hair as a textured surface to be characterized
via statistical texture segmentation operations. The second class of features exploits the
fact that hair is a collection of individual linelike structures.

Pixel-Based Features. We direct the reader to the cited publication for details about
the MR-RISAR model. We begin with a square patch of pixels located at the center of
the delineated hair boundary. Rotationally invariant simultaneous auto-regressive co-
efficients, as defined by Mao and Jain, are then calculated to describe sliding square
windows of width W over L levels of a Guassian pyramid constructed from the input
image. In addition to these texture features, we compute two color features for each
window, defined as ĪG/ĪR and ĪB/ĪR [9], where ĪR, ĪG, ĪB are average intensities in
the R, G, B color channels of the window, respectively. The sliding windows were made
to overlap by half the window size along both X and Y directions.

The size of the square patch, N , depends on the resolution of the input imagery,
chosen such that the patch covers roughly 15% of the head surface of an average size
head. Since the still images in our set were of higher resolution, a patch size of N = 256
and window size of W = 32 sufficed with L = 3. We chose N = 128 and W = 16
with L = 2 for the video experiments, due to the lower resolution. These choices led to
14 and 10 features for each sliding window in the still and video imagery, respectively.
We thus have, for a given square patch of hair, a feature matrix with 14 or 10 columns.

The relative importance of color vs. texture features changes from person to person.
Figures 3(a) and (b) show examples illustrating the effectiveness of our pixel-based
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texture and color features individually. The top row of Figure 3(a) shows sample hair
patches extracted from still images of two different subjects, both with dark hair. The
bottom-left subgraph of that figure shows a plot of the first vs. the second texture feature
extracted from the complete set of images available for these two subjects from our data
set, including the patches shown in the top row of Figure 3(a). On the other hand, the
bottom-right subgraph shows a plot of the first vs. the second color features extracted
from the same set of images. Note that the X and Y coordinates of each point in these
illustrations are the mean values of the corresponding features over a hair patch (i.e.,
the mean across the corresponding columns of the feature matrix for the patch). As
intuitively expected, the two subjects are more separable in the texture space (left plot)
than in the color space (right plot). Similarly, Figure 3(b) shows hair patches extracted
from two different persons with straight hair of different colors. The separability in the
color space (right plot) is clearly larger than the texture space (left plot), as intuitively
expected.
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Fig. 3. Pixel-based feature analysis

Figures 3(c) and (d) show two interesting cases that indicate the relative efficacy of
the texture and color features and their intuitive interpretation. Two samples of subjects
with curly hair are shown in Figure 3(c). Since the color difference is clearly signif-
icant, the color space (right plot) shows clear separability, as expected. Interestingly,
the texture space (left plot) shows clear separability as well, evidently due to the dif-
ferences in the density and/or the radius of curvature of the curls. Figure 3(d) shows
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two sample patches extracted from two different completely bald subjects in our data
set. Even though the skin color is quite similar, as evident from the lack of clear linear
separability in the color space (right plot), the two subjects are linearly separable in the
texture space (left plot). On close inspection, it was evident that one of the subjects was
naturally bald (top right) but the other had shaved his head (top left), giving the shaved
head a distinctive texture due to tiny wounds and hence causing the separability in the
texture space.

Line-Based Features. To exploit the fact that hair is a collection of individual linelike
structures, we have designed the following features in our current system:

1. Macrotexture: The macrotexture attributes are based on first extracting straight or
curved line segments from the binary mask image described in Section 3.1, as
shown in Figure 4(a). Each such segment is called a hair-line segment. Only the
longer and smoother segments are selected (Figure 4(b)), and are later clipped to
the region within the delineated hair boundary. We define two types of macrotexture
attributes based, respectively, on the orientation and length of the detected hair-line
segments.

(a) Line segment extraction (b) Delineated hair segments

Fig. 4. Hair segment delineation

(a) Orientation: We represent each hair-line-segment as a sequence of straight line
subsegments and compute the orientation and direction for each subsegment.
We then compute a histogram over the orientations of all such subsegments
over the entire hair area, using 18 bins (each spanning 10 degrees). We then
find the partition that maximizes the total number of entries in any nine adjacent
bins (with wrap-around). The value we compute as the orientation metric is the
ratio of the number of subsegments in such a maximum partition to the total
number of subsegments. Intuitively, the orientation metric is a measure of the
degree of order in the arrangement of hair. Curly or uncombed hair would have
a value close to 0.5, whereas relatively straight combed hair would have a value
close to 1.

(b) Length: We calculate a cumulative distribution function (cdf) of the lengths of
the hair-line segments. The lengths corresponding to the cdf values of 0.1, 0.3,
0.6, and 0.9 are chosen as the four length metrics.
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2. Shape: Our shape metrics are the total length of the hair boundary and the width-
to-length ratio for its bounding minimum-width rectangle.

3. Color: We employ a color-labeling technique named Relative Ordering. It assigns
one of 12 categorical labels to each pixel by applying the conditions listed in the
rows of Table 1, going in the order 1 to 12 and stopping as soon as the first matching
condition is found. We then assign categorical values to the most and second most
frequently occurring label within the hair boundary.

Table 1. Relative ordering conditions

Order RGB Condition Label Order RGB Condition Label
1 IR < T AND IG < T AND

IB < T , where T = 30
dark 7 IR > IG > IB color4

2 IR = IG ± 20 AND IG =
IB ± 20 AND IB = IR ± 20

white 8 IR > IB > IG color5

3 Skin determination skin 9 IG > IR > IB color6
4 IR*1.8 < IG OR IB color1 10 IG > IB > IR color7
5 IG*1.8 < IR OR IB color2 11 IB > IR > IG color8
6 IB*1.8 < IR OR IG color3 12 IB > IG > IR color9

In the discussion above, we have defined a number of pixel-based and line-based
texture and color features. Given the small number of training samples for each subject,
it is desirable to select only a subset of available features to avoid the curse of dimen-
sionality. For the single-image enrollment scenario only the pixel-based features were
used. When multiple images were available for training, line-based features were used
whenever possible.

3.3 Recognition Procedure

Single Image Enrollment. For a given patch of hair, we compute a feature matrix,
as discussed in Section 3.2. Assuming a multivariate Gaussian distribution, we then
compute the mean feature vector μ and covariance matrix Σ. Given two patches of hair
extracted from two different images, indexed as i and j, we estimate the likelihood that
they belong to the same person as the following quantity:

pij = Nμj ,Σj (μi) ×Nμi,Σi (μj) , (1)

where Nμ,Σ (x) is the multivariate Gaussian probability density evaluated at x, with
mean μ and covariance matrix Σ. Given a patch of hair, i, the best match within a
library of enrolled patches of hair with known identities is obtained as the patch j with
the maximum likelihood pij , defined in Equation 1. Since the texture color features
used are rotation invariant, this recognition strategy is inherently rotation invariant.

Multiple Image Enrollment. We have devised a recognition algorithm that operates
in two phases: ambiguity determination and ambiguity reduction.
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Phase 1: Ambiguity Determination: When multiple training images are available
for each person, if the subjects are not completely or nearly bald, we characterize the
hair first by the line-based features described in Section 3.2. For each enrolled subject,
we first determine the feature interval between the minimum and maximum observed
feature values. This interval is expanded by a feature tolerance factor proportional to
its width (typically 25% in our experiments) along both ends. These expanded intervals
for an enrolled subject now act as a filter to decide if a test image with unknown identity
is sufficiently similar to the enrolled subject. If a feature value of the test subject lies
outside these intervals for an enrolled subject, the corresponding feature filter is con-
sidered to fail. For multiple features, each feature interval acts independently to filter
a given set of possible identities for the test subject (input ambiguity set) to a smaller
or equal-size set (output ambiguity set). When the unknown subject is determined to
be completely or nearly bald, we compose the ambiguity set as a collection of all the
subjects in the enrolled images who are also completely or nearly bald.

Phase 2: Ambiguity Reduction: When the unknown subject has not been determined
to be completely or nearly bald, the feature tolerances for the members of the ambiguity
set are reduced to zero, thereby making the filter matching criteria more strict. We also
introduce one additional filter for hair boundary shape similarity. We compare the first
two members of the ambiguity set, using the extent of similarity with the test image
defined as the total number of interval-based filters that succeed in matching. If any
feature value for the test subject falls outside the feature intervals of both members,
and does not lie in the region between the two intervals, the filter with an interval-
endpoint closest to the observed feature value is said to succeed. The member with
the lower extent of similarity is removed from contention. The surviving member is
then compared with the next remaining member (if any) of the ambiguity set, and the
procedure is repeated until the ambiguity list is exhausted.

Because of the possibility of a tie, the result produced in this phase could still be
an ambiguity set of length greater than 1. In such a case, or when the test subject and
therefore members of the ambiguity set are completely bald, the means of pixel-based
features are used in the above interval-based recognition scheme (with feature tolerance
zero) to select a single best hypothesis. There is also the possibility, in either of the two
phases, that no entries in the ambiguity set are similar enough to be acceptable. In this
case the test image is rejected.

4 Results

4.1 Data Collection

Still Image Data. We have acquired 116 top-view color (1600 × 1200) JPEG images
from 30 subjects (Figure 5), which translated to approximately 250 μm per pixel on
the head surface. Two to five images of each subject were collected, each image with
a different, unconstrained head orientation in the horizontal plane. Head rotation in
the vertical plane was restricted to roughly ±10 degrees, based on the assumption that
the subjects are more likely to rotate their heads sideways than straight up or down
when walking along a hallway, turning a corner, or entering a room. Depending on
the position and head orientation of the subject, different images for the same subject
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Person # 1 Person # 2 Person # 3 Person # 4

Person # 5 Person # 6 Person # 7 Person # 8

Person # 9 Person # 10 Person # 11 Person # 12

Person # 13 Person # 14 Person # 15 Person # 16

Person # 17 Person # 18 Person # 19 Person # 20

Person # 21 Person # 22 Person # 23 Person # 24

Person # 25 Person # 26 Person # 27 Person # 28

Person # 29 Person # 30

Fig. 5. Hair samples of stationary subjects (30 subjects; 116 images)

had differing extents and positions of imaged hair specularity and highlights. The time
interval between different captured images of the same subject ranged roughly between
one and five minutes.

Video Data. In roughly the same setup as the still image capture, we captured a few
seconds of video data for each subject entering and leaving a room at 15 frames per
second progressive scan. Given the close proximity of the camera to an average person’s
head, the field of view of the camera is narrow at head level. As a result, at average
walking speeds, the entire head is visible only for a split second (i.e., only 1 or 2 frames
for most people) (Figure 6(a)). The frame resolution was 720 × 480, which translated
to approximately 250 μm per pixel on the average head surface. As before, we allowed
unconstrained head orientation in the horizontal plane and restricted the head rotation in
the vertical plane to roughly ±10 degrees. Our pool of subjects included 27 individuals.

(Frame 1) (Frame 2) (Frame 3) (Frame 4)

(Frame 5) (Frame 6) (Frame 7) (Frame 8) 1 2 3 4 5 6 7 8
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Frame Number

D
et

ec
te

d 
H

ai
r 

A
re

a

(a) Moving subject with 15 fps progressive scan
video capture

(b) Frame selection from video

Fig. 6. Video data capture and frame selection

4.2 Experimentation

Authentication with High-Resolution Still Imagery. The present technique is envis-
aged to be used in situations involving small groups of people. It is intuitive that the
recognition accuracy would reduce as the number of persons in the group increases.
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Our experiments gradually increased the size of the group from two to a maximum of
30 persons per group. For each group size, individuals were randomly selected from
our still image corpus of 30 persons. For the single image enrollment scenario, for each
subject, a training image and a different test image was randomly chosen from the set
of images available for that person. For the multiple-image enrollment scenario, each
image of each selected subject was classified using the rest of the images of the selected
subjects for training (i.e., according to the leave-one-out paradigm). The success rate
(defined as the ratio of the number of correct identifications to the total number of test
images) was recorded. For each group size, the random selection of members and the
evaluation of the success rate was repeated 1000 times, so that the average success rate
over the 1000 experiments is representative for that group size in a Monte Carlo sense.

For single image enrollment, our recognition strategy does not have a reject or don’t
know category. Therefore, the reject rate is constant at 0. As shown in Figure 7(a) (green
curve), the success rate is fairly high for group sizes ≤ 5, given that only one image was
used for training for each person. The average success rate drops as the size of the group
increases, as expected: 91% for a group size of 5, 86% for a group size of 12, and 77%
for a group size of 30.

For multiple-image enrollment, our reject rate was more or less independent of the
group size, at approximately 3%. The error rate increased with the group size, as before.
Overall, the average success rates were 96% for a group size of 5, 95% for a group size
of 12, and 92% for a group size of 30 (Figure 7(a), blue curve). As can be observed, the
success rates were higher when multiple images were available for training.
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Fig. 7. Person authentication results using hair

Authentication with Low Resolution Video. The person authentication problem using
video is in many ways more difficult than authentication using still imagery due to lower
resolution, lower color sensitivity, and motion blur. Our experimental setup involving
video capture sometimes resulted in only a couple of full head views at average walking
speeds. For the purposes of the experimental results presented here, we restricted the
video analysis to single image enrollment-based person authentication. As the subject
entered the data capture room, of the several frames in which the person was visible in
the captured video, our video analysis algorithm chose a single frame in which the area
of the detected hair region was maximum. For example, Figure 6(b) shows the extent



Headprint – Person Reacquisition Using Visual Features of Hair 889

of detected hair areas in the eight frames shown in Figure 6(a). The X axis represents
the frame index, and the Y axis represents the ratio of the detected hair area to the
area of the frame. The plot shows a clear peak at frame 5, where the detected hair area
is maximum. This frame is then chosen to enroll the subject using the single image
enrollment scheme. Analogously, as the subject left the room, another single frame
was similarly chosen for testing. Using the framework for simulating smaller group
sizes described above, we estimated the recognition accuracy for several subgroups of
subjects.

The error rate increased with the group size, as before. Overall, the average success
rates were 89% for a group size of 5, 86% for a group size of 12, and 81% (extrapolated)
for a group size of 30 (Figure 7(b)). The performance is therefore comparable to one
reported with high resolution still imagery, thereby attesting to the robustness of the
feature extraction and analysis steps.

5 Conclusion

One of the main objectives of this work was to select a relevant scenario and develop
an experimental system to demonstrate and quantify the utility of using images and
videos of hair for automated person recognition. We are not aware of any published
work in which characteristics of human hair were deliberately selected to play a central
or critical role in automatically establishing human ID from color images. The selected
scenario was the reacquisition of the identities of people being tracked in an indoor
environment after a short interruption in tracking.

Subsequently, this work successfully defined a set of features for pixel-based and
line-based characterizations of the imaged appearance of human hair. These features
can be used for person recognition in the above (or similar) setting. For pixel-based
characterization, we used rotation invariant statistical features to determine texture and
color. For line-based characterization, we developed many different types of attributes
including shape, line texture and orientation, and color. Taking into account the small
number of images that can reasonably be assumed to be available for training purposes
for the given scenario, we described two reliable decision procedures for single and
multiple image enrollments.

Overall, for still images, our performance is in the same range as that reported by
Cohen et al. [3]: 96% success rate, 4% error rate, and 0% reject rate for 12 subjects,
compared with our result of 95% success rate, 2% error rate, and 3% reject rate. How-
ever, the results reported here were obtained with only a single or up to 4 training images
per test subject, whereas Cohen et al. used 60 training samples per subject. In contrast
to the proposed approach, an explicit delineation and characterization of hair did not
play a central role in the cited previous work [3], which included the color and texture
of clothing for identification. The hair characterization procedure described here was
demonstrated to be capable of handling completely or nearly bald subjects, whereas
Cohen et al. make no such claim. Our method has also been illustrated on subjects in
motion as captured in video clips, whereas Cohen et al. focused only on still images.

In summary, one of the primary contributions of this work is our successful demon-
stration of how hair, far from being a recognition impediment, can be an important asset
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in person identification. In this work, we have introduced a collection of pixel-based and
line-based attributes, and methods for their measurements, that may have general util-
ity beyond hair characterization. Our decision procedures can be parameterized with
little image information, and are effective in exploiting observed interactions between
individual objects and the feature extraction algorithms operating on these objects. Our
ongoing work in this research direction includes the development of a robust hair detec-
tion technique that loosens the constraints imposed by context, and the use of hair for
human ID from a more general perspective than the overhead viewpoint we described
here.
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Abstract. Many researches in face recognition have been dealing with
the challenge of the great variability in head pose, lighting intensity and
direction,facial expression, and aging. The main purpose of this overview
is to describe the recent 3D face recognition algorithms. The last few
years more and more 2D face recognition algorithms are improved and
tested on less than perfect images. However, 3D models hold more in-
formation of the face, like surface information, that can be used for face
recognition or subject discrimination. Another major advantage is that
3D face recognition is pose invariant. A disadvantage of most presented
3D face recognition methods is that they still treat the human face as a
rigid object. This means that the methods aren’t capable of handling fa-
cial expressions. Although 2D face recognition still seems to outperform
the 3D face recognition methods, it is expected that this will change in
the near future.

1 Introduction

One of the earliest face recognition methods was presented in 1966 by Bledsoe [1].
In one of his papers [2], Bledsoe described the difficulties of the face recognition
problem:

“This recognition problem is made difficult by the great variability in
head rotation and tilt, lighting intensity and angle, facial expression,
aging, etc. Some other attempts at facial recognition by machine have
allowed for little or no variability in these quantities. Yet the method
of correlation (or pattern matching) of unprocessed optical data, which
is often used by some researchers, is certain to fail in cases where the
variability is great. In particular, the correlation is very low between two
pictures of the same person with two different head rotations.”

Since that time many researches have been dealing with this subject and have
been trying to find an optimal face recognition method. The main purpose of
this overview is to describe the recent face recognition algorithms on still im-
ages. Previous face recognition surveys were presented by Samal and Iyengar [3],
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Chellappa et al. [4] and Zhao et al. [5]. However, they all are primarily focussed
on 2D face recognition. In the Vendor Test 2002 the performance of different
commercial face recognition methods were compared [6]. Most commercial face
recognition systems use one or more algorithms as presented in the literature.
However, all systems conceal which algorithms are used in their application.
Therefore, commercial systems are excluded in this survey. The last few years
3D facial models can be more easily acquired since the acquisition techniques
have improved. Therefore, some face recognition methods originally developed
for 2D face recognition have been extended for 3-dimensional purposes. Using
3D models one can deal with one main problem in 2D face recognition: the in-
fluence of the pose of the head. Also the surface curvature of the head can now
be used to describe a face. A recent survey of 3D face recognition was recently
presented by Bowyer [10]. Since that time new results with respect to 3D face
recognition have been published. We describe the most recent approaches to the
facial recognition challenge.

2 3D Supported 2D Models

Zhao and Chellappa proposed in [7] a shape-from-shading (SFS) method for
preprocessing of 2D images. This SFS-based method used a depth map for gen-
erating synthetic frontal images. The The Linear Disrciminant Analysis (LDA)
was applied to the synthetic images instead of the original images. The recogni-
tion rate increased with 4% when the synthetic images were used for LDA coding
instead of the original images. Hu et al. proposed to use one neutral frontal im-
age to first create a 3D model and from that create synthetic images under
different poses, illuminations and expressions [8]. By applying LDA or Principal
Component Analysis (PCA) to this 3D model instead of the 2D face images, the
recognition rate increased with an average of 10% for the half-profile images. A
similar idea was proposed earlier by Lee and Ranganath where they presented a
combination of an edge model and color region model for face recognition after
the synthetic images were created by a deformable 3D model [9]. Their method
was tested on a dataset with 15 subjects and reached a recognition rate of 92.3%
when 10 synthetic images per subject were used and 26.2% if one image for each
subject was used.

3 Surface Based Approaches

3.1 Local Methods

Suikerbuik [11] proposed to use Gaussian curvatures to find 5 landmarks in a
3D model. He could find the correct landmark point with a maximal error of 4
mm . Gordon proposed to use the Gaussian and cean curvature combined with
depth maps to extract the regions of the eyes and the nose. He matched these
regions to each other and reached a recognition rate of 97% on a dataset of 24
subjects [12]. Moreno et al. used both median and Gaussian curvature for the
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selection of 35 features in the face describing the nose and eye region [13]. The
best recognition rate was reached on neutral faces with a recognition rate of
78%.

Xu et al. proposed to use Gaussian-Hermite moments as local descriptors
combined with a global mesh [14]. Their approach reached a recognition rate of
92% when tested on a dataset of 30 subjects. When the dataset was increased
to 120 subjects, the recognition rate decreased to 69%.

Chua et al. [15, 16] introduced point signatures to describe the 3D land-
mark. They used point signatures to describe the forehead, nose and eyes. Their
method reached a recognition rate of 100% when tested on a dataset with 6
subjects. Wang et al. used the point signatures to describe local points on a face
(landmarks). They tested their method on a dataset of 50 subjects and com-
pared their results with the Gabor wavelet approach [17]. Their results showed
that point signatures alone reached a recognition rate of 85% where the Gabor
wavelets reached a recognition rate of 87%. If both 2D and 3D landmarks were
combined, they reached a recognition rate of 89%. The authors remarked that
these results could also be influenced by the number of landmarks used for face
recognition, since for the point signatures 4 landmarks were used, for the Gabor
wavelets 6 landmarks and for the combination of both 12 landmarks were used.

Douros and Buxton proposed the Gaussian Curvature to define quadratic
patches to extract significant areas of the body. They claim that their method
can be used for recognition of all kinds of 3D models [18]. Another local shape
descriptor that was found to perform good on human bodies was the Paquet
Shape Descriptor [19].

3.2 Global Methods

One global method on curvature was lately presented by Wong et al. [20]. The
surface of a facial model was represented by an Extended Gaussian Image (EGI)
to reduce the 3D face recognition problem to a 2D histogram comparison. The
proposed measure was the multiple conditional probability mass function classi-
fier (MCPMFC). Tested on a dataset of 5 subjects the MCPMFC has a recog-
nition rate of 80.08% where a minimum distance classifier (MDC) reached a
recognition rate of 67.40%. However a test on synthetic data showed that for
both methods the recognition rate decreased with 10% when the dataset was
increased from 6 subjects to 21 subjects.

Papatheodorou and Rueckert proposed to use a combination of a 3D model
and the texture of a face [21]. They also proposed some similarity measures for
rigid alignment of two faces for 3D models and for 3D models combined with
the texture. Their results showed an increase for frontal images when adding a
texture to the model.

Beumier and Acheroy proposed to use vertical profiles of 3D models for face
recognition. Their first attempt was based on three profiles of one face and had
an error rate of 9.0% when it was tested on a dataset of 30 subjects [22]. In
their second attempt they added grey value information to the matching process
[23]. This attempt reduced the error rate to 2.5% when it was tested on the
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same database. Wu et al. proposed to perform 3D face recognition by extracting
multiple horizontal profiles from the 3D model [24]. By matching these profiles to
each other they reached an error rate between 1% and 5.5% tested on a database
with 30 subjects.

4 Template Matching Approaches

Blanz, Vetter and Romdhani proposed to use a 3D morphable model for face
recognition on 2D images [25–27]. With this method tested on a dataset of 68
subjects they reached a recognition rate of 99.8% for neutral frontal images and
a recognition rate of 89% for profile images. Huang et al. added a component
based approach to the morphable model [29] based on the approach of Heisele
[28]. However, the recognition rate was for all approaches of the morphable model
between the 75% and the 99%.

Naftel et al. presented a method for automatically detecting landmarks in
3D models by using a stereo camera [30]. The landmarks were found on the 2D
images by an ASM model. These landmark points were transformed to the 3D
model by the stereo camera algorithm. This algorithm was correct in 80% of all
cases when tested on a dataset of 25 subjects.

A similar idea was proposed by Ansari and Abdel-Mottaleb [31]. They used
the CANDIDE-3 model [32] for face recognition. Based on a stereo images land-
mark points around the eyes, nose and mouth were extracted from the 2D images
and converted to 3D landmark points. A 3D model was created by transforming
the CANDIDE-3 generic face to match the landmark points. The eyes, nose and
mouth of the 3D model were separately matched during the face recognition.
Their method achieved a recognition rate of 96.2% using a database of 26 sub-
jects. Lu et al. had used the generic head from Terzopoulos and Waters [33]
which they adapted for each subject based on manually placed feature points in
the facial image [34]. Afterwards the models were matched based on PCA. This
method was tested on frontal images and returns in 97% of all cases the correct
face within the best 5 matches.

5 Other Approaches

The original principal component method for 3D facial models was implemented
by Mavridis et al. for the European project HiScore [35]. Chang et al. had com-
pared the performance of 3D eigenfaces and 2D eigenfaces of neutral frontal faces
on a dataset of 166 subjects [36]. They found no real difference in performance
for the 2D eigenfaces and 3D eigenfaces. However, a combination of both dimen-
sionalities scored best of all with a recognition rate of 82.8%. Xu et al. proposed
to use 3D eigenfaces with nearest neighbor and k-nearest neighbors as classifiers
[37]. Their approach reached a recognition rate around the 70% when tested on
a dataset of 120 subjects.

Bronstein et al. had proposed to transform the 3D models to a canonical
form before applying the eigenface method to it [38]. They claimed that their
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method could discriminate between identical twins and was insensitive for facial
expressions, although no recognition rates were given.

Tsalakanidou et al. proposed to combine depth maps with intensity images.
In their first attempt they used eigenfaces for the face recognition and his results
showed a recognition rate of 99% for a combination of both on a database of 40
subjects [39]. In a second attempt embedded hidden markov models were used
instead of eigenfaces to combine the depth images and intensity images [40]. This
approach had an error rate between the 7 % and 9%.

6 Discussion and Conclusion

It is hard to compare the results of different methods to each other since the
experiments presented in literature are mostly performed under different condi-
tions on different sized datasets. For example one method was tested on neutral
frontal images and had a high recognition rate, while another method was tested
on noisy images with different facial expressions or head poses and had a low
error rate.

Some authors presented combinations of different approaches for a face recog-
nition method and these performed all a little better than the separate methods.
But besides recognition rate, the error rate and computational costs are impor-
tant, too. If the error rate decreases significantly, while the recognition rate
increases only a little bit, the combined method is still preferred. But, if the
computational costs increase a lot, calculation times could become prohibitive
for practical applications.

Most interesting for this survey were the studies that presented method com-
parisons, like [41–43]. Phillips et al. [6] present comparison studies performed on
the FERET database. The latest FERET test performed on different algorithms
was presented in 2000 [44]. An important conclusion from this survey was that
the recognition rates of all methods improved over the years. The dynamic graph
matching approach of Wistkott et al. [17] had the best overall performance on
identification. For face verification the combination of PCA and LDA presented
by Zhao et al. [46] performed best.

In table 1 a summary is given for the most important and successful 2D
and 3D face recognition methods. One can see that the 3D face recognition
approaches are still tested on very small datasets. However, the datasets are
increasing during the years since better acquisition materials become available.
By increasing a dataset, however, the recognition rate will decrease. So the algo-
rithms must be adjusted and improved before they will be able to handle large
datasets with the same recognition performance. Another disadvantage of most
presented 3D face recognition methods is that most algorithms still treat the
human face as a rigid object. This means that the methods aren’t capable of
handling facial expressions. In contrast to 3D face recognition algorithms, most
2D face recognition algorithms are already tested on large datasets and are able
to handle the size of the data tolerable well. The last few years more and more
2D face recognition algorithms are improved and tested on less perfect images,
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like noisy images, half profile images, occlusion images, images with different
facial expressions, et cetera. Although not single algorithm can be assumed to
handle the difficult images good enough, an increasing line in performance can
be found.

Although 2D face recognition still seems to outperform the 3D face recogni-
tion methods, it is expected that in the near future 3D face recognition methods
outperform 2D methods. 3D models hold more information of the face, like sur-
face information, that can be used for face recognition or subject discrimination.
Another major advantage is that 3D face recognition is pose invariant. Therefore,
3D face recognition is still a challenging but very promising research area.
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Influences of Image Disturbances
on 2D Face Recognition
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Abstract. In the current development of deploying biometric methods,
face recognition takes a leading role. Therefore it is of interest what barri-
ers might arise in using face recognition for certain applications. Because
of the wide range of possible uses of biometrics and face recognition a
technology evaluation on which image disturbances influence face recog-
nition algorithms was done in the project BioFace III. This includes
tests regarding head rotation, contrast, compression and more.

1 Introduction

Face recognition takes a special role among the biometric methods, as the face
is one of the few biometric features that can be acquired relatively unnoticed.
Therefore it can be used for covered surveillance. Furthermore a face picture is
very common in passport documents. Connected to this the face picture features
another advantage: “Manual” comparison. In case the system fails a human
guard can at least compare a face picture to a person while this is not feasible
for e.g. fingerprints or iris.

The wide range of possible applications brings a wide range of possible cap-
turing scenarios: Pictures could be unsharp, the scene could be illuminated in
a bad way, the angle of view is not frontal1, etc. All of these disturbances on
the image quality and the face pictured can influence the comparison result of
a face recognition algorithm. In the worst case the degradation is so severe that
the captured images cannot be used for biometric face recognition and therefore
the targeted application scenario doesn’t work.

Several disturbances (e.g. head rotations) are commonly known to degrade
face recognition performance but a number of disturbances – especially in the
acquisition area – remained unexamined.

2 Disturbances

The sources of disturbances on image material can be roughly grouped into two
classes. Firstly the person being the motif can introduce disturbances into the
1 Probably this should read “optimal”, but for common face recognition algorithms

the frontal view is the optimal view.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 900–908, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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picture, e.g. grinning or wearing a hat. The second step is the photographic
process itself, e.g. focal settings, shutter. As the face recognition software needs
a digital image the conversion process from a printed copy to a data file can also
introduce degradations into the image, like noise, dust or a tint.

2.1 Motif Originated Disturbances

Motif based Disturbances are disturbances that arise from the projection of the
three-dimensional head to the two-dimensional image. In addition to that the
person being pictured can have a non-standard mimic or wear disturbing clothes.

Rotations. The head is a three-dimensional object, that can be rotated by
three axis. The first axis passes through the head from neck upward, a rotation
around this axis would roughly represent a non-verbal “No”. The second axis
can be imagined from ear to ear, the corresponding rotation being a non-verbal
“Yes”. The third and last axis will enter the head at the nose and exit at the
back of the head, a rotation will tilt the head to the side.

Rotations around the first two axis (neck and ears) will after a certain degree
result in a loss of face area to start getting invisible and therefore a loss in
information that can not be recovered by the recognition algorithm. It is obvious
that the rotation around the neck axis is far more common and wide angles will
arise more often.

A rotation around the nose axis by comparison can be corrected nearly with-
out any loss. Here a rotation greater that twenty degree will be encountered very
rarely.

Mimic. The mimic of the pictured person during the acquisition can decrease
the recognition performance considerably. Especially the mouth area is affected
by mimic changes. But also the eyes can cause a comparison to fail, as these are
often used for face localization, if the person closes the eyes this can fail, causing
the whole comparison to fail.

Classification of mimic originated disturbances are difficult. Measuring the
strength of a smile is hard for one person and even more complicated for different
persons. This is why for disturbances caused by mimic only the existence or
absence can be determined.

2.2 Acquisition Originated Disturbances

This group of disturbances arise from errors in lighting, camera settings, wrong
handling of the camera, bad or wrong film material etc. These disturbances cause
a bad reproduction in a technically (and often also optically) view.

Over-/Underexposure. Main reason for an over- or underexposure is a too
long or too short exposure time of the film material or the digital camera CCD.
An exposure error is often correlated to a contrast error.
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Contrast. The definition of contrast in photography is typically the difference in
brightness between bright and dark areas of the image. As these are important
for segmentation and edge detection the contrast of an image can affect the
performance of a recognition algorithm. In the digital world this is even worse
as there is a upper and lower border for the brightness of pixels. If the contrast
is raised or lowered extremely, all brightness values exceeding the border will be
mapped to the border, resulting in loss of information.

Sharpness. In the optimal case a punctiform item in the motif will appear
punctiform in the image. In a pinhole camera without lens the picture all motif
points are nearly sharp. As soon as a lens comes into play, the camera apparatus
has to be focused, so that the motif points are on the targeted sharpness layer,
i.e. the focal point lies on film or CCD layer. A bad focus results in a unsharp
image, i.e. one motif point is assigned to multiple image points.

Resolution. The term resolution is used in two contexts: 1. For the size of digital
raster images and 2. for the image proportion between an analogue original and
the digital copy. These are somewhat correlated, if one assumes that a digital
image is captured from an indefinitely exact analogue original, the size of the
digital copy will rise with the resolution.

In the face recognition area the minimum resolution is commonly defined over
the minimum pixel distance from eye to eye. Is the resolution to low, differences
between persons will start to be averaged. High resolutions are expected not to
cause problems other than a delay in processing the large amount of pixels.

Compression. For storing biometric images in small data storages (e.g. RFID,
smart card), compression of digital face images will probably become a very
common disturbance. As JPEG is a very common image compression method
with a common compression artifact it was chosen.

Some image compression algorithms allow to control the rate of compression
over a parameter. For JPEG this parameter controls the number of frequency
coefficients that are used for each JPEG image block (8x8 pixels). For low to
medium values the changes are nearly not noticeable, while with high compres-
sion rates blocky disturbances arise, which are caused by the effect that two
adjacent JPEG image blocks differ in color noticeably because the information
amount available for each block is very low.

Grey Scale. The color information of an image is an additional dimension that
can be used by face recognition algorithms, e.g. examining only the red channel
for locating faces.

The one of the main dangers of using color as information source is the
its dependency on illumination and acquisition equipment. Different lighting
conditions and/or cameras will most probably result in a difference in the color
distribution. This is the reason why most recognition algorithms work with grey
scale images internally.



Influences of Image Disturbances on 2D Face Recognition 903

The influence of color is of special interest as this is an excellent possibility
of reducing the image size whilst maintaining the image size and/or constrict
compression degradation.

Occlusion by Hats and Sunglasses. Wearing sunglasses can disturb the
image localization process noticeable as one of the main invariant face features
– the eyes – are masked. In standard illumination environments hats or caps can
cast a shadow over the face and darkening the upper face area drastically.

3 Implementation and Methodology

3.1 Reusing vs. Generating

As the predecessor BioFace I/II has shown [1], image quality is one of the
main parameters influencing the recognition performance. In fact this was the
motivation to implement BioFace III. In BioFace I/II over 200,000 images
have been categorized regarding image disturbances and could have been re-used
for BioFace III, but two main reasons speak against this.

Firstly the images often not only contain one disturbance but a combination
of these. This makes the task of measuring the influences of the single distur-
bances hard. If we define the result s(cu1→u2) of a biometric face recognition
comparison2 c(u1 → u2) of two undisturbed images u1 and u2, we can mea-
sure the influence of a disturbance dm on the similarity score s as Δsdm . If we
now combine two disturbances di and dj in one image, the resulting degradation
Δsdi∪dj does not necessarily be the same as Δsdi +Δsdj although this can be. As
the BioFace I/II images were mostly images with combined disturbances the
influence of the synergy factors would possibly influence the results noticeably.

The second problem by reusing already disturbed material is the measure-
ment of the strength of a given disturbance. While contrast or brightness dis-
turbances can be easily detected and measured this is not the case e.g. for head
rotations.

Connected to this a third fact against reusing the BioFace I/II images
arises: The number of disturbances is not equally distributed, either over the
disturbance types or over the disturbances strengths.

All this led to the conclusion that new images need to be taken of a given
test group. Some of these had to be taken during the photographic session (see
table 2a), while the rest have been simulated by computer graphics measures
(see table 2b) by using the open source software ImageMagickTM.

As Δsdi is calculated as a distance of two score results from comparisons, a
reference of how good face recognition algorithms perform on undisturbed data
had to be established first. Therefore two undisturbed images were taken of all
test persons.

2 The operation c(u1 → u2) denotes that u1 was enroled in the gallery and u2 being
the probe image for the verification c(u1 → u2).
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Table 1. Disturbances

Disturbance Variation
Number

of
Images

Undisturbed

Frontal,
neutral

mimic, no
headdress,
spectacle
wearers
without
glasses

2

Undisturbed
alternativea

As above,
with glasses

2

Rotation neck
axis

±10◦, ±15◦,
±20◦ 6

Rotation ear
axis

±20◦, ±45◦ 4

Rotation nose
axis

±15◦, ±30◦ 4

Mimic
Smile, Grin,
Closed Eyes

3

Other
disturbances

Sun Glasses,
Cap

2

a Spectacle wearers only

(a) Photographed Disturbances

Disturbance Variation
Number

of
Images

Chrominance
/ Gray scale

None 1

Overexposure
+10%,

+20%, +30%,
+40%, +50%

5

Underexposure
-10%,

-20%, -30%,
-40%, -50%

5

Contrast
±1, ±2, ±3,
±4, ±5 steps

10

Sharpness
±1, ±2, ±3,
±4, ±5 steps

10

Resolution

10, 20, 50,
72, 96, 100,

150, 200, 300,
600, 1200 dpi

11

Compression
steps 10, 20,

40, 60, 80, 100
6

Digitizing
Disturbances

Reflections,
Scratches,
Staining

4

(b) Generated Disturbances

3.2 Algorithms

In the test seven algorithms were used that were developed by five different
vendors. Most of the algorithms were the commercially available products, but
some were lab prototypes with new developments or different parametrization.
The test was done in a “black box” setup where the testers had no knowledge
about the inner workings of the algorithms.

During the test analysis it became obvious that algorithm 1 was severely
flawed, the error could be tracked to a bug in the software that was developed
to comply to the test interface. Therefore algorithm 1 was excluded from further
analysis to not influence biometric performance considerations by buggy results.

3.3 Test Procedure

The goal of BioFace III was to measure the influence of image disturbances on
biometric (two-dimensional) face recognition. The test didn’t have a competitive
character unlike other comparable tests like the FRVT [2][3], the FRGC [4] or
the FVC [5][6][7]. Therefore the vendor and algorithm names are only published
as pseudonyms.



Influences of Image Disturbances on 2D Face Recognition 905

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Matching Score

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Probability density All Algorithm 2

(a) Algorithm 2
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(b) Algorithm 3
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(c) Algorithm 4
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(d) Algorithm 5
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(e) Algorithm 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Matching Score

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Probability density All Algorithm 7

(f) Algorithm 7

Fig. 1. Probability Densities of the Undisturbed Verification

The test type resembles roughly a technology evaluation [8] without targeting
a certain application, which also reflects the rather wide selection of disturbances,
even though in the back of the mind a border crossing scenario and the ICAO
choice for face recognition as primary biometric [9] where inspirations.

The test itself was run as a crossover verification test, which means that for
each algorithm a, firstly for the set of all images I, each image i ∈ I was enroled,
let E be the set of successfully enroled images. Then sequentially each image
was used as probe p ∈ I for and a verification v(ek, pl) k = 1 . . . |E|, l = 1 . . . |I|.

Even though each image e ∈ E was used as gallery image for the verification
the analysis in BioFace III was limited to the verifications with the second of
both undisturbed image being the gallery image.

4 Results

4.1 Undisturbed Verification

Firstly the verifications of the both undisturbed images were filtered from the
verification results to build a reference for measuring the score difference intro-
duced by the disturbances. Of course these results are interesting on their own,
as they show the capabilities of the algorithms when working on “optimal” data.
If we take a close look at the probability densities of the undisturbed verification
in 1, all algorithms perform very well, with algorithms 4-7 even a zero FR/FA.
This obviously motivates a strict quality control as defined in [9] or [10].
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4.2 Selected Findings from the Disturbed Verification

While all results would go beyond the scope of this article, we will analyze some
selected findings of special interest. These were chosen, because they show the
different impacts of the influences on therecognition approaches of the algo-
rithms.

Resolution. The resolution test group consisted of images ranging from 10dpi
to 1200dpi (see table 2b on page 904). Nearly all algorithms didn’t enrol any
images below 72 dpi, one exception was algorithm 3. As figure 2 shows this wasn’t
successful either, as the low resolution images reach very low performance. This
is no wonder, as the low resolutions also bring a small eye distance with them,
which is usually a good measure for estimating the usability of an image for face
recognition, as the image size itself does not tell anything about the size of the
face pictured.
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Fig. 2. Average Matching Scores (Genuine/Impostor) regarding Resolution (key AL)
Algorithm 3

Head Rotation Around Nose Axis. Regarding the information loss for the
face image the rotation around the neck axis can be seen as the rotation with the
most impact followed by the rotation around the ear axis3. In contrast to this
the impact of the rotation around the nose axis is negligible. Nevertheless with
the rotated face image certain face localizations or approaches for recognition
(e.g. template matching) might fail. This can be seen in figure 3, comparing
the degradations of the matching scores of algorithm 4 and 7 regarding the
rotation around the nose axis. Algorithm 4 seems to be able to compensate the
rotation quite well, while algorithm 7 has to cope with the ±15◦ rotations already
and showing severe problems for the ±30◦ rotations. Another indicator for the
problems handling the ±30◦ rotations is the significant rise of the standard
deviation, depicted as “wick” of the bar plot.

Sunglasses, Headdress. One disturbance aimed on hiding the eyes by sun-
glasses and another on dropping a shadow over the eyes by a baseball cap. As
shown in figure 4 algorithm 7 shows a severe drop of the average matching scores
3 See 2.1 on page 901
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Fig. 3. Average Matching Scores (Genuine/Impostor) regarding Head Rotation around
Nose Axis (key DN)
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Fig. 4. Average Matching Scores (Genuine/Impostor) regarding Several Disturbances
(SMBRI = glasses, SMHUT = hat/cap, SSKRG, SSKRZ = scratches, SSSMU = dirt,
SSREF = reflection, CH000 = grey scale, UNGES = undisturbed)

regarding sunglasses (SMBRI) and the cap (SMHUT), while other disturbances
do not show this behavior. This leads to the assumption that the eye detection
is a key element of algorithm 7.

As in section 4.2 we take algorithm 4 as comparison, where the degradation
is still noticeable, but much less severe.
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Abstract. This paper presents a 3D face recognition system based on
geometrically localized facial features. We propose the feature extrac-
tion procedure using the geometrical characteristics of a face. We ex-
tract three curvatures, eight invariant facial feature points and their rel-
ative features. These features are directly applied to face recognition
algorithms which are a depth-based DP (Dynamic Programming) and
a feature-based SVM (Support Vector Machine). Experimental results
show that face recognition rates based on the depth-based DP and the
feature-based SVM are 95% for 20 people and 96% for 100 people, re-
spectively.

1 Introduction

Face recognition technologies have made great progress using 2D data for the
past few decades. Although they played an important role in many applications
such as identification, crowd surveillance and access control under the controlled
inner and outer environments [1], there are still many unsolved problems in
varying environments such as pose, illumination and expression. With the de-
velopment of a 3D acquisition system, face recognition based on 3D information
is attracting greatly in order to solve problems of using 2D data. Early work
on 3D face recognition was launched decades ago, and a few approaches have
been reported about face recognition using 3D data which were acquired by a
3D sensor [2] and a stereo-based system [3]. Having a 3D system removes many
problems associated with lighting and pose that can affect 2D systems. The so-
lution of 3D face recognition should be more accurate as we can concentrate on
invariant features of the face.

In this paper, we propose a 3D face recognition system based on geometrically
localized facial features with two different 3D sensors. We use Genex 3D FaceCam
system for probe data and a 3D full laser scanner of Cyberware which provides
good quality of face image for gallery data in our system. Fig. 1 shows the block
diagram of the proposed system. As shown in Fig. 1, the system consists of three
stages, which are data acquisition stage, feature extraction stage and recognition
stage. Firstly, in the data acquisition stage, we explore the data acquisition
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Fig. 1. The block diagram of the proposed system

process of probe and gallery data. The obtained probe and gallery data are in
the established 3D normalized space through the preprocessing step. Secondly,
in the feature extraction stage, the proposed 3D facial feature extraction method
using the geometrical characteristics is described. We also propose the relative
features that are obtained by using the relations among the previously extracted
feature points. Finally, in the recognition stage for the matching a probe data
with the gallery data, we induce the recognition method using a depth-based DP
(Dynamic Programming) and a feature-based SVM (Support Vector Machine).

The remainder of this paper is organized as follows. Chapter 2 explains the
extraction of 3D facial feature points and relative features using geometrical
characteristics of 3D face. Chapter 3 describes the proposed 3D face recognition
methods using the depth-based DP and the feature-based SVM in detail. Test
performance is analyzed to explain the efficiency of the proposed algorithm and
discussion is presented in Chapter 4. Finally, Chapter 5 concludes a summary of
the contributions of this paper and the future works.

2 Feature Extraction Algorithms

2.1 Facial Feature Extraction

As for acquiring 3D probe data, we utilize a 3D device based on the structured
light method, and for 3D gallery data, we utilize 3D Laser Scanner. Then, nor-
malization of probe and gallery data is required to perform a face recognition
algorithm. Therefore, we normalize the face data to make all the equivalent face
space [4].
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In this section, we propose a facial feature extraction method for discrimi-
nating individual faces. We define generic facial feature points related to nose
and eyes. Typical locations of some of these features are indicated for reference
in Fig. 2. Each of these face descriptors is defined in terms of a high level set
of relationships among depth and curvature features [5]. The procedure of the
facial feature extraction is as follows:

1. We can vertically and almost symmetrically divide the face using the Y-Z
plane which includes the NPP (Nose Peak Point) and the Y axis, and obtains
the face dividing curvature. Therefore, we can extract the face center curve.

2. On the face center curve, we use curvature characteristics to extract facial
feature points, which are convex and concave points by differentiating the depth
variable z with respect to the length variable y. These points are named as the
NBP (Nose Base Point), the NBRP (Nose BRidge Point)and the CPE (Center
Point between Eyebrows).

3. We can extract a horizontal curvature which passes the NPP. We can
obtain two feature points named as the NEP (Nose End Points) by using the
derivative of the depth variable z with respect to the width variable x.

4. As the procedure as mentioned above, we can extract a horizontal curva-
ture through NBRP. We also obtain two points on this curvature named as the
EIP (Eye Inner corner Points) on this curvature.

Finally, we extract three distinctive curvatures of a face using geometrical
facial characteristics. These curvatures consist of geometrical concavities of a
frontal face; therefore, we obtain eight important feature points on these cur-
vatures by using the derivative of the depth value z with respect to the width
variable x and the length variable y.

Fig. 2. Generic-facial feature points

2.2 Relative Features

In this section, we propose the relative features which are composed of previ-
ously extracted feature points. They are the distances and the ratios between
feature points and the angles among feature points. These relative features can
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be utilized for distinguishing the individuals explicitly, because relations of 3D
data are invariant. Each alphabet from A to H referred to Fig. 2 stands for eight
extracted feature points. Each feature point has x, y and z coordinate values.
For an example, we denote A feature point as A(ax, ay, az). Equations of the
relative features are as follows:

L1 = |cy − by|, L2 = |fx − ex|, and L3 = |gx − hx| , (1)

where L1 ,L2 and L3 are the relative lengths of facial feature points.

V1 = |A(ax, ay, az) −B(bx, by, bz)| and V2 = |B(bx, by, bz) − C(cx, cy, cz)| , (2)

where V1 and V2 are the relative distances of facial feature points.

R1 =
|cy − by|
|gx − hx| , R2 =

|ay − by|
|fx − ex| and R3 =

|fx − ex|
|az − dz| , (3)

where R1 , R2 and R3 are the relative ratios of distances.

Θ1 = � EBF, Θ2 = � GAH Θ3 = � EAF and Θ4 = � GCH , (4)

where Θ1,Θ2,Θ3 and Θ4 are the relative angles among facial feature points.

3 Face Recognition Based on Facial Features

3.1 Face Recognition by a Depth-Based DP

DP was introduced to pattern recognition field related to a time-dependent pro-
cess. The objective of pattern recognition using DP is to find an optimal time-
alignment between two sequential patterns [6]. DP is usually used in optimiza-
tion problems in which a set of decisions must be made to arrive at an optimal
solution [7].

The main advantage of using a depth-based DP for our face recognition
system is that we do not care about the different number of data points and
correspondence problems between face data having two different 3D sensors,
and we would also expect good recognition results more than simple correlation
algorithm. However, one of disadvantages of the depth-based DP is to take a long
time to find an optimal path, if there are many lots of sequential vectors which
consist of facial curvatures for matching. In order to solve this problem, we select
the several candidate faces of gallery data by using the Euclidean distance.

We now extract facial curvatures of the face candidates in order to be fed
into the the depth-based DP system for graph matching. There are four vertical
curvatures which are parallel to the center curvature through the NPP, and
two horizontal curvatures related to eyes and nose. These facial curvatures are
distinguishable features among the individuals; because, everyone has different
depth value of the facial concave and convex points. As the same as sequential
patterns in signature or speech recognition, extracted facial curvatures of a probe
data are very similar to those of the gallery data of the same face. On the other
hand, the curvature patterns of the other gallery data are more different from
the probe data. The extracted seven facial curvatures, as described in Fig. 3, are
directly used as sequential time-aligned vectors having only depth values.
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Fig. 3. Extracting seven curvatures of a face

3.2 Face Recognition by a Feature-Based SVM

In this section, we propose a face recognition algorithm by using a feature-based
SVM. A SVM has been recently proposed as a new technique for pattern recog-
nition [8]. The main objective of pattern recognition using a SVM is to solve
two-class classification problem. Given a set of points which belong to either of
two classes, a SVM finds the hyperplane leaving the largest possible fraction of
points of the same class on the same side, while maximizing the distance of either
class from the hyperplane. According to [9], given fixed but unknown probabil-
ity distributions, this hyperplane called OSH (Optimal Separating Hyperplane)
which minimizes the risk of misclassifying not only the examples in the training
set but also the yet-to-be-seen examples of the test set.

A SVM used in 2D face recognition requires more feature vectors or intensity
values of the gallery data per a class for training support vectors in order to find
the optimal hyperplane, because the more feature vectors per a class are used,
the better recognition rate is performed. Therefore, elapsed time of classification
is not in real time. However, in our system, advantages of using a feature-based
SVM are that training feature vectors which have a gallery data per a class is
accomplished in real time, and SVMs can find the optimal hyperplanes among
one and the others by using well defined facial features of 3D face data as feed
of the SVM. We use the extracted eight facial feature points and their relative
features such as lengths, ratios and angles as mentioned in Chap 2. We apply 100
classes out of BERC (Biometrics Engineering Research Center) face database for
the experiments [10]. In order to solve multi-class problem using the SVM, we
induce the one-vs-all strategies. It separates one class from the other classes by
positive value +1 and negative value -1. When a probe data is used for the test,
facial feature vectors of a probe data are directly fed into 100 SVMs during the
learning, and a SVM having the highest value of output values from each SVM
is ether matched or not matched with target class.

4 Simulation Results and Analysis

For experimental results, we utilize Visual studio 6.0 C++ programming tool to
implement our face recognition system and OpenGL programming for rendering
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Table 1. Facial feature points for probe and gallery data

Features Gallery data(13) Probe data(13) Probe data(12)
x y z x y z x y z

CPE 0.738 60.11 86.41 0.490 60.34 86.21 0.6009 55.7911 78.6374

NBRP 0.390 39.14 81.64 0.434 39.264 79.93 -0.6437 37.23331 76.4823

NPP 0 0 100 0 0 100 0 0 100

NBP 0.734 -10.48 86.35 0.7052 -10.25 87.77 0.83728 -13.681 80.1466

NRIP 21.21 0 78.29 21.222 -0.028 78.09 17.4555 0.19370 74.8431

NLIP -20.24 0 76.81 -20.63 -0.497 75.72 -17.853 -0.4307 73.6493

ERIP 14.34 39.14 74.68 14.096 39.116 74.91 11.4168 37.6236 70.2066

ELIP -14.29 39.14 73.94 -14.57 38.970 72.12 -11.648 37.046 70.0277

3D face data. We acquire 3D face database by using the laser scanner, Cyberware
3030/ RGB. We also obtain 3D probe data by the structured light device,3D
FaceCam. We adopt the frontal faces of 100 people of BERC face database.

4.1 Simulation Results of Extracted Facial Features

The simulation results of the proposed feature extraction algorithm are illus-
trated in this section. Table 1 shows the comparisons of x, y and z values of
eight features about gallery data and probe data. x, y and z values of gallery
data (13) as shown in Table 1, are very similar to probe data (13), but x, y and
z values of probe data (12) are different and distinguishable from gallery data
(13). Table 2 also shows the similarity of eight feature points and their relative
features about probe and gallery data respectively. We normalize all face data
for NPP to be located on 0, 0 and 100 for x, y and z coordinates respectively.
This means that all the face data are in the same space of the view port.

4.2 Simulation Results of Face Recognition

Depth-Based DP: In this section we show the simulation results related to a
face recognition algorithm by a depth-based DP. We use 20 people of BERC face
database as gallery and probe data respectively. Before using the depth-based
DP for 3D face recognition, we use the Euclidean distance between extracted
feature values of gallery data and probe data in order to select the similar face
candidates among gallery data. Fig. 4 shows an example of selected candidate
faces, when face number 19 is used as probe data. There are three face candidates
which are face number 11, 17 and 19 selected under the acceptable error score
30. The curvatures of these face candidates are directly connected to sequential
patterns of DP. Fig. 5 shows the simulation results by the depth-based DP when
gallery data 17, 19 and 20 are chosen. The matching errors of seven curvatures
per each probe data are computed as a total error. When we compare probe data
number 19 with gallery data number 19, the total matching error is 98.82. On
the other hand, in case of probe data number 17 ,the total matching error are
121.34. However, when we also compare the gallery data 19 with a probe data
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Table 2. Facial feature points and their relative features for probe and gallery data

Feature types Gallery data values(001) Probe data values(001) Probe data values(002)

CPE(z value) 83.639220 84.263680 87.731530

NBRP(z value) 77.616940 77.541620 81.993890

NBP(z value) 86.118020 86.911620 82.352200

NRIP(z value) 76.999370 76.224990 71.538910

NLIP(z value) 77.217860 79.061580 73.571020

ERIP(z value) 73.406790 72.759880 76.142100

ELIP(z value) 73.643800 75.527330 76.527230

L1 19.570000 19.621490 20.846400

L2 42.786420 42.303920 39.114720

L3 31.678770 31.573760 35.448090

Θ1 55.620597 54.895556 51.462474

Θ2 36.450379 36.274882 39.249164

Θ3 86.111687 86.937483 71.002492

Θ4 68.435927 70.513071 87.305494

R1 0.617764 0.621449 0.58808

R2 0.947590 0.958799 0.964348

Matching Error with Input data 19

�
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��

��

���

���

� � � � 	 � 
 � � �� �� �� �� �� �	 �� �
 �� �� ��

Database data

Error

Fig. 4. Selecting face candidate based on Euclidean distance

number 20 which is not the face candidates, the total error score is very higher
than the face candidates.

As we match the distance between feature points among face candidates, we
obtain similar score values, but the extracted seven curvatures include all the
feature points as mentioned in Chap. 3. In other words, curvature matching is
much robust than matching based on MSE, because the curvatures have much
higher dimensions than facial feature points. Therefore, we achieved 95% face
recognition rate for 20 people according to our proposed method.

Feature-Based SVM: In this section we describe the simulation results related
to face recognition algorithm by a feature-based SVM. We use 100 people of
BERC face database as gallery and probe data respectively. Eight feature points
and their relative features illustrated in Chap. 2 are fed into directly SVM. For
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1

2 3
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6

7

Fig. 5. Simulation result based on Dynamic Programming

Fig. 6. Face recognition result for the probe data number 58

testing our recognition system, when we put the probe data number 58 into
the system, the same data among gallery data has only a positive value and the
other classes have negatives value as shown in Fig. 6. We compare the simulation
results of the feature-based SVM with those of a simple correlation method as
described in Fig. 7. The cumulative matching score of the feature-based SVM
shows 96% at the first rank and 97% at the third rank.

It means that face recognition rates are 96% at the first rank and 97% at the
third rank respectively. However, the cumulative matching score of MSE shows
89% at the first rank and 90% at the third rank. Therefore, we achieved about
7% higher than the simple correlation method.

5 Conclusion and Future Work

In this paper, we proposed the 3D face recognition system based on two different
devices for probe and gallery data respectively. We utilize the 3D laser scanner
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Fig. 7. Face recognition rate based on SVM and MSE

for obtaining gallery data and the structured-light based 3D device for acquiring
probe data. According to the proposed feature extraction method, we extract
eight feature points that are geometrically invariant, and we obtain relative
features such as the distance and the ratio between points and the angle among
feature points. These relative features can distinguish the individuals better than
only using the facial feature points. In the recognition stage, we proposed two
different recognition algorithms, a depth-based DP and a feature-based SVM.
In the experimental results, we show that the resulting recognition rate is 95%
for 20 people by DP and 96% for 100 people respectively. When we compare the
results of the feature-based SVM with these of MSE, face recognition rate by the
feature-based SVM is 7% higher than that of the simple correlation method. For
further works, we are researching for the pose invariant face recognition system
and more robust 3D face recognition algorithms.
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Gabor Feature Based Classification
Using 2D Linear Discriminant Analysis

for Face Recognition

Ming Li, Baozong Yuan, and Xiaofang Tang

Institute of Information Science, Beijing Jiaotong University, Beijing, 100044 China
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Abstract. This paper introduces a novel 2D Gabor-Fisher Classifier for
face recognition. The 2D-GFC method applies the 2D Fisher Linear Dis-
criminant Analysis (2D-LDA) to the gaborfaces which is derived from
the Gabor wavelets representation of face images. In our method, Ga-
bor wavelets first derive desirable facial features characterized by spatial
frequency, spatial locality, and orientation selectivity to cope with the
variations due to illumination and facial expression changes. 2D-LDA is
then used to enhance the face recognition performance by maximizing
the Fisher’s linear projection criterion. To evaluate the performance of
2D-GFC, experiments were conducted on FERET database with several
other methods.

1 Introduction

Face recognition is an active research field and numerous algorithms are de-
veloped. The detailed introduction to this field can be found in paper [1][2][3].
Face recognition’s task is to compare an input image (probe) against a database
(gallery) then reports a match.

The Gabor wavelets, whose kernels are similar to the two-dimensional (2-D)
receptive field profiles of the mammalian cortical simple cells, exhibit desirable
characteristics of spatial locality and orientation selectivity [4]. It is also one of
the most successful approaches for face recognition [5–9]. Despite Gabor wavelet
is a very powerful method for feature extraction, there still exists a common
drawback in it as in most other methods. The Gabor feature is a very high-
dimensional data. For example, if the size of face images is , and five scales and
eight orientations Gabor filters are applied on these images, a dimension data
is used to represent a face image. Considering each dimension of Gabor repre-
sentation is combined by real part and imagery part, we need to use more than
1310720-D data to store and compute a face image. To overcome this problem,
several statistical methods for feature extraction are used, such as PCA [7], the
Enhanced Fisher linear discriminant Model (EFM) [8] and the Kernel Direct
Discriminant Analysis (KDDA) [9]. Yang et al.’s [10] work is very interesting:
they used Ada-boost algorithm to select the most disciminant Gabor features to
recognize human faces.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 929–936, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Traditional statistical feature extraction approaches such as principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA) are based on the
analysis of vectors. When applied these method to the Gabor wavelets represen-
tation of face images, the high dimensionality will become a disaster.

To resolve above problems, we first mosaic the gabor faces to a Gabor feature
matrix, then apply 2D-LDA [14] to the Gabor feature matrices, which calculates
the between-class scatter matrix and the within-class scatter matrix directly
based on the Gabor feature matrices. This strategy makes our classifier more
efficient and more robust in large lighting and facial expression variation cases.

The organization of this paper is as follows: In Section 2, the Gabor wavelets
representation of face images is introduced. Section 3 describes the 2D-LDA al-
gorithm. Experiments and analysis are conducted in Section 4. Some conclusions
are given in Section 5.

2 Gaborfaces

Gabor wavelets model quite well the receptive field profiles of cortical simple
cells [11]. The Gabor wavelet representation, therefore, captures salient visual
properties such as spatial localization, orientation selectivity, spatial frequency
characteristic. The Gabor wavelets (kernels, filters) can be defined as follows [5]
[8]:

ψu,v(z) =
‖ ku,v ‖2

σ2
e(−‖ku,v‖2‖z‖2/2σ2)

[
ejku,vz − e−σ2/2

]
(1)

where u and v define the orientation and scale of the Gabor kernels, z = (x, y),
‖ · ‖ denotes the norm operator, and the wave vector is defined as follows:

ku,v = kve
jφu (2)

where kv = kmax/f
v and phiu = uπ/8, φu ∈ [0, π). kmax is the maximum

frequency, and f is the spacing factor between kernels in the frequency domain.
In most cases [6][8][10], Gabor wavelets with five different scales and eight

orientations u = {0, 1, 2, 3, 4, 5, 6, 7} is used. We also choose other parameters
as: σ = 2π, kmax = π/2, and f =

√
2.

The Gabor wavelet representation of an image is the convolution of the image
with a family of Gabor kernels as defined by (1).

Fig. 1 (a) shows the Gabor wavelets at different scales and orientations. Fig.
1 (b) is a 128 × 128 face image, and (c) is its Gaborfaces.

In traditional methods, the Gabor feature is obtained by following steps:
transform each gaborface to a gabor feature vector, then concatenat all these
gabor feature vector to derive an augmented feature vector. Then, based on these
augmented gabor feature vector, a classifier can be obtained [8][9][10]. The Gabor
feature vector is a very high-dimension pattern. Different to traditional approach,
we mosaic the gaborfaces to a large Gabor feature matrix. Then, directly based
on this Gabor feature matrix, we apply the 2DLDA algorithm. Fig.2 shows is an
example of Gabor feature matrix.
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Fig. 1. Gabor wavelets and Gabor wavelets representation of a face image

Fig. 2. Gabor wavelets and Gabor wavelets representation of a face image

3 2D Gabor-Fisher Classifier

This paper presents a novel method which applies the 2D Fisher Discriminant
Analysis to the Gabor feature matrix A derived in Section 2. We can see that
the Gabor feature matrix A is a very high-dimensional data. If we classify the
face images in such high dimension directly, Curse of Dimensionality [12] is the
problem we must face to. So, dimension reduction on these raw Gabor feature
data is necessary.

3.1 Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) [13] is a very famous method for fea-
ture extraction. It tries to find the subspace that best discriminates the samples
coming from difference classes by maximizing the between-class scatter matrix
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Sb, while minimizing the within-class scatter matrix Sw in the projective sub-
space. Sb and Sw are defined as

Sw =
C∑

i=1

∑
xk∈Pi

(xk − x̄i) (xk − x̄i)
T (3)

Sb =
C∑

i=1

Ni (x̄i − x̄) (x̄i − x̄)T (4)

where x̄i is the mean vector for class Pi and Ni is the number of samples in class
Pi. The optimal classification matrix W satisfies

W = argmax

∣∣∣∣∣ WT SbW
WT SwW

∣∣∣∣∣ (5)

W can therefore be constructed by the eigenvectors of S−1
w Sb.

While this procedure can be realized easily, problems arise when dealing with
high-dimensional data, such as images. The main difficulty in this case lies in the
fact that the within-class scatter matrix is almost always singular. The second
difficulty is that the traditional LDA is based on the analysis of the very high-
dimensional vectors , which are transformed from the image data. This means
that doing LDA on such a high-dimensional vector is very inefficient [14].

3.2 2D Gabor Fisher Classifier

From above analysis, we can see that the LDA can only handle the vectors. So, we
must transform a image into vector before applying it. This strategy will bring
the Curse of Dimensionality problem, especially for Gabor feature vector. To
overcome this problem, we propose a novel approach, 2D Gabor-Fisher Classifier
(2D-GFC), which is directly based on the analysis of Gabor feature matrices to
find out an optimal projective subspace.

In literature [14], the idea of 2D Linear Discriminant Analysis (2D-LDA) is
proposed. Based on this work, we we use an n-dimensional column vector x to
project the given m× n random Gabor feature matrix A onto a m-dimensional
feature vector y:

y = Ax (6)

So, we have the between-class scatter matrix SB and within-class scatter
matrix SW as follow,

SB =
C∑

i=1

Ni

[
(Āi − Ā)x

] [
(Āi − Ā)x

]T
, (7)

SW =
C∑

i=1

∑
Ak∈Pi

[
(Ak − Āi)x

] [
(Ak − Āi)x

]T
, (8)
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The optimal projection xopt is chosen when the Fisher’s linear projection
criterion is maximized, i.e.,

xopt = arg max
x

xT S′
Bx

xT S′
Wx

, (9)

where,

S′
B =

C∑
i=1

Ni

(
Āi − Ā

)T (
Āi − Ā

)
, (10)

S′
W =

C∑
i=1

∑
Ak∈Pi

(
Ak − Āi

)T (
Ak − Āi

)
, (11)

So, equation (9) is equivalent to solve the generalized eigenvalue problem:

S′
Bxopt = λS′

W xopt (12)

In above equation, λ is the maximal eigenvalue of S′−1
W S′

B.

4 Experiments and Analysis

In this section, we analyze the performance of the proposed 2D-GFC method
using the FERET database. Comparative results are also given for other meth-
ods, such as PCA, LDA, Kernel PCA (KPCA), Generalized Discriminant Anal-
ysis (GDA), and Kernel Direct Discriminant Analysis (KDDA). The FERET
database is a standard testbed for face recognition technologies [15]. The data set
used in our experments consists of 600 FERET frontal face images correspond-
ing to 200 subjects, so that each subject has three images with size 256 × 384
and gray-scale 256 levels. The face images are acquired under varying illumina-
tion and facial expressions. Data preparation is needed because the performance
of face recognition is maybe affected by the factors unrelated to face such as
hairstyles. The following procedures are applied to normalize the face images
prior to further experiments: first, the center of the eye in each image is marked
manually; second, each image is rotated and scaled to align the center of the
eyes; finally, each face image is cropped to the size 128 × 128 to exact facial
region, which is normalized to zero mean and unit variance. Fig. 2 shows some
example FERET images used in our experiments that are already cropped to
the size of 128 × 128 to extract the face region. The first two rows are sample
images from the FERET database, while the third row shows the examples of
our test images.

To prove the advantage of the 2D-GFC method, we compare our method with
some other well-known methods: Gabor+PCA, Gabor+LDA, Gabor+KPCA,
Gabor+GDA, and Gabor+KDDA [9]. Table 1 shows the experimental results of
these six methods. From Table 1, we can see that the 2D-GFC method achieves
the best recognition accuracy, 95.5%. We can also see that kernel methods
achieve better performance than the linear ones in the 1D situation; and the
methods with applies the discriminant analysis are more powerful.
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Fig. 3. Gabor wavelets and Gabor wavelets representation of a face image

Table 1. Comparative Recognition performance

Classifier Recognition Rate(%)

Gabor+PCA 57
Gabor+LDA 76.5

Gabor+KPCA 67
Gabor+GDA 92

Gabor+KDDA 95
2D-GFC 95.5

And from [14] we know that the 2D-LDA is more efficient than 1D ones,
and the nonlinear methods which applies kernel function are much more time-
consuming than the linear ones. Table 2 shows the comparative computation-cost
of these six methods. From Table 2, we can see that 2D-GFC is the most efficient
method. This is because that 2D-GFC is only need to handle a matrix rather
than a matrix in PCA and LDA.

So, we can conclude that the 2D-GFC is an efficient and high performance
method.

Table 2. Comparative Computation Cost

Classifier Time cost (s)

Gabor+PCA 47.750
Gabor+LDA 54.368

Gabor+KPCA 76.406
Gabor+GDA 308.141

Gabor+KDDA 243.359
2D-GFC 5.285
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5 Conclusions

This paper introduces a novel 2D Gabor-Fisher Classifier for face recognition.
The 2D-GFC method applies the 2D Fisher Linear Discriminant Analysis (2D-
LDA) to the gaborfaces which is derived from the Gabor wavelets representa-
tion of face images. Gabor wavelets first derive desirable facial features char-
acterized by spatial frequency, spatial locality, and orientation selectivity to
cope with the variations due to illumination and facial expression changes. 2D-
LDA is then used to enhance the face recognition performance by maximizing
the Fisher’s linear projection criterion. The feasibility of the new 2D-GFC on
face recognition has been successfully demonstrated using a data set from the
FERET database. Our 2D-GFC method has achieved the best performance on
the FERET database: 95.5%. Our experiments also prove that the 2D-GFC is
very efficient.
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Analysis of Response Performance
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Abstract. To make person authentication systems be more useful and
practical, we have developed an identification algorithm, and also showed
that the authentication accuracy depends on response performance. Cur-
rent identification algorithm employs a comparison computation function
that is optimized for one-to-one comparison. By optimizing a comparison
computation function, however, it might be possible to improve response
performance. In this paper, we describe design guidelines for a compari-
son computation function for improving the response performance of the
identification. To show the guidelines, we clarify the relation between
the characteristics of a matching score distribution and response perfor-
mance using a matching score generation model, and also demonstrate
the effectiveness of the design guidelines with a simulation using an ex-
ample of another comparison computation function.

1 Introduction

To make biometrics authentication systems be more useful, we have developed a
general algorithm for person identification that controls the search order only on
the basis of the comparison of the matching score of sets of biometrics data[1].
Its response performance is better than that of conventional methods. There are
some approaches to obtain quick response in an identificatoin. One is realized
by clustering fingerprint data[2–6]. Those approaches have problems that clus-
tering method should be defined for each kind of biometrics, and mis-clustering
causes slow response. Another is by decrease the match candidate data by some
evaluation function[7, 8]. Its problem is that evaluation function depends on the
quality, distortion, and translation of biometrics images.

The response performance of identification techniques affects more than user
convenience, however; we have earlier shown that it also greatly affects authen-
tication accuracy[9], so it promises a faster method of searching for an individ-
ual’s enrollment data. The comparison computation function used in current
identification algorithm is optimized for authentication accuracy in one-to-one
comparison, and thus is not necessarily optimum for identification response per-
formance. Here, we describe comparison computation function design guidelines
for improving the response performance of the identification operation.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 945–955, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



946 Takuji Maeda et al.

2 Identification Algorithm

2.1 Overview of the Algorithm

At first it is described that the principle of our identification algorithm. To reduce
the response time of the identification operation, we employ a matching score
matrix. It is constructed at the time of enrollment. The matrix consists of the
round-robin selection other-person matching scores of the enrollment data.

An unknown user data is input at the time of identification. The initial
search involves finding suitable data from the enrollment data (the data at the
top, for example) to serve as a matching candidate, and then doing one-to-one
comparison on the data. If the matching score thus obtained is equal to or greater
than the predetermined threshold value, the candidate data is taken to be the
enrollment data for the unknown user and the identification processing is ended.
If, on the other hand, the matching score does not meet the threshold, it is
necessary to select the next match candidate. The procedure for doing that is
described below.

In the mth round of the search process, the yu(m) defined by Eq.(1) and
the xi(m) defined by Eq.(2) are used to obtain the zi(m) defined by Eq.(3) for
all i except those for which comparison has already been done. And the next
candidate will be determined as imax (r(m+ 1) = imax) which maximizes zi(m)
for i. Here, the term r(m) is the mth match candidate, yu,r(m) is a matching
score for the input unknown user u and the mth match candidate r(m), and
xi,r(m) is (i, r(m)) component of the matching score matrix.

yu(m) = {yu,r(1), yu,r(2), . . . , yu,r(m)} (1)

xi(m) = {xi,r(1), xi,r(2), . . . , xi,r(m)} (2)

zi(m) =
2xi(m) · yu(m)

xi(m) · xi(m) + yu(m) · yu(m)
(3)

By repeating the above procedure until yu,r(m) satisfies the threshold, it
is possible to determine the enrollment data which corresponds to the input
unknown user.

2.2 Simulation Example

The result of an identification simulation is shown in Fig.1 as the distribution of
the number of search steps. In this simulation, 2000 fingerprint data is enrolled.
The horizontal axis is the number of search steps. The vertical axis on the left
is the relative frequency presented as a bar graph and the vertical axis on the
right is the cumulative frequency depicted by a solid line. The horizontal and
right vertical axes have a log scale. Here, the number of search steps refers to
how many search rounds are required until the enrollment data that corresponds
to the unknown input data appears as a match candidate in the identification
process. We can evaluate response performance by this distribution.



Analysis of Response Performance Characteristics for Identification 947

Fig. 1. Search steps distribution for fingerprint

As we see in Fig.1, in most cases the number of search steps is around 10
to 20. This result means that response is very fast. And also, the cumulative
distribution saturates to 100% at around 200 steps. If we make use of this char-
acteristic to set a search cut-off at 200 steps of search, it is possible to determine
that the user who is not in the database is not enrolled by the 200-th step.

3 Response Performance
with a Matching Score Generation Model

In the proposed identification algorithm, the enrollment data of the person in-
putting the data becomes a match candidate at an early round in the search
process. This characteristic contributes to accuracy in an identification[9]. That
is to say, improvement in response performance is related to higher authen-
tication accuracy, so even further improvement in response performance is a
necessity. If the relation between the matching score generation characteristics
and the response performance were clarified, it would be possible to design a
comparison computation function for improving the response performance. We
therefore assume a hypothetical biometrics and analyze the relation between the
matching score generation characteristics and the response performance.

3.1 A Matching Score Generation Model

As was explained in previous section, our proposed search algorithm decides the
next match candidate according to the matching score with other-person data.
Thus, if the matching score of two sets of data can be defined, it could in principle
be applied to any type of biometrics. Furthermore, we believe generalizing this
idea would make it applicable to a hypothesis model for generating matching
scores.

We believe that identification response performance is affected by the occur-
rence characteristics of other-person matching scores. To show what special char-
acteristics are associated with the occurrence of other-person matching scores in
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actual biometrics, the frequency distributions of other-person matching scores
are presented in Fig.2. In that figure, the bar graph represents the frequency
distribution of the other-person matching scores and the broken line represents
a normal distribution. It was found that the other-person matching score dis-
tribution fits the normal distribution by chi-square test. We therefore chose a
normal distribution model to serve as an other-person matching score generation
model.

Fig. 2. Example of other-person score distribution for fingerprint

The other-person matching score generation characteristics are considered to
vary from user to user. Therefore, for other-person pairs user i and user j, the
characteristic changes with the combination (i, j) and we assume a model for
generating other-person matching scores that follow a normal distribution with
mean μij and standard deviation σij .

3.2 Parameter Model of the Matching Score Generation Model

Because the purpose of the matching score generation model as a hypothesis
biometrics that we are concerned with here is to understand the relation between
the model parameters and response performance, we simply assume that μij and
σij can be approximated by normal distributions.

Here shows an example of a parameter model generated by normal distri-
butions in Fig.3. Fig.3(a) shows the relation of μij and σij of the other-person
matching score, and Fig.3(b) and Fig.3(c) respectively show the frequency dis-
tributions of μij and σij . This example is used as a reference parameter of
simulation experiments in the next section.

Using this matching score generation model, we ran an identification simu-
lation. The distribution of the number of search steps is shown in Fig.4. Even
though this is a hypothesis biometrics that employs a very simplified match-
ing score generation model using normal distributions, the obtained distribution
(Fig.4) has a peak at a low number of searches in the same way as for Fig.1, and
this is characteristic of the proposed algorithm. What this means is that fast
response can be achieved even for a hypothesis biometrics.
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(a) Relation of μij and σij

μ

(b) μij frequency distribution

σ

(c) σij frequency distribution

Fig. 3. μij and σij for the matching score generation model

Fig. 4. Search steps distribution for the matching score generation model

Note that there are, for example, differences in the values obtained with the
actual data (Fig.5) and the model (Fig.3). It is because that the matching score
generation model employs a simple normal distribution, but the actual data is
calculated in more complicated procedure.

The parameter model illustrated above can be determined however we like,
but these parameters were obtained by referring the actual fingerprint data in
Fig.5. It is our future work to make a model that completely reproduces the
actual data.
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(a) Relation of μij and σij

μ

(b) μij frequency distribution

σ

(c) σij frequency distribution

Fig. 5. μij and σij for fingerprint

For reference, the procedure to obtain the reference parameters described
above is shown here.

1. In Fig.5(a), there is a tendency for the distribution to skew to the right, and
we obtain the main component direction of this two-dimensional distribution
and the angle (θ) with respect to the μ axis.

2. Rotate p(i, j) = (μij , σij) by −θ according to Eq.(4) to obtain p̃(i, j) =
(μ̃ij , σ̃ij). In Here, T (−θ) is a rotated matrix that rotates p(i, j) by −θ.

p̃t(i, j) = T (−θ)pt(i, j) (4)

3. Obtain the mean (the mean of μ̃ij) and the standard deviation (the stan-
dard deviation of μ̃ij) of the orthogonal projection of p̃(i, j) on the μ axis.
Similarly, obtain the mean (the mean of σ̃ij) and the standard deviation (the
standard deviation of σ̃ij) of the orthogonal projection of p̃(i, j) on the σ
axis.

4. For each other-person data pair, (i, j), obtain μ̃ij from the mean of μ̃ and
the standard deviation of μ̃ and obtain σ̃ij from the mean of σ̃ and the
standard deviation of σ̃ and obtain q̃(i, j) that occurs in their respective
normal distributions.

5. Rotate the obtained q̃(i, j) by T (θ) and then obtain q(i, j) in Eq.(5).

qt(i, j) = T (θ)q̃t(i, j) (5)

6. Take q(i, j) the obtained by the above steps as the μij and σij of the model
for generating the matching scores.
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3.3 Effect of Matching Score Characteristics
on Response Performance

To investigate what effects changes in the characteristics of other-person match-
ing score has on response performance, we ran the identification simulation for
various values of the μij , σij occurrence parameters of the matching score gen-
eration model described in previous section. Specifically, taking the matching
score generation parameters used in section 3.2 as reference values, the mean of
μij and the standard deviation of μij , and the mean of σij and the standard de-
viation of σij were varied according to Table 1. When one parameter was varied,
the other was fixed at the reference value.

Table 1. Varying of the model parameters

Parameters Variation Range Reference Value

μij mean 5 to 15 10.87

μij standard deviation 0 to 10 4.85

σij mean 0 to 10 2.89

σij standard deviation 0 to 5 1.03

The results for when the μij mean, μij standard deviation, σij mean, and
σij standard deviation are varied are presented in Fig.6. In these figures, the
mean number of search steps is used as an index of response performance. From
Fig.6(a) we can see that the μij mean does not greatly affect the response perfor-
mance. The μij mean is an element for shifting the entire distribution in parallel,
and can be considered to have no effect on response performance.

In Fig.6(b), we can see that the response performance is getting worse as
the μij standard deviation becomes small. This is believed to be a result of the
other-person matching score taking same value for any pair of data sets, thus
not contributing to the classification of other-person. Conversely, the larger the
μij standard deviation, the better the response performance. It is because that
the individuality emerges according to various values of μij . Therefore, if the
other-person matching score takes on diverse values reflecting that individuality,
then the classification as other-person can be arrived at easily, meaning that the
person’s data will quickly become a match candidate.

In addition, we believe that smaller σij mean values are associated with bet-
ter response performance (Fig.6(c)) because the other-person matching score
becomes stable as the result of the same values always appearing for certain
other-person combinations. Conversely, larger σij mean value bring lower re-
sponse performance. This means that, if the matching score becomes disperse
and unstable, it is difficult for the person’s data to become a match candidate.

Smaller values of the σij standard deviation (Fig.6(d)) are associated with
better response performance. It is believed to have somewhat better response
performance if few cases include large variance.
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μij mean

(a) μij mean

μij standard deviation

(b) μij standard deviation

σij mean

(c) σij mean

σij standard deviation

(d) σij standard deviation

Fig. 6. Relation of parameter and response performance for the matching score gener-
ation model

Thus, these identification simulations using a matching score generation
model have clarified the following points. The parameters that have large ef-
fects on the response performance are the μij standard deviation and the σij

mean. When the variance in the mean value of the other-person matching score
distribution is large and there are various values for each user, response perfor-
mance is better. Also, when the standard deviation of the other-person matching
score distribution is small, and a stable other-person matching score for each
other-person is generated, response performance is better.

3.4 A Simulation Result Using an Example
of Another Comparison Computation Function

Here, we present the simulation results for another comparison computation
function that has different other-person matching score distribution character-
istics. This is used to verify the relationship of the comparison computation
function and response performance described in previous section.

According to the guidelines in previous section, we introduce an example of
another comparison computation function. Here, we define yu,c as the maximum
value among the matching scores for the input data u and one set of enrollment
data of the current match candidate c: yu,c1 , yu,c2 , yu,c3 , . . . , yu,cl

. It is often used
in biometric authentication systems. If we will use Eq.(6) as another compari-
son computation function, response performance can be better because max()
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function is expected to make μij standard deviation be larger and σij mean be
smaller.

yu,c = max(yu,c1 , yu,c2 , yu,c3 , . . . , yu,cl
) (6)

For when Eq.(6) is used as the comparison computation function, the relation
of other-person matching score μij and σij , and the frequency distributions of
μij and σij are respectively shown in Fig.7. The distribution of the number of
search steps for when Eq.(6) is used as the comparison computation function is
shown in Fig.8.

(a) Relation of μij and σij

μ

(b) μij frequency distribution

σ

(c) σij frequency distribution

Fig. 7. μij and σij for fingerprint with new comparison computation function

Fig. 8. Search steps distribution for fingerprint with new comparison function
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Table 2. Model parameters and response performance

Parameters Fig.1 Fig.8

μij mean 10.87 14.90

μij standard deviation 4.85 5.19

σij mean 2.89 2.46

σij standard deviation 1.03 1.02

Mean search steps 83.70 40.96

The contents of Fig.1 and Fig.8 are compared in Table 2. We see in the
table that the mean number of search steps is smaller in Fig.8, where the new
comparison computation function is used, indicating good response performance.
This result is explained by the fact that μij standard deviation and σij mean
were changed in the direction of better response performance as we expected in
the new comparison computation function.

In this section, we introduced an example of another comparison computation
function, however, it is necessary to revise the definition of the matching score
for more response performance improvement.

4 Conclusion

We clarified the relation between the characteristics of a matching score distri-
bution and response performance using a matching score generation model, and
described design guidelines for a comparison computation function to improve
response performance in the identification operation. And also, simulations us-
ing an example of another comparison computation function demonstrated the
effectiveness of these guidelines.

The matching scores calclated in the identification operation up to now have
employed a comparison function that is optimized for one-to-one comparison.
However, if the comparison computation function for the identification is de-
signed according to this paper, it should be possible to achieve both high speed
and highly accurate individual authentication.
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A Probabilistic Approach
to Semantic Face Retrieval System
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Abstract. A probabilistic system that retrieves face images based on
verbal descriptions given by users is proposed. This interactive system
prompts the user at each stage of query to provide a description about a
facial feature that will help it to retrieve the required face image. It is a
soft biometric system that groups people by the description of their faces.
The method proposed automates the process of extracting general verbal
descriptions of faces like ‘long nosed’ or ‘blonde haired’ and performs
queries on them. The proposed method uses Bayesian learning for the
query process and hence is more immune to errors in both the extraction
of semantic descriptions and user given information. It was found that
the required face image appeared 77.6% of the time within the top 5 and
90.4% of the time within the top 10 retrieved face images.

1 Introduction

Face Recognition has beeen proven to be very popular in several biometric and
law enforcement applications. There have been many algorithms proposed for
face detection and recognition [11]. However all these system require require a
pictorial description of the person to be searched or verified. However, in law
enforcement applications the photograph of the suspect is not usually present
and the only available evidence is in the form of verbal description by the witness.
Performing face retrieval against verbal queries is a challenging problem. Existing
face retieval systems used in law enforcement are based on synthesizing a face
image and performing a traditional face recognition process. We propose a system
that automatically retrieves the semantic description of each face and stores it in
a meta database. For a user query which is semantic, we retrieve all images that
match the description from the meta database. Thus, our system is very useful
in retrieving images of suspects from a database based on queries constructed
from the verbal descriptions given by witnesses. The system can also be used
to speed up the process of identification of a face in large databases by first
extracting the semantic features of the given face and then matching with the
faces in the database in the order in which images are retrieved for the query.

A snapshot of the proposed system is shown in Figure 1. The user can select a
particular feature on which he wants to query and choose one of the descriptions
of the feature from a list. For example, the user can select the feature ‘mustache’
and provide the description that the person has a mustache. For relative queries

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 977–986, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Snapshot of the System

like ‘lip thickness’, the user can view the top few retrieved images and with
respect to these images can select a description like ‘normal’, ‘thick’ or ‘thin’ for
the lip of the required person. The user can base his query on the top few images
retrieved at each step. Further the system also prompts the user to provide a
description about the feature that is most discriminant amongst images that are
more likely to be the required face image.

2 Related Work

Law enforcement agencies have been using Identikits [1, 12] for composing a
rough sketch of the face. Identikit consists of a set of transparencies of various
facial features that can be combined to build up a picture of the person sought.
Forensic artists transform the verbal description of the suspect given by the
witness into rough sketch of the suspects by putting together these transparencies
to fit the description given by user. Once the rough sketch is made, large image
databases are searched manually to find faces that resemble the sketch. The
process is iterative and laborious.

Many systems such as Evofit [2] have tried to automate the traditional iden-
tikit concept by evolving the required face based on user feedback from faces
present in the database. The Phantomas [3] is an automated facial database
search system using Elastic Graph Matching to recognize faces. The system
takes as input the composed face images and retrieves images from the database
in the order of their similarity to the composed picture. However in these systems
there is a need for composing the required face realistically before retrieval.

The Computer Aided Facial Image Identification, Retrieval and Inference
System (CAFIIRIS) [4] for criminal identification stores and manages facial im-
ages and criminal records and provide necessary image and text processing and
editing tools. The system uses a combination of feature-based PCA coefficients,
facial landmarks, and text descriptions to construct index keys for an image.
The advantage of this system is that it is interactive since it uses relevance feed-
back from user to retrieve relevant images. Photobook [5] is a content-based
retrieval system that provides methods for searching several types of related im-
age databases including faces. One potential problem in this system is that user
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can keep on cycling through the same set of images if it gets stuck in local max-
ima. Also, since the eigenfaces store the most common components, it would be
difficult if the desired face is quite different from those present in the database

In both these systems and many other recent systems that use PCA, semantic
description of the face is captured indirectly by eigenfaces, as PCA capture only
the most significant features. However the problem of synthetic face composition
and the fact that user description in many cases can be limited to a verbal
description limits these systems. Often, simple verbal descriptions of a person
like “thick lipped” or “blonde haired” help in narrowing down the potential
faces efficiently. Further, during the enrollment or data population stage we are
generally not constrained by time but during query stage, we need the results
immediately. The proposed system extracts simple verbal descriptions of the
face saves them in a meta database and thus speeds up query results by a large
magnitude.

3 System Overview

The proposed system can be broken down into Enrollment sub-system and Query
sub-system. Figure 2 shows the model of the system. The Enrollment sub-system
accepts as input mugshot face images with frontal view. It outputs semantic
descriptions of the face like whether the person was wearing spectacles, whether
the person had a long nose etc. The Query sub-system accepts the semantic
descriptions of a person’s face given by the user and retrieves images in the
order of how well they fit the given description. This sub-system also prompts
the user at each stage about which feature that would result in an optimal query.

Fig. 2. System Overview

The enrollment sub-system first performs face detection based on skin color
based image segmentation. Further, to extract the semantic descriptions of the
face, we first need to localize facial features and parameterize them. Since the
enrollment process is offline, we can afford to parameterize facial features by
exact contours but for effectively describing features, such precision is not neces-
sary. Hence to parameterize these features, we fit the lowest order polygon that
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can effectively describe them. For example, fitting a triangle for the nose can
describe its length width and size. When a new person is added to the database,
the sub-system automatically extracts the semantic description of the face from
the image and stores this in a database of semantic descriptions. During the
facial features localization, the system first performs lip and eye detection and
uses their location to reduce the space in which we search for the remaining
features.

The Query sub-system accepts as input from the user the semantic descrip-
tion of the face of the person and retrieves the images in the order of how well
they fit the description. For the ordering, the probability that the face is the
one being queried about is found using bayesian approach for each image. This
probability is used to sort the images. At each stage, the sub-system also finds
which feature has the most discriminating power in the database and prompts
the user to provide information about that feature.

4 Enrollment Sub-system

It is the responsibility of the enrollment sub-system which works offline to create
the database of semantic descriptions of the faces.

4.1 Face Detection

Since all the images considered are frontal images of faces with non-intensive
background and little illumination variance, skin color based face detection works
very well. Each pixel in the image can be viewed as a vector in the 3D RGB
color space. Skin color based region segmentation is done by thresholding the
unit color vectors [8] . Since the intensity holds no color information, unit vectors
are used for the color segmentation.

4.2 Lip Localization and Parameterization

From [9] we see that efficient lip detection can be done by segmenting image
based on lip color on the face image region. Since lip color is distinct in the face
region, we can effectively perform lip detection based on lip color. However the
problem with this method is that the lip corners are not captured as they have
very low intensity. We use histogram based object segmentation [10] method to
overcome this problem. Since we do face detection based on skin color, once we
locate the face we subtract the skin color regions in the image. Thus we are left
with the image of the face with only facial features like lips, eyes, eyebrows etc.
Now by lip color detection, we find the approximate location of the lips. Next
we find the histogram of this region of the image to perform segmentation. To
segment the image, the histogram is first smoothed. Next the points at which
the slope of histogram changes sign is termed as valleys and these points are
used as threshold to segment the image. Once the quantization of the lip region
of the image is performed, based on the quantized image the lip width is altered
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Fig. 3. Lip Localization

to fit the lip well. Figure 3, shows the initial color based detection results the
histogram based segmented image and final detection result.

4.3 Eye Localization and Parameterization

Once lips are located we can reduce the area in which we are to search for
eyes. We use the detail that the eyes are above the lips and hence we search for
eyes only in a rectangular strip above the lips. We use circle detection based on
hough transform as proposed in [7] for eye localization. However, to use hough
transform for circle detection, we need to know the radius of the circle to be
searched. In the database used, the radius of pupil of all the eyes varied from 9
to 13 pixels and the mean radius was 11 pixels. Using the set of 5 radii for each
point in the image we get a set of 5 accumulator values. Usually to find out the
location of the eyes, the point that has maximum sum of accumulator values for
all the radii is chosen as the center for the pupil. However we know that in the
database most pupils have radius of 11. Hence to improve the accuracy of eye
detection, we use a probabilistic model to locate the most probable eye center.
We convert the accumulator scores to probability of the point being the center
of circle of radius rj by dividing it by 2πrj . Since the accumulator can have a
maximum value of 2πri the circumference representing a complete circle. Now
we need to find out for each point pointi, the marginal probability of it being
the center of pupil. This is calculated as

P (pointi) =
5∑

j=1

(P (pointi|rj)P (rj))

where P (pointi|rj) = Accumulator(pointi,rj)
2πrj

and r1..5 = [9..13]. The priors, that is
the probability of a particular eye having a particular radius was set by trial and
error as P (r1..r5) = [0.1, 0.2, 0.4, 0.2, 0.1] . Finally the point in the image with
maximum marginal probability P (pointi) was set as the center for the pupil.
The process is done for both left and right eyes separately to locate the two eye
centers.

4.4 Localization and Parameterization of Other Features

Once the eye centers and lip center triangle is formed we can use face proportions
to locate all other features based on knowledge about the face that we have. For
instance, from anthropological studies we know that distance between midpoint
between the eyes and nose is about two-third of the distance between eyes and
lips. Thus we get the approximate line of nose-ending. Then we use color based
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edge detection to trace out the curves of the nostrils and using these we fit a
triangle for the nose. The color-based edge detection is performed by assuming
that each pixel is a vector in 3D RGB space. Thus by thresholding angle between
the color vectors of two pixels, using a sobel mask we detect edges [13]. By using
color based edge detection, we can select threshold to detect even soft edges like
the ones formed by nose. As nose edges are formed by transition of pixels from
skin color to skin color, we can only detect edges that transition from skin color
to skin color. The color edge map can also be used along with knowledge about
the face to detect facial hair regions- eyebrows, beard, moustache etc. On the
approximate region of the feature we are looking for we can apply the color based
edge detection and check if the region is present. The list of semantic features
extracted and their type is summarized in Table 1.

Table 1. List of Features

Feature Type
Spectacles, Beard ,

Mustache, Long Hair and Balding Discrete (yes/no)
Hair Color Discrete (Black/Brown/Blonde)

Nose Width, Length and Size, Lip Width and Thickness,
Face Length, Darkness of Skin and Eyebrow Thickness Continuous

5 Query Sub-system

The query sub-system performs the retrieval based on semantic description given
by the user. It also prompts the user about which feature to query next.

5.1 Retrieving Images

Based on the description given by the user, the system at each stage orders the
images according to their probability of being the face we are looking for. The
system deliberately does not prune the images as pruning the images based on
wrong information given by user would mean elimination of the required image
from the list we are searching in. Initially, before user provides any information,
we set the probability of a face being the required face P (face)to be 1/n where n
is the number of faces in the database. Now as the user provides the description
dj about each feature fi, we use this to update the probability using bayesian
learning as

P (facek|fi = dj) =
P (fi = dj |facek)P (facek)∑
P (fi = dj |facek)P (facek)

After each query the prior probabilities for the faces are made equal to the
posteriors found. The probability P (fi = dj |face) of the feature fi matching
the description dj for each face is set for binary attributes like whether the
person has mustache or not by 0.9 if the face has feature fi matching the given
description dj and 0.1 otherwise. The probabilities aren’t set to 0 and 1 to make



A Probabilistic Approach to Semantic Face Retrieval System 983

the system robust to user or enrollment system errors. For continuous valued
features, the probability is set by normalizing the continuous value between 0
and 1.

5.2 Prompting the User

The system at each step prompts the user to enter a description about the
feature that will help to effectively retrieve the required image. To do this the
system should prompt the user to enter information about the feature having
most entropy. More the entropy, more discriminative is the feature. For instance
if half the people in the database wear spectacles and other half don’t, it would
be a better feature to query about than a feature like fair skinned which most
people in the database may be.

However there are two problems in doing this. Firstly, for finding the entropy
we need to discretize the continuous values of features. However descretizing the
values, we may loose relative information. For instance, it may happen that when
we initially descritized nose length, the required person may have had a medium
nose. But after a couple of queries it may happen that the required person’s
face has a longer nose among the more probable faces. Thus, by descritizing we
cannot capture this information. The second problem is that we can’t just find
entropy of each attribute assuming that all descriptions of the feature are equally
probable. The probability of a feature having a particular description is governed
by the probability of faces having that description for the given feature.

To overcome the first problem, we descritize the continuous features into low,
medium and high using appropriate thresholds and save them separately in a
table while also keeping the continuous values in a table for calculating proba-
bilities. Further, instead of assuming equal probabilities for all descriptions of a
feature during calculation of entropy, we use the probabilities of the attributes
given the current probabilities of faces. Given that each face k has probability
P (facek) of being the required one, the probability of some feature fi having
description dj is given by sum of probabilities of all faces which have fi = dj .
For instance, the probability of nose being long is the sum of probabilities of
faces with long nose. Thus we calculate entropy Hsi for the ith attribute as

Hsi = −
m∑

j=1

P (fi = dj |P (face))log2(P (fi = dj |P (face)))

where m is the number of total values the attribute can take and

P (fi = dj |P (face)) =

∑
k:fi,k=dj

P (facek)∑n
p=1 P (facep)

where fi,k represents feature i of face k.

6 Performance Analysis

The database used for testing the system [6] had 55 frontal images of Females
and 70 frontal images of males all in a white background. For testing the system
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users were shown images of people in the database taken on a different day with
different clothes.

6.1 Example

An Example query is shown in Figure 4 where the user is querying about the
person marked by the rectangular box. Each row in the Figure 4 shows the top
five images after each query. Initially as all images are equally possible, the first
five are just the first five images in the database. The required person was at the
31st place. Now when the information that the person was wearing spectacles
was provided we see that images of people wearing spectacles appear in the top
5. The required person was at the 13th position. When the information that the
person had a mustache was provided he appears in the third position among
the top five as seen in the third row of Figure 4. Finally when the information
that the person had a large nose was provided we see that the person moves to
second place among top five Figure 5 shows the probabilities of faces in sorted
order for the above example query.

Fig. 4. Example Query

6.2 Evaluation of Enrollment Sub-system

The Table 2 summarizes the results of the individual feature extraction of the
enrollment sub-system. The performance on the continuous valued features like
nose width can be evaluated by how well the polygons fit the features and how
easily the user can locate the required person.
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Fig. 5. Plot of Probabilities

Table 2. Performance of Query Sub-system on Discrete Valued Attributes

Feature Number of False Accepts Number of False Rejects
Spectacles 1 2
Mustache 2 4

Beard 4 0
Long Hair 2 8
Balding 1 0

6.3 Evaluation of Query Sub-system

Experiments were conducted to test the usability and query capability of the
system. 25 users were each shown pictures of 5 people in the database taken
on different days and wearing different clothes from the ones in the database.
Then the users were asked to input the verbal descriptions of the 5 faces to the
system. Table 3 summarizes the average number of queries required to get the
person we are looking for within top five, ten and fifteen images respectively for
the 125 test cases.

Table 3. Average Queries Needed for Retrieval

- Top 5 Top 10 Top 15
Average No. of Queries 6.64 4.59 2.72

7 Conclusion

We have presented a probabilistic face retrieval system based on verbal query
which is interactive in nature. From the results shown above we can see that
the system performs the extraction of semantic features from images effectively.
The results of query show the effectiveness of the system. The system will find
application in law enforcement for picking out the image of suspect from a huge
database based on verbal description given by the witness.

The system can be further improved to handle pose variations in the images.
The system can also be extended to do the retrieval from not just still images
but also video clips. Retrieval from video will make the system very useful in
surveillance applications.
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Abstract. In this paper, we propose a method of authenticating cor-
rupted photo images based on noise parameter estimation and implement
an authentication system using TMS320C6711 DSP chip. The proposed
method first generates corrupted images and the noise parameters in the
training phase. With a corrupted image and an original image, the noise
parameters of the corrupted photo image can be estimated in the testing
phase. Finally, we can make a synthesized photo image from the origi-
nal photo image using the estimated noise parameters. We made some
experiments on the prototype of the stand-alone system to verify the
performance of the proposed method and to apply for real-life applica-
tions. The experimental results on this system show that the proposed
method can estimate the noise parameters accurately and improve the
performance of photo image authentication.

1 Introduction

Up to now, the photo image authentication market is expanding, and many
fields, such as ID card authentication systems and biometric passport systems,
are starting to use photo image authentication techniques for security reasons.
Photo image authentication refers to the verification of a scanned facial image
of an identification card, passport or smart card based on its comparison with
an original facial image contained in a database or stored on a chip(Fig. 1).
However, the scanned photograph used to be corrupted by real problems, such
as scratch, blur and discoloration(Fig. 2). In fact, handling corrupted photo im-
ages is one of the most difficult and commonly occurring problems in image
processing applications. Additionally, most of the current approaches to face au-
thentication require at least two training images per person, in order to obtain
good performance. Unfortunately, in real-world tasks, such a requirement cannot
always be satisfied. From a different standpoint, we have witnessed the explosion
in interest and progress in automatic face recognition and authentication tech-
nology during the past few years. Many systems, implemented on workstation
or PC, are already deployed expensively as a component of an intelligent build-
ing system and a security system for gate control. However, hardware cost and
� To whom all correspondence should be addressed
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Fig. 1. Example of photo image authentication system

Fig. 2. Example of corrupted face images scanned from identification cards

volume often limit the application using facial technologies such as interactive
toys and mobile devices, etc. Therefore, it is needed that the systems become
smaller and contain faster algorithms. In this paper, in order to solve the above
problems, namely the corruption of photo images, the requirement of multiple
training images per person, and the compactness of stand-alone system, we pro-
pose an efficient photo image authentication method based on noise parameter
estimation and also design and implement our method on stand-alone system
using DSP chip for real applications. The utilization of this method based on
noise parameter estimation is subject to two preconditions. Firstly, that the size
of the original and scanned photo images are the same and that they are nor-
malized in terms of scale, rotation and translation. Secondly, that the corruption
of the images is less 30% of the whole image area.

2 Related Work

Research into face authentication has been carried out for a long time. In partic-
ular, there are several approaches which can be taken to solve the noise problem
and to eliminate the requirement of multiple training images per person. Herein,
we introduce two popular approaches and a series of approaches for hardware
implementation.
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2.1 Corrupted Image Analysis

Sanderson et al. [2] proposed a method of extracting robust features in various
image conditions. To accomplish this, they proposed a new feature set, utilizing
polynomial coefficients derived from 2D Discrete Cosine Transform(DCT) coef-
ficients obtained from horizontally and vertically neighboring blocks. The pro-
posed feature set is superior (in terms of its robustness to illumination changes
and discrimination ability) to the features extracted using previous methods.
This method is based on robust feature extraction against Gaussian white noise
and Gaussian illumination changes, however, it does not consider the question of
which features are required for the purpose of authentication in images corrupted
by scratch, blur and discoloration.

2.2 Reconstruction of Partially Corrupted Image

Turk and Pentland [4] proposed a method of reconstructing noisy or missing
parts of a partially corrupted face using eigenfaces based on Principal Com-
ponent Analysis(PCA). However, their method showed good results only when
applied to an unknown face of a person for whom multiple images are available
in the training set, or a face that was itself part of the initial training set.

Takahashi et al. [3] also proposed a method of removing noise using KPCA(Ke
rnel Principal Component Analysis). This method is able to remove outliers in
data vectors and replace them with the values estimated via KPCA [1]. By re-
peating this process several times, it is possible to obtain feature components
less affected by the outliers. This method is more effective at outlier removal
than the standard method of PCA proposed in [4]. However, it is not efficient
for real-time face authentication, because it takes too much time to remove the
noise using the kernel function.

2.3 Stand-Alone DSP System for Face Authentication

In the early 1990s, Gilbert et al. introduced a real-time face recognition system
using custom VLSI hardware for fast correlation in an IBM compatible PC[10].
Five years later, Yang et al. introduced a parallel implementation of face detec-
tion algorithm using a TMS320C40 chip[9]. On the other hand, IBM introduced
a commercial chip, ZISC which can compute the classification in RBF(Radial
Basis Function) based neural network[8]. However, these systems did not imple-
ment the whole stages of a face authentication system. Unlike these, we have
implemented the entire steps using only a TMS320C6711 DSP chip. This will
enables face authentication system to be applied to diverse applications.

3 Noise Model

3.1 Noise Analysis in the Case of Corrupted Images

In this paper, we assume that the corruption of the images originates from
changes in contrast, brightness, Gaussian noise and Gaussian blur [7].
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Firstly, we define an image whose contrast and brightness are changed, as
follows:

ICB(x, y) = c× Iorg(x, y) + b (1)

where ICB is the image corrupted by the change of contrast and brightness,
Iorg is the original image, c is the contrast parameter, and b is the brightness
parameter.

Secondly, we define a corrupted image which is generated by applying Gaus-
sian blur, as follows.

IG(x, y) = Iorg(x, y) ∗Gblur(x, y) (2)

where Gblur is the Gaussian blur filter, G is Gaussian blur function and ∗ is the
image convolution operator.

Gblur(x, y) =
1

2πσ2
e

−(x2+y2)
2σ2 (3)

where σ in (3) is the Gaussian blur parameter. Fig. 3 shows examples of corrupted
images so generated.

Fig. 3. Examples of corrupted images (a) Adjustment of contrast and brightness (b)
Gaussian blur

3.2 Definition of Noise Model

In this section we will formally specify the noise model. We define the corrupted
image, Ic, as follows:

Ic = ICB ∗Gblur (4)

Then, more formally, the noise model is defined as the combination of corrupted
images, Ic, and the noise parameters, P .

Ni =
(
Ic
i

Pi

)
(i = 1, · · · ,m) (5)

where Ic = (x1, · · · , xk)T , P = (p1, · · · , pl)T . x1, · · · , xk are the intensities of the
pixels in the corrupted image, k is the number of pixels in the corrupted image,
p is the parameter value, l is the number of noise parameters used and m is the
number of corrupted images. In this paper, we used l = 3, p1 = c, p2 = b, and
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p3 = σ since we consider the changes in contrast, brightness and Gaussian blur.
Thus, the noise model, N , is represented as follows:

N = N̄ +
m−1∑
i=1

αini(j), (j = 1, · · · , k, k + 1, · · · , k + l) (6)

where N̄ is the mean of Ni(i = 1, · · · ,m). By PCA, a basis transformation is
performed to an orthogonal coordinate system formed by eigenvector ni of the
covariance matrices on the data set of m corrupted images and noise parameters.
The probability for coefficients α (α ∈ Rm−1) is defined as:

p(α) ∼ exp

[
−1

2

m−1∑
i=1

(
αi

ξi
)2

]
(7)

where with ξ2
i being eigenvalues of the covariance matrix, Cs.

4 Photo Image Authentication

In order to authenticate corrupted photo images, the proposed method includes
the following two phases, the training phase and testing phase. In the training
phase, we first generate corrupted images by adjusting the parameters of con-
trast, brightness and Gaussian blur of an original photo image. Then, we obtain
the basis vectors of the corrupted images and the noise parameters. In the testing
phase, the photo image authentication procedure for the corrupted photo image
is performed through several steps

4.1 Noise Parameter Estimation

Using the noise model, only an approximation of the required parameters can
be obtained. The goal is to estimate the noise parameters by finding an optimal
solution in such an overdetermined condition. At first, we want to find the value
of α which satisfies Equation (8).

Ñ(j) =
m−1∑
i=1

αini(j), (j = 1, · · · , k) (8)

where j is the pixel in the corrupted image, k is the number of pixels in the
corrupted image and the difference image is defined as Ñ = N − N̄ . Generally,
there may not exist any value of α that perfectly fits Ñ . Therefore, we choose
α� to minimize the error function described in Equation (8).

To do this, we first define an error function, E(α), in Equation (10), and set
a condition to minimize the error function. The goal is to find the value of α
which minimizes the error function, E(α), according to the following equation:

α� = argmin
α

E(α) (9)
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The error function is given as:

E(α) =
k∑

j=1

(
Ñ(j) −

m−1∑
i=1

αini(j)

)2

(10)

We then find the coefficient values that minimize the error function using the
least-square minimization method. According to equations (9) and (10), we can
solve this problem by the least-square method. Equation (8) is equivalent to the
following: ⎛⎜⎝n1(1)· · ·nm−1(1)

...
. . .

...
n1(k)· · ·nm−1(k)

⎞⎟⎠
⎛⎜⎝ α1

...
αm−1

⎞⎟⎠=
⎛⎜⎝Ñ(1)

...
Ñ(k)

⎞⎟⎠ (11)

We can rewrite (11) as:
INα = ĨN (12)

where

IN =

⎛⎜⎝n1(1)· · ·nm−1(1)
...

. . .
...

n1(k)· · ·nm−1(k)

⎞⎟⎠ , α = (α1, · · · , αm−1)T , ĨN = (Ñ(1), · · · , Ñ(k))T(13)

The least-square solution to an inconsistent INα� = ĨN of k equation in m−1 un-
knowns satisfies INT Iα� = INT Ĩ. If the columns of IN are linearly independent,
then INT ĨN has an inverse and

α� = (INT IN)−1INT ĨN. (14)

The projection of ĨN onto the column space is therefore ÎN = INα�. By using
equations (6) and (14), we obtain

N(j) ∼= N̄(j) +
m−1∑
i=1

α�
i ni(j), (j = 1, · · · , k) (15)

where j is the pixel in the corrupted image and k is the number of pixels in the
whole region of the photo image.

We previously made the assumption that the columns of IN are linearly
independent in equation (12). Otherwise, Equation (14) may not be satisfied. If
IN has dependent columns, the solution represented by α� will not be unique, in
which case we will have to choose a particular solution from among the possible
ones. The optimal solution of ÎN = INα� is the one that has minimum length
according to equation (7). The optimal solution in this case can be obtained by
calculating the pseudoinverse of IN [6]. However, in our case, where the goal is
to effectively estimate the noise parameters from a corrupted photo image, this
is unlikely to happen.
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To estimate the noise parameters, the linear coefficients are applied to the
sub-matrix of eigenvectors corresponding to the noise parameters. Therefore, the
estimated noise parameters can be defined as in equation (16).

P = N̄(k + s) +
m−1∑
i=1

αini(k + s), (s = 1, · · · , l) (16)

4.2 Authentication

Given the test image and the original image, the purpose of photo image authen-
tication is to decide if the test image is identical to the original image. In this
work, we first remove the Gaussian noise from the test image. After estimating
the noise parameter, P , for the test image, the synthesized image is obtained by
applying P to the original image as described by Equations (1) and (2). Then,
we used the normalized correlation method for the purpose of authenticating the
test image with the synthesized image.

Fig. 4. Block diagram of the system

5 Stand-Alone System Design

Most real-time image processing tasks are time-critical and highly computation-
intensive. We have chosen the approach of using a high performance DSP chip,
namely, a float-point TMS320C6711. The implementation used C6711 DSK
(DSP Starter Kit) and IDK (Image Developer’s Kit) from Texas Instrument,
Inc.

Because the C6711 DSK platform was developed for an evaluation, it has
many limitations in developing a large application. Thus, we re-designed DSK’s
circuit and combined other devices. The current system is composed of a keypad
module, a card reader, a main board, IDK and a host PC shown as Fig. 4. Main
board contains two McBSPs (Multi-channel Buffered Serial Port) and EMIF
(External Memory InterFace) to communicate with other devices, and supplies
5V power to all the modules. Users use 4x4 keypad for typing their own ID
number and selecting modes. In addition to the buttons, keypad module has
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Fig. 5. The implemented face authentication system

RS-232C adapter and converter of baud rate for serial communication. IDK is
a daughter board to capture and display images. We used this to monitor the
process. Card reader can read user information from each card, and the host PC
analyzes and stores the results from C6711 through a RS-232C port. Properly
deleting or overwriting data into flash memory of this stand-alone system, we
can operate whole functions without the host PC.

6 Experimental Results and Analysis

For testing the proposed method, we used the Korean Face Database(KFDB)
introduced in [5] and face data scanned from identification card. We used 100
persons which have one frontal image in KFDB and generated 100 virtual cor-
rupted images. We also tested our algorithm against 137 face images scanned
from identification card. The resolution of the images was 320 by 200 pixels and
the color images were converted to 8-bit gray level images. Also, these 137 face
images were scanned with 300dpi. In the experiment, we performed the following
two experiments. First, we compared the difference between the real parameter
values and the estimated parameter values against virtual corrupted images from
KFDB. We estimated the noise parameters using virtual corrupted face images
not including training data. Fig. 6 represents the real parameter values and the

Fig. 6. The comparison of the real parameters and the estimated ones. (a) Contrast
parameter. (b) Brightness parameter. (c) Gaussian blur parameter
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Fig. 7. ROC curve for threshold value used 137 images scanned from identification
card

parameter values estimated by the proposed method. The experimental result
shows that the proposed method can estimate noise parameters accurately. In
this case, however, the estimation error of noise parameters for corrupted face
images depends on the number and the value of noise parameter. Therefore, it
is very important to use suitable parameters to make corrupted images. Second,
we performed an face authentication against the photo images scanned from
identification cards under real environments using our prototype system. Fig.
7 shows that the EER is improved from 7.07% down to 2.71%. As a result of
this experiment, we showed that the proposed method is more robust for face
authentication of corrupted face images than before.

7 Conclusion

Herein, we proposed a method of authenticating corrupted photo images based
on noise parameter estimation and implemented an authentication system using
TMS320C6711 DSP chip. In contrast to the previous methods, the proposed
method deals with the corrupted photo images based on noise parameter esti-
mation and uses only one image per person for training. In this paper, we proved
that the estimated parameter values are very close to the real ones. With the
images obtained from the KFDB and photo images scanned from identification
cards, the proposed method provided for the accurate estimation of the parame-
ters and improved the performance of photo image authentication. For applying
the proposed method to real applications, we designed a stand-alone system on
DSP chip and implemented our algorithms using this system.

The experimental results on this system show that the noise parameter esti-
mation of the proposed method is quite accurate and that this method is very
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useful for authentication, because of its solving the noise problem of corrupted
photo images. Also, the proposed method offers good performance in the case of
corrupted photo images scanned from identification cards.
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for 3D Shape-Based Face Recognition
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Abstract. In 3D face recognition systems, 3D facial shape information
plays an important role. Various shape representations have been pro-
posed in the literature. The most popular techniques are based on point
clouds, surface normals, facial profiles, and statistical analysis of depth
images. The contribution of the presented work can be divided into two
parts: In the first part, we have developed face classifiers which use these
popular techniques. A comprehensive comparison of these representation
methods are given using 3D RMA dataset. Experimental results show
that the linear discriminant analysis-based representation of depth im-
ages and point cloud representation perform best. In the second part of
the paper, two different multiple-classifier architectures are developed to
fuse individual shape-based face recognizers in parallel and hierarchical
fashions at the decision level. It is shown that a significant performance
improvement is possible when using rank-based decision fusion in ensem-
ble methods.

1 Introduction

Despite two decades of intensive study, the challenges of face recognition re-
main: changes in the illumination and in-depth pose problems make this a diffi-
cult problem. Recently, 3D approaches to face recognition have shown promise
to overcome these problems [1]. 3D face data essentially contains multi-modal
information: shape and texture. Initial attempts in 3D research have mainly fo-
cused on shape information, and combined systems have emerged which fuse
shape and texture information.

Surface normal-based approaches use facial surface normals to align and
match faces. A popular method is to use the EGI representation [2, 3]. Curvature-
based approaches generally segment the facial surface into patches and use cur-
vatures or shape-index values to represent faces [4]. Iterative Closest Point-based
(ICP) approaches perform the registration of faces using the popular ICP algo-
rithm [5], and then define a similarity according to the quality of the fitness com-
puted by the ICP algorithm [6–8]. Principal Component Analysis-based (PCA)
methods first project the 3D face data into a 2D intensity image where the inten-
sities are determined by the depth function. Projected 2D depth images can later
be processed as standard intensity images [9–11]. Profile-based or contour-based
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approaches try to extract salient 2D/3D curves from face data, and match these
curves to find the identity of a person [12, 13]. Point signature-based methods
encode the facial points using the relative depths according to their neighbor
points [14, 15].

In addition to the pure shape-based approaches, 2D texture information has
been combined with 3D shape information. These multi-modal techniques gen-
erally use PCA of intensity images [16, 17], facial profile intensities [13], ICP
[18, 19], and Gabor wavelets [14]. These studies indicate that combining shape
and texture information reduces the misclassification rate of a face recognizer.

One aim in this paper is to evaluate the usefulness of state-of-the-art shape-
based representations and to compare their performance on a standard database.
For this purpose, we have developed five different 3D shape-based face recogniz-
ers. They use: ICP-based point cloud representation, surface normal-based rep-
resentation, profile-based representation, and two depth image-based representa-
tions: PCA and Linear Discriminant Analysis (LDA), respectively. Our second
aim is to analyze whether combining these distinct 3D shape representation
approaches can improve the classification performance of a face recognizer. To
accomplish the fusion, we have designed two fusion schemes, parallel and hierar-
chical, at the sensor decision level. Although it has been shown in the literature
that fusion of texture and shape information can increase the performance of
the system, the fusion of different 3D shape-based classifiers has remained as an
open problem. In this work, we show that the integration of distinct shape-based
classifiers by using a rank-based decision scheme can greatly improve the overall
performance of a 3D face recognition system.

2 3D Shape-Based Face Recognizers

2.1 Registration

Registration of facial data involves two steps: a preprocessing step and a trans-
formation step. In the preprocessing step, a surface is fitted to the raw 3D facial
point data. Surface fitting is carried out to sample the facial data regularly.
After surface fitting, central facial region is cropped and only the points inside
the cropped ellipsoid are retained. In order to determine the central cropping
region, nose tip coordinates are used. Figure 1 shows a sample of the original
facial data, and the cropped region. Cropped faces are translated so that the
nose tip locations are at the same coordinates. In the rest of the paper, we refer
to the cropped region as the facial data.

After preprocessing of faces, a transformation step is used to align them. In
the alignment step, our aim is to rotate and translate faces such that later on
we can define acceptable similarity measures between different faces. For this
purpose, we define a template face model in a specific position in the 3D coordi-
nate system. Template face is defined as the average of the training faces. Each
face is rigidly rotated and translated to fit the template. Iterative Closest Point
(ICP) algorithm is used to find rotation and translation parameters. The corre-
spondences found between the template face and any two faces Fi and Fj by the
ICP algorithm are then used to establish point-to-point dense correspondences.
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2.2 3D Facial Shape Representations

Several 3D features can be extracted from registered faces. The simplest feature
consists of the 3D coordinates of each point in the registered facial data (point
cloud representation). Another representation, surface normal representation, is
based on surface normals calculated at each 3D facial point. Both point cloud
and surface normal-based approaches are related to whole facial surfaces. Be-
sides surface-based features, facial profiles are also found to be important for
discriminating 3D faces. In this work, we have extracted seven equally spaced
vertical profiles, one central and three from either side of the profile (profile set
representation). See Figure 1.b for the extracted profiles.

Fig. 1. (a) Cropped region, (b) extracted facial profiles, and (c) depth image

Facial profile can be found by using the 3D symmetry property of faces.
However, in this work, we have used the nose region to find the central profile.
We use the (x, y) coordinates of the topmost points over the nose. These points
form an approximately ellipsoid cluster on the xy-plane. The vertical line passing
through the center of nose can then be easily found by calculating the principal
direction. To find the principal direction, we have performed PCA on the x and
y coordinates of the topmost k nose points. Since all faces are registered to the
template face, we can speed up the profile extraction process by simply finding
the first principal direction in the face template once, and searching for closest
points in a given registered 3D face image. This approach performs better since
average template face is more robust to irregular nose shapes.

Registration of profile contours is performed by translating profile curves in
such a way that nose tips of profiles are always at the same xy- coordinates. After
aligning profile curves, a spline is fitted to the profile curve, and it is regularly
sampled in order to be able to compute Euclidean distances between two profiles.

In the PCA and LDA techniques, the 3D face points are projected to a 2D
image where the intensity of a pixel denotes the depth of a 3D point. Figure 1.c
shows a sample depth image. Statistical feature extraction methods can be used
to extract features from depth images. In this work, we have employed PCA
(Depth-PCA) and LDA (Depth-LDA) to extract features from depth images.
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2.3 Similarity Measures and Classifiers
In our system, we have used k-nearest neighbor algorithm (k-NN) as a pattern
classifier which is intensively used in face recognition systems due to its high
recognition accuracy. In order to use k-NN, we have to define a similarity measure
for each representation used. Let Φi be a 3D face. We can represent Φi in point
cloud representation as ΦP

i = {pi
1, p

i
2, ...p

i
N}, where N is the number of points in

the face and pis are 3D coordinates. We define the distance between two faces
Φi and Φj as:

D(ΦP
i , Φ

P
j ) =

n∑
k=1

||pi
k − pj

k|| (1)

where ||.|| denotes Euclidean norm. Similarly, in surface normal representation,
face Φi is represented by ΦN

i = {ni
1, n

i
2, ...n

i
N}, where nis are surface normals

calculated at points pis. Distance between two faces Φi and Φj in surface normal
representations can be defined as in the above formula, but by replacing ΦP s
with ΦN s.

In profile set representation, we have seven equally spaced vertical profiles,
Ck, (k = 1..7). Each profile curve Ck is a vector and contains nk depth coor-
dinates: Ck = {z1, z2, ..., znk

}. Therefore, we represent a face in profile set rep-
resentation as ΦR

i =
⋃

Ck. The distance between two corresponding kth profile
curves of face i and face j can be determined by d(Ci

k, C
j
k) =

∑nk

m=1 ||zi
m − zj

m||.
Then, the distance between faces Φi and Φj is defined as the sum of the distances
between each corresponding profile curve. In depth image-based face represen-
tations, the distance between two faces is calculated as the Euclidean distance
between extracted feature vectors.

3 Combination of Shape-Based Face Recognizers

When working on different representations, classifiers can be made more accurate
through combination. Classifier combination has caught the attention of many
researchers due to its potential for improving the performance in many appli-
cations [20–22]. In classifier fusion, the outputs of individual classifiers (pattern
classifiers) are fused by a second classifier (combination classifier) according to a
combination rule. In order to produce a successful ensemble classifier, individual
pattern classifiers should be highly tuned, diverse, and should not be redundant.
In this work, the diversity of the pattern classifiers is provided by letting them
use a different face representation. In our system, the outputs of individual pat-
tern classifiers are the ranked class labels and their associated similarity scores.
However, we only use the rank information because of the variability of the score
functions produced by different representations.

In our fusion schemes, a combination set is formed by selecting the most sim-
ilar k classes for each pattern classifier and by feeding these into the combining
classifier. As combination rules for rank-output classifiers, we have used consen-
sus voting, rank-based combination and highest-rank majority methods [23]. In
consensus voting, the class labels from the combination set of each pattern clas-
sifier are pooled, and the most frequent class label is selected as the output. In
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rank-based combination, the sum of the rankings of each class in all combination
sets are used to compute a final ranking (rank-sum method). A generalization of
the rank-sum method is to transform ranks by a function f which maps ranks
{1, 2, 3, ...,K} to {f(1), f(2), f(3), ..., f(K)}. f may be any nonlinear monotoni-
cally increasing function. The motivation to use such a function f is to penalize
the classes at the bottom of a ranked list. In this work, f(x) = xn is used as
a mapping function. In highest-rank majority, a consensus voting is performed
among the rank-1 results of each pattern classifier.

3.1 Parallel Fusion of Face Classifiers

We have designed a parallel ensemble classifier which fuses the rank-outputs of
different face pattern classifiers. Profile set, Depth-LDA, point cloud and sur-
face normal-based face representations are chosen in these pattern classifiers.
Combination set is formed by selecting the most similar N classes in the rank
outputs of each classifier. As a combination rule, four different types of rules are
used: consensus voting, rank-sum, nonlinear rank-sum and highest-rank major-
ity rule. In nonlinear rank-sum method, f(x) = xn function is used. If n = 1,
nonlinear rank-sum method is identical to the standard rank-sum method. As
a generalization of the rank outputs of individual classifiers, we have also used
the ranking of each training instance whereas in standard rank-output classi-
fiers, classes are assigned a single rank. In the rest of the paper, we will refer to
the generalized method as instance-based ranking, and the standard method as
class-based ranking. See Figure 2 for a schematic diagram of the parallel fusion
scheme.

Fig. 2. A schematic diagram of the parallel combination scheme

3.2 Hierarchical Fusion of Face Classifiers

In addition to the parallel fusion scheme, we have also designed a hierarchical
fusion methodology. The main motivation of the hierarchical architecture is to
filter out the most similar K classes using a simple classifier, and then to feed
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Fig. 3. A schematic diagram of the hierarchical combination scheme

these K classes into a more complex and powerful second classifier. For this
purpose, we have used the point cloud-based nearest neighbor classifier as the
first classifier C1, and depth map-based LDA classifier as the second classifier C2.
The use of LDA as a second classifier is based on the idea that it can boost the
differences between similar classes in the transformed feature space. See Figure 3
for a schematic diagram of the hierarchical fusion.

As in the previous section, C1 produces an instance-based ranking R1, and
then class labels of the top K instances are passed to C2. C2 then performs
a linear discriminant analysis on the depth images of the training examples of
these classes, and forms a feature space. Nearest neighbor classifier is used in this
feature space to produce a new instance-based ranking R2. If only the rank-1
class output of R2 is used, the information in C1 is discarded. We use a nonlinear
rank-sum method to fuse R1 and R2 which is superior to using R2 alone.

4 Experimental Results

In our experiments, we have used the 3D RMA dataset [13]. Specifically, a subset
of the automatically prepared faces were used in experiments, which consists of
106 subjects each having five or six shots. The data is obtained with a stereo
vision assisted structured light system. On the average, faces contain about 4000
3D points, and they cover different portions of the faces and the entire data is
subject to expression and rotation changes. To be able to statistically compare
the algorithms, we have designed five experimental sessions.

Table 1 shows which shots of a subject are placed into the training and test
sets for each session. At each session, there are exactly 193 test shots in total.

4.1 Performance of Different Shape Features

Table 2 summarizes the classification accuracies of each representation method.
Best performance is obtained using Depth-LDA which has an average recognition
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Table 1. Training and test set configurations

Session Training Set Shots Test Set Shots

S1 {1, 2, 3, 4} {5, 6}
S2 {1, 2, 3, 5} {4, 6}
S3 {1, 2, 4, 5} {3, 6}
S4 {1, 3, 4, 5} {2, 6}
S5 {2, 3, 4, 5} {1, 6}

Table 2. Classification accuracies of each classifier for each experimental session. d
denotes the feature dimensionality of the representations

Session Point Cloud Surface N. Depth-PCA Depth-LDA Profile Set
(d = 3, 389 × 3) (d = 3, 389 × 3) (d = 300) (d = 30) (d = 1, 557)

S1 93.26 93.26 49.74 95.34 94.30

S2 94.82 97.93 52.33 97.41 92.75

S3 96.89 93.26 49.74 95.34 92.75

S4 97.41 96.89 51.30 96.37 95.86

S5 97.41 96.37 50.78 96.89 95.86

Mean 95.96 95.54 50.78 96.27 94.30

STD 1.85 2.16 1.10 0.93 1.55

accuracy of 96.27 per cent. The dimensionality of the reduced feature vector of
the Depth-LDA method is 30. Point cloud and surface normal representations
95.96 and 95.54 per cent correct recognition rate on the test set, respectively. In
each of these representation schemes, feature vector size is 3, 389 × 3 = 10167,
since there are 3,389 points in each representation method and each point is
a 3D vector. Profile set representation has a recognition accuracy of 94.30 per
cent. The feature dimensionality of the profile set representation is the sum of the
number of sampled points for each individual profile curve. In our representation,
this dimensionality is 1,557. Depth-PCA method performed worst with a 50.78
per cent recognition accuracy, using 300 dimensional feature vectors.

4.2 Performance of Parallel
and Hierarchical Decision Fusion Schemes

In our experiments on the parallel fusion scheme, we have tested all possible
combinations of point-cloud, surface normal, profile-set, and Depth-LDA based
classifiers. We have also analyzed the effect of the combination set size (N) in
the fusion process. Average recognition accuracies of different ensemble archi-
tectures are shown in Table 3. The best classification accuracy is obtained by
a nonlinear rank-sum combination rule where the pattern classifiers are profile
set, Depth-LDA and surface normal -based representations. In this architecture,
combination set size is N = 6, and the nonlinear function used is f(x) = x3. It is
seen that instance-based ranking outperforms class-based ranking except for the
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Table 3. Mean classification accuracies of hierarchical fusion methods. S denotes the
selected individual classifiers in the ensemble, where S = { 1: Profile set, 2: Depth-LDA,
3: Point cloud, 4: Surface Normals}

Instance-based Ranking Class-based Ranking

Consensus Voting 98.76 (N=2) S={2,3,4} 98.34 (N=1) S={1,2,3,4}
Nonlinear Rank-Sum 99.07 (N=6) S={1,2,4} 98.86 (N=1) S={1,2,3,4}

Highest Rank Majority 98.13 (N=1), S={1,2,3,4} 98.34 (N=1) S={1,2,3,4}

highest rank majority rule. As a combination rule, nonlinear rank-sum method
consistently outperforms its alternatives. We observe that parallel combination
of different pattern classifiers which rely on distinct feature sets significantly
improves the recognition accuracies in all cases. We confirm this finding with
paired t-test on five-fold experiments.

In hierarchical fusion experiments, point-cloud-based first classifier C1 pro-
duces an instance-based rank list. On the average, first rank-80 instances provide
100 per cent recognition accuracy in C1. We have seen that 80 training instances
in the combination set corresponds to approximately 25 classes. Therefore, our
Depth-LDA based second classifier C2 dynamically constructs a feature space
using these 25 classes. Finally, the ranks produced by C1 and C2 are integrated
using nonlinear rank-sum technique where f(x) = x3. The average performance
of the hierarchically combined classifiers is found to be 98.13 per cent, which is
statistically significantly different from all individual classifier’s accuracies. As
in the parallel case, hierarchical fusion is found to be beneficial when compared
to individual classifier accuracies. The accuracy of the parallel fusion of point
cloud and Depth-LDA using nonlinear rank-sum is 98.45 per cent and is better
than hierarchical fusion.

5 Conclusion

In this work, we have compared some of the state-of-the-art 3D shape-based
face representation techniques frequently used in 3D face recognition systems.
They include ICP-based point cloud representations, surface normal-based rep-
resentations, PCA and LDA-based depth map techniques and facial profile-based
approaches. It has been shown that among these methods, Depth-LDA method
performs best, and point cloud and surface normal-based classifiers have a com-
parable recognition accuracy. Our results on Depth-PCA confirmed the sensitiv-
ity of PCA to alignment procedure. To obtain better results, facial landmarks
need to be correctly aligned, possibly by warping of faces. In our work, we choose
not to warp facial surfaces since it is known that such a warping process sup-
presses discriminative features [8].

We have also developed parallel and hierarchical combination schemes to fuse
the outputs of individual shape-based classifiers. In the parallel architecture, a
subset of the rank outputs of surface-normal, Depth-LDA, and profile-based clas-
sifiers are fused using nonlinear rank-sum method, and the recognition accuracy
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improved to 99.07 per cent from 96.27 per cent which is the best individual clas-
sifier’s (Depth-LDA) accuracy. In the hierarchical fusion scheme, we transfer the
most probable classes found by our first point-cloud based classifier to a Depth-
LDA based second classifier, where LDA makes use of the differences between
similar classes in the transformed feature space. The hierarchical architecture
reaches a 98.13 per cent recognition accuracy which is statistically superior to
all individual performances according to paired t-tests. As a conclusion, we ob-
serve that the combination of separate shape-based face classifiers improves the
classification accuracy of the whole system, when compared to using individual
classifiers alone. As a future work, we plan to investigate the fusion of shape-
based ensemble classifiers with texture-based ensemble methods.
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Abstract. Content-based face image retrieval is concerned with computer re-
trieval of face images (of a given subject) based on the geometric or statistical
features automatically derived from these images. It is well known that color
spaces provide powerful information for image indexing and retrieval by means
of color invariants, color histogram, color texture, etc.. This paper assesses com-
paratively the performance of content-based face image retrieval in different color
spaces using a standard algorithm, the Principal Component Analysis (PCA),
which has become a popular algorithm in the face recognition community. In par-
ticular, we comparatively assess 12 color spaces (RGB, HSV , Y UV , Y CbCr,
XY Z, Y IQ, L∗a∗b∗, U∗V ∗W ∗, L∗u∗v∗, I1I2I3, HSI , and rgb) by evaluat-
ing 7 color configurations for every single color space. A color configuration is
defined by an individual or a combination of color component images. Take the
RGB color space as an example, possible color configurations are R, G, B, RG,
RB, GB, and RGB. Experimental results using 1,800 FERET R,G, B images
corresponding to 200 subjects show that some color configurations, such as R in
the RGB color space and V in the HSV color space, help improve face retrieval
performance.

1 Introduction

Content-based face image retrieval is concerned with computer retrieval of face images
(of a given subject) based on the geometric or statistical features automatically derived
from these images [1], [2]. Efficient retrieval requires a robust feature extraction method
that has the ability to learn meaningful low-dimensional patterns in spaces of very high
dimensionality. Low-dimensional representations are also important when one consid-
ers the intrinsic computational aspect. The Principal Component Analysis (PCA) [3]
has been widely used to perform dimensionality reduction for face indexing and re-
trieval [4], [5], [6], [7]. In particular, PCA is the method behind the Eigenfaces coding
scheme [8] whose primary goal is to project the similarity judgment for face recogni-
tion into a low-dimensional space. This space defines a feature space, or a “face space”,
which drastically reduces the dimensionality of the original space, and face detection
and identification are carried out in this reduced face space.

It is well known that color spaces provide powerful information for image indexing
and retrieval by means of color invariants, color histogram, color texture, etc.. Different
color spaces, which are defined by means of transformations from the original RGB
(red, green, blue) color space, display different color properties. The HSV (hue, satu-
ration, value) color space and its variants, such as the HSI (hue, saturation, intensity)

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 1039–1048, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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color space and the HLS (hue, lightness, saturation) color space, are often applied in
locating and extracting facial features [9]. The Y CbCr (luminance, Chrominance-blue,
Chrominance-red) color space, the Y IQ (luminance, in-phase, quadrature) color space,
and the Y UV color space have wide applications in color clustering and quantization
for skin color regions [9], [10]. The perceptually uniform color spaces, such as the CIE-
U∗V ∗W ∗ color space, the CIE-L∗u∗v∗ color space, and the CIE-L∗a∗b∗ color space
have general and ubiquitous applications [11], [12].

In this paper, we assess the performance of content-based face image retrieval in
different color spaces using a standard algorithm, PCA [3]. Specifically, we assess
comparatively 12 color spaces (RGB, HSV , Y UV , Y CbCr, XY Z , Y IQ, L∗a∗b∗,
U∗V ∗W ∗, L∗u∗v∗, I1I2I3, HSI , and rgb) by evaluating 7 color configurations for
every single color space. A color configuration is defined by an individual or a combi-
nation of color component images. Take the RGB color space as an example, possible
color configurations are R, G, B, RG, RB, GB, and RGB.

2 Color Spaces

This section details the 12 color spaces assessed in this paper. The rgb color space is
defined by projecting the R,G,B values onto the R = G = B = max{R,G,B}
plane, such that r = R/(R + G + B), g = G/(R + G + B), and b = B/(R + G +
B). The I1I2I3 color space proposed by Ohta et al. [13] applies a Karhunen-Loeve
transformation to decorrelate the RGB components. The linear transformation based
on Ohta’s experimental model is defined as: I1 = (R + G + B)/3, I2 = (R − B)/2,
and I3 = (2G−R−B)/2 [13].

The HSV and the HSI color spaces are motivated by the human vision system in
the sense that human describes color by means of hue, saturation, and brightness. Let
MAX = max(R,G,B), MIN = min(R,G,B), and δ = MAX−MIN , the HSV
color space is defined as follows [14]:

V = MAX ; S = δ/MAX ; H =

⎧⎨⎩60(G−B)/δ if MAX = R
60(B −R + 2δ)/δ if MAX = G
60(R−G + 4δ)/δ if MAX = B

(1)

The HSI color space is specified as follows [15]:

I = (R + G + B)/3; S = 1 − I ∗MIN ; H =
{
θ if B ≤ G
360 − θ otherwise

(2)

where θ = cos−1
{

1
2 [(R−G) + (R−B)]/[(R−G)2 + (R−B)(G −B)]

1
2

}
. Note

that in both Eq. 1 and Eq. 2, the R,G,B values are scaled to [0,1].
The Y UV and the Y IQ color spaces are commonly used in video for transmission

efficiency. The Y IQ color space is adopted by the NTSC(National Television System
Committee) video standard in reference to RGB NTSC, while the Y UV color space
is used by the PAL (Phase Alternation by Line) and the SECAM (System Electronique
Couleur Avec Memoire). The Y UV color space and the Y IQ color space are specified
as follows:
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U
V

⎤⎦ =

⎡⎣ 0.2990 0.5870 0.1140
−0.1471 −0.2888 0.4359

0.6148 −0.5148 −0.1000

⎤⎦⎡⎣R
G
B

⎤⎦
⎡⎣Y
I
Q

⎤⎦ =

⎡⎣0.2990 0.5870 0.1140
0.5957 −0.2745 −0.3213
0.2115 −0.5226 0.3111

⎤⎦⎡⎣R
G
B

⎤⎦
(3)

The Y CbCr color space is a scaled and offset version of the Y UV color space. The
Y component has 220 levels ranging from 16 to 235, while the Cb,Cr components
have 225 levels ranging from 16 to 240:⎡⎣Y

Cb
Cr

⎤⎦ =

⎡⎣16
128
128

⎤⎦ +

⎡⎣ 65.4810 128.5530 24.9660
−37.7745 −74.1592 111.9337
111.9581 −93.7509 −18.2072

⎤⎦ ⎡⎣R
G
B

⎤⎦ (4)

where the R,G,B values are scaled to [0,1].
The CIE (Commission Internationale de l’Éclairage) perceptually uniform color

spaces, such as the U∗V ∗W ∗, the L∗u∗v∗, and the L∗a∗b∗ color spaces, are defined
based on the XY Z tristimulus:⎡⎣X

Y
Z

⎤⎦ =

⎡⎣0.607 0.174 0.200
0.299 0.587 0.114
0.000 0.066 1.116

⎤⎦⎡⎣R
G
B

⎤⎦ (5)

Note that the Y component defined here is consistent with the luminance defined in
Eq. 3 or Eq. 4. In addition, a chromaticity diagram can be derived via the chromaticity
coordinates x, y, which are specified by the X,Y, Z tristimulus. This CIE chromaticity
diagram, however, is not perceptually uniform [16]. To overcome such a shortcoming,
the CIE uv chromaticity diagram was proposed [16]:

u = 4x/(−2x+ 12y + 3) or 4X/(X + 15Y + 3Z)
v = 6y/(−2x+ 12y + 3) or 6Y/(X + 15Y + 3Z) (6)

Based on this uniform chromaticity scale (UCS), a CIE uniform color space
U∗V ∗W ∗ was proposed. The W ∗ component corresponds to luminance, while the U∗,
V ∗ components correspond to chrominance [16]:

W ∗=

{
116( Y

Yo
)

1
3 − 16 if Y

Yo
> 0.008856

903.3( Y
Yo

) otherwise
; U∗=13W ∗(u−uo); V ∗=13W ∗(v−vo)

(7)
where the uo and vo are derived from the reference white stimulus.

Although the CIE-uv diagram is perceptually uniform, it has its own deficiency in
representing yellow-red colors as the area of yellow-red in the diagram is relatively
small [17]. To improve this deficiency, a new u′v′ coordinate system is defined: u′ = u,
v′ = (3/2)v. Based on this new coordinate system, two CIE uniform color spaces
were defined, namely the CIE-L∗u∗v∗ color space and the CIE-L∗a∗b∗ color space
[16]. The CIE-L∗u∗v∗ color space is proposed to obsolete the U∗V ∗W ∗ color space by
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substituting W ∗, U∗, V ∗, u, v in Eq. 7 for L∗, u∗, v∗, u′, v′, respectively. The L∗a∗b∗

color space is modeled based on human vision system and is defined as follows:

L∗ = 116f(
Y

Yo
) − 16; a∗ = 500[f(

X

Xo
) − f(

Y

Yo
)]; b∗ = 200[f(

Y

Yo
) − f(

Z

Zo
)]

(8)
where f(x) = x

1
3 if x > 0.008856; f(x) = 7.787x+ 16

116 otherwise.

3 Principal Component Analysis and Classification Rule

PCA is a standard decorrelation technique and following its application one derives an
orthogonal projection basis that directly leads to dimensionality reduction and feature
extraction. Let X ∈ RN be a random vector representing an image, and ΣX ∈ RN×N

be the covariance matrix of X . The PCA procedure factorizes the ΣX into the form:
ΣX = ΦΛΦt, where Φ is an orthogonal eigenvector matrix and Λ a diagonal eigenvalue
matrix with diagonal elements in decreasing order.

An important property of PCA is its optimal signal reconstruction in the sense of
minimum Mean Square Error (MSE) when only a subset of principal components is
used to represent the original signal. Following this property, an immediate applica-
tion of PCA is the dimensionality reduction by projecting a random vector X onto the
eigenvectors: Y = P tX , where P ∈ RN×m is a subset of eigenvector matrix Φ and
m < N . The lower dimensional vector Y ∈ Rm captures the most expressive features
of the original data X .

After dimensionality reduction, feature vectors are compared and classified by the
nearest neighbor (to the mean) rule using a similarity (distance) measure δ: δ(Y,Mk) =
minj δ(Y,Mj) −→ Y ∈ ωk, where Y is a testing feature vector and M0

k, k =
1, 2, . . . , L is the mean of the training samples for class ωk. The testing feature vector,
Y , is classified as belonging to the class of the closest mean, Mk, using the similarity
measure δ.

The similarity measures used in our experiments to evaluate the efficiency of dif-
ferent representation and recognition methods include the L1 distance measure, δL1 ,
the L2 distance measure, δL2 , the Mahalanobis distance measure, δMd, and the cosine
similarity measure, δcos, which are defined as follows:

δL1(X ,Y) =
∑

i |Xi − Yi|
δL2(X ,Y) = (X − Y)t(X − Y)
δMd(X ,Y) = (X − Y)tΣ−1(X − Y)
δcos(X ,Y) = −X tY

‖X‖ ‖Y‖

(9)

where Σ is the covariance matrix, and ‖ · ‖ denotes the norm operator. Note that the
cosine similarity measure includes a minus sign because the nearest neighbor (to the
mean) rule applies minimum (distance) measure rather than maximum similarity mea-
sure [18].

4 Experiments

This section assesses the performance of content-based face image retrieval in the 12
color spaces defined in Sect. 2. The 1,800 images from the FERET database [19] are
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Fig. 1. The performance of content-based face image retrieval using the PCA method on the
intensity images derived by averaging the R, G, B color components. The similarity measures
applied are the Mahalanobis distance measure (Mah.), the L1 distance measure (L1), the L2

distance measure (L2), and the cosine similarity measure (cos)

used for our experiments. The images correspond to 200 subjects such that each subject
has 9 images (3 sets of R, G, B images). As there are three sets of images for each
subject, two sets are randomly chosen for training, while the remaining set (unseen
during training) is used for testing. Note that all images are normalized to the size of
128 × 128 to extract facial regions that contain only faces, so that the performance of
face retrieval is not affected by the factors not related to face, such as hair style.

To provide a baseline performance for comparison, our first set of experiments ap-
plies different similarity measures as defined in Sect. 3 on the intensity images derived
by averaging the R,G,B color components. Fig. 1 shows the performance of content-
based face image retrieval using the PCA method as detailed in Sect. 3. The horizontal
axis indicates the number of features used, and the vertical axis represents the correct
retrieval rate, which is the accuracy rate for the top response being correct. Fig. 1 shows
that the Mahalanobis distance measure performs the best, followed in order by the L1

distance measure, the L2 distance measure, and the cosine similarity measure. The ex-
perimental results provide a baseline face retrieval performance based on the intensity
images, and suggest that one should use the Mahalanobis distance measure for the com-
parative assessment in different color spaces.

We now assess comparatively content-based face image retrieval in the 12 different
color spaces as defined in Sect. 2. For each color space, we define 7 color configurations
by means of an individual or a combination of color component images. Take the RGB
color space as an example, possible color configurations are R, G, B, RG, RB, GB,
and RGB. Note that when two or three color component images are used to define a
color configuration, each color component image is first normalized to zero mean and
unit variance, and then the normalized color component images are concatenated to
form an augmented vector representing the color configuration.
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Fig. 2. Content-based face image retrieval performance of the 7 color configurations in the RGB
color space. Note that the performance curve of the intensity images (Gray) is also included for
comparison (same in the following figures)
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Fig. 3. Content-based face image retrieval performance of the 7 color configurations in the HSV
color space

Our next set of experiments assesses the following color spaces: RGB, HSV ,
Y UV , Y CbCr, XY Z , Y IQ, L∗a∗b∗, U∗V ∗W ∗, and L∗u∗v∗. The face retrieval per-
formance of the 7 color configurations in these color spaces is shown in Fig. 2, Fig. 3,
Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8, respectively. Note that the Y UV and the Y CbCr
color spaces (as well as the U∗V ∗W ∗ and the L∗u∗v∗ color spaces) have identical face
retrieval performance due to their definitions (see Sect. 2). In particular, Fig. 2 shows
that the R and the RG color configurations perform better than the intensity images.
Fig. 3 shows that the V color configuration outperforms the intensity images. Fig. 4
shows that the Y and Y V color configurations in the Y UV color space or the Y and
Y Cr color configurations in the Y CbCr color space have better face retrieval perfor-
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Fig. 4. Content-based face image retrieval performance of the 7 color configurations in the Y UV
color space. Note that the face retrieval results in the Y CbCr color space are the same when the
Y , U , and V color components are replaced by their counterparts Y , Cb, and Cr, respectively
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Fig. 5. Content-based face image retrieval performance of the 7 color configurations in the XY Z
color space

mance than the intensity images. Fig. 5 shows the X , Y , and XY color configurations
perform better than the intensity images. Fig. 6 shows that the Y and Y I color con-
figurations outperform the intensity images. Fig. 7 shows that the L∗, L∗a∗, L∗b∗, and
L∗a∗b∗ color configurations are better than the intensity images for face retrieval. Fig. 8
shows that the W ∗ and U∗W ∗ color configurations in the U∗V ∗W ∗ color space or the
L∗ and L∗u∗ color configurations in the L∗u∗v∗ color space perform better than the
intensity images.

The color configurations, which perform better than the intensity images for face re-
trieval, are summarized in Table 1. Note that those color configurations with better face
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Fig. 6. Content-based face image retrieval performance of the 7 color configurations in the Y IQ
color space
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Fig. 7. Content-based face image retrieval performance of the 7 color configurations in the
L∗a∗b∗ color space

retrieval performance shown in Table 1 all share one common characteristic: they con-
tain both chromatic and achromatic (intensity) components. The pure chromatic color
configurations, however, all display worse (than the intensity images) face retrieval per-
formance. Specifically, these pure chromatic color configurations include the HS in
Fig. 3, the UV and the CbCr in Fig. 4, the IQ in Fig. 6, the a∗b∗ in Fig. 7, and the
U∗V ∗ and the u∗v∗ in Fig. 8. Note also that simply applying all the color compo-
nents does not necessarily achieve the best face retrieval performance. The reason for
this finding is that some color configurations, such as the B in the RGB color space
(Fig. 2), the Z in the XY Z color space (Fig. 5), and the pure chromatic color configu-
rations discussed above, all perform worse than the intensity images for content-based
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Fig. 8. Content-based face image retrieval performance of the 7 color configurations in the
U∗V ∗W ∗ color space. Note that the face retrieval results in the L∗u∗v∗ color space are the
same when the U∗, V ∗, and W ∗ color components are replaced by their counterparts u∗, v∗, and
L∗, respectively

Table 1. The color configurations, which perform better than the intensity images for face re-
trieval, in the color spaces: RGB, HSV , Y UV , Y CbCr, XY Z, Y IQ, L∗a∗b∗, U∗V ∗W ∗,
and L∗u∗v∗

color space color configurations with better face retrieval performance

RGB R, RG
HSV V
Y UV / Y CbCr Y , Y V / Y , Y Cr
XY Z X, Y , XY
Y IQ Y , Y I
L∗a∗b∗ L∗, L∗a∗, L∗b∗, L∗a∗b∗

U∗V ∗W ∗ / L∗u∗v∗ W ∗, U∗W ∗ / L∗, L∗u∗

face image retrieval. We have experimented with the I1I2I3, HSI , and rgb color spaces
as well, but the experimental results show that the color configurations in these color
spaces do not improve face retrieval performance.

5 Conclusion

We have assessed comparatively the performance of content-based face image retrieval
in 12 color spaces using a standard algorithm, the PCA, which has become a popu-
lar algorithm in the face recognition community. In particular, we have comparatively
assessed the RGB, HSV , Y UV , Y CbCr, XY Z , Y IQ, L∗a∗b∗, U∗V ∗W ∗, L∗u∗v∗,
I1I2I3, HSI , and rgb color spaces by evaluating 7 color configurations for every single
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color space. Experimental results using 1,800 FERET R,G,B images corresponding
to 200 subjects show that some color configurations, such as R in the RGB color space
and V in the HSV color space, help improve face retrieval performance.
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Abstract. A multimodal biometric system integrates information from
multiple biometric sources to compensate for the limitations in per-
formance of each individual biometric system. We propose an optimal
framework for combining the matching scores from multiple modalities
using the likelihood ratio statistic computed using the generalized den-
sities estimated from the genuine and impostor matching scores. The
motivation for using generalized densities is that some parts of the score
distributions can be discrete in nature; thus, estimating the distribution
using continuous densities may be inappropriate. We present two ap-
proaches for combining evidence based on generalized densities: (i) the
product rule, which assumes independence between the individual modal-
ities, and (ii) copula models, which consider the dependence between the
matching scores of multiple modalities. Experiments on the MSU and
NIST multimodal databases show that both fusion rules achieve consis-
tently high performance without adjusting for optimal weights for fusion
and score normalization on a case-by-case basis.

Keywords: Biometric recognition, multimodal biometric systems, fu-
sion, Gaussian copula models, Generalized densities, Neyman-Pearson
theorem.

1 Introduction

Biometrics refers to the automatic identification of an individual based on his/her
physiological traits [1]. Biometric systems based on a single source of infor-
mation (unimodal systems) suffer from limitations like the lack of uniqueness,
non-universality and noisy data [2] and hence, may not be able to achieve the
desired performance requirements of real-world applications. In contrast, multi-
modal biometric systems combine information from its component modalities to
arrive at a decision [3]. Several studies [4–8] have demonstrated that by consol-
idating information from multiple sources, better performance can be achieved
compared to the individual unimodal systems. In a multimodal biometric sys-
tem, integration can be done at (i) feature level, (ii) matching score level, or (iii)
decision level. Matching score level fusion is commonly preferred because match-
ing scores are easily available and contain sufficient information to distinguish
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between a genuine and an impostor case. Given a number of biometric systems,
one can generate matching scores for a pre-specified number of users even with-
out knowing the underlying feature extraction and matching algorithms of each
biometric system. Thus, combining information contained in the matching scores
seems both feasible and practical.

We propose a framework for optimally combining the matching scores from
multiple modalities based on generalized densities estimated from the genuine
and impostor matching scores. The motivation for using generalized densities is
that some parts of the score distributions can be discrete in nature. As a result,
estimating the densities using continuous density functions can be inappropriate.
We present two approaches for combining evidence based on generalized densi-
ties: (i) the product rule, which assumes independence between the individual
modalities, and (ii) copula models, which parametrically model the dependence
between the matching scores of multiple modalities. Our proposed method by-
passes the need for score normalization and selection of optimal weights for the
score combination on a case-by-case basis [3, 9, 10], and therefore, is a more
principled approach with performance comparable to the commonly used fusion
methods. Experiments have shown that our method achieves consistently high
performance over the MSU and NIST multimodal databases.

2 Generalized Densities

2.1 Estimation of Marginal Distributions

Let X be a generic matching score with distribution function F , i.e., P (X ≤ x) =
F (x). We denote the genuine (impostor) matching score by Xgen (Ximp) and the
corresponding distribution function by Fgen (Fimp). Assuming that Fgen(x) and
Fimp(x) have densities fgen(x) and fimp(x), respectively, the Neyman-Pearson
theorem states that the optimal ROC curve is the one corresponding to the likeli-
hood ratio statistic NP (x) = fgen(x)/fimp(x) [11]. The ROC curve correspond-
ing to NP (x) has the highest genuine accept rate (GAR) for every given value
of the false accept rate (FAR) compared to any other statistic U(x) = NP (x)
(this is true even for the original matching scores corresponding to U(x) = x).

However, when fgen(x) and fimp(x) are unknown (which is typically the case)
and are estimated from the observed matching scores, the ROC corresponding to
NP (x) may turn out to be suboptimal. This is mainly due to the large errors in
the estimation of fgen(x) and fimp(x). Thus, for a set of genuine and impostor
matching scores, it is important to be able to estimate fgen(x) and fimp(x)
reliably and accurately. Previous studies by Griffin [11] and Prabhakar et al.
[12] assume that the distribution function F has a continuous density with no
discrete components. In reality, most matching algorithms apply thresholds at
various stages in the matching process. When the required threshold conditions
are not met, specific matching scores are output by the matcher (e.g., some
fingerprint matchers produce a score of zero if the number of extracted minutiae
is less than a threshold). This leads to discrete components in the matching
score distribution that cannot be modeled accurately using a continuous density
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function. A score value x0 is said to be discrete if P (X = x0) = p > 0. It is easy
to see that F cannot be represented by a density function in a neighborhood
of x0 (since this would imply that P (X = x0) = 0). Thus, discrete components
need to be detected and modeled separately to avoid large errors in estimating
fgen(x) and fimp(x). Our approach consists of detecting discrete components in
the genuine and impostor matching score distributions, and then modeling the
observed distribution of matching scores as a mixture of discrete and continuous
components. Hence, this approach generalizes the work of [11, 12].

The following methodology can model a distribution based on a generic set
of observed scores. For a fixed threshold T , the discrete values are identified as
those values x0 with P (X = x0) > T , where 0 ≤ T ≤ 1. Since the underlying
matching score distribution is unknown, we estimate the probability P (X = x0)
by N(x0)

N , where N(x0) is the number of observations in the data set that equals
x0, and N is the total number of observations. The collection of all discrete
components for a matching score distribution will be denoted by

D ≡ { x0 :
N(x0)
N

> T }. (1)

The discrete components constitute a proportion pD ≡ ∑
x0∈D

N(x0)
N of

the total observations. We obtain the collection C by removing all discrete
components from the entire data set. The scores in C constitute a proportion
pC ≡ 1−pD of the entire data set, and they are used to estimate the continuous
component of the distribution (FC(x)) and the corresponding density (fc(x)). A
non-parametric kernel density estimate of fc(x) is obtained from C as follows.
The empirical distribution function for the observations in C is computed as

F̂C(x) =
1
NC

∑
s∈C

I{ s ≤ x }, (2)

where I{s ≤ x} = 1 if s ≤ x, and = 0, otherwise; also, NC ≡ N pC . Note that
F̂C(x) = 0 ∀ x < smin and F̂C(x) = 1 ∀ x ≥ smax, where smin and smax, re-
spectively, are the minimum and maximum of the observations in C. For values
of x, smin < x < smax, not contained in C, F̂C(x), is obtained by linear interpo-
lation. Next, B samples are simulated from F̂C(x), and the density estimate of
fC(x), f̂C(x), is obtained from the simulated samples using a Gaussian kernel
density estimator. The optimal bandwidth, h, is obtained using the “solve-the-
equation” bandwidth estimator [13], which is an automatic bandwidth selector
that prevents oversmoothing and preserves important features of the distribution
of matching scores (see Figure 1). The generalized density is defined as

l(x) = pC f̂C(x) +
∑

x0∈D

N(x0)
N

· I{x = x0}, (3)

where I{x = x0} = 1 if x = x0, and = 0, otherwise. The distribution function
corresponding to the generalized density is defined as

L(x) = pC

∫ x

−∞
f̂C(u) du +

∑
x0∈D, x0≤x

N(x0)
N

. (4)
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Fig. 1. Histograms of matching scores and corresponding generalized density estimates.
Row 1: Histograms of genuine scores for face (a), finger (b), and hand-geometry (c).
Row 2: Histograms of impostor scores for face (d), finger (e), and hand-geometry (f).
The solid line is the estimated density using the kernel density estimator, and the
spikes in (c) and (e) correspond to detected discrete components. Note that no pre-
processing of the matching score data (including the conversion of distance measures
into similarity scores) was performed before density estimation

For a multimodal system with K modalities, the generalized densities and
distributions estimated for the genuine (impostor) scores for the kth modality
will be denoted by lgen,k(x) and Lgen,k(x) (limp,k(x) and Limp,k(x)), respectively,
for k = 1, 2, . . . ,K. Figures 1 (a)-(f) give the plots of lgen,k(x) and limp,k(x) for
the distribution of observed genuine and impostor matching scores for K = 3
modalities of the MSU-Multimodal database (see Section 4). Figures 1 (a)-(f)
also give the histograms of the genuine and impostor matching scores for the
three modalities. The “spikes” (see Figure 1 (c) and (e)) represent the detected
discrete components and have a height greater than the threshold T = 0.02.
Note that the individual “spikes” cannot be represented by a continuous density
function. Forcing a continuous density estimate for these values will result in
gross estimation errors and yield suboptimal ROC curves.

2.2 Joint Density Estimation Using Copula Models

The methodology described in Section 2.1 only estimates the marginal score dis-
tributions of each of the K modalities without estimating the joint distribution.
One way to estimate the joint distribution of matching scores is by using copula
models [14]. Let H1, H2, . . . , HK be K continuous distribution functions on the
real line and H be a K-dimensional distribution function with the kth marginal
given by Hk for k = 1, 2, . . . ,K. According to Sklar’s Theorem [14], there exists
a unique function C(u1, u2, . . . , uK) from [0, 1]K to [0, 1] satisfying
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H(s1, s2, . . . , sK) = C(H1(s1), H2(s2), . . . , HK(sK)), (5)

where s1, s2, . . . , sK are K real numbers. The function C is known as a K-copula
function that “couples” the one-dimensional distributions functions H1, H2, . . . ,
HK to obtain the K-variate function H . Equation (5) can also be used to con-
struct K-dimensional distribution functions H whose marginals are the distri-
butions H1, H2, . . . , HK : choose a copula function C and define H as in (5).

Copula functions are effective in modeling the joint distribution when the
marginal distributions are non-normal and do not have a parametric form (as
is usually the case for biometric data, see Figure 1). The family of copulas
considered in this paper is the K-dimensional multivariate Gaussian copulas
[15]. These functions can represent a variety of dependence structures using a
K×K correlation matrix R. The K-dimensional Gaussian copula function with
correlation matrix R is given by

CK
R (u1, u2, . . . , uK) = ΦK

R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK)) (6)

where each uk ∈ [0, 1] for k = 1, 2, . . . ,K, Φ(·) is the distribution function of the
standard normal, Φ−1(·) is its inverse, and ΦK

R is the K-dimensional distribution
function of a random vector Z = (Z1, Z2, . . . , ZK)T with component means
and variances given by 0 and 1, respectively. The (m,n)-th entry of R, ρmn,
measures the degree of correlation between the m-th and n-th components for
m,n = 1, 2, . . . ,K. In practice, ρmn will be unknown and hence, will be estimated
using the product moment correlation of normal quantiles corresponding to the
observed scores from the K modalities.

We denote the density of CK
R by

cK
R (u1, u2, . . . , uK) ≡ ∂CK

R (u1, u2, . . . , uK)
∂u1∂u2 . . . ∂uK

=
φK

R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK))∏K
k=1 φ(Φ−1(uk))

, (7)

where φK
R (x1, x2, . . . , xK) is the joint probability density function of the K-

variate normal distribution with mean 0 and covariance matrix R, and φ(x) is
the standard normal density function. We will assume that the joint distribution
function of genuine (impostor) matching scores for K modalities, FK

gen (FK
imp), is

of the form (5) for some correlation matrix R0 (R1). For the genuine (impostor)
case, Hk will be estimated by Lgen,k(x) (Limp,k(x)) for k = 1, 2, . . . ,K.

3 Fusion Based on Generalized Densities

Two methods of fusion have been considered in this paper. The first method
assumes independence between the K biometric modalities and combines the
estimated marginal densities using the product rule. For the matching score set
S = (S1, S2, . . . , SK), the product fusion score of S, PFS(S), is given by

PFS(S) =
K∏

k=1

lgen,k(Sk)
limp,k(Sk)

, (8)
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where lgen,k(·) and limp,k(·) are the estimates of generalized densities of the
genuine and impostor scores of the kth biometric modality.

The copula fusion rule combines the individual modalities using the estimated
Gaussian copula functions for the score distributions. The copula fusion score of
a matching score set S = (S1, S2, . . . , SK), CFS(S), is given by CFS(S) =

PFS(S) · cK
R0

(Φ−1(Lgen,1(S1)), Φ−1(Lgen,2(S2)), . . . , Φ−1(Lgen,K(SK)))
cK
R1

(Φ−1(Limp,1(S1)), Φ−1(Limp,2(S2)), . . . , Φ−1(Limp,K(SK)))
, (9)

where Lgen,k(Sk) and Limp,k(Sk) are, respectively, the estimates of generalized
distribution functions for the kth biometric modality, and cK

R is the density of CK
R

as defined in (7). This fusion rule assumes that the Gaussian copula functions
can adequately model the dependence between the K biometric modalities.

4 Experimental Results

Experiments on fusion of matching scores using rules (8) and (9) were carried
out on two different multimodal databases. For each experiment, 70% of the
genuine and impostor matching scores were randomly selected to be the training
set for the estimation of the generalized densities and the correlation matrices.
The remaining 30% of the genuine and impostor scores were used to generate
the ROC curves. This training-testing partition was repeated 20 times and the
performance results reported for each value of FAR are the median GAR values.

4.1 Databases

Table 1 summarizes the multimodal databases used in our experiments. The
first database (referred to as the MSU-Multimodal database) consisted of 100
“virtual” subjects each providing five samples of face, fingerprint (left-index) and
hand-geometry modalities. Face images were represented as eigenfaces [16] and
the Euclidean distance between the eigen coefficients of the template-query pair
was used as the distance metric. Minutia points were extracted from fingerprint
images and the elastic string matching technique [17] was used for computing
the similarity between two minutia point patterns. Fourteen features describing
the geometry of the hand shape [18] were extracted from the hand images and
Euclidean distance was computed for each template-query pair.

Table 1. Summary of Multimodal Databases Used

Database Modalities K No. of Users

MSU-Multimodal Fingerprint, Face, Hand-geometry 3 100

NIST-Multimodal Fingerprint (Two fingers), 4 517
Face (Two matchers)

Experiments were also conducted on the first partition of the Biometric
Scores Set - Release I (BSSR1) released by NIST [19]. The NIST-Multimodal
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database consists of 517 users and is “truly multimodal” in the sense that the
fingerprint and face images used for genuine matching score computation came
from the same individual. One fingerprint score was obtained by comparing a
pair of impressions of the left index finger and another score was obtained by
comparing impressions of the right index finger. Two different face matchers were
applied to compute the similarity between frontal face images. Even though the
number of subjects in the NIST database is relatively large, there are only two
samples per subject. So the number of genuine scores is still rather small.
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Fig. 2. Performance of product and copula fusion on the MSU-Multimodal database
based on (a) continuous and (b) generalized density estimates

Figure 2 gives the ROC curves for the two fusion rules and the ROC curves
based on the matching scores of individual modalities for the MSU-Multimodal
database. Figure 2(a) shows the recognition performance when the genuine and
impostor score distributions of the three modalities are modeled purely by contin-
uous densities. The performance improvement obtained by modeling the match-
ing score distributions as a mixture of discrete and continuous components (gen-
eralized densities) can be observed by comparing Figures 2(a) and 2(b). The ROC
curves for the two fusion rules on the NIST-Multimodal database are shown in
Figure 3(a). We see that both fusion rules give significantly better matching
performance compared to the best single modality in each database. We also
observe that the best single modality in both the databases is uncorrelated to
the other modalities. For the MSU-Multimodal database, the estimates of the
correlation of the best single modality (fingerprint) with the other two modali-
ties (face and hand-geometry) are −0.01 and −0.11 for the genuine scores, and
−0.05 and −0.04 for the impostor scores. For the NIST-Multimodal database
(the best single modality is finger 2), the correlation estimates (with face1, face2,
and finger1 modalities, respectively) are −0.02, −0.06, and 0.43 for the genuine
cases and 0.04, 0.02, and 0.14 for the impostor cases. Since the fusion is driven
mostly by the best modality, the fact that this modality is approximately inde-
pendent of the others means that the product and copula fusion rules should be
comparable to each other as reflected by the ROC curves in Figures 2 and 3(a).
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Fig. 3. ROC curves for the NIST-Multimodal database; (a) all four modalities (b) only
face1 and face2 modalities

In order to study the usefulness of the copula fusion rule, we analyzed the
fusion results of the face1 and face2 modalities of the NIST-Multimodal database
(see Figure 3(b)). This pair had the highest degree of correlation among all pairs
in the two databases (0.75 and 0.29 for the genuine and impostor scores, respec-
tively). We observed that even in this case, the performance difference between
the product and copula fusion rules is not significant. This may be due to the
fact that although incorporating the correlation between the multiple matching
scores into the fusion rule should result in better performance than fusion based
on the independence assumption, the difference will be significant only in a few
cases. The following simulations illustrate this fact. Let the matching scores of
two biometric modalities follow the bivariate normal distribution with the fol-
lowing parameters (these values were chosen so as to closely model the matching
scores of face1 and face2 modalities in the NIST-Multimodal database):

Sgen ∼ N

(
μgen =

[
0.72
76.78

]
, Σgen =

[
0.006 0.15
0.15 8.31

])
, (10)

Simp ∼ N

(
μimp =

[
0.53
66.87

]
, Σimp =

[
0.0015 0.03
0.03 9.45

])
. (11)

We generated 100, 000 genuine and 100, 000 impostor scores from the above
distributions. In the first experiment, we assume that the parameters in equa-
tions (10) and (11) are known. The likelihood ratios were computed by utilizing
the full Σ, and under the independence assumption (non-diagonal elements of
Σ matrix are set to zero). The ROC curves for these two cases are plotted in
Figure 4(a) which show that for this specific parameter set, utilizing the correla-
tion information does not substantially improve the performance. On the other

hand, if the Σgen matrix is changed to
[

0.006 0.20
0.20 8.31

]
(corresponds to increasing

the correlation between the genuine matching scores of the two modalities (ρgen)
from 0.75 to 0.90), we observe that fusion accounting for the correlation provides
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Fig. 4. ROC curves for the simulated data; (a) fusion with true parameters when
ρgen = 0.75, (b) fusion with true parameters when ρgen = 0.90 and (c) fusion using
estimated parameters when ρgen = 0.90

substantial improvement over the independence case (see Figure 4(b)). Now, if
we estimate the parameters in equations (10) and (11) using the simulated data,
the copula fusion rule outperforms the product rule as shown in Figure 4(c).
These experiments illustrate that improvement in the recognition performance
by using copula fusion rule depends on the underlying distribution of the match-
ing scores. In the general case, the copula rule will perform at least as good as
the product rule, provided there is sufficient amount of training data to estimate
the correlation matrices accurately.

5 Summary

Based on the generalized density estimates of the genuine and impostor matching
scores, two methods of fusion that follow the Neyman-Pearson rule are described.
The first fusion rule computes the product of the likelihood ratios for each com-
ponent modality of a multimodal system and is optimal when the modalities are
independent of each other. The second fusion rule assumes that the generalized
joint density of matching scores can be modeled using a Gaussian copula function
and is a generalization of the product rule when the component modalities are
not independent. Experimental results indicate that the two fusion rules achieve
better performance compared to the single best modality in both the databases.
The proposed method bypasses the need to perform score normalization and
choosing optimal combination weights for each modality on a case-by-case basis.
In this sense, the proposed solution is a principled and general approach that is
optimal when the genuine and impostor matching score distributions are either
known or can be estimated with high accuracy.
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A Score-Level Fusion Benchmark Database
for Biometric Authentication
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Abstract. Fusing the scores of several biometric systems is a very promising
approach to improve the overall system’s accuracy. Despite many works in the
literature, it is surprising that there is no coordinated effort in making a bench-
mark database available. It should be noted that fusion in this context consists
not only of multimodal fusion, but also intramodal fusion, i.e., fusing systems
using the same biometric modality but different features, or same features but
using different classifiers. Building baseline systems from scratch often prevents
researchers from putting more efforts in understanding the fusion problem. This
paper describes a database of scores taken from experiments carried out on the
XM2VTS face and speaker verification database. It then proposes several fusion
protocols and provides some state-of-the-art tools to evaluate the fusion perfor-
mance.

1 Motivation

Biometric authentication (BA) is a process of verifying an identity claim using a per-
son’s behavioral and physiological characteristics. BA is becoming an important alter-
native to traditional authentication methods such as keys (“something one has”, i.e., by
possession) or PIN numbers (“something one knows”, i.e., by knowledge) because it
is essentially “who one is”, i.e., by biometric information. Therefore, it is not suscepti-
ble to misplacement or forgetfulness. Examples of biometric modalities are fingerprint,
face, voice, hand-geometry and retina scans [1]. However, today, biometric-based se-
curity systems (devices, algorithms, architectures) still have room for improvement,
particularly in their accuracy, tolerance to various noisy environments and scalability
as the number of individuals increases. Biometric data is often noisy because of de-
formable nature of biometric traits, corruption by environmental noise, variability over
time and occlusion by the user’s accessories. The higher the noise, the less reliable the
biometric system becomes.

One very promising approach to improve the overall system’s accuracy is to fuse the
scores of several biometric systems [2]. Despite many works in the literature, e.g. [3,
4], it is surprising that there is no coordinated effort in making a benchmark database
available for such task. This work is one step towards better sharing of scores to focus
on better understanding of the fusion mechanism.

In the literature, there are several approaches towards studying fusion. One practice
is to use virtual identities whereby a biometric modality from one person is paired with
the biometric modality of another person. From the experiment point of view, these
biometric modalities belong to the same person. While this practice is somewhat ac-
cepted in the literature, it was questioned whether this was a right thing to do or not

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 1059–1070, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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during the 2003 Workshop on Multimodal User Authentication [5]. The fundamen-
tal issue here is the independence assumption that two or more biometric traits of a
single person are independent from each other1. Another practice is more reasonable:
use off-the-shelf biometric systems [6] and quickly acquire scores. While this is def-
initely a better solution, committing to acquire the systems and to collect the data is
admittedly a very time-consuming process. None of the mentioned approaches prevails
over the others in understanding the problem of fusion. There are currently on-going
but independent projects in the biometric community to acquire multimodal biometric
databases, e.g., the BANCA [7], XM2VTS [8], BIOMET [9], MYCT [10] and Univer-
sity of Notre Dame Biometrics multimodal databases2. BANCA and XM2VTS contain
face and speech modalities; BIOMET contains face, speech, fingerprint, hand and sig-
nature modalities; MYCT contains ten-print fingerprint and signature modalities and
University of Notre Dame Biometrics Database contains face, ear profile and hand
modalities acquired using visible, Infrared-Red and range sensors at different angles.
Taking multimodal biometrics in a wider context, i.e., in the sense that it involves dif-
ferent sensors, the FRGC3 database can also be considered as “multimodal”. It contains
face modality captured using camera (at different angles) and range sensors in different
(controlled or uncontrolled) settings.

As a matter of fact, most reported works in the literature about fusion often con-
centrates on treatment of the baseline systems. While baseline systems are definitely
important, the subject of fusion is unfortunately downplayed. Hence, we propose here
not only to publish scores resulted from biometric authentication experiments, but also
to provide a clear documentation of the baseline systems and well-defined fusion pro-
tocols so that experimental results can be compared. To the best of our knowledge, this
is first ever published score data set. It is intended for comparison of different fusion
classifiers on a common setting. We further provide a set of evaluation tools such as the
DET [11] curve and the recent Expected Performance Curve (EPC) [12], visualisation
of False Acceptance and False Rejection Rates versus threshold, distribution of client
and impostor scores, and the HTER significance test [13], among others.

The scores are taken from the publicly available XM2VTS face and speech database4.
It should be mentioned here that there exists another software tool that analyses biomet-
ric error rate called PRESS[14]. However, it does not include the DET curve. The tools
proposed here, together with the database, provide a new plot called Expected Perfor-
mance Curve (EPC) [12] and a significance test specially designed to test the Half Total
Error Rate (HTER) [13].

Section 2 explains the XM2VTS database, the Lausanne Protocols and the proposed
Fusion Protocols. Section 3 documents the 8 baseline systems that can be used for fu-
sion. Section 4 presents the evaluation criteria, i.e., how experiments should be reported
and compared. This is followed by conclusions in Section 5.

1 To the best of our knowledge, there is no work in the literature that approves or disapproves
such assumption

2 Accessible from http://www.nd.edu/∼cvrl/UNDBiometricsDatabase.html
3 Accessible from http://www.frvt.org/FRGC/
4 The database of scores as well as the tools mentioned are freely available for download at

http://www.idiap.ch/∼norman/fusion
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2 Database and Protocols

2.1 The XM2VTS Database and the Lausanne Protocols

The XM2VTS database [15] contains synchronised video and speech data from 295
subjects, recorded during four sessions taken at one month intervals. On each session,
two recordings were made, each consisting of a speech shot and a head shot. The speech
shot consisted of frontal face and speech recordings of each subject during the recital
of a sentence. The database is divided into three sets: a training set, an evaluation set
and a test set. The training set (LP Train) was used to build client models, while the
evaluation set (LP Eval) was used to compute the decision thresholds (as well as other
hyper-parameters) used by classifiers. Finally, the test set (LP Test) was used to estimate
the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors
and 70 test impostors. There exists two configurations or two different partitioning ap-
proaches of the training and evaluation sets. They are called Lausanne Protocol I and II,
denoted as LP1 and LP2 in this paper. In both configurations, the test set remains the
same. Their difference is that there are three training shots per client for LP1 and four
training shots per client for LP2. Table 1 is the summary of the data. The last column
of Table 1 is explained in Section 2.2. Note that LP Eval’s of LP1 and LP2 are used
to calculate the optimal thresholds that will be used in LP Test. Results are reported
only for the test sets, in order to be as unbiased as possible (using an a priori selected
threshold). More details can be found in [8].

2.2 The Fusion Protocols

The fusion protocols are built upon the Lausanne Protocols. Before the discussion, it
is important to distinguish two categories of approaches: client-independent and client-
dependent fusion approaches. The former approach has only a global fusion function
that is common to all identities in the database. The latter approach has a different fu-
sion function for a different identity. It has been reported that client-dependent fusion
is better than client-independent fusion, given that there are “enough” client-dependent

Table 1. The Lausanne Protocols of XM2VTS database. The last column shows the terms used
in the fusion protocols presented in Section 2.2. LP Eval corresponds to the Fusion protocols’
development set while LP Test corresponds to the Fusion Protocols’ evaluation set

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols

LP Train client accesses 3 4 NIL
LP Eval client accesses 600 (3 × 200) 400 (2 × 200) Fusion dev
LP Eval impostor accesses 40,000 (25 × 8 × 200) Fusion dev
LP Test client accesses 400 (2 × 200) Fusion eva
LP Test impostor accesses 112,000† (70 × 8 × 200) Fusion eva

†: Due to one corrupted speech file of one of the 70 impostors in this set, this file was deleted,
resulting in 200 less of impostor scores, or a total of 111,800 impostor scores.
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score data. Examples of client-dependent fusion approach are client-dependent thresh-
old [16], client-dependent score normalisation [17] or different weighing of expert opin-
ions using linear [18] or non-linear combination [19]. The fusion protocols that are
described here can be client-dependent or client-independent.

It should be noted that one can fuse any of the 8 baseline experiments in LP1 and 5
baseline experiments in LP2 (to be detailed in Section 3). We propose a full combination
of all these systems. This protocol is called FP-full. Hence, there are altogether 28 −
8 − 1 = 248 possible combinations for LP1 and 25 − 5 − 1 = 26 for LP2. The reasons
for minus one and minus the number of experts are that using zero expert and using a
single expert are not valid options. However, some constraints are useful. For instance,
in some situations, one is constrained to using a single biometric modality. In this case,
we propose an intramodal fusion (FP-intramodal) . When no constraint is imposed, we
propose a full combination (FP-multimodal). FP-intramodal contains 25 − 5− 1 = 26
face-expert fusion experiments for LP1, 23−3−1 = 4 speech-expert fusion experiments
for LP1, 1 face-expert fusion experiment for LP2 and 23 − 3 − 1 = 4 speech expert-
fusion experiments for LP2. Hence, FP-intramodal contains 35 fusion experiments. The
second protocol contains

∑5
m=1

∑3
n=1(

5Cm
3Cn) = 217 combinations, where nCk is

“n choose k”. As can be seen, the first three fusion protocols contain an exponential
number of combinations. For some specific study, it is also useful to introduce a smaller
set of combinations, each time using only two baseline experts, according to the nature
of the base-expert. This protocol is called FP-2. Three categories of fusion types have
been identified under FP-2, namely multimodal fusion (using different biometric traits),
intramodal fusion with different feature sets and intramodal fusion with the same feature
set but different classifiers. There are altogether 32 such combinations (not listed here;
see [20] for details).

Note that there are 8 biometric samples in the XM2VTS database on a per client
basis. They are used in the following decomposition: 3 samples are used to train the
baseline experts in LP1 (and 4 in LP2) on LP Train. There are remaining 3 samples in
the in LP1 Eval (and only 2 in LP2 Eval). Finally, for both protocols, 2 client accesses
for testing in the test set. Because fusion classifiers cannot be trained using scores from
the training set, or they are simply not available in the current settings, we are effectively
using the LP Eval to train the fusion classifiers and then LP Test to test the fusion
classifiers’ performance on the LP Test. To avoid confusion in terminology used, we
call LP Eval as the fusion development set and LP Test as the fusion evaluation set.

3 Baseline System Description

There are altogether 8 baseline systems5 All the 8 baseline systems were used in LP1.
On the other hand, 5 out of 8 were used in LP2. This results in 13 baseline experiments
(for LP1 and LP2). The following explanation describes these systems in terms of their
features, classifiers, and the complete system which is made up of the pair (feature
type, classifier).

5 Public contribution of score files is welcome. More will be released in the future as they be-
come available
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3.1 Face and Speech Features

The face baseline experts are based on the following features:

1. FH: normalised face image concatenated with its RGB Histogram (thus the abbre-
viation FH) [21].

2. DCTs: DCTmod2 features [22] extracted from face images with a size of 40 × 32
(rows × columns) pixels. The Discrete Cosine Transform (DCT) coefficients are
calculated from an 8 × 8 window with horizontal and vertical overlaps of 50%, i.e.,
4 pixels in each direction. Neighbouring windows are used to calculate the “delta”
features. The result is a set of 35 feature vectors, each having a dimensionality of
18. (s indicates the use of this small image compared to the bigger size image with
the abbreviation b.)

3. DCTb: Similar to DCTs except that the input face image has 80 × 64 pixels. The
result is a set of 221 feature vectors, each having a dimensionality of 18.

The speech baseline experts are based on the following features:

1. LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC) [23] speech features
were computed with 24 linearly-spaced filters on each frame of Fourier coefficients
sampled with a window length of 20 milliseconds and each window moved at a
rate of 10 milliseconds. 16 DCT coefficients are computed to decorrelate the 24
coefficients (log of power spectrum) obtained from the linear filter-bank. The first
temporal derivatives are added to the feature set.

2. PAC: The Phase Auto-Correlation Mel Filter-bank Cepstral Coefficient (PAC-
MFCC) features [24] are derived with a window length of 20 milliseconds and each
window moves at a rate of 10 milliseconds. 20 DCT coefficients are computed to
decorrelate the 30 coefficients obtained from the Mel-scale filter-bank. The first
temporal derivatives are added to the feature set.

3. SSC: Spectral Subband Centroid (SSC) features, originally proposed for speech
recognition [25], were used for speaker authentication in [26]. It was found that
mean-subtraction could improve these features significantly. The mean-subtracted
SSCs are obtained from 16 coefficients. The γ parameter, which is a parameter that
raises the power spectrum and controls how much influence the centroid, is set to
0.7 [27]. Also, the first temporal derivatives are added to the feature set.

3.2 Classifiers

Two different types of classifiers were used for these experiments: Multi-Layer Percep-
trons (MLPs) and a Bayes Classifier using Gaussian Mixture Models (GMMs) [28].
While in theory both classifiers could be trained using any of the previously defined
feature sets, in practice MLPs are better at matching feature vectors of fixed-size while
GMMs are better at matching sequences (feature vectors of unequal size). Whatever
the classifier is, the hyper-parameters (e.g. the number of hidden units for MLPs or the
number of Gaussian components for GMMs) are tuned on the evaluation set LP1 Eval.
The same set of hyper-parameters are used in both LP1 and LP2 configurations of the
XM2VTS database.
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For each client-specific MLP, the feature vectors associated to the client are treated
as positive patterns while all other feature vectors not associated to the client are treated
as negative patterns. All MLPs reported here were trained using the stochastic version
of the error-back-propagation training algorithm [28].

For the GMMs, two competing models are often needed: a world and a client-
dependent model. Initially, a world model is first trained from an external database (or a
sufficiently large data set) using the standard Expectation-Maximisation algorithm [28].
The world model is then adapted for each client to the corresponding client data using
the Maximum-A-Posteriori adaptation [29] algorithm.

3.3 Baseline Systems

The baseline experiments based on DCTmod2 feature extraction were reported in [30]
while those based on normalised face images and RGB histograms (FH features) were
reported in [21]. Details of the experiments, coded in the pair (feature, classifier), for
the face experts, are as follows:

1. (FH, MLP) Features are normalised Face concatenated with Histogram features.
The client-dependent classifier used is an MLP with 20 hidden units. The MLP is
trained with geometrically transformed images [21].

2. (DCTs, GMM) The face features are the DCTmod2 features calculated from an
input face image of 40×32 pixels, hence, resulting in a sequence of 35 feature vec-
tors each having 18 dimensions. There are 64 Gaussian components in the GMM.
The world model is trained using all the clients in the training set [30].

3. (DCTb, GMM) Similar to (DCTs,GMM), except that the features used are DCT-
mod2 features calculated from an input face image of 80×64 pixels. This produces
in a sequence of 221 feature vectors each having 18 dimensions. The corresponding
GMM has 512 Gaussian components [30].

4. (DCTs, MLP) Features are the same as those in (DCTs,GMM) except that an MLP
is used in place of a GMM. The MLP has 32 hidden units [30]. Note that in this
case a training example consists of a big single feature vector with a dimensionality
of 35× 18. This is done by simply concatenating 35 feature vectors each having 18
dimensions6.

5. (DCTb, MLP) The features are the same as those in (DCTb,GMM) except that an
MLP with 128 hidden units is used. Note that in this case the MLP in trained on a
single feature vector with a dimensionality of 221 × 18 [30].

and for the speech experts:

1. (LFCC, GMM) This is the Linear Filter-bank Cepstral Coefficients (LFCC) ob-
tained from the speech data of the XM2VTS database. The GMM has 200 Gaus-
sian components, with the minimum relative variance of each Gaussian fixed to 0.5,

6 This may explain why MLP, an inherently discriminative classifier, has worse performance
compared to GMM, a generative classifier. With high dimensionality yet having only a few
training examples, the MLP cannot be trained optimally. This may affect its generalisation on
unseen examples. By treating the features as a sequence, GMM was able to generalise better
and hence is more adapted to this feature set
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Fig. 1. Smoothed distribution (measured as unnormalised likelihood using Parzen window tech-
nique) of class-dependent correlations on the 32 fusion data sets of the FP-2 protocol according
to the two categories of fusion: multimodal or intramodal. Since each data set has two classes
(client and impostor), there are altogether 2 × 32 = 64 correlation values

and the MAP adaptation weight equals 0.1. This is the best known model currently
available [31] under clean conditions.

2. (PAC, GMM) The same GMM configuration as in LFCC is used. Note that in gen-
eral, 200-300 Gaussian components would give about 1% of difference of HTER
[31]. This system is particularly robust to very noisy conditions (less than 6 dBs, as
tested on the NIST2001 one-speaker detection task).

3. (SSC, GMM) The same GMM configuration as in LFCC is used [27]. This system
is known to provide an optimal performance under moderately noisy conditions
(18-12 dBs, as tested on NIST2001 one-speaker detection task).

3.4 Preliminary Correlation Analysis

A preliminary analysis was carried out on the FP-2 protocol. There are 32 fusion data
sets here and each data set contains scores of two experts. Each data set contains two
classes: client or impostor scores. For each class of each data set, we computed the
correlation between scores of two experts in the linear space. The GMM and SVM
scores are used as they are. Since correlation measures the linear relationship among
variables, it fails to measure the MLP scores which are trained using a tanh or a sigmoid
nonlinear activation function. An inverse of tanh or sigmoid function is applied to the
scores prior to computing the correlation values. With the absence of this corrective
procedure, the strong correlation is systematically under-estimated for the intramodal
fusion datasets. The resultant distribution of these correlation values, categorised into
intramodal and multimodal fusion datasets, are shown in Fig. 1. As can be observed,
the multimodal fusion datasets have correlation around zero whereas the intramodal
fusion datasets have relatively high correlation values. This is a strong indication that
the gain from fusion using the intramodal data sets will be less than that from using the
multimodal data sets.
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4 Performance Evaluation

There are three important concepts about evaluation of a biometric system: (1) types
of errors in biometric authentication, namely false acceptance, false rejection and their
combined error called Weighted Error Rate (WER), (2) threshold criterion and (3) eval-
uation criterion. A threshold criterion refers to a strategy to choose a threshold to be
applied on an evaluation (test) set. It is necessarily tuned on a development (training)
set. An evaluation criterion is used to measure the final generalisation performance
and is necessarily calculated on an evaluation set. A fully operational biometric system
makes a decision using the following decision function:

F (x) =
{
accept if y(x) > Δ
reject otherwise,

(1)

where y(x) is the output of the underlying expert supporting the hypothesis that the bio-
metric sample received x belongs to a client. The variables that follow will be derived
from y(x). For simplicity, we write y instead of y(x). The same convention applies to
variables that follow. Because of the accept-reject outcomes, the system may make two
types of errors, i.e., false acceptance (FA) and false rejection (FR). Normalised versions
of FA and FR are often used and called false acceptance rate (FAR) and false rejection
rate (FRR), respectively. They are defined as:

FAR(Δ) =
FA(Δ)
NI

, (2)

FRR(Δ) =
FR(Δ)
NC

. (3)

where FA and FR count the number of FA and FR accesses, respectively; and NI and
NC are the total number of impostor and client accesses, respectively.

To choose an “optimal threshold” Δ, it is necessary to define a threshold criterion.
This has to be done on a development set. Two commonly used criteria are the Weighted
Error Rate (WER) and Equal Error Rate (EER). WER is defined as:

WER(α,Δ) = αFAR(Δ) + (1 − α) FRR(Δ), (4)

where α ∈ [0, 1] balances between FAR and FRR. A special case of WER is EER,
which assumes that the costs of FA and FR are equal. It further assumes that the class
prior distributions of client and impostor accesses are equal. As a resultα = 0.5. Let Δ∗

α

be the optimal threshold that minimises WER on a development set. It can be calculated
as follows:

Δ∗ = argmin
Δ

WER(α,Δ). (5)

Note that the EER criterion can be calculated similarly by fixing α = 0.5.
Having chosen an optimal threshold using the WER threshold criterion discussed

previously, the final performance is measured using Half Total Error Rate (HTER). Note
that the threshold is found with respect to a given α. It is defined as:

HTER(Δ∗
α) =

FAR(Δ∗
α) + FRR(Δ∗

α)
2

. (6)
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It is important to note that the FAR and FRR do not have the same resolution. Because
there are more simulated impostor accesses than the client accesses, FRR changes more
drastically when falsely rejecting a client access whereas FAR changes less drastically
when falsely accepting an impostor access. Hence, when comparing the performance
using HTER(Δ∗

α) from two systems (at the same Δ∗
α), the question of whether the

HTER difference is significant or not has to take into account the imbalanced numbers
of client and impostor accesses. This issue was studied in [13], and as a result, the HTER
significance test was proposed. Finally, it is important to note that HTER in Eqn. (6)
is identical to EER (WER with α = 0) except that HTER is a performance measure
(calculated on an evaluation set whereas EER is a threshold criterion optimised on a
development set. Because of their usage in different context, EER should not be inter-
preted as a performance measure (in place of HTER) to compare the performance of
different systems. Such practice, to our opinion, leads to an unrealistic comparison. The
argument is that in an actual operating system, the threshold has to be fixed a priori.
To distinguish these two concepts, when discussing HTER calculated on a development
set using a threshold criterion also calculated on the same set, the HTER should be
called a posteriori HTER. When discussing HTER calculated on an evaluation set with
a threshold optimised on a development set, the HTER should be called a priori HTER.

The most commonly used performance visualising tool in the literature is the Deci-
sion Error Trade-off (DET) curve [11] and Receiver’s Operating Characteristic (ROC)
curve7. A DET curve is a ROC curve plotted in normal probability co-ordinate scales in
its X- and Y-axes. It has been pointed out [12] that two DET curves resulting from two
systems are not comparable because such comparison does not take into account how
the thresholds are selected. It was argued [12] that such threshold should be chosen a
priori as well, based on a given criterion. This is because when a biometric system is
operational, the threshold parameter has to be fixed a priori. As a result, the Expected
Performance Curve (EPC) [12] was proposed. This curve is constructed as follows: for
various values of α between 0 and 1, select the optimal threshold Δ on a development
(training) set, apply it on the evaluation (test) set and compute the HTER on the evalua-
tion set. This HTER is then plotted with respect to α. The EPC curve can be interpreted
similarly to the DET curve, i.e., the lower the curve, the better the generalisation perfor-
mance. Although EPC is recommended, due to the popularity of ROC and DET curves,
it is reasonable to report experimental results with these curves as well alongside with
EPC. In this case, the pair of FAR and FRR values that constitute a point in ROC can
be derived from the FAR and FRR terms in Eqn. (6), i.e., with the threshold Δ∗

α derived
from the development (training) set.

5 Conclusions

In this study, we presented a score-level fusion database, several fusion protocols in
different scenarios and some evaluation tools to encourage researchers to focus on the
problem of biometric authentication score-level fusion. To the best of our knowledge,
there has been no work in the literature that provides a benchmark database for score-
level fusion. Hence, the efficiency of fusion classifiers can now be compared on equal

7 A good introduction can be found in “http://www.anaesthetist.com/mnm/stats/roc/”
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platforms. We also further encourage contribution of scores following the same Lau-
sanne Protocols to enrich this corpus. An extended version of this report, which in-
cludes a greater level of details on the evaluation tools, can be found in [20]. Finally,
some baseline results on this data set using the fusion protocol with two experts (FP-2)
can be found in [32].
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Marcel for providing the data sets. This publication only reflects the authors’ view.

References

1. A.K. Jain, R. Bolle, and S. Pankanti, Biometrics: Person Identification in a Networked
Society, Kluwer Publications, 1999.

2. J. Kittler, G. Matas, K. Jonsson, and M. Sanchez, “Combining Evidence in Personal Identity
Verification Systems,” Pattern Recognition Letters, vol. 18, no. 9, pp. 845–852, 1997.

3. J. Kittler, K. Messer, and J. Czyz, “Fusion of Intramodal and Multimodal Experts in Personal
Identity Authentication Systems,” in Proc. Cost 275 Workshop, Rome, 2002, pp. 17–24.

4. J. Fierrez-Aguilar, J. Ortega-Garcia, D. Garcia-Romero, and J. Gonzalez-Rodriguez, “A
Comparative Evaluation of Fusion Strategies for Multimodal Biometric Verification,” in
Springer LNCS-2688, 4th Int’l. Conf. Audio- and Video-Based Biometric Person Authentica-
tion (AVBPA 2003), Guildford, 2003, pp. 830–837.

5. J-L. Dugelay, J-C. Junqua, K. Rose, and M. Turk (Organizers), Workshop on Multimodal
User Authentication (MMUA 2003), no publisher, Santa Barbara, CA, 11–12 December,
2003.

6. M. Indovina, U. Uludag, R. Snelick, A. Mink, and A. Jain, “Multimodal Biometric Authen-
tication Methods: A COTS Approach,” in Workshop on Multimodal User Authentication
(MMUA 2003), Santa Barbara, 2003, pp. 99–106.

7. E. Bailly-Baillière, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler, J. Mariéthoz, J. Matas,
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Abstract. In this paper, we investigate fusion methods for multimodal
identification using several unimodal identification results. One finger-
print identification system and two face identification systems are used
as fusion sources. We discuss rank level and score level fusion methods.
Whereas the latter combines similarity scores, the other one combines the
orders of the magnitudes of the similarity scores. For rank level methods,
Borda Count and Bayes Fuse are considered and, for score level methods,
Sum Rule and Binary Classification Approach are considered. Especially,
we take a more detailed look at Binary Classification Approach, which
simplifies a multiple class problem into a binary class problem. Finally,
we compare experimental results using the fusion methods in different
combinations of the sources.

1 Introduction

As biometrics attracts more and more attention from many areas, the demand
of high accuracy and reliability is also increasing. Although various biometric
systems have been developed and improved, there are still limitations which
have to be overcome to meet stringent performance requirements from many
applications. Most systems are unimodal, i. e., they rely on the single source of
information for establishing identity, and most limitations are imposed by their
unimodality. The problems which those systems have to contend with are such as
noise in sensed data, intra-class variation, inter-class similarity, non-universality,
and spoof attack [1]. When a large number of users are comprised in a system,
inter-class similarity may be a major cause for performance degradation. Gol-
farelli et al. state that the number of distinguishable patterns in two of the most
commonly used representations of hand geometry and face are only of the order
of 105 and 103, respectively [2][1]. Multimodal biometrics may be, therefore, the
only way to construct a robust identification system since identification itself
intrinsically involves a large number of users.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 1071–1079, 2005.
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Multimodal biometric systems can be implemented by fusing more than two
biometric systems. The three possible levels of fusion are: fusion at the feature
extraction level, fusion at the matching score level, and fusion at the decision
level [3]. In feature level fusion, feature vectors, which are extracted from several
biometric traits, are concatenated into a singe higher dimensional vector. Al-
though feature level fusion can contain the richest information among the three
fusion methods, it causes to compare the heterogeneous data in higher dimen-
sion. Since an identification system has to compare all templates in the database,
comparison of high dimensional data is a serious burden to an identification sys-
tem. By integrating individual unimodal systems, distribution process can be
achieved naturally and is more efficient for management. Thus, only score and
decision level fusions are reasonable approaches to an identification system. The
rank level fusion is a more proper name than decision level fusion for identifica-
tion due to its multiplicity.

In this paper, we investigate four fusion methods, Borda Count, Bayes Fusion,
Sum Rule, and Binary Classification Approach. The former two are based on
rank and the latter two are based on score. Especially, we take a more detailed
look at Binary Classification Approach, which simplifies a multiple class problem
into a binary class problem. One fingerprint and two face identification systems
are used as fusion sources. The rest of the paper is organized as follows. The
three unimodal identification systems and fusion methods will be described in
Sec. 2 and Sec. 3, respectively. And experimental results for fusion are shown in
Sec. 4. Finally, we present our conclusion in Sec. 5.

2 Unimodal Identification

In this section, we briefly describe fingerprint and face identification systems,
which provide sources for fusion. Given a probe, each unimodal identification
system return N(the number of candidates in a database) similarity or dissim-
ilarity scores, which are results from comparison of one probe with N galleries
in the database.

2.1 Fingerprint Identification

It is widely known that a professional fingerprint examiner relies on details of
ridge structures to make fingerprint identifications. It implies that fingerprint
authentication can be based on the matching of structural patterns. Generally,
structural features used in fingerprint identification are composed of the point
where ridge ends and that ridge bifurcates, which are called minutiae. Our rep-
resentation is minutiae based, and each minutia is described by its position in
x, y coordinates, the direction it flows and the type i.e., ridge ending or bifur-
cation. After refinement and alignment of fingerprint images, two minutiae from
a probe and a gallery set are compared based on their position, direction, and
type. Then, a matching score is computed. A detailed method can be found
in [4].
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2.2 Face Identification

For face recognition, feature extraction is required to represent high dimensional
image data into low dimensional feature vectors. Among various methods, we
use PCA(Principal Component Analysis), which is known as eigenface in face
recognition field [5]. The bases, which are used to extract face features, are
eigenvectors of the covariance matrix of the face images and thought of as face
models, called eigenfaces. By projecting a face image onto the eigenfaces, the
linear combination weights for eigenfaces are calculated. These weights are used
as representations of the face. In this paper, comparisons between feature vec-
tors of a probe and a galley set are performed using Euclidean distance and
SVM(Support Vector Machine) [6], which models each person in the database.
While Euclidean distance gives distance values as dissimilarity scores, SVM gives
classification results as similarity scores.

3 Fusion Methods

For consolidating more than two identification results, score and rank level fu-
sions are possible. Whereas the former uses similarity (or dissimilarity) scores,
the other uses the orders of the magnitudes of similarity (or dissimilarity) scores.
Fusion at score level is more flexible and contains more information than rank
level fusion, but it requires transforming scores of multiple sources into common
domain. Fusion at rank level is convenient to use but rather rigid. In this section,
we describe four fusion methods at rank level and score level.

3.1 Borda Count

Borda Count is a voting algorithm from social choice theory and was used for a
metasearch engine in information retrieval [7]. Metasearch engine combines lists
of documents returned by multiple search engines to obtain better results. The
general ideas of a metasearch engine and a multimodal biometric system are
the same. The difference is that information retrieval systems can have multiple
targets (relevant set), but biometric systems can have only one target (genuine).

Borda Count is simple, fast, and unsupervised rank level method. It works
as follows. Suppose that there are M unimodal systems and N candidates. For
each systems, the top ranked candidate is given by N points, the second ranked
candidate is given N − 1 points, and so on. The fused score for candidate i can
be written as follows.

fi =
M∑

m=1

(N − ri,m + 1) (1)

where ri,m represents rank of candidate i given by unimodal system m. Candi-
date list is reranked using the fused score.

3.2 Bayes Fuse

Bayes Fuse was developed in information retrieval field, too [7][8]. It is supervised
and rank level method, which is based on Bayesian inference. The training and
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test is very fast and simple. Originally it used relevant and irrelevant terms for
document sets, but they can be changed into genuine and impostor for human
candidates and can be applied to a human identification system. The fused score
for candidate i is given as

fi =
M∑

m=1

log
Pr[ri,m|genuine]
Pr[ri,m|impostor]

(2)

We need training data to estimate the likelihood probabilities Pr[rm|genuine]
and Pr[rm|impostor]. Pr[rm|genuine] is the probability that a genuine would
be ranked at level rm by system m. Similarly, Pr[rm|impostor] is the probability
that an impostor would be ranked at level rm by system m.

Eq.(2) is derived easily from the odds ratio of two posterior probabilities,

PG = Pr[genuine|r1, r2, . . . , rM ],
PI = Pr[impostor|r1, r2, . . . , rM ]

with the assumption of independence between systems. Detailed derivation can
be found in [7] and [8].

3.3 Sum Rule

This is a simple and unsupervised method at score level. After transforming
all scores into a similarity measure, it sums all the scores. The fused score for
candidate i is given as

fi =
M∑

m=1

si,m (3)

where si,m is a similarity score for candidate i given by system m.

3.4 Binary Classification Approach

Given a probe to an identification system, N comparisons are performed against
a gallery set in each unimodal system. Through the N comparisons, one genuine
score and (N − 1) impostor scores are generated. By concatenating the match-
ing scores from M unimodal systems, we can have one M -dimensional pattern
resulted from a comparison with a target template and (N − 1) M -dimensional
patterns resulted from comparisons with non-target templates. Therefore, by
putting the most genuine-like pattern into the top rank, multimodal identifica-
tion can be performed.

This approach considers the concatenated score vectors as new features and a
pre-trained binary classifier discriminates them into two classes, genuine pattern
and impostor pattern. Therefore, the fused score, fi, is given by the distance
from the decision boundary of the two classes and represents confidence rate of
the classifier. Absolute decision results, such as +1/−1 or yes/no, are not neces-
sary because we order the candidates using the relative magnitudes of the fused



Fusion for Multimodal Biometric Identification 1075

Fig. 1. Binary Classification Approach. si,1, si,2 and si,3 refers to scores for candidate i
by unimodal system 1, 2 and 3, respectively. And [Si,1Si,2Si,3]

T represents a normalized
score vector for candidate i. The final fused score, fi, is given by the decision result of
the binary classifier

scores. However, the absolute decision results can be used to indicate whether a
candidate is in a watch list or not. And, by minimizing classification error, the
classifier considers dependency between unimodal systems.

The classifier does not need to be dependent on a user. By treating the fusion
as a two class problem and training the classifier using score vectors from a subset
of users, we can easily integrate the identification results without restriction on
the number of candidates generated by the unimodal systems. In case of three
unimodal systems, a schematic draw of the method is given in Fig. 1.

4 Experiment Results

4.1 Database

The database for fusion experiments consists of identification results of one fin-
gerprint and two face systems. Because the pairs of the two biometric traits
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from a single set of users are not available to us and they are supposed to be
independent of each other, we construct a multimodal database from two dis-
tinct fingerprint and face databases. The fingerprint database is provided by
KISIS [9] and the face database is XM2VTS, which is publicly available [10].
The final database consists of 287 users in which biometric information is not
overlapped between users.

After constructing unimodal identification systems, four probes per person
were available. Two probes with a known identity were used as training data for
supervised fusion, and the rest two were used for test. For score level fusion, we
transformed a dissimilarity measure, which is based on distance, into a similarity
measure by multiplying −1. Then all scores were normalized between 0 and 1 by
subtracting the minimum value and dividing the maximum value. The minimum
and maximum values were selected from a training data set for supervised fusion
methods.

The scatter plot of the normalized scores for training is shown in Fig. 2.
The scores from the two face systems are highly correlated to each other, but
the scores from the fingerprint system is not. In case of the fingerprint system,
scores of genuine and impostor are separated clearly, but not the face systems. In
the figure, Euc and SVM represent face identification using Euclidean distance
and SVM as described in the previous section. And Finger refers to fingerprint
identification.

Fig. 2. Scatter plots of normalized scores of training data. Euc and SVM represent
scores from the face systems using Euclidean distance and SVM, respectively. Finger
refers to scores from the fingerprint system. Blue dots and red crosses stand for genuine
and impostor. And the figures in the diagonal are score distributions
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Table 1. Rank-N recognition rate(%). Face(Euc)+Face(SVM)

Rank
Unimodal Fusion

Face(Euc) Face(SVM) Borda Bayes Sum SVM

1 57.84 65.68 62.72 66.03 66.03 66.55
2 66.20 71.95 70.38 72.82 73.35 73.52
3 69.34 75.96 75.26 75.09 76.48 77.18
4 71.78 78.22 78.22 78.57 79.09 79.62
5 74.56 79.97 80.14 80.31 81.19 80.31
6 75.44 81.01 82.23 82.40 82.75 82.23
7 77.35 82.06 83.28 83.97 84.15 83.10
8 78.57 83.62 84.15 84.84 84.84 85.02
9 79.44 84.84 84.50 85.89 85.71 86.06
10 79.79 86.06 85.19 86.41 86.76 86.59

Table 2. Rank-N recognition rate(%). Face(Euc)+Finger

Rank
Unimodal Fusion

Face(Euc) Finger Borda Bayes Sum SVM

1 57.84 93.38 81.71 94.43 97.39 97.21
2 66.20 94.95 84.67 97.91 97.74 97.91
3 69.34 94.95 86.59 98.26 98.26 98.61
4 71.78 95.30 87.63 98.26 98.78 98.78
5 74.56 95.65 88.33 98.78 98.78 98.78
6 75.44 95.82 88.85 98.78 98.78 98.78
7 77.35 95.99 89.20 98.96 98.78 98.78
8 78.57 96.17 89.37 98.96 98.78 98.78
9 79.44 96.52 89.37 98.96 98.78 98.78
10 79.79 96.69 89.90 99.13 98.96 98.78

4.2 Experimental Results

Rank-N recognition rates of fusion and individual unimodal systems are shown
in Table 1, 2, 3, and 4. The rank-N recognition rate is the proportion that the
score of the correct gallery is within top N scores for each probe. For Binary
Classification Approach, we used SVM with Gaussian kernel.

As shown in Table 1, there were no apparent improvements when two face
systems were combined. By combining independent sources, performance gains
were obtained. Although the recognition rate of the fingerprint system was very
high, all methods, except for Borda Count, achieved higher recognition rates.
We think that the reason for Borda Count’s failure is in information loss by
its uniform discretization of scores rather than its unsupervised learning. This
is because the simple Sum Rule, which is an unsupervised score level method,
achieved a better performance improvement than Bayes Fuse, which is a super-
vised rank level method. Moreover, the improvement of Sum Rule is competitive
compared to SVM fusion, which is a supervised method.
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Table 3. Rank-N recognition rate(%). Face(SVM)+Finger

Rank
Unimodal Fusion

Face(SVM) Finger Borda Bayes Sum SVM

1 65.68 93.38 85.71 94.77 97.21 97.74
2 71.95 94.95 89.37 98.08 98.61 98.78
3 75.96 94.95 90.24 98.78 98.96 98.96
4 78.22 95.30 90.42 98.78 99.30 99.48
5 79.97 95.65 91.12 99.13 99.48 99.65
6 81.01 95.82 91.81 99.30 99.65 99.65
7 82.06 95.99 91.81 99.30 99.65 99.65
8 83.62 96.17 92.16 99.48 99.65 99.65
9 84.84 96.52 92.33 99.48 99.83 99.65
10 86.06 96.69 92.68 99.48 99.83 99.65

Table 4. Rank-N recognition rate(%). Face(Euc)+Face(SVM)+Finger

Rank
Unimodal Fusion

Face(Euc) Face(SVM) Finger Borda Bayes Sum SVM

1 57.84 65.68 93.38 82.85 87.81 95.99 98.26
2 66.20 71.95 94.95 86.24 97.39 97.56 98.61
3 69.34 75.96 94.95 86.93 98.43 97.91 98.78
4 71.78 78.22 95.30 88.15 98.78 98.26 99.13
5 74.56 79.97 95.65 88.68 98.78 98.43 99.30
6 75.44 81.01 95.82 89.55 98.96 98.43 99.65
7 77.35 82.06 95.99 89.90 98.96 98.61 99.65
8 78.57 83.62 96.17 90.07 99.30 98.96 99.83
9 79.44 84.84 96.52 90.59 99.30 99.13 99.83
10 79.79 86.06 96.69 90.94 99.30 99.48 99.83

For the rank 1, the best recognition rates of Borda Count, Bayes Fuse, Sum
Rule, and SVM Fusion are 85.71%, 94.77%, 97.39%, 98.26%, which can be seen
in Table 3, 3, 2 and 4 respectively. SVM fusion achieved the best performance
when all three sources were combined, but the rest three methods obtained
the best performance when only two sources from different biometric modalities
were used. Bayes Fuse showed severe degradation of recognition rate in the rank
1 when combining three sources. This seems to be due to its explicit assumption
of independence. Among various fusion methods and different combinations of
sources, SVM fusion with three sources gave the best result but the difference
of performance is not very significant in the top ranks except for Borda Count.

5 Conclusion

In this paper, we have investigated four fusion methods for multimodal iden-
tification using one fingerprint system and two face systems. The methods are
(i) Borda Count, (ii) Bayes Fuse, (iii) Sum Rule and (vi) Binary Classification
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Approach using SVM. These fusion methods can be categorized by a rank level
or a score level method, and in addition they can be also classified into an
unsupervised or a supervised method. Through the methods except for Borda
Count, good performance improvements were obtained. We think that the rea-
son for Borda Count’s failure is in its information loss by uniform discretization
of scores rather than its unsupervised learning. Level of fusion may be a more
important factor for a performance gain than learning method in fusion for mul-
timodal identification. However, in cases that similarity scores are not available,
Bayes Fuse can be a good choice for its simplicity and relatively good perfor-
mance. Binary Classification Approach has a potential advantage over the other
methods. As it combines multiple sources, it can indicate whether a user is in a
watch list or not at the same time. Future experiments will include a watch list
using Binary Classification Approach.
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Abstract. In this paper, the use of biometric systems in forensic ap-
plications is reviewed. Main differences between the aim of commercial
biometric systems and forensic reporting are highlighted, showing that
commercial biometric systems are not suited to directly report results
to a court of law. We propose the use of a Bayesian approach for foren-
sic reporting, in which the forensic scientist has to assess a meaningful
value, in the form of a likelihood ratio (LR). This value assist the court
in their decision making in a clear way, and can be computed using scores
coming from any biometric system, with independence of the biometric
discipline. LR computation in biometric systems is reviewed, and sta-
tistical assumptions regarding estimations involved in the process are
addressed. The paper is focused in handling small sample size effects in
such estimations, presenting novel experiments using a fingerprint and a
voice biometric system.

1 Introduction

The number of commercial applications of biometric systems has significantly
increased in the last years. As a consequence, forensic applications of biomet-
ric systems arise then in a natural way. Forensic reporting in cases involving
anthropomorphical or behavioral patterns can be assisted by using a biometric
system. For example, a sample pattern is recovered at the scene of a crime (e. g.,
a fingermark) and a court of law requests an expert opinion on the comparison
of such a mark with a template (e. g., a suspect’s fingerprint) from a suspect.
The aim of a forensic system in such a case is to report a meaningful value in
order for the court to assess the strength of the forensic evidence in this context
of identification of sources [1][2]. However, when a biometric system is used, this
value cannot be given neither by a decision or a threshold nor directly by a sim-
ilarity measure [1][3], because it may lead the forensic scientist to usurp the role
of the court, responsible of the actual decision [4]. Our point is that commercial,
score-based biometric systems are not suited for direct forensic reporting to a
court of law as has been stated in previous work [1][3].

To overcome this difficulty, the application of a likelihood ratio (LR) paradigm
suited for forensic evidence to score-based biometric system has been proposed
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[2][3][5][6]. In this paper we propose to use this LR framework. Following this
approach the forensic scientist assesses and reports one meaningful value: the
LR, that allows the court to progress to a posterior opinion starting from his
prior opinion about the case before the forensic evidence analysis [5][7]. This
logical Bayesian framework implies a change of opinion when new information is
considered, i. e., when the weight of the evidence has been assessed [1]. LR Com-
putation can be performed using the scores from any biometric system [3][8][9],
the process being independent of the biometric discipline. Thus, the LR assessed
from the system scores can be used for direct forensic reporting. Our recent work
presents examples of LR computation using on-line signature, face and finger-
print biometric systems [9]. In [10], the ATVS forensic voice biometric system
is presented and excellent results in NIST Speaker Recognition Evaluation 2004
[11] and NFI-TNO Forensic Evaluation 2003 [12] using robust LR computation
algorithms are shown. LRs can be used to compare the strength of the evidence
between different biometric systems and expert opinions, and allow the combi-
nation of evidence weights coming from different and independent systems [5].

The present paper describes briefly forensic interpretation and reporting us-
ing biometric systems by means of LR computation. Then the paper highlights
statistical assumptions regarding estimations involved in LR computation [9][10].
The novel contribution is focused on small data set effects [13] using different
estimation techniques. The paper is organized as follows: Sect. 2 describes the
Bayesian analysis of forensic evidence and its motivation. In Sect. 3, the LR
computation process is reviewed, statistical assumptions commonly considered
are presented, and main approaches found in the literature in order to cope
with them are reviewed. Sect. 4 presents new experiments regarding general-
ization against small data set effects using different estimation techniques for
fingerprint and voice biometric systems. In Sect. 5, conclusions are extracted.

2 Forensic Interpretation of the Evidence

2.1 Score-Based Biometric Systems vs. Forensic Interpretation

The aim of commercial score-based biometric systems is to output a similarity
measure (score) between a user of the system, represented by a biometric test
pattern, and a claimed identity, represented by a biometric template. Biometric
verification is a classification problem involving two classes, namely target users
of the system and non-target users or impostors. A decision is made by comparing
the output score with a threshold. Assessment of these systems can be done by
means of decision theory tools such as ROC or DET curves [3].

The aim of forensic interpretation is different. Forensic evidence is defined
as the relationship between the suspect material (samples of biometric patterns
obtained from the suspect) and the mark (biometric pattern generally left in
association with a crime of disputed origin) involved in a case. The role of the
forensic scientist is to examine the material available (mark and control mate-
rial) and to assess the contribution of these findings with regards to competing
propositions arising from the circumstances and often the adversarial nature of
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the criminal trial [6]. In sources attribution issues [2] such as the ones considered
here, the prosecutor view will suggest that the suspect left the mark whereas the
defense will support that an unknown contributor is the source [1][3][6]. The LR
framework we suggest bellow imply that the forensic scientist will only guide as
to the degree of support for one proposition versus the other and not comment,
probabilistically or otherwise, on the hypotheses themselves [1][6]. This role dif-
fers fundamentally from the natural objectives of a commercial biometric system
(i. e., making a decision) [3][4].

2.2 Bayesian Analysis of Forensic Evidence

The problems described above are handled elegantly when using the Bayesian
analysis of forensic evidences [1][5][6]. Following this approach, the interpretation
of the forensic findings is based on two competing hypotheses, namely Hp (the
biometric trace originates from the suspect, also called prosecutor hypothesis)
and Hd (the biometric trace originates from any other unknown individual, also
called defence hypothesis). The decision of the judge or jury (in one word the
fact finder) is based on the probabilities of the two hypotheses given all the
information of the case, that can be split into forensic information (E), and
background information (I) (i. e., all other information related to the case).
Using the Bayes Theorem [5], we can write in odds form:

Pr (Hp|E, I)
Pr (Hd|E, I)

=
Pr (E|Hp, I)
Pr (E|Hd, I)

· Pr (Hp| I)
Pr (Hd| I) (1)

In this way, the posterior probabilities needed by the fact finder can be sepa-
rated into prior probabilities, based only on the background information, and a
likelihood ratio (LR) that represents the strength of the analysis of the forensic
evidence in the inference from prior to posterior odds:

LR =
Pr (E|Hp, I)
Pr (E|Hd, I)

(2)

The role of the forensic scientist lies therefore with the assessment of this LR.
The meaning of the LR is in essence independent of the forensic discipline [5],
and its assessment in a case can involve computation (such as in [8][9][3][14]) or
informed judgements expressed as subjective probabilities [15].

Assessment of forensic systems performance can be made using Tippett plots
[3][9] (see Fig. 3), which are cumulative distributions of LR for targets (when
Hp is true) and non target (when Hd is true) respectively.

3 Likelihood Ratio Computation
in Score-Based Biometric Systems

As noted in [1], the numerator of the LR (Eq. 2), is obtained from knowledge
of the within-source variability (WS) of the suspect material. This distribu-
tion can be estimated using scores obtained by comparing biometric patterns
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(controls) from the suspect to templates originating from the same suspect. On
the other hand, the denominator of the LR is obtained from knowledge of the
between-source (BS) distribution of the mark, which can be estimated from
scores resulting from the comparison of the mark with a set of biometric tem-
plates from a relevant population of individuals. The evidence score is computed
by comparing the mark with the suspect biometric template. Finally, the LR
value will be the ratio of the density of the evidence score under respectively
WS and BS [3][8], as is shown in Fig. 1. As the LR is conditioned by the pros-
ecutor (Hp) and defence (Hd) hypothesis and background information (I), the
forensic scientist has to estimate the WS and BS distributions based on the
data available in the case. Evidence scores significantly different from the data
set used in distribution estimations will give a non-informative LR value of one.

Fig. 1. LR Computation Steps

3.1 Statistical Assumptions

In the estimation of WS and BS distributions for LR computation, some as-
sumptions have to be made. In order to estimate WS distribution, matching
conditions between the suspect biometric template and controls (see Fig. 1) is
needed [16][17]. However obtaining matching controls in real forensic casework
can be a very difficult task, especially in some biometric disciplines, leading to a
paucity of data. Therefore, generalization is desirable to avoid small sample size
effects [13]. Approaches based on modelling WS distributions using databases
can be found in [16]. More robust techniques based on additional knowledge
about the system behavior are shown in [10], in which they can be also found
procedures to optimize the use of the suspect data.

BS estimation problems related to mismatch between the considered relevant
population and the conditions of the mark have been explored in [10] and [17] for
voice biometric systems. In [18], corpus-based techniques are applied to reduce
the mismatch between the population and suspect templates. Also, the nature of
the population is conditioned to the circumstances of the case (I). The relevant
population can then be reduced, either according to I, or because of the lack of
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databases matching the conditions of the case under study. If the population size
is small, non-matching conditions between population templates and questioned
patterns can seriously degrade system performance.

The novel contribution of this work focuses on small sample size effects, not
related to forensic issues of the partiality, poor quality or degradation of marks.
Thus, the scenarios explored will postulate marks of quality comparable with
the control material. In that sense, we have a symmetry in term of amount of
information between the mark and the suspect material.

3.2 Between-Source Distribution Modelling Techniques

In this paper, we concentrate on BS modelling. We propose to assess two dif-
ferent estimation techniques, one parametric and one non-parametric, to model
BS distributions. The parametric approach, proposed in [3], consist in modelling
BS with a one-dimensional mixture of gaussian components:

p (x) =
M∑

m=1

pm · bm (x) (3)

where M is the number of mixtures used, and pm are restricted to:

M∑
m=1

pm = 1 (4)

Maximum Likelihood (ML) estimation using this parametric model is carried
out by the Expectation-Maximization (EM) algorithm [19].

On the other hand, Kernel Density Functions (KDF ) [19] are used. In this
non-parametric technique the score-axis is divided in regions (bins) of length h.
If N samples are available, and kN of these samples fall in a bin, the probability
estimated for that bin will be kN/N . So the corresponding density will be:

p̂ (x) ≡ p̂ (x0) ≈ 1
h

kN

N
, |x− x0| ≤ h

2
(5)

Using smooth functions φ, known as kernels, where φ ≥ 0 and:∫
x

φ (x) · dx = 1 (6)

then the resulting estimated function is a legitimate pdf.

4 Experiments

In order to test the performance of the BS estimation techniques proposed, we
present experiments using a fingerprint and a voice biometric system respectively.
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Fig. 2. DET curve of: (a) ATVS reference fingerprint system with MCYT corpus, and
(b) ATVS reference voice biometric system with NIST SRE 2004 sub-corpus

4.1 Databases, Experimental Protocol and Biometric Systems

For fingerprint experiments, the ATVS fingerprint recognition system based on
minutiae comparison [20] has been used. A sub-corpus from the MCYT finger-
print database [21] has been selected, consisting of 50 users each one having
10 fingerprint samples. One sample per user will be used as reference biometric
template. For score-based system performance assessment via DET plots, the 9
remaining samples will be used as test patterns (marks), so a total of 50×9 = 450
target trials and 50×49×9 = 22050 non-target trials have been considered. For
the forensic interpretation system, 5 (out of 9) fingerprint patterns have been
used as biometric controls in order to obtain WS scores, and the remaining 4
will be used as marks. No technique will be used to predict degradation in WS
distribution, as fingerprint biometric patterns are all acquired in the same con-
ditions. Therefore, a total of 50 × 4 = 250 target trials and 50 × 49 × 4 = 9800
non-target trials will be used for Tippett plot computation. Population data has
been taken from the same corpus too.

For voice biometric system experiments, the ATVS UBM-MAP-GMM system
[10] has been used. The scores used in the LR computation experiments are
extracted from the ATVS results in the NIST Speaker Recognition Evaluation
2004 [11], using only a male subcorpus of 50 users, and all the trials defined
in the evaluation for these users in the core condition, i. e., one conversation
side (5 minutes) for training and one for testing. Strong mismatch on channel
and language conditions is present in this data set, and it exists variability in
the amount of speech per conversation side (as silence removal has not been
performed). As only one speech segment is used as suspect biometric material,
jackknife and prediction techniques described in [10] are used to perform robust
WS estimation. In summary, a total of 163 target trials and 1969 non-target
trials are performed. Population data consists of a channel-balanced English set
of GMM models obtained from development corpora from past NIST SRE.
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(a) (b)

Fig. 3. Tippett plots for fingerprint system estimating BS distribution with different
techniques. (a): ML with M gaussian mixtures: M=1 (solid), M=3 (dashed), M=10
(dash-dot) and M=30 (dotted). (b): KDF with bin size h=10 (solid), h=3 (dashed),
h=1 (dotted)

4.2 Results

Fig. 2 show the performance of the score-based biometric systems in the scenarios
described. The performance of the forensic fingerprint system using the two
techniques described is shown in Fig. 3. As can be seen in Fig. 3(a), performance
of the forensic system in non-target trials degrades as the number of mixtures
(M) increases. For M=30 mixtures, a small but not negligible proportion of non-
target trials have values of LR greater than 100.000, which is alarming because
the rate of misleading evidence for the non-target curve is critical in forensic
systems [10]. The same conclusion can be extracted for KDF in Fig. 3(b), when
the bin size h is small. This effect is due to an over-fitting effect of the BS model
on the available data set.

Generalization against small sample size effects is inferred from Fig. 4. Two
populations of L = 50 and L = 10 (obtained by sampling) biometric templates
has been used. It can be seen that KDF and ML estimation presents very similar
performance when the data set size is reduced. However, performance of targets
for KDF estimation is better when population size decreases, which means over-
estimation of target LRs due to over-fitting in BS distribution estimation.

In the experiments presented using voice biometrics system, ML estimation
is performed to model BS distribution. In Fig. 5, the same effect noticed in Fig.
3(a) can be observed, i. e., the proportion of non-target trials having LR values
greater than one grows as M increases.

Generalization for the voice biometric system is shown in Fig. 6. ML esti-
mation of BS distribution with M=1 and M=8 has been used. It can be seen
that as population sample size decreases, over-fitting in the data (M grows) im-
plies degradation on system performance (i.e., bigger proportion of non-target
LRs > 1, and over-estimated target LR).
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(a) (b)

Fig. 4. Analysis of generalization effects with small sample-size data for the fingerprint
biometric system. Population size: L=50 (solid) and L=10 (dotted). (a): ML with M=3
gaussian mixtures, (b): KDF with bin size h=3
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Fig. 5. Tippett plots for voice biometric system estimating BS distribution with ML
and different number of gaussian mixtures
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Fig. 6. Analysis of generalization effects using ML for voice biometric system. Pop-
ulation size L=60 (solid) and L=12 (dotted) (a): M=1 gaussian; (b): M=8 gaussian
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5 Conclusions

In this paper, we have shown how biometric systems can be used in forensic
applications, using a LR as a measure of the strength of the evidence computed
from the scores. The need of proper forensic reporting has been highlighted, as
the fact finder needs a meaningful value to assist his decision making. Direct re-
porting using score-based biometric systems has been shown in the literature to
be misleading, and we promote a LR based reporting system. Bayesian analysis
of forensic evidence has been referred as the logical way for evaluating forensic
findings. LR computation process has been reviewed, highlighting that it can
be performed using any score-based biometric system, regardless of the biomet-
ric discipline. Statistical assumptions regarding estimations involved in the LR
computation process have been discussed. The main contribution of the paper
are the experiments regarding small sample size effects in BS estimation, which
can appear in forensic casework when the relevant population is reduced, ei-
ther because of the background information on the case (I) or the availability
of databases matching the suspect biometric template conditions. It has been
shown that the performance of the system degrades when BS distribution over-
fits the data set when its size is small, and misleading evidence in non-target
trials can increase, which is a highly undesirable effect in forensic systems. LRs
for target trials might also be over-estimated in these conditions.
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9. Gonzalez-Rodriguez, J., Fierrez-Aguilar, J., Ramos-Castro, D., Ortega-Garcia, J.:
Bayesian Analysis of Fingerprint, Face and Signature Evidences with Automatic
Biometric Systems Forensic Science International (2005) (accepted)

10. Gonzalez-Rodriguez, J., et al.: Robust Estimation, Interpretation and Assessment
of Likelihood Ratios in Forensic Speaker Recognition. Computer, Speech and Lan-
guage (2005) (submitted)

11. Home page of NIST Speech Group: http://www.nist.gov/speech
12. Van-Leeuwen, D., Bouten, J.: Results of the 2003 NFI-TNO Forensic Speaker

Recognition Evaluation. Proc. of ODYSSEY (2004) 75-82
13. Raudys, S., Jain, A.: Small Sample Size Effects in Statistical Pattern Recognition:

Recommendations for Practitioners. IEEE Trans. on PAMI 13(3) (1991) 252-264
14. Curran, J.: Forensic Applications of Bayesian Inference to Glass Evidence. Ph.D.

thesis, Statistics Department, University of Waikato, New Zealand (1997)
15. Taroni, F., et al.: De Finetti’s Subjectivism, the Assessment of Probabilities and

the Evaluation of Evidence: A Commentary for Forensic Scientists. Science and
Justice 41(3) (2001) 145-150

16. Botti, F., et al.: An Interpretation Framework for the Evaluation of Evidence
in Forensic Automatic Speaker Recognition with Limited Suspect Data. Proc.
ODYSSEY (2004) 63-68

17. Gonzalez-Rodriguez, J., et al.: Robust Likelihood Ratio Estimation in Bayesian
Forensic Speaker Recognition. Proc. Eurospeech (2003) 693-696

18. Alexander, A., et al.: Handling Mismatch in Corpus-Based Forensic Speaker Recog-
nition. Proc. ODYSSEY (2004) 69-74.

19. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2001)
20. Simon-Zorita, D., et al.: Quality and Position Variability Assessment in Minutiae-

Based Fingerprint Verification. IEE Proc. Vision, Image and Signal Processing
150(6) (2003) 402-408

21. Ortega-Garcia, J., et al.: MCYT Baseline Corpus: A Bimodal Biometric Database.
IEE Proc. Vision, Image and Signal Processing 150(6) (2003) 395-401



The Effectiveness of Generative Attacks
on an Online Handwriting Biometric

Daniel P. Lopresti and Jarret D. Raim

Department of Computer Science and Engineering
Lehigh University

Bethlehem, PA 18015, USA
{lopresti,jdr6}@cse.lehigh.edu

Abstract. The traditional approach to evaluating the performance of a
behavioral biometric such as handwriting or speech is to conduct a study
involving human subjects (näıve and/or skilled “forgers”) and report the
system’s False Reject Rate (FRR) and False Accept Rate (FAR). In this
paper, we examine a different and perhaps more ominous threat: the
possibility that the attacker has access to a generative model for the
behavior in question, along with information gleaned about the targeted
user, and can employ this in a methodical search of the space of possible
inputs to the system in an attempt to break the biometric. We present
preliminary experimental results examining the effectiveness of this line
of attack against a published technique for constructing a biometric hash
based on online handwriting data. Using a concatenative approach fol-
lowed by a feature space search, our attack succeeded 49% of the time.

1 Introduction

It is standard practice in biometric authentication to test a new system and
report how well that system performs. In most cases, this information takes
the form of FRR (False Reject Rate) and FAR (False Accept Rate) curves.
Often, researchers perform studies with groups of university students and/or
other volunteers playing the role of the attacker (e.g., [3, 4]).

While such evaluations shed some light on the quality of the biometric, they
do not always provide a full picture of the overall security provided by the
system. In this paper, we examine a fundamentally different type of threat: the
possibility that an attacker has access to a generative model for the behavior
in question, i.e., an algorithm which can be used to synthesize a signal that
mimics true human input. Such models exist, for example, for speech and for
handwriting, as well as for other physiological phenomena. By combining this
with information gleaned about the targeted user (e.g., samples of the user’s
speech or handwriting obtained surreptitiously), an adversary could conceivably
conduct a methodical search of the space of possible inputs to the system in an
attempt to break the biometric.

We present preliminary results for attacks on a published technique for con-
structing a biometric hash based on online handwriting data, and conclude by
discussing possible areas for future exploration.

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 1090–1099, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Related Work

Much work has been done in the area of testing biometric systems for security
and performance. Brömme and Kronberg [1] proposed a system that integrates
into state of the art operating systems such as Windows 2000 and Linux/UNIX.
This framework allows the biometric system to log all information about its
operation for later inspection. In this way, real-world conditions can be studied.
The Brömme and Kronberg system is geared towards providing more accurate
feedback to the current maintainers of an already-deployed biometric, however.
It does not try to test a system from the point of view of a determined attacker,
nor does it allow researchers to compare systems that have yet to be deployed.

Another technique to help researchers test biometrics based on handwriting
has been developed by Vielhauer and Zoebisch [9]. This tool allows researchers
to study forgeries generated by a human with access to static and dynamic
representations of the true signal. The system presents the human forger with
several different prompts containing increasing information about the targeted
handwriting. The “attacker” first records a test sample with no information.
He/she is then shown a static representation of the true writing and asked to
input another test sample. Lastly, a dynamic representation of the handwriting
is displayed and the user is allowed to input one more test sample. Depending
on the characteristics of the test writer and the true signal, the accuracy of the
forgeries will vary widely.

Another approach to more directly studying the security provided by a bio-
metric system is presented by Monrose, et al. in [5]. This paper, which provides
the primary motivation for our present work, describes several types of attacks
against a speaker authentication system. The tested system extracts features
from the user’s voice, drawing entropy from both the passphrase spoken by the
user and how the passphrase was spoken. These features are then used to extract
a key from a data structure in which pieces of the true key are intermingled with
random data. This process makes it difficult for an attacker in possession of the
device to obtain any of the sensitive information stored on it.

The speech system in the above study was attacked using several methods.
The first was a standard human impostor, whereby someone other than the true
user tries to authenticate against the biometric. Next, a text-to-speech (TTS)
system was used to generate sequences of phonemes for the passphrase, with
various input parameters governing the type of speech produced. Lastly, a crude
cut-and-paste attack was attempted, employing a large inventory of the true
user’s speech. Phonemes which had been manually labeled in the inventory were
selected and concatenated to yield the targeted passphrase. Both the TTS and
cut-and-paste attacks were able to out-perform random guessing, but did not
work well enough to break the biometric. These results suggest, however, that as
an attacker acquires more information, it becomes easier to breach the system.

In a test of another speech-based system, Masuko, et al. [4] attempted to
use information about the pitch of voice samples to enable the system to reject
synthetically created speech. They proved that current speech authentication
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could be fooled over 20% of the time by using trained speech synthesis systems,
and that pitch information was not useful in rejecting synthesized speech.

With generative models for handwriting appearing in the literature (e.g., [2,
6]), we seek to adapt this style of investigation to the handwriting verification
problem. We note that, as in [5, 8], we are not concerned with a user’s one-and-
only (i.e., legal) signature, but rather the idiosyncratic way the user writes an
arbitrary pre-selected passphrase of his/her own choosing.

3 Attack Models

To increase the amount of knowledge about the security provided by a given
biometric, a model of the operation of the system is needed. This model must
take into account all of the possible vulnerabilities of the system and provide
ways for testing those vulnerabilities. By allowing a finer grained comparison of
systems, individual components can be contrasted with one another. A system
with low FRR and FAR might not be as secure as one with higher error rates,
but a better-defined (more comprehensive and realistic) security model.

Because there are so many different kinds of information that could help
an attacker breach a system, an exhaustive taxonomy is beyond the scope of
this paper. We instead confine ourselves to exploring one line of attack, using
techniques that should be generalizable to other scenarios.

For the present study, the types of handwritten inputs we consider include:

Class 1. Different User, Different Passphrase. Sometimes referred to as a “näıve
forgery.”

Class 2. Different User, True Passphrase. Different user writing the same pass-
phrase as the true user.

Class 3. True User, Different Passphrase. True user writing something other
than the passphrase.

Class 4. Concatenation Attack. Passphrase created from online samples of the
true user writing non-passphrase material.

Class 5. True User, True Passphrase. The keying material, provided as a base-
line for reference.

Certain of these input classes were chosen based on the types of attacks
usually reported in the biometric literature. Class 1 is the typical brute-force
type of attack while Class 2 is closer to a so-called “skilled forgery.” In testing
Class 3, we hope to show that even if the attacker has access to online samples
of the true user’s handwriting, more work must be done to use that information
to reduce the possible search space.

The representative generative model in the current test is Class 4 (we plan
to study other generative models in the near future). Here we employ samples of
the user’s handwriting collected separately from the passphrase. These samples
are manually segmented into basic units, which can be individual characters,
bigrams, trigrams, etc., and then labeled. The generative model accepts as input
a labeled inventory and the targeted passphrase and produces a random sequence
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of concatenated units that, when rendered, attempts to simulate the user writing
the passphrase. Note that both the appearance of the writing as well as the
dynamics are reproduced.

Lastly, Class 5 is provided as a baseline reference to contrast the other classes
to the intended input. In most biometric systems, some allowances must be made
to ensure that the true user is able to authenticate despite natural variations in
handwriting.

As was the case in [5], our primary interest in this work is in offline attacks,
a situation that might arise when the biometric is employed to generate a se-
cure hash or cryptographic key to be used in protecting confidential information
stored on a mobile device, for example. The handwritten input is provided to
the system which generates a set of features as output. The range of acceptable
inputs for the true user can be viewed as defining a subspace over the entire
feature space. Ignoring the unlikely event of an exact match on the first attempt
(a perfect forgery), the attacker’s goal, then, is to explore the space around the
feature vector returned by the forgery as rapidly as possible in the hopes of un-
covering the correct setting. We assume, of course, that the attacker has no way
of knowing whether the forgery is good enough to fall close to a true input until
the match is actually found, but once that happens, the attacker is able to tell
that the system has been broken. Hence, the attacker will conduct a methodical
search, working outwards from the feature vector for a certain period of time
before concluding that the forgery was not good enough and moving on to try
another input.

While the attack models we have presented are quite simple, they are suffi-
cient to motivate interesting tests of published biometrics, provide an indication
of the associated combinatorics, and illustrate the difficulty (or ease) with which
specific systems can be broken.

4 Experimental Evaluation

To examine the impact of the models described above, several example attacks
were created. For testing purposes, we chose to implement the Vielhauer, et al.
system [8] for biometric hashing. Based on a small data set, standard FRR and
FAR measures were used to determine appropriate parameter settings for our
later attempts at attacking the system. We then evaluated the effectiveness of
each of the classes of inputs described in the previous section,

4.1 Data Sets

For our experiments, several small data sets were created. Two writers (the
authors) wrote four different passphrases 20 or more times, which resulted in
a total of 154 samples. The handwriting was collected using a Wacom Intuos
digitizing tablet. While this data set is small in comparison to results typically
reported in the literature, it is still possible to draw conclusions due to the
specific nature of our study: we are not attempting to prove that a proposed
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biometric is secure, rather, we are trying to examine whether attacks based on
generative models can be successful. Since we are comparing the effectiveness of
attack strategies and not the overall security of a system, the size of the data set
is not a serious issue provided the phenomenon of interest, the breaking of the
system, is seen to occur1. Two examples from this data set are shown in Fig. 1.

Fig. 1. Handwriting samples

As noted previously, to execute the concatenative attack (Class 4), it is as-
sumed that the attacker has access to online handwriting samples of the targeted
user as well as knowledge of the true passphrase. (It can also be assumed that
the attacker has an offline image of the user’s passphrase, but this was not used
in our current study.) A separate set of online writing samples were labeled as to
which stroke sequences corresponded to individual characters. This resulted in a
corpus of possible n-gram combinations of the user’s handwriting. To generate a
synthetic handwritten passphrase, strokes were concatenated from the corpus to
form the correct text of the passphrase. No scaling or smoothing was performed,
however the individual stroke sequences were placed on a similar baseline and
appropriate timestamps were recreated. An example of a passphrase synthesized
using this approach appears in Fig. 2(b).

(a) Target passphrase. (b) Concatenative attack.

Fig. 2. Example of a concatenative attack

4.2 Biometric System

A detailed discussion of the Vielhauer, et al. biometric hash can be found in [8],
but some knowledge of the system will be helpful for a greater understanding of
the attacks discussed below. The system is based on 24 integer-valued features
extracted from an online writing signal. The signal consists of [x, y] position
and timing information. Fourteen of the features are global, while the remaining

1 A good analogy here are studies on the susceptibility of traditional password security
systems to dictionary-based attacks. If a system with two passwords can be broken
in such fashion, then certainly systems with larger numbers of passwords are even
more susceptible. Nevertheless, we recognize the value of larger data sets and plan
additional collection activities in the near future
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ten features are concerned with segmented portions of the input obtained by
partitioning the bounding box surrounding the ink into five equal-sized regions
in the x- and y-dimensions. A listing of the features is provided in Table 1.

Table 1. Features employed in the Vielhauer, et al. biometric hash [8]

1. Number of strokes 13. Effective writing velocity in x
2. Total writing time (ms) 14. Effective writing velocity in y
3. Total number of samples (points) 15. Integrated area under x, segment 1
4. Sum of all local (x,y) minima and maxima 16. Integrated area under x, segment 2
5. Aspect ratio (x/y) * 100 17. Integrated area under x, segment 3
6. Pen-down / total writing time * 100 18. Integrated area under x, segment 4
7. Integrated area covered by x signal 19. Integrated area under x, segment 5
8. Integrated area covered by y signal 20. Integrated area under y, segment 1
9. Average writing velocity in x 21. Integrated area under y, segment 2

10. Average writing velocity in y 22. Integrated area under y, segment 3
11. Average writing acceleration in x 23. Integrated area under y, segment 4
12. Average writing acceleration in y 24. Integrated area under y, segment 5

To train the system to accept a given user, features are extracted and used
to create a biometric hash where each feature generates a corresponding integer
value. In addition, an interval matrix is created containing information needed
for future testing. This information could be stored by the system itself or by
the user in a portable format such as a USB key. A transitive enrollment system
may be employed and would help in achieving a strongly-correlated set of sample
data for the true user [7], but was not used for our experiments.

When a user attempts to authenticate, he/she provides a new handwriting
sample and a claim to a certain identity. Features are extracted from the sample
and passed through the hash generation. If a certain feature falls within the
accepted range of values (plus some tolerance threshold), it generates the same
integer hash. In our case, the size of the training set varied with the sample being
tested, but ranged between 15 to 25 samples per class. To generate FRR and FAR
curves for the system, the sample size for the training set cross-validation was
varied between 5 and 10. Several potential tolerance values were also checked:
0.0, 0.01, 0.05, 0.1, 0.15, 0.2, and 0.3. The most promising graph is shown in
Fig. 3, where the equal error rate tolerance threshold is found to be 0.15.

Fig. 3. Error rates for the Vielhauer, et al. hash on data used in our tests
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As can be seen, the system performed quite well, with a FRR of 5%. In
addition, two FAR curves were generated. The first is a näıve (Class 1) forgery,
with one writer writing a passphrase that was used to test against the other
writer writing a different passphrase. In this case, the FAR was 0%. In another
test, one writer writing a passphrase was tested against the other writer writing
the same passphrase (a Class 2 forgery). This case also resulted in a FAR of 0%.

To test how well each individual feature performed, a standard cross vali-
dation FAR test was run for all attack types. When a feature mismatch was
detected, a note was made as to which feature failed and by what magnitude.
This investigation showed that when a hash element is missed, the magnitude
of the miss is generally ±2 of the actual value. It was also interesting to see
that several features yielded constant values for all of our handwriting samples.
This could mean that these hash elements, and by extension the features that
generated them, are not useful in the kinds of experiments we are performing.
However, we believe more research is needed before drawing such conclusions.

4.3 Feature Space Search

As noted in Sect. 3, the search we performed attempts to find the true hash
starting with the hash generated from the handwriting sample. The search begins
with small alterations of the given hash and works outward until a predetermined
time limit has been met. Our tests had a time limit of 60 seconds and were
conducted on a Pentium 4 desktop PC running at 3.2 GHz with 1 GB of RAM.
This machine was able to generate and check 540,000 search possibilities per
second.

Results for the five different input classes are shown in Figs. 4 and 5. The
first graph shows the min, mean, and max number of feature misses per sample,
while the second graph shows how long it took the search process to correct the
initial hash vector (when that was possible within the 60 second time limit).

It can be seen in Fig. 4 that the features used by the Vielhauer, et al. hash
have several desirable qualities. Class 2 (Different User, Same Passphrase) and

Fig. 4. Incorrect hash elements per input class
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Fig. 5. Time to correct hashes per input class (with percent accepted)

Class 3 (Same User, Different Passphrase) have very similar means (18.6 vs. 20.1)
and their maximum and minimum values are also comparable. This shows that
some features of the biometric system are sensitive to the passphrase written,
which accounts for the errors for Class 3, and some features are sensitive to the
writer, which accounts for the errors seen in Class 2.

The mean incorrect number of hash elements for Class 1 is 21, which is higher
than for all other classes, as would be expected. It is also of note that none of
the Class 1, 2 or 3 hashes were broken in the 60 second search limit. While
60 seconds seems like a low bound, the number of possibilities for the search
increases exponentially based on the number of incorrect hash elements. Still,
more efficient search algorithms, faster machines, and longer runtimes could
have an effect on the probability of the search finding the correct hash. As
would be expected, Class 5 (keying material) was either accepted without any
modifications or only required a maximum search time of 0.00019 seconds.

The concatenative attack, Class 4, displayed interesting behavior. Class 4 had
the highest variance ranging from 0 to 16 hash elements incorrect, while none of
the other classes had a range over 7. However, even with this distribution, the
mean number of hash elements incorrect was still only 5.92, which put it below
Classes 1, 2 and 3. The high variance means that many of the concatenated
passphrases generated hashes with few to no hash elements incorrect. We note
that 5% of Class 4 hashes were correct at the onset and required no search. When
the standard 60 second search was allowed, 49% of the hashes were correctable,
with an average search time of 5.28 seconds on those that were broken. Class 4
was the only class outside of the keying material (Class 5) that was able to
generate hashes that required no search.

5 Conclusions

Popular measures for evaluating the performance of biometric systems may fail
to capture certain kinds of threats. By limiting testing to human subjects and
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Fig. 6. Percentage of handwritten passphrases in each class accepted after search

reporting only results for FRR and FAR, the determined attacker is ignored. As
more and more sensitive information is stored on portable computing devices,
the incentives for breaking such systems becomes greater.

The attack models we have begun to study will help increase our under-
standing of potential flaws in biometric security, hopefully before they can be
exploited. As can be seen in Fig. 6, we were able to achieve a 49% success rate
using the concatenative attack described in this paper against a scheme for cre-
ating biometric hashes from online handwriting data2.

The concatenative attack we have presented is only one possible avenue an
adversary might take, as outlined in Sect. 3. We plan to study other forms of at-
tack, including Plamondon’s delta-log normal generative model [6] and Guyon’s
handwriting synthesis method [2]. These techniques will allow a full parameteri-
zation of the search space and may prove even more devastating. Other schemes
for attempting to create secure hashes from a user’s handwriting should likewise
be evaluated in this fashion.

Testing with larger, more extensive data sets is also planned. By using tablet
PC’s and commercial signature capture tablets, we hope to better approximate
a true distribution of users. These larger data sets will allow a more thorough
examination of the feature space as well as the differences between handwritten
passphrases and traditional “legal” signatures. Studying these issues in the con-
text of other biometric measures, including speech, to build on the work that
was first reported in [5], is another topic for future research.
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Abstract. The goal of a biometric encryption system is to embed a se-
cret into a biometric template in a way that can only be decrypted with
a biometric image from the enroled person. This paper describes a po-
tential vulnerability in such systems that allows a less-than-brute force
regeneration of the secret and an estimate of the enrolled image. This
vulnerability requires the biometric comparison to “leak” some informa-
tion from which an analogue for a match score may be calculated. Using
this match score value, a “hill-climbing” attack is performed against the
algorithm to calculate an estimate of the enrolled image, which is then
used to decrypt the code. Results are shown against a simplified imple-
mentation of the algorithm of Soutar et al. (1998).

1 Introduction

Traditional biometric technology tests for a match between a new image of an
individual and the key biometric features of an original image stored in a biomet-
ric template. If the biometric software detects a match, further processing in a
security system is activated. This often involves the release of security tokens or
password codes to enable other applications. There are several potential concerns
with such systems; in this paper we consider the concern that all the informa-
tion needed to relase the codes must somehow be available to the software. It is
therefore theoretically possible to compromise any traditional biometric system
in order to gain secure access without presenting a biometric image [10]. At the
same time, it may be possible to get information about the enrolled person from
their biometric template [2][16].

Biometric encryption is designed to avoid these problems by embedding the
secret code into the template, in a way that can be decrypted only with an image
of the enrolled individual. [5][14]. Since the secret code is bound to the biometric
template, an attacker should not be able to determine either the enrolled bio-
metric image or secret code, even if they have access to the biometric software
and hardware.

While such biometric encryption systems are not widely deployed, they ap-
pear to offer some compelling benefits for many applications [19]. The benefit
of biometric encryption is perhaps most important for mobile applications of
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biometrics, such as for cell phones or laptop computers, or in biometric-based
identity cards, such as those designed into many new national passports. Another
important application of biometric encryption is for control of access to digital
content, with the primary interest being in preventing copyright infringement.
Digital documents encoded with the biometric of the user(s) with approved ac-
cess will presumably be subject to attacks, especially since both the documents
and the software to access them will be widely distributed [10]. Finally, bio-
metric encryption promises to help address the privacy concerns of biometric
technology [17][19].

The primary difficulty in designing biometric encryption systems is the vari-
ability in the biometric image between data measurements. For example, a fin-
gerprint image changes with applied pressure, temperature, moisture, sweat, oil,
dirt on the skin, cuts and other damage, changes in body fat, and with many
other factors. In the case of biometric encryption, this means that the presented
biometric image cannot itself be treated as a code, since it varies with each pre-
sentation. For biometric encryption systems, this variability becomes especially
difficult. An algorithm must be designed which allows an image from the enrolled
person, with significant differences from the original, to decode the complete se-
cret code. At the same time, an image from another person – which may only
be slightly more different from the enrolled image – must not only not decode
the secret, it must not be allowed to decode (or “leak”) any information at all.

This paper develops one approach to attack biometric encryption algorithms,
based on using any “leaked” information to attempt a “hill-climbing” of the
biometric template. We show that this approach can successfully reconstruct
a face image from a biometric encryption scheme based on [14][15]. We then
discuss recent work in this area and some possible improvements to this attack.

2 Image Reconstruction from Biometric Templates

As discussed in [7], a biometric encryption system must have error tolerance,
such that, for an enrolled image IM enroll, it must be possible to perform the
decryption for an input IM ′ which is sufficiently close (in which “close” is defined
in some distance space appropriate to the biometric modality). For an IM ′ further
from IM enroll than some threshold, it must not only be infeasible to decrypt,
but it must be impossible to obtain any statistical information about IM enroll.
The essence of the proposed attack on biometric encryption is to use this type of
“leaked” information to iteratively improve an estimate of the enrolled biometric,
which is then used to decrypt the secret code. Unfortunately, it is difficult to
design an encryption algorithm to give complete information for a “close” answer,
but no information for a slightly less accurate one [4][7][11][19].

In order to use the “leaked” information, it is necessary to construct a mea-
surement which functions as a match score, ie. a measure which increases with
the similarity of IM ′ to IM enroll. Several authors have shown that, given access
to match score data, it is possible to reconstruct a good estimate of an unknown
enrolled image [16] from a fingerprint [9][20] or face recognition template [2].
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These algorithms use a “hill-climbing” strategy. A test image is presented to a
biometric algorithm and compared to an unknown enrolled image to obtain a
match score. Then, iteratively, modifications are made to the input, and those
that increase the match score are retained. Eventually, a best-match image is
generated, which resembles the essential features of the unknown enrolled image,
and is able to compare to it at high match score. In order to protect against this
attack, the BioAPI [3] specifies that match scores should be quantized. How-
ever, recently, we have shown that the hill-climbing attack can be modified to
overcome the effects of quantization [1] (for reasonable levels of quantization, ie.
where one quantization level corresponds to a 10% change in match confidence).

Tests in this paper show that the modified hill-climbing algorithm is re-
quired for attacks against the biometric encryption algorithm. This appears to
be because match scores calculated from biometric encryption algorithms are
not easily related to traditional biometric match score values, and often it is
only possible to calculate a quantized value. For example, with an error correct-
ing code, the match score may be the number of bits that require correction,
resulting in a heavily quantized score.

2.1 Quantized Hill-Climbing

This section describes the quantized hill climbing algorithm used to the attack
the biometric encryption technique [1]. It has been shown to work successfully
for face recognition systems; however, recent work [9][19] suggests that it is
extensible to fingerprint biometrics. The algorithm has the ability to obtain
match scores (MS) of the target compared to an arbitrarily chosen image (IM ).
We represent this function as:

MS = compare(IM , IM enroll) (1)

A schematic diagram of this algorithm is shown in Fig. 1. It is implemented as
follows:

1. Local database preparation: A local database of frontal pose face images is
obtained. Images are rotated, scaled, cropped, and histogram equalized.

2. Eigenface calculation: Use a principle components analysis (PCA) decompo-
sition to calculate an set of eigenimages (or eigenfaces) from the local image
database [18], using the method of Grother [8]. Divide each image into four
quadrants (Fig. 1, left). Quadrant eigenimages (EF i,quadrant) are then de-
fined to be equal to EF i within the quadrant and zero elsewhere. The edge
of each quadrant is then smoothed to provide a gradual transition over 10%
of the image width and height.

3. Initial image selection: Choose an initial estimate (IM 0), which is subse-
quently iteratively improved in the next step. The selected image could be
random, or could be the one with the largest MS .

4. Iterative estimate improvement : Iterate for step number i. Repeat iterations
until MS is maximum, or there is no more improvement in MS .
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(a) Randomly select a quadrant Q. The diametrically opposite quadrant is
referred to as OQ .

(b) Randomly select an eigenimage, k; the component in Q is EFk,Q

(c) Generate an image RN , consisting of random Gaussian noise in OQ and
zero elsewhere.

(d) Calculate the amount of RN which reduces the quantized match score
by one quantization level. Using a bisection search, calculate a minimum
value n such that

compare(IM i, IM enroll) > compare(IM i + nRN , IM enroll) (2)

(e) Iterate for j for a small range of values cj

MS j = compare(IM i + nRN + cjEFk,Q, IM enroll) (3)

(f) Select jmax as the value of j for the largest MSj .
(g) Calculate

IM i+1 = IM i + cjmaxEFk,Q (4)

(h) Truncate values to image limits (ie. 0 to 255) if any pixel values of IM i+1

exceed these limits.

IM

+

RN

Until MS
reduces by one
quantized level +

Keep image
with largest MS

IM 1

EF

Q

OQ

 
Fig. 1. Schematic diagram of the hill-climbing algorithm for quantized match scores.
In each iteration, the candidate image is first “worsened” with the addition of random
noise to a quadrant, until the match score is below a quantized level. Then a component
of an eigenimage is added to the opposite quadrant, and the maximum match score
output is retained

Because the quantized match score will not normally give information to al-
low hill climbing, a carefully chosen level of noise is introduced into the opposite
image quadrant, in order to force the quantized score into a range where its
information can once again be used. The local database does not need to resem-
ble the target image, and may be one of the many freely available face image
databases (for example [12][13]).



1104 Andy Adler

3 Biometric Encryption

This paper considers the fingerprint biometric encryption algorithm of Soutar et
al. [14]. This algorithm was chosen because it represents a concrete system which
has been implemented and for which the details are well described. Bioscypt Inc.
(the employer of Soutar) has indicated that significant enhancements were made
to this algorithm after the published version. However, this paper simply presents
a framework for an attack, and not necessarily a break of a specific, implemented,
algorithm. For a review of other recent biometric encryption systems, refer to
[7][19].

Enrollment requires several sample images, and a secret code, and creates a
template binding the code to the images. This differs for some other systems, such
as that of Davida et al. [5][6], in which the biometric image forms a unique key.
The system under consideration [14] calculates a template related to the input
image by frequency domain correlations. We describe a simplified operation of
this system, using slight variations in notation from [14]. During enrollment, an
average image f0 is obtained (with 2D Fourier transform F0(u) ) from multiple
samples of the input fingerprint, after suitable alignment. In order to encode the
secret, a random code is chosen and encoded as a phase-only function R0(u) such
that the amplitude is one and the phase is e±π/2 (selected randomly). Using F0

and R0, a filter function H(u) is calculated based on a Wiener inverse filter, as

H0 =
F ∗

0 R
∗
0

F ∗
0 F0 + N2

(5)

where ∗ denotes the complex conjugate, and N2 the image noise power. For this
algorithm, N encodes the expected variability between images. As N increases,
an image more dissimilar from the one enrolled can decrypt the code, at the
expense of a smaller secret.

In order for biometric encryption to allow for variability in the input image,
the secret code must be robustly encoded, using some sort of error correcting
code (ECC) framework. [14] uses a simple ECC based on Hamming distances
and majority decision. The secret is encoded by linking it with the sign of the
complex component R0. Each bit of the secret is associated with L locations in R0

with the same phase angle. These associations are then stored in the template
in a “link table”. Majority decision requires that L be odd; [15] appears to
recommend L = 5. For example, if the 4th bit of the secret is a 1, position 4 of
the link table will point to five positions in R0 with a phase of e+π/2, while if the
bit is 0, position 4 will point to five positions with phase e−π/2. The template is
created containing the following information: H0, the link table, a cryptographic
hash of the secret, and an identifier. The cryptographic hash and identifier are
to detect errors in storage and software processing, and do not concern us here.

During key release, a new image f1 is acquired. This image is deconvolved
with the filter H0 to calculate R1, an estimate of R0.

R∗
1 = sign(imag(H0F1)) (6)
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It appears that the sign of the imaginary component of the phase of R1 is the
most robust feature of this calculation [15]. If F1 is from the same individual as
F0, then R1 should be a good estimate of R0. The link table is used to extract
the phase locations into which each bit is encoded. Since R1 = R0, some phase
elements will be incorrect; however, if R1 is sufficiently close, the use of majority
decision should allow the correct value of the secret to be obtained.

Fig. 2. Sample images for an implementation of the biometric encryption technique of
[14] applied for a face recognition. Left : Image f0 averaged from five samples. Right :
Template h0 including the random phase encoded elements

0 500 1000 1500 2000 2500
0.4

0.6

0.8

1

M
S

Fig. 3. Match score MS versus iteration number. The match score is calculated as
the number of bit positions matching in the template. A MS of 1.0 indicates a perfect
match. Solid and dashed line corresponds to top and bottom images in 4, respectively

4 Results

In order to apply the attack of section 2.1, it is necessary to create a match score
from the template. For the biometric encryption system of [14] this is relatively
straightforward. If R1 = R0, then all phases corresponding to each bit position
in the link table will be equal, while for a random image, approximately half of
the elements will match. We thus create a match score MS from the R1 based
on the difference between the number of ones and zeros in the link table, as

MS =
1
LB

B∑
i=1

∣∣∣∣∣∣
L∑

j=1

(LT ij = 0) −
L∑

j=1

(LT ij = 1)

∣∣∣∣∣∣ (7)
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Fig. 4. Sample images of IM k for as a function of iteration for two different initial
images (top and bottom row). Left image is IM 0 and right image yields MS = 1.0

where LT ij is the value of the link table entry for the jth element of bit i, and
B is the number of bits of secret. The maximum MS is 1; the minimum possible
MS is 1

L , and statistical considerations show a random image will typically give
MS = 3

8 of the maximum for L = 5.
We implemented the algorithm of section 3 for use with face recognition bio-

metrics; the only modification required was to test which part of the Fourier
transformed image F0 produced reliable phase values to be encoded in the link
table. The 13 × 13 low frequency 2D Fourier components appeared to be the
most reliable for this application. The advantage of this implementation is that
the framework and software previously developed for hill-climbing for face recog-
nition in [1] would be applicable. On the other hand, such an algorithm is not
realistic. Because face recognition data is not very distinctive, it would not be
possible to encode many bits of a key (our initial results would suggest a maxi-
mum of about 20 bits). A template was created using 5 images from the NIST
Mugshot Identification Database [12], and 20 secret bits were encoded using
L = 5. In order to illustrate the power of the algorithm, an initial image in-
tentionally different from the template was chosen. Fig. 2 shows an image of
the averaged enrollment images from the template (f0), and the encoded tem-
plate (h0). All images were scaled and rotated to have a common size and eye
locations.

Results show that the template recreation algorithm is quickly able to attain
a perfect match to F0 (MS = 1), even though the resulting images are not
very similar to the enrolled image. This is significantly larger than match values
for other images of the enrolled individual (which were typically accurate to
MS = 0.82 – 0.86). Fig. 3 shows the graph of MS versus iteration number for
L = 5, while Fig. 4 shows a selection of images IM k of the progress of the
algorithm for L = 5 for two different initial images. There is an initial rapid
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increase in MS after which the algorithm shows a more gradual improvement.
It is interesting to note that IM begins to show some similar features to f0

as iteration progresses. For example, the position of eyebrows, and shape of
eyes, nose and chin and outline of the face begin to show a resemblance. One
interesting aspect is that the hill-climbing algorithm does not seem to terminate
with a final good estimate of the template image. Perhaps biometric encryption
allows several possible variants of the enrolled image to match.

5 Discussion

This paper presents an approach to attack biometric encryption algorithms in
order to extract the secret code with less than brute force effort. A successful
result was obtained for a simplified version of the biometric encryption algorithm
of [14]. Essentially, this attack requires that the some information be “leaked”
from the biometric match for sample images very dissimilar from the enrolled
one. This leaked information is used to construct a match score, which is subse-
quently used to iteratively improve an estimate.

While this work was implemented against a specific algorithm [14], several
more recent systems have been proposed, which appear to be somewhat less
susceptible to this vulnerability. For example, the fingerprint algorithm of [4],
encodes the secret as the coefficients of a Galois field polynomial. Minutiae points
are encoded as pairs (xi, yi) where xi is a minutiae point, and yi is a point on
the polynomial. Additionally, numerous “chaff” points are encoded, in which the
value of yi is random. During key release, the minutiae of the new fingerprint
image are calculated, and the points xi closest to the minutiae are chosen. The
yi corresponding to these points are used to estimate the polynomial, using a
Reed-Solomon error correcting code framework. If enough legitimate points are
taken, the correct polynomial will be obtained and the correct secret decrypted.
This encryption technique is based on the “fuzzy vault” technique of [11]. An
interesting generalization of this scheme is given by the “secure sketches” of [7].
We believe that it may be possible to use the attacks of this paper against the
biometric encryption technique of [4], even though Juels and Sudan [11] were able
to give a proof of security. A key assumption for security proof is that the data
held in the “fuzzy vault” are random. The data of [4], however, are not. Firstly,
biometric data is inherently structured – otherwise hill-climbing wouldn’t be
possible. Secondly, the need to carefully place chaff minutiae points sufficiently
far from legitimate ones is another source of non-randomness. However, at this
time, we are not able to demonstrate an attack against this technique.

In their analysis, Uludag et al. [19] note that most proposed biometric en-
cryption systems only appear to account for a “limited amount of variability in
the biometric representation.” In order to quantify this notion, experiments were
conducted by them to estimate the variability in fingerprint minutiae. Matched
fingerprint pairs were imaged and minutiae locations identified by a human ex-
pert, which was assumed to give an upper bound on system performance. Using
these data, the algorithm of [4] was analyzed to estimate the FMR/FNMR trade-
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off curve during key generation and key release. Results were surprisingly poor;
an equal error rate of 6.3% can be estimated from the results, although the
authors note that there are a limited number of feasible operating points. This
means that such systems could be feasibly attacked by successively presenting
biometric samples from a representative population.

In conclusion, this paper has presented a scheme that appears to show vul-
nerabilities in biometric encryption systems. The attacker can regenerate an
estimate of the enrolled biometric image and use it to release the stored secret.
The attacker considered here, who has access to biometric templates and authen-
tication software, is quite plausible, as such biometric templates may be stored
in standardized formats on identity documents or portable devices.
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Abstract. Ensuring the security of medical records is becoming an in-
creasingly important problem as modern technology is integrated into
existing medical services. As a consequence of the adoption of electronic
medical records in the health care sector, it is becoming more and more
common for a health professional to edit and view a patient’s record us-
ing a tablet PC. In order to protect the patient’s privacy, as required by
governmental regulations in the United States, a secure authentication
system to access patient records must be used. Biometric-based access is
capable of providing the necessary security. On-line signature and voice
modalities seem to be the most convenient for the users in such authenti-
cation systems because a tablet PC comes equipped with the associated
sensors/hardware. This paper analyzes the performance of combining the
use of on-line signature and voice biometrics in order to perform robust
user authentication. Signatures are verified using the dynamic program-
ming technique of string matching. Voice is verified using a commercial,
off the shelf, software development kit. In order to improve the authenti-
cation performance, we combine information from both on-line signature
and voice biometrics. After suitable normalization of scores, fusion is per-
formed at the matching score level. A prototype bimodal authentication
system for accessing medical records has been designed and evaluated on
a small truly multimodal database of 50 users, resulting in an average
equal error rate (EER) of 0.86%.

1 Introduction

An increased need for a reliable authentication scheme has emerged in the health
care industry as a result of the movement toward electronic medical records
and the recently approved governmental regulations in the United States. Every
year, billions of patients in the United States visit doctor’s offices, clinics, Health
Maintenance Organizations (HMO), hospitals, and other health care providers
[2]. Each of these visits either generates a new medical record or adds to an
existing one, necessitating the retrieval of a particular record. The procedure by
which these records are stored and retrieved is undergoing a change toward a
system that will better utilize modern technology. Security risks involved with
this new system of archiving and retrieving patient records has brought about
the onset of several government regulations pertaining to the protection and
privacy of medical records which in turn has increased the need for a reliable
user authentication scheme in this domain.
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1.1 Electronic Medical Records

A medical record can span hundreds of pages consisting of text, graphs, and im-
ages. It contains information on treatments received, medical history, lifestyle de-
tails, family medical history, medications prescribed, and numerous other items
pertinent to an individual’s health. In the interests of the integrity of the health
care industry and good patient care, it is recommended that these records should
be retained for as long as possible. For these factors alone, it is obvious that the
move toward electronic data capture will greatly assist in the storage and man-
agement of patient records. Although this change is long overdue, the health care
industry has only recently begun to convert their paper records to electronic form
using electronic medical record (EMR) systems [3, 14].

1.2 Federal Regulations

The automation of health care information management has created increasing
governmental and societal concerns about the security of computerized health
care data. While the health care industry has incorporated electronic medical
records, data repositories, networking, Internet access, and other new technolo-
gies into its various process, the corresponding security measures have not been
enhanced. Many weaknesses have been identified in existing health care security
measures from past operations [6]. The Health Insurance Portability and Ac-
countability Act (HIPAA), which set the standards to ensure the security and
integrity of patient information that is maintained or transmitted electronically,
took effect in April 2003 [5]. Patients are assured, under HIPAA regulations, that
their medical records will be used only by individuals directly involved in their
medical treatments, payment of their bills, and health care operations. Any other
individual or organization wishing to access a patient’s medical record would re-
quire specific authorization by that patient. These regulations also attempt to
ensure that when the medical records are properly disclosed, only the minimum
amount of information necessary shall be released.

1.3 Tablet PC

Since it is convenient for a health care professional to have a patient’s record
readily available when prescribing or administering treatment, many health care
facilities have adopted the use of tablet PCs as access devices to retrieve and
edit a patient’s record. The tablet PCs are easy to use and are able to access
a patient’s data through wireless access points. The widespread deployment of
these wireless access points in hospitals and other facilities presents new security
problems where only authorized users of the tablet PC are permitted to view
the requested medical records.

1.4 Biometric Authentication

It is widely recognized that biometric authentication offers a number of ad-
vantages over traditional token-based (e.g. ID cards) or knowledge-based (e.g.
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passwords) systems [12]. Several companies have realized these security benefits
and have integrated biometrics into their EMR systems that use modalities such
as the fingerprint and iris [1, 3, 14]. Additionally, multimodal biometric systems
can overcome many of the limitations of a unimodal biometric system and will
be the focus of this work [10]. In order to meet the guidelines of the HIPAA
regulations, both health professionals and patients must be given access to med-
ical records. Taking into account the requirements of both these groups (health
professionals and patients), our biometric authentication system uses the voice
and signature modalities. These modalities are unobtrusive and emulate the cur-
rent, already well accepted system whereby a patient authenticates herself when
seeking treatment or visiting a doctor’s office for consultation. A typical scenario
consists of a patient telling his or her name to a receptionist and then signing
a release form. In addition, health professionals are already beginning to use
tablet PCs to access patient records which are equipped with a stylus/pen and
an internal microphone. Using the voice and signature modalities, our biometric
authentication system can be seamlessly integrated into a tablet PC without any
extra hardware.

2 Voice and Signature Verification

2.1 Voice Verification

In our authentication system, both voice identification and verification are uti-
lized. The difference between voice identification and verification is that voice
identification involves identifying a speaker out of a group of templates (1 to
N matching) whereas verification deals with verifying whether an utterance
matches with a specific user’s template (1 to 1 matching). A user template is
visually depicted in figure 1, and, as shown, can contain high intra-class vari-
ance. The voice biometric is used for authentication in such companies as Banco
Bradesco, the largest bank in Brazil, the United Kingdom government’s Inten-
sive Supervision and Surveillance Program for fighting crime, and other major
financial institutions for access to personal accounts and information [4]. In this
work, both voice identification and verification are performed using the Nuance
Verifier SDK [11]. The Nuance recognition and verification engines use Hidden
Markov Models (HMM) to provide a mapping from sampled speech to phonetic
units. Continuous-density HMMs are utilized, where the relationship between
acoustic frames and states is modeled using a mixture of Gaussians [13]. These
HMMs are set up in a hierarchical fashion so that after sampled speech is mapped
to phonetic units, the resulting phonetic sequence is then mapped to the cor-
responding word sequence. The probability from the last Markov chain in the
sequence is used as the verification score. Verification is text-independent while
identification is text-dependent. Our system uses the same utterance for both
identification and verification and accordingly the same phrase used in enroll-
ment must also be used for verification. A minimum of two utterances is needed
to train the Markov model. Each voiceprint will usually require 20KB of memory.
Typical accuracy figures of the verifier are reported as being 99% or higher.
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(a) (b) (c)

Fig. 1. Voice intra-class variability. (a), (b), and (c) are three waveforms (amplitude
vs. time) from a single user who spoke his first and last name three different times

2.2 On-Line Signature Verification

Handwritten signatures are frequently used to authenticate financial transac-
tions or the contents of a document, where the verification of these signatures is
usually done by human visual inspection. Much work has been done in the effort
to automate the process of signature verification because of its long standing ac-
ceptance in many applications. The main disadvantage of using this biometric is
its inherent high intra-class variability, as shown in figure 2. The signature verifi-
cation algorithm used in this work is a modified version of the algorithm reported
in [7] and the details are described in [15]. The input to the algorithm is both the
dynamic (temporal) and spatial information of the writing. Features such as the
change in x and y coordinates between subsequent points in the signature and
the pen pressure are extracted to form a feature vector at each point. An input
signature is compared with an enrolled signature by using dynamic time warp-
ing (DTW), to find an alignment between the points in the two signatures such
that the sum of the differences between each pair of aligned points is minimal.
The resulting difference value is used as the verification score. A training set of
signatures is used to both calculate user-dependent statistics and to compare
against an input signature. After performing user-normalization and dimension
reduction techniques, the resulting score is combined with a global feature sys-
tem score to produce a final distance value. This global feature system extracts
twenty global features and performs matching using the Mahalanobis distance.
The size of the templates for each user is on average 30KB. The accuracy of
the algorithm has an EER of 14.25% on skilled forgeries and 0.57% on random
forgeries using the first 40 users from the SVC database [16].

(a) (b) (c)

Fig. 2. Signature intra-class variability. (a), (b), and (c) are three signatures from a
single user
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3 Biometric Fusion

Common problems that may occur in unimodal biometric systems are noise in
sensed data, intra-class variations, inherent distinctiveness, and spoof attacks.
Many of these limitations imposed by unimodal biometric systems can be either
overcome or reduced by using multiple biometric traits. Multimodal systems have
demonstrated higher accuracy due to the fact that they use multiple biometric
modalities and combine independent evidence to make a more informed decision.
If any of the limitations mentioned above is present in one extracted biometric
trait, there will be other traits available to the system to use in its decision.
Accordingly, it is necessary to determine a method by which the individual
modalities are combined. There are three possible levels at which fusion can be
performed; feature level, matching score level, and decision level. We are unable
to perform fusion at the feature level because of the use of a commercial voice
biometric system. Also, the matching scores provide much more information than
the output decisions and, consequently, we will perform fusion at the matching
score level. After having computed the signature and voice matching scores and
before attempting to combine the scores, a normalization technique has to be
applied. The signature score is a distance measure in the range [0,∞), where
0 indicates a perfect match and any non-zero value represents the degree of
difference between the two signatures. The Nuance speech SDK produces a score
as a similarity measure in the range (−∞,∞), where a negative value represents
a small similarity between the two voiceprints and a positive value represents
a large similarity. The transformation Tv = e−xv is used to convert the voice
score to a distance measure, where xv is the raw matching score and Tv is the
normalized score. After this transformation, both the modalities have a similar
range of [0,∞).

The problem of combining the scores from the voice and signature modalities
for a given test sample T with scores (Tv, Ts) can be considered as a two-class
classification problem. The sample T can fall into either the impostor (wi) or
genuine (wg) class. A Bayesian approach would assign T to wi if

P (wi|Tv, Ts) > P (wg|Tv, Ts) (1)

and wg otherwise. In the above equation, Tv and Ts are the normalized voice and
signature scores, respectively, and P (w|Tv, Ts) denotes the posteriori probability
of class w given the voice and signature scores. The strategy used in our system is
the simple sum rule described in Jain and Ross [9]. This rule assumes statistical
independence among the two modalities and also assumes that the posteriori
probabilities computed by the individual classifiers do not deviate much from the
prior probabilities [8]. The weighted sum rule assigns a test sample T = (Tv, Ts)
to wi if

WvP (wi|Tv) + WsP (wi|Ts) > WvP (wg|Tv) + WsP (wg|Ts) (2)

and wg otherwise. In equation (2), Wv and Ws are the weights assigned to the
voice and signature scores, respectively. Figure 3 shows the genuine and impostor
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(a) (b)

(c) (d)

Fig. 3. Distribution of genuine and impostor scores from one trial of cross validation;
(a) Signature (distance score), (b) Raw voice (similarity score), (c) Normalized voice
(distance score), (d) After sum rule fusion (distance score)

distributions of the signature, raw voice, normalized voice, and fused matching
scores using equal weights.

4 Results

4.1 Database

The data used for the evaluation of the authentication system was gathered from
50 individuals, each contributing 10 voiceprints and 10 signatures. The data was
collected in a single session from students in various laboratories on our campus
with significant ambient noise. Each individual was asked to speak his or her full
name and provide a genuine signature. A Toshiba Protege tablet PC was used
to perform the data collection for both the voice and signature using the stylus
for the signature and the internal microphone for the voice.

4.2 Performance

The database was divided into training and testing sets by using three randomly
selected voice and signature samples as the training set and the remaining seven
samples as the testing set. The training voice and signature samples were used
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for enrollment for each user, creating user templates for each modality. The
testing samples are then used to generate authentic scores for each user. Random
impostors for a user are generated by using the signature and voice samples from
all the other users. The corresponding receiver operator characteristic (ROC)
curves are shown in figure 4. After performing ten-fold cross validation, the
average equal error rate of voice alone is 1.60% versus 3.62% for signature alone.
The variance of the equal error rates of the individual voice and signature systems
is 0.05 and 0.31, respectively. The combination of the two modalities using the
weighted sum rule (with equal weights) has an average equal error rate of 0.86%
and a variance of 0.01.

Fig. 4. ROC curves showing the results of the unimodal and multimodal systems from
one trial of cross validation. The verical axis is the genuine accept rate and the hori-
zontal axis is the false accept rate, drawn on a logarithmic scale

Figures 5, 6, and 7 show some specific examples of incorporating multiple
modalities into the final decision. Figure 5 displays an example of an error in the
signature verification algorithm being corrected by fusion. Here, the template
and query signatures are very similar and, therefore have a low matching score.
However, because the voice verification algorithm found the two voiceprints to
be dissimilar, the multimodal system was able to classify the query correctly as
an impostor. Figure 6 displays a situation where the query voiceprint contained
a significant amount of noise and was incorrectly matched with the template.
On the other hand, the signature verification algorithm found the user to be
an impostor and this was able to help the system classify the query correctly.
Finally, figure 7 displays an example of an error that was unable to be resolved
by the mulitmodal system. Both voiceprints are greatly influenced by noise and
the verification provides a misleadingly low distance score. The signatures also
seem to follow the same pattern and the verification process found them to be
similar. Both modalities gave wrong results and, consequently, the fusion system
was unable to correctly classify the query as an impostor.
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(a) (b)

Fig. 5. Signature error resolved by fusion. The graphs show the x and y signals of
signature and amplitude of voice samples plotted against time of two different users
(a) and (b). The signature signals are the upper plot while the voice waveforms are
depicted below. The signature score between (a) and (b) is 0.77, indicating a genuine
signature. The normalized voice score between (a) and (b) is 1.5, indicating an impostor
voice sample. Fusing the scores together shows the user to be an impostor

(a) (b)

Fig. 6. Voice error resolved by fusion. The graphs show the x and y signals of signature
and amplitude of voice samples plotted against time of two different users (a) and (b).
The signature signals are the upper plot while the voice waveforms are depicted below.
The signature score between (a) and (b) is 1.853, indicating an impostor signature. The
normalized voice score between (a) and (b) is 0.02, indicating a genuine voice. Fusing
the scores together shows the user to be an impostor

5 Conclusions

We have designed and implemented an authentication system based on the fu-
sion of voice and signature data. This system was motivated by the health care
industry and is designed to interact well with both patients and health care
professionals. The authentication system will help medical facilities comply with
the HIPAA regulations regarding protection and privacy of medical records and
accountability issues. The HIPAA regulations require all patient data access to
be logged. This is done in order to provide accountability (audit trail); anyone
who accesses the patient records is held responsible for what they see and do.
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(a)

1568951495fusionErrorTemplate.png

(b)

Fig. 7. Unresolved error after fusion. The graphs show the x and y signals of signature
and amplitude of voice samples plotted against time of two different users (a) and (b).
The signature signals are the upper plot while the voice waveforms are depicted below.
The signature score between (a) and (b) is 0.979, indicating a genuine signature. The
normalized voice score between (a) and (b) is 0.06, indicating a genuine voice. Fusing
the scores together shows the user to be genuine

Accordingly, this system gives a much higher confidence in the access logs be-
cause it is very likely that the individual who logged into the system is the same
as the enrolled user. To combine the voice and signature modalities, we used fu-
sion at the matching score level and, in particular, used the weighted sum rule.
Using both the modalities gives higher accuracy than either individual modality
and also makes spoofing of the system a much more difficult task. Thresholds
can be adjusted in this system in order to achieve the desired security in this
application domain.
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Abstract. The issues of fusion with client-dependent and confidence informa-
tion have been well studied separately in biometric authentication. In this study,
we propose to take advantage of both sources of information in a discriminative
framework. Initially, each source of information is processed on a per expert ba-
sis (plus on a per client basis for the first information and on a per example basis
for the second information). Then, both sources of information are combined us-
ing a second-level classifier, across different experts. Although the formulation
of such two-step solution is not new, the novelty lies in the way the sources of
prior knowledge are incorporated prior to fusion using the second-level classi-
fier. Because these two sources of information are of very different nature, one
often needs to devise special algorithms to combine both information sources.
Our framework that we call “Prior Knowledge Incorporation” has the advantage
of using the standard machine learning algorithms. Based on 10 × 32 = 320 in-
tramodal and multimodal fusion experiments carried out on the publicly available
XM2VTS score-level fusion benchmark database, it is found that the generalisa-
tion performance of combining both information sources improves over using
either or none of them, thus achieving a new state-of-the-art performance on this
database.

1 Introduction

Previous studies have shown that combining several biometric authentication systems is
a potential way to improve the overall system accuracy [1]. It has also been shown that
fusion with client-dependent and confidence information can further improve the sys-
tem performance. Studies using client-dependent information include client-dependent
threshold [2], model-dependent score normalisation [3] or different weighing of expert
opinions using linear [4] or non-linear combination [5] on a per client model basis.
Some of the existing approaches to incorporate the confidence or quality information
are a multivariate polynomial regression function [6], a statistical model (that reconciles
expert opinions) [7] and a modified Support Vector Machine algorithm [8]. Specific to
speaker authentication, in [9], the first formant of speech was used as an indicator of
quality to weigh the Log-Likelihood Ratio (LLR) of each speech frame. Thus, instead
of taking the average LLR as commonly done, a weighted average LLR was used. These
studies have shown that incorporation of client-dependent and confidence information
are important means to improve multimodal biometric systems.

In this study, we would like to verify whether fusion using both of these sources
of information is more beneficial than using either one or none at all. To the best of
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our knowledge, this issue has not been examined before. This is perhaps because these
two sources of information are very different, and strategies employed to integrate one
source of information is completely different from or incompatible with the other. We
propose a novel way to fuse these two sources of information in two steps: first incor-
porate the prior knowledge on a per expert basis and then combine them using a second
classifier. The idea of using a second classifier is not new. This strategy is called post-
classification in [10]. However, deriving ways to incorporate the prior knowledge into
the scores, on a per expert basis, prior to fusion is new. This framework is called “Prior
Knowledge Incorporation” (PKI). It should be noted that the prior knowledge incorpo-
rated scores, on their own, may not necessarily be very useful if not further combined
with other scores. The advantage of this technique is that, due to PKI scores, (the first
step), information sources can be combined independently. In terms of implementation,
this means modular integration is possible. Secondly, the second-level classifier can be
implemented using standard off-the-shelf machine-learning algorithms, thus eliminat-
ing the need to create a specific fusion algorithm for this purpose. In principle, any
sources of prior knowledge can be combined this way. In practice, the amount of prior
knowledge possibly employed is limited by the information given by the baseline expert
systems.

In order to verify this hypothesis, three sets of fusion control experiments were
carried out, i.e., fusion using the original expert scores, fusion using client-dependent
normalised scores and fusion using confidence. These baseline experiments are then
compared to fusion using all the available information sources. Based on 32 fusion data
sets taken from the publicly available XM2VTS score fusion benchmark database [11],
it is concluded that fusion with both sources of information is more beneficial than using
either one or none of them.

This paper is organised as follows: Sections 2 and 3 discuss briefly how the client-
dependent information and confidence information can be computed, on a per expert
basis. Section 4 discusses how these seemingly different sources of information can
be fused together using the PKI framework. The database and results are presented in
Sections 5 and 6, respectively. They are followed by conclusions in Section 7.

2 Deriving Client-Dependent Information

There exists a vast literature in this direction. A survey can be found in [12, Sec. 2].
There are two families of approaches, namely, score normalisation and threshold nor-
malisation. The former aims at normalising the score such that a global decision thresh-
old can be found easily. The latter manipulates the decision threshold directly. It has
been shown that [12] both families are dual forms of each other. The disadvantage of
the latter category is that it is dependent on a specific cost of false acceptance and false
rejection while the former does not have to be. Hence, client-dependent score normali-
sation methods are considered here.

Examples of existing methods are Z-, D- (for Distance), T- (for Test) and more
recently, F-Norms (for F-ratio). In the terms used in [3, 13], Z-Norm [13] is impostor-
centric (i.e, normalisation is carried out with respect to the impostor distributions cal-
culated “offline” by using additional data), T-Norm [13] is also impostor-centric (but
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with respect to a given utterance calculated “online” by using additional cohort im-
postor models). D-Norm [14] is neither client- nor impostor-centric; it is specific to
the Gaussian Mixture Model (GMM) architecture and is based on Kullback-Leibler
distance between two GMM models. In [2], a client-centric version of Z-Norm was
proposed. However, this technique requires as many as five client accesses. Due to user-
friendliness aspect, one often does not have many client-specific biometric samples. To
overcome this problem, F-Norm was proposed [12]. It is client-impostor centric. Based
on the experiments reported, as few as two client scores are needed to perform this nor-
malisation. It was shown that F-Norm is superior over Z-Norm because F-Norm uses
the client-specific impostor information in addition to the client-specific information.

In this study, as an extension of [12], F-Norm is used. Suppose that the score of a
system is y. It indicates how likely that a given biometric sample belongs to a client.
Let μk(j) be the mean score of client with the unique identity j given that the true
class-label k = {C, I} (either a client or an impostor) is known (from a development
set). Let the (class-dependent but) client-independent mean be μk, for k = {C, I}. The
resultant F-ratio transformed normalisation is:

yF = A(j)(y −B(j)), (1)

where,

A(j) =
2a

β(μC(j) − μI(j)) + (1 − β)(μC − μI)
, (2)

and
B(j) = γμI(j) + (1 − γ)μI (3)

The terms A(j) and B(j) are associated to client j (client-dependent) and are derived
from F-ratio. They are each controlled by the parameters β ∈ [0, 1] and γ ∈ [0, 1] on a
per fusion experiment basis. The term 2a determines the “desired” distance between the
client-specific mean and the client-specific impostor mean. a is a constant and is fixed
to 1. β and γ adjust between the client-dependent and client-independent information.
When β = 0 and γ = 0, it can be shown mathematically that F-ratio normalisation is
equivalent to no normalisation at all. In biometric authentication, one often has abundant
client-specific (simulated) impostor information. Preliminary experiments in [12] show
that γ = 1 is always optimal. The experimental results confirm that due to abundant
client-specific impostor information, the shift in B(j) can always be estimated reliably.
As a consequence, the only parameter needs to be optimised, on a per experiment and
per expert basis, is the β parameter. It can be optimised using different approaches,
among which the direct approach is to use the line search procedure [15, Sec. 7.2].

3 Deriving Confidence Information

It has been shown in [16] that confidence can be derived from a “margin”. The margin
can be defined from False Acceptance (FA) Rate (FAR) and False Rejection (FR) Rate
(FRR) with respect to a threshold Δ. FAR and FRR are defined as follows:

FAR(Δ) =
number of FAs(Δ)

number of impostor accesses
, (4)
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FRR(Δ) =
number of FRs(Δ)

number of client accesses
. (5)

Replacing Δ by the associated expert score y, the margin of the score y is defined as:

q = |FAR(y) − FRR(y)| (6)

Hence, when incorporated into an existing discriminant function, q modifies the dis-
criminant function dynamically, i.e., a per example basis. Suppose that yi is the score
of expert i = 1, . . . , N . Linear combination of {yi, qiyi} from different expert systems,
with weight w1,i associated to yi and w2,i associated to qiyi, is equivalent to computing
yi × (w1,i + qiw2,i), for all i [16]. Note that from the term (w1,i + qiw2,i), it is obvi-
ous that qi has a direct influence on the gradient of the resultant discriminative function
on a per example basis. Hence, {yi, qiyi}, can be seen as a form of Prior Knowledge
Incorporation (PKI). Using equal weight in linear combination, in [16], it was shown
that fusion with {qiyi|∀i} has a better generalisation performance than fusion with-
out the margin information (the classical way), i.e., {yi|∀i}. Furthermore, fusion with
{yi, qiyi|∀i} consistently outperforms {qiyi|∀i}, even though the generalisation perfor-
mance is not always significant based on the HTER significance test [17].

4 Combing Both Sources of Information:
A Prior Knowledge Incorporation (PKI) Framework

In the previous sections, the client-dependent and confidence information are employed
on a per expert basis, independently of the other expert scores. The concept of PKI was
introduced when discussing how confidence (based on margin) can be combined. In this
section, we extend this concept to incorporate the client-dependent information as well,
i.e., using {yi, qiyi, y

F
i |∀i}. In principle, we could combine any other sources of infor-

mation or prior knowledge this way. The only limit is the amount of prior knowledge
captured by the available data (scores in this case).

Suppose that a linear combination is used to fuse {yi, qiyi, y
F
i |∀i}. Let w1,i, w2,i

and w3,i be weights associated to yi, qiyi and yF
i , respectively, for all i. Let the bias

term be −Δ, where Δ is the final decision threshold. Note that in this study, a separate
training procedure of the Δ parameter is employed to minimise Weighted Error Rate
(WER) on the development set. WER is defined as:

WERα(Δ) = αFAR(Δ) + (1 − α)FRR(Δ), (7)

where α ∈ [0, 1] balances between FAR and FRR. This procedure requires the compu-
tation of fused scores on both the development and evaluation sets. In this way, during
testing , based on a specified WER, the obtained threshold from the development set
can be applied to the evaluation set. A separate threshold estimation procedure is nec-
essary because algorithms that optimise the parameters of the fusion classifiers (weights
in the linear combination case) do not necessarily optimise WER. For instance, SVM
maximises the margin; Fisher discriminant maximises the Fisher-ratio criterion, etc.
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The fused score can be written as:

yCOM =
∑

i

[
yiw1,i + qiyiw2,i + yF

i w3,i

] −Δ

=
∑

i

[yiw1,i + qiyiw2,i + B(j)(yi −A(j))w3,i] −Δ

=
∑

i

[
yi

(
w1,i︸︷︷︸ + qiw2,i︸ ︷︷ ︸ +B(j)w3,i︸ ︷︷ ︸

)]
−

∑
i

[
B(j)A(j)w3,i︸ ︷︷ ︸

]
− Δ︸︷︷︸,(8)

where Eqn. (1) was used to replace the term yF
i . The first underbraced term is the global

weight on a per expert basis; the second is the weight contribution due to the confidence
information on a per example basis; and the third is the weight contribution due to the
client-dependent information source on a per client basis. These three weights are lin-
early combined to weight the score yi. Then the fourth underbraced term introduces
the client-dependent shift on a per expert and per client basis. Finally, the last under-
braced term introduces the global shift to the final discriminative function. This term
(Δ) is optimised by minimising WER for a given α value. From fusion point of view,
the first three underbraced terms introduce tilt and while the last two underbraced term
introduces shift to the decision hyperplane.

Although the PKI scores are simple to obtain, their linear combination can be a
very complex function as shown here. It should be noted that even though non-linear
combination can also be used (using the SVM algorithm with non-linear kernels , poly-
nomial expansion of the terms {yi, qiyi, y

F
i |∀i}, etc), simple linear solution is preferred

to avoid overfitting. Furthermore, most of the non-linear part of the problem should have
been solved by the base experts, thus eliminating the need for a complex second-level
classifier.

5 Database and Evaluation

The publicly available1 XM2VTS benchmark database for score-level fusion [11] is
used. There are altogether 32 fusion data sets and each data set contains a fusion task
of two experts. These fusion tasks contain multimodal and intramodal fusion based on
face and speaker authentication tasks. For each data set, there are two sets of scores,
from the development and the evaluation sets. The development set is used uniquely to
train the fusion classifier parameters, including the threshold (bias) parameter, whereas
the evaluation set is used uniquely to evaluate the generalisation performance. They
are in accordance to the two originally defined Lausanne Protocols [18]. The 32 fusion
experiments have 400 (client accesses) × 32 (data sets)= 12,800 client accesses and
111,800 (impostor accesses) × 32 (data sets) = 3,577,600 impostor accesses.

The most commonly used performance visualising tool in the literature is the Deci-
sion Error Trade-off (DET) curve [19]. It has been pointed out [20] that two DET curves
resulting from two systems are not comparable because such comparison does not take
into account how the thresholds are selected. It was argued [20] that such threshold

1 Accessible at http://www.idiap.ch/∼norman/fusion
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should be chosen a priori as well, based on a given criterion. This is because when a
biometric system is operational, the threshold parameter has to be fixed a priori. As a
result, the Expected Performance Curve (EPC) [20] was proposed. This curve is con-
structed as follows: for various values of α in Eqn. (7) between 0 and 1, select the
optimal threshold Δ on a development (training) set, apply it on the evaluation (test) set
and compute the HTER on the evaluation set. This HTER is then plotted with respect
to α. The EPC curve can be interpreted similarly to the DET curve, i.e., the lower the
curve, the better the generalisation performance. In this study, the pooled version of
EPC is used to visualise the performance. The idea is to plot a single EPC curve instead
of 32 EPC curves for each of the 32 fusion experiments. This is done by calculating the
global false acceptance and false rejection errors over the 32 experiments for each of
the α values. The pooled EPC curve and its implementation can be found in [11].

6 Experimental Results

The client-dependent setting is used to derive F-Norm transformed scores. On the other
hand, the client-independent setting is used to derive the margin scores. Three sets of
control experiments are performed, namely with original scores {yi|∀i}, F-Norm trans-
formed scores {yF

i |∀i} and margin-derived confidence scores {yiqi|∀i}. For each set
of experiments, three types of fusion classifiers are used, namely, a Gaussian Mix-
ture Model (GMM), a Support Vector Machine (SVM) with a linear kernel and the
mean operator. Both GMM and SVM employed are using standard algorithms, without
any particular modification. The hyper-parameters are selected automatically via cross-
validation. Figures 1(a)–(c) show the generalisation performance of these three sets
of control experiments. Each curve is a pooled EPC curve over 32 fusion multimodal
and intramodal datasets. Figure 2 complements Figure 1 by showing the corresponding
ROC curves.

To compare these three control experiments with the ones fusing all sources of infor-
mation, i.e., {yi, yiqi, y

F
i |∀i}, we plotted the best of each pooled EPC curves in (a)–(c)

on (d). As can be seen in (d), fusion with all sources of information using SVM has the
best generalisation performance, bringing a new state-of-the-art overall performance
on this benchmark data set. Considering significant performance improvement with re-
spect to the 3 × 3 sets of control experiments, for large range of α values (> 0.6 for
the best pooled EPC curve of the 9 control experiments over 32 fusion data sets), one
can conclude that fusion using client dependent and confidence information sources via
PKI is a feasible approach.

7 Conclusions

In this study, we proposed to fuse two seemingly different sources of information us-
ing the Prior Knowledge Incorporation (PKI) framework. These sources of information
are client-dependent and confidence information. Although fusion with both sources of
information has been studied separately in biometric authentication, to the best of our
knowledge, fusing both information sources has not been well investigated before. Be-
cause these information sources are of different nature, intuitively, a new combination
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Fig. 1. Pooled EPC curves from 32 XM2VTS benchmark fusion data sets of three baseline exper-
iments (a)–(c) and fusion with all information sources (d). (a) is fusion with the original scores,
{yi|∀i}, (b) is fusion with F-ratio transformed scores, {yF

i |∀i},and (c) is fusion with margin-
derived confidence, {yiqi|∀i}, each using a GMM, an SVM with linear kernel and the mean
operator. The best three pooled EPC curves in (a)–(c) are plotted in (d) (the top three in the leg-
end), together with fusion with all sources of information, i.e., {yi, yiqi, y

F
i |∀i} using an SVM

with linear kernel, denoted as “orig-F-margin,SVM”. The pooled EPC of this curve is compared
to the “best overall fusion” (lowest HTER in the EPC curve across different α) in each of (a)–(c).
“orig-F-margin,SVM” is better than “F-mean” for α > 0.6 according to the HTER significance
test at 90% of confidence. Below α = 0.6, both EPC curves are not significantly different

algorithm would be necessary. However, using the proposed PKI framework, we show
that these information sources can be combined at the score level by a linear transforma-
tion, for each source of prior knowledge. The advantage is modularity: prior knowledge
can be incorporated on a per expert basis (the first step) and the resultant PKI scores can
be fused by a second-level classifier using standard machine learning algorihtms (the
second step). Thus, this eliminates the need to devise specific fusion algorithms for this
purpose. Based on the experiments carried out on 32 intramodal and multimodal fusion
data sets taken from the publicly available XM2VTS benchmark database, over 10 fu-
sion classifiers (3 fusion baselines on the original scores; 3 with client-dependent fusion
baselines; 3 with margin-enhanced confidence baselines; and a final fusion with all in-
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Fig. 2. Pooled ROC curves from 32 XM2VTS benchmark fusion data sets of three baseline
experiments (a)–(c) and fusion with all information sources (d). (a) is fusion with the original
scores, {yi|∀i}, (b) is fusion with F-ratio transformed scores, {yF

i |∀i},and (c) is fusion with
margin-derived confidence, {yiqi|∀i}, each using a GMM, an SVM with linear kernel and the
mean operator. The “best” three pooled ROC curves (i.e., the EPC curve with the lowest HTER
value across different α values) in (a)–(c) are plotted in (d), together with the one that fuses all
sources of information, i.e., {yi, yiqi, y

F
i |∀i} using an SVM with linear kernel, denoted as “orig-

F-margin,SVM”. This figure complements Figure 1. As confirmed by the HTER significance test,
for FRR above 1.2%, “orig-F-margin,SVM” is significantly different (and better) than “F-mean”
but below 1.2%, their difference is insignificant. This phenomenon is due to few client accesses
as compared to impostor accesses. As a result, low FRR values cannot be interpreted reliably
compared to low FAR values

formation sources), fusion with both information sources using the PKI framework has
the best generalisation performance and its performance is significant over large values
of operating (false acceptance/false rejection) costs as compared to the most competing
technique, i.e., fusion with client-dependent information.
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20. S. Bengio and J. Mariéthoz, “The Expected Performance Curve: a New Assessment Measure
for Person Authentication,” in The Speaker and Language Recognition Workshop (Odyssey),
Toledo, 2004, pp. 279–284.



Author Index

Abhyankar, Aditya 301
Adler, Andy 860, 1100
Ahn, Dosung 1071
Akarun, Lale 1019
Akkermans, Anton H.M. 436
Alba-Castro, José Luis 51
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Petrovska-Delacrétaz, Dijana 580
Phillips, P. Jonathon 869
Podilchuk, Christine 607
Poh, Norman 474, 1059, 1120

Qing, Laiyun 956

Rafailovich, Miriam 1010
Raim, Jarret D. 1090
Ramos-Castro, Daniel 1080
Ranganath, Surendra 320
Reilly, Richard B. 777, 787
Reisman, James 720
Riopka, Terry 850
Ross, Arun 720
Rueckert, Daniel 997
Ruifrok, Arnout 891
Ryu, Choonwoo 710

Saeta, Javier R. 572
Sakaguchi, Shohei 767
Sakamoto, Hiroyuki 758
Salah, Albert Ali 1019
Samaras, Dimitris 91
Sankur, Bülent 339
Santini, Francesco 279
Sasakawa, Koichi 945
Savvides, Marios 61, 607
Scheenstra, Alize 891
Schrijen, Geert-Jan 436
Schuckers, Michael E. 860
Schuckers, Stephanie 301
Shan, Shiguang 937, 956
Shih, Peichung 1039
Shimomoto, Ryo 767
Shin, Hyungchul 909
Short, James 617
Singh, Harshinder 484
Smith, Mark J.T. 693
Sohn, Kwanghoon 909
Son, Byungjun 513
Song, Hwanjong 909
Song, Wei 320

Sridharan, Karthik 977
Su, Qi 151
Sukno, Federico 365

Takahashi, Naomi 1
Takeda, Kazuya 739
Tan, Tieniu 122, 229
Tang, Xiaofang 929
Tappert, Charles 823
Tewes, Andreas 81
Tian, Jie 151, 665, 730
Tistarelli, Massimo 329
Toh, Kar-Ann 919
Tonguz, Ozan K. 406
Tuyls, Pim 436

Uludag, Umut 310, 720
Ushmaev, Oleg 250

Vaccarelli, Anna 279, 464
Veldhuis, Raymond N.J. 436
Veltkamp, Remco C. 891
Venkateswarlu, Ronda 919
Veres, Galina V. 597
von der Malsburg, Christoph 81

Wada, Tomohito 767
Wakita, Toshihiro 739
Wang, Haoshu 627
Wang, Jian-Gang 919
Wang, Kuanquan 346, 555
Wang, Rong 355, 748
Wang, Ruiping 208
Wang, Sen 91
Wang, Yanrong 647
Wang, Yunhong 122, 229
Wildes, Richard 1
Woodard, Damon L. 544
Wu, Hong-tao 131
Wu, Shi-Qian 320
Wu, Xiangqian 555
Wu, Zhaohui 797, 804
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