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Abstract. I briefly review our current understanding of dark matter and dark
energy. The first part of this review focusses on issues pertaining to dark matter
including observational evidence for its existence, current constraints and the ‘abun-
dance of substructure’ and ‘cuspy core’ issues which arise in CDM. I also briefly
describe MOND. The second part of this review focusses on dark energy. In this
part I discuss the significance of the cosmological constant problem which leads to
a predicted value of the cosmological constant which is almost 10123 times larger
than the observed value λ/8πG � 10−47GeV4. Setting λ to this small value ensures
that the acceleration of the universe is a fairly recent phenomenon giving rise to
the ‘cosmic coincidence’ conundrum according to which we live during a special
epoch when the density in matter and λ are almost equal. Anthropic arguments are
briefly discussed but more emphasis is placed upon dynamical dark energy mod-
els in which the equation of state is time dependent. These include Quintessence,
Braneworld models, Chaplygin gas and Phantom energy. Model independent meth-
ods to determine the cosmic equation of state and the Statefinder diagnostic are
also discussed. The Statefinder has the attractive property

...
a /aH3 = 1 for LCDM,

which is helpful for differentiating between LCDM and rival dark energy models.
The review ends with a brief discussion of the fate of the universe in dark energy
models.

5.1 Dark Matter

Observations of the cosmic microwave background (CMB) and the deuterium
abundance in the Universe suggest that ωbaryonh

2 � 0.02, or ωbaryon � 0.04
if the current Hubble expansion rate is h = H0/100km/sec/Mpc = 0.7. Al-
though ωbaryon is much larger than the observed mass in stars, ωstars � 0.005
1, it is nevertheless very much smaller than the total energy density in the
universe inferred from the observed anisotropy in the cosmic microwave back-
ground [193]

Ωtotal ≡ 8πGρtotal
3H2 = 1.02 ± 0.02 . (5.1)

Both dark matter and dark energy are considered essential missing pieces in
the cosmic jigsaw puzzle
1 This suggests that most of the baryonic matter at z = 0 is not contained in stars

but might be contained in hot gas [30].
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Ωtotal − ωbaryons = ? (5.2)

Although the nature of neither dark matter (DM) nor dark energy (DE) is
currently known, it is felt that both DM and DE are non-baryonic in origin,
and that DM is distinguished from DE by the fact that the former clus-
ters on sub-Megaparsec scales (in order to explain galactic rotation curves)
whereas the latter has a large negative pressure (and can make the universe
accelerate). In addition there is strong evidence to suggest that

Ωm � 1/3 , ΩDE � 2/3 . (5.3)

In this contribution I will briefly review some properties of both dark matter
and dark energy.

Though the observational evidence favouring a flat Universe with Ωtotal �
1 is fairly recent, the nature of the ‘unseen’ component of the universe (which
dominates its mass density), is a long-standing issue in modern cosmology.
Indeed, the need for dark matter was originally pointed out by Zwicky (1933)
who realized that the velocities of individual galaxies located within the Coma
cluster were quite large, and that this cluster would be gravitationally bound
only if its total mass substantially exceeded the sum of the masses of its
component galaxies. For clusters which have relaxed to dynamical equilibrium
the mean kinetic and potential energies are related by the virial theorem [50]

K +
U

2
= 0 , (5.4)

where U � −GM2/R is the potential energy of a cluster of radius R, K �
3M〈v2r〉/2 is the kinetic energy and 〈v2r〉1/2 is the dispersion in the line-of-
sight velocity of cluster galaxies. (Clusters in the Abell catalogue typically
have R � 1.5h−1 Mpc.) This relation allows us to infer the mean gravitational
potential energy if the kinetic energy is accurately known. The mass-to-light
ratio in clusters can be as large as M/L � 300M�/L�. However since most
of the mass in clusters is in the form of hot, x-ray emitting intracluster gas,
the extent of dark matter in these objects is estimated to be M/Mlum � 20,
where Mlum is the total mass in luminous matter including stars and gas.

In individual galaxies the presence of dark matter has been convincingly
established through the use of Kepler’s third law

v(r) =

√
GM(r)
r

(5.5)

to determine the ‘rotation curve’ v(r) at a given radial distance from the
galactic center. Observations of galaxies taken at distances large enough for
there to be no luminous galactic component indicate that, instead of declin-
ing at the expected rate v ∝ r−1/2 true if M � constant, the velocity curves
flattened out to v � constant implying M(r) ∝ r (see Fig. 5.1). This ob-
servation suggests that the mass of galaxies continues to grow even when
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Fig. 5.1. The observed rotation curve of the dwarf spiral galaxy M33 extends
considerably beyond its optical image (shown superimposed); From Roy [164].

there is no luminous component to account for this increase. Velocity curves
have been compiled for over 1000 spiral galaxies usually by measuring the 21
cm emission line from neutral hydrogen (HI) [148, 191]. The results indicate
that M/L = (10 − 20)M�/L� in spiral galaxies and in ellipticals, while this
ratio can increase to M/L � (200 − 600)M�/L� in low surface brightness
galaxies (LSB’s) and in dwarfs. For instance, a recent measurement of the
Draco dwarf spheroidal galaxy located at a distance of only 79 kpc from
the Milky Way shows the presence of a considerable amount of dark matter
M/L|Draco = (440 ± 240)M�/L� [97] ! It is interesting that the total mass
of an individual galaxy is still somewhat of an unknown quantity since a
turn around to the v ∝ r−1/2 law at large radii has not been convincingly
observed.

An important difference between the distribution of dark matter in galax-
ies and clusters needs to be emphasised: whereas dark matter appears to in-
crease with distance in galaxies, in clusters exactly the reverse is true, the
dark matter distribution actually decreases with distance. Indeed, for certain
dwarfs (such as DD0154) the rotation curve has been measured to almost 15
optical length scales indicating that the dark matter surrounding this object
is extremely spread out (see also Fig. 5.1). A foreground cluster, on the other
hand, acts as a gravitational lens which focuses the light from background
objects such as galaxies and QSO’s thereby allowing us to determine the
depth of the cluster potential well. Observations of strong lensing by clusters
indicate that dark matter is strongly concentrated in central regions with a
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projected mass of (1013 − 1014)M� being contained within (0.2 - 0.3) Mpc
of the central region. As we shall see later, this observation may prove to
be problematic for alternatives to the dark matter hypothesis such as the
Modified Newtonian Dynamics (MOND) approach of Milgrom [122].

As discussed earlier, the fact that only 4% of the cosmic density is bary-
onic suggests that the dark matter which we are observing could well be non-
baryonic in origin. The need for non-baryonic forms of dark matter gets indi-
rect support from the fact that baryonic models find it difficult to grow struc-
ture from small initial conditions and hence to reconcile the existence of a well
developed cosmic web of filaments, sheets and clusters at the present epoch
with the exceedingly small amplitude of density perturbations (δρ/ρ ∼ 10−5

at z � 1, 100) inferred from COBE measurements and more recent CMB
experiments. Indeed, it is well known that, if the effects of pressure are ig-
nored, linearized density perturbations in a spatially flat matter dominated
universe grow at the rate δ ∝ t2/3 ∝ (1 + z)−1, where 1 + z = a0/a(t) is the
cosmological redshift. (Contrast this relatively slow growth rate with the ex-
ponential ‘Jeans instability’ of a static matter distribution δ ∝ exp

√
4πGρt.)

In a baryonic universe, the large radiation pressure (caused by Thompson
scattering of CMB photons off electrons) ensures that density perturbations
in the baryonic component can begin growing only after hydrogen recombines
at z � 1, 100 at which point of time baryons and radiation decouple. Requir-
ing δ > 1 today implies δ > 10−3 at recombination, which contradicts CMB
observations by over an order of magnitude ! In non-baryonic models on the
other hand, the absence of any significant coupling between dark matter and
radiation allows structure to grow much earlier, significantly before hydrogen
in the universe has recombined. After recombination baryons simply fall into
the potential wells created for them by the dominant non-baryonic compo-
nent. As a result a universe with a substantial non-baryonic component can
give rise to the structure which we see today from smaller initial fluctuations.

The growth of structure via gravitational instability depends both upon
the nature of primordial perturbations (adiabatic/isocurvature) and upon
whether the dark matter species is hot or cold. The issue of density pertur-
bations has been discussed in considerable detail by R. Durrer in her contri-
bution to this volume and I shall not touch upon this important topic any
further. Let me instead say a few words about hot and cold dark matter. Non-
baryonic Hot Dark Matter (HDM) particles are assumed to have decoupled
from the rest of matter/radiation when they were relativistic and so have a
very large velocity dispersion (hence called ‘hot’). Cold Dark Matter (CDM)
particles, on the other hand, have a very small velocity dispersion and de-
couple from the rest of matter/radiation when they are non-relativistic. The
free-streaming (collisionless phase mixing) of non-baryonic particles as they
travel from high density to low density regions (and vice versa) introduces
an important length scale called the ‘free-streaming distance’ λfs – which is
the mean distance travelled by a relativistic particle species until its momen-
tum becomes non-relativistic. In both HDM and CDM the processed final
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spectrum of density perturbations differs from its initial form. In the case
of HDM this difference arises because fluctuations on scales smaller than λfs
are wiped out due to free streaming with the result that the processed final
spectrum has a well defined cutoff on scales smaller than λ ∼ λfs. Perhaps the
best example of HDM is provided by a light neutrino of mass about 30 eV. In
this case λfs � 41(30eV/mν) Mpc with the result that large proto-pancakes
having masses comparable to those of rich clusters of galaxies M ∼ 1015M�
are the first objects to form in HDM. Smaller objects (galaxies) are formed by
the fragmentation of the proto-pancake. This top-down scenario for structure
formation was originally suggested by Zeldovich and coworkers in connection
with adiabatic baryonic models and subsequently applied to HDM. It has
since fallen out of favour mainly due to the strong observational constraints
on the mass of the neutrino

∑
νi
mνi

< 0.7 eV and on the relic neutrino den-
sity 10−3 <∼ Ωνh

2 <∼ 10−1 [61, 193, 63, 123]. It also faces considerable difficulty
in forming structure sufficiently early to explain the existence of galaxies and
QSO’s at high redshifts.

In contrast to HDM, constituents of CDM have a much smaller free-
streaming distance. Because of this small scales are the first to go non-linear
and gravitational clustering proceeds in a bottom up fashion in this scenario.
A key quantity defining gravitational clustering is the power spectrum of
density perturbations P (k) ≡ |δk|2, which is related to the mean square
density fluctuation via

〈(
δρ

ρ

)2〉
= 4π

∫ ∞

0
P (k)k2dk . (5.6)

Inflationary models predict Pi(k) ∝ kn, n � 1, at an early epoch. As the
universe expands the power spectrum gets modified. The ‘processed’ final
spectrum depends upon the nature of dark matter, the epoch of matter-
radiation equality and other cosmological quantities. The final and initial
spectra are related through a transfer function

Pf (k) = Pi(k) × T 2(k) . (5.7)

CDM-type spectra have the following approximate form of the transfer func-
tion [165, 194, 166]

T (k) =
(

1 +
Ak2

log (1 +Bk)

)−1

. (5.8)

Equations (5.7) and (5.8) illustrate the ‘turn around’ of the power spectrum
from its primordial scale invariant form P (k) ∝ k on the largest scales to
P (k) ∝ k−3 log2 k on small scales. (The precise location of the turn-around
and the amplitude of P (k) depend upon specific details of the cosmological
model, see for instance [16].)

The ‘standard’ cold dark matter (SCDM) paradigm, which assumed that
ΩCDM = 1, was introduced during the early 1980’s at roughly the same time
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when HDM was perceived to be in trouble (see [101, 96, 50, 166] for references
to earlier work on this subject). Although SCDM was very successful in ex-
plaining a host of observational details, it was clear already a decade ago, that
the processed power spectrum of SCDM lacked sufficient power on large scales
and so fell short of explaining the angular two point correlation function for
galaxies on scales ∼ 50 Mpc [60]. The relevant cosmological quantity in this
case is the shape of the power spectrum of density perturbations, which for
CDM-like models, can be characterised by the ‘shape parameter’ Γ = Ωmh.
SCDM models with Ωm = 1 and the HST-determined value h � 0.7 predict
Γ � 0.5 which is much larger than the observed value Γ = 0.207 ± 0.030
inferred from observations of galaxy clustering in the sloan digital sky survey
(SDSS) [154]. A modification of SCDM called LCDM assumes that, in addi-
tion to CDM the universe consists of a smoothly distributed component called
a cosmological constant or a Lambda-term. LCDM models with h � 0.7 and
Ωm = 0.3 predict a smaller value for the shape parameter, Γ � 0.2, and the
resulting amplitude and shape of the power spectrum is in excellent agree-
ment with several different sets of observations as demonstrated in Fig. 5.2.

From (5.6), (5.7) and (5.8) we find that on small scales, the contribution
to the rms density fluctuation from a given logarithmic interval in k is

(
δρ

ρ

)2

k

∼ k3Pf (k) ∝ log2 k , (5.9)

which illustrates the fact that, although the smallest scales are the first to go
non-linear, there is significant power to drive gravitational instability rapidly
to larger scales in this model. Indeed, detailed N-body simulations of large
scale structure show that filaments defining the cosmic web first form on the
smallest scales. The scale-length characterizing the cosmic web grows as the
universe expands, until at the present epoch the cosmic web consists of a
fully developed supercluster-void network with a scale-length of several tens
of Megaparsec [181, 183, 119, 206].

Promising candidates for cold dark matter include a (100 − 1000) GeV
particle called a neutralino. The neutralino is a weakly interacting massive
particle (WIMP). As its name suggests it is neutral and is a fermionic partner
to the gauge and Higgs bosons (usually called the ‘bino, wino and higgsino’).
It is believed that the lightest supersymmetric particle will be stable due
to R-parity which makes the neutralino an excellent candidate for cold dark
matter (see [163, 89] for reviews of particle dark matter). A radically different
particle candidate for cold dark matter is an ultra-light pseudo-Goldstone bo-
son called an axion with a mass of onlyma ∼ 10−5±1 eV. Although ultralight,
the axion is ‘cold’ because it was created as a zero-momentum condensate.
Its existence is a by-product of an attempt to resolve QCD of what is com-
monly called the ‘strong CP problem’ which arises because non-perturbative
effects in QCD give rise to an electric dipole moment for the neutron, in
marked contrast with observations [101]. Other candidates for non-baryonic
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Fig. 5.2. The power spectrum inferred from observations of large scale structure,
the Lymanα forest, gravitational lensing and the CMB. The solid line shows the
power spectrum prediction for a flat scale-invariant LCDM model with Ωm = 0.28,
Ωb/Ωm = 0.16, h = 0.72. From Tegmark et al. [200].

cold dark matter include string theory motivated modulii fields [32]; non-
thermally produced super-heavy particles having a mass ∼ 1014 GeV and
dubbed Wimpzillas [100]; as well as axino’s and gravitino’s, superpartners of
the axion and graviton respectively [163].

Since WIMP’s cluster gravitationally, one should expect to find a flux
of these particles in our own solar system and attempts are being made
to determine dark matter particles by measuring the scattering of WIMP’s
on target nucleii through nuclear recoils. Now the earth orbits the sun (see
Fig. 5.3) with a velocity � 30 km/sec, even as the sun orbits the galaxy with
vM� � 220 km/sec. Furthermore the plane of the Earth’s orbit is inclined
at an angle of 60◦ to the glactic plane, because of which the dark matter
flux on Earth is expected to be larger in June (when the Earth’s velocity
and the Sun’s velocity add together) than in December (when these two
velocities subtract). The resulting rate variation is about 7% between the flux
measured during summer and winter. Precisely such a signal was reported
by the DAMA experiment whose data (collected since 1996) appears to show
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220 km/sSun

Earth 
30 km/s

Fig. 5.3. The Earth’s motion around the Sun; From Khalil and Munoz (2001).

a yearly modulation with greater events reported in June than in December
[17]. However results obtained by the DAMA group remain controversial since
they have not been substantiated by other groups which report negative
results for similar searches (see [129, 95] for recent reviews on this subject).

Despite the excellent agreement of LCDM with large scale observations,
some concerns have recently been expressed about the ability of this model to
account for a number of smaller scale observations which can be summarized
as follows:

– The substructure problem

It is used to describe the fact that the cold dark matter model (with or
without a cosmological constant) predicts an excessive number of dark
matter subhaloes (or substructure) within a larger halo. If one (perhaps
naively) associates each halo with a gravitationally bound baryonic ob-
ject then the predicted number of dwarf-galaxy satellites within the local
group exceeds the observed number by over an order of magnitude. In-
deed, detailed N-body simulations as well as theoretical estimates predict
around 1000 dark matter satellites in our local group which is much larger
than the 40 or so observed at present [98, 126, 94, 35, 192, 24, 120, 199, 64].

– The cuspy core problem

CDM predicts a universal density profile for dark matter halos in the
wide range (107 − 1015)M� which applies both to galaxy clusters as well
as individual galaxies including dwarfs and LSB’s. 2 The density profile

2 Low Surface Brightness Galaxies (LSB’s) are dominated by their dark matter
content and therefore provide particularly good astrophysical objects with which
to test dark matter models.
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originally suggested by Navarro, Frenk and White [133] is

ρ(r) = ρ0 (rs/r)
[
1 +
(
r

rs

)]−2

, (5.10)

which gives ρ ∝ r−1 for r  rs and ρ ∝ r−3 for r � rs, where rs is the
scale radius and ρ0 is the characteristic halo density. (Other groups using
higher resolution computations found somewhat steeper density profiles
at small radii, such as ρ ∝ r−1.5 [127, 87].)
The cuspy core problem refers to the apparent contradiction between N-
body experiments, which show that the density profile in CDM halos has
a 1/r (or steeper) density cusp at the center, and observations, which
appear to favour significantly shallower density cores in galaxy clusters as
well as in individual dwarf and LSB galaxies (see [69, 36, 28, 37, 155, 199,
103, 162, 179, 109] for detailed discussions of this issue).

Although disconcerting, given the very considerable success of LCDM
in explaining gravitational clustering on large scales, it may at this point
be premature to condemn this model on the basis of small scale observa-
tions alone. It could be that the difficulties alluded to above are a result of
an oversimplification of the complex physical processes involved and that a
more careful analysis of the baryonic physics on small scales including the
hydrodynamical effects of star formation and supernova feedback needs to be
undertaken. For instance both dwarfs and LSB’s have very shallow potential
wells, a strong burst of star formation and supernova activity may therefore
empty dark matter halos of their baryonic content resulting in a large num-
ber of ‘failed galaxies’ and providing a possible resolution to the ‘satellite
catastrophe’. (The failed galaxies will act as gravitational lenses and should
therefore be detectable through careful observations.) Other explanations in-
clude the effects of tidal stripping recently discussed in [103]. Likewise issues
involving beam smearing, the influence of bars and the interaction of baryons
and dark matter in the central regions of galaxies and clusters could be in-
tricately linked with the central cusp issue and must be better understood if
one wishes to seriously test the CDM hypothesis on small scales.

In concluding this discussion on dark matter I would like to briefly men-
tion Modified Newtonian Dynamics (MOND) which, in some circles, is re-
garded as an alternative to the dark matter hypothesis. As the name suggests,
MOND is a modification of Newtonian physics which proposes to explain the
flat rotation curves of galaxies without invoking any assumptions about dark
matter. Briefly, MOND assumes that Newtons law of inertia (F = ma) is
modified at sufficiently low accelerations (a < a0) to

F = maµ(a/a0) , (5.11)

where µ(x) = x when x  1 and µ(x) = 1 when x � 1 [122, 180]. It is easy
to see that this results in the modification of the conventional formula for
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gravitational acceleration F = mgN, resulting in the following relation be-
tween the true acceleration and the Newtonian value: a =

√
gNa0. For a body

orbiting a point mass M , gN = GM/r2. Since the centripetal acceleration
a = v2/r now equals the true acceleration a, one gets

v4 = GMa0 , (5.12)

i.e. for sufficiently low values of the acceleration the rotation curve of an
isolated body of mass M does not depend upon the radial distance r at
which the velocity is measured, in other words not only does this theory pre-
dict flat rotation curves it also suggests that the individual halo associated
with a galaxy is infinite in extent ! (This latter prediction may be a prob-
lem for MOND since recent galaxy-galaxy lensing results [82] suggest that
galaxy halo’s may have a maximum extent of about 0.5 Mpc.) The value of a0
needed to explain observations is a0 ∼ 10−8cm/s2 which is of the same order
as cH0 ! This has led supporters of this hypothesis to conjecture that MOND
may reflect “the effect of cosmology on local particle dynamics” [180]. Al-
though MOND gives results which are in good agreement with observations
of individual galaxies, it is not clear whether it is as successful for explaining
clusters for which strong gravitational lensing indicates a larger mass con-
centration at cluster centers than accounted for by MOND [180, 52]. Another
difficulty with MOND is that it is problematic to embed this theory within a
more comprehensive relativistic theory of gravity and hence, at present, it is
not clear what predictions a MOND-type theory may make for gravitational
lensing and other curved space-time effects. For some recent developments in
this direction see [23].

To summarise, current observations make a strong case for clustered, non-
baryonic dark matter to account for as much as a third of the total matter
density in the Universe Ωm � 1/3. The remaining two-thirds is thought to
reside in a relative smooth component having large negative pressure and
called Dark Energy.

5.2 Dark Energy

5.2.1 The Cosmological Constant and Vacuum Energy

Type Ia supernovae, when treated as standardized candles, suggest that the
expansion of the universe is speeding up rather than slowing down. The case
for an accelerating universe also receives independent support from CMB and
large scale structure studies. All three data sets can be simultaneously satified
if one postulates that the dominant component of the universe is relatively
smooth, has a large negative pressure and ΩDE � 2/3.

The simplest example of dark energy is a cosmological constant, intro-
duced by Einstein in 1917. The Einstein equations, in the presence of the
cosmological constant, aquire the form
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Rik − 1
2
gikR =

8πG
c4
Tik + λgik . (5.13)

Although Einstein originally introduced the cosmological constant (λ) into
the left hand side of his field equations, it has now become conventional to
move the λ-term to the RHS, treating it as an effective form of matter. In
a homogeneous and isotropic Friedmann-Robertson-Walker (FRW) universe
consisting of pressureless dust (dark matter) and λ, the Raychaudhury equa-
tion, which follows from (5.13), takes the form

ä = −4πG
3
aρm +

λ

3
. (5.14)

Equation (5.14) can be rewritten in the form of a force law:

F = −GM
R2 +

λ

3
R, (R ≡ a) (5.15)

which demonstrates that the cosmological constant gives rise to a repulsive
force whose value increases with distance. The repulsive nature of λ could be
responsible for the acceleration of the universe as demonstrated in (5.14).

Although introduced into physics in 1917, the physical basis for a cosmo-
logical constant remained a bit of a mystery until the 1960’s, when it was
realised that zero-point vacuum fluctuations must respect Lorenz invariance
and therefore have the form 〈Tik〉 = λgik [214]. As it turns out, the vacuum
expectation value of the energy momentum is divergent both for bosonic and
fermionic fields, and this gives rise to what is known as ‘the cosmological
constant problem’. Indeed the effective cosmological constant generated by
vacuum fluctuations is

λ

8πG
= 〈T00〉vac ∝

∫ ∞

0

√
k2 +m2k2dk , (5.16)

since the integral diverges as k4 one gets an infinite value for the vacuum
energy. Even if one chooses to ‘regularize’ 〈Tik〉 by imposing an ultraviolet
cutoff at the Planck scale, one is still left with an enormously large value for
the vacuum energy 〈T00〉vac � c5/G2

� ∼∼ 1076GeV4 which is 123 orders of
magnitude larger than the currently observed ρλ � 10−47GeV4. A smaller
ultraviolet cut-off does not fare much better since a cutoff at the QCD scale
results in Λ4

QCD ∼ 10−3GeV4, which is still forty orders of magnitude larger
than observed.

In the 1970’s the discovery of supersymmetry led to the hope that, since
bosons and fermions (of identical mass) contribute equally but with opposite
sign to the vacuum expectation value of physical quantities, the cosmological
constant problem may be resolved by a judicious balance between bosons
and fermions in nature. However supersymmetry (if it exists) is broken at
the low temperatures prevailing in the universe today and on this account
one should expect the cosmological constant to vanish in the early universe,
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but to reappear during late times when the temperature has dropped below
TSUSY. This is clearly an undesirable scenario and almost the very opposite
of what one is looking for, since, a large value of λ at an early time is useful
from the viewpoint of inflation, whereas a very small current value of λ is in
agreement with observations [172, 171].

In the absence of a resolution to the cosmological constant problem the fol-
lowing possibility connecting the vacuum energy with the SUSY and Planck
scales may be worth exploring [172, 171]. The mass scale associated with the
scale of supersymmetry breaking in some models, MSUSY ∼ 1 TeV, lies mid-
way between the Planck scale and 10−3 eV. One could conjecture that the
small observed value of the cosmological constant ρλ � (10−3eV )4 is asso-
ciated with the vacuum in a theory which had a fundamental mass scale
MX �M2

SUSY/MPl, such that ρvac ∼M4
X ∼ (10−3eV )4.

The cosmological constant is also relevant from the perspective of mod-
els with spontaneous symmetry breaking [209]. Indeed, if one examines the
Lagrangian

L =
1
2
gij∂iφ∂jφ− V (φ)

V (φ) = V0 − 1
2
µ2φ2 +

1
4
λφ4, (5.17)

one notices that the symmetric state at φ = 0 is unstable and the system
settles in the ground state φ = +σ or φ = −σ, where σ =

√
µ2/λ, thereby

breaking the reflection symmetry φ ↔ −φ present in the Lagrangian. For
V0 = 0 this potential gives rise to a large negative cosmological constant
λeff = V (φ = σ) = −µ4/4λ in the broken symmetry state. This embarrassing
situation can be avoided only if one chooses a value for V0 which almost
exactly cancels λeff , namely V0 � +µ4/4λ so that λeff/8πG = V0−µ4/4λ �
10−47GeV 4.

The cosmological consequences of this rather ad-hoc ‘regularization’ ex-
ercise are instructive. Unless the value of λeff lies in a very small window,
the universe will be a very different place from the one we are used to. For
instance a negative value of the λ-term λeff/8πG < −10−43GeV 4 will cause
the universe to recollapse (the effect of λ is attractive now instead of being
repulsive) less than a billion years after the big bang – a period which is
much too short for galaxies to form and for life (as we know it) to emerge.
On the other hand a large positive λeff/8πG > 10−43GeV4 makes the uni-
verse accelerate much before the present epoch, thereby inhibiting structure
formation and precluding the emergence of life.

The very small window in λ which allows life to emerge has led some
cosmologists to propose anthropic arguments for the existence of a small
cosmological constant [20, 118, 76, 210]. One such possibility is the following
“if our big bang is just one of many big bangs, with a wide range of vacuum
energies, then it is natural that some of these big bangs should have a vacuum
energy in the narrow range where galaxies can form, and of course it is just
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Fig. 5.4. Spontaneous symetry breaking in many field theory models takes the
form of the Mexican top hat potential shown above. The dashed line shows the
potential before the cosmological constant has been ‘renormalized’ and the solid
line after. (From Sahni and Starobinsky 2000.)

these big bangs in which there could be astronomers and physicists wondering
about the vacuum energy” [210].

I will not discuss the anthropic argument any further in this review but
will point the interested reader to [118, 76, 210] for further discussion of this
issue.

It is important to note that there is no known fundamental symmetry in
nature which will set the value of λ to zero. In its absence, the small observed
value of the dark energy remains somewhat of a dilemma which remains to
be fully understood and resolved. 3

5.2.2 Dynamical Models of Dark Energy

The cosmological constant is but one example of a form of matter (dark
energy) which could drive an accelerated phase in the history of our universe.
Indeed, (5.14) is easily generalised to

ä

a
= −4πG

3

∑

i

(ρi + 3pi) = −4πG
3

∑

i

ρi(1 + 3wi) , (5.18)

3 The important role played by symmetries is illustrated by the U(1) gauge sym-
metry of electrodynamics whose presence implies a zero rest mass for the photon.
No analogous symmetry exists for the neutrino and recent experiments do indi-
cate that neutrino’s could have a small mass.
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where the summation is over all forms of matter present in the universe with
equation of state wi = pi/ρi. Equation (5.18) together with its companion
equation

H2 ≡
(
ȧ

a

)2

=
8πG

3

∑

i

ρi − k

a2
(5.19)

completely describes the dynamics of a FRW universe (k/a2 is the Gaussian
curvature of space).

Clearly a universe consisting of only a single component will accelerate if
w < −1/3. Fluids satisfying ρ + 3p ≥ 0 or w ≥ −1/3 are said to satisfy the
‘strong energy condition’ (SEC). We therefore find that, in order to acceler-
ate, ‘dark energy’ must violate the SEC. Another condition which is usually
assumed to be sacrosanct, but has recently been called into question is the
‘weak energy condition’ (WEC) ρ + p ≥ 0 or w ≥ −1. Failure to satisfy the
WEC can result in faster-than-exponential expansion for the universe and in
a cosmic ‘Big Rip’, which we shall come to in a moment.

It is often more convenient to rewrite (5.18) in terms of the ‘deceleration
parameter’

q = − ä

aH2 =
∑

i

(
4πGρi

3H2 )(1 + 3wi) =
(1 + 3wXΩX)

2
, (5.20)

where Ωi = 8πGρi/3H2 and we have assumed a flat universe with Ωm+ΩX =
1 (ΩX ≡ ΩDE). The condition for accelerated expansion (q < 0) is equivalent
to

wX < − 1
3(1 −Ωm)

, (5.21)

which leads to

w < −1
3

for Ωm = 0 (5.22)

w < −1
2

for Ωm = 1/3 . (5.23)

Equation (5.19) can be used to develop an expression for the Hubble
parameter H ≡ ȧ/a in terms of the cosmological redshift z = a0/a(t) − 1:

H(z) = H0

[
Ωm(1 + z)3 +ΩX(1 + z)3(1+w)

]1/2
, (5.24)

where H0 = H(z = 0) is the present value of the Hubble parameter, Ωm =
8πGρ0m/3H2

0 , ΩX = 8πGρ0DE/3H2
0 , describe the dimensionless density of

matter and dark energy respectively, (w ≡ wDE), and we have made the
assumption of a flat universe so that Ωm +ΩX = 1.

In LCDM cosmology w = −1, ΩΛ = λ/3H2
0 , and the expansion factor has

the elegant form [172]
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a(t) ∝
(

sinh
3
2

√
Λ

3
ct

)2/3

, (5.25)

which smoothly interpolates between a matter dominated universe in the past

(a ∝ t2/3) and accelerated expansion in the future (a ∝ exp
√

Λ
3 t).

We are now in a position to appreciate the evidence for an accelerating
universe which originates in observations of the light flux from high redshift
type Ia supernovae. Type Ia supernovae are extremely bright objects, (MB �
−19.5) which makes them ideally suited for studying the properties of the
universe at large distances.

The light flux received from a distant supernova is related to its absolute
luminosity L and its ‘luminosity distance’ dL through the relation

F =
L

4πd2L
. (5.26)

If one views this problem from within the Newtonian perspective then, since
the geometry of space is Euclidean, dL =

√
x2 + y2 + z2. In general relativity,

on the other hand, the geometry of space can be non-Euclidean, and the
luminosity distance to an object located at redshift z will, in general, depend
both upon the geometry of space as well as the expansion history of the
universe. Indeed, it can be shown that in a spatially flat and expanding FRW
universe, the luminosity distance has the form

dL(z) = (1 + z)
∫ z

0

dz′

H(z′)
. (5.27)

The luminosity distance is shown in Fig. 5.5 for a number of cosmological
models with varying amounts of Ωm and ΩΛ. The limiting case Ωm = 1,
ΩΛ = 0 corresponds to standard cold dark matter (SCDM) in which the
universe decelerates as a weak power law a(t) ∝ t2/3. The other extreme
example ΩΛ = 1, Ωm = 0 describes the de Sitter universe (also known as

steady state cosmology) which accelerates at the steady rate a(t) ∝ exp
√

Λ
3 t.

From Fig. 5.5 we see that a supernova at redshift z = 3 will appear 9 times
brighter in SCDM than it will in de Sitter space !

Systematic studies of type Ia supernovae have revealed that:

– Type Ia Sn are excellent stadardized candles. The dispersion in peak su-
pernova luminosity is small: ∆m � 0.3, and the corresponding change in
intensity is about 25%. In addition the light curve of a type Ia supernova
is correlated with its peak luminosity [149] to a precision of ∼ 7%, so
that brighter supernovae take longer to fade. (Type Ia Sn take roughly
20 days to rise from relative obscurity to maximum light.) This allows
us to ‘standardize’ supernova light curves thereby reducing the scatter
in their luminosities to ∼ 12% which turns type Ia supernovae into very
good standard candles.
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Fig. 5.5. The luminosity distance dL (in units of H−1
0 ) is shown as a function

of cosmological redshift z for spatially flat cosmological models with Ωm + ΩΛ =
1. Heavier lines correspond to larger values of Ωm. The dashed line shows the
luminosity distance in the spatially flat de Sitter universe (ΩΛ = 1). From Sahni
and Starobinsky [172].

– Type Ia supernovae at higher redshifts are consistently dimmer than their
counterparts at lower redshifts relative to what might be expected in
SCDM cosmology. If type Ia supernovae are treated as standard candles
then, assuming systematic effects such as cosmological evolution and dim-
ming by intergalactic dust are either not vitally important or have been
corrected for, the systematic dimming of high−z Sn can be interpreted as
evidence for an accelerated expansion of the universe caused by a form of
‘dark energy’ having large negative pressure.

The evidence for an accelerating universe from high redshift type Ia super-
novae has now received independent support from an analysis of CMB fluc-
tuations (see A. Challinor’s contribution) together with the HST key project
determination of the Hubble parameter. Interestingly, the degeneracy in pa-
rameter space {Ωm, Ωλ} arising from Sn observations is almost orthogonal
to the degeneracy which arises from CMB measurements. This principle of
‘cosmic complementarity’ serves to significantly reduce the errors on Ωm and
Ωλ when the two sets of observations are combined, as shown in Fig. 5.6.

If dark energy is described by an unevolving equation of state w = pX/ρX ,
then the transition between deceleration and acceleration (ä = 0) occurs at
the redshift

(1 + za)−3w = −(1 + 3w)
ΩX

Ωm
w < 0. (5.28)
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Fig. 5.6. Constraints on the density of dark matter Ωm and dark energy in the form
of a cosmological constant Ωλ, determined using WMAP (upper left), WMAP +
other CMB experiments (WMAPext; upper right), WMAPext + HST key project
data (lower left) and WMAPext + HST + supernova data (lower right); from
Spergel et al (2003).

Another important redshift describes the epoch when the densities in dark
matter and dark energy are equal

(1 + zeq)3w =
(
Ωm

ΩX

)
. (5.29)

Substituting ΩΛ = 0.7, Ωm = 0.3 we find za � 0.73, zeq � 0.37 for LCDM.
The fact that the acceleration of the universe is a fairly recent phenomenon il-
lustrates the ‘cosmic coincidence’ puzzle according to which we appear to live
during a special epoch when the densities in dark energy and in dark matter
are almost equal. A recent origin for the acceleration epoch is supported by
supernova observations which suggest a decelerating universe at z >∼ 0.5 [160].
It is important to note that dark energy models with an unevolving equa-
tion of state need to have their initial conditions properly ‘tuned’ in order to
dominate the universe at precisely the present epoch. This problem is most
acute for the cosmological constant. Since the cosmological constant does not
evolve while both matter and radiation evolve rapidly (ρm ∝ a−3, ρr ∝ a−4),
it follows that the small current value ρΛ = λ/8πG � 10−47 GeV4 implies
ρΛ/ρr � 10−123 at the Planck time (when the temperature of the universe
was T ∼ 1019 GeV), or ρΛ/ρr � 10−55 at the time of the electroweak phase
transition (T ∼ 100 GeV). Thus an extreme fine-tuning of initial conditions
is required in order to ensure that ρΛ/ρm ∼ 1 today !



158 Varun Sahni

The fine tuning problem which plagues λ also affects DE models in which
w = constant 
= −1. A combined analaysis of CMB, galaxy clustering and
supernovae data indicates that a constant equation of state for dark energy
must satisfy w < −0.82 at the 95% confidence level [193, 201], and it is
easy to show that for these models the fine tuning (and cosmic coincidence)
problems are almost as acute as they are for the cosmological constant. This
constraint on w also virtually rules out two interesting DE candidates based
on topological defect models: a tangled network of cosmic strings w � −1/3
and domain walls w � −2/3.

5.2.3 Quintessence

It is interesting that the fine tuning problem facing dark energy models with a
constant equation of state can be alleviated if we assume that the equation of
state is time dependent. An important class of models having this property
are scalar fields (quintessence)4 which couple minimally to gravity so that
their Lagrangian density and energy momentum tensor is

L =
1
2
φ̇2 − V (φ) (5.30)

ρ ≡ T 0
0 =

1
2
φ̇2 + V (φ), p ≡ −Tα

α =
1
2
φ̇2 − V (φ) , (5.31)

where we have assumed, for simplicity, that the field is homogeneous. Po-
tentials which are sufficiently steep to satisfy Γ ≡ V ′′V/(V ′)2 ≥ 1 have the
interesting property that scalar fields rolling down such a potential approach
a common evolutionary path from a wide range of initial conditions [217] (see
Fig. 5.7). In these so-called ‘tracker’ models the scalar field density (and its
equation of state) remains close to that of the dominant background matter
during most of cosmological evolution. An excellent example of a tracker po-
tential is provided by V (φ) = V0/φ

α [157]. During tracking the ratio of the
energy density of the scalar field (quintessence) to that of radiation/matter
gradually increases ρφ/ρB ∝ t4/(2+α) while its equation of state remains
marginally smaller than the background value wφ = (αwB − 2)/(α+ 2). For
large values of φ this potential becomes flat ensuring that the scalar field rolls
sufficiently slowly (φ̇2  V (φ)) to allow the universe to accelerate. Note that
for quintessence fields the condition’s (5.22) and (5.23) translate into

wφ < −1
3

⇒ φ̇2 < V (φ)

wφ < −1
2

⇒ φ̇2 <
2
3
V (φ) . (5.32)

(Current observations imply α < 2.)
4 Quintessence is named after the all pervasive fifth element of ancient philosoph-

ical thought. Note that the quintessence Lagrangian is the same as that used for
Inflationary model building.
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Fig. 5.7. The quintessence Q-field while rolling an inverse power law potential
tracks first radiation then matter, before coming to dominate the energy density
of the universe at present. If the initial value of the Q-field density is small then
ρQ remains constant until ρQ ∼ ρrad, and then follows the tracker trajectory. From
Zlatev, Wang and Steinhardt [217].

An extreme example of quintessence is provided by the exponential po-
tential V (φ) = V0 exp (−√

8πλφ/Mp) [157, 213], where Mp = 1/
√
G is the

Planck mass. In this case

ρφ

ρB + ρφ
=

3(1 + wB)
λ2 = constant < 0.2, (5.33)

ρB is the background energy density while wB is the associated background
equation of state. The lower limit ρφ/ρtotal < 0.2 arises because of nucle-
osynthesis constraints which prevent the energy density in quintessence from
being large initially (at t ∼ few sec.). Equation (5.33) suggests that the
exponential potential will remain subdominant if it was so initially. An in-
teresting potential which interpolates between an exponential and a power
law can however give rise to late time acceleration from tracker-like initial
conditions [168]

V (φ) = V0[coshλφ− 1]p, (5.34)

has the property that wφ � wB at early times whereas 〈wφ〉 = (p−1)/(p+1)
at late times. Consequently (5.34) describes quintessence for p ≤ 1/2 and
pressureless ‘cold’ dark matter (CDM) for p = 1. Thus the cosine hyperbolic
potential (5.34) is able to describe both dark matter and dark energy within
a tracker framework (also see [204, 12]).

Remarkably, quintessence can even accommodate a constant equation of
state (w = constant) by means of the potential [172, 173, 203]
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Table 5.1.

Quintessence Potential Reference

V0 exp (−λφ) Ratra and Peebles (1988), Wetterich (1988),
Ferreira and Joyce (1998)

m2φ2, λφ4 Frieman et al (1995)

V0/φ
α, α > 0 Ratra and Peebles (1988)

V0 exp (λφ2)/φα Brax and Martin (1999, 2000)

V0(coshλφ− 1)p Sahni and Wang (2000)

V0 sinh−α (λφ) Sahni and Starobinsky (2000),
Ureña-López & Matos (2000)

V0(eακφ + eβκφ) Barreiro, Copeland and Nunes ( 2000)

V0(expMp/φ− 1) Zlatev, Wang and Steinhardt (1999)

V0[(φ−B)α +A]e−λφ Albrecht and Skordis (2000)

V (φ) ∝ sinh
2(1+w)

w (Cφ+D) , (5.35)

with suitably chosen values of C,D.
Quintessence models can be divided into two categories: models which

roll to large values of φ/mP >∼ 1 and models for which φ/mP  1 at the
present epoch. An important concern for the former is the effect of quantum
corrections which, if large, could alter the shape of the quintessence potential
[102, 33, 59, 182]. An important related issue is that the coupling between
standard model fields and quintessence must be small in order to have evaded
detection. Moreover even small couplings between quintessence and standard
model fields can give rise to interesting changes in cosmology as shown in
[6, 114].

I would like to end this section by mentioning that, due to the short-
age of time I have not been able to cover all of the DE models suggested in
the literature (a number that is growing rapidly !) For this reason this re-
view will not discuss DE due to vacuum polarization[167, 141], k-essence [13],
Cardassian expansion [73], Quasi-Steady State Cosmology [132], scalar-tensor
models [5, 26, 45, 145, 205, 146, 161, 29, 147]. For other interesting approaches
see [15, 83, 84, 62, 137, 80, 104, 105, 125, 187, 215]. A partial list of some pop-
ular quintessence models is given in Table 1, and the reader is also referred
to the dark energy reviews in [172, 41, 143, 171, 140].
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5.2.4 Dark Energy in Braneworld Models

Inspired by the Randall-Sundrum [156] scenario, braneworld cosmology sug-
gests that we could be living on a three dimensional ‘brane’ which is embed-
ded in a higher (usually four) dimensional bulk. According to such a scheme,
all matter fields are confined to the brane whereas the graviton if free to
propagate in the brane as well as in the bulk (see R. Maartens’s contribu-
tion to this volume and [110] for a comprehensive discussion of Braneworld
cosmology.) Within the RS setting the equation of motion of a scalar field
propagating on the brane is

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (5.36)

where [184]

H2 =
8π

3m2 ρ(1 +
ρ

2σ
) +

Λ4

3
+

E
a4

ρ =
1
2
φ̇2 + V (φ) . (5.37)

E is an integration constant which transmits bulk graviton influence onto
the brane. The brane tension σ provides a relationship between the four
dimensional Planck mass (m) and the five-dimensional Planck mass (M)

m =

√
3
4π
(M3
√
σ

)
. (5.38)

σ also relates the four-dimensional cosmological constant Λ4 on the brane to
the five-dimensional (bulk) cosmological constant Λb through

Λ4 =
4π
M3

(
Λb +

4π
3M3σ

2
)
. (5.39)

Note that (5.37) contains an additional term ρ2/σ whose presence can
be attributed to junction conditions imposed at the bulk-brane boundary.
Because of this term the damping experienced by the scalar field as it rolls
down its potential dramatically increases so that inflation can be sourced
by potentials which are normally too steep to produce slow-roll. Indeed the
slow-roll parameters in braneworld models (for V/σ � 1) are [111]

ε � 4εFRW(V/σ)−1, η � 2ηFRW(V/σ)−1, (5.40)

illustrating that slow-roll (ε, η  1) is easier to achieve when V/σ � 1.
Inflation can therefore arise for the very steep potentials associated with
quintessence such as V ∝ e−λφ, V ∝ φ−α etc. This gives rise to the intriguing
possibility that both inflation and quintessence may be sourced by one and
the same scalar field. Termed ‘quintessential inflation’, these models have
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Fig. 5.8. The post-inflationary density parameter Ω is plotted for the scalar
field (solid line) radiation (dashed line) and cold dark matter (dotted line) in the
quintessential-inflationary model decribed by (5.34) with p = 0.2. Late time oscil-
lations of the scalar field ensure that the mean equation of state turns negative
〈wφ〉 � −2/3, giving rise to the current epoch of cosmic acceleration with a(t) ∝ t2

and present day values Ω0φ � 0.7, Ω0m � 0.3. From Sahni, Sami and Souradeep
[169].

been examined in [142, 53, 85, 169, 116, 66, 106, 57, 185, 178, 177]. An example
of quintessential inflation is shown in Fig. 5.8.

A radically different way of making the Universe accelerate was sug-
gested in [55, 170]. The braneworld model developed by Deffayet, Dvali and
Gabadadze (DDG) was radically different from the RS model in that both
the bulk cosmological constant and the brane tension were set to zero, while
a curvature term was introduced in the brane action so that the theory was
described by

S =M3
∫

bulk
R +m2

∫

brane
R+

∫

brane
Lmatter . (5.41)

The rationale for the
∫
braneR term is that quantum effects associated with

matter fields are likely to give rise to such a term in the Einstein action as
discussed by Sakharov in his development of induced gravity [176].

The resulting Hubble parameter in the DDG braneworld is

H =

√
8πGρm

3
+

1
l2c

+
1
lc
, (5.42)

where lc = m2/M3 is a new length scale determined by the four dimensional
Planck mass m and and the five dimensional Planck mass M respectively.
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An important property of this model is that the acceleration of the universe
is not caused by the presence of any ‘dark energy’. Instead, since gravity
becomes five dimensional on length scales R > lc = 2H−1

0 (1 − Ωm)−1, one
finds that the expansion of the universe is modified during late times instead
of early times as in the RS model.

A more general class of braneworld models which includes RS cosmology
and the DDG brane as subclasses was developed in [51, 189] and is described
by the action

S =M3
∫

bulk
(R − 2Λb) +

∫

brane

(
m2R− 2σ

)
+
∫

brane
Lmatter . (5.43)

For σ = λb = 0 (5.43) reduces to the action describing the DDG model,
whereas for m = 0 it describes the Randall-Sundrum model.

As demonstrated by Sahni and Shtanov [170] the braneworld which follows
from the action (5.43) describes an accelerating universe at late times with
the Hubble parameter

H2(z)
H2

0
= Ωm(1+z)3 +Ωσ + 2Ωl ∓

2
√
Ωl

√
Ωm(1+z)3 +Ωσ +Ωl +Ωλb , (5.44)

where

Ωl =
1

l2cH
2
0
, Ωm =

ρ0m

3m2H2
0
, Ωσ =

σ

3m2H2
0
, Ωλb = − λb

6H2
0
. (5.45)

(The ∓ signs refer to the two different ways in which the brane can be embed-
ded in the bulk, both signs give rise to interesting cosmology [170].) As in the
DDG model lc ∼ H−1

0 if M ∼ 100 MeV. On short length scales r  lc and
at early times, one recovers general relativity, whereas on large length scales
r � lc and at late times brane-related effects begin to play an important
role. Indeed by setting M = 0 (Ωl = 0) (5.44) reduces to the LCDM model

H2(z)
H2

0
= Ωm(1+z)3 +Ωσ , (5.46)

whereas for σ = λb = 0 (5.44) reduces to the DDG braneworld. An important
feature of the braneworld (5.44) is that it can lead to an effective equation
of state of dark energy weff ≤ −1. This is easy to see from the expression for
the current value of the effective equation of state [170]

w0 =
2q0 − 1

3 (1 −Ωm)
= −1 ± Ωm

1 −Ωm

√
Ω�

Ωm +Ωσ +Ω� +ΩΛb

, (5.47)

we find that w0 < −1 when we take the lower sign in (5.47), which corre-
sponds to choosing one of two possible embeddings of this braneworld in the
higher dimensional bulk. (The second choice of embedding gives w0 > −1.)



164 Varun Sahni

It is also possible, in this model, for the acceleration of the universe to
be a transient phenomenon which ends once the universe returns to matter
dominated expansion after the current accelerating phase. As discussed in
[170] such a braneworld will not have an event horizon and may therefore
help in reconciling an accelerating universe with the demands of string/M-
theory. Other possibilities of obtaining dark energy from extra dimensions
have been discussed in [7, 144, 44, 150, 151, 117, 34, 138]. The possibility that
DE could arise due to modifications of gravitational physics has also been
examined in [108, 40, 43, 58, 124, 135, 136].

5.2.5 Chaplygin Gas

A completely different route to dark energy is provided by the Chaplygin gas
[92] which obeys the equation of state

pc = −A/ρc . (5.48)

The conservation equation dE = −pdV ⇒ d(ρa3) = −pd(a3) immediately
gives

ρc =

√

A+
B

a6
=
√
A+B(1 + z)6 , (5.49)

where B is a constant of integration. Thus the Chaplygin gas behaves like
pressureless dust at early times and like a cosmological constant during very
late times.

The Hubble parameter for a universe containing cold dark matter and the
Chaplygin gas is given by

H(z) = H0

[

Ωm(1 + z)3 +
Ωm

κ

√
A

B
+ (1 + z)6

]1/2

, (5.50)

where κ = ρ0m/
√
B and it is easy to see from (5.50) that

κ =
ρ0m

ρc
(z → ∞) . (5.51)

Thus, κ defines the ratio between CDM and the Chaplygin gas energy densi-
ties at the commencement of the matter-dominated stage. It is easy to show
that

A = B

{

κ2
(

1 −Ωm

Ωm

)2

− 1

}

. (5.52)

It is interesting that the Chaplygin gas can be derived from an underlying
Lagrangian in two distinct ways:

– One can derive it from a quintessence Lagrangian (5.30) with the potential
[92]

V (φ) =
√
A

2

(
cosh 3φ+

1
cosh 3φ

)
. (5.53)
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– The Chaplygin gas can also be derived from the Born-Infeld form of the
Lagrangian density

L = −V0
√

1 − φ,µφ,µ , (5.54)

where φ,µ ≡ ∂φ/∂xµ. For time-like φ,µ one can define a four velocity

uµ =
φ,µ

√
φ,αφ,α

, (5.55)

this leads to the standard form for the hydrodynamical energy-momentum
tensor

Tµν = (ρ+ p)uµuν − pgµν , (5.56)

where [75]

ρ =
V0√

1 − φ,µφ,µ
, p = −V0

√
1 − φ,µφ,µ , (5.57)

i.e. we have recovered (5.48) with A = V 2
0 .

The fact that the properties of the Chaplygin gas interpolate between
those of CDM and a λ-term led to the hope that the CG might provide a
conceptual framework for a unified model of dark matter and dark energy. It
should however be noted that in contrast to CDM and baryons, the sound
velocity in the Chaplygin gas vc =

√
dpc/dρc =

√
A/ρc quickly grows ∝ t2

during the matter-dominated regime and becomes of the order of the velocity
of light at present (it approaches light velocity asymptotically in the distant
future). Thus, when one examines classical inhomogeneities, the properties of
the Chaplygin gas during the matter-dominated epoch appear to be rather
unusual and resemble those of hot dark matter rather than CDM, despite the
fact that the Chaplygin gas formally carries negative pressure [2].

A ‘generalized Chaplygin gas’ has also been proposed for which p ∝
−1/ρα. The equation of state in this case is

w(a) = − |w0|
[|w0| + 1−|w0|

a3(1+α)

] , (5.58)

which interpolates between w = 0 at early times (a 1) and w = −1 at late
times (a� 1); w0 is the current equation of state at a = 1. (The constant α
regulates the transition time in the equation of state.) WMAP, supernovae
and large scale sructure data have all been used to test Chaplygin gas models;
see [27, 65, 78, 9, 14, 22, 115, 128, 56, 25].

5.2.6 Is Dark Energy a Phantom?

In an influential paper Caldwell [38] noticed that a very good fit to the
supernova-derived luminosity distance was provided by dark energy which
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violated the weak energy condition so that w < −1. He called this Phantom
dark energy.5 Indeed, a study of high-z Sn [99] finds that the DE equation
of state has a 99% probability of being < −1 if no priors are placed on
Ωm ! When these Sn results are combined with CMB and 2dFGRS the 95%
confidence limits on an unevolving equation of state are −1.61 < w < −0.78
[99], which is consistent with estimates made by other groups [193, 201].

A universe filled with Phantom energy has some interesting but bizarre
properties.

– If teq marks the epoch when the densities in matter and phantom energy
are equal then the expansion factor of a universe dominated by phantom
energy grows as

a(t) � a (teq)
[
(1 + w)

t

teq
− w
]2
/

3(1+w)

, w < −1 , (5.59)

and therefore diverges in a finite amount of cosmic time

a(t) → ∞ as t→ tBR =
(

w

1 + w

)
teq . (5.60)

By substituting w < −1 into (5.24) we immediately find that the Hubble
parameter also diverges as t → tBR, implying that an infinitely rapid
expansion rate for the universe has been reached in a finite time. The
divergence of the Hubble parameter is associated with the divergence of
phantom density which grows without bound

ρ(t) ∝
[
(1 + w)

t

teq
− w
]−2

, (5.61)

and reaches a singular value in a finite interval of time ρ(t) → ∞, t→ tBR.
Thus a universe dominated by Phantom energy culminates in a future cur-
vature singularity (‘Big Rip’) at which the notion of a classical space-time
breaks down. (See also [196, 47, 38, 121, 39, 42, 71, 72, 186, 88, 10, 93].)

– The ultra-negative phantom equation of state suggests that the effective
velocity of sound in the medium v =

√|dp/dρ| can become larger than
the velocity of light in this model.

– Although a dynamical model of phantom energy can be constructed with
the ‘wrong’ sign of the kinetic term, see (5.31), such models are plagued
with instabilities at the quantum level [49] which makes their existence
suspected.
It should be pointed out that phantom is not the only way to get w < −1.
A model with similar properties but sharing none of phantom’s patholo-
gies is the braneworld model of [170, 1], which has weff < −1 today but
does not run into a ‘Big Rip’ in the future.

5 Phantom takes its name from Part I of the Star Wars movie series – the Phantom
Menace.
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5.2.7 Reconstructing Dark Energy and the Statefinder Diagnostic

In view of the considerable number of dark energy models suggested in the
literature, it becomes meaningful to ask whether we can reconstruct the prop-
erties of DE from observations in a model independent manner. This indeed
may be possible if one notices that the Hubble parameter is related to the
luminosity distance [195, 175]

H(z) =
[
d

dz

(
dL(z)
1 + z

)]−1

, (5.62)

and that, in the case of quintessence, the scalar field potential as well as its
equation of state can be directly expressed in terms of the Hubble parameter
and its derivative [195, 175]

8πG
3H2

0
V (x) =

H2

H2
0

− x

6H2
0

dH2

dx
− 1

2
Ωm x

3 (5.63)

8πG
3H2

0

(
dφ

dx

)2

=
2

3H2
0x

d lnH
dx

− Ωmx

H2 , x = 1 + z (5.64)

(5.65)

wφ(x) ≡ p

ε
=

(2x/3)d lnH/dx− 1
1 − (H2

0/H
2)Ωmx3 . (5.66)

Both the quintessence potential V (φ) as well as the equation of state wφ(z)
may therefore be reconstructed provided the luminosity distance dL(z) is
known to reasonable accuracy from observations.

In practice it is useful to have an ansatz for either one of three cosmological
quantities: dL(z), H(z) or w(z), which can then be used for cosmological
reconstruction [175, 131, 112, 211]. Popular fitting functions discussed in the
literature include:
(i) An ansatz for the dark energy [173]

ρDE(x) =
N∑

i=0

Aix
i, x = 1 + z . (5.67)

(ii) Fitting functions to the dark energy equation of state [212, 107]:

w(z) =
N∑

i=0

wiz
i

w(z) = w0 +
w1z

1 + z
. (5.68)

The fitting parameters wi, Ai are obtained by matching to observations. In
practice the first few terms in either series (5.67), (5.68) is sufficient since
the current Sn data is quite noisy; see [46, 212, 54, 77, 113, 2] for a discussion
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Fig. 5.9. The relative difference between the Hubble parameter reconstructed from
Sn data and the LCDM value is shown as a function of redshift. Sn data from Tonry
et al (2003) were used for the reconstruction. The best-fit is represented by the thick
solid line assuming Ωm = 0.3. The light (dark) grey contours represents the 1σ (2σ)
confidence levels around the best-fit. The dashed horizontal line shows LCDM. From
Alam, Sahni, Saini and Starobinsky [4].

of these issues. An example of cosmological reconstruction of the Hubble
parameter from Sn data is shown in Fig. 5.9; see also [208, 134].

The Sn inventory is increasing dramatically every year and so are increas-
ingly precise measurements of galaxy clustering and the CMB. To keep pace
with the better quality observational data which will soon become available
and the increasing sophistication of theoretical modelling, a new diagnostic
of DE called ‘Statefinder’ was introduced in [173].

The statefinder probes the expansion dynamics of the universe through
higher derivatives of the expansion factor

...
a and is a natural companion to

the deceleration parameter which depends upon ä (5.20). The statefinder pair
{r, s} is defined as follows:

r ≡
...
a

aH3 = 1 +
9w
2
ΩX(1 + w) − 3

2
ΩX

ẇ

H
, (5.69)

s ≡ r − 1
3(q − 1/2)

= 1 + w − 1
3
ẇ

wH
. (5.70)

Inclusion of the statefinder pair {r, s}, increases the number of cosmological
parameters to four6: H, q r, s. The Statefinder is a ‘geometrical’ diagnostic
in the sense that it depends upon the expansion factor and hence upon the
metric describing space-time. An important property of the Statefinder is
that spatially flat LCDM corresponds to the fixed point
6 r has also been called ‘cosmic jerk’ in [207].
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Fig. 5.10. The time evolution of the statefinder pair {r, s} for quintessence models
and the Chaplygin gas. Solid lines to the right of LCDM represent tracker potentials
V = V0/φ

α, while those to the left correspond to the Chaplygin gas. Dot-dashed
lines represent DE with a constant equation of state w. Tracker models tend to
approach the LCDM fixed point (r = 1, s = 0) from the right at t → ∞, whereas
the Chaplygin gas approaches LCDM from the left. For Chaplygin gas κ is the ratio
between matter density and the density of the Chaplygin gas at early times. The
dashed curve in the lower right is the envelope of all quintessence models, while the
dashed curve in the upper left is the envelope of Chaplygin gas models (the latter
is described by κ = Ωm/1−Ωm). The region outside the dashed curves is forbidden
for both classes of dark energy models. The ability of the Statefinder to differentiate
between dark energy models is clearly demonstrated. From Alam, Sahni, Saini and
Starobinsky [2].

{r, s}
∣
∣
∣
∣
LCDM

= {1, 0} . (5.71)

Departure of a given DE model from this fixed point provides a good way
of establishing the ‘distance’ of this model from LCDM [2]. As demonstrated
in [173, 2, 78, 216] the Statefinder can successfully differentiate between a wide
variety of DE models including the cosmological constant, quintessence, the
Chaplygin gas, braneworld models and interacting DE models; an example
is provided in Fig. 5.10.
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5.2.8 Big Rip, Big Crunch or Big Horizon? –
The Fate of the Universe in Dark Energy Models

The nature of dark energy affects the future of our Universe in a very sig-
nificant way. If DE is simply the cosmological constant, then the universe
will accelerate for ever. Of great importance is the fact that an accelerating
LCDM universe developes an event horizon similar to the one surrounding a
black hole [196]. Consider an event (r1, t1) which we wish to observe at our
location at r = 0. Setting ds2 = 0 we get

∫ r1

0

dr√
1 − κr2 =

∫ t

t1

cdt′

a(t′)
. (5.72)

Any event in the universe will one day be observed by us if the integral in
the RHS of (5.72) diverges as t → ∞. For power law expansion this clearly
implies a ∝ tp, p < 1, i.e. a decelerating universe. In an accelerating universe
exactly the opposite is true, the integral in the RHS converges signalling the
presence of an event horizon. In this case our civilization will receive signals
only from those events which satisfy [172]

∫ r1

0

dr√
1 − κr2 ≤

∫ ∞

t1

cdt′

a(t′)
. (5.73)

For de Sitter-like expansion a = a1 expH(t− t1), H =
√
λ/3, we get r1 =

c/a1H, so that the proper distance to the event horizon is RH = a1r1 = c/H.
In LCDM cosmology,

H ≡ H(t→ ∞) =
√
λ/3 = H0

√
1 −Ωm , (5.74)

and the proper distance to the horizon is

RH =
c

H0
√

1 −Ωm

� 3.67h−1 Gpc , (5.75)

if Ωm � 1/3. Thus our observable universe will progressively shrink as as-
trophysical bodies which are not gravitationally bound to the local group
get pushed to distances beyond RH . (More generally, horizons exist in a
universe which begins to perpetually accelerate after a given point of time
[81, 68, 171]. To this category belong models of dark energy with equation of
state −1 < w < −1/3, as well as ‘runaway scalar fields’ [198] which satisfy
V, V ′, V ′′ → 0 and V ′/V, V ′′/V → 0 as φ→ ∞.)

The presence of an event horizon implies that, at any given moment of
time t0, there is a ‘sphere of influence’ around our civilization. This sphere
has an associated redshift zH , and a celestial body having z > zH will be
unreachable by any signal emitted by our civilization now or in the future;
zH � 1.8 in LCDM cosmology with Ωλ � 2Ωm � 2/3. Thus all celestial
bodies with z > 1.8 lie beyond our event horizon and there is no possibility
of causal contact with any of them.
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Interestingly, an N-body simulation tracking the future of an LCDM uni-
verse has shown that ∼ 100 billion years from now the observable universe will
consist of only a single massive galaxy within our event horizon, the merger
product of the Milky Way and Andromeda galaxies [130]. Furthermore, since
the growth of large scale structure freezes in an accelerating universe, the
mass distribution of bound objects will cease to evolve after about 30 billion
years.

This somewhat gloomy future scenario is not absolutely essential and can
be avoided if the currently observed acceleration of the universe is a tran-
sient phenomenon.7 Just such a possibility exists in a class of braneworld
models [170] in which the current accelerating phase is succeeded by a decel-
erating matter dominated regime. Quintessence potentials can also have this
property, as discussed in [21]. An interesting class of transiently accelerating
DE models is constructed around a scalar field potential which decays with
time and becomes negative at late times [74, 48, 139, 90, 91, 3]. An example
is V = V0 cosφ/f which describes axionic quintessence [74, 48, 139, 3]. Such
a universe recollapses in the future when H(t0 + ∆T ) = 0, and contracts
thereafter towards a ‘Big Crunch’ singularity. Supernova observations indi-
cate that, for typical decaying potentials, the universe will not collapse for at
least ∆T � 20 Gyrs [3].

DE models have also been proposed which encounter a ‘quiescent singu-
larity’ while expanding. At the ‘quiescent singularity’ the second derivative of
the expansion factor diverges while its first derivative remains finite [190, 79]
(i.e. ä → −∞, ȧ � constant). In such models the expansion of the universe
‘brakes’ to a virtual standstill as the universe approaches the singular regime
at which invariants of the space-time metric diverge (RiklmR

iklm → ∞) while,
curiously, the Hubble parameter and the energy density remain finite. Cosmo-
logical consequences of models which encounter a future quiescent singularity
(or a ‘Big Break’ [79]) have been briefly discussed in [1, 190, 79] but need to
be examined in more detail.

Finally, as discussed in Sect. 5.2.6, Phantom models with w < −1 expand
towards a Big Rip, at which the density and all curvature invariants become
infinite. As in the case of the Big Crunch singularity, the Big Rip will occur
only in the very distant future (if it occurs at all). For instance, if w =
constant ≥ −1.5, H0 = 70km/sec/Mpc and Ωm = 0.3, the time to the Big
Rip exceeds 22 Gyr [196].

7 Accelerating cosmologies without event horizons are important in a different
context. Since the conventional S-matrix approach may not work in a universe
with an event horizon, models with horizons may pose a serious challenge to a
fundamental theory of interactions such as string/M-theory.
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5.3 Conclusions and Future Directions

From the theoretical standpoint the single most important question to be
asked of dark energy is

Is w = −1 ?
Rephrased in terms of the Statefinder diagnostic the question is:

Is
...
a /aH3 = 1 ?

If future observations do answer this question in the affirmative8 then, in all
likelyhood the cosmological constant is the vacuum energy, and one will need
to review the cosmological constant problem again, in order to fathom why
the formally infinite quantity 〈Tik〉 is in fact so very small.

If on the other hand, either w 
= −1 or if the DE density is shown to be
time dependent, then the cosmological constant problem may need to be de-
coupled from the DE conundrum and searches for evolving DE models which
produce ρDE � 10−47GeV4 without exacerbating ‘cosmic coincidence’ will
need to be examined deeply in the light of developments both in high energy
physics and in gravitation theory (superstring/M-theory, extra dimensions
etc.). In either case the key to determining the properties of DE to great
precision clearly lies with ongoing and future astrophysical experiments and
observations.

Since the original discovery of an accelerating universe [152, 153, 159] the
Sn data base has grown considerably and data pertaining to ∼ 200 type Ia
supernovae are avaliable in the literature [202, 99, 19, 160]. Although system-
atic effects such as luminosity evolution, dimming by intervening extragalac-
tic material (alternatively brightening due to gravitational lensing) continue
to be a cause of some concern, recall that a luminosity evolution of ∼ 25%
over a lookback time of ∼ 5 Gyr is sufficient to nullify the DE hypothesis
[158], it is reassuring that recent observations of CMB anisotropies and es-
timates of galaxy clustering in the 2dF and SDSS surveys, make a strong
and independent case for dark energy [193, 200, 201]. Indeed, a joint analysis
of CMB data from WMAP + HST Key Project determination of H0 imply
wDE < −0.5 at the 95% confidence level [193].

It is of paramount importance that Sn observations continue to be supple-
mented by other investigations which are sensitive to the geometry of space
and can be used as independent tests of the DE hypothesis. The volume-
redshift test, Sunyaev-Zeldovich surveys, the Alcock-Paczynski test, the an-
gular size-redshift test and gravitational lensing have all been suggested as
possible probes of dark energy, and will doubtless enrich the theory vs obser-
vations debate in the near future. In addition, the proposed SNAP satellite
which aims to measure light curves of ∼ 2000 supernovae within a single year
[219], should provide a big step forward in our understanding of type Ia su-
pernovae and help determine the cosmological parameters to great precision,
as shown in Fig. 5.11.
8 i.e. if w = −1 is measured to satisfyingly high accuracy.
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Acknowledgements

I thank E. Papantonopoulos and the other organisers of this school for their
hospitality, and for organising such a friendly school in such a beautiful envi-
ronment. I also thank Yuri Shtanov and Alexei Starobinsky for their helpful
comments on the first draft of this article.



174 Varun Sahni

References

1. Alam, U. and Sahni, V., astro-ph/0209443.
2. Alam, U., Sahni, V., Saini, T.D. and Starobinsky, A.A., Mon. Not. Roy. Ast.

Soc. 344, 1057 (2003), astro-ph/0303009.
3. Alam, U. Sahni, V. and Starobinsky, A.A., JCAP 0304, 002 (2003), astro-

ph/0302302.
4. Alam, U., Sahni, V., Saini, T.D. and Starobinsky, A.A., astro-ph/0311364.
5. Amendola, L. (1999) Phys. Rev. D 60, 043501.
6. Amendola, L. and Tocchini-Valentini, D. Phys. Rev. D 64, 043509 (2001);

Tocchini-Valentini, D. and Amendola, L. Phys. Rev. D 65, 063508 (2002).
7. Albrecht, A., Burgess, C.P., Ravndal, F. and Skordis, C., Phys. Rev. D 65,

123507 (2002).
8. Albrecht, A. and Skordis, C. Phys. Rev. Lett. 84, 2076 (2000).
9. Alcaniz, J.S., Jain, D. and Dev, A., Phys. Rev. D 67, 043514 (2003), astro-

ph/0210476.
10. Alcaniz, J.S., astro-ph/0312424.
11. Aldering, G., astro-ph/0209550.
12. Arbey, A., Lesgourgues, J and Salati, P., Phys. Rev. D 68 023511 (2003).
13. Armendariz-Picon, C., Mukhanov, V. and Steinhardt, P.J., Phys. Rev.

Lett. 85, 4438 (2000).
14. Avelino, C., Beca, L.M.G., de Carvalho, J.P.M., Martins, C.J.A.P. and Pinto,

P., Phys. Rev. D 67, 023511 (2003), astro-ph/0208528.
15. Axenides, M. and Dimopoulos, K., hep-th/0401238.
16. Bardeen, J.M., Bond, J.R., Kaiser, N. and Szalay, A.S., Astrophys. J.304, 15

(1986).
17. Barnebei, R. et al, Phys. Lett. B 480, 23 (2000).
18. Barreiro,T., Copeland, E.J. and Nunes, N.J., Phys. Rev. D 61, 127301 (2000).
19. Barris, B. J. et al., astro-ph/0310843.
20. Barrow, J.D. and Tipler, F.J. (1986) The Anthropic Cosmological Principle,

New York: Oxford University Press.
21. Barrow, J.D., Bean, R. and Magueijo, J., MNRAS 316, L41 (2000).
22. Bean, R. and Dore, O., Phys. Rev. D 68 023515 (2003), astro-ph/0301308.
23. Bekenstein, J.D., astro-ph/0403694.
24. Benson, A.J. et al. MNRAS 333, 177 (2002).
25. Bento, M., Bertolami and Sen, A.A., Phys. Lett. B 575 172, (2003), astro-

ph/0303538.
26. Bertolami, O. and Martins, P.J. (1999) gr-qc/9910056.
27. Bilic, N., Tupper, G.B. and Viollier, R., Phys. Lett. B 535, 17 (2002).
28. Bolatto, A,D, et al. Astrophys. J. 565, 238 (2002).
29. Boisseau, B., Esposito-Farese, G., Polarski, D. and Starobinsky, A.A.,

Phys. Rev. Lett. 85, 2236 (2000).
30. Bosma, A., astro-ph/0312154.
31. Brax, P. and Martin, J. Phys. Rev. D 61, 103502 (2000); Phys. Lett. B 468,

40 (1999).
32. Brustein, R., hep-ph/9810526.
33. Burgess, C.P., Grenier, P. and Hoover, D., hep-ph/0308252.
34. Burgess, C.P., hep-th/0402200.



5 Dark Matter and Dark Energy 175

35. Bullock, J.S., Kravtsov, A.V. and Weinberg, D.H., Astrophys. J.539, 517
(2000).

36. Burkert, A., Astrophys. J.447, L25 (1995).
37. de Blok, W.J.G. and McGaugh, S.S., MNRAS 290, 533 (1997).
38. Caldwell, R.R., Phys. Lett. B 545, 23 (2002), astro-ph/9908168.
39. Caldwell, R.R., Kamionkowski, M. and Weinberg, N.N., Phys. Rev. Lett. 91

071301 (2003), astro-ph/0302506.
40. Capozziello, S., Carloni, S. and Troisi, A., astro-ph/0303041.
41. Carroll, S.M., Living Rev. Rel. 4 1 (2001), astro-ph/0004075.
42. Carroll, S.M., Hoffman, M. and Trodden, M., Phys. Rev. D 68, 023509 (2003).
43. Carroll, S.M., Duvvuri, V., Trodden, M. and Turner, M.S., astro-ph/0306438.
44. Chen, J.-W., Luty, M.A. and Ponton, E., JHEP 0009, 012 (2000).
45. Chiba, T. Phys. Rev. D D60, 083508 (1999).
46. Chiba, T. and Nakamura, T., Phys. Rev. D 62, 121301(R) (2000).
47. Chiba, T., Okabe, T. and Yamaguchi, M, 2000, Phys. Rev. D 62, 023511.
48. Choi, K., Phys.Rev. D 62 043509 (2000), hep-ph/9902292.
49. Cline, J.M., Jeon, S. and Moore, G.D., hep-ph/0311312.
50. Coles, P. and Lucchin, F. Cosmology, The origin and evolution of cosmic

structure, Wiley.
51. Collins,H. and and Holdom, B., Phys. Rev. D 62, 105009 (2000), hep-

ph/0003173.
52. Combes, F., astro-ph/0206126.
53. Copeland, E.J., Liddle, A.R. and Lidsey, J.E. Phys. Rev. D 64 023509 (2001).
54. Corasaniti, P.S. and Copeland, E.J., Phys. Rev. D 67 063521 (2003), astro-

ph/0205544.
55. Deffayet, C., Dvali, G. and Gabadadze, G., Phys. Rev. D 65, 044023 (2002),

astro-ph/0105068; Deffayet, C., Landau, S.J., Raux, J., Zaldarriaga, M. and
Astier, P., Phys. Rev. D 66, 024019 (2002), astro-ph/0201164.

56. Dev, A., Jain, D. and Alcaniz, J. astro-ph/0311056.
57. Dimopoulos, K., Phys. Rev. D 68, 123506 (2003), astro-ph/0212264.
58. Dolgov, A.D. and Kawasaki, M, Phys. Lett. B 573, 1 (2003), astro-

ph/0307285.
59. Doran M. and Jaeckel, J., Phys. Rev. D 66, 043519 (2003), astro-ph/0203018.
60. Efstathiou, G., Sutherland, W. and Maddox, S.J., Nature 348, 705 (1990).
61. Elgaroy, O. et al., Phys. Rev. Lett. 90, 021802, hep-ph/0204152.
62. Elizalde, E., Lidsey, J., Nojiri, S. and Odintsev, S.D., Phys. Lett. B574, 1

(2003), hep-th/0307177.
63. Ellis, J., astro-ph/0304183.
64. Evans, N.W. astro-ph/0102082.
65. Fabris, J.S., Goncalves, S.V. and de Souza, P.E., astro-ph/0207430.
66. Feng, B. and Li, M., Phys. Lett., B 564, 169 (2003), hep-ph/0212213.
67. Ferreira, P.G. and Joyce, M. Phys. Rev. Lett. 79, 4740 (1997); Ferreira, P.G.

and Joyce, M. Phys. Rev. D 58, 023503 (1998).
68. Fischler, W., Kashani-Poor, A., McNees, R. and Paban, S., JHEP 0107 003

(2001), hep-th/0104181.
69. Flores, R.A. and Primack, J.R. Astrophys. J.427, L1 (1994).
70. Frampton, P.H. and Takahashi, T., Phys. Lett. B 557, 135 (2003), astro-

ph/0211544.
71. Frampton, P., Phys. Lett. B 555, 139 (2003).



176 Varun Sahni

72. Frampton, P. and Takahashi, T., Phys. Lett. B 557, 135 (2003).
73. Freese, K. and Lewis, M., Phys. Lett. B 540 1 (2002), astro-ph/0201229.
74. Frieman, J., Hill, C.T., Stebbins,A. and Waga, I., Phys. Rev. Lett. 75, 2077

(1995).
75. Frolov, A., Kofman, L. and Starobinsky, A.A., Phys. Lett. B 545, 8, (2002),

hep-th/0204187.
76. Garriga, J. and Vilenkin, A., Phys. Rev. D 61 083502 (2000).
77. Gerke, B, & Efstathiou, G., Mon. Not. Roy. Ast. Soc. 335 33 (2002), astro-

ph/0201336.
78. Gorini, V., Kamenshchik, A. and Moschella, U., astro-ph/0209395.
79. Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V. hep-th/0311111.
80. Gu, P., Wang, X. and Zhang, X., Phys. Rev. D 68, 087301 (2003), hep-

ph/0307148.
81. Hellerman, S., Kaloper, N. and Susskind, L., JHEP 0106 003 (2001), hep-

th/0104180.
82. Hoekstra, H., yee, H.K.C. and Gladders, M.D., astro-ph/0109514.
83. Hsu, S. and Murrey, B., astro-ph/0402541.
84. Hsu, S., hep-th/0403052.
85. Huey, G. Huey Lidsey, J. Phys. Lett. B 514, 217 (2001).
86. Huterer, D. and Turner, M. S., Phys. Rev. D , 60 81301 (1999).
87. Jing, Y.P. and Suto, Y., apj 529, L69 (2000).
88. Johri, V.B., 2003, astro-ph/0311293.
89. Jungman, J., Kamionkowski, M. and Griest, K., Phys. Rep. 267, 195 (1996).
90. Kallosh,R., Linde, A., Prokushkin, S. and Shmakova, M., Phys. Rev. D 66

123503 (2002), hep-th/0208156.
91. Kallosh, R. and Linde,A. JCAP 02 02 (2003), astro-ph/0301087.
92. Kamenshchik, A., Moschella, U. and Pasquier, V., Phys. Lett. B 511 265

(2001), gr-qc/0103004.
93. Kaplinghat, M. and Bridle, S., astro-ph/0312430.
94. Kauffmann, G., White, S.D.M. and Guiderdoni, B., MNRAS 264, 201 (1993).
95. Khalil, S. and Munoz, C., Contemp.Phys. 43, 51 (2002), hep-ph/0110122.
96. Khlopov, M. Yu., Cosmoparticle physics, World Scientific, 1999.
97. Klenya, J., et al, Astrophys. J.563, L115 (2001).
98. Klypin, A. et al. Astrophys. J.522, 82 (1999).
99. Knop, R.A., et al., 2003, astro-ph/0309368.

100. Kolb, E., Phys. Rev. Lett. 81, 4048 (1998).
101. Kolb, E.W. and Turner, M.S. (1990) The Early Universe, Addison Wesley.
102. Kolda, C. and Lyth, D.H., Phys. Lett. B458 197 (1999).
103. Kravtsov, A.V., Gnedin, O. and Klypin, A., astro-ph/0401088.
104. Li, M., Wang, X., Feng, B. and Zhang, X., Phys. Rev. D 65, 103511 (2002),

hep-ph/0112069.
105. Li, M., and Zhang, X., Phys. Lett. B573, 20 (2003), hep-ph/0209093.
106. Liddle, A. R. and Urena-Lopez, L.A., astro-ph/0302054.
107. Linder, E.V., Phys. Rev. Lett. 90 091301, (2003), astro-ph/0208512.
108. Lue, A., Scoccimaro, R. and Starkman, G.D., Phys. Rev. D 69, 044005 (2004),

astro-ph/0307034.
109. Ma, C.P. and Boylan-Kolchin, M., astro-ph/0403102.
110. Maartens, R., gr-qc/0312059.
111. Maartens, R., Wands, D., Bassett, B.A. and Heard, I.P.C., Phys. Rev. D 62,

041301 (2000).



5 Dark Matter and Dark Energy 177

112. Maor, I., Brustein, R. and Steinhardt, P.J., Phys. Rev. Lett. 86, 6 (2001).
113. Maor, I. et al., Phys. Rev. D 65 123003 (2002), astro-ph/0112526.
114. Maccio, A.V. et al., astro-ph/0309671.
115. Mackler, M., de Oliviera, Q. S. and Waga, I., Phys. Rev. D 68 123521 (2003),

astro-ph/0306507.
116. Majumdar, A. S. Phys. Rev. D 64, 083503 (2001).
117. Maroto, A.L., hep-ph/0402278.
118. Martel, H., Shapiro, P., and Weinberg, S., Astrophys. J.492, 29 (1998).
119. Martinez, V.J. and Saar, E. “Statistics of the galaxy distribution”, Chapman

and Hall, 2002.
120. Mateo, M.L., A.R.A.A. 36, 435 (1998).
121. McInnes, B., JHEP 0208, 029 (2002), hep-th/0112066.
122. Milgrom, M., Astrophys. J.270, 365; 270, 371; 270, 384 (1983).
123. Minakata, H. and Sugiyama, H., hep-ph/0212240.
124. Mofatt, J.W., astro-ph/0403266.
125. Mongan, T.R., Gen.Rel.Grav. 33, 1415 (2001), gr-qc/0103021.
126. Moore, B. et al., Astrophys. J. 524, L19 (1999).
127. Moore, B. et al., Astrophys. J. 310, 1147 (1999).
128. Multimaki, T., Manera. M. and Gaztanaga, E., Phys. Rev. D 69 023004,

(2004), astro-ph/0307533.
129. Munoz, C., IJMPA (in press) hep-ph/0309346.
130. Nagamine, K. and Loeb, A., New Astron. 8, 439 (2003), astro-ph/0204249.
131. Nakamura, T. and Chiba, T., Mon. Not. Roy. Ast. Soc. , 306, 696 (1999).
132. Narlikar, J.V. et al., Astrophys. J.585 1, (2003) astro-ph/0211036, and refer-

ences therein.
133. Navarro, J.F., Frenk, C.S. and White, S.D.M. MNRAS 275, 720 (1995); apj

462, 562 (1996); Astrophys. J. 490, 493 (1997).
134. Nesseris, S. and Perivolaroupolos, L., astro-ph/0401556.
135. Nojiri, S. and Odintsev, S.D., Phys. Rev. D 68, 123512 (2003), hep-

th/0307288.
136. Nojiri, S. and Odintsev, S.D., Phys. Lett. B576, 5 (2003), hep-th/0307071.
137. Nojiri, S. and Odintsev, S.D., Phys. Lett. B562, 147 (2003), hep-th/0303117.
138. Nojiri, S. and Odintsev, S.D., Phys. Lett. B565, 1, (2003), hep-th/0304131.
139. Ng, S.C. and Wiltshire, D.L., Phys.Rev. D 64 123519 (2001), astro-

ph/0107142.
140. Padmanabhan, T., Phys. Rep. 380, 235 (2003), hep-th/0212290.
141. Parker, L. and Raval, A., Phys. Rev. D 60, 063512, 123502 (1999).
142. Peebles, P.J.E. and Vilenkin, A., Phys. Rev. D 59 063505 (1999).
143. Peebles, P.J.E. and Ratra, B., Rev.Mod.Phys. 75, 559 (2002), astro-

ph/0207347.
144. Perivolaropoulos, L. and Sourdis, C., Phys. Rev. D 66, 084018 (2002).
145. Perrotta, F., Baccigalupi, C. and Matarrese, S. Phys. Rev. D 61, 023507

(1999).
146. Perrotta, F. and Baccigalupi, C. Phys. Rev. D 59, 123508 (1999).
147. Perrotta, F., Matarrese, S., Pietroni, M. and Schimd, C., astro-ph/0310359.
148. Persic, M., Salucci, P. and Stel, F., astro-ph/9506004.
149. Phillips, M.M. Astrophys. J.413, L105 (1993).
150. Peitroni, M., Phys. Rev. D 67, 103523 (2003).
151. Peloso, M. and Poppitz, E., Phys. Rev. D 68, 125009 (2003).



178 Varun Sahni

152. Perlmutter, S.J. et al., Nature 391, 51 (1998).
153. Perlmutter, S.J. et al., Astrophys. J.517, 565 (1999).
154. Pope, A.C., et al, astro-ph/0401249.
155. Primack, J., astro-ph/0112255.
156. Randall, L. and Sundrum, R., Phys. Rev. Lett. 83, 4690 (1999).
157. Ratra, B. and Peebels, P.J.E., Phys. Rev. D 37, 3406 (1988).
158. Riess, A.G., Filipenko, A.V., Li, W. and Schmidt, B.P. Astron.J. 118 2668

(1999), astro-ph/9907038.
159. Riess, A.G. et al., Astron. J. 116, 1009 (1998).
160. Riess, A.G. et al., astro-ph/0402512.
161. de Ritis, R., Marino, A.A., Rubano, C. and Scudellaro, P. Phys.Rev. D 62

043506 (2000).
162. Rhee, G., Klypin, A. and Valenzuela, O., astro-ph/0311020.
163. Roszkowski, L., hep-ph/9903467.
164. Roy, D.P. physics/0007025; also see E. Corbelli and P. Salucci, astro-

ph/9909252.
165. Sahni, V., PhD thesis, Moscow State University, Moscow, 1984.
166. Sahni, V. and Coles, P., Phys. Rept., 262, 1 (1995).
167. Sahni, V. and Habib, S., Phys. Rev. Lett. 81, 1766, (1998), hep-ph/9808204.
168. Sahni, V. and Wang, L., Phys. Rev. D 62, 103517 (2000).
169. Sahni, V., Sami, M. and Souradeep, T., Phys. Rev. D 65 023518 (2002).
170. Sahni, V. and Shtanov, Yu.V., JCAP 0311,014, (2003), astro-ph/0202346.
171. Sahni, V., Class.Quant.Grav. 19 3435 (2002), astro-ph/0202076.
172. Sahni, V. and Starobinsky, A.A. IJMP D 9, 373 (2000).
173. Sahni, V., Saini, T.D., Starobinsky, A.A. and Alam, U., JETP Lett. 77 201

(2003), astro-ph/0201498.
174. Sahni, V., Chaos, Solitons and Fractals 16, 527 (2003).
175. Saini, T.D., Raychaudhury, S., Sahni, V. and Starobinsky, A.A., Phys. Rev.

Lett. 85, 1162 (2000).
176. Sakharov, A.D., Dokl. Akad. Nauk SSSR. Ser. Fiz. 177, 70 (1967) [Sov.

Phys. Dokl. 12, 1040 (1968)]; reprinted in: Usp. Fiz. Nauk 161, 64 (1991)
[Sov. Phys. Usp. 34, 394 (1991)]; Gen. Rel. Grav. 32, 365 (2000).

177. Sami, M., Dadhich, N. and Shiromizu, T., Phys. Lett. B 568 118 (2003),
hep-th/0304187.

178. Sami, M. and Sahni, V., hep-th/0402086.
179. Sand, D.J., Treu, T, Smith, G.P. and Ellis, R.E., astro-ph/0309465.
180. Sanders, R.H. and McGaugh, S.S., astro-ph/0204521.
181. Sathyaprakash, B.S., Sahni, V. and Shandarin, S.F., ApJL, 462, L5 (1996).
182. Seery, D. and Bassett, B.A., astro-ph/0310208.
183. Shandarin, S.F., Sheth, J.V. and Sahni, V., astro-ph/0312110.
184. Shiromizu, T., Maeda, K. and Sasaki, M., Phys. Rev. D 62, 024012 (2000).
185. Shiromizu,, T., Torii, T. and Uesugi, T., hep-th/0302223.
186. Singh, P., Sami, M. and Dadhich, N.K., Phys. Rev. D 68, 023522 (2003),

hep-th/0305110.
187. Shapiro, I. and Sola, J., Phys. Lett. B475, 236 (2000), hep-ph/9910462.
188. Shapiro, I., Sola, J., Espana-Bonet, C. and Ruiz-Lapuente, P., Phys. Lett.

B574, 149 (2003), astro-ph/0303306.
189. Shtanov, Yu., hep-th/0005193.
190. Shtanov, Yu. and Sahni, V., Class. Quant. Grav. 19, L101 (2003), gr-

qc/0204040.



5 Dark Matter and Dark Energy 179

191. Sofue, Y. and Rubin. V., astro-ph/0010594.
192. Somerville, R., Astrophys. J.572 L23 (2002).
193. Spergel, D.N., et al, Astrophys.J.Suppl. 148, 175 (2003), astro-ph/0302209.
194. Starobinsky, A. A. and Sahni, V., in Modern Theoretical and Experimental

Problems of General relativity MGPI Press, Moscow, 1984, p. 77.
195. Starobinsky, A.A., JETP Lett. 68, 757 (1998).
196. Starobinsky, A.A. Grav. Cosmol. 6, 157 (2000).
197. Steinhardt,P.J., Wang, L., and Zlatev, I., Phys. Rev. D 59, 123504 (1999).
198. Steinhardt, P.J., “Quintessential Cosmology and Cosmic Acceleration”,

http://feynman.princeton.edu/ steinh.
199. Tasitsiomi, A. astro-ph/0205464.
200. Tegmark, M. et al, astro-ph/0310725.
201. Tegmark, M. et al, astro-ph/0310723.
202. Tonry, J.L., et al., 2003, Astrophys. J.594, 1, astro-ph/0305008.
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