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Summary. This paper is concerned with the collective behavior of a group of n > 1
mobile autonomous agents, labelled 1 through n, which can all move in the plane.
Each agent is able to continuously track the positions of all other agents currently
within its “sensing region” where by an agent’s sensing region is meant a closed
disk of positive radius r centered at the agent’s current position. The multi-agent
rendezvous problem is to devise “local” control strategies, one for each agent, which
without any active communication between agents, cause all members of the group
to eventually rendezvous at single unspecified location. This paper describe two
types of strategies for solving the problem. The first consists of agent strategies
which are mutually synchronized in the sense that all depend on a common clock.
The second consists of strategies which can be implemented independently of each
other, without reference to a common clock.

Current interest in cooperative control has led to the development of a
number of distributed control algorithms capable of causing large groups of
mobile autonomous agents to perform useful tasks [1] — [14]. Of particular
interest here are provably correct algorithms which solve what we shall refer
to as the “multi-agent rendezvous problem.” This problem, which was posed
in [1], is concerned with the collective behavior of a group of n > 1 mobile
autonomous agents, labelled 1 through n, which can all move in the plane.
Each agent is able to continuously track the positions of all other agents cur-
rently within its “sensing region” where by an agent’s sensing region is meant
a closed disk of positive radius r centered at the agent’s current position. The
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multi-agent rendezvous problem is to devise “local” control strategies, one for
each agent, which without any active communication between agents, cause all
members of the group to eventually rendezvous at single unspecified location.

In this paper, as in [1], we consider distributed strategies which guide each
agent toward rendezvous by performing a sequence of “stop-and-go” maneu-
vers. A stop-and-go maneuver takes place within a time interval consisting of
two consecutive sub-intervals. The first, called a sensing period, is an inter-
val of fixed length during which the agent is stationary. The second, called a
maneuvering period, is an interval of variable length during which the agent
moves from its current position to its next ‘way-point’ and again come to
rest. Successive way-points for each agent are chosen to be within r,; units of
each other where r); is a pre-specified positive distance no larger than r. It is
assumed that there has been chosen for each agent 4, a positive number 7yy,,
called a maneuver time, which is large enough so that the required maneuver
for agent ¢ from any one way-point to the next can be accomplished in at
most Tz, seconds. Since our interest here is exclusively with devising of high
level strategies which dictate when and where agents are to move, we will use
point models for agents and shall not deal with how maneuvers are actually
carried out or with how vehicle collisions are to be avoided.

In the sequel we describe two families of stop-and-go strategies. The first,
which includes the specific strategies proposed in [1], consists of agent strate-
gies which are mutually synchronized in the sense that all depend on a common
clock. The second consists of strategies which can be implemented indepen-
dently of each other, without reference to a common clock.

In the synchronous case §1, the kth maneuvering periods of all n agents
begin at the same time . The kth way-point of each agent is a function of
the positions of its “ registered neighbors” at time f,. Agent i’s registered
neighbors at time ¢, are all those other agents positioned within its sensing
region at time #;. This notion of a neighbor induces a symmetric relation on
the agent group since agent j is a registered neighbor of agent i at time £}, just
in case agent i is a registered neighbor of agent j at the same time. Because of
this it is possible to characterize neighbor relationships at time #; with a sim-
ple graph whose vertices represent agents and whose edges represent existing
neighbor relationships {§1.1}. Although the neighbor relation is symmetric, it
is clearly not transitive. On the other hand if agent i is at the same position
as neighbor j at time #j, then any registered neighbor of agent j at time £,
must certainly must be a registered neighbor of agent ¢ at the same time. It is
precisely because of this weak transitivity property that one can infer a global
condition of the entire agent group from a local condition of one agent and its
neighbors. In particular, if the graph characterizing neighbor relationships at
time fj, is connected, and any one agent is at the same position as all of its
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neighbors, then the weak transitivity property guarantees at once that all n
agents have rendezvoused at time #y,.

One way to ensure that a neighbor graph is connected at time #;,, assuming
it is connected when the rendezvousing process begins, is to constrain each
agent’s way-points to be positioned in such a way so that no agent can lose any
of its registered neighbors when it moves from one way-point to the next. This
can be accomplished using a clever idea taken from [1]. An immediate conse-
quence is that each agent’s set of registered neighbors is non-decreasing and,
because of this, ultimately converges to a fixed neighbor set for #;, sufficiently
large.

A second local constraint is to require the way-point of each agent i at the
beginning of its kth maneuvering period to lie in the “local” convex hull H; (k)
of agent i’s own position at time #;, and the sensed positions of its registered
neighbors at the same time. It is quite easy to prove that doing this causes
the global convex hull H(k + 1) of all n agent positions at time f;11 to be
contained in the corresponding global convex hull H(k) at time .

A third constraint is to stipulate that for each 7, the only condition under
which agent ¢’s kth way-point can be positioned at a corner of H,;(k), is when
H; (k) is a single point. The global implication of doing this is that the diameter
of H(k+ 1) must either be strictly smaller than the diameter of H(k) or every
agent must be at the same position as all of its registered neighbors at time #; —
and this is true whether or not the graph characterizing neighbor relationships
at time tj, is connected.

In §1.3, a more or less standard Lyapunov-style argument is used to prove
that if the preceding constraints are adopted by all agents and if the graph
characterizing initial neighbor positions is connected, then all n agents will
eventually rendezvous at a single point. Not surprisingly, the Lyapunov func-
tion used for this purpose is the diameter of the global convex hull. However,
although connectivity of the graph characterizing initial neighbor positions is
sufficient for rendezvousing, it is not necessary. An example illustrating this is
given in §1.2. The example deals with the situation when the initial neighbor
graph consists of two connected components, with one “encircling” the other
in a suitably defined sense.

The strategy described in §1 cannot be regarded as truly distributed be-
cause each agent’s decisions must be synchronized to a common clock shared
by all other agents in the group. In §2 we redefine the strategies so that a com-
mon clock is not required. To do this it is necessary to modify somewhat what
is meant by a registered neighbor of agent 7 at time #;;, where #;;, is the time
at which agent i’s kth maneuvering period begins. Our definition is guided
by considerations discussed above for the synchronous case. For example, the
new definition is crafted to retain versions of the symmetry and weak tran-
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sitivity properties of the neighbor relation inherent in the synchronous case.
Doing this is challenging, because unlike the synchronous case, the time each
agent registers its neighbors and its neighbor’s positions is not synchronized
with the times its neighbors do the same thing.

Exactly the same way-point update rules considered in the synchronous
case are adopted for the asynchronous case. Thus the only functional differ-
ences between the two cases are the definitions of registered neighbors and
registered neighbor positions. Of course in the asynchronous case, way-point
updates are computed asynchronously, whereas in the synchronous case they
are not.

Not surprisingly, the analysis of the asynchronous version of the problem is
considerably more challenging than is the analysis of the synchronous version.
For example, while it is more or less obvious in the synchronous case that
agents retain their neighbors as the system evolves, proving that this is also
true in the asynchronous case involves a number of steps {§2.1}.

Just as in the synchronous case, it is possible to characterize neighbor
relationships with a graph. This is done in §2.1 by first merging together

into a single ordered time set the distinct “event times” ;x, i € {1,2,...,n},
k > 1 generated by all n agents. The elements of this set are then rela-
belled as t1,%2,--- in such a way so that t; < tj41, j € {1,2,...}. With

this notation, agent i’s registered neighbors at its kth event time t;; are its
registered neighbors at time tg,(x) where S;(k) denotes that value of s for
which t5 = ;5. For each 7 € {1,2,...,n}, the domain of definition of agent i’s
registered neighbors is then extended from the set {tg, ) : & > 1} to the set
{ts : s > S;(1)} by stipulating that for values of t; which are between two suc-
cessive event times of agent 7, say between t;;, and fi(k+1), agent i’s registered
neighbors are the same as its registered neighbors at time ¢;;. This means
that registered neighbors of each agent are defined at each time t5 > t5 where
528 max{S5(1),52(1),...5,(1)}. Because of this, it is possible to describe
neighbor relationships with a directed graph with vertex set {1,2,...,n} and
directed edge set defined so that (7, j) is a directed edge from vertex i to vertex
J just in case agent j is a registered neighbor of agent i at event time ¢4. The
main result of this paper {Corollary 3} is that if this graph is ever weakly
connected?, then rendezvous of all n agents will eventually occur.

The remainder of the paper is devoted to a proof of this claim. This is done
in §3 by first “embedding” the n agent asynchronous processes in a suitably
defined synchronous discrete-time, hybrid dynamical system S which captures
the salient features of the agent system {§3.1}. Not captured, however, are
the details of individual agent maneuvers. As a result, S’s next state map f(+)

4 Recall that a directed graph is weakly connected if there is an undirected path
between each pair of vertices [15].
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is set-valued and S is consequently nondeterministic. Fixing the value of S’s
state recursively at one of the possible states specified by f results in a well-
defined trajectory. For a given initial state x, the set of all such trajectories
7 (z) turns out to be countable. To claim that a signal can be generated
by S initialized at x, is to claim that the signal can be generated along at
least one of the trajectories in 7 (z). In §3.3 it is shown that with proper
interpretation of S, all of the way-point sequences generated by all n agents
can be simultaneously generated in this manner after a certain finite amount
of time. A Lyapunov-style argument is used in §3.4 to prove Theorem 3 which
states that trajectories of S admitting this interpretation must converge if the
underlying neighbor graph of the agents is ever weakly connected. The paper’s
main result mentioned above {Corollary 3} is an immediate consequence of
this theorem.

1 Synchronous Case

In the synchronous case, the maneuvering times for all agents are all the same
length positive value 7,,. Along any trajectory of the system to be consid-
ered, the real time axis can be partitioned into a sequence of time intervals
[0,¢1), [t1,t2), ... [tk—1,tk),- - ., each of length at least 75;. Each interval con-
sists of a sensing period followed by a maneuvering period of fixed length
Tapr- All agents function in synchronization in the sense that all are at rest
during sensing periods and all can maneuver only during maneuvering peri-
ods. In particular, all agents actions are synchronized to the time sequence
t1,19,...1 ... where t;, denotes the real time t, — 7a; at which the kth ma-
neuvering period begins. Agent i’s registered neighbors at the beginning of its
kth maneuvering period [tx, 1), are those agents, except for agent i, which
are within agent i’s sensing region at time f,. Note that this definition is
a symmetric relation on the set of all agents; i.e., if agent i is a registered
neighbor of agent j at the beginning of maneuvering period k, then agent j
is a registered neighbor of agent ¢ at the beginning of the same maneuvering
period. As we shall see, special steps will have to be taken to achieve a similar
property in the asynchronous case.

A pair of agents which are registered neighbors at the beginning of ma-
neuvering period k, are said to satisfy the pairwise motion constraint during
the period if the positions to which they move at time t; are both within a
closed disk of diameter r centered at the mean of their registered positions
at time ?;. The definition implies that any two agents which are registered
neighbors at the beginning of maneuvering period k will be registered neigh-
bors at the beginning of maneuvering period k 4 1 if they satisfy the pairwise
motion constraint during the kth. We are interested in strategies possessing
this property and accordingly make the following assumption.
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Cooperation Assumption: During each maneuvering period k, each pair of
agents which are registered neighbors at the beginning of the period, restrict
their motions to satisfy the pairwise motion constraint.

Agent i’s kth way-point is the point to which agent 7 is to move to at
time tg. Thus if x;(¢t) denotes the position of agent i at time ¢ represented in
a world coordinate system, then z;(tx) and agent i’s kth way-point are one
and the same. The rule which determines each such way-point is a function
depending only on the number and relative positions of agent i’s registered
neighbors. In particular, if agent i has m; registered neighbors at time #,
positioned relative to agent i at points

2 2 (B) —wilfr), 7€ {1,2,...,m;} (1)

then agent i’s kth way-point is
Ti(te—1) + Um, (21,22, - - -, Zm,) (2)

where ug = 0, U, : D™ — Dy, m € {1,...,n— 1}, and D and Dy, are the
closed disks of radii  and 73, respectively, centered at the origin in IR%. In
other words, if agent 7 has no registered neighbors at time #y, {i.e., m; = 0},
it does not move during the kth maneuvering period. On the other hand, if

agent i has m; > 0 neighbors at time 5 with relative positions 21, 22, ..., Zm,,
then agent i moves to the position x;(tx—1) + wm, (21, 22, - - ., 2m,) at time .
Thus

2i(th) = itp—1) + U, @) (T, (T) — 2itr), i, (Tk) — 24(Tr),
N N R 1 (79)) (3)

In the sequel we will explain how the u,, are defined. At the very least we will
require each to be a continuous function.

1.1 Definition of u,,

We've already defined uy = 0. To define w,, for m > 0 it is necessary to take
into account the pairwise motion constraint. Toward this end, for each z € D,
let C(z) denote the closed disk of diameter r centered at the point %z More
generally, for each {21, 2za,...,2,} € D™, let

C(z1,22, ...y 2m) =

s

C(z) (4)

j=1

Note that 0 is in each C(z;) and moreover that each such C(z;) is closed and
strictly convex. Consequently C(z1, 22, ..., zm) is either the singleton {0} or
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a strictly convex, closed set containing 0. We can now define u,, to be any
continuous function on D™ satisfying

Um (21,22, -+, 2m) € Dy NC(21,22, oy 2m) N {0, 21, 22, ..+, Zm ),
V{z1,22,...,2m} € D™ (5)
where (0, z1, 22, ..., 2,,) is the convex hull of the points 0, 21, 22, . .., Zm. The

Uy, are further required to have the property that
Um (21, 22, - -+, 2m) 7 a corner® of (0,21,22,...,2m) (6)

unless 21 = 29 = -+ = z,, = 0. In other words, u,, is required to be (i)
a continuous function on D™ which maps each {z1,29,...,2,} € D™ into
Dy NC(z1, 22,y 2m) N0, 21, 22, .. ., 2 ) and (ii) a function with the property
that w,, (21,22, ..., 2m) is not a corner of (0,21, 29, ..., 2;,) unless z; = zo =
-+ = zy, = 0. Examples of functions satisfying these conditions will be given
in the sequel.

One way to go about defining specific u,,, which are continuous and which
satisfy (5) and (6), is by first defining what we shall refer to as a “target point.”

By a target point is meant a continuous function 7 : D™ — (0, 21, 22, . . ., Zm)
defined in such a way that for each {z1,22,...,2,} € D™ for which 0 is a
corner of (0, z1, 2, . . ., Zm ), the segment of the line from 0 to 7(z1, 22, ..., 2m)

which lies within C(z1, 22, . . ., 2 ) has positive length. For should it be possible
to define such a 7, one could satisfy (5) and (6) as well as the continuity
requirement with a control of the form

Um = g(21, 22, -+ s 2m)T (21, 22, -+, Zm)
where ¢ : D™ — IR is any continuous, positive definite function satisfying

g r(réf%({u pr € Dy (\Clz1, 22, - - 2m)}

Note that g7 € (0, 21,29,...,2m), Vg € [0,1] because 0 € (0,21, 22,...,2m).
The role of g is therefore to scale down the magnitude of 7 enough to insure
that g7 is in the constraint set Dy (C(21, 22, -y Zm)-

It might be thought that one could choose for 7, the centroid of (0, 21, 22,
..., Zm) or perhaps the average of the z; and 0, namely

A 1
b DL
=1
Both candidate definitions satisfy the requirement that 7(z1, 2o, . . ., z,,) must
be a point in (0,21, 22, ..., 2m). Unfortunately, simple examples show that

5 Recall that a point z in a polytope P in IR™ is a corner if the only points y and
z in P for which z is a convex combination are y = z = x.
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the centroid definition does not necessarily yield a function which satis-
fies the continuity requirement while the averaging definition may lead to
a function which fails to satisfy the requirement that when 0 is a corner of
(0,21, 22, ..., 2m), the segment of the line from 0 to 7(z1, 22, . . ., 2m, ) Which lies
within C(z1, 29, . . ., 2;,) has positive length. For example, the centroid of the
convex hull of the points (0,0), 21 = (0,1) and 2o = (p,1) is at (&, 2) forp > 0
and at (0, %) for p = 0 so the centroid is discontinuous at p = 0. As a counterex-
ample to the use of coordinate averaging to define a target point, note that
the average of the four points located at (0,0), z; = (—r,0), 25 = (%’”, 5),
and z3 = (3, 5) is at (0, 7) while the constraint set C(z1, 22, 23) determined by
these points must be contained in the constraint disk C(z1). Since the line £
from (0, 0) to (0, §) is tangent to this disk at the origin, the intersection of £
with C(z1, 22, 2z3) is just the point (0,0) and consequently not a line segment
of positive length.

In the sequel we shall approach the problem of defining of 7 in a slightly
different way. We begin by stating the following proposition which provides a
simple condition on 7(+), which if satisfied, automatically implies satisfaction
of the requirement that when 0 is a corner of (0, z1, 22, . .., zm), the segment
of the line from 0 to 7(z1, 22, ..., zm) which lies within C(z1, 22, ..., zm,) has
positive length.

Proposition 1. Let z1,22,...,2, be a set of m > 0 points in D which are
not all 0. If 0 is a corner of (0,21, 22,...,2m) and z is any non-zero point in
D within r units of each point in {z1, 29, ...,2m}, then the segment of the line
from 0 to z which lies in C(z1, 22, ..., 2m), has positive length.

Proposition 1 suggest the following approach for defining a target point.
First, for each z € D, let D(z) denote a closed disk of radius r centered at z.
More generally for any set of m > 0 point 21, 29, ..., 2, in D, write

m
D(21,22, -y 2m) = n D(z)
i=1

By construction, each point in D(z1, 29, . . ., 2, ) is within 7 units of each point
in {z1,22,...,2m} and conversely. Thus 0 € D(zy, 22, ..., 2;,) because z; €
D, ie{1,2,...,m}.

Second, note that if z1, 29, . .., 2, is any set of m > 0 points in D which are
not all zero and for which 0 is a corner of (0, 21, 22, . . ., Z;), then by Proposi-
tion 1 the segment of the line from 0 to any non-zero point DND(z1, 22, . . ., 2m)
which lies in C(z1, 22, . .., 2m ), must have positive length. It follows that any
continuous function 7 : D™ — (0, 21, 29, . . . , 2, ) Which satisfies

T(21,22,...2m) € ]D)ﬂD(zl,zQ,...,zm) ﬂ((),zl,zQ,...,zm>



The Multi-Agent Rendezvous Problem. An Extended Summary 265

and which is non-zero whenever 0 is a corner of (0,z1,29,...,2,) and
21,22, .., 2m are not all zero, fulfills all the conditions required to be a target
point. In the sequel we will show that there are at least two different ways to
so define 7.

The centroid of DN D(z1,22,...52m)

In order for the centroid of DN D(z1, 22, . - ., zm) to be a target point, it must
depend continuously on the z; and, in addition, must have the property that
it is non-zero for any set of m points in D which are not all zero and for
which 0 is a corner of (0, 21, 29, . .., 2, ). These properties are guaranteed by
the following two propositions.

Proposition 2. Let z1,25,...,2y, be a set of m > 0 points in D which are
not all 0. Then the centroid of DN D(z1,22,...,2m) 18 in (0,21,22, ..., Zm).
If, in addition, 0 is a corner of (0,z1,22,...,2m), then DN D (21, 22,..., 2m)
has a non-empty interior and the centroid of D N D(z1, 22, ..., 2m) cannot be
at 0.

Proposition 3. The function which assigns to each set of m > 0 points
21,29, .-y 2m in D, the centroid of DND(z1, 22, ..., 2m), is continuous.

Examination of the proof of Proposition 3, given in the full-lenght version
of this paper, reveals that the continuity of the centroid of DND(z1, 22, - . . , Zm )
depends crucially on the fact that the centroid is at 0 whenever the area of
D N D(z1,22,-..,2m) is zero. This property is not shared by the centroid of
(0,21, 22, ..., 2zm) and it is for this reason that the centroid of (0, z1, 22, . . . , Zm)
is not a continuous function of the z;.

It turns out that Propositions 2 and 3 both hold if the set DND(zy, 22, . . .,
Zm) is replaced throughout by the constraint set DNC(z1, 22, . . ., 2, ). This can
be shown using essentially the same proofs of the propositions as those given in
the appendix. What this means then is that the centroid of DNC (21, 22, . . ., 2m)
is also a valid target point.

The center of the smallest circle containing (0, z1, 22, ..., Z/m)

It is also possible to define 7 to be the center of the smallest circle containing
(0,21, 22, ..., 2m). To understand why this is so, let us note first that for any
set of points z; € D, i € {1,2,...,m}, the set of points Q 2 {0,21,...,2m}
is contained in a circle of radius r centered at 0. It follows that the center of
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this circle is at most r units from every point in Q. This suggests that one
might choose for 7(z1, 22, ..., z;,) the center 7¢(z1, 22, . .. 2, ) of the smallest
circle containing Q or equivalently (0, 21, 22, . .., Zm), since 7o (21, 22, .+ ., Zm)
would have to be within r units of every point in Q. It is known that there is
such a smallest circle [16] and that if the z; are not all zero, 7¢(z1, 22, . . . Zm)
is either the midpoint between two of the points in Q or a point within the
interior of a triangle formed from at least one set of three points in Q [1]. In
either case it is clear that 7¢ (21, 22, ... 2m) € (0, 21, 22, ..., 2 ) and, if the z;
are not all zero and 0 is a corner of (0, z1, 22, ..., 2m), that 7¢ (21, 22, . . . 2 18
nonzero as well. Furthermore it can be shown that 7¢(z1, 22, . . . 21, ) depends
continuously on the z; [17]. In other words, 7¢(z1, 22, . .. 2, satisfies all the
conditions required to be a target point. This elegant choice for 7 is the one
proposed in [1].

1.2 Main Results

Define ty = 0. Note that because agents don’t move during sensing periods,
for £ > 1 the position of each agent at time t;_; is the same as its position
at time t. Thus (3) can be re-written as

Ti(th) = Ti(th—1) + U, (e 1) (@i, (1) — Ti(te—1), Top(tp—1) — Ts(tp—1),
o B (1) = Tite-1)) (7)

where m;(tg_1) 2 m;(fy). Because of this, the system just defined ad-
mits the model of a nonlinear discrete-time system with state x(ty) =
column {zq(tg), x2(tx), ... xn(tx)} evolving on the time set tg,t1,... ¢k, . ...
Analysis of this system depends on the relationships between neighbors and
how they evolve with time. These relationships can be conveniently described
by a simple, undirected graph with vertex set {1,2,...,n} which is defined so
that (4, 7) is one of the graph’s edges just in case agents ¢ and j are registered
neighbors at the beginning of maneuvering period k. Since these relationships
can change from one maneuvering period to the next, so can the graph which
describes them. In the sequel we use the symbol P to denote a suitably defined
set, indexing the class of all simple graphs G, on n vertices. Let us partially
order the set {G,, : p € P} by agreeing to say that G, is contained in G, if the
edge set of Gy, is a subset on the edge set of G,. It is natural then to define the
union of a collection of such graphs, {G,,,G,,,...,G,,, }, to be the simple
graph G with vertex set {1,2,...,n} and edge set equaling the union of the
edge sets of all of the graphs in the collection.

Let o(k) denote the index of the graph in {G, : p € P} which describes
the relationship between registered neighbors at the beginning of maneuvering
period k. Because of the cooperation assumption, we know that each agent
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keeps all of its registered neighbors as the system evolves. What this means is
the sequence of graphs G, (1), G5 (2), - -, Go(x), - .. forms the ascending chain

Go1) CGo2) C -+ Goy -+ (8)

Because {G,, : p € P} is a finite set, the chain must converge to the graph

G2 [JGow 9)
k=1

in a finite number of steps. Since the sequence of graphs stops changing in
a finite number of steps, rendezvousing at a single point can only occur if
G is a complete graph. There is however, no a priori guarantee that along a
particular trajectory, G will turn out to be complete. On the other hand, it is
clear that G will always be at least connected if the initial graph G, (1) in the
ascending chain is. It turns out that connectivity of G,y implies not only
that G is connected but also that the types of distributed control strategies
just described actually cause all agents to rendezvous at a single point.

Theorem 1. Let ugp = 0 € Dyy and for each m € {1,2,...,n — 1}, let uyy, :
D™ — Dy be any continuous function satisfying (5) and (6). For each set
of initial agent positions x1(0),22(0),...,2,(0), each agent’s position x;(t)
converges to a unique point p; € IR® such that for each i,j € {1,2,...,n},
either p; = p; or ||p; — pj|| > r. Moreover, if agents i and j are registered
neighbors at any time t, then p; = p;.

Theorem 1 states that the strategies under consideration cause all agents
positions to converge to points in the plane with the property that each two
such points are either equal to each other, or separated by a distance greater
than r units. The theorem further states that if two agents are ever registered
neighbors of each other, then their positions converge to the same point. We
are led to the following corollary.

Corollary 1. If the graph characterizing registered neighbors at the beginning
of period 1 is connected, then the positions of all n agents converge to a com-
mon point in the plane.

It is quite straight forward to extend these results to the leader-follower
case when the rendezvous point is specified at the outset. This can be ac-
complished by simply fixing one additional agent {i.e., a virtual agent} at the
desired rendezvous point and letting the remaining n agents maneuver just as
before. With initial graph connectivity of all n+41 agent positions, convergence
to the position of the virtual agent is then assured.
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A more interesting case occurs when two virtual agents are fixed at distinct
points in the plane. In this case it can be shown that with initial connectivity
of the n + 2 - agent graph, all n agents will eventually move to positions on
the line connecting the two virtual agents and will distribute themselves in a
predictable manner depending only the number of agents, r and the distance
between the two fixed, virtual agents. This behavior will be explored in greater
depth in another paper dealing with forming formations using distributed
control.

Trapping

While the graph connectivity hypothesis of Corollary 1 is sufficient for ren-
dezvousing, it is not necessary. For example, suppose that the G,(;) has a
connected component G which contains a simple closed cycle whose vertices
are i1,142,...,4,. Then in the plane, the geometric form obtained by connect-
ing by a straight line, the initial position of each agent i; € {i1,%2,...,%m}
with its registered neighbors with labels in {i1,42,..., 4y}, will be a simple,
closed, polygon P. It turns out that if the initial positions of all agents whose
labels are not in the vertex set of G¢, are within P, then rendezvous will
necessarily occur. While this conclusion might appear to be an obvious conse-
quence of the established property that agents i; € {iy,42,...,%m} eventually
rendezvous at a point, actually proving that this is so is not so straight for-
ward. There are two reasons for this. First there is no guarantee that the
polygon P(k) formed by the positions at time ¢, of agents i; € {i1,42,...,%m}
will remain simple as the system evolves, even if it is initially; thus just what
it means for an agent to be “inside” of P(k) requires a more sophisticated
notion of interior than the obvious one for a simple closed curve in the plane
and this in turn complicates the analysis. Second, it is quite possible that an
agent initially positioned inside of P(0), will be outside of P(k) for some &k > 0.
In the full length version of this paper we explain how to overcome both of
these difficulties.

The closed curves of interest here are of a specific type determined by finite
point sets in IR?. In particular, let us note that any ordered set of m > 0
points {y1,¥2,...,%m} in IR? uniquely determines a continuous, piecewise-
linear, closed curve ¢ : [0,m] — IR? defined so that

ct) =t +1 =)y + (@ —t)y;, i—-1<t<i, ie€{l,2,...,m}

where y,,+1 = y1. An ordered set {y1,y2, ..., ym} of three or more such points
is called a cycle if ||y;11 — wil| <7, i € {1,2,...,m}; in the sequel we denote
such a cycle by [y1,92,...,Ym|. A point z € IR? is called an interior point of
[Y1,Y2, -, Ym| if it is an interior point of the closed, piece-wise linear curve
¢ determined by {y1,y2,...,Ym}
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A point z € IR? is said to be linked to a non-empty set of vectors
{y1,92, ..., ym} in R?, if for some i € {1,2,...,m}, ||z —w|| <. More gener-
ally, z is connected to {y1,ya, ..., ym} through a set of vectors {x1,29,...,2,}
in IR? if there exists a subset {x;,,Zi,,..., x5, } with z;, € {y1,92,...,Ym}
such that ||z — z;, || <7 and ||z, —z; || <7, i€ {2,3,...k}. The following
corollary to Theorem 1 is our main result on trapping.

Corollary 2. Suppose that the set of initial positions {x1(0), x2(0), ...,

2, (0)} of the n agents contains a cycle [x;,(0),2:,(0),...,2; (0)]. Then
all agents initially positioned inside the cycle eventually rendezvous at one
point with all agents with positions initially connected to the cycle through
{z1(0), z2(0),

.y 2, (0)}.

1.3 Analysis

The aim of this section is to establish the correctness of Theorem 1. Towards
this end, let {{z1(tx), x2(tk),...,zn(tx)} : K > 1} be a system trajectory de-
termined by (7) and any initial set of agent positions. Let k* denote the value
of k for which the ascending chain shown in (8) converge to the limit graph G
in (9). Thus for ¢ > tx-, the neighbors of each agent do not change. For each
i € {1,2,...,n}, let {i1,i2,...,%m,} denote the set of indices labelling the
neighbors of agent i. For simplicity, we will only deal with the case when each
agent has at least one neighbor. This means that all m; are positive integers.
These assumptions imply that for k > k*, the system under consideration will
have a state {x1(tg), z2(tk), ...,z (tg)} taking values in the space

X ={{z1,2e,.. .2} ||lzj—ail| <7 je{in,ia, .. im ), 1€{1,2,...,n}}

(10)

Error System: To analyze system behavior it is convenient to introduce a
suitably defined “error system.” For {x1,zs,...,2,} € X, define

€ =x; —Tpn, 1€{1,2,...,n} (11)

and note that e,, = 0. Let e 2 {e1,€2,...,en_1}. In view of (10) and the fact
that e; —e; = x; —x; for all i, € {1,2,...,n}, we see that e takes values in
the closed space

E={{er,ea,...en1}tien=0,llej —eil| <7 j€{in,ia, .. im, ),
ie{L,2,....n}} (12)
Note that

Ly, (tk—l)*xi(tk—l) = €4 (tk—l)*ei(tk—l)a .7 € {1727 . 'ami}v i€ {1727 . '3n}
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It follows that the update equation (7) for z; can be written as
zi(tr) = zi(te—1) + file(ts-1)), k=>Fk" (13)
where f; : £ — D is the continuous function
{er,e2, . en1} — um, (i, — €y i, —€iy oovy €5 — €5)e,=0
In view of (13) and the definition of the e;,
ei(ty) = ei(te_1) + file(th—1)) — fale(tr_1)), k>k*, i€{1,2,...,n—1}

(14)
This enables us to define the error system

e(tr) = e(to_1) + fle(tro1)), k> k" (15)
where f(e) = {fi(e) — fule), fale) = fule), ..., fu—1(e) — fule)}.

Proving Convergence in the Style of Lyapunov

In the sequel, we will prove that under certain conditions e(tx) — 0 as k — oo.
We will do this using the positive definite function V : £ — IR defined by

V(e) = dia{ey,e2,...,€,-1,0} (16)
where for any set of vectors yi,va, ..., Ym in IR?, dia{y1,y2, ..., Ym} denotes
the diameter® of (y1,va, ..., ym). The following proposition is central to the

proof of Theorem 1.

Proposition 4. The difference function A : € — IR defined by
Ale) =V(e+ f(e)) = Vi(e) (17)

18 negative semi-definite. Moreover if G is connected, then A is negative defi-
nite.

Proof of Theorem 1: In general the graph G to which the ascending chain
(8) converges for some finite k& = k* consists of a finite set of connected
components. Suppose that G, is any one of these. To prove Theorem 1 it is
enough to show that the positions of those agents whose indices are the vertices
of G, converge to a common point. For simplicity we will do this only for the

case when G, = G, since, except for notation, the proof is essentially the same
even if G, # G.

5 Recall that the diameter of a closed set S C IR? is the maximum of ||s1 — s2||
over all s1,s2 € S.
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By hypothesis n > 1. Note that if e(t;) = 0, for some k = k, then all
agents are in the same position at time ¢j; moreover any such position will
remain fixed for all ¢ > ¢tz because f(0) = 0. Therefore to complete the proof
it is enough to show that e(¢x) tends to 0 as k — oo.

Let V : £ — R be defined as in (16). Note that

Ve(ty)) = dia{zq (tx), x2(tr), . . ., o (te) } (18)

because the diameter of a convex set in IR? is invariant under translation of
the set. From this and Proposition 4, it follows that the difference function

Ale(tr)) = V(e(ty) + fle(tr))) — V(e(tx))

is non-positive for k > k*. Thus V' (e(tx)) is a monotone non-increasing func-
tion of k for k > k*. Since for k > k*, V(e(ty)) is bounded above by V' (e(tx~))
and below by 0, there must exist a finite limit

v 2 lim V(e(ti)

We claim that V* = 0. To prove this claim, suppose that it is false. Then
V* > 0. Let B denote the set of all points e € £ such that V* < V(e) <
V(e(tg~)). Note that B is closed and bounded because V(+) is continuous and
€ is closed. Moreover 0 ¢ B because V(-) is positive definite and bounded
away from zero on B. By Proposition 4, A(-) is negative definite. Therefore
for all e € B, A(e) < 0. From this, the compactness of B and the continuity
of A(+), it follows that
A
p = max Ale)
is a finite negative number. Since e(ty) € B for k > k*, it must therefore be
true that
Vie(tin)) = Vie(t) = Ale(t) <, k> k*

Thus by summing,
V(e(te) < Vielt) + (k= k), k>

Therefore, for k sufficiently large V(e(tx)) must be negative because pu < 0,.
But this is impossible because V(-) is positive definite. Hence V* cannot be
positive.

The proof just given is basically a standard Lyapunov argument applied
to the system (17). It is worth pointing out here that the continuity of A(-) is
crucial to the proof as is the fact that £ is closed. If £ were not a closed set,
the preceding proof would break down because one could not conclude that
B is closed. The closure of £ is a direct consequence of the fact that sensing
regions are defined to be closed sets. The continuity of A(-) is a consequence
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of the requirement that the w,,(-) be continuous functions. In summary, for
the present analysis to go through, it is essential that sensing regions be
closed sets and that the wu,,(-) be continuous functions. Whether or not these
requirements can be relaxed by approaching convergence differently remains
to be seen.

2 Asynchronous Case

The strategy described in the previous section cannot be regarded as truly
distributed because each agent’s decisions must be synchronized to a common
clock shared by all other agents in the group. In this section we redefine
the strategies so that a common clock is not required. To do this it will be
necessary to modify somewhat what is meant by a registered neighbor and by
a registered neighbor’s position.

In the asynchronous case, for each agent i, the real time axis can be par-
titioned into a sequence of time intervals [0,;1), [ti1,ti2), -+ [fighi—1)s Lk )5
...each of length at most 7p + 7as, where 7p is a number greater than 7y,
called a dwell time. Each interval [ti(ki_l),tiki) consists of a sensing period
[ti(ki,l),fi;%) of fixed length 7p during which agent i is stationary, followed
by a maneuvering period [£;x,, tik, ) of length at most 7p;, during which agent ¢
moves from its current position to its next way-point. Although all agents use
the same dwell time, they operate asynchronously in the sense that the time
sequences t;1,t;2, -+, 1 € {1,2,...,n} are uncorrelated. Thus each agent’s
strategy can be implemented independent of the rest, without the need for a
common clock.

Because of the asynchronous nature of the control strategies under con-
sideration, care must be exercised in defining what is meant by a registered
neighbor if one is to end up with something similar to the symmetry prop-
erty of the neighbor relationship defined in the synchronous case. For the
asynchronous case, agent i’s registered neighbors at the beginning of its kth
maneuvering period [t;, t;) are taken to be those agents which are fixed at
one position within agent ¢’s sensing region for at least 7¢ > 0 seconds during
agent i’s kth sensing period 7; (k) 2 [ti(k—1) tir). Here 7g is a positive number
called a sensing time. For reasons to be made clear below, we shall require 7g
to satisfy

1
79 < §(TD—TM1.) Vie{1,2,...,n} (19)

For any agent j, there may be more than one distinct interval of length at least
Ts within 7;(k) during which agent j is stationary. Let ¢t* denote the end time
of the last of these. For purposes of calculation, agent i takes the registered
position of agent j at the beginning of its kth maneuvering period, to be the
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actual position of agent j at registration time t*. To attain a symmetry-like
property for the asynchronous case, it is necessary make sure that the regis-
tration interval [t* — Tg, t*) lies within one of agent j’s sensing periods. One
way to guarantee that this is so is to require each agent to keep moving during
each of its maneuvering periods except possibly for brief periods which are
each shorter than 75. Another way is equip each agent with a signaling device
{such as a light in the case of visual sensing} which is on just in case the agent
is in one of its sensing periods. In the sequel we will assume that registration
of each agent j during one of agent i’s sensing periods always occurs at the
end of a registration interval [t* —7g, t*) which also lies within one of agent j’s
sensing periods. Note that this and the requirement that agent j is stationary
during its sensing periods together imply that agent j’s registered position
z;(t*) is equal to x;(fjk~) where k* is the sensing/maneuvering interval of
agent j during which registration takes place.

2.1 Cooperation Assumption

Prompted by the preceding, let us agree to say that for each i, j € {1,2,...,n},
agent j’s qth sensing period 7;(q) overlaps agent i’s kth sensing period 7;(k)
it 7;(¢) N 7;(k) is a non-empty interval of length at least 7g. Let us note
that because all sensing periods of all agents are 7p seconds long, the largest
number of sensing periods of any agent j which a given sensing period of
agent i can overlap, is two. On the other hand, each sensing period of agent 4
must overlap at least one sensing period of each agent j. To understand why
this is so, note first that the maximal possible amount of time between two
successive sensing periods of agent j is 7as;; but 737, is bounded above by
Tp — 27 because of (19). Thus the maximal possible amount of time between
two successive sensing periods of agent j is no greater than 7p — 27g. Given
this and the fact that all sensing periods are 7p seconds long, it follows that
each sensing period of agent ¢ must overlap at least one sensing period of each
agent j.

For agent j to be a registered neighbor of agent ¢ at the beginning of agent
1’s kth maneuvering period, it is necessary and sufficient that a sensing period
7;(q) overlapping 7;(k) exist, and that agent j be “within range of agent ¢”
{i.e., within agent 4’s sensing region} during the last 7g seconds of the overlap
period 7T;(¢q) N 7;(k). Since both agents are stationary during their sensing
periods, the range requirement can be written as ||x;(t;q) — z;(tix)|| < r. If
agent j is a registered neighbor of agent 4, this inequality will always hold with
q = k* where k* is the index of the sensing/maneuvering period within which
registration of agent j takes place. In fact, 7;(k*) must be the last sensing
period of agent j during which agent ¢ is in range and which overlaps 7; (k).
Moreover, registration of agent j will always occur at t;; or tjj-, whichever
time comes first; thus agent j’s registered position will be at x;(t;1) if t;, <
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Ejk* or at xj({jk*) if ﬂk > Ejk*~ But if Ezk S Ejk*; then xj(fik) = xj(fjk*)
because agent j does not move during its sensing periods. In other words,
under any conditions the registered position of agent j is always equal to
xj(tjk+). The following proposition summarizes these observations.

Proposition 5. Agent j is a registered neighbor of agent i at the beginning of
agent i’s kth manewvering period if and only if for some sensing period T;(q)
which overlaps T;(k),

|lzj (£iq) — zitir)[] < 7 (20)

If agent j is such a registered neighbor, then the index k™ of the sens-
ing/maneuvering period of agent j during which registration takes place is
the largest value of q for which T;(q) overlaps T;(k) and (20) holds. Under
these conditions, xj(tji+) is the registered position of agent j at the beginning
of agent i’s kth maneuvering period.

There are three possible situations in which agent j will be a registered
neighbor of agent 7 at the beginning of agent i’s kth maneuvering period.
In the first two situations, shown in Figure la and 1b, agent ¢'s kth sensing
period 7;(k) overlaps exactly one of agent j’s sensing periods. On the other
hand in the situation shown in Figure lc, 7;(k) overlaps two of agent j’s
sensing periods. Two overlaps are always possible because 27¢ < 7p as can
be deduced from (19), and because two such successive sensing periods of
agent j can occur with zero maneuvering time separating them. In cases (a)
and (b), agent j will be a registered neighbor of agent i and t* will be as
shown, provided agent j is within range of agent i during the corresponding
overlap period shown in each case. In situation (c¢), agent j will also be such
a registered neighbor of agent ¢ provided agent j is within range of agent i
during at least one of the two overlapping periods shown. If agent j is in range
of agent ¢ during the latter overlap period, then ¢* will be located at time t}
as shown in Figure lc. On the other hand, if j is not within range of agent ¢
during the latter but is within the former, then t* = ¢7.

The definition of a registered neighbor determines a relationship between
agents similar to the symmetric relation determined by the definition of a reg-
istered neighbor in the synchronous case. Suppose that agent j is a registered
neighbor of agent i at the beginning of agent i’s kth maneuvering period.
As before, let t* be the registration time of agent j during agent ¢’s kth sens-
ing/maneuvering period and write k* for the index of the sensing/maneuvering
period of agent j during which registration takes place. In view of Proposition
5, T;(k*) overlaps 7;(k) and ||z (tjk+) — z;(tix)|| < r. Because of the obvious
symmetry of these conditions, Proposition 5 also implies that agent i is a
registered neighbor of agent j at the beginning of agent j’s k*th maneuvering
interval. Let tp denote the registration time of agent i during agent j’s k*th
sensing/maneuvering period, With reference to Figure 1, let us note that tg
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Fig. 1. Sensing Period Overlaps

is at ¢* in case (a) and in case (¢) when ¢t* = ¢}. In these cases, agent i’s cor-
responding registered position is equal to z;(f;;) because tg falls within the
closure of agent i’s kth sensing period, which is a period during which agent
i does not move. In case (b) and (c) when t* = t5, there are two possibilities.
Either registration occurs during agent i’s kth sensing/maneuvering period
or during its k + 1st. If the former is true, then like case (a), registration is
at t;, in which case agent i’s registered position is again z;(f;;). If the lat-
ter is true, this would mean that agent j’s k*th sensing period overlaps with
agent i’s k + 1st sensing period and registration occurs during the closure
of the overlap; under these conditions agent i’s registered position would be
at zi(t;(k41)) since agent i does not move on its k + 1st sensing period. We
summarize.

Proposition 6. If agent j is a registered neighbor of agent i at the beginning
of agent i’s kth manewvering period and k* is the sensing/maneuvering inter-
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val of agent j during which registration takes place, then agent i is a registered
neighbor of agent j at the beginning of agent j’s k*th maneuvering period. In
addition, the registered position of agent i at the beginning of agent j’s k*th
maneuvering period is x;(t;q), where q is that index in {k,k+ 1} labelling the
sensing/maneuvering period of agent i during which registration takes place.

The notion of a pairwise motion constraint introduced in the synchronous
case can be replaced with the following constraint which is appropriate for the
asynchronous case. Agent i is said to satisfy the motion constraints induced
by its neighbors, if for each j € {1,2,...,n} for which j # ¢ and each k €
{1,2,...} for which agent j is a registered neighbor of agent 7 at the beginning
of maneuvering period k, the position to which agent 7 moves at the end of
the period is within a closed disk of diameter r centered at the mean of agent
i’s position at the beginning of the period {i.e., at time #;; } and the registered
position of agent j at the beginning of the period. In the synchronous case,
satisfaction of the pairwise motion constraint by agent ¢ and neighbor j causes
each to retain the other as a neighbor. The following proposition implies that
essentially the same thing is true in the asynchronous case when the induced
motion constraints are satisfied by agents ¢ and j.

Proposition 7. Suppose that agents i and j satisfy the motion constraints
induced by their registered neighbors. If agent j is a registered neighbor of
agent i at the beginning of agent i’s kth maneuvering period, and k* is the
sensing/maneuvering period of agent j during which registration of agent j
takes place, then agent j is also a registered neighbor of agent i at the beginning
of agent i’s k + 1st maneuvering period. Moreover, sensing periods T;(k* + 1)
and T;(k) do not overlap.

We are interested in strategies which cause agents to retain their registered
neighbors. We therefore make the following assumption.

Cooperation Assumption: Each agent 7 satisfies the motion constraints
induced by each of its registered neighbors.

Suppose that the cooperation assumption is satisfied. Proposition 7 states
that if agent j is a registered neighbor of agent ¢ during maneuvering interval
k then it will also be a registered neighbor of agent ¢ during maneuvering
interval k 4+ 1. In other words, if the cooperation assumption is satisfied, each
agent retains all of its prior registered neighbors as the system evolves. Thus
if Vi(k) denotes the sent of labels of agent i’s neighbors at the beginning of
its kth maneuvering period, then N;(k) C NV;(k + 1), k > 1.

Just like the synchronous case, agent i’s kth way-point Z;(k) is the point
to which agent ¢ moves at the end of its kth maneuvering period. The rule
which determines Z;(k) is essentially the same as in the synchronous case,
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except that now z;(k) depend on agent i’s its own position at the beginning
of its kth maneuvering period and the relative positions of agent i’s registered
neighbors at the beginning of the period. Thus if agent ¢ has no registered
neighbors at time #;;, agent i does not move during its kth maneuvering
period. On the other hand, if agent ¢ has m;; > 0 registered neighbors at time
tir. with registered positions z1, 22, ..., zm,, relative to agent i’s, then agent
i moves to the position Z;(k) = x;(tj(x—1)) + Um,, (21, -, Zm,, ) at the end of
the period where

Zj :xij(t;‘) 7xi(ti(k—1))7 _] S {1,2,...,mik}, (21)

t7 is the time neighbor i is registered within agent i’s kth sensing/maneuvering

period, and wyy,, (+) is exactly as before. Thus at the end of its kth maneuver,
agent 7’s position is given by

zi(tin) = Ti(tige—1)) FUmg (@0, (87) —2i(Ligr—1)) - -5 Tiy,, (b)) — Ti(tir—1)))
(22)
Of course the set {i1,%2,...,%m,,}, and the registration times ¢7,t3,...,t5,

all depend on ¢ and k.

Main Results

Note that because agents do not move during sensing periods, for each i €
{1,2,...,n} the positions of agent 7 at times ¢;;_) and t;;, are the same as
at times ;; and #;(;41) respectively. Thus (22) can also be written as

Ti(tikr1)) = Tiltin) + U (Tiy (0) — 2i(Eik), - -+ Ty, (Ens,) — Tiltin)) (23)

The n equations given by (23) for i € {1,2,...,n}, completely describes the
evolution of the positions of the n agents under consideration as each ma-
neuvers from way-point to way-point. Just as in the synchronous case, the
analysis of these equations depends on the relationships between registered
neighbors and how these relationships evolve with time. To characterize these
relationships, we first extend the domain of definition of each agent’s registered
neighbors from its set of maneuvering period start times to a suitably defined
set of “event times” common to all n agents. By an event time is meant any
time t;; at which any maneuvering period [t;x,t;x) of any agent begins. Let
{ti : 1€{1,2,...,n}, k> 1} denote the set of all distinct event times. Label
this set’s elements as t1,ts, - - - in such a way so that t; < t;41, j € {1,2,...}.
For i € {1,2,...,n}, let S;(k) denote that value of s for which t5 = #;.
Thus with this notation, agent i’s registered neighbors at its kth event time
ts,(k), are its registered neighbors at time tir.. For each i € {1,2,...,n} we
extend the domain of definition of agent ¢’s registered neighbors from the set
{ts,(k) : k > 1} to the set {t, : s > S;(1)} by stipulating that for values of ¢,
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which are between two successive event times of agent 7, say between t;;, and
Li(k+1), agent ¢’s registered neighbors are the same as its registered neighbors
at time ;5.

Let T 2 {ts,t5+1,ts5+2 ...} denote the set of all event times greater than or

equal to t; where § = max{S5(1),52(1),...5,(1)}. Note that the registered
neighbors of each agent are defined at each time in 7. For each s > 5, it is
therefore possible to describe neighbor relationships using a directed” graph
Gy with vertex set {1,2,...,n} and directed edge set defined so that (i, ) is
a directed edge from vertex 7 to vertex j just in case agent j is a registered
neighbor of agent i at event time ¢,.

Let us partially order the set of all directed graphs with vertex set
{1,2,...,n} by agreeing to say that G is contained in G if the edge set of
G is a subset on the edge set of G. It is natural then to define the union of a
collection of such graphs to be the directed graph with vertex set {1,2,...,n},
and edge set equaling the union of the edge sets of all of the graphs in the col-
lection. Because of the cooperation assumption and Proposition 7, we know
that each agent keeps all of its registered neighbors as the system evolves.
What this means is the sequence of graphs Gz, Gz41,...,Gg, ... forms the
ascending chain

Gs CGsy1C-- Gy - (24)

Because the set of directed graphs on vertices {1,2,...,n} is a finite set, the
chain must converge to the graph

G G (25)

IS
(G

Il
)

S

in a finite number of steps. More is true. Suppose that agent ¢ has agent
j as a registered neighbor at the beginning of one of agent ¢’s maneuvering
periods. Then because of Proposition 6, agent ¢ must be a registered neighbor
of agent j at the beginning of one of agent j’s maneuvering periods. These
observations together with the cooperation assumption imply that agents ¢
and j must both eventually become and remain registered neighbors of each
other. As a consequence, there must be directed arcs in G from vertex 4 to
vertex j as well as from vertex j to vertex ¢. Clearly G must be a directed
graph with the property that for each distinct pair of vertices - say ¢ and j
- either there is no directed arc connecting one to the other or there are two
directed arcs one from vertex ¢ to vertex j and the other from vertex j to
vertex 7. Directed graphs with this property are usually regarded as simple
graphs whose edges represent such pairs of directed arcs [15]. In the sequel we

7 Tt will soon be clear that the aforementioned symmetry of the neighbor relation-
ship will ultimately enable us to characterize neighbor relationships with a simple,
undirected graph as in the synchronous case.
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shall adopt this viewpoint and refer to G as a simple graph. Our main result
is as follows.

Theorem 2. Let ug = 0 € Dy and for each m € {1,2,...,n — 1}, let uyy, :
D™ — Dy be any continuous function satisfying (5) and (6). For each set
of initial agent positions x1(0),22(0),...,2,(0), each agent’s position w;(t)
converges to a unique point p; € IR* such that for each i,j € {1,2,...,n},
either p; = pj or||p; —pj|| > r. Moreover, if agent j is a registered neighbor of
agent i at the beginning of one of agent i’s maneuvering periods, then p; = p;.

An outline of the proof of this theorem is given in §3.

Theorem 2 states that the strategies under consideration cause all agents
positions to converge to points in the plane with the property that each pair of
such points are either equal to each other, or separated by a distance greater
than 7 units. The theorem further states that if one agent is ever a regis-
tered neighbor of another, then both converge to the same point. Thus all n
agents position will converge to a single point if any one directed graph in the
ascending chain is weakly connected. We are led to the following corollary.

Corollary 3. If at any event time ts > ts, the directed graph characterizing
registered neighbors is weakly connected, then positions of all n agents converge
to a common point in the plane.

3 Analysis

The aim of this section is to outline the proof of the correctness of Theorem 2.
This requires the analysis of the asymptotic behavior of the asynchronous pro-
cess described by (23) for ¢ € {1,2,...,n}. Despite the apparent complexity
of this process, it is possible to capture its salient features for ¢4 sufficiently
large using a suitably defined synchronous discrete-time, hybrid dynamical
system S. Interestingly, S turns out to be non-deterministic in a sense which
will be made clear in the sequel.

3.1 Definition of S

We will define S to be a synchronous dynamical system representing n “nodes”
evolving on the time set Z = {1,2,...,}. In order to avoid introducing lots
of extra notation, and without sacrificing clarity, we will often use the same
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symbols in defining S as already used to describe the agent system. Thus
for example,we associate with each node ¢ € {1,2,...,} a strictly monotone
increasing function S; : {0,1,2,...} — {0,1,2,...,} whose value S;(k) at
k € T is node ’s kth event time and whose value at 0 is S;(0) = 0. We
write S; for the image of S;. We shall require the S; to satisfy the following
conditions:

1. For any integer i € {1,2,...,n} and any two successive values S;(k), S;(k-+
1) in Sl
Sl(k‘ + 1) — Sl(k) <2n-1 (26)

2. For any integers i, € {1,2,...,n} and any two successive values S;(k),
Si(k+1) in S; there are at most two successive values S;(p), Sj(p+1) in
S; such that

Si(k) < S,(0) < S;(p+1) < Silk +1) (21)

For each ¢ € {1,2,...,n} we will often make use of the function k;
{0,1,...} — {0,1,...} whose value at s, written k;(s), is the unique value of
k such that S;(k) < s < S;(k+1). It is easy to verify that k; is a left inverse
for S;; i.e., ki(S;(k)) = k for all k € {0,1,..., }. We take as given n nonempty
subsets N; = {i1,%2,...,im,;} C {1,2,...,n}, with i € A;. The N; are all
required to have the following symmetry property: If j € N; then i € Nj. Be-
cause of the symmetry property we can associate with the A; a simple graph
G with vertex set {1,2,...,n} and edge set defined in such a way that (i, ) is
in the edge set just in case ¢ € N and j € N;. We will take as the state space
of S, the space X of all lists {y1,vy2,...Yn, W1, W2, ... Wn, Vi1, .., Vim,,- - Vij,
ey Unly ..y Upm, | satisfying

2
Vi, Wi, vij € IR7,

sl <
llyi =il <r JEN;, ie{l,2,....n} (28)

ly: — 5 (wi +vi5)|| < 57

In the sequel we often write y for {y1,vy2,...yn}, w for {wy,ws,...w,} and

v; for {viiy, Vigy - - - s Vi, i€ {1,2,...,n}. We sometimes refer to {y;, w;, v; }
as the state of node i. We now define S to be a time-varying system with
state {y,w,v1,vs,...,v,} which evolves on Z according to update equations

defined for i € {1,2,...,n} by

Yi(s) = yi(s = 1) + U, (vig, (8) —wi(s — 1), .., vii, (8) —wi(s — 1)), (29)
vij(s) € Vij(s,yi(s = 1),y5(s = 1),w;(s = 1),v5u(s = 1)),  jEN; (31)
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for s € §;, and by

yi(s) = yi(s — 1), (32)
w;(s) = w;(s—1), (33)
vij(s) =vij(s — 1), JEN; (34)

for s ¢ S;. The function V;; : T X R? x R? x R? x R? — 2%° is a set-
valued map depending on S; and S; and defined by the flow diagram shown
in Figure 2. As the diagram shows, the value of V;; at {s,v;,y;, w;,vj;} is
either the two element set {y;, w;} or the singleton {y;}, depending on the

value of {s, s, y;,w;,v;}.

y n
.
‘%

y n -

A

Fig. 2. Flow Diagram for V;(s, yi, y;, w;,vji)

Note that S is nondeterministic because there can be ambiguity in the
value which v;;(s) takes when s € ;. Fixing v;;(s) in (31) at one of its
possible values whenever s € S; results in a deterministic discrete dynamical
system. The family of all such possible deterministic systems, namely F, is
clearly countable. By a trajectory of S is meant a trajectory of at least one of
the systems in F. Thus the set of all trajectories of all systems in F is the
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set of trajectories of S. To claim that a deterministic signal can be generated
by S is to claim that the signal can be generated along a trajectory of at
least one system in F. In the full length version of this paper it is shown that
with proper interpretation of the y;, w;, and v;;, one such system in F can
simultaneously generate all n agent position vector sequences x;(t;;) for all
i € {1,2,...,n} and all sufficiently large ¢;;. Before doing this however we
need to show that S is well-defined in the sense that under all conditions, the
update equations (29) - (34) map any state in X' into next states which are
also in X'. The following proposition settles this issue.

Proposition 8. Let s € T be fized and let {y,w, vy, va,...,v,} be any given
state in X. Let {§,w,v1,02,...,0,} be any one of the possible vector lists
which results when update equations (29) - (34) are applied to {s,y, w, vy, va,
ooy Unt. Then {§,w,v1,02,...,0,} € X.

3.2 Properties of §

In Section 3.1 we introduced S and claimed in Proposition 8 that S is a well-
defined, synchronous, non-deterministic dynamical system. In this section we
outline several important properties of S.

In the sequel we write H;(s) for the ith local convex hull
Hi(s) = (yi(s—1),vi, (s=1), .., i, (s—1), wi(s—1),w;, (s—1),. .., wi,, (s—1))
where {i1,42,...,9m, } = N;. We also write H(s) for the {global} convex hull
H(s) = (p1(s—1),y2(s—1),...,yn(s—1),wi(s—1),wa(s —1),...,w,(s — 1)),
and K(s) for the set of corners of H(s). Clearly
Hi(s) C H(s), ie{l,2,...,n} (35)

This fact plays a role in the proof of the following lemma which established a
fundamental property of S:

Lemma 1.

H(s+1) CH(s), seT (36)

Let us agree to say that node i is stationary at time s € S; if

Yi(s) = wi(s) = vii, (8) = -+ = vis,, ()
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The terminology is prompted by the fact that if node i is stationary at s, then
yi(s) = yi(s — 1); this can be seen from (29), (30) and from the definition
of Up,,. The definition of w,,, also implies that if y;(s) is a corner of (y;(s —
1),vii, (8), - -+, Vii,,, (5)), then node i must be stationary at s. This is also true
if y;(s) is a corner of H(s).

Lemma 2. Fizi € {1,2,...,n}. If yi(s) € K(s) for some s € S;, then node i
must be stationary at s.

By an equilibrium state of S we mean a state which does not change under
the action of (29) - (34) under any conditions for every value of s € Z . It is easy
to see that equilibrium states are precisely those states {y, w, vy, va,...,v,} €
X for which

Yi = W; = Vi, =~'~:U”‘mi, Vi€{1,2,...,n}

We call the set of such states &, the equilibrium set of S. Note that £ is
an invariant set under the action of (29) - (34) under any and all possible
conditions. Note also that S is at an equilibrium state at time s just in case
each node of S is stationary at s.

In the sequel we will say node i € {1,2,...,n} has locally rendezvoused at
time s if H;(s + 1) is a single point; i.e., if yi(s) = vi, (s) = -+ = yi,,, (s) =
w;(s) = w;, (s) = --+ = w;, (s). Note that if a node has locally rendezvoused
at s it must be stationary at s. The following proposition provides a criterion
for a node of S to be locally rendezvoused.

Proposition 9. Let s1 < s < s3 < S4 be four successive values of s in S;. If
yi(sa) € K(s1), then node i is locally rendezvoused at s = s3.

It is possible to describe S concisely by a recursive inclusion of the form
z(s) € f(s,@(s—1)), se€T

where 7 is the state {y,w,v1,v2,...,0,}, f : T x X — 2% is the next state
map defined by (29) - (34), and 2% is the power set of X.

Lemma 3. There exists a finite index set P, a finite collection of subsets
P(s) C P, s €I, and a finite set of continuous functions F, : X, — X with
closed domains such that the following statement is true. For any s € Z and
any pair of states x € X and T € f(s,x), there is a p € P(s) for which

&= Fya) (37)
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The implication of Lemma 3 is that if {Z(s) : s > 0} is a trajectory of S,
then there are indices p(s) € P(s), s € Z such that

Z(s) = Fp(s) Fp(s—1) -+ Fp(r+1) (2(7)), s> 720 (38)

Here Fj,(g)Fps—1)** Fp(r41) is a “composed function”, where by the com-
position of functions F,, and F, we mean the function FyF, : X, — &,
whose domain X, is the inverse image X, under F},, and whose action on z is
x +—— Fy(F,(z)). Composition is an associative operation and because of this,
the operation extends unambiguously to finite families of F},. Note that any
such composed function F' = Fj, F},, --- F},, has a closed domain on which it
is continuous.

Suppose that s > 0 is fixed. If follows from the preceding that there are
p(s) € P(s) such that

Z(s + §) = Fp(s+§)Fp(s+§,1) s Fp(s+1)(.i‘(s)), se’l (39)

It is important to recognize that even though the composed function Fj, s )
Fy(s45-1)*** Fp(s+1) depends on s, there can be only a finite number of such
composed functions. This is because the family of maps F), : p € P} is a finite
set and because the composed functions in question are all compositions of
exactly § maps in the family. The following proposition summarizes these
observations.

Proposition 10. Let § > 0 be fized. There exist a finite index set Q, a finite
set of closed subsets X; C X, and a finite set of continuous maps Dy : X; — X,
q € Q with the following property. For each trajectory {xz(s) : s € I} of S, and
each s € T, there is a q € Q such that

2(5 +5) = Dy((s)) (40)

3.3 Representing the Agent System

In Section 3.1 we defined S without any reference to the actual agent system.
In this section we will explain the manner in which S can represent the agent
system. We will do this for all values of s > s* where s* is the smallest value
of s > § for which the ascending chain shown in (24) has converged to the
limit graph G in (25). Thus for t; > t¢«, the registered neighbors of each agent
do not change. For t;; > ¢4, the position update equation (23) for agent 4
can thus be written as

Ti(tikr1)) = Tiltin) + wm, (2, (67) — 2i(Ein)s -5 iy, (En,) — Tiltin)) (41
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For simplicity, we will only deal with the case when each agent has at least
one neighbor. This means that all the m; are positive numbers. For each
i €{1,2,...,n}, the subset N; introduced in the definition of S is interpreted
as the set of indices {i1, iz, ..., im, } labelling agent i’s neighbors. The required
symmetry property of the N; is an immediate consequence of the agent neigh-
bor relationship which we have already discussed. Accordingly, we take the
neighbor graph G associated with S to be one and the same as the simple
neighbor graph defined by (25).

We shall interpret .S; used in defining S just as we did when we used the
same symbol in discussing the actual agent system. Thus tg,(x) is the kth
event time of agent i. The following lemma serves to justify constraints (26)
and (27) imposed on the ;.

Lemma 4. For any integer i € {1,2,...,n} and any two successive event
times t;, and fi(k_,_l) of agent i, the number of distinct event times in the set
{tjq :7€{1,2,...,n}, j #1i, ¢ > 1} which satisfy

tir <tjq < tigsr) (42)

does not exceed 2(n—1). Moreover, for any particular integer j € {1,2,...,n}
there are at most two distinct event times in the set {t;q : ¢ > 1} which satisfy

(42).

The following result establishes the connection between the asynchronously
functioning agent trajectories defined by (41) and the trajectories of S.

Proposition 11. For each i € {1,2,...,n} and each s > s*, define

A
yi(s) = ( i(k; (s)+1)) (43)
5 é JJ zk (s <44)
A i(pis(s)+1))s if Ti(ki(s)) overlaps 7;(pij(s) + 1)
vale) = j € N{45)
(tip, j (s) otherwise

>

where k;(s) is the unique integer k for which S;(k) < s < S;(k+1) and p;;(s)
k;(S;i(k;i(s))). Under the hypotheses of Theorem 2, {{y(s),w(s),vi(s),...,
vn(8)} i s > s*} is a trajectory of S.

3.4 Global Rendezvous

In this section we shall be concerned with those trajectories of S for which
(43) - (45) hold. It is natural to say that the n nodes of S have {globally}
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rendezvoused at time s if H(s + 1) is a single point; i.e., if y1(s) = ya(s) =
oo = yp(s) = wi(s) = wa(s) = -+ = wy(s). In view of the definitions of
ts and the y; and w; in (43) — (44), it is clear that the rendezvousing of all
n nodes at time s implies the rendezvousing of all n agents at time ts. It is
also clear that the rendezvousing of all n nodes at time s implies that each
node has locally rendezvoused at s. This in turn implies that each node is
stationary at s. In other words, points at which global rendezvousing occurs
are equilibrium states of S. It can be shown that the converse is also true if
G is a connected graph. The following lemma is key.

Lemma 5. Suppose G is a connected graph. Suppose in addition that {y(s),
w(s),v1(8),v2(8),..., vn(8) : s € T} is a trajectory of S along which (43) - (45)
hold. If for some i € {1,2,...,n} and s € S;, node i is locally rendezvoused,
then the n nodes of S are globally rendezvoused.

Establishing the preceding result requires one to be able to conclude that
if for some for some i,j € {1,2,...,n} and some s € S;, nodes ¢ and j are in
the same “position” in the sense that y;(s) = y;(s) and w;(s) = w;(s), then
N; C N;. In words, what this is roughly saying is that if node j is in the same
position as node 4, then node j’s “neighbors” must also be neighbors of node
i. This weak transitivity property is not necessarily true for S but it is true if
y(s) and w(s) are defined by (43) and (44) respectively. This is a consequence
of the following lemma.

Lemma 6. Let y(s) and w(s) be defined by (43) and (44) respectively. Let
i€{1,2,...,n} and s € S; be fized. Suppose that for some j € {1,2,...,n},

yi(s) —y;(s)l] < (46)
l[wi(s) —y;(s)| < r (47)
Then j € N;

The following proposition shows that if H does not change for a sufficiently
long period of time, then the n nodes have rendezvoused.

Proposition 12. Suppose G is a connected graph. Suppose in addition that
{y(s),w(s),v1(s),v2(s), ...,vn(s) : s € S} is a trajectory of S along which
(43) - (44) hold. Suppose that s, and s, are values in' S for which s, — s, > 8n
and

dia{H(s)} = dia{H(ss)} (48)

Then the n nodes of S have rendezvoused at s = sy.

The following theorem is our main convergence result concerning S. The
main result of this paper, Theorem 2, is an immediate consequence.
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Theorem 3. Let {{y(s),w(s),v1(s),...,va(8)} : s € S} be a trajectory of S
along which (43)-(45) hold. If G is a connected graph, then

slggo dia(y1(s), y2(8)s - -+, yn(s), w1(s), wa(s), ..., wp(s)) =0 (49)

Proof of Theorem 3: In the sequel we often write x(s) for {y(s), w(s),v1(s),

n(s)}. Let V1 X — IR denote the diameter function {y, w, vy, va,...,v,}
— dia(y1, Y2, - - -, Yn, W1, Wa, ..., Wy, ). As a consequence of Lemma 1, V(x(s))
is a monotone non-increasing function of s Clearly V' (x(s)) is bounded below
by 0. Moreover V (z(s)) is bounded above by V(z(0)) because V(-) is contin-
uous and X is compact. Therefore there must exist a finite limit

V* = Sll)rgc V(z(s))

We claim that V* = 0. To prove this claim, suppose that is false. Then V* > 0.
This means that the trajectory {x(s) : s € S} cannot contain any points in
the set &€ = {x : V(z) = 0}. To proceed, fix § > 8n and let A(x(s)) denote

the difference
Az(s)) = V(z(5+s)) — V(z(s)) (50)

Since V(x(s)) is monotone non-increasing, A(z(s)) < 0, s € S. In the
light of Proposition 12 and the fact that £ has no points in common with
{z(s) : s € S8}, one can conclude that A(z(s)) #0, s € S. Therefore

Ax(s)) <0, se€S (51)

According to Proposition 10, for each s € S there is a continuous function
D, such that z(s + 35) = Dy(x(s)). Let W, denote the set of state pairs
(x(s + 3),x(s)) along the given trajectory for which this formula holds. It

follows that
{(x(s+5),2(s) : s €St = [ Wy
qeQ
and that each W is a closed set. For (z,z) € W, define A, : W, — IR so
that (Z,z) — V(Dy(Z)) — V(x). Note that A, is a continuous function on

W, whose value at each point (Z,x) € W, agrees with A(z(s)) for some s. It
follows from (51) that

Ag(z,x) <0, (z,2) € W,

Define
= inf Ay (z,x
Hq (.2)EW, q(T,2)
Since W, is compact and A, is negative and continuous on W,, it must be
true that pg, < 0. Let
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p=maxp
Since Q is finite, p < 0. Clearly
Ag(Z,x) < p (T,2) €Wy, q€Q (52)

Note that by construction, for each s € & there must be a ¢ € Q such that
A(z(s)) = Ag(z(s + 5),2(s))) (From this and (52) it follows that

A(z(s)) < —p, s€S

Note that

Thus by summing,
V(z(s+k3)) < V(z(s)kp, k>1

Therefore, for k sufficiently large V (z(s+k5)) must be negative because pu < 0.
But this is impossible because V(-) is positive definite. Hence V* cannot be
positive. l

4 Concluding Remarks

The approach taken in this paper appears to have much in common with
the embedding process discussed in Chapter 7 of [18] for analyzing “partially
asynchronous iterative algorithms.” This suggests that the tools developed in
[18] may be helpful in understanding the asynchronous system considered in
this paper.

In summary, if one is to avoid detailed maneuvering models in studying
the multi-agent rendezvous problem, then one must deal with an event driven
system - actually a hybrid system - in which non-deterministic state tran-
sitions can occur. This somewhat surprising fact seems to be related to our
objective of only using high level models. Understanding this phenomenon
and how to analyze systems with this property, is a topic for future research.
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