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Summary. All living animals obtain information from their environment through
sensory receptors, and this information is transformed to their brain where it is
processed into perceptions and commands. All these tasks are performed by a system
of nerve cells, or neurons. Neurons have four morphologically defined regions: the cell
body, dendrites, axon, and presynaptic terminals. A bipolar neuron receives signals
from the dendritic system; these signals are integrated at a specific location in the
cell body and then sent out by means of the axon to the presynaptic terminals.
There are neurons which have more than one set of dendritic systems, or more than
one axon, thus enabling them to perform simultaneously multiple tasks; they are
called multipolar neurons.

This chapter is not meant to be a text book introduction to the general theory of
neuroscience; it is rather a brief introduction to neurons tailored to the subsequent
chapters, which deal with various mathematical models of neuronal activities. We
shall describe the structure of a generic bipolar neuron and introduce standard
mathematical models of signal transduction performed by neurons. Since neurons
are cells, we shall begin with a brief introduction to cells.

1 The Structure of Cells

Cells are the basic units of life. A cell consists of a concentrated aqueous
solution of chemicals and is capable of replicating itself by growing and di-
viding. The simplest form of life is a single cell, such as a yeast, an amoeba,
or a bacterium. Cells that have a nucleus are called eukaryotes, and cells that
do not have a nucleus are called prokaryotes. Bacteria are prokaryotes, while
yeasts and amoebas are eukaryotes. Animals are multi-cellular creatures with
eukaryotic cells. A typical size of a cell is 5–20µm (1µm = 1 micrometer =
10−6 meter) in diameter, but an oocyte may be as large as 1mm in diameter.
The human body is estimated to have 1014 cells. Cells may be very diverse
as they perform different tasks within the body. However, all eukaryotic cells
have the same basic structure composed of a nucleus, a variety of organelles
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and molecules, and a plasma membrane, as indicated in Figure 1 (an exception
are the red blood cells, which have no nucleus).

Fig. 1. A cell with nucleus and some organelles.

The DNA, the genetic code of the cell, consists of two strands of polymer
chains having a double helix configuration, with repeated nucleotide units A,
C, G, and T . Each A on one strand is bonded to T on the other strand by a
hydrogen bond, and similarly each C is hydrogen bonded to T . The DNA is
packed in chromosomes in the nucleus. In humans, the number of chromosomes
in a cell is 46, except in the sperm and egg cells where their number is 23. The
total number of DNA base pairs in human cells is 3 billions. The nucleus is
enclosed by the nuclear envelope, formed by two concentric membranes. The
nuclear envelope is perforated by nuclear pores, which allow some molecules
to cross from one side to another.

The cell’s plasma membrane consists of a lipid bilayer with proteins em-
bedded in them, as shown in Figure 2. The cytoplasm is the portion of the
cell which lies outside the nucleus and inside the cell’s membrane.

Fig. 2. A section of the cell’s membrane.
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An organelle is a discrete structure in the cytoplasm specialized to carry
out a particular function. A mitochondrion is a membrane-delineated organelle
that uses oxygen to produce energy, which the cell requires to perform its
various tasks. An endoplasmic reticulum (ER) is another membrane-bounded
organelle where lipids are secreted and membrane-bound proteins are made.
The cytoplasm contains a number of mitochondria and ER organelles, as well
as other organelles, such as lysosomes in which intra-cellular digestion occurs.
Other structures made up of proteins can be found in the cell, such as a variety
of filaments, some of which serve to strengthen the cell mechanically. The cell
also contains amino acid molecules, the building blocks of proteins, and many
other molecules.

The cytoskeleton is an intricate network of protein filaments that extends
throughout the cytoplasm of the cell. It includes families of intermediate fil-
aments, microtubules, and actin filaments. Intermediate filaments are rope-
like fibers with a diameter of 10nm and strong tensile strength (1nm=1
nanometer=10−9 meter). Microtubules are long, rigid, hollow cylinders of
outer diameter 25nm. Actin filaments, with diameter 7nm, are organized into
a variety of linear bundles; they are essential for all cell movement such as
crawling, engulfing of large particles, or dividing. Microtubules are used as a
“railroad tract” in transport of vesicles across the cytoplasm by means of mo-
tor proteins (see next paragraph). The motor protein has one end attached to
the vescicle and the other end, which consists of two “heads”, attached to the
microtubule. Given input of energy, the protein’s heads change configuration
(conformation), thereby executing one step with each unit of energy.

Proteins are polymers of amino acids units joined together head-to-tail in
a long chain, typically of several hundred amino acids. The linkage is by a
covalent bond, and is called a peptide bond. A chain of amino acids is known
as a polypeptide. Each protein assumes a 3-dimensional configuration, which
is called a conformation. There are altogether 20 different amino acids from
which all proteins are made. Proteins perform specific tasks by changing their
conformation.

The various tasks the cell needs to perform are executed by proteins. Pro-
teins are continuously created and degraded in the cell. The synthesis of pro-
teins is an intricate process. The DNA contains the genetic code of the cell.
Each group of three letters (or three base pairs) may be viewed as one “word”.
Some collections of words on the DNA represent genes. The cell expresses some
of these genes into proteins. This translation process is carried out by several
types of RNAs: messenger RNA (mRNA), transfer RNA (tRNA), and riboso-
mal RNA (rRNA). Ribosome is a large complex molecule made of more than
50 different ribosomal proteins, and it is there where proteins are synthesized.
When a new protein needs to be made, a signal is sent to the DNA (by a
promoter protein) to begin transcribing a segment of a strand containing an
appropriate gene; this copy of the DNA strand is the mRNA. The mRNA
molecule travels from the nucleus to a ribosome, where each “word” of three
letters, for example (A, C, T ), called a codon, is going to be translated into
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one amino acid. The translation is accomplished by tRNA, which is a rela-
tively compact molecule. The tRNA has a shape that is particularly suited to
conform to the codon at one end and is attached to an amino acid correspond-
ing to the particular codon at its other end. Step-by-step, or one-by-one, the
tRNAs line up along the ribosome, one codon at a time, and at each step a
new amino acid is brought in to the ribosome where it connects to the preced-
ing amino acid, thus joining the growing chain of amino acids until the entire
protein is synthesized.

The human genome has approximately 30,000 genes. The number of dif-
ferent proteins is even larger; however cells do not generally express all their
genes.

The cell’s membrane is typically 6–8nm thick and as we said before, it is
made of a double layer of lipids with proteins embedded throughout. The lipid
bilayer is hydrophobic and selectively permeable. Small nonpolar molecules
such as O2 and CO2 readily dissolve in the lipid bilayer and rapidly diffuse
across it. Small uncharged polar molecules such as water and ethanol also
diffuse rapidly across the bilayer. However, larger molecules or any ions or
charged molecules cannot diffuse across the lipid bilayer. These can only be
selectively transported across the membrane by proteins, which are embedded
in the membrane. There are two classes of such proteins: carrier proteins
and channel proteins. Carrier proteins bind to a solute on one side of the
membrane and then deliver it to the other side by means of a change in
their conformation. Carrier proteins enable the passage of nutrients and amino
acids into the cell, and the release of waste products, into the extracellular
environment. Channel proteins form tiny hydrophilic pores in the membrane
through which the solute can pass by diffusion. Most of the channel proteins
let through only inorganic ions, and these are called ion channels.

Both the intracellular and extracellular environments include ionized aque-
ous solution of dissolved salts, primarily NaCl and KCl, which in their disas-
sociated state are Na+, K+, and Cl− ions. The concentration of these ions,
as well as other ions such as Ca2+, inside the cell differs from their concen-
tration outside the cell. The concentration of Na+ and Ca2+ inside the cell
is smaller than their concentration outside the cell, while K+ has a larger
concentration inside the cell than outside it. Molecules move from high con-
centration to low concentration (“downhill” movement). A pathway that is
open to this movement is called a passive channel or a leak channel; it does
not require expenditure of energy. An active transport channel is one that
transports a solute from low concentration to high concentration (“uphill”
movement); such a channel requires expenditure of energy.

An example of an active transport is the sodium-potassium pump, pump-
ing 3Na+ out and 2K+ in. The corresponding chemical reaction is described
by the equation

ATP + 3Na+
i + 2K+

e → ADP + Pi + 3Na+
e + 2K+

i
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In this process, energy is expended by the conversion of one molecule ATP
to one ADP and a phosphate atom P .

Another example of active transport is the calcium pump. The concentra-
tion of free Ca2+ in the cell is 0.1µM, while the concentration of Ca2+ out-
side the cell is 1mM, that is, higher by a factor of 104 (µM=micromole=10−6

mole, mM=milimole=10−3 mole, mole=number of grams equal to the molec-
ular weight of a molecule). To help maintain these levels of concentration the
cell uses active calcium pumps.

An important formula in electrophysiology and in neuroscience is the
Nernst equation. Suppose two reservoirs of the same ions S with, say, a pos-
itive charge Z per ion, are separated by a membrane. Suppose each reservoir
is constantly kept electrically neutral by the presence of other ions T. Finally,
suppose that the membrane is permeable to S but not to T. We shall denote by
[Si] the concentration of S on the left side or the inner side, of the membrane,
and by [So] the concentration of S on the right side, or the outer side, of the
membrane. If the concentration [Si] is initially larger than the concentration
[So], then ions S will flow from inside the membrane to the outside, building
up a positive charge that will increasingly resist further movement of positive
ions from the inside to the outside of the membrane. When equilibrium is
reached, [So] will be, of course, larger than [Si] and (even though each side of
the membrane is electrically neutral) there will be voltage difference Vs across
the membrane. Vs is given by the Nernst equation

Vs =
RT

ZF
�n

[So]
[Si]

when R is the universal gas constant, F is the Faraday constant, and T is the
absolute temperature. For Z = 1, temperature=37◦C,

Vs = 62 log10
[So]
[Si]

.

By convention, the membrane potential is defined as the difference: The
outward-pointing electric field from inside the membrane minus the inward-
pointing electric field from outside the membrane.

The ions species separated by the cell membrane, are primarily K+, Na+,
Cl−, and Ca2+. To each of them corresponds a different Nernst potential. The
electric potential at which the net electrical current is zero is called the resting
membrane potential. An approximate formula for computing the resting mem-
brane potential is known as the Goldman-Hodgkin-Katz (GHK) equation.

For a typical mammalian cell at temperature 37◦C,

S [Si] [So] Vs

K+ 140 5 −89.7 mV
Na+ 5–15 145 +90.7 – (+61.1)mV
Cl− 4 110 −89mV
Ca2+ 1–2 2.5–5 +136 – (+145)mV
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where the concentration is in milimolar (mM) and the potential is in milivolt.
The negative Vs for S = K+ results in an inward-pointing electric field which
drives the positively charged K+ ions to flow inward. The sodium-potassium
pump is used to maintain the membrane potential and, consequently, to reg-
ulate the cell volume. Indeed, recall that the plasma membrane is permeable
to water. If the total concentration of solutes is low one side of the membrane
and high on the other, then water will tend to move across the membrane to
make the solute concentration equal; this process is known as osmosis. The
osmotic pressure, which drives water across the cell, will cause the cell to
swell and eventually to burst, unless it is countered by an equivalent force,
and this force is provided by the membrane potential. The resting potential
for mammalian cells is in the range of −60mV to −70mV.

2 Nerve Cells

There are many types of cells in the human body. These include: (i) a variety
of epithelial cells that line up the inner and outer surfaces of the body; (ii) a
variety of cells in connective tissues such as fibroblasts (secreting extracellular
protein, such as collagen and elastin) and lipid cells; (iii) a variety of muscle
cells; (iv) red blood cells and several types of white blood cells; (v) sensory
cells, for example, rod cells in the retina and hair cells in the inner ear; and
(vi) a variety of nerve cells, or neurons.

The fundamental task of neurons is to receive, conduct, and transmit sig-
nals. Neurons carry signals from the sense organs inward to the central nervous
system (CNS), which consists of the brain and spinal cord. In the CNS the
signals are analyzed and interpreted by a system of neurons, which then pro-
duce a response. The response is sent, again by neurons, outward for action
to muscle cells and glands.

Neurons come in many shapes and sizes, but they all have some common
features as shown schematically in Figure 3.

A typical neuron consists of four parts: cell body, or soma, containing the
nucleus and other organelles (such as ER and mitochondria); branches of
dendrites, which receive signals from other neurons; an axon which conducts
signals away from the cell body; and many branches at the far end of the
axon, known as nerve terminals or presynaptic terminals. Nerve cells, body
and axon, are surrounded by glial cells. These provide support for nerve cells,
and they also provide insulation sheaths called myelin that cover and protect
most of the large axons. The combined number of neurons and glial cells in
the human body is estimated at 1012.

The length of an axon varies from less than 1mm to 1 meter, depending
on the type of nerve cell, and its diameter varies between 0.1µm and 20µm.

The dendrites receive signals from nerve terminals of other neurons. These
signals, tiny electric pulses, arrive at a location in the soma, called the axon
hillock. The combined electrical stimulus at the hillock, if exceeding a certain
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Fig. 3. A neuron. The arrows indicate direction of signal conduction.

threshold, triggers the initiation of a traveling wave of electrical excitation in
the plasma membrane known as the action potential. If the plasma membrane
were an ordinary conductor, then the electrical pulse of the action potential
would weaken substantially along the plasma membrane. However, as we shall
see, the plasma membrane, with its many sodium and potassium active chan-
nels spread over the axon membrane, is a complex medium with conductance
and resistance properties that enable the traveling wave of an electrical exci-
tation to maintain its pulse along the plasma membrane of the axon without
signal weakening. The traveling wave has a speed of up to 100m/s.

A decrease in the membrane potential (for example, from −65mV to
−55mV) is called depolarization. An increase in the membrane potential (for
example, from −65mV to −75mV) is called hyperpolarization. Depolarization
occurs when a current is injected into the plasma membrane. As we shall see,
depolarization enables the action potential, whereas hyperpolarization tends
to block it. Hence, a depolarizing signal is excitatory and a hyperpolarizing
signal is inhibitory.

The action potential is triggered by a sudden depolarization of the plasma
membrane, that is, by a shift of the membrane potential to a less negative
value. This is caused in many cases by ionic current, which results from stim-
uli by neurotransmitters released to the dendrites from other neurons. When
the depolarization reaches a threshold level (e.g., from −65mV to −55mV)
it affects voltage-gated channels in the plasma membrane. First, the sodium
channels at the site open: the electrical potential difference across the mem-
brane causes conformation change, as illustrated in Figure 4, which results in
the opening of these channels.

When the sodium channels open, the higher Na+ concentration on the
outside of the axon pressures these ions to move into the axon against the
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Fig. 4. Change in membrane voltage can open some channels.

depolarized voltage; thus, the sodium ions flow from outside to inside the
axon along the electrochemical gradient. They do so at the rate of 108 ions
per second. This flow of positive ions into the axon further enhances the
depolarization, so that the voltage Vm of the plasma membrane continues to
increase.

As the voltage continues to increase (but still being negative), the potas-
sium channels at the site begin to open up, enabling K+ ions to flow out along
the electrochemical gradient. However, as long as most of the sodium chan-
nels are still open, the voltage nevertheless continues to increase, but soon the
sodium channels shut down and, in fact, they remain shut down for a period
of time called the refractory period.

While the sodium channels are in their refractory period, the potassium
channels remain open so that the membrane potential (which arises, typically,
to +50mV) begins to decrease, eventually going down to its initial depolar-
ized state where again new sodium channels, at the advanced position of the
action potential, begin to open, followed by potassium channels, etc. In this
way, step-by-step, the action potential moves along the plasma membrane
without undergoing significant weakening. Figure 5 illustrates one step in the
propagation of the action potential.

Most ion channels allow only one species of ions to pass through. Sodium
channels are the first to open up when depolarization occurs; potassium chan-
nels open later, as the plasma potential is increased. The flux of ions through
the ion channels is passive; it requires no expenditure of energy. In addition to
the flow of sodium and potassium ions through voltage-gated channels, trans-
port of ions across the membrane takes place also outside the voltage-gated
channels. Indeed, most membranes at rest are permeable to K+, and to a
(much) lesser degree to Na+ and Ca2+.

As the action potential arrives at the nerve terminal, it transmits a signal
to the next cell, which may be another neuron or a muscle cell. The spac-
ing through which this signal is transmitted is called the synaptic cleft. It
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Fig. 5. Propagation of the action potantial. 1: Na+ channels open; 2: K+ channels
open; 3: Na+ channels close; 4: k+ channels close.

separates the presynaptic cytoplasm of the neuron from the postsynaptic cell.
There are two types of synaptic transmissions: chemical and electrical. Figure
6 shows a chemical synaptic transmission. This involves several steps: The
action potential arriving at the presynaptic axon causes voltage-gated Ca2+

channels near the synaptic end to open up. Calcium ions begin to flow into
the presynaptic region and cause vesicles containing neurotransmitters to fuse
with the cytoplasmic membrane and release their content into the synaptic
cleft. The released neurotransmitters diffuse across the synaptic cleft and bind
to specific protein receptors on the postsynaptic membrane, triggering them
to open (or close) channels, thereby changing the membrane potential to a
depolarizing (or a hyperpolarizing) state. Subsequently, the neurotransmitters
recycle back into their presynaptic vesicles.

Electrical transmission is when the action potential makes direct electrical
contact with the postsynaptic cell. The gap junction in electrical transmis-
sion is very narrow; about 3.5nm. Chemical transmission incurs time delay
and some variability due to the associated diffusion processes, it requires a
threshold of the action potential, and it is unidirectional. By contrast, electri-
cal transmission incurs no time delay, no variability, it requires no threshold,
and it is bidirectional between two neurons.

3 Electrical Circuits and the Hodgkin-Huxley Model

The propagation of the action potential along the axon membrane can be
modeled as the propagation of voltage in an electrical circuit. Before describing
this model, let us review the basic theory of electrical circuits. We begin with
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Fig. 6. Synaptic transmission at chemical synapses. 1: Arrival of action potential.
2: Ca2+ flows in; vesicles fuse to cytoplasm membrane, and release their contents to
the synaptic cleft. 3: Postsynaptic (e.g. Na+) channels open, and Ca2+ ions return
to vesicles.

the Coulomb law, which states that positive charges q1 and q2 at distance r
from each other experience a repulsive force F given by

F =
1

4πεo

q1q2
r2

where ε0 is the permittivity of space. We need of course to define the unit of
charge, C, called coulomb. A coulomb, C, is a quantity of charge that repels
an identical charge situated 1 meter away with force F = 9 × 109N , where
N=newton=105 dyne. This definition of C is clearly related to the value of
ε0, which is such that

1
4πεo

= 9 × 109
Nm2

C2

The charge of an electron is −e, where e = 1.602× 10−19C. Hence the charge
of one mole of ions K+, or of one mole of any species of positive ions with
a unit charge e per ion, is NAC where NA = 6.023 × 1023 is the Avogadro
number. The quantity F = NAe = 96, 495C is called the Faraday constant.

Electromotive force (EMF or, briefly, E) is measured in volts (V ). One
volt is the potential difference between two points that requires expenditure
of 1 joule of work to move one coulomb of charge between the two points; 1
joule=107 erg=work done by a force of one Newton acting along a distance
of 1 meter.
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Current i is the rate of flow of electrical charge (q):

i =
dq

dt
.

Positive current is defined as the current flowing in the direction outward from
the positive pole of a battery toward the negative pole; the electrons are then
flowing in the opposite direction. In order to explain this definition, consider
two copper wires dipped into a solution of copper sulfate and connected to
the positive and negative poles of a battery. Then the positive copper ions
in the solution are repelled from the positive wire and migrate toward the
negative wire, whereas the negative sulfate ions move in the reverse direction.
Since the direction of the current is defined as the direction from the positive
pole to the negative pole, i.e., from the positive wire to the negative wire, the
negative charge (i.e., the extra electrons of the surface atoms) move in the
reverse direction.

The unit of current is ampere, A: One ampere is the flow of one coulomb
C per second.

Ohm’s law states that the ratio of voltage V to current I is a constant R,
called the resistance:

R =
V

I

R is measured in ohms, Ω : Ω = 1V
1A . Conductors, which satisfy the ohm law

are said to be ohmic. Actually not all conductors satisfy Ohm’s law; most
neurons are nonohmic since the relation I–V is nonlinear. The quantity 1

R is
called the conductivity of the conductor.

Capacitance is the ability of a unit in an electric circuit, called capacitor,
to store charge; capacity C is defined by

C =
q

V
(C = capacity) .

Where q is the stored charge and V is the potential difference (voltage) across
the capacitor.

The unit capacity is Farad, F :

1F =
1coulomb

1volt
.

A typical capacitor consists of two conducting parallel plates with area S each,
separated a distance r by a dielectric material with dielectric constant Kd.
The capacity is given by

C = εo − Kd − S

r
.

Later on we shall model a cell membrane as a capacitor with the bilipid layer
as the dielectric material between the inner and outer surfaces of the plasma
membrane.
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It should be emphasized that no current ever flows across a capacitor
(although the electric field force goes through it). However, when in an electric
circuit the voltage changes in time, the charge on the capacitor also changes
in time, so that it appears as if current is flowing. Since i = dq

dt where q = CV
is the charge on the conductor, the apparent flow across the capacitor is

i = C
dV

dt

(although there is no actual flow across it); we call this quantity the capaci-
tative current. This flow merely reflects shifts of charge from one side of the
capacitor to another by way of the circuit.

Kirchoff’s laws form the basic theory of electrical circuits:

(1) The algebraic sum of all currents flowing toward a junction is zero; here,
current is defined as positive if it flows into the junction and negative if
it flows away from the junction.

(2) The algebraic sum of all potential sources and voltage drops passing
through a closed conduction path (or “loop”) is zero.

We give a simple application of Kirchoff’s laws for the circuits described in
Figures 7a and 7b. In figure 7a two resistors are in sequence, and Kirchoff’s
laws and Ohm’s law give

E − 1R1 − 1R2 = 0 .

Fig. 7.

If the total resistance in the circuit is R, then also E = IR, by Ohm’s
law. Hence R = R1 + R2. By contrast, applying Kirchoff’s law to the circuit
described in Figure 7b, where the two resistances are in parallel, we get

I1 =
V

R1
, I2 =

V

R2
, and R =

V

I
where I = I1 + I2 ,

so that
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1
R

=
1

R1
+

1
R2

.

Capacitors introduce time element into the analysis of current flow. Indeed,
since they accumulate and store electrical charge, current and voltage changes
are no longer simultaneous. We shall illustrate this in an electric circuit, which
resembles the cell membrane of an axon, as shown in Figure 8.

Fig. 8. Current step input.

On the left side A we introduce a current step i, as input, and on the
right side B we measure the output voltage V ; the capacitor C represents
the capacity of the axon membrane and the resistor R represents the total
resistivity of the ion channels in the axon. Thus, the upper line with the input
i → may be viewed as the inner surface of the cell membrane, whereas the
lower line represents the outer surface of the membrane.

By Kirchoff’s laws and Ohm’s law,

IR =
V

R
, IC = C

dV

dt

and
iR = (IR + IC)R = V + RC

dV

dt
so that

V = iR
(
1 − e−t/RC

)
.

Hence the voltage does not become instantly equal to iR (as it would be by
Ohm’s law if there was no capacitor in the circuit); V is initially equal to zero,
and it increases to iR as t → ∞.

Figure 9 describes a more refined electric circuit model of the axon mem-
brane. It includes currents through potassium and sodium channels as well as
a leak current, which may include Cl− and other ion flows. For simplicity we
have lumped all the channels of one type together as one channel and repre-
sented the lipid layer as a single capacitor; a more general model will be given
in §4.

Since K+ has a larger concentration inside the cell that outside the cell,
we presume that positive potassium ions will flow outward, and we therefore
denote the corresponding electromotive force EK by
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The reverse situation holds for Na+. The conductivity of the channels K+,
Na+ and the leak channel L are denoted by gK , gNa, and gL, respectively.

Fig. 9. An electric circuit representing an axon membrane.

By Kirchoff’s laws we get

Im = Cm
dV

dt
+ IK + INa + IL

where V is the action potential and Im is the current injected into the axon.
We assume that the leak channel is ohmic, so that

IL = gL(V − EL), gL constant

where EL is the Nernst equilibrium voltage for this channel. On the other
hand the conductivities gK and gNa are generally functions of V and t, as
pointed out in §2, so that

IK = gK(V, t)(V − EK), INa = gNa(V, t)(V − ENa)

where EK and ENa are the Nernst equilibrium voltages for K+ and Na+.
Thus, we can write

Im = Cm
dV

dt
+ gK(V, t)(V − EK) + gNa(V, t)(V − ENa) + gL(V − EL). (1)

Hodgkin and Huxley made experiments on the giant squid axon, which
consisted of clumping the voltage at different levels and measuring the corre-
sponding currents. Making some assumptions on the structure and conforma-
tion of potassium and sodium gates, they proposed the following equations:



Introduction to Neurons 15

gK(V, t) = n4g∗K , gNa(V, t) = m3hg∗Na (2)

where n, m, h are the gating variables (gL is neglected here), and g∗K =
max gK , g∗Na = max gNa. The variables n, m, h satisfy linear kinetic equations

dn

dt
= αn(1 − n) − βnn,

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αn(1 − h) − βhh . (3)

By fitting coefficients they obtained the empirical formulas

αn(V ) = 0.01
−V + 10[

e(−V +10)/10 − 1
] ,

βn(V ) = 0.125e
−V/80 ,

αm(V ) = 0.1
−V + 25[

e(−V +25)/10 − 1
] ,

βm(V ) = 4e
−V/18, αh(V ) = 0.07e

−V/20, βh(V ) =
1

e(−V +30)/10 + 1
. (4)

The system (1)–(4) is known as the Hodgkin-Huxley equations. They form
a system of four nonlinear ordinary differential equations in the variables V , n,
m, and h. One would like to establish for this system, either by a mathematical
proof or by computations, that as a result of a certain input of current Im

there will be solutions of (1)–(4) where the voltage V is, for example, a periodic
function, or a traveling wave, as seen experimentally. This is an ongoing active
area of research in the mathematical neuroscience.

The Hodgkin-Huxley equations model the giant squid axon. There are also
models for other types of axons, some involving a smaller number of gating
variables, which make them easier to analyze.

In the next section we shall extend the electric circuit model of the action
potential to include distributions of channels across the entire axon membrane.
In this case, the action potential will depend also on the distance x measured
along the axis of the axon.

4 The Cable Equation

We model an axon as a thin cylinder with radius a. The interior of the cylinder
(the cytoplasm) is an ionic medium which conducts electric current; we shall
call it a core conductor. The exterior of the cylinder is also an ionic medium,
and we shall assume for simplicity that it conducts current with no resistance.
We introduce the following quantities:
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ri = axial resistance of the core conductor, Ω
cm ,

Ri = specific intercellular resistance, Ω · cm,
rm = membrane resistance, Ω · cm,
Rm = specific membrane resistance, Ω · cm3,
cm = membrane capacitance, F

cm ,
Cm = specific membrane capacitance, F

cm3 .
Then

Ri = πa2ri, Rm = 2πarm, Cm =
cm

2πa
; (5)

the first equation, for example, follows by observing that ri may be viewed as
the resistance of a collection of resistances Ri in parallel.

Denote by x the distance along the axis of the core conductor, and by Vi

the voltage in the core conductor. We assume that the current flows along the
x-direction, so that Vi is a function of just (x, t). By Ohm’s law

∂V

∂x
= −iiri .

Where ii is the intracellular current; for definiteness we take the direction of
the current flow to be in the direction of increase of x. Hence

∂2Vi

∂x2
= −ri

∂ii
∂x

. (6)

If current flows out of (or into) the membrane over a length increment ∆x
then the current decreases (or increases) over that interval, as illustrated in
Figure 10.

Fig. 10. Decrease in current ii due to outflow of current im.

Denoting by im the flow, per unit length, out of (or into) the membrane,
we have

i2 − i1 = −im∆x ,

or
im = −∂ii

∂x
.
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Combining this with (6), we find that

1
ri

∂2Vi

∂x2
= im (7)

The membrane potential is V = Vi − Ve where Ve, the external voltage, is
constant since we have assumed that the extracellular media has no resistance.

We now make the assumption that there are many identical circuits dis-
tributed all over the surface of the membrane, as illustrated in Figure 11.

Fig. 11. Current flow along a cylindrical axon with many R-C circuits on the
membrane.

By Kirchoff’s laws (cf. Section 3) the flow im satisfies

im = cm
∂V

∂t
+

Vi − Ve

rm
. (8)

Combining this with (7) we get

rm

ri

∂2V

∂x2
= rmcm

∂V

∂t
+ V .

Setting

τm = rmcm = RmCm, λ =
√

rm

ri
=

√
Rm

Ri

a

2
,

we arrive at the cable equation

λ2 ∂2V

∂x2
= τm

∂V

∂t
+ V, (9)

or, with X = x
λ , T = t

τm
,

∂V

∂t
=

∂2V

∂x2
− V . (10)

The specific current of the membrane, Im, is related to the current im by
im = 2πaIm. Hence (7) can be written in the form
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a

2Ri

∂2V

∂x2
= Im . (11)

In the above analysis the current im was modeled using the configuration
of R-C units as in Figure 11. Let us now specialize to the case of the giant
squid axon, as illustrated in Figure 7, with the leak flow neglected. Then, as
in §3,

Im = Cm
∂V

∂t
+ IK + INa

so that, by (11),

a

2Ri

∂2V

∂x2
= Cm

∂V

∂t
+ gK(V, t)(V − Ek) + gNa(V, t)(V − ENa) (12)

where gK , gNa are as in the Hodgkin-Huxley equations. The spatial Hodgkin-
Huxley system consists of the equations (2)–(4) and (12).

We return to the cable equation (9) and note that this equation can also
model the voltage in any dendritic branch. But since the dendritic tree is
quite complex in general (see Figure 3), it is difficult to the compute the total
voltage, which sums up all the voltage inputs that go into the axon hillock.
There is however one special case where V can be easily computed. This case
was identified by Rall, and it assumes a very special relationship between some
of the dendritic branches. In order to explain the Rall Theory, we begin with
a situation in which a current I0 is injected into an infinite core conductor
(with −∞ < x < ∞) at x = 0. Then current I0/2 flows to the right and
current I0/2 flows to the left, so that the potential V satisifies

∂V

∂x
(+0) − ∂V

∂x
(−0) = −riI0 . (13)

The stationary solution of the cable equation in the semi-infinite portion 0 <
x < ∞ is then

V (x) = ri
I0
2

λe
−x/λ . (14)

Note that the factor ex−λ accounts for the current leak through the membrane:
If there is no leak then V (x) = V (0). The resistance of the cable is then

V (0)
I0
2

=
(RmRi/2)1/2

πa3
.

Hence the conductivity of the core conductor is

G = Kd
3/2 where K =

π

2
(RmRi)−1 (15)

where d is the diameter of the cable.
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Fig. 12. Schematic diagram of a neuron with a branched dendritic tree.

Suppose the dendritic tree has a form as in Figure 12. We assume that
each of end-branch is infinitely long, so that its conductivity is given by (15)
where d is its diameter.

The conductances of the end-branches with diameters d3111 and d3112 are
K(d3111)

3/2 and Kd
3/2
3112 respectively. Since the total conductances are just the

sum of all the parallel conductances, if the diameter d211 is such that

d
3/2
211 = d

3/2
3111 + d

3/2
3112 (16)

then we may replace the two branches at Y3, d3111 and d3112, by one semi-
infinite branch, which extends d211 to infinity; it is assumed here that Rm and
Ri (hence K) are the same for all branches.

We can now proceed to do that same reduction at the branch point Y2. If
the diameter d11 is such that

d
3/2
11 = d

3/2
211 + d

3/2
212 (17)

then we may replace the two branches at Y2, d211, and d212, by the branch
d211 extended to infinity.

Proceeding in this way with the other branch points, we may also replace
the part of the tree branching from d12 by the branch d12 extended to infinity.
Finally, if the diameter d0 is such that

d
3/2
0 = d

3/2
11 + d

3/2
12 (18)

then we may replace the two branches at Y1 by the branch d0 extended to
infinity.

In conclusion, the Rall Theory asserts that if the dendritic branches satisfy
the relations (16), (17), . . ., (18), then the dendritic tree is equivalent to
one semi-infinite core conductor of diameter do. This result holds for general
dendritic trees provided

d
3/2
p = Σd

3/2
D

when dP is in any parent dendritic branch and dD varies over its daughter
dendritic branches.
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The above analysis extends to the case where all the end-branches are of
the same length L and all other branches are of length smaller than L. In this
case, formula (15) is replaced by

G = Kd
3/2 tanh L .
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