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Summary. This paper studies connections between phase models of coupled oscil-
lators and kinematic models of groups of self-propelled particles. These connections
are exploited in the analysis and design of feedback control laws for the individuals
that stabilize collective motions for the group.

1 Introduction

Synchronization of a large population of oscillators at a common pulsation
is a popular phenomenon in physics (e.g. in large arrays of superconducting
Josephson junctions) and in biology (e.g. in large networks of coupled neu-
rons). Likewise, collective motion is commonly observed in large populations
of natural organisms such as flocks of birds or schools of fish. These two in-
stances of “self-organization” in dynamical systems have been widely studied
in the literature. The convergence to organized formations for the group start-
ing from arbitrarily disorganized initial conditions for the individuals is robust
to small differences between the individuals and is attributed to the weak in-
teractions (coupling) between the individual dynamics. For instance, synaptic
connections between neurons influence their individual firing rate; likewise, a
fish adapts its direction of motion to avoid collisions with neighbors.
Mathematically, oscillator synchronization and collective motion have been
studied — quite independently from one another — through simplified dynam-
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ical models that assume (nearly) identical and low-dimensional dynamics for
the uncoupled systems but nevertheless exhibit rich and complex dynamics
under weak coupling. The goal of the present paper is to exploit the anal-
ogy between these simplified models. More specifically, we develop analysis
and design tools for the stabilization of collective motions based on avail-
able results for coupled oscillators. The development of systematic analysis
design tools for collective motion is motivated by the expanding number of
engineering applications that require coordination of many “individuals” to
achieve a prescribed mission. The results of the present paper are specifically
motivated by coordinated motions in groups of underwater vehicles viewed as
reconfigurable moving sensor arrays for data collection in the ocean [I103].

The particle model we consider in this paper is a (kinematic) model of
self-propelled particles recently introduced in [JK02]. Each particle moves at
constant speed in the plane but adapts its orientation (i.e. the direction of
its unit velocity vector) according to the motion of neighboring particles. The
state space of each particle is the group SE(2) ~ R? x S! of rigid displace-
ments in the plane. The system of N coupled particles thus evolves on a
high-dimensional state space (N copies of SE(2)). However, when the cou-
pling only includes relative orientation variables and disregards relative spac-
ing variables, the spatial variables can be ignored and the reduced dynamics
evolve on N copies of S!, i.e. an N-dimensional torus. The reduced dynamics
then become equivalent to phase models of N coupled oscillators in which
each oscillator is only modelled by a phase variable.

Remarkable analysis results have been obtained by Watanabe and Stro-
gatz [WS94] for phase models of coupled oscillators under the particular as-
sumption of (all-to-all) pure sinusoidal coupling. They showed that this model
possesses N — 3 constants of motion and provided a global analysis of the
remaining low-dimensional dynamics. The oscillators either asymptotically
synchronize or converge to a manifold of “incoherent” states. These incoher-
ent states are characterized by an arbitrary distribution of phase differences
on the unit circle such that the centroid of the oscillators vanishes. In our
particle model, phase synchronization corresponds to parallel motion of the
moving particles, whereas a vanishing centroid of the oscillators corresponds
to motion of the particles around a fixed center of mass. Sinusoidal coupling
of the orientation (phase) variables thus stabilizes the linear momentum of
the group; either to a maximal value (parallel motion) or to a minimal value
(fixed center of mass).

Additional control is needed to stabilize the spacing variables. To retain the
results of the phase model of Watanabe and Strogatz, we enforce a time-scale
separation between the orientation dynamics and the spacing dynamics. The
phase oscillator model captures the fast dynamics and guarantees convergence
of the solutions to an invariant slow manifold. For parallel motion, the slow
manifold has codimension N —1. Small deviations from the parallel motion are
used to control the relative spacing of the particles to prescribed formations.
For motions around a fixed center of mass, the slow manifold has codimension
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2: the design on the slow manifold is the original design constrained to a fixed
position for the center of mass. This constraint simplifies the design of control
laws that stabilize formations around a fixed center of mass, such as circular
motion of all the particles on a fixed circle.

The connection between the phase-oscillator model of Watanabe and Stro-
gatz [WS94] and the particle model of Justh and Krishnaprasad [JK02] is thus
exploited to decouple the design of relative orientations from the design of rel-
ative spacing in particle models. The resulting dynamics have provable global
convergence properties, and the proposed methodology should be applicable
beyond the simplest stabilization problems considered in this paper. The last
section of the paper summarizes limitations of the present approach and pos-
sible directions for future research.

2 Models of self-propelled particles

We consider a continuous-time kinematic model of N identical particles (of
unit mass) moving in the plane at unit speed [JKO02]:

L b

i 1)
O =up, 1<k<N.

In complex notation, the vector r, € C ~ R? denotes the position of particle
k and the angle 0, € S! denotes the orientation of its (unit) velocity vector
€% = cosf + isinf,. We omit the index of a coordinate to denote the
corresponding N-vector, e.g. 7 = (r1,...,7n)7. In the absence of steering
control (Ok = 0), each particle moves at unit speed in a fixed direction and
its motion is decoupled from the other particles. We study the influence of
various feedback control laws that result in coupled dynamics and closed-loop
convergence to different types of organized or collective motion. We assume
identical control for each particle. In that sense, the collective motions that
we analyze in the present paper do not require differentiated control action
for the different particles (e.g. the presence of a leader for the group). For
convenience, we decompose the steering control of particle k£ into the sum of
two terms: ,

up = up" " + Kuzhg" . (2)

The term uZ”g" depends only on relative orientation, i.e., on the variables

0;; =0,—0;,1 <4i,j < N.The term u;”** depends both on relatlve orientation
and relative spacing, i.e., on the varlables 0;5 and 5 =7y — 7,1 <4, < N.
The simplest form of phase coupling,

alzgn o

n(0; — 0), (3)

HMZ
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is adopted throughout the paper, while different choices are discussed for the
feedback u;"*“. The sign of the parameter K plays an important role in the
results of the paper.

The kinematic model (1) has been recently studied by Justh and Krish-
naprasad [JK02, JKO03]. These authors have emphasized the Lie group struc-
ture that underlies the state space. The configuration space consists of NV
copies of the group SE(2). When the control law only depends on relative ori-
entations and relative spacing, it is invariant under an action of the symmetry
group SE(2) and the closed-loop dynamics evolve on a reduced shape space.
Equilibria of the reduced dynamics correspond to equilibrium shapes and can
be only of two types [JKO02]: parallel motions, characterized by a common
orientation for all the particles (with arbitrary relative spacing), and circular
motions, characterized by circular orbits of the particles around a fixed point.
Both types of motion have been observed in simulations in a number of mod-
els that are kinematic or dynamic variants of the model (1), see for instance
[LRCO1].

A simplification of the model (1) occurs when the feedback laws depend
on relative orientations only (u;"** = 0). The control has then a much larger
symmetry group (/N copies of the translation group), and the reduced model
becomes equivalent to phase models of the form

ék:wk+2ujk(0j—0k), k:].,...,N (4)
J

where the phase variable (6, ...,0y) belongs to the N-dimensional torus TV.
(The model (4) still has an S'-symmetry because the feedback only depends on
phase differences). Formal equivalence with (1)-(2) is obtained with u;"*“ = wy,
and Kul'" = > k(0 — 0x). In the absence of coupling (u;; = 0 for all
i and j), each particle “rotates” at its natural frequency w; around a fixed
point. The phase coupling function w;; between oscillator ¢ and oscillator j
is assumed to be continuously differentiable and 2w-periodic. The choice (3)
assumes all-to-all coupling with an identical phase-difference coupling function
that only includes one harmonic.

Phase-oscillator models of the type (4) have been widely studied in the
neuroscience and physics literature. They represent a simplification of more
complex models (for instance of neurons) in which the uncoupled oscillator dy-
namics each have an attracting limit cycle in a higher-dimensional state space.
Under the assumption of weak coupling, the reduction of higher-dimensional
models to (4) by asymptotic methods (singular perturbations and averaging)
has been studied in e.g. Ermentrout and Kopell [EK90] and Hoppensteadt
and Izhikevich [HI97].

Even with the simplest type of coupling (3), the phase model (4), then
referred to as the Kuramoto model [Kur84], exhibits rich dynamics and has
received considerable attention in the literature. Analytical results have been
obtained for the continuous limit of N — oo (see Strogatz [Str00] for a recent
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review). In the finite case, results are mostly restricted to the situation of
identical natural frequencies: wy = w, 1 < k < N. (The common frequency
w can be set to zero without loss of generality by rewriting (4) in a rotating
frame). The main results for the latter case have been obtained by Watanabe
and Strogatz in [WS94]). These are and reviewed in the next section for their
relevance to the present framework.

Our goal is to make the available results for phase models relevant to the
particle model (1), even when the control u;”*“ is no longer constant. The
proposed approach is to assume a large enough value for the parameter K
such as to enforce a time-scale decomposition between the (fast) orientation
dynamics (determined by the phase model (4)) and the (slow) spacing dy-
namics determined by the particle model (1) restricted to its slow manifold.
Thus, we study the singularly perturbed model

= 10k

k=€

N spac 1 N . (5)
€Op = eup) ™ + 5 > imysin(0; —0;), 1<k <N,

where the small parameter e enforces a time-scale separation between fast
dynamics in the time-scale 7 = % and slow dynamics in the time-scale ¢.
In the fast time-scale 7, the variable r is frozen and the dynamics reduce to

d 1
Eek = G’U,kp —+ N ;Sll’l(&l - ej)

which, in the limit € = 0, is precisely the phase model
. 1
ekzﬁgsm(ei—ej), 1<k<N (6)

studied by Strogatz and Watanabe. In the decomposition (2) of the feedback
control, the control term uzlig " will determine the fast dynamics whereas the
control term ;""" will affect the slow dynamics only.
Euler discretization of the continuous-time model (1) yields the discrete-
time equations
re(t 4 1) — rp(t) = e 7
Op(t+1)—0k(t) =ur, 1<k<N. (7)

The direction of motion of particle k£ is updated at each time step accord-
ing to some feedback control uy. We consider continuous-time models in this
paper, but we mention a few relevant references to study their discrete-time
counterpart. Couzin et al. [CKJT02] have studied such a model where the
feedback control is determined from a set of simple rules: repulsion from close
neighbors, attraction to distant neighbors, and preference for a common ori-
entation. Their model includes stochastic effects but also exhibits collective
motions reminiscent of either parallel motion or circular motion around a fixed
center of mass. Interestingly, these authors have shown coexistence of these
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two types of motion in certain parameter ranges and hysteretic transition from
one to the other. A discrete version of (4) has been studied by Viczek et al.
[VCBJ'95], in which wy, is a random variable.

3 Watanabe-Strogatz analysis of phase-oscillator
networks

This section summarizes the analysis of Watanabe and Strogatz [WS94] for
the phase-oscillator model

N

: K

szwk—i—ﬁ;cos(ﬁj—@k—@, k=1,...,N, 0<d<m. (8)
iz

They obtained the model (8) with w, = 0 by averaging a model of coupled
Josephson junctions. The parameter ¢ plays no role in the present paper and
is set to m/2 in the control law (3). The results summarized below are instru-
mental in our analysis of the particle model (1).

We start by introducing the notation

LN
Po= 37 Z (= Zm 9)
k=1

for the centroid of oscillators in the model (8), or, equivalently, the linear
momentum of the group of particles in the model (1). The codimension-two
manifold defined by the algebraic condition py = 0 plays an important role
throughout the paper and will be termed the balanced manifold (individual
motions of particles balance in this manifold to result in a fixed position for
the center of mass of the group). 3

In complex notation, we set

po = g+ ih = [pgle”
with g = & Zivzl cosfy and h = & Z,Icvzl sin 0, and rewrite (8) as
O = wi + K(gcos(By, + 0) + hsin(f, +90)), k=1,...,N (10)

or

Ok—wk+K|pg|Re< i(¢=0i— 5>), k=1,...,N. (11)

3 In the literature of phase oscillators, it has been termed the incoherent state
manifold because N —2 phase differences are arbitrary in this manifold in contrast
to the synchronized state in which all phase differences vanish.
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3.1 Change of coordinates

The key of the analysis in [WS94] is the change of coordinates

0 — 1 —w
pan =0 LAY e N (12)
2 Vi=r 2

which maps the N-dimensional state vector (01,...,0x) to the (N + 3)-
dimensional state vector (v,0,%,11,...,1¥n). Equation (12) should be re-
garded as a way to redistribute the phase variables 6 on the unit circle. The
new phase variables v result from a time-varying but uniform transformation
that involves two rigid rotations (of angle @ and ¥ respectively) and one di-
lation (measured by the variable 0 < v < 1). Differentiating (12) with respect
to time and using (10) results in the identities

0= /T 7245 — (1 =y cos(t — ¥))wr+
+[0 — /1 —y2¥ + K(gycos(O + §) + hysin(O + 9))]
+ cos(thy, — W) [—7O — K (gcos(O + ) + hsin(O + 9))]
+ sin(yy, — w)[\/j_7 + K+\/1—~2(gsin(@ + ) — hcos(@ +6))], 1<k<N.
(13)
It is then easily observed that if the three variables (v, ©,%) satisfy the
differential equation

€70 = —gcos(O + §) — hsin(O + 6)
ey =—(1 — %) (gsin(© + §) — hcos(O + 6)) (14)
YW = —/1 —~2(gcos(O + §) + h(sin(O +6)), e=K!

then the identities (13) reduce to

V1 =72, = (1 —ycos(¢p —¥))wg, k=1,...,N. (15)

These form N trivial equations when wy = 0 for all k. For the system studied
in [WS94] (with wy, = 0), the change of coordinates (12) thus reveals that
the original N dimensional dynamics are in fact foliated by 3-dimensional
invariant subspaces. When |¢| = 1/| K] is a small parameter, the system (14)-
(15) is singularly perturbed. In the new coordinates, the three fast dynamic
variables are (©,v,%) and the N slow variables are 15,1 < k < N. The fast
dynamics are described by (14) with the slow variables frozen to their initial
condition: 1 (t) = 15 (0) for allt > 0,1 <k < N.

The analysis of the 3-dimensional system (14) further reduces to a 2-
dimensional analysis by observing that the variable @ can be eliminated from
the right-hand side of (14). Indeed one has

e = (1 —y*)Im(pge="Ce=) 16
e*y@ = —MRe(pge_i@e_ié) (16)
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but ppe™® = L3 ¢i%=®) and 6, — 6 = 2arctan(,/f_“—jytan Le?) The
fast system (14) thus decouples into the two-dimensional system (16) and an
additional equation for the dynamics of © (which is in fact irrelevant for the
convergence analysis).

Observe that when pg = 0 (i.e., on the balanced manifold), the dynamics
(16) are at rest. Thus, under the assumption wy = 0 for all k, the balanced
manifold is invariant.

To complete the (global) analysis of (16), Watanabe and Strogatz intro-
duce the Lyapunov function

N
Vo) = 5 Xl (1 S ”’) , (")
=1

which takes its minimium at v = 0, and show (when ¢ = 0) that its time-
derivative satisfies )
V = K|pg|?sin .

The behavior of the fast dynamics of (14)-(15) is thus entirely determined
by the evolution of the scalar function V' in the invariant domain defined
by 0 < v < 1. The Lyapunov function V is monotonically increasing along
solutions when K > 0 and monotonically decreasing along solutions when
K < 0. It is stationary only when the linear momentum py vanishes.

In order to fully interpret this result, we first describe in Section 3.2 an
additional constraint defined by Watanabe and Strogatz that makes the bal-
anced manifold equivalent to the manifold v = 0. Under these conditions, it
then follows that v = 0 is a stationary point of (16) (and this is equivalent to
the invariance of the balanced manifold).

3.2 Zero centroid constraint and interpretation of the dynamics

Since the N-dimensional dynamics (8) are immersed in the (N+3)-dimensional
dynamics (14)-(15), there are three degrees of freedom in choosing the initial
condition 1 (0) such as to satisfy (12). Further insight on the behavior of the
solutions is gained by imposing the constraint

N
po =3 e =0 (13)
k=1

which fixes to zero the centroid of the new (phase) variables ¢y. The change
of coordinates (12) with (14) and the constraint (18) has the convenient in-
terpretation of redistributing the phase variables 65 on the unit circle in such
a way that they become constants of motion (in the fast time scale or when
wy = 0) with a vanishing centroid. (To make the change of coordinates one-
to-one, a third algebraic constraint can be imposed, e.g. by fixing the initial
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condition © to an arbitrary value; again this is irrelevant to interpreting the
behavior of the solutions).

The constraint (18) makes the balanced manifold equally determined by
the condition pg = 0 or by the new condition v = 0. This is because, when
~ =0, the change of coordinates becomes the linear transformation ( mod )

Y =0 +¥ — 06O

so that the centroid py, = >°, €'¥* coincides with the centroid py = 3, €'%*. In
the new coordinates (12) with (14) and (18), stabilizing the balanced manifold
therefore becomes synonymous with stabilizing the manifold v = 0.
It is further shown in [WS94] that the Lyapunov function V', which vanishes
at v = 0, monotonically increases to +00 as 7 — 1. Convergence of () to 1
implies phase synchronization 0;(¢t) — ©(t) + m, 1 < i < N, as shown by the
identities
. V/1—72 sin(thy —W
sin0h — 0) = VP (19)
cos(0 — @) = % .
One concludes that the variable 0 < v < 1 measures the synchronization of
the phase variables: it is minimal on the balanced manifold and maximal when
all the phases synchronize. The balanced manifold is globally attracting when
K < 0 and the synchronized state is globally attracting when K > 0.

3.3 Singularities

Two types of singularities must be dealt with to complete the analysis of the
model (8): the singularity of (14) at v = 0 and the singularities of the change
of variables (12) under the constraint (18). The (apparent) singularity at v = 0
is due to the polar nature of the coordinates (v, @) and is easily removed with
an additional change of coordinates [WS94]. In contrast, a true singularity
occurs in the change of coordinates (12), (18) for “majority clusters”, i.e.
initial conditions for which more than N/2 of the phase variables are identical:
in this case, more than N/2 phase variables v, are also identical and the
centroid py cannot vanish. A special treatment is required for those special
initial conditions but we refer the interested reader to [WS94].

4 Linear momentum stabilization

We now return to the singularly perturbed particle model

TR = ei0r

el = eu? + L+ Zf;l sin(0; —6;), 1<k<N (20)

and interpret the conclusions of the analysis in the previous section to its fast
subsystem
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(sign K)f, = — Zsm 0r), 1 <k<N. (21)

If K > 0, all the solutions of (21) asymptotically synchronize. For the sin-
gularly perturbed model (20), the conclusion is that for K large enough, all
solutions converge in the fast time scale E to an invariant slow manifold where
the motion is nearly parallel. The slow manifold of parallel motion has codi-
mension N — 1; in the asymptotic limit € = 0, it is determined by the N — 1
algebraic conditions

O, =061, 1<k<N.

In contrast, if K < 0, then the solutions of (21) converge to the balanced
manifold characterized by py = 0. For the singularly perturbed model (20),
the conclusion is that for | K| large enough, all solutions converge in the fast
time scale é to an invariant slow manifold where the center of mass is nearly
fixed. This slow manifold has codimension 2; in the asymptotic limit € = 0, it
is determined by the two algebraic conditions

N N
Zcos@k = Zsian =0.
k=1 k=1

In the next two sections, we illustrate how the slow dynamics can be
designed to stabilize relative equilibria of (20).

5 Stabilization of parallel formations

To analyze the slow dynamics of the singularly perturbed particle model (5)
in the case e = 1/K > 0, we determine the first-order approximation of its
slow manifold. The slow manifold has the expression

9k=91+hk(7“,6), 1<k<N

To determine the functions hg, 1 < k < N, one expresses the invariance of
the manifold ' ) '
ek—elzhkiek—elzhk

which determines the functions hj as the solutions of the PDE

(€(O — 61) =) e(u;"* —uiP*®) + |pg|(sin(¢ — 01 — hy) — sin(p — 61))
= X, Bkt th (= o

Expanding h(r,€) = ehj.(r) + O(e?) and equating the first-order terms in €
in (22) yields the first-order approximation

hi(r,€) = e(u;* — uiP*) + O(e®), 1<k <N. (23)



Collective Motion and Oscillator Synchronization 199

The slow dynamics are obtained by substituting the approximation (23) in

(5):

fr = €1 (1 4 de(u;?* — uiP*)) + O(?) . (24)

For the difference 74 = rp — 7, this yields the slow dynamics

T = eie'? (ugh* — u‘;-pac) +0(€%). (25)

The controls u;”*“, 1 < k < N can now be determined to assign formations
for the group of particles moving in parallel. As an illustration, we follow
the approach proposed in [BLO02] to stabilize formations of (non-oriented)

particles: the desired formation is specified by the critical points of a scalar

potential
N
U= Z Z U[ (’I“ij)

i=1 j>i
where the potential Uy (r;j) = Ur(r; — ;) = Ur(r;;) determines the desired
interaction from particle j on particle ¢. For instance, the choice

do
ij
results in the feedback
o [rig Il M rag [12) [l

from particle j on particle ¢ which vanishes only at the equilibrium distance
|l7i;]l = || — ;|| = do. Gradient-like dynamics for the slow system (24) are
obtained with the feedback control

ul* = =3 < VU(ry), i€’ > (28)
i#k

which causes the scalar potential U to decrease along the solutions in the slow
manifold:

N
U = Z Z VU[(Tkj)’f'kj

k=1j>k

N
= ez Z < VUI(rkj),iewl > (upP* — ujpac) +O(€%)
k=1j>k

N
= —¢ Z(uipac)Q + O(€?).
k=1

Equilibrium configurations that minimize the potential U favor uniform spac-
ing between the particles. See Figure 1.
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'\%

(2.a) (2.b)

Fig. 1. Parallel motion for ten vehicles for two sets of random initial conditions (1)
and (2). No spacing control is used in (l.a) and (2.a). In (1.b) and (2.b), u;”* is
given by (28).

6 Controlled-invariance of the balanced manifold and
stabilization of circular motion

To analyze the slow dynamics of the singularly perturbed particle model (5)
in the case e = 1/K < 0, we use the new coordinates introduced in Section 3:

R = et0x

V1 =920 = (1 —ycos(y, —O)u?*, k=1,...,N
ey0 = —gcos(O 4 8) — hsin(O + 6))
ey = —(1—+2)(gsin(O + &) — hcos(© +0))
YW = —/1 —72(gcos(O + §) + h(sin(@ +6)), e=K'<0.
(29)
The conclusions of Section 3 for the fast subsystem of (29) rely on the con-
straint py, = 0 (constraint (18)). Under this constraint, the balanced manifold
was shown to be equally determined by the condition py = 0 (in the old co-
ordinates) or by the condition v = 0 (in the new coordinates). Moreover, the
balanced manifold was shown to be invariant for the solutions of (29) when

spac
u,  =0.
All these properties can be retained with additional nontrivial control u;”*¢

provided we restrict u;”*“ to satisfy the constraint

~ Z ek = (). (30)

Observe from (5) and (11) that pg = 0 implies that f), = u;**“. Thus, condition
(30) enforces the (controlled) invariance of the balanced manifold:



Collective Motion and Oscillator Synchronization 201

N

po=0=pg = Ze’ekek Z Z‘gkuzpac:o.
k‘ 1

But the constraint (30) also projects the dynamics (29) onto the manifold
py = 0. In other words, it renders the dynamics (29) compatible with the
change of coordinates (12)-(18). Indeed, one verifies that (29) together with
the condition (30) imply the invariance of py = 0:

Zezokusmc 0= Zei(ek—@) spac _

éZsm (O — O)usP*® = Zcos (O —©)u" " =0
:>(19) Zsm U — ZC% Yp — W)y =0
k
= Zew"% =py=0.
B

Under the constraint (30), the balanced manifold thus becomes the (exact)
slow manifold of the singularly perturbed system (29). The dynamics in the
slow manifold reduce to

,,;k _ e’iek i ei(¢k+@—w)
@/}k: uw k=1,...,N (31)
Z]kvzl B = Zl]cvzl et =

It can be seen that the design of the particle model on the slow manifold is the
design of the original particle model assuming a center of mass at rest.

We will illustrate below how being able to make this assumption simpli-
fies the design of collective motions around a fixed point. The design of the
complete particle model is thus decomposed in two phases: (1) the design of
a reduced control u*® under the assumption of a fixed center of mass, that is,
restricted to the balanced manifold, and (2) the design of a complete control u
which reduces to % in the balanced manifold and at the same time enforces
convergence to the balanced manifold. For N > 3, the full control is deduced
from the reduced control by the expression

u = u'P + Ku®9" = (I — Py(PF Py) ' P{)ub + Ku®" K << 0 (32)

where Py denotes the N x 2 matrix with first column C‘Ee and second column
S8 The projector I — Py(P] Py) "' P§ enforces the constraint (30) which, in

matrix notation, reads PGT uPr¢ = 0.

6.1 Stabilization of a circular relative equilibrium

As an illustration of the above design procedure, we consider the stabilization
of the group of particles on a circle of fixed radius pg centered at the (fixed)
center of mass.
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The design of a circular motion for a single particle with coordinates
(7, 0x) around a fixed beacon R has been addressed in [JK02]. The authors
propose (a variant of) the feedback control

7 , A
Wb = —f(pp) < £, et > — < £ it (33)

Pk Pk
with 7, = 71, — R and py =|| 7% ||. See Figure 2 for an illustration. The

i

Fig. 2. Circular motion of a single particle around the fixed beacon R

second term of the control law (33) stabilizes circular motions: it vanishes
when the velocity vector is orthogonal to the relative position vector. The
function f(-) in (33) plays the same role as (27) in the parallel control of
the previous section, creating an attractive interaction when the distance py
exceeds the equilibrium distance dy and a repulsive interaction otherwise. (The
choice f(pr) = 1— (do/pi)? is proposed in [JKO03]). With the control (33), the
Lyapunov function
Pk

- ‘ 1
U= —tog] < i 4 [ (9~ Dyas
Pk 5 S

has a global minimum at a relative equilibrium which corresponds to circular
motion around the fixed beacon: the equilibrium is determined by a velocity
vector orthogonal to the relative position vector (i.e. < 7,€e* >= 0), and
a distance p to the beacon such that f(p) = %. Assuming R = 0, the time-
derivative of Uy satisfies

Up=— < = ei% 52 ) < 2K jeifs 5
Pk Pk
The Lyapunov function Uy provides a global convergence analysis for the
single particle model. In particular, it can be used to prove asymptotic stability
of the clokwise rotation around the fixed beacon.
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The design of circular motion for N particles in the balanced manifold is
an immediate extension of the single particle design: we apply (33) to each
particle 1 < k& < N, with the fixed beacon replaced by the center of mass of
the group R = % > Tk- Under the constraint R = po = 0, the Lyapunov
function U = ), Uy, provides the same global convergence analysis for the
group of particles as for a single particle.

Inserting the control law (33) in the general formula (32) thus yields a
stabilizing control law for the original particle model (1). The conclusions of
the asymptotic analysis, which assumes large values for the parameter |K]|,
seem well retained in simulations even when a time-scale separation is not
enforced between the fast stabilization of the center of mass and the slow
stabilization of the circular formation in the balanced manifold. See Figure 3.

O

Fig. 3. Circular motion with K = —1 for two sets of random initial conditions.

We finish this section with a remark on the controlled invariance of the
balanced manifold. Exact invariance of the balanced manifold is convenient
for the Lyapunov analysis of the closed-loop system and for the design of the
slow dynamics but not required for the convergence of solutions to the desired
circular motion. Not surprisingly, simulations of the particle model with the
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control law (32)-(33) without the projector (I —Py(Py Pp)~*PJ') suggest near-
invariance of the balanced manifold. Near-invariance of the balanced manifold
in the absence of the constraint (30) is illustrated in Figure 4.

ArinpRerAr Y

0 500 1000 1500 2000
Time

Fig. 4. Time evolution of the linear momentum |py| for the control law (32)-(33),
with (dashed) and without (plain) the projector I — Py(P§ Py) ' P§ (N = 20 and
pe|(0) = 0).

7 Conclusions and directions for future work

The present paper provides a global convergence analysis for the stabilization
of relative equilibria in a simple particle model of self-propelled particles. The
proposed approach rests on a two-time scale decomposition of the dynamics
that decouples the stabilization of orientation variables from the stabilization
of spacing variables. The fast dynamics analysis exploits previous results of
the literature for models of phase oscillators. All-to-all sinusoidal coupling of
the relative orientations results in stabilization of the linear momentum either
to a maximal value (resulting in parallel motion) or to a minimal value (re-
sulting in motion around a fixed center of mass). The slow dynamics analysis
also exploits previous results in the literature to achieve parallel motion with
prescribed formations or motion of all the particles on a fixed circle.

Natural extensions of the results would include analogous results for
discrete-time models such as (7) or for the continuum limit of an infinite num-
ber of particles (Results for the continuum limit are included in the analysis
of Watanabe and Strogatz[WS94]).

An important limitation of the present paper is the assumption of all-to-all
coupling. This assumption is unrealistic in large groups of organisms and re-
quires a prohibitively demanding communication topology in engineering ap-
plications. The results presented are likely to hold under relaxed assumptions
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on the network connectivity but extending the analysis to these situations is
not straightforward. Recent convergence results for the Viczek model under
weak connectivity assumptions [JLMO02] provide new analysis tools for such
generalizations.

The stabilization problems treated in this paper are considered a prelimi-
nary step to more challenging design problems such as path planning or col-
lective optimization tasks. Both the Lie group structure of the model (1) and
the time-scale decomposition of the overall dynamics into the control of ag-
gregated parameters (such as the group linear momentum) and the control of
individuals relative to these parameters might prove useful in such extensions.
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