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1 Introduction

Biological groups such as schools of fish, flocks of birds, and herds of un-
gulates are remarkable for the effectiveness with which they maintain group
structure, detect and avoid obstacles and predators, locate resources and mi-
gration routes, and perform other coordinated tasks (Parrish and Hamner,
1997). The precise choreography of collective motion frequently displayed by
these groups belies the fact that the underlying behavioral mechanisms oper-
ate at the level of the individual (Camazine et al., 2001). That is, individuals
within these groups respond independently to their own sensory inputs, phys-
iological and cognitive states, and locomotory contraints. Over evolutionary
time scales, the genetic basis of social behaviors that lead to effective group-
ing is the result of selection on individuals’ DNA, with the fitness value of
each potential behavior mediated through how an individual exhibiting that
behavior benefits, relative to its competitors inside and outside the group.
The interesting interplay between organizational levels, coupled with the high
prevalence of social groups across a wide range of animal taxa, and the strong
impacts animal groups have on ecological dynamics, have provided a strong
motivation for biologists to better understand the behavioral bases of social
aggregation behaviors. From the engineering perspective, the high level of co-
ordination achieved by these groups, and the idea that they are the result of
a lengthy optimization process (natural selection) makes social grouping be-
haviors interesting candidates for biomimetic, or at least biologically inspired,
algorithms that confer on robotic systems some desirable traits of natural
groups.

Despite this high level of interest, and a great number of observational and
theoretical studies, the mechanics underlying animal groups are still poorly
understood. This is true for a number of reasons. The relevant behaviors are
difficult to observe experimentally under representative conditions with the
necessary precision and duration. Also, while there exist mathematical meth-
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ods for characterizing the movements of biotic or engineered agents given a
hypothetical behavioral algorithm, the converse is usually not possible: There
are few tools to deduce the behavioral algorithms that were responsible for
any specific set of observed movements. A further complication is that a high
degree of variability exists between different species, between different indi-
viduals within a single species, and frequently also within the same individual
observed at different times. Thus, there is not a single type of grouping be-
havior, but a whole range of alternative behaviors that may be expressed in
different situations, and that have different costs and benefits to the individ-
uals that employ them.

In the biological literature, schooling behaviors are frequently simulated
in individual-based models as a set of Newtonian forces acting on individu-
als (e.g. Okubo, 1986; Warburton and Lazarus, 1991; Huth and Wissel, 1992;
Griinbaum, 1994; Romey, 1992; Griinbaum, 1998b; Flierl et al., 1999; Couzin
et al., 2002; Parrish et al., 2002). The forces on an individual in these mod-
els typically include “social” forces that are modulated by the individual’s
position relative to other individuals. The social forces in these models typi-
cally undergo changes in direction and magnitude as functions of distances to
neighbors, such as an attraction to relatively distant neighbors coupled with
a repulsion from neighbors that are too close, and in some cases a tendency
to match velocity or heading with neighbors at an intermediate distance. In
addition, other forces are usually included that reflect stochastic elements of
behavior; environmental stimuli such as boundaries, predators, and food; and
physical effects, such as hydrodynamic drag (Parrish and Viscido, 2003).

There are many variations of these behavioral rules in the literature, and
many are successful in the sense that they generate simulated groups that
share some key characteristics with biological groups. However, there remain
important deficiencies in these models. One of these is that some elements of
natural groups, such as the ability to form and maintain very large groups
(much larger than the typical number of neighbors that any given individual
can interact with simultaneously), are not well replicated by existing models.
The fact that biological systems show behaviors not replicated by any existing
models suggests that some essential components of real schooling behavior are
lacking in the models. Another difficulty is that algorithms based on very dif-
ferent behavioral rules can generate simulated schools that appear intuitively
realistic to the human eye. This suggests that either these different algorithms
produce groups that are functionally indistinguishable, or (more probably)
that human intuition is not sufficiently discerning to discriminate between al-
ternative hypothetical grouping behaviors. Clearly, quantitative comparisons
between simulated outcomes of hypothetical rules and the real movements of
organisms in natural groups are needed to determine the characteristics of
social behaviors in real biological groups.

To provide these comparisons, we developed motion analysis hardware and
software to track the precise 3-dimensional positions of fish in small schools
as they moved and interacted in experimental tanks. The focal fish in these



Extracting Interactive Control Algorithms 105

Fig. 1. Trajectories of eight individual Giant Danios, a facultatively schooling
fish, within a 1 meter cubed observation tank. These data represent 30 seconds of
position data, with each individual’s 3-dimensional position determined by comput-
erized video analysis every thirtieth of a second. Units are centimeters. The graphic
represents one-twentieth of the data collected in each ten minute experiment; the
analysis presented here is based on six such experiments.

studies were giant danios, Danio aequipinnatus. Preliminary observations, re-
sults of which are reported here, were carried out in a 1 meter cubed acrylic
observation tank. In a typical experiment, a small group, usually of eight fish,
was transferred from a culturing facility and into the observation tank. After
an acclimation period of six hours, the fish were video-taped using two digital
camcorders, which had been positioned and calibrated prior to the introduc-
tion of fish. The resulting video sequences were captured onto a computer, and
public-domain software used to identify fish within the two camera views. A
motion analysis software package developed by us, Tracker3D, was used to
analyze the raw pixel position files from the two cameras and reconstruct
the positions of each fish throughout a ten-minute sequence of interactions
with other group members. This software is written in Matlab 6.5 and can
be downloaded for noncommercial scientific use from the authors’ website.
An example of the trajectories of fish in our studies is shown in Figure 1.
An animated version of these data is also available at the authors’ website.
See Parrish et al. (2002) and Viscido et al. (2004) for additional details on
experimental methods.
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2 Statistics of individual positions within schools

To partially characterize the behavioral interactions in our fish experiments,
we identified the nearest neighbor of each fish in our movement sequences at
each frame (approximately 18000 observations for each of 44 fish, over five
independent 8-fish experiments and one 4-fish experiment). For each focal
fish at each frame, we calculated the relative angle and distance of the near-
est neighbor in the frame of reference of the focal fish Parrish and Turchin
(1997). Despite the obvious 3-dimensional motion of the school as a whole,
fish tended to be at a relatively small elevation angle relative to their near-
est neighbor. Therefore, our initial analysis aimed at understanding the be-
havioral responses governing the horizontal positions of fish relative to their
nearest neighbors.

We quantified the schooling interactions of our fish in our experiments by
generating probability density functions (PDFs) of relative horizontal posi-
tions. Using the PDF's of the 44 fish as separate samples, we calculated the
mean PDF and the empirical orthogonal functions (EOFs), which are the
“modes” that most efficiently describe the variance in the whole ensemble.
EOF modes are the eigenvectors of the correlation matrix calculated from
the data, in a procedure known as a proper orthogonal expansion (Papoulis,
1984). We used EOF codes written in Matlab by Hooimeijer (2000). The mean
PDF of relative nearest neighbor position, and the first five FOF modes, are
plotted in Figure 2.

EOFs have a number of useful statistical characteristics. The EOF modes
are orthogonal; each sample in the ensemble used to generate the FOF's can
be reconstructed exactly as a linear combination of FOF modes. If we define
pi(x,y) to be the observed PDF for the ith fish, then

pi(xay) = ]3(33, y) + CiJEl(way) + ci,2E2<$7y) + Ci73E3($,y) + ... ) (1)

where p(z,y) is the mean PDF for all fish; E;(z,y),7 = 1,2,... are the
EOF modes; and c; ; are the coefficients of the jth mode in the FOF ex-
pansion. The variance represented by each mode is the maximum possible
(that is, the first mode is the most “energetic” possible; of the remaining vari-
ance, the second mode is the most energetic possible, and so on), and is given
by the eigenvalues associated with the each FOF mode. The variance repre-
sented by each mode, and the histograms of the coefficients c; ;, and shown
in Figure 3.

3 Behavioral switches in schooling fish
The FOF modes extracted from our data have a number of features that are

biologically significant. One is that the first mode, which represents over 75%
of the ensemble variance, is conspicuously similar to the mean PDF. This
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Fig. 2. Probability density functions of nearest neighbor positions for schooling fish.
The mean distribution from the 44 fish observed in the six experiments (top left
panel) suggests that nearest neighbors are commonly found in a lateral position at a
distance of approximately 5 centimeters. The remaining panels show the first five
empirical orthogonal functions (EOFs) representing deviations from the mean
distribution in the individual fish, in order of decreasing contribution to the
variance. The first mode is quite similiar to the mean, suggesting that a large
component of the variability between individual fish consisted of up- and down-re-
gulation of the preference for lateral neighbors. Note that these data include nearest
neighbors from both right and left sides.
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Fig. 3. Convergence and distributions of the coefficients (c; ;) of the EOF modes
in Figure 2. The top left panel shows the variance captured by the first ten modes.
Convergence is rapid: the first mode alone contains over 75% of the total variance,
and the first ten modes contain nearly 95% of the total variance. The remaining
panels show histograms of the FOF coefficients in the expansions for the individual
fish (see Equation 1). The histogram for the first mode is biomodal. This suggests
that, in different individuals, the first mode either reinforces or cancels the preference
for lateral nearest neighbors.
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implies that, depending on whether the coefficient ¢; 1 is positive or negative
for the ith fish, this mode will either reinforce or cancel the spatial pattern of
nearest neighbor positions represented by the mean PDF.

Another interesting feature of the EOF's for nearest neighbor position is
that the coefficient of the first mode, ¢; 1, is bimodally distributed (Figure 3).
That is, individual fish tend either to have strongly negative first modes, which
effectively cancel the spatial pattern evident in the mean, or strongly posi-
tive first modes, which reinforce the mean pattern. Relatively few individuals
have intermediate values of ¢; ;. This bimodality suggests an examination of
whether differences exist primarily among fish within experiments, or among
fish across different experiments. A plot of ¢; ;1 coefficients grouped by exper-
iment (Figure 4) makes it clear that fish within an experiment behave very
similarly to each other, at least in the aspects of social behavior that determine
the relative horizontal positions. Even in Experiment 2 — the only experiment
in which coefficient values near zero were observed — all fish behaved similarly,
such that variation within this experiment was low.

Because all experiments were conducted under identical conditions, and
individuals were chosen at random from a larger population in culture, there
is no reason to believe that individuals in one group of fish were systematically
different from those in any other group. Thus, differences between experiments
likely reflect facultative changes — that is, a behavioral switch — in schooling
behavior, rather than intrinsic differences in the individuals between experi-
ments. Furthermore, the two types of social interaction appeared to be typified
by strongly positive or strongly negative values, with corresponding differences
in nearest neighbor distributions. There appeared to be a “consensus” among
neighboring fish at any given time about which behavioral mode to exhibit,
and different experiments resulted in different consensus behaviors.

To understand what these modes may represent in biological terms, we
constructed a “typical positive coefficient”, from the mean of all positive in-
stances of ¢; 1,

cf =mean(c;; > 0), (2)
and a “typical negative coeflicient” from the mean of all negative instances of
Ci1,

¢ =mean(c¢; 1 < 0). (3)

In our data, we found these values to be ¢f = 671.9 and ¢] = —806.2.

We then assembled two “prototypical” nearest neighbor distributions, us-
ing only the mean and the first EOF mode with these positive and negative
coefficients,

p+(w,y) = ﬁ(ajay> + CTE1<x7y)’
p_<x7y) =ﬁ(337y) +C;E1<x7y)' (4)

The prototypical distributions (Figures 5 and 6) show that groups of fish
adopted two very different behavioral modes, both of which have biologically
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Fig. 4. Coeflicients of the first EOF mode (c;,1), grouped by the experiment in
which they were observed. All experiments had eight fish, except experiment 4 which
had four fish. This figure shows the high degree of consistency between the individ-
uals within each experiment: Nearly all of the total variation in nearest neighbor
position preference is between fish in different experiments, and almost none of it
is between fish in the same experiment. This suggests that there is a “consensus”
preferred nearest neighbor position among individuals in a group at any given time.

reasonable interpretations. In one behavior, represented by the positive dis-
tribution, nearest neighbors were usually in a lateral position, at a distance
of between 5 and 10 centimeters. In the other behavior, represented by the
negative distribution, the nearest neighbor was usually either directly in front
of or behind the focal individual.

Using the values of ¢; ; to assign fish to one of these behavioral types, we
found the following generalizations to hold:

e Fish with positive coefficients formed cohesive, milling groups. In con-
trast, fish with negative coefficients formed loose, disorganized aggrega-
tions, dominated by intermittent pairwise interactions (i.e., leader-follower
or pursuit-escape behaviors).

e Fish with positive coefficients had relatively low speeds and accelerations,
particularly the along-track component of acceleration. In contrast, fish
with negative coefficients swam faster and accelerated more rapidly.
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coefficient ¢ (see Equations 2, 3), reflecting the lateral nearest
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e Fish with positive coefficients spent equal amounts of time nearest to each
other fish in the group, and all were similar to each other. In contrast, fish
with negative coefficients differed from each other, both in which other
individuals were most frequent nearest neighbors, and in whether they
were more frequently in front of or behind their nearest neighbor.

In the context of these general trends, it is interesting to consider Experi-
ment 2, the only experiment in which coefficient values did not fall into either
the positive or negative coefficient ranges (Figure 4). Near-zero coefficients
could in theory have arisen in several ways. The fish may have adopted a
social behavior that is “intermediate” in some way between those represented
by Figures 5 and 6. Alternatively, the fish may have changed behaviors during
the experiment, such that at any one time their behavior did correspond to
positive or negative coefficient ranges. Animations of the trajectories from this
experiment show that the fish formed two groups that were spatially distinct,
and had persistent differences: One group was in a low vertical position, had
relatively close and uniform, and was larger (typically 5-6 members). The other
group was at a high vertical position, was more diffuse, and smaller (typically
2-3 members). Interestingly, these group characteristics remains relatively con-
stant, but the identity of group members did not — individuals cycled in and
out of the smaller group over the course of the observations. This suggests
that either individuals switched their behaviors to conform more closely with
that of the group being joined, or they switched groups when their behaviors
more closely resembled the “norm” for the other group.

4 Extracting control algorithms from neighbor positions

To shed some light on the behavioral algorithms that may underlie the pat-
terns in our observations, we hypothesized that the position of the nearest
neighbor could be described as a biased random walk, for which the steady
state PDF can be approximated (in the usual diffusion limit) by an advection-
diffusion equation (ADE),

V (DVp — x(z,y)p) =0 . (5)

In (5), it is assumed that the diffusion coefficient (D) is constant, but that
the advection term, x(z,y), varies with relative position. With manipulation,
(5) gives an expression for the distribution of the ratio of D and Yy,

M) — 9 (tog(p)). 0

Equation 6 is potentially useful because the ratio x/D can be estimated di-
rectly from observations of nearest neighbor distributions, p(z,y), such as
those presented above. In Figures 6 and 5, we show the distributions of
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log(p) in our prototypical nearest neighbor PDF's, together with the a- and
y-direction gradients of log(p) representing the coefficients in (6).

The advective fluxes suggested by this interpretation of our data differ
in important ways from the assumptions of most schooling simulations in
the literature, including our own. In the lateral postion preference behavior,
characterized by positive coefficient values (Figure 5), the a-direction fluxes
are strongly positive when the nearest neighbor is behind the focal individual,
and negative when that neighbor is ahead of the focal individual. This suggests
that at least one of the fish accelerates or decelerates to match its neighbor in
along-track position. The y-direction fluxes are positive directly adjacent to
the focal fish to a distance of roughly 4 centimeters, but negative at lateral
positions greater than 7 centimeters distant. This again suggests a regulatory
behavior, in which at least one of the fish veers away from a neighbor that is
too close but towards a neighbor that is too distant.

In the fore-aft position preference, characterized by negative coefficient
values (Figure 6), behavioral variations occur on a finer scale. Despite the
presence of some statistical noise, a pattern can be discerned in which a “basin
of attraction” exists directly behind the focal fish (at roughly -11 centimeters),
and another directly in front (at roughly 7 centimeters). In both these basins,
advective fluxes are distributed such that a neighbor that is subjected to
a small displacement forward or backwards is likely to be returned to its
preferred position.

5 Discussion

Social behaviors underlying the dynamics of natural groups are complex and
highly variable on a number of levels. Our laboratory observations of schooling
fish are unusual in their precision, and the lengthy period over which individ-
uals were tracked. Our data determine both individuals’ movement decisions,
and the relative positions of all the other group members that may have stim-
ulated those decisions. The extremely large sample size in our study enabled
us first to generate spatial statistics of nearest neighbor position, and then
to assess the qualitative and quantitative characteristics of variation of these
statistics between individuals within and across experiments. The results of
these analyses contain important messages for future attempts to model social
behavior.

We observed what appears to be a behavioral switch, where groups of fish
under similar experimental conditions exhibited one of two markedly different
behaviors. One individual-level behavior is characterized in physical terms by
by a preference for nearest neighbors in a lateral position, and in mathemati-
cal terms by positive values of the coefficient of the first empirical orthogonal
function (EOF) of nearest neighbor position. This behavior is reflected at
the group level by milling, slow swimming and small accelerations. The other
behavior is characterized at the individual level by a preference for fore-aft
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nearest neighbors, and by negative values of the first FOF coefficient. This
behavior is reflected at the group level by loose and disorganized aggregation,
rapid swimming and large accelerations. For both behaviors, we described an
advection-diffusion equation (Alt (1980); Othmer et al. (1988); Griinbaum
(1998a, 2000)) that could generate the observed PDF's, and that in some re-
spects is a measurement of the “social forces” commonly incorporated into
simulations of socially grouping animals. Our observations suggest that, be-
yond a simple distance-modulated response, our schooling fish displayed defi-
nite and specific preferences for the relative position of their nearest neighbor.
We believe that it would be fruitful to develop simulation models based on
social forces estimated from nearest neighbor PDF's, such as those in Figures
5 and 6.

The strong association observed experimentally between the distinct near-
est neighbor PDF's and their respective group level characteristics suggests a
hypothesis that the change in preferred nearest neighbor position is the key
behavioral element in the two forms of social aggregation. Furthermore, these
results suggest that fish may have multiple rule sets dictating spatial aspects
of social interaction, and that they facultatively switch between them as a
group. To date, all simulations, including our own, have searched for unique
rather than multiple rule sets to explain transitions in group-level character-
istics.

We found that behaviors are quite consistent among fish within a group,
but that groups observed at different times have different consensus behaviors
at the individual level. We believe that each of our groups was essentially sim-
ilar, and that if we had observed each group for long enough each would have
displayed both prototypical behaviors (and perhaps others). However, we did
not obtain detailed observations of transitions between behaviors. Pending fu-
ture experiments, we can only speculate on how those transitions might occur.
We note that group level transitions can occur without changes in underlying
individual behaviors, associated with changes in group size (Partridge et al.,
1980), or hysteresis-type historical effects (Couzin et al., 2002). Additional
theoretical work that identifies and characterizes the multiple levels at which
individual- and group- level changes occur in social organisms would be an
important contribution to our biological understanding of these behaviors.
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