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1 Introduction

A fundamental goal of neuroscience is to understand how the nervous system
communicates and processes information. The basic structural unit of the
nervous system is the individual neuron which conveys neuronal information
through electrical and chemical signals. Patterns of neuronal signals underlie
all activities of the brain. These activities include simple motor tasks such as
walking and breathing and higher cognitive behaviors such as thinking, feeling
and learning [18, 16].

Of course, neuronal systems can be extremely complicated. There are ap-
proximately 1012 neurons in the human brain. While most neurons consist of
dendrites, a soma (or cell body), and an axon, there is an extraordinary di-
versity of distinct morphological and functional classes of neurons. Moreover,
there are about 1015 synapses; these are where neurons communicate with one
another. Hence, the number of synaptic connections made by a neuron can
be very large; a mammalian motor neuron, for example, receives inputs from
about 104 synapses.

An important goal of mathematical neuroscience is to develop and analyze
mathematical models for neuronal activity patterns. The models are used to
help understand how the activity patterns are generated and how the pat-
terns change as parameters in the system are modulated. The models can
also serve to interpret data, test hypotheses, and suggest new experiments.
Since neuronal systems are typically so complicated, one must be careful to
model the system at an appropriate level. The model must be complicated
enough so that it includes those processes which are believed to play an im-
portant role in the generation of a particular activity pattern; however, it
cannot be so complicated that it is impossible to analyze, either analytically
or computationally.

A neuronal network’s population rhythm results from interactions between
three separate components: the intrinsic properties of individual neurons, the
synaptic properties of coupling between neurons, and the architecture of cou-
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pling (i.e., which neurons communicate with each other). These components
typically involve numerous parameters and multiple time scales. The synaptic
coupling, for example, can be excitatory or inhibitory, and its possible turn
on and turn off rates can vary widely. Neuronal systems may include several
different types of cells as well as different types of coupling. An important and
typically very challenging problem is to determine the role each component
plays in shaping the emergent network behavior.

Models for the relevant neuronal networks often exhibit a rich structure
of dynamic behavior. The behavior of even a single cell can be quite compli-
cated. An individual cell may, for example, fire repetitive action potentials or
bursts of action potentials that are separated by silent phases of near quies-
cent behavior [27, 15]. Examples of population rhythms include synchronized
oscillations, in which every cell in the network fires at the same time and clus-
tering, in which the entire population of cells breaks up into subpopulations
or blocks; every cell within a single block fires synchronously and different
blocks are desynchronized from each other [10, 31]. Of course, much more
complicated population rhythms are possible. The activity may, for exam-
ple, propagate through the network in a wave-like manner, or exhibit chaotic
dynamics [29, 44, 42].

In this article, I will discuss models for neuronal systems and dynamical
systems methods for analyzing these models. The discussion will focus primar-
ily on models which include a small parameter and results in which geometric
singular perturbation methods have been used to analyze the network behav-
ior. I will not consider other types of models which are commonly used in the
study of neural systems. The integrate and fire model of a single cell is one
such example. A review of these types of models can be found in [20, 13].

An outline of the article is as follows. Chapters 2 and 3 present an informal
introduction to the geometric theory of dynamical systems. I introduce the
notions of phase space, local and global bifurcation theory, stability theory, os-
cillations, and geometric singular perturbation theory. All of these techniques
are very important in the analysis of models for neuronal systems. Chapter
4 presents some of the basic biology used in modeling the neuronal systems.
I will then discuss the explicit equations for the networks to be considered.
Models for single cells are based on the Hodgkin-Huxley formalism [12] and
the coupling between cells is meant to model chemical synapses. I will then
consider models for single cells that exhibit bursting oscillations. There are,
in fact, several different types of bursting oscillations, and there has been con-
siderable effort in trying to classify the underlying mathematical mechanisms
responsible for these oscillations [27, 15]. I then discuss the dynamics of small
networks of neurons. Conditions will be given for when these networks ex-
hibit either synchronous or desynchronous rhythms. I conclude by discussing
an example of a larger network. This network was introduced as a model for
activity patterns in the Basal Ganglia, a part of the brain involved in the
generation of movements.
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2 One Dimensional Equations

2.1 The Geometric Approach

This chapter and the next provide an informal introduction to the dynamical
systems approach for studying nonlinear, ordinary differential equations. A
more thorough presentation can be found in [36], for example. This approach
associates a picture (the phase space) to each differential equation. Solutions,
such as a resting state or oscillations, correspond to geometric objects, such
as points or curves, in phase space. Since it is usually impossible to derive
an explicit formula for the solution of a nonlinear equation, the phase space
provides an extremely useful way for understanding qualitative features of
solutions. In fact, even when it is possible to write down a solution in closed
form, the geometric phase space approach is often a much easier way to analyze
an equation. We illustrate this with the following example.

Consider the first order, nonlinear differential equation

dx

dt
= x − x3 ≡ f(x). (1)

Note that it is possible to solve this equation in closed form by separating
variables and then integrating. The resulting formula is so complicated, how-
ever, that it is difficult to interpret. Suppose, for example, we are given an
initial condition, say x(0) = π, and we asked to determine the behavior of the
solution x(t) as t → ∞. The answer to this question is not at all obvious by
considering the solution formula.

The geometric approach provides a simple solution to this problem and
is illustrated in Fig. 1. We think of x(t) as the position of a particle moving
along the x-axis at some time t. The differential equation gives us a formula
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Fig. 1. The phase space for Equation (1).
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for the velocity x′(t) of the particle; namely, x′(t) = f(x). Hence, if at time t,
f(x(t)) > 0, then the position of the particle must increase, while if f(x(t)) <
0, then the position must be decrease.

Now consider the solution that begins at x(0) = π. Since f(π) = π−π3 < 0,
the solution initially decreases, moving to the left. It continues to move to the
left and eventually approaches the fixed point at x = 1. A fixed point is a
value of x where f(x) = 0.

This sort of analysis allows us to understand the behavior of every solution,
no matter what its initial position. The differential equation tells us what the
velocity of a particle is at each position x. This defines a vector field; each
vector points either to the right or to the left depending on whether f(x) is
positive or negative (unless x is a fixed point). By following the position of
a particle in the direction of the vector field, one can easily determine the
behavior of the solution corresponding to that particle.

A fixed point is stable if every solution initially close to the fixed point
remains close for all positive time. (Here we only give a very informal defini-
tion.) The fixed point is unstable if it is not stable. In this example, x = −1
and x = 1 are stable fixed points, while x = 0 is unstable.

This analysis carries over for every scalar differential equation of the form
x′ = f(x), no matter how complicated the nonlinear function f(x) is. Solutions
can be thought of as particles moving along the real axis depending on the
sign of the velocity f(x). Every solution must either approach a fixed point
as t → ±∞ or become unbounded. It is not hard to realize that a fixed point
x0 is stable if f ′(x0) < 0 and is unstable if f ′(x0) > 0. If f ′(x0) = 0, then one
must be careful since x0 may be stable or unstable.

2.2 Bifurcations

Bifurcation theory is concerned with how solutions of a differential equation
depend on a parameter. Imagine, for example, that an experimentalist is able
to control the level of applied current injected into a neuron. As the level of
applied current increases, the neuron may switch its behavior from a resting
state to exhibiting sustained oscillations. Here, the level of applied current rep-
resents the bifurcation parameter. Bifurcation theory (together with a good
model) can explain how the change in dynamics, from a resting state to oscil-
lations, takes place. It can also be used to predict the value of injected current
at which the neuron begins to exhibit oscillations. This may be a useful way
to test the model.

There are only four major types of so-called local bifurcations and three
of them can be explained using one-dimensional equations. We shall illustrate
each of these with a simple example. The fourth major type of local bifurcation
is the Hopf bifurcation. It describes how stable oscillations arise when a fixed
point loses its stability. This requires at least a two dimensional system and
is discussed in the next chapter.
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Saddle-Node Bifurcation
The following example illustrates the saddle-node bifurcation:

x′ = λ + x2. (2)

Here, λ is a fixed (bifurcation) parameter and may be any real number. We
wish to solve this equation for a given value of λ and to understand how
qualitative features of solutions change as the bifurcation parameter is varied.

Consider, for example, the fixed points of (2) for different values of the
bifurcation parameter. Recall that fixed points are those values of x where
the right hand side of (2) is zero. If λ < 0 then (2) has two fixed points; these
are at x = ±√−λ. If λ = 0 then there is only one fixed point, at x = 0, and
if λ > 0 then there are no fixed points of (2).

To determine the stability of the fixed points, we let fλ(x) ≡ λ + x2

denote the right hand side of (2). A fixed point x0 is stable if f ′
λ(x0) < 0.

Here, differentiation is with respect to x. Since f ′
λ(x) = 2x, it follows that the

fixed point at −√−λ is stable and the fixed point at +
√−λ is unstable.

A very useful way to visualize the bifurcation is shown in Fig 2 (left). This
is an example of a bifurcation diagram. We plot the fixed points x = ±√−λ
as functions of the bifurcation parameter. The upper half of the fixed point
curve is drawn with a dashed line since these points correspond to unstable
fixed points, and the lower half is drawn with a solid line since these points
correspond to stable fixed points. The point (λ, x) = (0, 0) is said to be a
bifurcation point. At a bifurcation point there is a qualitative change in the
nature of the fixed point set as the bifurcation parameter varies.

A basic feature of the saddle-node bifurcation is that as the bifurcation
parameter changes, two fixed points, one stable and the other unstable, come
together and annihilate each other. A closely related example is x′ = −λ+
x2. There are no fixed points for λ < 0 and two for λ > 0. Hence, two fixed
points are created as λ increases through the bifurcation point at λ = 0. This
is also referred to as a saddle-node bifurcation.

Transcritical Bifurcation
A second type of bifurcation is the transcritical bifurcation. Consider the equa-
tion

x′ = λx − x2. (3)

Note that x = 0 is a fixed point for all values of λ; moreover, there is a second
fixed point at x = λ.

To determine the stability of the fixed points, we let fλ(x) ≡ λx − x2

denote the right hand side of (3). Since f ′
λ(x) = λ − 2x, it follows that the

fixed point at x = 0 is stable if λ < 0 and is unstable if λ > 0. The fixed point
at x = λ is stable if λ > 0 and is unstable if λ < 0.

The bifurcation diagram corresponding to this equation is shown in Fig. 2
(right). As before, we plot values of the fixed points versus the bifurcation
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Fig. 2. The saddle-node bifurcation (left) and the transcritical bifurcation (right).

parameter λ. Solid curves represent stable fixed points, while dashed curves
represent unstable fixed points. Note that there is an exchange of stability at
the bifurcation point (λ, x) = (0, 0) where the two curves cross.

Pitchfork Bifurcation
The third type of bifurcation is the pitchfork bifurcation. Consider the equation

x′ = λx − x3. (4)

If λ ≤ 0, then there is one fixed point at x = 0. If λ > 0, then there are three
fixed points. One is at x = 0 and the other two satisfy x2 = λ.

In order to determine the stability of the fixed points, we let fλ(x) ≡
λx − x3. Note that f ′

λ(x) = λ − 3x2. It follows that x = 0 is stable for λ < 0
and unstable for λ > 0. Moreover, if λ > 0 then both fixed points x = ±√

λ
are stable.

The bifurcation diagram corresponding to (4) is illustrated in Fig. 3 (left).
There are actually two types of pitchfork bifurcations; (4) is an example of
the supercritical case. An example of a subcritical pitchfork bifurcation is

x′ = λx + x3. (5)

The bifurcation diagram for this equation is shown in Fig 3 (right). Here,
x0 = 0 is a fixed point for all λ. It is stable for λ < 0 and unstable for λ > 0.
If λ < 0, then there are two other fixed points; these are at x0 = ±√−λ. Both
of these fixed points are unstable.

2.3 Bistability and Hysteresis

Our final example of a scalar ordinary differential equation is:

x′ = λ + 3x − x3. (6)
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Fig. 3. A supercritical pitchfork bifurcation (left) and a subcritical pitchfork bifur-
cation (right).
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Fig. 4. Example of hysteresis.

The bifurcation diagram corresponding to (6) is shown in Fig. 4. The fixed
points lie along the cubic x3 − 3x − λ = 0. There are three fixed points for
|λ| < 2 and one fixed point for |λ| > 2. We note that the upper and lower
branches of the cubic correspond to stable fixed points, while the middle
branch corresponds to unstable fixed points. Hence, if |λ| < 2 then there are
two stable fixed points and (6) is said to be bistable.
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There are two bifurcation points. These are at (λ, x) = (−2, 1) and (λ, x) =
(2,−1) and both correspond to saddle-node bifurcations.

Suppose we slowly change the parameter λ, with initially λ = 0 and x
at the stable fixed point −√

3. As λ increases, (λ, x) remains close to the
lower branch of stable fixed points. (See Fig. 4.) This continues until λ = 2
when (λ, x) crosses the saddle-node bifurcation point at (λ, x) = (2,−1). The
solution then approaches the stable fixed point along the upper branch. We
now decrease λ to its initial value λ = 0. The solution remains on the upper
branch. In particular, x =

√
3 when λ = 0. Note that while λ has returned to

its initial value, the state variable x has not. This is an example of what is
often called a hysteresis phenomenon.

3 Two Dimensional Systems

3.1 The Phase Plane

We have demonstrated that solutions of first order differential equations can
be viewed as particles flowing in a one dimensional phase space. Remark-
ably, there is a similar geometric interpretation for every ordinary differential
equation. One can always view solutions as particles flowing in some higher
dimensional Euclidean (or phase) space. The dimension of the phase space is
closely related to the order of the ode. Trajectories in higher dimensions can be
very complicated, much more complicated than the one dimensional examples
considered above. In one dimension, solutions (other than fixed points) must
always flow monotonically to the left or to the right. In higher dimensions,
there is a much wider range of possible dynamic behaviors. Here, we consider
two dimensional systems, where many of the techniques used to study higher
dimensional systems can be introduced.

A two dimensional system is one of the form

x′ = f(x, y)
y′ = g(x, y). (7)

Here, f and g are given (smooth) functions; concrete examples are considered
shortly. The phase space for this system is simply the x − y plane; this is
usually referred to as the phase plane. If (x(t), y(t)) is a solution of (7), then
at each time t0, (x(t0), y(t0)) defines a point in the phase plane. The point
changes with time, so the entire solution (x(t), y(t)) traces out a curve, or
trajectory, in the phase plane.

Of course, not every arbitrarily drawn curve in the phase plane corresponds
to a solution of (7). What is special about solution curves is that the velocity
vector at each point along the curve is given by the right hand side of (7). That
is, the velocity vector of the solution curve (x(t), y(t)) at a point (x0, y0) is
given by (x′(t), y′(t)) = (f(x0, y0), g(x0, y0)). This geometric property – that
the vector (f(x, y), g(x, y)) always points in the direction that the solution is
flowing – completely characterizes the solution curves.
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3.2 An Example

Consider the system

x′ = y − x2 + x

y′ = x − y. (8)

We wish to determine the behavior of the solution that begins at some pre-
scribed initial point (x(0), y(0)) = (x0, y0). This will be done by analyzing the
phase plane associated with the equations.

We begin the phase plane analysis by considering the vector field defined
by the right hand side of (8). This is shown in Fig.5 where we have drawn the
vector (y − x3 + x, x − y) at a number of points (x, y). Certainly, one cannot
draw the vector field at every point. By considering enough points, one can
get a sense of how the vector field behaves, however. A systematic way of
doing this is as follows.
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Fig. 5. The phase plane for equation (8).

The first step is to locate the fixed points. For a general system of the
form (7), the fixed points are where both f and g vanish. For the example
(8), there are two fixed points; these are at (0, 0) and (2, 2). Later we discuss
later how one determines whether a fixed point is stable or unstable.

The next step is to draw the nullclines. The x-nullcline is where x′ = 0;
this is the curve y = x2 − x. The y-nullcline is where y′ = 0; this is the
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curve y = x. Note that fixed points are where the nullclines intersect. The
nullclines divide the phase plane into five separate regions. All of the vectors
within a given region point towards the same quadrant. For example, in the
region labeled (I), x′ > 0 and y′ < 0. Hence, each vector points towards the
fourth quadrant as shown. The vector field along the nullclines must be either
horizontal or vertical. Along the x-nullcline, the vectors point either up or
down, depending on the sign of y′. Along the y-nullcline, the vectors point
either to the left or to the right, depending on the sign of x′.

It is now possible to predict the behavior of the solution to (8) with some
prescribed initial condition (x0, y0). Suppose, for example, that (x0, y0) lies
in the intersection of the first quadrant with region (I). Since the vector field
points towards the fourth quadrant, the solution initially flows with x(t) in-
creasing and y(t) decreasing. There are now three possibilities. The solution
must either; (A) enter region II, (B) enter region V, or (C) remain in region
I for all t > 0. It is not hard to see that in cases A or B, the solution must
remain in region II or V, respectively. In each of these three cases, the solution
must then approach the fixed point at (2, 2) as t → ∞.

We note that (0, 0) is an unstable fixed point and (2, 2) is stable. This
is not hard to see by considering initial data close to these fixed points. For
example, every solution that begins in region V must remain in region V and
approach the fixed point at (2, 2) as t → ∞. Since one can choose points in
region V that are arbitrarily close to (0, 0), it follows that the origin must be
unstable.

A more systematic way to determine the stability of the fixed points is
to use the method of linearization. This method also allows us to understand
the nature of solutions near the fixed point. Here we briefly describe how this
important method works; this topic is discussed in more detail in any book
on differential equations.

The basic idea of linearization is to replace the nonlinear system (7) by
the linear one that best approximates the system near a given fixed point.
One can then solve the linear system explicitly to determine the stability of
the fixed point. If (x0, y0) is a fixed point of (7), then this linear system is:

x′ =
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)

y′ =
∂g

∂x
(x0, y0)(x − x0) +

∂g

∂y
(x0, y0)(y − y0). (9)

Note that the right hand side of (9) represents the linear terms in the Taylor
series of f(x, y) and g(x, y) about the fixed point. The stability of the fixed
point is determined by the eigenvalues of the Jacobian matrix given by the
partial derivatives of f and g with respect to x and y. If both eigenvalues have
negative real part, then the fixed point is stable, while if at least one of the
eigenvalues has positive real part, then the fixed point must be unstable.

By computing eigenvalues one easily shows that in the example given by
(8), (0, 0) is unstable and (2, 2) is stable.
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3.3 Oscillations

We say that a solution (x(t), y(t)) is periodic if (x(0), y(0)) = (x(T ), y(T )) for
some T > 0. A periodic solution corresponds to a closed curve or limit cycle in
the phase plane. Periodic solutions can be either stable or unstable. Roughly
speaking, a periodic solution is stable if solutions that begin close to the limit
cycle remain close to the limit cycle for all t > 0. We do not give a precise
definition here.

It is usually much more difficult to locate periodic solutions than it is
to locate fixed points. Note that every ordinary differential equation can be
written in the form x′ = f(x), x ∈ Rn for some n ≥ 1. A fixed point x0

satisfies the equation f(x0) = 0 and this last equation can usually be solved
with straightforward numerical methods. We also note that a fixed point is
a local object – it is simply one point in phase space. Oscillations or limit
cycles are global objects; they correspond to an entire curve in phase space
that retraces itself. This curve may be quite complicated.

One method for demonstrating the existence of a limit cycle for a two
dimensional flow is the Poincare-Bendixson theorem [36]. This theorem does
not apply for higher dimensional flows, so we shall not discuss it further.
Three more general methods for locating limit cycles are the Hopf bifurcation
theorem, global bifurcation theory and singular perturbation theory. These
methods are discussed in the following sections.

3.4 Local Bifurcations

Recall that bifurcation theory is concerned with differential equations that
depend on a parameter. We saw that one dimensional flows can exhibit saddle-
node, transcritical and pitchfork bifurcations. These are all examples of local
bifurcations; they describe how the structure of the flow changes near a fixed
point as the bifurcation parameter changes. Each of these local bifurcations
can arise in higher dimensional flows. In fact, there is only one major new
type of bifurcation in dimensions greater than one. This is the so-called Hopf
bifurcation. We begin this section by giving a necessary condition for the
existence of a local bifurcation point. We then describe the Hopf bifurcation.

We consider systems of the form

x′ = f(x, y, λ)
y′ = g(x, y, λ). (10)

It will be convenient to write this system using vector notation. Let

u = (x, y)T and F (u, λ) = (f(x, y, λ), g(x, y, λ))T .

Then (10) becomes

u′ = F (u, λ). (11)
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We note that nothing described here depends on (10) being a two dimensional
system. The following characterization of a local bifurcation point holds in
arbitrary dimensions.

Suppose that u0 is a fixed point of (10) for some value, say λ0, of the
bifurcation parameter. This simply means that F (u0, λ0) = 0. We will need to
consider the Jacobian matrix J of F at u0. We say that u0 is a hyperbolic fixed
point if J does not have any eigenvalues on the imaginary axis. An important
result is that if u0 is hyperbolic, then (u0, λ0) cannot be a bifurcation point.
That is, a necessary condition for (u0, λ0) to be a bifurcation point is that
the Jacobian matrix has purely imaginary eigenvalues. Of course, the converse
statement may not be true.

We now describe the Hopf bifurcation using an example. Consider the
system

x′ = 3x − x3 − y

y′ = x − λ. (12)

Note that there is only one fixed point for each value of the bifurcation pa-
rameter λ. This fixed point is at (x, y) = (λ, 3λ − λ3). It lies along the left
or right branch of the cubic x-nullcline if |λ| > 1 and lies along the middle
branch of this cubic if |λ| < 1.

We linearize (12) about the fixed point and compute the corresponding
eigenvalues to find that the fixed point is stable for |λ| > 1 and unstable for
|λ| < 1. When |λ| = 1, the fixed points are at the local maximum and local
minimum of the cubic; in this case, the eigenvalues are ±i. In particular, the
fixed points are not hyperbolic and a bifurcation is possible when λ = ±1.

As λ increases past −1, the fixed point loses its stability. The eigenvalues
are complex, so trajectories spiral towards the fixed point for λ < −1 and
trajectories spiral away from the fixed point for λ > −1. (Here we are assuming
that |λ + 1| is not too large.) One can show (using a computer) that these
unstable trajectories must approach a stable limit cycle. The amplitude of the
limit cycle approaches zero as λ → −1.

This is an example of a Hopf bifurcation. As the bifurcation parameter
varies, a fixed point loses its stability as its corresponding eigenvalues cross
the imaginary axis. The Hopf Bifurcation Theorem gives precise conditions
for when this guarantees the existence of a branch of periodic orbits.

Note that (12) exhibits two Hopf bifurcations. The first is the one we have
just discussed. It takes place when λ = −1 and the fixed point (x0, y0) =
(−1,−2) is at the local minimum of the cubic x-nullcline. The second Hopf
bifurcation takes place when λ = +1 and the fixed point (x0, y0) = (1, 2) is
at the local maximum of the cubic x-nullcline. Figure 6 shows a bifurcation
diagram corresponding to (12). Here we plot the maximum value of the x-
variable along a solution as a function of the bifurcation parameter λ. The
line x = λ corresponds to fixed points. This is drawn as a bold, solid line for
|λ| > 1 since these points correspond to stable fixed points, and as a dashed
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Fig. 6. The bifurcation diagram for (12). There are two Hopf bifurcation points.

line for |λ| < 1 since these points correspond to unstable fixed points. There
is a curve corresponding to limit cycles that connects the bifurcation points
at (λ, x) = (−1,−1) and (1, 1).

A Hopf bifurcation may be subcritical or supercritical. In the supercritical
case, the limit cycles are stable and they exist for the same parameter values
as the unstable fixed points (near the bifurcation point). In the subcritical
case, the limit cycles are unstable and exist for those same parameter values
as the stable fixed points.

3.5 Global Bifurcations

Hopf bifurcations are local phenomena; they describe the creation of limit
cycles near a fixed point. As the bifurcation parameter approaches some crit-
ical value, the limit cycle approaches the fixed point and the amplitude of
the limit cycle approaches zero. There are also global mechanisms by which
oscillations can be created or destroyed. It is possible, for example, that the
amplitude of oscillations remain bounded away from zero, but the frequency
of oscillations approaches zero. This will be referred to as a homoclinic bifur-
cation (for reasons described below). It is also possible for two limit cycles,
one stable and the other unstable, to approach and annihilate each other at
some critical parameter value. This is referred to as a saddle-node bifurcation
of limit cycles and resembles the saddle-node bifurcation of fixed points in
which two fixed points come together and annihilate each other.

Fig. 7 illustrates a homoclinic bifurcation. For all values of the bifurcation
parameter λ there are three fixed points; these are labeled as l, m, and u, and
they are stable, a saddle and unstable, respectively. When λ = λ0 (shown in
the middle panel), there is a homoclinic orbit labeled as γh(t). This orbit lies
in both the stable and unstable manifolds of the fixed point m. If γ < γ0
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Fig. 7. A homoclinic bifurcation.

(shown in the left panel) then there is no periodic orbit, while if γ > γ0, then
there is a stable limit cycle, labeled as p(t). Note that if γ < γ0, then the
stable manifold of m lies inside of the unstable manifold, while the opposite
holds if γ > γ0.

Note that solutions move very slowly as they pass near an unstable fixed
point. It follows that the period of the periodic solution, for λ > λ0, must
become arbitrarily large as λ approaches λ0. We also note that the nature
of the three fixed points do not change as λ is varied. Hence, there is no
local bifurcation. The homoclinic orbit is a global object, and the limit cycle
disappears via a global bifurcation.

3.6 Geometric Singular Perturbation Theory

Models for neuronal systems often involve variables that evolve on very dif-
ferent time scales. We shall see many examples of such systems in the next
chapter. The existence of different time scales naturally leads to models that
contain small parameters. Geometric singular perturbation theory provides a
powerful technique for analyzing these models. The theory gives a systematic
way to reduce systems with small parameters to lower dimensional reduced
systems that are more easily analyzed. Here we illustrate how this method
works with a simple example. The method will be used extensively in the
next chapter to study more complicated models arising from neuronal sys-
tems.

Consider a general two-dimensional system of the form

v′ = f(v, w)
w′ = εg(v, w). (13)

Here, ε > 0 is the small, singular perturbation parameter. We assume that
the v−nullcline is a cubic-shaped curve and the w−nullcline is a monotone
increasing curve that intersects the cubic at a single fixed point, denoted by
p0, that lies along the middle branch of the cubic nullcline. We also need to
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assume that v′ > 0 (< 0) below (above) the cubic v−nullcline and w′ > 0 (< 0)
below (above) the w−nullcline.

One can prove, using the Poincare-Bendixson theorem, that (13) has a
limit cycle for all ε sufficiently small. Moreover, the limit cycle approaches
a singular limit cycle as shown in Fig. 8 as ε → 0. The singular limit cycle
consists of four pieces. One of these pieces lies along the left branch of the
cubic nullcline. We shall see in the next chapter that this corresponds to the
silent phase of an action potential. Another piece of the singular solution lies
along the right branch of the cubic nullcline; this corresponds to the active
phase of the action potential. The other two pieces are horizontal curves in
the phase plane and they connect the left and right branches. The “jump-up”
to the active phase occurs at the left knee of the cubic and the “jump-down”
occurs at the right knee of the cubic.

f  = 0
g  =  0

W

V

p
0

Fig. 8. Nullclines and singular periodic orbit for an oscillatory relaxation oscillator.

We refer to (13) as a singular perturbation problem because the structure
of solutions of (13) with ε > 0 is very different than the structure of solutions
of (13) with ε = 0. If we set ε = 0, then (13) reduces to

v′ = f(v, w)
w′ = 0. (14)

Note that w is constant along every solution of (14); that is, every trajectory
is horizontal. The fixed point set is the entire cubic-shaped curve {f = 0}.
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This is very different from (13) with ε > 0 in which there is only one fixed
point and w is not constant along all other solutions.

The reduced system (14) does, however, give a good approximation of
solutions away from the cubic v−nullcline. In particular, it determines the
evolution of the jump-up and jump-down portions of the singular solution. In
order to determine the behavior of solutions near the cubic nullcline – that is,
during the silent and active phases – we introduce the slow time scale τ = εt
and then set ε = 0 in the resulting system. The leads to the system

0 = f(v, w)
ẇ = g(v, w). (15)

The first equation in (15) implies that the solution of (15) lies along the cubic
nullcline. The second equation in (15) determines the evolution of the solution
along this nullcline. Note that if we the write the left and right branches of
the cubic nullcline as v = HL(w) and v = HR(w), respectively, then we can
write the second equation in (15) as

ẇ = g(Hα(w), w) ≡ Gα(w) (16)

where α = L or R.
Note that each piece of the singular solution is determined by a single,

scalar differential equation. The silent and active phases correspond to so-
lutions of (16). This equation will be referred to as the slow equation. The
jump-up and jump-down correspond to solutions of the first equation in (14);
this is referred to as the fast equation.

The analysis described here will be used to study more complicated, higher
dimensional systems that arise in models for neuronal systems. Using the
existence of small parameters, we will construct singular periodic solutions.
Each piece of the singular solution will satisfy a reduced system of equations.
We note that the order of the slow equations will be equal to the number of
slow variables. In particular, if a given model has one variable that evolves at
a much slower time-scale than the other variables, then the order of the slow
equations will be just one. Hence, we will reduce the analysis of a complicated,
high dimensional system to a single, scalar equation.

4 Single Neurons

In this chapter we discuss models for a single neuron. We begin by quickly
reviewing the basic biology that forms the basis of the mathematical models.
We then present the Hodgkin-Huxley equations. This is certainly the most
important model in computational neuroscience. It was originally introduced
as a model for the generation of action potentials in the giant axon of a squid
and forms the basis of numerous other models of electrical activity in other
neurons. We then present a simpler, reduced model. This will be very useful
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in our analysis of networks of neuronal activity. We then review geometric
analysis of bursting oscillations.

4.1 Some Biology

The neuron is the basic information processing unit in the nervous system.
Most neurons consist of a cell body (or soma) and a number of processes that
project from the cell body; these are the dendrites and the axon. The dendrites
spread out from the cell body in a tree-like manner. They collect incoming
signals from other neurons or sensory receptors. Impulses are conducted away
from the soma along the axon. Axons may be very short, while others may
be very long (up to more than one meter). Many axons develop side branches
called axon collaterals that help bring information to several parts of the
nervous system simultaneously.

The neuron is surrounded by a cell membrane that maintains a stable
resting potential between the outside and the inside of the cell. In response
to a stimulus, the membrane potential may undergo a series of rapid changes,
called an action potential. This results in the generation of a nerve impulse.
In order to form a nerve impulse, the initial stimulus must be above some
threshold amount. Properties of the nerve impulse, including its shape and
propagation velocity, are often independent of the initial (superthreshold)
stimulus.

The resting potential is created because there is an imbalance in the con-
centrations of certain ions between the inside and the outside of the cell. The
intracellular concentrations of sodium and calcium ions are lower than in the
extracellular space, while the extracellular potassium concentration is lower
than inside the cell. In its resting state, the cell membrane is permeable to
potassium; however it is virtually impermeable to sodium and calcium. The
resting potential is about −70 mV and results, to a large extent, from the
selective permeability of the membrane and the imbalance in concentration of
potassium ions.

Following a stimulus, there is a sudden change in the permeability of the
membrane to sodium (or calcium) ions. There are channels in the membrane
selective to sodium. An action potential is generated when these channels
open and sodium ions rush into the cell interior, causing a rapid rise in the
membrane potential. After some delay, the sodium channels close and an in-
creased number of potassium channels open. Potassium ions then flow to the
outside of the cell and this brings the membrane towards the resting state.
The membrane potential actually overshoots the resting potential. There is
a recovery period in which sodium and potassium pumps move sodium and
potassium ions, respectively, out of and into the cell until the resting mem-
brane potential is achieved. During the initial phase of this recovery period,
it is impossible to generate another action potential. This is referred to as the
absolute refractory period.
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4.2 The Hodgkin-Huxley Equations

The Hodgkin-Huxley equations were published in 1952 and describe the gen-
eration of action potentials in the squid giant axon [12]. The principles un-
derlying the derivation of these equations form the basis of modeling other
cells throughout the nervous system. The Hodgkin-Huxley model consists of
four differential equations. One of these is a partial differential equation that
describes the evolution of the membrane potential. The other three equations
are ordinary differential equations that are related to properties of the ionic
channels. The Hodgkin-Huxley equations can be written as:

CM
∂v

∂t
= DM

∂2v

∂x2
− gNam

3h(v − vNa) − gKn4(v − vK) − gL(v − vL)

∂m

∂t
= (m∞(v) − m)/τm(v)

∂n

∂t
= (n∞(v) − n)/τn(v) (17)

∂h

∂t
= (h∞(v) − h)/τh(v)

Here, v(x, t) represents the membrane potential and each term in the first
equation represents a separate current. Since the cell membrane separates
charge it can be viewed as a capacitor and CM

∂v
∂t is the capacitive current. The

term DM
∂2v
∂x2 represents longitudinal current along the axon and the remaining

terms are ionic currents. The sodium current is INa ≡ gNam
3h(v − vNa).

It is modeled using Ohm’s law in which gNam3h is the conductance and
(v − vNa) is a driving potential. The maximal sodium conductance is gNa

and m3h can be thought of as the probability that a sodium channel is open.
This will be discussed in more detail shortly. The constant vNa is called the
sodium reversal potential. This is the value of the membrane potential when
the sodium concentration, which produces an inward flux of sodium through
the sodium channel, is balanced by the electrical potential gradient tending
to move sodium ions in the channel in the opposite direction. In a similar
manner, IK ≡ gKn4(v − vK) is the potassium current with gK being the
maximal potassium conductance and n4 is the probability that a potassium
channel is open. Finally, IL ≡ gL(v − vL) is usually referred to as a leak
conductance; it is due to the effects of other, less important, ions including
chloride.

Note that the gating variables m, h, and n satisfy differential equations
that depend on the membrane potential v. Hence, the probability that a
sodium or potassium channel is open or closed depends on the membrane po-
tential. The sodium channel depends on two variables, namely m and h. We
can think of the sodium channel as possessing two gates; both gates must be
open in order for sodium to flow into the cell. We will not describe the voltage
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dependent steady-state functions n∞(v), h∞(v), n∞(v) or the time constants
τm(v), τh(v), τn(v) here. A detailed description can be found in [16, 19].

What distinguishes one cell from another are the types of ionic currents
responsible for the action potential and what factors determine whether the
channels corresponding to these ions are open or closed. In what follows, we
simplify the presentation by ignoring the spatial dependence of the membrane
potential; hence, we only consider systems of ordinary differential equations.
Each cell then satisfies a system of the general form

CMv′ = −Iion(v, w1, w2, ..., wn) + I (18)
w′

i = ε[wi,∞(v) − wi]/τi(v).

Here v(t) denotes the membrane potential, Iion is the sum of v- and t-
dependent currents through the various ionic channel types and I represents
external applied current. Each variable wi(t) describes the state of channels
of a given type. Each current Ij is assumed to be ohmic and can be expressed
as Ij = ĝjσj(v, w1, ...., wn)(v − vj) where ĝj > 0, the vj are constants and
the function σj represents the fraction of j-channels that are open.

4.3 Reduced Models

The dynamics of even one single neuron can be quite complicated. Examples of
such complex behavior are given in the next subsection when we discuss burst-
ing oscillations. We are primarily interested in developing techniques to study
networks consisting of possibly a large number of coupled neurons. Clearly
the analysis of networks may be extremely challenging if each single element
exhibits complicated dynamics. For this reason, we often consider simpler,
reduced models for single neurons. The insights we gain from analyzing the
reduced models are often extremely useful in studying the behavior of more
complicated biophysical models.

An example of a reduced model are the Morris-Lecar equations [24]:

v′ = −gL(v − vL) − gKw(v − vK) − gCam∞(v)(v − vCa) + I

w′ = ε(w∞(v) − w)cosh((v + .1)/.3) (19)

The parameters and nonlinear functions in (19) are given by vL = −.1, gL =
.5, gK = 2, vK = −.7, gCa = 1, vCa = 1, ε = .1, m∞(v) = .5(1 + tanh((v −
.01)/.145)), w∞(v) = .5(1 + tanh((v + .1)/.15)).

These equations can be viewed as a simple model for a neuron in which
there are potassium and calcium currents along with the leak current. There
is also an applied current represented by the constant I. Here, v represents
the membrane potential, rescaled between −1 and 1, and w is activation of
the potassium current. Note that the activation of the calcium current is
instantaneous. The small, positive parameter ε is introduced to emphasize
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that w evolves on a slow time scale. We treat ε as a singular perturbation
parameter in the analysis.

Note that this simple model has no spatial dependence; that is, we are
viewing the neuron as a single point. This will certainly simplify our anal-
ysis of time-dependent oscillatory behavior. In Section 4.5, we add spatial
dependence to the model and consider the generation of propagating wave
activity.

If I = 0, then every solution approaches a stable fixed point. This cor-
responds to a neuron in its resting state. However, if I = .4, then solutions
of (19) quickly approach a stable limit cycle. The periodic solution alternates
between an active phase and a silent phase of near resting behavior. Moreover,
there are sharp transitions between the silent and active phases.

These solutions can be easily analyzed using the phase space methods
described in Section 3.6. The v-nullcline is a cubic-shaped curve, while the
w-nullcline is a monotone increasing function that intersects the v-nullcline at
precisely one point; hence, there exists precisely one fixed point of (19), de-
noted by p0. If I = 0, then p0 lies along the left branch of the cubic v-nullcline
and one can easily show that p0 is asymptotically stable. If, on the other hand,
I = .4, then p0 lies along the middle branch of the cubic nullcline and p0 is
unstable. There must then exist a stable limit cycle for all ε sufficiently small;
moreover, the limit cycle approaches a singular limit cycle as shown in Fig. 8
as ε → 0.

The phase plane analysis does not depend on the precise details of the non-
linear functions and other parameters in (19). We will consider more general
two dimensional systems of the form

v′ = f(v, w) + I

w′ = εg(v, w) (20)

where the v-nullcline and the w-nullcline satisfy the assumptions described in
Section 3.6.

We note that, with some assumptions, one can systematically reduce a
four dimensional Hodgkin-Huxley-like model (without spatial dependence)
to a two dimensional Morris-Lecar-like model. One first observes that some
of the channel-state variables evolve much faster than others. In particular,
the sodium activation variable m evolves on a much faster time-scale than
the sodium inactivation variable h and the potassium activation variable n.
We therefore assume assume that m activates instantaneously; that is, we
set m = m∞(v). This reduces the Hodgkin-Huxley equations to just three
equations for v, h, and n. To reduce the equations further, we observe that
along solutions h ≈ λ(1−n) for some constant λ. Assuming this to be true, we
can eliminate the equation for h and we now have a two-dimensional system
similar to the Morris-Lecar equations.

The reduced two-dimensional models given by (19), or more generally (20),
exhibit many properties of real neurons. For example, (20) exhibits a refrac-
tory period: immediately after an action potential it is difficult to generate
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another one. This is because when the trajectory in phase space correspond-
ing to the action potential returns to the silent phase, it lies along the left
branch of the cubic nullcline with an elevated value of the recovery variable
n. Here, the trajectory is further away from the threshold, corresponding to
the middle branch.

Note also that when there is no applied current (that is, I = 0), (20)
exhibits a stable fixed point; this corresponds to the resting state of a neuron.
If I is sufficiently large, then (20) exhibits sustained oscillations. The simple
model also displays excitability. That is, a small stimulus will not generate
an action potential. In this case the solution returns quickly to rest. In order
to produce an action potential, the initial stimulus must be larger than some
threshold. Note that the threshold corresponds to the position of the middle
branch of the cubic nullcline.

Finally, we now discuss how the geometric singular perturbation approach
can be used to understand the response of a neuron to injected current. Con-
sider the system

v′ = f(v, w) + I(t)
w′ = εg(v, w) (21)

where f and g are as in (20) and I(t) represents the injected current. We
assume that when I(t) = 0 the system is excitable; that is, the v- and w-
nullclines intersect along the left branch of the cubic. This is a globally stable
fixed point and the model neuron is in its resting state. We further assume
that there exists I0 and Ton < Toff such that

I(t) = I0 if Ton < t < Toff and I(t) = 0 otherwise.

We will consider two cases: either I0 > 0, in which case the injected current
is said to be depolarizing, or I0 < 0 and the injected current is hyperpolarizing.
Fig. 9 illustrates the neuron’s response when (top) I0 = .1 and (bottom) I0 =
−.1. In the depolarizing case, the neuron fires an action potential immediately
after the injected current is turned on. The cell then returns to rest. In the
hyperpolarizing case, the neuron’s membrane potential approaches a more
negative steady state until the current is turned off, at which time the neuron
fires a single action potential. This last response is often called post-inhibitory
rebound [9].

The geometric approach is very useful in understanding these responses.
As before, we construct singular solutions in which ε is formally set equal to
zero. See Fig. 10. The singular solutions lie on the left or right branch of some
cubic-shaped nullcline during the silent and active phases. The cubics depend
on the values of I(t). We denote the cubic corresponding to I = 0 as C and
the cubic corresponding to I0 as C0. Note that if I0 > 0, then C0 lies ‘above’
C, while if I0 < 0, then C0 lies ‘below’ C. This is because of our assumption
that f < 0 (> 0) above (below) the v-nullcline.

Consider the depolarizing case I0 > 0. This is illustrated in Fig. 10 (left).
For t < Ton, the solution lies at the fixed point p0 along the left branch of C.
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Fig. 9. Response of a model neuron to applied current. Current is applied at time
t = 50 and turned off at t = 100. In the top figure, the current is depolarizing
(I0 = .1), while in the bottom figure the current is hyperpolarizing (I0 = −.1) and
the neuron exhibits post-inhibitory rebound.

When t = Ton, I(t) jumps to I0 and the cell’s cubic switches to C0. If the left
knee of C0 lies above p0 then the cell jumps up to the right branch of C0; this
corresponds to the firing of an action potential. If the w-nullcline intersects
C0 along its left branch, then the cell will approach the stable fixed point
along the left branch of C0 until the input is turned off. It is possible that
the w-nullcline intersects C0 along its middle branch. If this is the case then
the cell oscillates, continuing to fire action potentials, until t = Toff when the
input is turned off. Note that in order for the cell to fire an action potential,
the injected current must be sufficiently strong. I0 must be large enough so
that the p0 lies below the left knee of C0.

We next consider the hyperpolarizing case I0 < 0, shown in Fig. 10 (right).
Then C0 lies below C and the w-nullcline intersects C0 at a point denoted
by p1. When t = Ton, the solution jumps to the left branch of C0 and then
evolves along this branch approaching p1 for Ton < t < Toff . When t = Toff ,
I switches back to 0 and the cell now seeks the left or right branch of C. If,
at this time, the cell lies below the left knee of C, then the cell will jump up
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Fig. 10. Phase space representation of the response of a model neuron to applied
current. Current is applied at time t = Ton and turned off at t = Toff . (Left)
Depolarizing current. The cell jumps up as soon as the current is turned on. (Right)
Hyperplorizing current. The cell jumps to the left branch of C0 when the current is
turned on and jumps up to the active phase due to post-inhibitory rebound when
the current is turned off.

to the active phase giving rise to post-inhibitory rebound. In order to have
post-inhibitory rebound, the hyperpolarizing input must be sufficiently large
and last sufficiently long. I0 must be sufficiently negative so that p1 lies below
the left knee of C. Moreover, Toff −Ton must be sufficiently large so that the
cell has enough time to evolve along the left branch of C0 so that it lies below
the left knee of C when the input is turned off.

4.4 Bursting Oscillations

Certain neurons and other excitable cells exhibit bursting oscillations; this
behavior is characterized by a silent phase of near steady state resting behavior
alternating with an active phase of rapid, spike-like oscillations, as shown in
Fig. 11. Examples of biological systems which display bursting oscillations
include the Aplysia R-15 neuron, insulin secreting pancreatic beta cells, and
neurons in the hippocampus, cortex and thalamus. For references, see [46], for
example.

Fig. 11 shows three types of bursting oscillations. Fig. 11 (top) displays
an example of square-wave bursting. This is characterized by abrupt peri-
odic switching between the quiescent, or silent, phase and the active phase of
repetitive firing. Note that the frequency of spikes decreases at the end of the
active phase. Fig. 11 (middle) illustrates elliptic bursting. Small amplitude os-
cillations occur during the silent phase and the amplitude of spikes gradually
waxes and wanes. Finally, Fig. 11 (bottom) displays parabolic bursting. The
spike rate first increases and then decreases in a parabolic manner.
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Fig. 11. Classes of bursting oscillations. (Top) Square-wave bursting. (Middle) El-
liptic bursting. (Bottom) Parabolic bursting.

The mathematical mechanisms responsible for each class of bursting os-
cillation are described in terms of geometric properties of the corresponding
phase space dynamics. Here we describe the mathematical mechanisms re-
sponsible for square-wave bursting. We only consider the simplest, lowest di-
mensional, models which generate square-wave bursting. Geometric analysis
of other bursting types can be found in [27].

Consider a three-dimensional version of (13) of the form

v′ = f(v, w, y)
w′ = g(v, w, y) (22)
y′ = εh(v, w, y, λ)

Here, ε > 0 is a small, singular perturbation parameter and λ is some other
fixed parameter. If we set ε = 0, then y is constant along solutions and we
can think of y as a bifurcation parameter in the fast system (FS) consisting
of the first two equations in (22). The primary assumptions on (22) concern
the bifurcation structure of the fast subsystem. This structure appears in
Fig. 12, which also shows the projection of the square-wave bursting solution
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Fig. 12. Bifurcation structure for square-wave bursting. The bold curve is the pro-
jection of a square-wave bursting solution.

onto the corresponding bifurcation diagram. The set of fixed points of (FS) is
assumed to be a Z-shaped curve in the (v, w, y) phase space. We denote this
curve by S; only a portion of this Z-shaped curve is shown in Fig. 12. The
fixed points along the lower branch of S are stable solutions of (FS), while
the fixed points on the middle branch of S are saddles. Fixed points along
the upper branch of S may be stable or unstable. We also assume that there
exists a one-parameter family of periodic solutions of (FS), denoted by P .
These limit cycles originate at a Hopf bifurcation along the upper branch of S
and terminate along a solution of (FS) that is homoclinic to one of the fixed
points on the middle branch of S.

Assumptions are also needed about the slow dynamics. We assume that
the y-nullsurface {h = 0} defines a two-dimensional manifold that intersects
S at a single point. This point lies on the middle branch of S between the
homoclinic point and the right knee of S. Finally, h > 0 above {h = 0} and
h < 0 below {h = 0}.

We now give a heuristic explanation for why this system generates a
square-wave bursting solution. Suppose that ε > 0 is small and consider a
solution that begins close to the lower branch. Because this branch consists of
stable fixed points of (FS), the trajectory quickly approaches a small neigh-
borhood of the lower branch. The trajectory tracks rightward along the lower
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branch according to the slow dynamics, until it passes the right knee. This
portion of the solution corresponds to the silent phase. Once past the right
knee, the trajectory is attracted to near P , the branch of periodic solutions of
(FS). This generates the fast repetitive spikes of the bursting solutions. The
trajectory passes near P , with decreasing y, until it reaches a neighborhood
of the homoclinic orbit of (FS). Once it passes the homoclinic orbit, the fast
dynamics eventually forces the trajectory back to near the lower branch of S
and this completes one cycle of the bursting solution.

This description is formal. It is not at all clear that if the system (22)
satisfies the above assumptions, then, for all ε sufficiently small, there exists a
unique periodic solution corresponding to a bursting oscillation. In fact, it is
shown in [38] that such a result cannot be true, in general. However, in [22],
it is proved that the bursting solution will be uniquely determined for all ε
sufficiently small, except for those ε that lie in a certain very small set.

Remark 4.1 A crucial ingredient for square-wave bursting is bistability. This
allows for a hysteresis loop between a lower branch of stable fixed points and
an upper branch of stable limit cycles. It is also very important that the slow
nullsurface {h = 0} lies between these two branches. If this last condition
is not satisfied, then the system may exhibit other types of solutions. For
example, suppose that {h = 0} intersects the lower branch of S. This point of
intersection will then be a globally stable fixed point of (22). If, on the other
hand, {h = 0} intersects S along its middle branch above the homoclinic
point, then (22) may give rise to a stable limit cycle which always remains
in the active phase near P . This type of solution is referred to as continuous
spiking. Rigorous results concerning the existence of continuous spiking are
presented in [39].

Remark 4.2 Square-wave bursting arises in models for electrical activity in
pancreatic β-cells. It is believed that this activity plays an important role in
the release of insulin from the cells. The first mathematical model for this
bursting was due to Chay and Keizer [5]. There have been numerous related
models, based on experimental data, since then. A review of these models,
along with a detailed description of the more biological issues, is given in [32].
Square wave bursting also arises in recent models for respiratory CPG neurons
[3] and models for pattern generation based on synaptic depression [37].

Remark 4.3 Very complicated (global) bifurcations can take place as the
parameters ε or λ are varied in (22). The singular perturbation parameter
ε controls the rate at which a bursting trajectory passes through the silent
and active phases. In particular, the number of spikes per burst is O(1/ε) and
becomes unbounded as ε → 0. It is demonstrated in [38] that Smale horseshoe
chaotic dynamics can arise during the transition of adding a spike.

Perhaps even more interesting is the bifurcation structure of (22) as λ
is varied. In the β-cell models, λ is related to the glucose concentration. As
the glucose level gradually increases, the cells exhibit resting behavior, then



An Introduction to Dynamical Systems and Neuronal Dynamics 47

bursting oscillations, and then continuous spiking. This is consistent with
behavior exhibited by the model. As λ increases, the y-nullsurface {h = 0}
intersects the lower branch of S, then the middle branch of S below the
homoclinic point, and then the middle branch of S above the homoclinic point.
Numerical studies [6] and rigorous analysis [39] have shown that as λ varies
between the bursting and continuous spiking regimes, the bifurcation structure
of solutions must be very complicated. A Poincaré return map defined by the
flow from a section transverse to the homoclinic orbit of (FS) will exhibit
Smale-horseshoe dynamics for a robust range of parameter values. This leads
to solutions in which the number of spikes per burst varies considerably.

Remark 4.4 Some phenomenological, polynomial models for square-wave
bursting have been proposed. See, for example, [11], [25], [7]. Analysis of mod-
els with two slow variables which exhibit square-wave bursting is given in [33].

Remark 4.5 A system of equations which give rise to square-wave bursting
is [28]:

v′ = −(gcam∞(v)(v − vca) + gkw(v − vk) + gl(v − vl) + gkcaz(y)(v − vk))+I

w′ = 20φ(w∞(v) − w)/τ(v)

y′ = 20ε(−µgcam∞(v)(v − vca) − y)

where, gca = 4., gk = 8.0, gl = 2.0, vk = −84, vl = −60, vca = 120.0, I =
45, gkca = .25, φ = .23, ε = .005, and µ = .02. The nonlinear functions are
given by m∞(v) = .5(1. + tanh((v + 1.2)/18)), w∞(v) = .5(1. + tanh((v −
12)/17.4)), z(y) = y/(1 + y) and τ(v) = cosh((v − 12.)/34.8).

4.5 Traveling Wave Solutions

We have so far considered a model for neurons that ignores the spatial depen-
dence. This has allowed us to study how temporal oscillatory behavior arises.
One of the most important features of neurons is the propagating nerve im-
pulse and this clearly requires consideration of spatial dynamics. The nerve
impulse corresponds to a traveling wave solution and there has been extensive
research on the mathematical mechanisms responsible for both the existence
and stability of these types of solutions. Here we briefly illustrate how one
constructs a traveling wave solution in a simple model, the FitzHugh-Nagumo
equations. References related to this important topic are given later.

The FitzHugh-Nagumo equations can be written as:

vt = vxx + f(v) − w

wt = ε(v − γw). (23)

Here, (v, w) are functions of (x, t), x ∈ R and t ≥ 0. Moreover, f(v) = v(1 −
v)(v−a), 0 < a < 1/2, ε is a small singular perturbation parameter, and γ is
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a positive constant chosen so that the curves w = f(v) and v = γw intersect
only at the origin.

A traveling wave solution of (23) is a solution of the form (v(x, t), w(x, t)) =
(V (z), W (z)), z = x + ct; that is, a traveling wave solution corresponds to a
solution that propagates with constant shape and velocity. The velocity is c
as in not known a priori. We also assume that the traveling wave solution
satisfies the boundary conditions limz→±∞(V (z), W (z)) = (0, 0).

Note that a traveling wave solution corresponds to a solution of the first
order system of ordinary differential equations

V ′ = Y

Y ′ = cY − f(V ) + W

W ′ =
ε

c
(V − γW ) (24)

together with the boundary conditions

limz→±∞(V (z), Y (z), W (z)) = (0, 0, 0) (25)

Hence, a traveling wave solution corresponds to a homoclinic orbit of a first
order system. This homoclinic orbit will exist only for special values of the
velocity parameter c.

One can use geometric singular perturbation methods, as described in
Section 3.6, to construct a singular homoclinic orbit in which ε is formally set
equal to zero. One needs to then rigorously prove that this singular solution
perturbs to an actual homoclinic orbit that lies near the singular orbit for ε
sufficiently small.

The singular orbit is constructed as follows. As before, the singular orbit
consists of four pieces, as shown in Fig. 13. Two of these pieces correspond
to the silent and active phases and the other two pieces correspond to the
jump-up and jump-down between these phases. As before, we consider both
fast and slow time scales.

The jump-up and jump-down pieces correspond to solutions of the fast
equations. These are obtained by simply setting ε = 0 in (24). The resulting
equations are:

V ′ = Y

Y ′ = cY − f(V ) + W

W ′ = 0 (26)

Note that W must be constant along this solution. For the jump-up (or front),
we set W ≡ 0 and look for a solution of the first two equations of (24) that
satisfy

limz→−∞(V, Y ) = (0, 0) and limz→+∞(V, Y ) = (1, 0) (27)
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Fig. 13. The singular homoclinic orbit corresponding to a traveling wave solution.

It is well known that there exists a unique solution for a unique value of the
parameter c. We denote this parameter as c0. This is the velocity of the wave
in the limit ε → 0.

For the jump-down (or back) we set W ≡ W0, where W0 is chosen so that
if c = c0 then there exists a solution of the first two equations in (26) such
that limz→−∞(V, Y, W0) lies along the right branch of the cubic W = f(V )
and limz→+∞(V, Y, W0) lies along the left branch of this cubic. This is shown
in Fig. 13. We note that W0 is indeed uniquely determined.

We now consider the pieces of the singular traveling wave solution corre-
sponding to the silent and active phases. We introduce the slow time scale
η = εz and then set ε = 0 to obtain the slow equations

Y = 0
W = f(V )

Ẇ =
1
c0

(V − γW ) (28)

Here Ẇ corresponds to differentiation with respect to η. These equations
demonstrate that during the silent and active phases, the singular solution lies
along the cubic curve defined by W = f(V ), Y = 0. The complete singular
homoclinic orbit is shown in Fig. 13.

Remark 4.6 References to rigorous studies of the existence and stability of
traveling wave solutions can be found in [17].
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5 Two Mutually Coupled Cells

5.1 Introduction

In this section, we consider a network consisting simply of two mutually cou-
pled cells. By considering such a simple system, we are able to describe how
we model networks of oscillators, the types of behavior that can arise in such
systems and the mathematical techniques we use for the analysis of the be-
havior. For this discussion, we assume that each cell, without any coupling, is
modeled as the relaxation oscillator

v′ = f(v, w)

w′ = εg(v, w)
(29)

Here ε is assumed to be small; that is, w represents a slowly evolving quantity.
As in Section 3, we assume that the v-nullcline, f(v, w) = 0, defines a cubic-
shaped curve and the w-nullcline, g = 0, is a monotone increasing curve which
intersects f = 0 at a unique point p0. We also assume that f > 0 (f < 0)
below (above) the v-nullcline and g > 0 (< 0) below (above) the w-nullcline.

System (29) can be viewed as a simple model for a bursting neuron in
which the active phase corresponds to the envelope of a burst’s rapid spikes.
Of course, a two-dimensional model for a single cell cannot exhibit the more
exotic dynamics described in the previous section for a bursting cell. However,
by considering a simple relaxation-type oscillator for each cell, we will be able
to discuss how network properties contribute to the emergent behavior of a
population of cells. It is, of course, a very interesting issue to understand how
this population behavior changes when one considers more detailed models
for each cell. Some results for more detailed models are given in [30].

In the next section, we describe how we model the two mutually coupled
cells. The form of coupling used is referred to as synaptic coupling and is
meant to correspond to a simple model for chemical synapses. There are many
different forms of synaptic coupling. For example, it may be excitatory or
inhibitory and it may exhibit either fast or slow dynamics. We are particularly
interested in how the nature of the synaptic coupling affects the emergent
population rhythm. A natural question is whether excitatory or inhibitory
coupling leads to either synchronous or desynchronous rhythms. There are four
possible combinations and all four may, in fact, be stably realized, depending
on the details of the intrinsic and synaptic properties of the cells. Here we
discuss conditions for when excitatory coupling leads to synchronous rhythms
and inhibitory coupling leads to antiphase behavior.

5.2 Synaptic Coupling

We model a pair of mutually coupled neurons by the following system of
differential equations
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v′1 = f(v1, w1) − s2gsyn(v1 − vsyn)

w′
1 = εg(v1, w1)

v′2 = f(v2, w2) − s1gsyn(v2 − vsyn)

w′
2 = εg(v2, w2)

(30)

Here (v1, w1) and (v2, w2) correspond to the two cells. The coupling term
sjgsyn(vi − vsyn) can be viewed as an additional current which may change a
cell’s membrane potential vi. The parameter gsyn corresponds to the maximal
conductance of the synapse and is positive, while the reversal potential vsyn

determines whether the synapse is excitatory or inhibitory. If v < vsyn along
each bounded singular solution, then the synapse is excitatory, while if v >
vsyn along each bounded singular solution, then the synapse is inhibitory.

The terms si, i = 1, 2, in (30) encode how the postsynaptic conductance
depends on the presynaptic potentials vi. There are several possible choices
for the si. The simplest choice is to assume that si = H(vi − θsyn), where
H is the Heaviside step function and θsyn is a threshold above which one
cell can influence the other. Note, for example, that if v1 < θsyn, then s1 =
H(v1 − θsyn) = 0, so cell 1 has no influence on cell 2. If, on the other hand,
v1 > θsyn, then s1 = 1 and cell 2 is affected by cell 1.

Another choice for the si is to assume that they satisfy a first order equa-
tion of the form

s′i = α(1 − si)H(vi − θsyn) − βsi (31)

where α and β are positive constants and H and θsyn are as before. Note that
α and β are related to the rates at which the synapses turn on or turn off. For
fast synapses, we assume that both of these constants are O(1) with respect
to ε. For a slow synapse, we assume that α = O(1) and β = O(ε); hence, a
slow synapse activates on the fast time scale but turns off on the slow time
scale.

5.3 Geometric Approach

All of the networks in this paper are analyzed by treating ε as a small, sin-
gular perturbation parameter. As in the previous section, the first step in
the analysis is to identify the fast and slow variables. We then dissect the
full system of equations into fast and slow subsystems. The fast subsystem
is obtained by simply setting ε = 0 in the original equations. This leads to a
reduced set of equations for the fast variables with each of the slow variables
held constant. The slow subsystems are obtained by first introducing the slow
time scale τ = εt and then setting ε = 0 in the resulting equations. This leads
to a reduced system of equations for just the slow variables, after solving for
each fast variable in terms of the slow ones. The slow subsystems determine
the evolution of the slow variables while the cells are in either the active or
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the silent phase. During this time, each cell lies on either the left or the right
branch of some “cubic” nullcline determined by the total synaptic input which
the cell receives. This continues until one of the cells reaches the left or right
“knee” of its corresponding cubic. Upon reaching a knee, the cell may either
jump up from the silent to the active phase or jump down from the active
to the silent phase. The jumping up or down process is governed by the fast
equations.

For a concrete example, consider two mutually coupled cells with fast
synapses. The dependent variables (vi, wi, si), i = 1, 2, then satisfy (30) and
(31). The slow equations are

0 = f(vi, wi) − sjgsyn(vi − vsyn)

ẇi = g(vi, wi)

0 = α(1 − si)H(vi − θsyn) − βsi

(32)

where differentiation is with respect to τ and i 	= j. The first equation in
(32) states that (vi, wi) lies on a curve determined by sj . The third equation
states that if cell i is silent (vi < θsyn), then si = 0, while if cell i is active,
then si = α

α+β ≡ sA. We demonstrate that it is possible to reduce (32) to a
single equation for each of the slow variables wi. Before doing this, it will be
convenient to introduce some notation.

Let Φ(v, w, s) ≡ f(v, w) − gsyns(v − vsyn). If gsyn is not too large, then
each Cs ≡ {Φ(v, w, s) = 0} defines a cubic-shaped curve. We express the left
and right branches of Cs by {v = ΦL(w, s)} and {v = ΦR(w, s)}, respectively.
Finally, let

GL(w, s) = g(ΦL(w, s), w) and GR(w, s) = g(ΦR(w, s), w)

Now the first equation in (32) can be written as 0 = Φ(vi, wi, sj) with sj fixed.
Hence, vi = Φα(wi, sj) where α = L if cell i is silent and α = R if cell i is
active. It then follows that each slow variable wi satisfies the single equation

ẇi = Gα(wi, sj) (33)

By dissecting the full system into fast and slow subsystems, we are able to
construct singular solutions of (30),(31). In particular, this leads to sufficient
conditions for when there exists a singular synchronous solution and when this
solution is (formally) asymptotically stable. The second step in the analysis
is to rigorously prove that the formal analysis, in which ε = 0, is justified for
small ε > 0. This raises some very subtle issues in the geometric theory of
singular perturbations, some of which have not been completely addressed in
the literature. For most of the results presented here, we only consider singular
solutions.

We note that the geometric approach used here is somewhat different from
that used in many dynamical systems studies (see, for example, [28]). All of the
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networks considered here consist of many differential equations, especially for
larger networks. Traditionally, one would interpret the solution of this system
as a single trajectory evolving in a very large dimensional phase space. We
consider several trajectories, one corresponding to a single cell, moving around
in a much lower dimensional phase space (see also [43], [41], [34], [40], [30]).
After reducing the full system to a system for just the slow variables, the
dimension of the lower dimensional phase space equals the number of slow
intrinsic variables and slow synaptic variables corresponding to each cell. In
the worst case considered here, there is only one slow intrinsic variable for
each cell and one slow synaptic variable; hence, we never have to consider
phase spaces with dimension more than two. Of course, the particular phase
space we need to consider may change, depending on whether the cells are
active or silent and also depending on the synaptic input that a cell receives.

5.4 Synchrony with Excitatory Synapses

Consider two mutually coupled cells with excitatory synapses. Our goal here
is to give sufficient conditions for the existence of a synchronous solution
and its stability. Note that if the synapses are excitatory, then the curve
CA ≡ CsA lies ‘above’ C0 ≡ {f = 0} as shown in Fig. 14. This is because
for an excitatory synapse, v < vsyn along the synchronous solution. Hence,
on CA, f(v, w) = gsynsA(v − vsyn) < 0, and we are assuming that f < 0
above C0. If gsyn is not too large, then both C0 and CA will be cubic shaped.
We assume that the threshold θsyn lies between the two knees of C0. In the
statement of the following result, we denote the left knee of C0 by (vLK , wLK).

Theorem: Assume that each cell, without any coupling, is oscillatory. More-
over, assume the synapses are fast and excitatory. Then there exists a syn-
chronous periodic solution of (30), (31). This solution is asymptotically stable
if one of the following two conditions is satisfied.

(H1) ∂f
∂w < 0, ∂g

∂v > 0, and ∂g
∂w < 0 near the singular synchronous solution.

(H2) |g(vLK , wLK)| is sufficiently small.

Remark 5.1 We note that the synchronous solution cannot exist if the cells
are excitable and the other hypotheses, concerning the synapses, are satisfied.
This is because along a synchronous solution, each (vi, wi) lies on the left
branch of C0 during the silent phase. If the cells are excitable, then each
(vi, wi) will approach the point where the w-nullcline {g = 0} intersects the
left branch of C0. The cells, therefore, will not be able to jump up to the
active phase.

Remark 5.2 The assumptions concerning the partial derivatives of f and g
in (H1) are not very restrictive since we are already assuming that f > 0 (< 0)
below (above) the v-nullcline and g > 0 (< 0) below (above) the w-nullcline.
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Remark 5.3 A useful way to interpret (H2) is that the silent phases of the
cells are much longer than their active phases. This is because g(vLK , wLK)
gives the rate at which the slow variables wi evolve near the end of the silent
phase. Note that g(vLK , wLK) will be small if the left knee of C0 is very close
to the w-nullcline.

Proof: We first consider the existence of the synchronous solution. This is
straightforward because along a synchronous solution (v1, w1, s1) = (v2, w2,
s2) ≡ (v, w, s) satisfy the reduced system

v′ = f(v, w) − sgsyn(v − vsyn)

w′ = εg(v, w)

s′ = α(1 − s)H(v − θsyn) − βs

The singular solution consists of four pieces. During the silent phase, s = 0
and (v, w) lies on the left branch of C0. During the active phase s = sA and
(v, w) lies on the right branch of CA. The jumps between these two phases
occur at the left and right knees of the corresponding cubics.

We next consider the stability of the synchronous solution to small per-
turbations. We begin with both cells close to each other in the silent phase
on the left branch of C0, with cell 1 at the left knee ready to jump up. We
follow the cells around in phase space by constructing the singular solution
until one of the cells returns to the left knee of C0. As before, the singular
solution consists of four pieces. We need to show that the cells are closer to
each other after this complete cycle than they were initially.

The first piece of the singular solution begins when cell 1 jumps up. When
v1(t) crosses θsyn, s1(t) → sA. This raises the cubic corresponding to cell
2 from C0 to CA. If |w1(0) − w2(0)| is sufficiently small, corresponding to a
sufficiently small perturbation, then cell 2 lies below the left knee of CA. The
fast equations then force cell 2 to also jump up to the active phase, as shown
in Fig. 14. Note that this piece takes place on the fast time scale. Hence, on
the slow time scale, both cells jump up at precisely the same time.

During the second piece of the singular solution, both oscillators lie in the
active phase on the right branch of CA. Note that the ordering in which the
oscillators track along the left and right branches has been reversed. While in
the silent phase, cell 1 was ahead of cell 2. In the active phase, cell 2 leads the
way. The oscillators remain on the right branch of CA until cell 2 reaches the
right knee.

The oscillators then jump down to the silent phase. Cell 2 is the first to
jump down. When v2(t) crosses θsyn, s2 switches from sA to 0 on the fast time
scale. This lowers the cubic corresponding to cell 1 from CA to C0. If, at this
time, cell 1 lies above the right knee of CA, then cell 1 must jump down to
the silent phase. This will certainly be the case if the cells are initially close
enough to each other.
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Fig. 14. Nullclines for an oscillatory relaxation oscillator with (CA) and without
(C0) excitatory coupling. Note that cell 2 responds to cell 1 through Fast Threshold
Modulation.

During the final piece of the singular solution, both oscillators move down
the left branch of C0 until cell 1 reaches the left knee. This completes one full
cycle.

To prove that the synchronous solution is stable, we must show that the
cells are closer to each other after this cycle; that is, there is compression in the
distance between the cells. There are actually several ways to demonstrate this
compression; these correspond to two different ways to define what is meant by
the ‘distance’ between the cells. Here we consider a Euclidean metric, which is
defined as follows: Suppose that both cells lie on the same branch of the same
cubic and the coordinates of cell i are (vi, wi). Then the distance between
the cells is defined as simply |w1 − w2|. Note that during the jump up and
the jump down, this metric remains invariant. This is because the jumps are
horizontal so the values of wi do not change. If there is compression, therefore,
it must take place as the cells evolve in the silent and active phases. We now
show that this is indeed the case if (H1) is satisfied.

Suppose that when τ = 0, both cells lie in the silent phase on C0. We
assume, for convenience, that w2(0) > w1(0). We need to prove that w2(τ) −
w1(τ) decreases as long as the cells remain in the silent phase. Now each wi

satisfies (33) with α = L and sj = 0. Hence,
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wi(τ) = wi(0) +
∫ τ

0

GL(wi(ξ), 0)dξ

and, using the Mean Value Theorem,

w2(τ) − w1(τ) = w2(0) − w1(0)

+
∫ τ

0

GL(w2(ξ), 0) − GL(w1(ξ), 0) dξ

= w2(0) − w1(0) (34)

+
∫ τ

0

∂GL

∂w
(w∗, 0)(w2(ξ) − w1(ξ))dξ

for some w∗. Now GL(w, s) = g(ΦL(w), w). Hence, ∂GL

∂w = gvΦ
′
L(w) + gw.

We assume in (H1) that gv > 0 and gw < 0 near the synchronous solution.
Moreover, Φ′

L(w) < 0 because v = ΦL(w) defines the left branch of the cubic
C0 which has negative slope. It follows that ∂GL

∂w < 0, and therefore, from
(34), w2(τ) − w1(τ) < w2(0) − w1(0). This gives the desired compression; a
similar computation applies in the active phase. We note that if there exists
γ > 0 such that ∂GL

∂w < −γ along the left branch, then Gronwall’s inequality
shows that w2(τ) − w1(τ) decreases at an exponential rate.

We next consider (H2) and demonstrate why this leads to compression
of trajectories. Suppose, for the moment, that g(vLK , wLK) = 0; that is, the
left knee of C0 touches the w-nullcline at some fixed point. Then both cells
will approach this fixed point as they evolve along the left branch of C0 in
the silent phase. There will then be an infinite amount of compression, since
both cells approach the same fixed point. It follows that we can assume that
the compression is as large as we please by making g(vLK , wLK) sufficiently
small. If the compression is sufficiently large, then it will easily dominate any
possible expansion over the remainder of the cells’ trajectories. This will, in
turn, lead to stability of the synchronous solution.

Remark 5.4 The mechanism by which one cell fires, and thereby raises the
cubic of the other cell such that it also fires, was referred to as Fast Threshold
Modulation (FTM) in [34]. There, a time metric was introduced to establish
the compression of trajectories of excitatorily coupled cells, which implies the
stability of the synchronous solution. A detailed discussion of the time metric
can be found in [20]; see also [23].

Remark 5.5 While the synchronous solution has been shown to be stable,
it need not be globally stable. In [21], it is shown that this network may
exhibit stable antiphase solutions if certain assumptions on the parameters
and nonlinear functions are satisfied.

We have so far considered a completely homogeneous network with just
two cells. The analysis generalizes to larger inhomogeneous networks in a
straightforward manner, if the degree of heterogeneity between the cells is not
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too large. The major difference in the analysis is that, with heterogeneity, the
cells may lie on different branches of different cubics during the silent and ac-
tive phases. The resulting solution cannot be perfectly synchronous; however,
as demonstrated in [43], one can often expect synchrony in the jump-up, but
not in the jump-down. Related work on heterogeneous networks include [35],
[26], [4].

One may also consider, for example, an arbitrarily large network of iden-
tical oscillators with nearest neighbor coupling. We do not assume that the
strength of coupling is homogeneous. Suppose that we begin the network with
each cell in the silent phase. If the cells are identical, then they must all lie on
the left branch of C0. Now if one cell jumps up it will excite its neighbors and
raise their corresponding cubics. If the cells begin sufficiently close to each
other, then these neighbors will jump up due to FTM. In a similar manner,
the neighbor’s neighbors will also jump due to FTM and so on until every cell
jumps up. In this way, every cell jumps up at the same (slow) time. While
in the active phase, the cells may receive different input and, therefore, lie
on the right branches of different cubics. Once one of the cells jumps down,
there is no guarantee that other cells will also jump down at this (slow) time,
because the cells to which it is coupled may still receive input from other ac-
tive cells. Hence, one cannot expect synchrony in the jumping down process.
Eventually every cell must jump down. Note that there may be considerable
expansion in the distance between the cells in the jumping down process. If
|g(vLK , wLK)| is sufficiently small, however, as in the previous result, then
there will be enough compression in the silent phase so that the cells will still
jump up together. Here we assumed that the cells are identical; however, the
analysis easily follows if the heterogeneities among the cells are not too large.
A detailed analysis of this network is given in [43].

5.5 Desynchrony with Inhibitory Synapses

We now consider two mutually coupled cells with inhibitory synapses. Under
this coupling, the curve CA now lies below C0. As before, we assume that
gsyn is not too large, such that both C0 and CA are cubic shaped. We also
assume that the right knee of CA lies above the left knee of C0 as shown in
Fig. 15. Some assumptions on the threshold θsyn are also required. For now,
we assume that θsyn lies between the left knee of C0 and right knee of CA.

We will assume throughout this section that the synapses are fast and
inhibitory. The main results state that if a synchronous solution exists then
it must be unstable. The network will typically exhibit either out-of-phase
oscillations or a completely quiescent state and we give sufficient conditions
for when either of these arises. We note that the network may exhibit bistabil-
ity; both the out-of-phase and completely quiescent solutions may exist and
be stable for the same parameter values. These results are all for singular
solutions. Some rigorous results for ε > 0 are given in [41].
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The first result concerns the existence and stability of the synchronous
solution.

Theorem: Assume that the synapses are fast and inhibitory. If each cell,
without any coupling, is oscillatory and θsyn is sufficiently large, then there
exists a singular synchronous solution. This solution is unstable. If each cell,
without any coupling, is excitable, then there does not exist a singular syn-
chronous solution.

Proof: The existence of a singular synchronous solution for oscillatory cells
follows precisely as in the previous section. During the silent phase, the tra-
jectory lies on the left branch of C0, while in the active phase it lies on the
right branch of CA. Note that we require that the right knee of CA lies above
the left knee of C0. Moreover, when the synchronous solution jumps up and
crosses the threshold v = θsyn, it should lie to the right of the middle branch
of CA; otherwise, it would fall down to the silent phase. This is why we assume
that θsyn is sufficiently large.

This solution is unstable for the following reason. Suppose both cells are
initially very close to each other on C0. The cells then evolve on C0 until one
of the cells, say cell 1, reaches the left knee of C0. Cell 1 then jumps up to
the active phase. When v1 crosses the threshold θsyn, s1 switches from 0 to
sA and cell 2 jumps from C0 to CA, as shown in Fig. 15. This demonstrates
that the cells are uniformly separated for arbitrarily close initial data. The
synchronous solution must, therefore, be unstable.

The synchronous solution cannot exist if the cells are excitable for precisely
the same reason discussed in the previous section. If such a solution did exist
then each cell would lie on C0 during its silent phase. Each cell would then
approach the stable fixed point on this branch and would never be able to
jump up to the active phase.

We next consider out-of-phase oscillatory behavior. One interesting feature
of mutually coupled networks is that such oscillations can arise even if each
cell is excitable for fixed levels of synaptic input. The following theorem gives
sufficient conditions for when this occurs. We will require that the active phase
of the oscillation is sufficiently long. To give precise conditions, we introduce
the following notation.

Assume that the left and right knees of C0 are at (vLK , wLK) and
(vRK , wRK), respectively. If the w-nullcline intersects the left branch of CA,
then we denote this point by (vA, wA) = pA. We assume that wA < wLK . Let
τL be the (slow) time it takes for the solution of (33) with α = L and s = sA

to go from w = wRK to w = wLK , and let τR be the time it takes for the
solution of (33) with α = R and s = 0 to go from w = wLK to w = wRK .
Note that τL is related to the time a solution spends in the silent phase, while
τR is related to the time a solution spends in the active phase.

Theorem: Assume that the cells are excitable for each fixed level of synaptic
input and the synapses are fast, direct, and inhibitory. Moreover, assume
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Fig. 15. Instability induced by mutual inhibition. Cell 2 jumps to CA when cell 1
fires.

that wA < wLK and τL < τR. Then the network exhibits stable out-of-phase
oscillatory behavior.

Remark 5.6 We do not claim that the out-of-phase solution is uniquely de-
termined or that it corresponds to antiphase behavior. These results may hold;
however, their proofs require more analysis than that given here.

Remark 5.7 The rest state with each cell at the fixed point on C0 also exists
and is stable. Hence, if the hypotheses of the last Theorem are satisfied, then
the network exhibits bistability.

Proof: Suppose that we begin with cell 1 at the right knee of C0 and cell 2
on the left branch of CA with wA < w2(0) < wLK . Then cell 1 jumps down
and, when v1 crosses the threshold θsyn, cell 2’s cubic switches from CA to
C0. Since w2(0) < wLK , cell 2 lies below the left knee of C0, so it must jump
up to the active phase. After these jumps, cell 1 lies on the left branch of CA,
while cell 2 lies on the right branch of C0.

Cell 2 then moves up the right branch of C0 while cell 1 moves down
the left branch of CA, approaching pA. This continues until cell 2 reaches
the right knee of C0 and jumps down. We claim that at this time, cell 1 lies
below the left knee of C0, so it must jump up. We can then keep repeating
this argument to obtain the sustained out-of-phase oscillations. The reason
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why cell 1 lies below the left knee of C0 when cell 2 jumps down is because
it spends a sufficiently long amount of time in the silent phase. To estimate
this time, note that because cell 2 was initially below the left knee of C0, the
time it spends in the active phase before jumping down is greater than τR.
Hence, the time cell 1 spends in the silent phase from the time it jumps down
is greater than τR > τL. From the definitions, since cell 1 was initially at the
right knee of C0, it follows that cell 1 must be below the left knee of C0 when
cell 2 jumps down, which is what we wished to show.

Remark 5.8 Wang and Rinzel [45] distinguish between “escape” and “re-
lease” in producing out-of-phase oscillations. In the proof of the preceding
theorem, the silent cell can only jump up to the active phase once the active
cell jumps down and releases the silent cell from inhibition. This is referred
to as the release mechanism and is often referred to as post inhibitory rebound
[9]. To describe the escape mechanism, suppose that each cell is oscillatory
for fixed levels of synaptic input. Moreover, one cell is active and the other
is inactive. The inactive cell will then be able to escape the silent phase from
the left knee of its cubic, despite the inhibition it receives from the active cell.
Note that when the silent cell jumps up, it inhibits the active cell. This lowers
the cubic of the active cell, so it may be forced to jump down before reaching
a right knee.

Remark 5.9 We have presented rigorous results that demonstrate that ex-
citation can lead to synchrony and inhibition can lead to desynchrony. These
results depended on certain assumptions, however. We assumed, for example,
that the synapses turned on and off on a fast time scale; moreover, the results
hold in some singular limit. In is, in fact, possible for excitatory synapses to
generate stable desynchronous oscillations and for inhibitory synapses to gen-
erate stable synchronous oscillations. Conditions for when these are possible
has been the subject of numerous research articles. References may be found
in [40].

Remark 5.10 The two cell model (30) can generate other rhythms besides
those discussed so far. For example, it is possible that one cell periodically
fires action potentials, while the other cell is always silent. This is sometimes
refereed to as a suppressed solution. It arises if the rate at which inhibition
turns off is slower than the rate at which a cell recovers in the silent phase.
That is, suppose cell 1 fires. This sends inhibition to cell 2, preventing it
from firing. Now if cell 1 is able to recover from its silent phase before the
inhibition to cell 2 wears off, then cell 1 will fire before cell 2 is able to. This
will complete one cycle and cell 2 will continue to be suppressed. If the time
for cells to recover in the silent phase is comparable to the time for inhibition
to decay, then more exotic solutions are possible (see [40]).
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6 Activity Patterns in the Basal Ganglia

6.1 Introduction

In this final chapter, we discuss a recent model for neuronal activity patterns
in the basal ganglia [42]. This is a part of the brain believed to be involved
in the control of movement. Dysfunction of the basal ganglia is associated
with movement disorders such as Parkinson’s disease and Huntington’s dis-
ease. Neurons within the basal ganglia are also the target of recent surgical
procedures, including deep brain stimulation. An introduction to the basal
ganglia can be found in [18].

The issues discussed arise in numerous other neuronal systems. We shall
describe how these large neuronal networks are modeled, what population
rhythms may arise in these networks and the possible roles of these activity
patterns.

6.2 The Basal Ganglia

The basal ganglia consist of several nuclei; these are illustrated in Fig. 16.
The primary input nucleus is the striatum; it receives motor information from
the cortex. The primary output nuclei are the internal segment of the globus
pallidus (GPi) and the substantia nigra par retularis (SNr). Neuronal informa-
tion passes through the basal ganglia through two routes. The direct pathway
passes directly from the striatum to the output nuclei. In the indirect path-
way, the information passes from the striatum to the external segment of the
globus pallidus (GPe) onto the subthalamic nuclues (STN) and then onto the
output nuclei. The final nucleus is the substantia nigra par compacta (SNc).
This is the primary source of dopamine.

Fig. 16 illustrates that some of the pathways within the basal ganglia are
excitatory and some are inhibitory. Most of the pathways are inhibitory except
for those that originate in the STN. Note that the pathways arising from SNc
are labeled both inhibitory and excitatory. This is because there are different
classes of dopamine receptors within the striatum. We also note that Fig. 16
illustrates only some of the pathways reported in the literature.

GPe

STN

STRIATUM

SNc

GPi/SNr

CORTEX

THALAMUS

Fig. 16. Nuclei within the basal ganglia. Solid arrows indicate excitatory connec-
tions and dashed arrows indicate inhibitory connections.
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Parkinson’s disease is associated with a severe reduction of dopamine. Ex-
periments have also demonstrated that during Parkinson’s disease, there is a
change in the neuronal activity of the output nucleus GPi. Previous explana-
tions for how a loss of dopamine leads to altered neuronal activity in GPi have
been in terms of an average firing rate of neurons; that is, the average number
of action potentials in some fixed interval of time. A detailed description of
this explanation can be found in [1, 8, 42]. It has been successful in accounting
for some features of PD; however, it cannot account for others. For example,
it is not at all clear how one can explain tremor. It also cannot account for
recent experiments that demonstrate that there is an increased level synchro-
nization among neurons in the STN and GPi during a parkinsonian state [14].
Several authors have suggested that the pattern of neuronal activity, not just
the firing rate, is crucially important.

The goal of the modeling study in [42] is to test hypotheses on how the
loss of dopamine may lead to tremor-like oscillations and changes in firing
patterns. We construct a model for neurons within GPe and STN based on
recent experiments [2]. We use computational methods to study the types of
activity patterns that arise in this model. In particular, we demonstrate that
the model can exhibit irregular uncorrelated patterns, synchronous tremor-
like rhythms, and propagating wave-like activity. In the next subsection, we
describe the computational model. We then describe the types of activity
patterns that arise in the model.

6.3 The Model

Here we describe the model for the STN and GPe network. The detailed
equations are given in [42]. These equations are derived using the Hodgkin-
Huxley formalism discussed earlier. The precise equations are different from
the Hodgkin-Huxley equations, however. This is because the STN and GPe
neurons contain channels different from those in the squid’s giant axon. In
particular, calcium plays a very important role in generating the action po-
tential of STN and GPe neurons. There are two types of potassium channels,
one of which depends on the concentration of intracellular calcium (along with
membrane potential). There are also two types of calcium channels in STN
neurons.

The membrane potential of each STN neuron obeys the current balance
equation:

Cm
dV

dt
= − IL − IK − INa − IT − ICa − IAHP − IG→S .

The leak current is given by IL = gL(v − vL), and the other voltage-
dependent currents are described by the Hodgkin-Huxley formalism as follows:
IK = gKn4(v − vK), INa = gNam

3
∞(v)h(v − vNa), IT = gT a3

∞(v)b2∞(r)(v −
vCa), and ICa = gCas2∞(v)(v − vCa). The slowly-operating gating variables n,
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h, and r are treated as functions of both time and voltage, and have first or-
der kinetics governed by differential equations of the form dX

dt = φX
(X∞(v)−X)

τX(v)

(where X can be n, h, or r), with τX(v) = τ0
X + τ1

X

1+exp[−(v−θτ
X
)/στ

X
] . Activa-

tion gating for the rapidly activating channels (m, a, and s) was treated as
instantaneous. For all gating variables X = n, m, h, a, r, or s, the steady state
voltage dependence was determined using X∞(v) = 1

1+exp[−(v−θX)/σX ] . The
gating variable b was modeled in a similar, but somewhat different, man-
ner; we do not describe this here. As the final intrinsic current, we take
IAHP = gAHP (v − vK) [Ca]

([Ca]+k1)
where [Ca], the intracellular concentration

of Ca2+ ions, is governed by [Ca]′ = ε (−ICa − IT − kCa[Ca]).
The current IG→S that represents synaptic input from the GPe to STN is

modeled as IG→S = gG→S(v − vG→S)
∑

sj . The summation is taken over the
presynaptic GPe neurons, and each synaptic variable sj solves a first order dif-
ferential equation s′j = αH∞(vgj−θg)(1−sj)−βsj . Here vgj is the membrane
potential of the GPe neuron j, and H∞(v) = 1/

(
1 + exp

[−(v − θH
g )/σH

g

])
.

The precise forms of the nonlinear functions in this model, along with
parameter values, are given in [42]. The GPe neurons are modeled in a similar
way. We do not describe these equations here.

The model STN neurons were adjusted to exhibit properties that are char-
acteristic of the firing of STN neurons in experiments [2]. Fig. 17, left column,
shows the firing properties of the model STN neurons. These cells fire in-
trinsically at approximately 3 Hz and exhibit high frequency sustained firing
and strong rebound bursts after release from hyperpolarizing current. Fig. 17,
right column, illustrates the firing properties of single GPe neurons. These
cells can fire rapid periodic spikes with sufficient applied current. They also
display bursts of activity when subjected to a small constant hyperpolarizing
current.

Currently the details of connections between STN and GPe cells are poorly
understood. It is known that STN neurons provide one of the largest sources
of excitatory input to the globus pallidus and that the GPe is a major source
of inhibitory afferents to the STN. However, the spatial distribution of axons
in each pathway, as well as the number of cells innervated by single neurons
in each direction, are not known to the precision required for a computer
model. Therefore, in [42] we consider multiple architectures in order to study
what types of activity patterns may arise in a particular class of network
architecture. In the model networks, each GPe neuron sends inhibition to other
GPe neurons as well as to one or more STN neurons. Each STN neuron sends
excitation to one or more GPe neurons. A prototype network is illustrated in
Figure 18.

6.4 Activity Patterns

Two activity patterns displayed by the model are shown in Fig. 19. The left
column displays irregular and weakly correlated firing of each cell. The volt-
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Fig. 17. Voltage traces for (left) STN and (right) GPe neurons for different levels of
applied current. STN cells display high frequency sustained firing with higher input
(as shown by the elevated dashed line) and fire rebound bursts after release from
hyperpolarizing current. GPe cells fire rapid periodic spikes for positive input and
fire bursts of spikes for small negative applied current.

STN  CELLS

GPe  CELLS

INHIBITION
EXCITATION

INHIBITION

Fig. 18. Architecture of the STN/GPe network.

age traces of two STN neurons are shown. shown. Irregular activity arises in
sparsely connected, unstructured networks in which each neuron is synapti-
cally connected to only a small number of other neurons chosen at random. It
is possible for irregular activity to also arise in structured networks, however.

The right column of Fig. 18 displays clustered activity, in which each
structure is divided into subsets of neurons that become highly correlated with
each other. The most commonly observed clustered pattern consists of two
clusters, with alternating pairs of cells belonging to opposite clusters. Different
clusters alternate firing, and in this pattern, cluster membership is persistent
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Fig. 19. Irregular and clustered patterns. Each column shows the voltage traces of
two STN neurons.

over time. Both episodic and continuous clustering are possible. Clustered
activity typically arises in networks with a structured, sparsely connected
architecture.

A third type of activity pattern is traveling waves (not shown). Propa-
gating wave-like activity can be very robust and exist over a wide range of
parameter values. They typically arise in networks with a structured, tightly
connected architecture. The speed of the wave depends on both the footprint
of network architecture and both intrinsic and synaptic time-scales.

We note that both of the patterns shown in Fig. 19 are generated for
a network with exactly the same architecture. In order to switch from the
irregular pattern to the synchronous pattern, we increase the applied current
to the GPe cells (this corresponds to input from the striatum) and the level
of intra-GPe inhibition.

6.5 Concluding Remarks

We have shown that in a biophysical, conductance-based model that the cellu-
lar properties of the STN and GPe cells can give rise to a variety of rhythmic
or irregular self-sustained firing patterns, depending on both the arrangement
of connections among and within the nuclei and the effective strengths of the
connections. The dependence on network architecture points out the impor-
tance of certain missing pieces of anatomical information. It is important to
determine the precision of the spatial organization of connections between the
STN and GPe neurons and whether the two nuclei project on each other in a
reciprocal or out of register manner.
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According to recent studies, correlated oscillatory activity in the GPe and
STN neurons is closely related to the generation of the symptoms of Parkin-
sonism. Previous firing rate models hold that during Parkinsonian states, an
increased level of inhibition from the striatum to GPe causes a decrease in the
activity of GPe. This in turn would send less inhibition to STN, thus increas-
ing STN activity and ultimately leading to increased inhibitory output from
the basal ganglia to the thalamus. In our model network, a more complex
picture emerges, in which the STN and GPe are spontaneously oscillatory
and synchronous, whereas intra-GPe inhibition and appropriate level of input
from the striatum can act to suppress rhythmic behavior.

The analysis described in earlier chapters is extremely useful in under-
standing the mechanisms responsible for the generation of the different firing
patterns arising in the STN/GPe model. The simple two-cell models consid-
ered earlier illustrate, for example, that inhibition may play multiple roles
in the generation of activity patterns. In the clustered rhythm, for example,
active STN neurons need moderate levels of feedback inhibition from GPe to
synchronize among themselves. Silent STN neurons, on the other hand, are
prevented from firing because they receive more powerful tonic inhibition. For
the generation of propagating waves, intra-GPe inhibition is needed to pre-
vent activity from persisting in the wake of the wave. Hence, this inhibition
helps to organize the network into a structured activity pattern. If one in-
creases the intra-GPe inhibition, this can desynchronize the GPe oscillations
and irregular firing may result.

The STN/GPe model is an example of an excitatory-inhibitory network.
This type of model arises in other neuronal systems. For example, recent mod-
els for thalamic sleep rhythms share many of the properties of the STN/GPe
model. References to papers on the thalamic sleep rhythms can be found
in [31].
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