
Design Rationale in Exemplary Business

Process Modeling

H. Breitling, A. Kornstädt, J. Sauer

Abstract: Exemplary Business Process Modeling (EBPM) is an efficient

approach to object-oriented software application design. With the help of

EBPM, a substantial amount of information about business processes and t

work practice in the application domain can be gathered and connected to

the design and usage model of the software system under scrutiny. Al-

though EBPM was not originally conceived for this purpose, the experience

which we share in this article suggests that EBPM should be a standard

method for building a basis of knowledge from which design rationale can

be gathered.

Keywords: design rationale in software engineering; exemplary business

process modeling; cooperation scenario; scenario-based design; object ori-

entation

The Exemplary Business Process Modeling (EBPM) approach is a sce-

nario-based method that encompasses models and methodologies for the

analysis and design of business processes and the software that supports

them. It can be employed to model present as well as future processes.

EBPM was developed cooperatively at C1 WPS and Hamburg Univer-

sity in the context of the Tools and Materials approach and its application-

was hedged when it occurred to us that neither texts nor standard UML

diagrams alone are sufficient to discuss questions of work routine and soft-

ware systems with users. Building on Krabbel’s and Wetzel’s Cooperation

diagrams we added element after element and finally tool support on the

basis of BOC’s Adonis modeling tool.

The main benefit of EBPM is the comprehensibility of its models and its

suitability for both software designers and domain experts. Therefore, it

can be used in workshops and modeling sessions with participants from

technically-oriented and domain-oriented groups. Its focus is on modeling

exemplary, concrete scenarios without case differentiation.

Being exemplary instead of exhaustive and capturing knowledge about

current and future business processes instead of decisions, EBPM is not a

design rationale methodology. Instead, EBPM is a valuable auxiliary

methodology on which methodologies that capture design rationale can

9.1 Overview of Exemplary Business Process Modeling

9

oriented document types [19] – significantly influenced by Züllighoven. It

192 H. Breitling, A. Kornstädt, J. Sauer

foot. We have employed EBPM for several years to capture current and fu-

ture processes in banking, insurance and logistics projects, often in the

context of migrating between software systems. Depending on the cardi-

nality of process groups under scrutiny, well over 100 EBPM models were

furnished per project.

We capture design rationale in order to provide a sound basis for deciding

about how to design new or how to evolve existing software systems. To

this end, we document decisions during the software development process

together with problems, influencing variables, alternatives (also the dis-

carded ones), arguments, and discussions. It has been shown that this in-

formation is extremely valuable when it comes to explain the system to

new members of the development team [9].

A couple of methodologies for capturing design rationale have been

developed (see [4][Chap. 1 in this book] for an introduction). In these in-

terpretations of design rationale management, participants aim at recording

every decision including its underlying decision base (every option (dis-

carded or not), every influencing variable, and every discussion). These

exhaustive forms of rationale management require substantial – sometimes

prohibitive – investments of resources (see Sect. 1.5.1 for a discussion of

the capture problem).

Experience from our projects suggests that in many cases it is not viable

to manage design rationale information to that extent – especially when it

comes to recording decisions which concern design alternatives that have

been discarded and do not become a part of the shipped software product.

Instead we follow suggestions brought forward by Dutoit and Paech [5] to

closely integrate requirements engineering and capturing design rationale.

Therefore, we aim at striking a balance between the need for – potentially

quite costly – design rationale information and limiting ourselves to the

information that we find to be essential when it comes to make design

decisions.

But what rationale information is essential? We found that as in re-

quirements engineering, the users’ work context is the ultimate source for k

justifying the system’s design. It is concepts and processes from that

source that are responsible for the vast majority of requests for adding new

or changing existing features. As EBPM was devised for capturing the

users’ work context complete with processes, work objects, and underlying

concepts, it is ideally suited to form the basis for design rationale

9.2 The EBPM Paradigm

Design Rationale in Exemplary Business Process Modeling 193

extraction, especially in the context of customized software development.

It is these aspects of EBPM that we focus on in this contribution.

Regarding the categorization given in [4][Chap. 1 in this book], EBPM

is a prescriptive approach in the sense that its models’ basic structure is

given by a meta model that has to be used and that guides the thinking of

designers. EBPM aims to be less intrusive by granting the designers some

flexibility in adopting this meta model for their specific needs.

The term scenario was established in informatics at the latest at the begin-

ning of the nineties. In [1] (pp. 46–47), Carroll describes them as follows:

− Scenarios are stories – about persons and their actions

− Scenarios are set in a specific context

− Scenarios contain agents or actors that have goals that they follow

− Scenarios have a plot; they consist of a sequence of actions and events

− The scenario’s plot is supposed to be supported at least in part with the

help of a software application

In EBPM, scenarios are represented graphically with

− Icons for actors, business objects and other artifacts

− Arrows for actions and

− Memo sheets for context information

See Fig. 9.1 for an example.

Scenarios are modeled in three layers with different model types: Coop-

eration Scenarios focus on the interaction between several actors, Work-

place Scenarios focus on the actions that an individual actor carries out at

his workplace alone and IT Interaction Scenarios describe the interaction

of an individual actor with a single application system or a group of related aa

systems. In every scenario type, the flow of action is clearly discernible.

Artifacts from these models can be associated with a Model of Terms

that relates business terms with another and can give explanations for them

in the form of a glossary. Different roles of actors can be described in a

model of roles.

If a substantial number of cooperation scenarios needs to be modeled,

business use case diagrams are added to provide a graphical overview.

9.2.1 EBPM as Scenario-Based Method

194 H. Breitling, A. Kornstädt, J. Sauer

Fig. 9.1. Example cooperation scenario

A business process is typically modeled with EBPM in two to four re-

lated scenarios. As already said, scenarios depict one relevant, exemplary

sequence of events without case differentiation. This greatly improves the

comprehensibility of the models. If there are important variants, then these

are depicted in scenarios of their own. Minor variants can be annotated in

textual form with notes that are added to certain steps of scenarios.

Sometimes we develop EBPM models with only one or two participants in

direct interviews. Most often though, we hold modeling workshops with

many participants from technically oriented and domain oriented groups.

The processes can be treated from different angles in these workshops.

It has been constantly shown in our projects that the participants from

different group can equally contribute their point of view and their knowl-

edge. We have found that EBPM models are comprehensible for partici-

pants with different backgrounds and serve well as a common basis and

design platform. This is mainly because the models capture domain spe-

cific actors and their action together with the related artifacts in a simple,

graspable notation.

The models are created during the workshops. We often use a setting

with a moderator who is in charge of the discussion and a modeler at a lap-

top connected to a video projector. The modeler immediately translates the

9.2.2 Modeling Workshops

Design Rationale in Exemplary Business Process Modeling 195

contributions of the participants into EBPM models that are visible to

everyone. This procedure shortens the feedback loop significantly.

Even though the EBPM can be used with a flip chart, pen, and paper, soft-

ware tool support is essential for its efficient use. A standard tool for

graphical modeling (like MS Visio) can be used, but a specific software

tool offers several advantages like stepwise visualization of scenarios, que-

ries over a large quantity of models and navigation between models in a

hypertext style. Such a tool enables the efficient, direct creation of models

during modeling sessions.

We are using a tool that offers many more possibilities, e.g., the attach-

ment of arbitrary files to all model elements or the automatic numbering of

steps. This facilitates the modelers’ work a lot and offers expanded possi-

bilities. All models are filed in a centralized repository to promote coordi-

nation in the design team.

In this section, we will present the main models of EBPM and their inter-

connections.

The starting point of EBPM is the Cooperation Scenario. Figure 9.2 shows

the basic underlying meta model. A visual language is used to represent a

specific cooperative work scenario. A fundamental part of the scenario isff

its background story, a short text that explicitly describes the story’s con-

text and states the domain-related assumptions made for the model. It

needs to be reasonably strict in order to motivate the specific scenario and

exclude alternative courses of action.

The story that is being told is divided into consecutive, numbered steps.

Every step is performed by an actor. In a Cooperation Scenario step, an ac-

tor can basically do two things: either cooperate with another actor – byr

just communicating, or else transferring a work object to her or him for

further processing – or inspect and/or modify a work object on her or his

own. Each action type is visually represented by a different type of arrow.

9.3.1 Cooperation Scenario

9.3 EBPM Models

9.2.3 Tool Support for EBPM

196 H. Breitling, A. Kornstädt, J. Sauer

Fig. 9.2. Basic meta model of the Cooperation Scenario. For clarity, the corre-

sponding EBPM symbols are located next to each box

Work objects are first level model elements of their own. A lightning

bolt symbol indicates that the work object is not physically present but ex-

its in an IT system only. The steps of the Cooperation Scenario are to be

read in sequence according to the numbers on the action arrows. Thus, the m

Cooperation scenario is a story in pictures, resembling storyboards or

comic strips. This is illustrated in Fig. 9.3 that starts showing step 1 only

and then incrementally adds steps.

The steps of the Cooperation Scenario correspond to elementary sen-

tences in natural language. For example, step 2 in Fig 9.3 reads as: “The

Mail Room (team) uses a bar code sticker to attach an application number

to the X-Ray”. The actor performing the step takes the role of the subject,

the action itself is represented as a verb, the involved other actor and the

work objects become objects in the grammatical sense.

Also note that this closeness to natural language sentences requires that

work objects are duplicated for every step. This means that there is not

only one instance of a work object but it appears as many times as it is

used in an action. For example, the scanned application form occurs sev-

eral times in Figs. 9.1 and 9.3.

Design Rationale in Exemplary Business Process Modeling 197

Fig. 9.3. The Cooperation Scenario as a story in pictures

When a cooperation scenario becomes crowded with too many actions,

they become less readable. Most of the time, not all actions have to deal

with cooperation but take place at one individual actor’s work place in-

stead. In order to unclutter the cooperation scenarios, actions that are con-

fined to one workplace only, can be “folded” into a Workplace Scenario

that acts as a sub-model of the main Cooperation Scenario (see Fig. 9.4 for

an example). A Cooperation Scenario references each of its Workplace

Scenarios as one single step of the entire sequence. The Workplace Sce-

narios for a specific actor are visualized as numbered items over a desk

symbol that is shown next to the actor. This way, Workplace Scenarios can

be “stepped over” when examining the big picture of the Cooperation

Scenario (see Fig. 9.4).

9.3.2 Workplace Scenario

198 H. Breitling, A. Kornstädt, J. Sauer

indicated electronic documents. The presence of a workplace scenario is indicated

by the desk symbol next to the actor in the top left figuret

The Model of Terms contains the relevant terms for the domain concepts

of one or more Cooperation as well as Workplace Scenarios and relates

them to each other. The work objects in the scenario models are instances

of the concepts in the Model of Terms.

The elements of the Model of Terms can be related via the “is-a” asso-

ciation, “is-part-of” association or a weak, untyped association type whoser

instances can be augmented with free text. Elements in the Model of

Terms can be stereotyped as containers such as folders. Those are con-

nected with other objects using the “contains”-association. Furthermore,

there are IT-inspired stereotypes Tool and Service (see details given later).

Although the Model of Terms of EBPM can be a starting point for IT

system design, it is important to emphasize that it cannot naively be

mapped to a UML Class Model or to an ER model. It is strictly domain-

oriented and does not define classes, class operations or the cardinality of

relations. Consequently, transformation from the Model of Terms to

UML’s Class Model cannot be automated.

Fig. 9.4. Expanding a workplace step to a Workplace Scenario. Lightning bolts

9.3.3 Model of Terms

Design Rationale in Exemplary Business Process Modeling 199

Fig. 9.5. Metamodel overview

While the three diagram types discussed so far are invariably used when

modeling business processes, diagrams of the following three types are

only used when the specific need arises. We will not describe meta models

for these types here, but show how they relate to others in Fig. 9.5.

− Models of Roles can be used in complex organizations to indicate which

roles certain actors can take. It liberates modelers from using individual

actors only.

− IT Interaction Scenarios depict one actor interacting with one or more IT
systems. These scenarios resemble UML’s sequence diagrams except

that the communication shown is between the actor and the system, not

inside a system

− Business Use Case Diagrams provide an overview of several Coopera-

tion Scenarios. The Business Use Case bubbles in the diagram reference

the Cooperation Scenario models

In this section, we will elucidate how an application context captured with

the various kinds of EBPM models can help software professionals to

make rational design decisions about: the business object class model, the

9.4 Capturing Design Rationale

9.3.4 Other Diagram Types

200 H. Breitling, A. Kornstädt, J. Sauer

relational database model, tool features, candidates for services, the front

end technology, the communication infrastructure and the usage model as-

pects that are related to the work processes in the application context.

At this point it has to be stressed that in all of the following cases,

references to attributes, methods, and class hierarchies only pertain to

those features that directly correspond to elements in the application

domain. No software system can be constructed by referring to the applica-

tion domain alone. Most classes and class hierarchies will therefore have

to have technology-based attributes and classes such as classes for persis-

tence and graphic display. However, these technological aspects only come

into play in design stages which are outside the domain of EBPM.

We find that the problems of maintaining design models and linking

them to EBPMs are not worth the effort. Instead, we use EBPMs as a mere

light-weight approach for gathering requirements as a basis for extracting

design rationale. Based on these models, we usually build prototypes of

low complexity (PowerPoint mocks, executable GUI mocks, or prototypes

with a GUI and very limited functionality) to discuss our understanding of

the application domain and our solution approach with users. Based on

these feedback cycles, we either modify EBPMs or refine our prototypes.

The most straightforward way of deriving a design decision from an

EBPM model is to take the Models of Terms as input for a class model of

the application’s business objects. These models comprise a wealth of in-

formation that corresponds to features of class models:

− Each work object in a Model of Terms is a good candidate for a business

object class. This is in accordance with the underlying principle of ob-

ject-oriented design – namely that objects in the system correspond to

objects in the application domain. This principle of responsibility driven

programming language “Simula” [3], namely simulation. Depending on

the scope of a project, a certain number of work objects might not be

considered parts of the application.

− A business class’s methods can be derived from a work object’s textual

description as well as from the way it is referenced in Cooperation and

Workplace Scenarios.

− For design purposes, it is highly useful to use the links in the opposite

direction, namely to go from a Model of Terms to Cooperation or Work-

place Scenarios, i.e., to find out in what way a work object is used in

which scenarios.

9.4.1 Business Object Class Model

design (see [18]) follows the original purpose of the first object-oriented

Design Rationale in Exemplary Business Process Modeling 201

− In conjunction with information taken from annotations, the way a work

object is used – and thus its methods – can be taken from its usage in

Cooperation and Workplace Scenarios.

− A business class’s attributes can be derived from its methods and de-

scriptive text plus from the aggregations indicated in Models of Terms.

While aggregation information can be inferred directly just by looking at

the aggregates relationship in a Model of Terms, finding attributes can-

not be done visually but requires an examination of the methods (see

above) and from the descriptive text: if there are methods that augment a

work object in some way and others that query its status, then is obvious

that there needs to be an attribute that holds that specific piece of infor-

mation. Information about additional attributes or their type might be

obtained from a format description stored in the annotations, e.g.,

whether an integer or a String is more appropriate to represent document

IDs.

− A business class’s position in a class hierarchy can be taken from its

position in is-a relations in Models of Terms.

By exploiting the same features as in the section “Business object class

model,” elements of relational database model can be derived from

EBPMs. Whereas strictly object-oriented features such as methods and

class hierarchies cannot be transferred from EBPMs to a database model in

a meaningful way, the other features can be derived analogous to those in

Sect. 9.4.1:

− Each work object in a Model of Terms is a good candidate for an entity

because these are the things that users work with. Even if it becomes

obvious at later design stages that some work objects do not warrant in-

troducing separate entities, using work objects as starting points for enti-

ties is a good idea.

− A business class’s attributes can be derived from its methods and de-

scriptive text plus from the aggregations indicated in Models of Terms

(see above).

− While a business class’s position in a class hierarchy cannot be directly

transferred into a relational database model, it is a good indicator that

the work objects are closely connected: they represent similar concepts

on different levels of concreteness and feature at least some common

attributes. This is an indicator that these work objects might be mapped

to a single entity.

9.4.2 Relational Database Model

202 H. Breitling, A. Kornstädt, J. Sauer

On a general level, every application can be regarded as a tool that allows

users to accomplish a certain number of tasks with the help of an IT sys-f

tem. It is in accordance with this view to classify a calculator, a word

processor or an ERP as tools. Nevertheless, in the context of modeling

business processes, considering a whole ERP as a tool would be too

coarse-grained. We therefore limit our definition too those tools which (1)

typically have a main and sometimes some subwindows/dialogs and (2)

which serve to view/manipulate business objects.

Using EBPM, the use of tools can be modeled explicitly or implicitly.

Explicit modeling means that a tool appears as a specialized work object in

Cooperation Scenarios, Workplace Scenarios, and Models of Terms. In

this case a tool’s features can be found by taking advantage of the link

mechanism described in “Business object class model: Each link from a

Model of Terms to Cooperation and Workplace Scenarios is followed and

the accumulated ways of access are a tool’s feature list. Implicit modeling

means that a tool is not present yet but that there is high degree of similar

access to a number of work objects. These similar ways of accessing a

work object are indicative of potential tools.

Regardless of the way of modeling tools – which is usually a mixture of

explicit and implicit modeling – other tool features can be gleaned from

the EBPMs:

− Tool modes can be found be examining how tool use differs from user

type to user type or from scenario to scenario. For example, some users

might just use basic functionality while specialist users call upon similar

functionality but require a higher degree of detail or additional kinds of

information.

− A tool’s versatility can be derived by looking at how many work object

types are handled with a specific tool. Usage of just a single work object

suggests a highly specialized tool while usage on many different work

object types hints at a quite generic tool such as a browser or spread-

sheet-like tool.

Identifying candidates for services requires that tools have already been

found. On that basis, tools that make use of the same work object type in

similar ways in several Cooperation and Workplace Scenarios indicate that

the tools might be implemented by using the same service that provide

access to business objects.

9.4.4 Candidates for Services

9.4.3 Tool Features

Design Rationale in Exemplary Business Process Modeling 203

In general, (1) the number of tools employed, (2) their modes, and (3) their

usage frequency provide important information about the workplace a user

requires in a certain scenario. By looking at all scenarios that a user par-

ticipates in, one can determine the degree of complexity, flexibility, and

efficiency he or she requires. Based on those parameters, an informedd

choice of the appropriate front end technology, infrastructure, and usabil-

ity-related criteria can be made. This naturally extends to the choice of

general communication infrastructure including hardware: for example,

employment of barcode scanners in a work process would receive attention

in an EBPM Scenario.

However – as mentioned at the start of this section – we do not augment

EBPMs to include explicit and detailed rationale information, e.g., “the

front end technology for novice bank customers is an HTML 4.2 compliant

web browser supporting JavaScript because most such customers are not

willing to install new software on their home computers, do not have the

skills to properly reconfigure their firewall, and access their bank account

information sufficiently infrequently that they do not require more com-

plex features of a graphical user interface.” Instead, we rather make sure

that the EBPMs contain every domain-oriented detail that the users deem

important and base our decision thereon.

When designing a software system, the designers not only determine the

behavior of an application but shape the future work processes. In most

cases, these are bound to achieve the same effect (or a superset thereof) as

the present ones, only faster and cheaper or with a higher quality.

Because of this, EBPM is often used to model the relevant existing

processes of the application domain before beginning to design. These

models show the actors doing their work as they do in the present, using

today’s artifacts and IT systems (“as-is” models). Based on these models,

the future processes are designed with their respective future software sup-

port (“to-be” models). This helps to ensure that the old processes and the

services they provide are not broken in transit to the future design.

For this purpose, the EBPM method offers an additional feature called

Difference Annotations. Difference Annotations link specific actions in

Cooperation Scenarios to actions in other Cooperation scenarios and are

commented textually. In this way, new or different actions in to-be models

9.4.6 Difference Annotations

9.4.5 Workspace Types and Front End Technology

204 H. Breitling, A. Kornstädt, J. Sauer

can point to their present counterparts and describe relevant differences

between present and future.

Difference Annotations can furthermore be used to compare several

future scenarios. The creation of alternative EBPM scenario models is

justified if they can support decisions on important design issues. For ex-

ample, those scenarios can highlight different ways of distributing tasks inff

an organization or demonstrate the variety of possible usage models and

their impact on the work process. A Difference Table as shown in Fig. 9.6

can be generated from the Difference annotations attached to a scenario.

action
referenced

action

referenced

scenario
comment

the Front Office is

automatically in-

formed that the

contract is ready

the Back Office

calls the Front Of-

fice to inform them

that the contract is

ready

application -

minimal support

replacing a phone

call by automation

will speed things

up, although detach-

ing Front and Back

Office a bit.

Fig. 9.6. One row of a Difference Table (schematic)

Difference Annotations are a simple and effective technique when

examining the scenarios, whether to analyze the gap between current and

future processes or to compare alternative scenarios. Sometimes we attach

them while deriving a new scenario from a basic one. When analyzing ret-

rospectively, we take printed versions of the models and compare them.

First, we mark the differences with pen and paper, then, after evaluation,

we attach them to the models in electronic form. This cannot be automated

because it is all about finding the significant steps and interpreting them.

When merging alternative scenarios, we recommend documenting the

Difference Table together with the derived decisions in a protocol that is

then attached to the “surviving” scenario.

A second basis for deciding between different alternative scenarios is the

quantification of EBPM scenarios. This is done very straightforward: the

domain experts give rough estimates for how long actions take. Transpor-

tation and/or wait time is used when annotating transfers of work objects.

Processing time is used when annotating inspections and modifications of

work objects.

9.4.7 Quantification

Design Rationale in Exemplary Business Process Modeling 205

There are other approaches in Requirements and Software Engineering as

well as in economics that deal with the same issues as EBPM or have some

overlap with it regarding the models and techniques that they use

EBPM’s Cooperation Scenario is based on Krabbel’s and Wetzel’

Cooperation Pictures (cf. [10]). EBPM adds the strictly scenario-based

approach and the comprehensive meta model. Another method that is a

remarkable for its visual representation and appropriateness for group

Design. Contrary to EBPM, it does not provide a straightforward of deriv-

ing an object model.

Approaches sharing the scenario-based nature of EBPM come in a vari-

ous formats, for example Jacobson’s Use Cases (cf. [7]) and Rubin’s and

focused on the dialogue between user and software system than EBPM and

less on the cooperative work process. They lack a visual representation for

their scenarios and are therefore less suited for workshops with groups.

Use Cases are superior to EBPM regarding variations and case differentia-

tion when written as main success scenarios with extensions (cf. [2]).

Examples for more formal diagram techniques for processes are UML’s

Activity Diagram (see [8]) and the Event-Driven Process Chains of Scheer

fication of a process. On the other hand, they are not easily understandable

for people without education in math or IT and therefore not well-suited

for communication with users and domain experts. They are less object-

oriented than EBPM because they do not focus on the domain objects and

their usage (although there have been attempts to tackle this problem, see

EBPM which can be applied even to cooperative work that consist to great

extent of situated actions.

Concluding this section, we want to allude to approaches that deal with

design rationale in a way that is potentially compatible to EBPM in the

sense that only minor modifications would be necessary to fit them in. One

of these approaches is Claims Analysis (see [1]) which augments scenarios

that demonstrate specific design alternatives with claims that state ex-

pected advantages and disadvantages of those design decisions. Another

one is Contribution Structures which adds to requirements explicit infor-

mation about the persons contributing to them (cf. [6]). Yet another one

mends to incrementally refine scenarios and requirements documentation

9.5 Relations to Other Approaches

work is PICTIVE (described in [11, 12]), which is rooted in Participatoryrr

Goldberg’s Object Bb ehavior Analysis (described in [15]). These are more

(see [16]). In contrast to EBPM, these can be used for a more formal speci-

for examplemm [17]). Furthermore, they are unable to “tell stories” like

is the Inquiryrr Cycle (see [13], [14]), a conceptual framework that recom-

206 H. Breitling, A. Kornstädt, J. Sauer

and attach information to them about the related discussions happening in

the incremental process.

Exemplary Business Process Modeling (EBPM) is a lightweight yet highly

useful basis for design rationale management. The three main factors that

make EBPM so advantageous are:

1. Its smooth integration with requirements engineering as suggested by

Dutoit and Paech (see [5]). As EBPM already provides all necessary

means, there is no need to duplicate the relevant information in a design

rationale management system.

2. Its focus on just the most relevant scenarios. Thus, a maximum of the

daily work routine can be captured with optimal effort.

3. Its focus on positive in formation. While decisions against a certain

alternative can still be derived by looking at the complement of the

positive information, there is no need to keep, manage and update

information about discarded alternatives.

EBPM has many qualities that can be traced to other approaches:

 – It is scenario-based (like the Use Case approach and OBA)

 – It models business processes (like UML Activity diagrams or EPCs)

 – It analyzes cooperative work (like Cooperation Pictures)

 – It is suitable for collaborative workshops (like PICTIVE)

EBPM is unique in its combination of those features. Its power lies in

the immediate understandability of its models: all models are rendered

graphically and are based on a simple meta model; the story-like structure

of the scenarios makes it easy for domain and software experts alike to

discuss domain-related matters in workshops. Models are usually very sta-

ble at the end of the first workshop. Based on these models, a substantial

amount of design rationale can be derived (see Fig. 9.7).

In addition to the design-rationale-related advantages, the analysis of

EBPMs can be employed to obtain rationale information for

roll-out/migration planning (based on which application parts are used how

intensively and on difference tables).

9.6 Conclusion

Design Rationale in Exemplary Business Process Modeling 207

Provided by analysis of …

business object classes/

ER entities

term or concept in Model of Terms

business object class methods • Usage of work objects in Scenarios

• glossary from Model of Terms

business object class attrib-

utes/ER attributes
• aggregations from Model of Terms

• glossary from Model of Terms

business object class hierar-

chy/OR mapping

Hierarchy of Terms in Model of Terms

tools • usage of work objects in Scenarios (explicitly

modeled tools only)

• glossary from Model of Terms (explicitly

modeled tools only)

• similar access to work objects in Scenarios

• (implicit)

• recurring sequences of work in Scenarios

tool modes differences in usage for different Scenarios

tool versatility number of work objects accessed (explicitly mod-

eled tools only)

workplace types • roles in Model of Roles

• “work objects used from workplace

services How different tools provide similar methods on

work objects

endorsement of design decision • difference tables for “as-is” and “to-be” models

• difference tables for several “to-be” models

• quantification information

Fig. 9.7. Rationale information provided by EBPM

References

[1] Caroll JM (2000) Making Use: Scenario-Based Design of Human–Computer

[2] Cockburn A (2000) Writing Effective Use Cases. Reading, MA: Addison-

Wesley

[3]

Description of Discrete Event Systems, Oslo 3, Norway, Norwegian

Computing Center, Forskningveien 1B, 5th ed.

[4] Dutoit AH, McCall R, Mistrík I, Paech B (2006) Rationale management in

software engineering. Heidelberg Berlin New York: Springer

[5] Dutoit AH, Paech B (2000) Supporting evolution: Using rationale in use case

driven software development. In: 6th Internaltional Workshop on

Requirements Engineering for Software Quality (REFSQ’2000), Interlaken

Switzerland, June

[6] Gotel O, Finkelstein A (1995) Contribution structures. In: Proceedings of the

Second IEEE International Symposium on Requirements Engineering (RE

‘95), IEEE Computer Society, York UK, March 27–29, pp. 100–107

Rationale for …

Interaction. Cambm ridge: MIT

Dahl O-J, Nygaard K (1967) SIMULA - A language for Programming and

208 H. Breitling, A. Kornstädt, J. Sauer

[7] Jacobson I, Christerson M, Jonsson P, Overgaard G (1992) Object-Oriented

Software Engineering: A Use Case Driven Approach. Reading, MA: Addi-

son-Wesley

[8] Jacobson I, Ericsson M, Jacobson A (1995) The Object Advantage: Business

Process Reengineering with Object Technology. Reading, MA: Addison-

Wesley

[9] Karsenty L (1996) An Empirical Evaluation of Design Rationale Documents.

In: Proc. of the SIGCHI conference on Human factors in computing systems,

Vancouver, British Columbia, Canada, pp. 150–156

[10] Krabbel AM, Ratuski S, Wetzel I (1996) Requirements Analysis of Joint

Task in Hospitals. In: B. Dahlbom et al. (ed.): IRIS 19 “The Future”, Pro-

ceedings of the 19th Information Systems Research Seminar in Scandinavia,

August 1996 at Lökeberg, Sweden. Gothenburg Studies in Informatics,

Report 8, pp. 733–749

Reaching through Technology: CHI’91 Conference Proceedings, pp. 225–231

Proceedings of the 10th International Conference on Software Engineering.

Los Alamitos, CA: IEEE Computer Society

system requirements. IEEE Softw., 11(2):21–32, March

wendungen.4. Auflage. Berlin Heideleberg New York: Springer-Verlag,

2001

eignisgesteuerte Prozeßkette (oEPC) Methode und Anwendung. Veröf-

fentlichungen des Instituts für Wirtschaftsinformatik, Heft 141, Saarbrücken

URL: http://www.iwi.uni-sb.de/public/iwi-hefte.

Englewood Cliffs, NJ: Prentice Hall.

Fransisco: Morgan Kaufmann

[11] Muller MJ r (1991) PICTIVE – An exploration in participatory design. In

Diekmann B, Dykstra-Erickson E (1995) Bifocal tools for scenarios and

representations in participatory activities with users. In: J.M. Carroll (ed.):

Scenario-Based Design. NY: Wiley

[12] Muller M, Tudor L, Wildman D, White E, Root Rt , Dayton T, Carrrr Rr ,

[13] Potts C, Bruns G (1988) Recording the reasons for dr esign decisions. In:

[14] Potts C, Takahashi K, Anton A (1994) Inquiry-based scd enario analysis of

35(9), 48–62
[15] Rubin KS, Goldbdd erg A (1992) Objb ect behavior analysis. Commumm n. ACM

[16] Scheer A-W (2001) ARIS – Modellierungsmethoden, Metamodelle, An-

[17] Scheer A-r W, Nüttgens M, Zimmermann V (1997) Objekb torientierte Er-

[18] Wirfs-Bff rock R, Wilkerson B (1990) Designing Objectb -Oriented Softwarett .

[19] Züllighoven H (2003) Objb ect-Oriented Construction Handbook. San

