
The WinWin Approach: Using a

Requirements Negotiation Tool for Rationale

Capture and Use

B. Boehm, H. Kitapci

Abstract: A highly cost-effective approach for rationale capture and man-

agement is to provide automated support, and capture the resulting artifacts

of the process by which software and system requirements and solutions are

negotiated. The WinWin process model, equilibrium model, and collabora-

tive negotiation tool provide capabilities for capturing the artifacts. The

MBASE software process model provides an approach for using and

updating the rationale artifacts and process to keep it in a win-win state.

Supporting requirements negotiation with attaching rationale can have a

high impact on all phases of development by enabling much better context

for change impact analysis as the increasingly frequent requirements

changes arrive. The WinWin approach involves having a system’s success-

critical stakeholders participate in a negotiation process so they can

converge on a mutually satisfactory or win-win set of requirements. Ther

WinWin framework in essence captures stakeholder-oriented objectives,

options and constraints in the form of a decision rationale.

Keywords: requirements negotiation; WinWin negotiation approach;

rationale capture; Theory W; WinWin spiral model, EasyWinWin

Negotiation techniques are critical success factor in improving the

outcome of software projects. At the University of Southern California’s

Center for Software Engineering (USC-CSE), we have been developing a

negotiation-based approach to software and system requirements engineer-

ing, architecture, development, and management. Our approach has three

primary elements:

1. Theory W, a management theory and approach, which says that makingWW

winners of the system’s key stakeholders is a necessary and sufficient

condition for project success [2].

2. The WinWin Spiral Model, which extends the spiral software develop-

ment model [1] by adding Theory W activities to the front of each cycle.

3. EasyWinWin, a collaborative groupware negotiation tool that makes it

easier for distributed stakeholders to negotiate mutually satisfactory

(win–win) system specifications.

8.1 Introduction

8

174 B. Boehm, H. Kitapci

Defining requirements is a complex and difficult process, and defects in

the process often lead to costly project failures [16]. Requirements emerge

in a highly collaborative, interactive, and interdisciplinary negotiation

process that involves heterogeneous stakeholders. The EasyWinWin ap-

proach involves having a system’s success-critical stakeholders participate

in a negotiation process so they can converge on a mutually satisfactory

(win–win) set of requirements.

Some difficulties within requirements engineering, e.g., determining a

feasible and mutually satisfactory set of requirements, are eliminated by

achieving a reconciliation of customer expectations with developer capa-

bilities before firmly committing to a set of requirements. A hard to

achieve customer’s or user’s win condition will conflict with the devel-

oper’s win condition to minimize the risk of delivering an acceptable

product within budget and schedule. Conflicting requirements must be

identified and negotiated, relevant alternatives must be made explicit and it

must be assured that the “right” decision is made. In the WinWin ap-

proach, this conflict is identified as an issue needing resolution before

stakeholders commit on the agreements.

The overall WinWin negotiation approach is similar to other team ap-

proaches for software and system definition such as gIBIS [9], SIBYL

[13], and REMAP [15]. Our primary distinguishing characteristic is the

use of the stakeholder win–win relationship as the success criterion and

organizing principle for the software and system definition process. Our

negotiation guidelines are based on the Harvard Negotiation Project’s tech-

niques [11].

In this chapter, we first introduce the WinWin Spiral Model. Next, we

identify the fundamental concepts of WinWin model and the use of Win-

Win model in software development process. Then we introduce the

EasyWinWin tool for converging stakeholders’ interests to win–win

agreements and the WinWin equilibrium state to test whether the negotia-

tion process has converged. We provide an example of WinWin require-

ments negotiation results from our USC CS577 Software Engineering

course projects. We then discuss how such results can serve as captured ra-

tionale for later user in avoiding mistakes in subsequent project decisions.

We conclude with a discussion of using captured rationale to improve later

decisions, related work, and future directions in requirements negotiation

and rationale capture.

The WinWin Approach 175

Development Process

The foundation for the WinWin approach is Theory W, a management

theory similar to Theories X, Y, Z. Theory W’s fundamental principle is

that a necessary and sufficient condition for a successful enterprise is that

the enterprise makes winners of all its success-critical stakeholders. It is

well-matched to the problems of software project management. It holds

that software project managers will be fully successful if and only if

they make winners of all the other participants in the software process:

superiors, subordinates, customers, users, maintainers, etc. This principle

is particularly relevant in the software field, which is a highly people-

intensive area whose products are often unfamiliar with user and manage-

ment concerns.

Making everyone a winner may seem like an unachievable objective.

Most situations tend to be zero–sum, win–lose situations. Nevertheless,

win–win situations exist, and often they can be created by careful attention

to people’s interests and expectations. The best work on creating them has

been done in the field of negotiation. The book “Getting to Yes” [11] is a

classic in the area. Its primary thesis is that successful negotiations are not

achieved by haggling from preset negotiation positions, but by following a

four-step approach whose goal is basically to create a win–win situation

for the negotiating parties (1) separate the people from the problem, (2)

focus on interests, not positions, (3) invent options for mutual gain, (4) in-

sist on using objective criteria.

The Theory W approach to software project management expands on

these four steps to establish a set of win–win preconditions, and some

further conditions for structuring the software process and the resulting

software product.

The original spiral model [1] uses a cyclic approach to develop increas-

ingly detailed elaborations of a software system’s definition, culminating

in incremental releases of the system’s operational capability. Each cycle

involves four main activities:

− Elaborate the system or subsystem’s product and process objectives,

constraints, and alternatives

− Evaluate the alternatives with respect to the objectives and constraints.t

Identify and resolve major sources of product and process risk

8.2.2 WinWin Spiral Model

8.2.1 Theory W

8.2 The Theory W and WinWin Spiral Model in Software

176 B. Boehm, H. Kitapci

− Elaborate the definition of the product and process

− Plan the next cycle, and update the life-cycle plan, including partition of

the system into subsystems to be addressed in parallel cycles. This can

include a plan to terminate the project if it is too risky or infeasible. Se-

cure the management’s commitment to proceed as planned

Since its creation, the spiral model has been extensively elaborated and

successfully applied in numerous projects. However, some common diffi-

culties led USC-CSE and its affiliate organizations to extend the model to

the WinWin spiral model described in the following text.

WinWin Extensions: Negotiation Front End

One difficulty was determining where the elaborated objectives, con-

straints, and alternatives come from. The WinWin spiral model resolves

this by adding three activities to the front of each spiral cycle , as Fig. 8.1
shows:

− Identify the system or subsystem’s key stakeholders

− Identify the stakeholders’ win conditions for the system or subsystem

− Negotiate win–win reconciliations of the stakeholders’ win conditionsf

Fig. 8.1. The WinWin spiral model of software engineering includes front-end

activities (gray(() that show where objectives, constraints, and alternatives come

from. This lets users more clearly identify the rationale involved in negotiating

win conditions for the product

The WinWin Approach 177

The new model adds front-end activities that show where objectives,

constraints and alternatives come from. This lets stakeholders more clearly

identify the rationale involved in negotiating win conditions for the prod-

uct. A key aspect of the model is that it introduces economic, product qual-

ity, and risk considerations into the decision making steps and introduces

tradeoff exploration into the process to address risks and conflicts.

Process Anchor Points

Another difficulty in applying the spiral model across an organization’s

various projects was that the organization has no common reference points

for organizing its management procedures, cost and schedule estimates,

and so on. This is because the cycles are risk driven, and each project has

different risks. In attempting to work out this difficulty with USC-CSE’s

industry and government affiliates using our COCOMO II cost model [7],

Over the years of developing electronic services applications for the

USC Libraries, we have been evolving Model-Based Architecting and Sys-

tem/Software Engineering (MBASE). MBASE involves early reconcilia-

tion of a project’s success models (correctness, business case, stakeholder

(performance, reliability,…). It extends the previous spiral model in two

ways:

− Initiating each spiral cycle with a stakeholder win–win stage to deter-

mine a mutually satisfactory set of objectives, constraints, and alterna-

− Orienting the spiral cycles to synchronize with a set of life cycle anchor

points: Life Cycle Objectives (LCO), Life Cycle Architecture (LCA),

and Initial Operational Capability (IOC)

The LCO version focuses on establishing a sound business case for the

package. It need only show that there is at least one feasible architecture.

The LCA version commits to a single choice of architecture and elaborates

it to the point of covering all major sources of risk in the system’s life cy-

cle. The LCA is the most critical milestone in the software’s life cycle. The

IOC version focuses on a workable initial operational capability for the

tives for the system’s next elaboration during the cycle.

we found a set of three process milestones, or anchor points, which we

process models (waterfall, evolutionary, spiral,…); and property models

could relate to both the completion of spiral cycles and to the organiza-

winwin,…); product models (domain, requirements, architecture,…);

tion’s major decision milestones.

178 B. Boehm, H. Kitapci

project including system preparation, training, use, and evolution support

for user, administrators, and maintainers.

The general win–win approach evolved more or less independently as an

interpersonal-relations [17], success-management [10], and project-

management [2] approach. We usually define it as “a set of principles,

practices, and tools, which enable a set of interdependent stakeholders to

work out a mutually satisfactory (win–win) set of shared commitments.” nn

Interdependent stakeholders can be people or organizations. Their

shared commitments can relate to information system requirements in par-

ticular (the WinWin groupware system’s primary focus) or can cover most

continuing relationships in work and life (for example, international di-

plomacy). Mutually satisfactory generally means that people do not get

everything they want but can be reasonably assured of getting whatever it

was to which they agreed. Shared commitments are not just good

intentions but carefully defined conditions. If someone has a conditional

commitment, he or she must make it explicit to ensure all stakeholders un-

derstand the condition as part of the agreement.

The WinWin approach is descriptive, in that the main purpose of the

system is to negotiate a set of mutually satisfactory agreements that are

foundations to requirements, constraints, and plans of the project.

The WinWin negotiation approach addresses some of the problems

related with rationale capture. It reduces the work required to gather

rationale by providing a well-defined structure and process to negotiate. In

addition, the negotiation allows all success-critical stakeholders to partici-

pate the process where both recorders and users of the rationale are in-

volved. The process also makes it easy to collect and share the rationale

behind the decisions made. Stakeholders using the system simultaneously

make rationale capture easier and faster. Rationale geff nerated during nego-

tiation is captured within EasyWinWin. The brainstorming statements are

attached to the resulting win conditions to preserve the brainstorming ra-

tionale. Issues are attached to win conditions. The traceability links and the

containment relations between elements are used to display the reasoning

and knowledge behind the agreements. Moreover, the impact of changing

decisions is traceable to the related elements.

8.3.1 The WinWin Approach

8.3 Fundamental WinWin Concepts

The WinWin Approach 179

In requirements negotiation, nobody wants a lose–lose outcome. Win–lose

might sound attractive to the party most likely to win, but it usually turns

into a lose–lose situation. Table 8.1 shows three classic win-lose patterns

among the three primary system stakeholders in which the loser’s outcome

usually turns the two “winners” into losers [6].

Table 8.1. Frequent software evelopment win–lose patterns

Winner

quickly build a cheap, sloppy

product

developer and customer user

add lots of bells and whistles developer and user customer

drive too hard a bargain customer and user developer

As the table shows, building a quick and sloppy product might be a low-

cost, near-term win for the software developer and customer, but the user

(and maintainer) will lose in the long run. In addition, adding lots of mar-

ginally useful bells and whistles to a software product on a cost-plus con-

tract might be a win for the developer and users, but it is a loss for the cus-

tomer. Finally, “best and final offer” bidding wars that customers and users

impose on competing developers generally lead to lowball winning bids,

which place the selected developer in a losing position.

However, nobody really wins in these situations. Quick and sloppy

products destroy a developer’s reputation and have to be redone – inevita-

bly at a higher cost to the customer. The bells and whistles either disappear

or (worse) crowd out more essential product capabilities as the customer’s

budgets are exhausted. Inadequate lowball bids translate into inadequate

products, which again incur increased customer costs and user delivery de-

lays to reach adequacy.

Why WinWin Works

Builds Trust and Manages Expectations
If stakeholders consistently find other stakeholders asking about their

needs and acting to understand and support them, they will end up trusting

each other more. In addition, if they consistently find them balancing their

needs with other stakeholders’ needs, they will have more realistic

expectations about getting everything they want. As they work together to

negotiate their requirements, they give the project shape, and their merged

visions become a system that all stakeholders can accept. If, on the other

Win–Lose Does Not Work

Proposed solution Loser

180 B. Boehm, H. Kitapci

hand, stakeholders do not negotiate together, there is little chance the re-

sulting system will accommodate their needs, and the project will fail.

Helps Stakeholders Adapt to Changes in the Environment that Affect Re-

quirements
Instead of rigorous requirements in ironbound contracts, doing business in

Internet time requires stakeholders with a shared vision and the flexibility

to quickly renegotiate a new solution once unforeseen problems or oppor-

tunities arise [3]. A WinWin approach builds a shared vision among stake-

holders and provides the flexibility to adapt to change.

Helps Build Institutional Memory
The decisions, the why behind the what, that lead to a work result often

vanish. By capturing and preserving stakeholder negotiations, WinWin

supports long-term availability of the decision rationale and thus helps

build institutional memory. Having more auditable decisions creates more

detailed, accurate, and complete deliverables.

Key activities of WinWin negotiation model include (1) the identification

of success-critical stakeholders; (2) the elicitation of the success-critical

stakeholders’ primary win conditions; (3) the negotiation of mutually satis-

factory win-win situation packages (requirements, architectures, plans,

critical components, etc.); and (4) value-based monitoring and control of a

win-win equilibrium throughout the development process.

The WinWin negotiation model has four main conceptual artifacts: Win

condition: capturing the desired objectives and constraints of the stake-

holder; Issue: capturing the conflict between win conditions and their

associated risks and uncertainties; Option: capturing a decision choice for

resolving an issue; Agreement: capturing the agreed upon set of win condi-

tions which satisfy stakeholder win conditions and/or capturing the agreed

options for resolving issues.

The negotiation model guides success-critical stakeholders in elaborat-

ing mutually satisfactory agreements. Stakeholders express their goals as

win conditions. If everyone concurs, the win conditions become agree-

ments. When stakeholders do not concur, they identify their conflicted win

conditions and register their conflicts as issues. In this case, stakeholders

invent options for mutual gain and explore the option trade-offs. Options

are iterated and turned into agreements when all stakeholders concur. It is

important to notice that open, unresolved issues represent potential project

8.3.2 How Does the WinWin Negotiation Model Work

The WinWin Approach 181

risks or conflicts that need to be addressed. Additionally, a domain taxon-

omy is used to organize WinWin artifacts, and a glossary captures the do-

main’s important terms. The stakeholders are in a WinWin equilibrium

state when the agreements cover all of the win conditions and there are no

outstanding issues (see Fig. 8.2). The negotiation proceeds until all of the

stakeholders’ win conditions are entered and the WinWin equilibrium state

is achieved, or until the stakeholders agree that the project should be dis-

banded because some issues are irresolvable. In such situations, it is much

preferable to determine this before rather than after developing the system.

Fig. 8.2. The WinWin negotiation model

The WinWin negotiation model aims at coordinating decision-making

activities made by various stakeholders in the software development proc-

ess. It belongs to the category of supporting collaboration described in

Sect. 1.4.1. It guides success-critical stakeholders through a process of

eliciting, elaborating, prioritizing, and negotiating requirements. It also

provides the support for future changes by keeping the traceability of the

artifacts and their rationale.

The negotiation process supports the engineering and management

activities of rationale capture. The artifacts and their rationale captured

during requirements negotiation shapes the decision made through the soft-

ware development. In addition, the artifacts provide additional information

to check the project status and manage the project risks. The higher num-

ber of issues identified and resolved helps reduce risks early in a project

and the chances of it derailing later.

The rationale capture during negotiation improves the communication

between stakeholders and the quality of the products. Rationale on the ne-

gotiation results supports communication between all success-critical

stakeholders.

182 B. Boehm, H. Kitapci

EasyWinWin is a requirements negotiation methodology that combines the

WinWin Spiral Model of Software Engineering from USC’s Center for

Software Engineering with state-of-the-art collaborative knowledge tech-

niques and automation of a Group Support System (GSS) from GroupSys-

tems.com. A GSS is a suite of software tools that can be used to create,

sustain, and change patterns of group interaction in repeatable, predictable

ways [14].

EasyWinWin helps a team of stakeholders to gain a better and more

thorough understanding of the problem and supports cooperative learning

about other’s viewpoints. Moreover, it helps increase stakeholder in-

volvement and interaction. EasyWinWin defines a set of activities guiding

stakeholders through a process of gathering, elaborating, prioritizing, and

negotiating requirements. The nominal purpose of the EasyWinWin meth-

odology is to create an acceptable set of system requirements. Teams can

use EasyWinWin throughout the development cycle to create a shared

project vision, to develop high-levels requirements definition, to produce

detailed requirements for features, functions, and properties, COTS acqui-

sition and integration, COTS product enhancement, and to plan require-

ments for transitioning the system to the customer and user.

The negotiation model provides the capture, representation, and use of

rationale. Rationale is captured during stakeholders’ communication and

negotiation in a structured way in which the relations between the artifacts

are clear to the stakeholders. The tool provides the distribution of rationale

feature for concurrent user. It is both easy to capture, modify, and review

rationale during negotiation. It increases collaboration and coordination

with group awareness, synchronous and asynchronous modes of communi-

cation, and support for trade-off analysis. Rationale used during and after

negotiation to agree on the development artifacts. However, the tool

doesn’t provide support for rationale preservation and interfaces to legacy

components currently because of the reason it is being used for require-

ments negotiation.

The input to an EasyWinWin workshop is typically a mission statement

outlining the high-level objectives of a project and another statement

specifying the negotiation purpose, i.e., the objectives of a negotiation

within a project. In each activity in this process the team adds details and

increases precision. The EasyWinWin process is comprised of the follow-

ing activities:

8.4.1 The Negotiation Process

8.4 Tool Support for WinWin Requirements Negotiation

The WinWin Approach 183

Review and expand negotiation topics. Stakeholders jointly refine and

customize an outline of negotiation topics based on a taxonomy of

software requirements. The shared outline helps to stimulate thinking, to

organize negotiation results, and serves as a completeness checklist for

negotiations.

Brainstorm stakeholder interests. Stakeholder share their goals, perspec-

tives, views, background, and expectations by gathering statements about

their vested interests.

Converge on win conditions. Stakeholders jointly craft a list of clearly

stated, unambiguous win conditions by considering and discussing all

ideas contributed in the brainstorming session.

Capture a glossary of terms. Stakeholders define and share the meaning

of important terms of the project in a glossary.

Prioritize win conditions. Stakeholders prioritize the win conditions to

define the scope of work and to gain focus.

Reveal issues and constraints. Stakeholders surface and understand is-

sues.

Identify issues and options. Stakeholders surface the issues that arise

due to constraints, risks, uncertainties, and conflicting win conditions.

They propose options to resolve these issues.

Negotiate agreements. Stakeholders negotiate mutual commitments by

considering win conditions that raised no issues and all proposed options.

The activities of the EasyWinWin process are summarized above and

shown in Fig. 8.3 with related work products (for a more detailed descrip-

well-defined deliverable (1) negotiation topics organized in a domain tax-

onomy, (2) a glossary defining key project terms, (3) agreements providing

the foundation for further plans, (4) open issues addressing constraints,

conflicts, and known problems, as well as (5) further rationale showing the

negotiation history (comments, win conditions, issues, options, etc.).

Major results of the negotiation process are a list of agreements and a

list of unresolved issues (e.g., caused by stakeholder dissent), which have

to be managed as potential projects risks. Agreements of success-critical

stakeholders are input to the project contract and to refinement during

requirements engineering activities. The WinWin tree shows how agree-

ments and open issues can be traced back to stakeholder win conditions.

8.4.2 The Negotiation Process Deliverables

tion please refer to [8, 12]). The results of each activity in the process is a

184 B. Boehm, H. Kitapci

Converge on

win conditions

Review

negotiation

topics Negotiation

Topics

Negotiation

Glossary

Negotiation

Process

Reveal issues

and constraints

Capture a

glossary of

terms

Prioritize win

conditions

Identify issues

and options

Project

Glossary

Project Plan

Requirements

Specification

Project

Contract

Related Work

Products

(Examples)

Work Products

Brainstorm

stakeholder

interests

Negotiate

agreements

WinWinTree

Issues

Win conditions

Options

Agreements

Domain

Taxonomy

Fig. 8.3. EasyWinWin activities and work products with relationships to important

work products in the software life-cycle

Development

EasyWinWin has been used in more than 100 real-world projects in

various domains (e.g., digital libraries, e-marketplace, and collaboration

technology). By using the MBASE approach throughout the software de-

velopment, we find that using a WinWin requirements negotiation ap-

proach helps stakeholders prioritize their requirements and capture the ra-

tionale for their decisions.

One of project from the real-world projects that we will use as an exam-

ple is as follows:

“Information Services Division (ISD) would like to replace its current

timecard and timesheet (paper) system with an electronic, web-based sys-

tem to simplify data collection, to more accurately record hours worked for

all its employees, and to provide personnel management tools for supervi-

sors and directors.”

The EasyWinWin workshop started with the team reviewing and ex-

panding the negotiation topics based on domain taxonomy which helped

8.5 An Example – Using WinWin in Software

The WinWin Approach 185

organize the artifacts that emerge later in the process. Figure 8.4 shows

part of the taxonomy for our project.

Fig. 8.4. Part of the domain taxonomy

Then stakeholders brainstormed on the project and contributed their in-

terests. Some examples are:

− The system must provide some benefit to the employees that are using it

– such as providing them with their current vacation balance.

− System should have capability to correct errors on previous timecards.

− Hierarchical structures can provide several levels of access for different

management groups.

− Some ISD constituents would prefer a card swipe or biometric clock-in/-

out system connected to the network. Supervisors feel this will reduce

clocking-in/-out for others.

The resulting collection of stakeholder statements and ideas provided a

starting point and rationale for elaborating win conditions and defininga

important terms of the project domain. The brainstorming statements were

attached to resulting win conditions to preserve brainstorming rationale.

After that, stakeholders voted on each win condition according to two

criteria: Business Importance and Ease of Implementation. During this ac-

tivity, developers typically focused on technical issues, while clients and

users concentrated on the business relevance (see Fig. 8.5).

In the next step, stakeholders examined the results of the prioritization

and identified issues and options in several iterations. During the revealing

186 B. Boehm, H. Kitapci

issues and constraints, the stakeholders modified the priorities according to

the updated information they got. The WinWin equilibrium state holds

when all win conditions are covered by agreements, and there are no

outstanding issues. As soon as some stakeholder enters an issue and an as-

sociated conflicting win condition, the negotiation leaves the WinWin

equilibrium state, and the stakeholders attempt to formulate options to re-

solve the issue. For example, if the conflicting win conditions are to have

the system run on a Windows platform and a UNIX platform, an accept-

able option might be to build the system to run on a Java Virtual Machine.

Fig. 8.5. Some voting results of Win Conditions – gray as consensus,y black as lack k
of consensus

The WinWin Tree has all the information gathered during the require-

ments negotiation: Unique numbers for artifacts that help tracing the

artifacts through the software’s life cycle, priorities for win conditions,

stakeholders who identified issues and options, and the taxonomy elements

those artifacts belong to. The WinWin Tree also captures the rationale for

win conditions and how stakeholders reach an agreement by including all

proposed options, whether adopted or not, all issues which eventually

addressed and all win conditions (see Fig. 8.6).

The negotiation results, mainly agreements, become the foundations of

requirements whereas the other artifacts are the rationale for further deci-

sions made during the development life cycle such as major risks, iteration

plans, etc. Agreements that cover the lower-priority win conditions

become evolution requirements, providing the basis for architecting the

system to easily drop them (if necessary to meet the schedule) or incorpo-

rate them in later increments. For example, “W12 [FGT] System should

support web-based and/or card swipe interfaces. [Taxonomy 3.1]” be-

longed to User Interface Requirements during the negotiation. However,

after the prioritization it is categorized as not important and very difficult

to implement. An issue identified by the administrator as “I12 Supporting

card swipe interfaces requires additional hardware purchase and integra-

The WinWin Approach 187

tion [Administrator] [Taxonomy 3.1]”. This issue occurred because of a

budget limit for the project. So the stakeholders provided an option to have

web-based user interface first, and left the card swipe interface as a tech-

nology evolution requirements. At the end there were two requirements (1)

Web-based interface as interface requirements, (2) adding new input de-

vices as magnetic card readers as an evolution requirement.

Fig. 8.6. A small part of WinWin Tree – initial capability and interface sections

The team using EasyWinWin is able to develop a broader and deeper set

of results in a shorter time. An EasyWinWin negotiation results in a sig-

nificantly higher number of artifacts compared to traditional paper or

blackboard-based approaches: our experience to date shows that typical

negotiations about system requirements with 10+ stakeholders result in

300+ brainstorming ideas, 100+ win conditions, 50+ issues, 50+ options,

and 100+ agreements in less time than other traditional techniques. Even

though, the teams had a similar educational background and basically the

same win conditions, they came up with very different negotiation ap-

proaches and solutions.

The focus on consensus leads to a higher acceptance of decisions and to

an increased mutual understanding among the involved parties. The

evaluation of the WinWin model shows that the use of an issue model for

negotiation support enhances trust and shared understanding among share-

holders, even in the presence of uncertainties and changing requirements.

188 B. Boehm, H. Kitapci

Decisions

Design rationale is documented in the WinWin artifacts to provide a

corporate memory. Risks are explicitly addressed in WinWin to pinpoint

possible breakdowns and propose early fixes. This makes it easier to in-

crement and evolve requirements in the spiral model.

As the project unfolds, the WinWin results are useful in many ways.

First and foremost it is the highest-level expression of requirements. All

subsequent requirements specifications refer back to the WinWin results.

This provides an answer to the often-asked questions, “Where did these

requirements come from? Why were they adopted? Which requirements

satisfy which needs of which stakeholders? Who will be affected if we

change the specification?” The WinWin results provide a common

reference point for organizing management procedures, cost estimates,

schedules, etc.

An initial developer win condition was to save development time and

money by reusing a research planning module. An issue entered by the

maintainer indicated that module would be risky and expensive to

maintain. An agreement to drop the win condition was recorded. Later, the

project got behind schedule and the new developer manager proposed to

recover by reusing the research planning module. Without the captured ra-

tionale, the project would have done this and caused major maintenance

problems. With the captured rationale, the developers can check the status

of the planning module and reject its use if it is still risky and expensive to

maintain.

Thus, capturing the rationale behind the decisions generated by the

WinWin negotiation enables the stakeholders to avoid mistaken decisions

often associated with personnel turnover. This allows the designers to ac-

commodate a much broader set of needs, and allows the stakeholders to

negotiate trade-offs with one another based on well understood interest.

WinWin also makes it far easier to modify requirements part-way through

the project as new constraints are discovered because every requirement

can be tied back to some set of win conditions, which in turn tied back to

some set of stakeholders. For example, a budget cut would invalidate some

previous agreements. Therefore, change management is necessary to ac-

commodate changes in objectives, constraints, or alternatives. In addition,

the rationale for previous requirements needs to be incorporated to help de-

termine how to change requirements.

8.6 Using the Captured Rationale to Improve Later

The WinWin Approach 189

Rationale capture models for software requirements and design decisions

capture dependencies between multiple stakeholder objectives, issues, re-

quirements, design, and trade-off options. IBIS addresses multistakeholder

consideration by supporting relations among system objectives. Issues can

be viewed as requirements that impact on design decisions. Conklin et al.

[9] attempted to allow less disruption to the design process with a graphi-

cal tool, gIBIS, to record the rationale. Although IBIS structures support

analysis of requirements interactions, no tools are provided for analyzing

trade-offs, so the design decision may overlook optimal solutions. There is

also no negotiation strategy embedded to reconcile different perspectives.

The WinWin approach is specifically for recording architectural rationale.

While both gIBIS and WinWin attempt to reduce the overhead in capturing

rationale, they focus on particular elements that must still be formally

documented during the discussions.

The WinWin approach is aimed to provide not as much structure as at-

tempted in gIBIS, SIBYL, and REMAP, which have difficulties in scaling

up to large systems. However, the Win–Win Spiral Process model and

WinWin are also trying to provide stronger support for scalable shared on-

tologies and for collaboration objectives via the domain taxonomy and via

the conceptual bases for collaboration and software development provided

by Theory W and the Spiral Model. For example, the objective of achiev-

ing a win–win situation among stakeholders’ win conditions provides a

much more explicit answer to the question, “What are we trying to col-

laborate about?” than other conceptual frameworks for collaboration.

EasyWinWin helps smooth the transition from WinWin stakeholder

agreements to requirements specifications. Mapping the WinWin domain

taxonomy onto the table of contents of the requirements specification and

requiring the use of the domain taxonomy as a checklist for developing

WinWin agreements effectively focused stakeholder negotiations. But the

result of a WinWin negotiation is typically not a complete, consistent,tt

traceable, testable requirements specification. For example, stakeholders

may become enthusiastic about proposed new capabilities and ratify ideal-

istic agreements such as “anytime, anywhere” service. We are exploring

how to automate parts of the requirements transition to make it even

smoother. For rationale capture, further formatting and indexing capabili-

ties need to be researched and experimented with to capture rejected

as well as accepted win conditions and options. Also, some research

8.8 Future Directions

8.7 Related Work

190 B. Boehm, H. Kitapci

capabilities are experimented with rationale capture such as audio or video

clips are now becoming economically feasible to incorporate.

References

[1] Boehm B (1988) A spiral model of software development and enhancement.

Computer, 21(5): 61–72
[2] Boehm B (1996) Anchoring the Software Process. IEEE Software, 13(4): 73-82
[3] Boehm B (2000) Requirements That Handle IKIWISI, COTS, and Rapid

Change. Computer, 33(7): 99-102
[4] Boehm B, Bose P (1994) A Collaborative Spiral Software Process Model

Based on Theory W. Proc. Int’l Conf. Software Process, IEEE CS Press, Los

Alamitos, California, pp 59-68
[5] Boehm B, Ross R (1989) Theory W software project management: Princi-

ples and examples. IEEE Trans. Softw. Eng., 15(7): 902–916

[6] Boehm B, Bose P, Horowitz E, Lee MJ (1994) Software Requirements as

Negotiated Win Conditions. In: Proceedings of the First International Con-

ference on Requirements Engineering. IEEE Computer Society, Colorado

Springs CO, pp. 74–83
[7] Boehm B, Abts C, Brown AW, Chulani S, Clark BK, Horowitz E, Madachy

R, Reifer D, Steece B (2000) Software Cost Estimation with COCOMO II.

Prentice Hall, Upper Saddle River, NJ

[8] Boehm B, Gruenbacher P, Briggs RO (2001) Developing Groupware for Re-

quirements Negotiation: Lessons Learned. IEEE Softw., 18(3): 46–55

[9] Conklin J, Begeman M (1988) gIBIS: A Hypertext Tool for Exploratory Pol-

icy Discussion. ACM Trans. Off. Inform. Syst., 6(3): 303–331
[10] Covey S (1990) The Seven Habits of Highly Effective People. Fireside

Books, New York

[11] Fisher R, Ury W (1981) Getting To Yes. Houghton-Mifflin, Boston

[12] Gruenbacher P (2000) EasyWinWin OnLine: Moderator’s Guidebook.

GroupSystems.com and USC-CSE

[13] Lee J (1990) SIBYL: A Qualitative Decision Management System. In:

Winston P and Shellard S (eds.) Artificial Intelligence at MIT; Expanding ff

Frontiers, MIT Press, Cambridge, pp. 106–133

[14] Nunamaker J, Briggs R, Mittleman D, Vogel D, Balthazard P (1996) Lessons

from a dozen years of group support systems research: A discussion of lab

and field findings. J. Manage. Inform. Syst., 13(3):163–207

[15] Ramesh B, Dhar V (1992) Supporting Systems Development by Capturing

Deliberations during Requirements Engineering. IEEE Trans. Softw. Eng.

18(6): 498–510
[16] The Standish Group (1995) CHAOS Report

[17] Waitley D (1985) The Double Win. Berkeley Books, New York

