
Rationale as a By-Product

K. Schneider

Abstract: Rationale is an asset in software engineering. Rationale is

communicated during several project activities, like design or prototyping.

Nevertheless, very little rationale is captured today. There seems to be an aa

inherent tension between creating or externalizing rationale, and capturing it

successfully. In this chapter, the “Rationale as a By-Product Approach” is

defined through seven principles. Those principles were identified while

building two applications. In both, tools were tailor-made to support captur-

ing design rationale on the side while working on software project tasks as

usual. The approach is best applied to project tasks that create or elicit a lot

of rationale.

Keywords: capturing rationale, by-product, task-specific path, FOCUS

Rationale is among the most important information a software project t

produces. It is important to know why a decision has been made and why

one design or solution has been preferred over another. Later decisions are

facilitated by knowing why earlier decisions have been made. During

maintenance, documented rationale can save a large percentage of effort.

Chapter 1 introduced many important aspects of when and how to use

rationale.

However, capturing rationale is not straightforward. The most produc-

tive project phases in terms of decisions and concepts are the least likely to

accommodate opportunities for documenting rationale. Exactly at the point

in projects where most design decisions are made, documentation is often

not a high priority. All available resources and time slots are devoted to the

product but none is devoted to (or “wasted on”) documentation or rationale.

Capturing “rationale as a by-product” takes those constraints into

account. A number of principles describe the core of this approach.

Selected human interactions are recorded in several modes in parallel: In

addition to audio or video recording, specific “paths” are recorded and

reused to index the large amount of audio/video data. A path is a time-

indexed sequence of elements (e.g. code modules) visited during the

human interaction. For example, the sequence of all modules explained by

an expert is logged as one such path.

4.1 Introduction

4

92 K. Schneider

In Sect. 4.2, some situations are described in which rationale is built and

communicated. The Rationale Paradox describes the phenomenon that

usually none of the surfaced rationale gets captured where it occurs.

Section 4.3 defines what is meant by the “Rationale as a By-Product

Approach.” There is a general definition and explanations of the principles

that make up the approach. Related work is mentioned in this context. Twok

instantiations of the approach are introduced as examples: Sect. 4.4

addresses software prototypes, and Sect. 4.5 is devoted to risk manage-

ment. The approach is discussed in Sect. 4.6. Section 4.7 concludes.

As described in Chapt. 1, there are many uses for rationale in software

projects. But where and when do different kinds of rationale surface?

Where could they be captured?

Visions, requirements, and reasons for them first appear in the earliest

project phase. Communication in this phase is typically based on informal

meetings, slide presentations, and oral discussions. After a while, more

formal requirements engineering takes over.

Design decisions are mainly discussed by technical experts and

architects during the design phase. Decisions are made by groups and by

individuals. They are typically communicated through overview charts,

architecture sketches, and oral explanations.

Prototypes are often used to decide between design alternatives. Differ-

Prototypes spark insights that add to the rationale for technical decisions.

Demonstration prototypes elicit customer requirements and rationale.

During the entire project, requirements are further negotiated, priori-

tized, and rearranged [1]. Some of these activities will require initial

design proposals or prototypes. Reducing project risks is a constant task in

project management. Identified risks may cause design decisions. Different

stakeholders may disagree on requirements or risks – probably disagreeing

on deeper assumptions and rationale as well. Compromises must be found

that will be accompanied by rationale. Much of the above-mentioned

rationale resides in the heads of project participants. Rationale is seldom

documented.

4.2.1 Rationale Occurs when Decisions are Made

4.2 Origins of Rationale in Software Projects

ent kinds of prototytt pes were differentiated by Lichter et al. [12]. The types

of information provided by those prototypes have also been analytt zed [16].

 Rationale as a By-Product 93

Documenting rationale in a systematic way has long been an issue in

a sophisticated (and maybe “intrusive”) representation calls for effort,

time, and resources to build and to maintain. This chapter advocates a very

different approach. In analogy to agile methods in software engineering

adopted. Light-weight indicates a clear priority to save time and effort t from

the perspective of bearers of rationale. This reduction of effort is afforded

by sophisticated preparation and tools: tailor-made recording software is

used, and masses of data are recorded just to capture some of the above-

mentioned valuable rationale. The trick is to pick the right occasion and

the right indexing-mechanism (“paths”) for each specific activity observed.

Since rationale is so essential for project success, one would expect it to be

highly regarded and captured carefully. However, that is seldom the case,

as Chap. 1 states in some detail and with reference to the literature. Due to

its perplexing nature, I call this observation the “Rationale Paradox”:

The Rationale Paradox:

 When most rationale is created, chances to capture it are lowest.

This paradox is supported by a number of observations:

− Rationale is created when key decisions are made.

− During decision-making, participants are very attentive.

− Rationale is considered important and “evident” at the time when it

is created. At that time, no one can imagine how it could ever be

forgotten.

− Usually, further decisions are based on earlier ones, so there is

pressure to continue fast in the project. New decisions overlay old

rationale.

and experience come together easily and knowledge workers seem to

“flow” through their highly demanding work. During the flow state,

knowledge workers are typically not willing to switch tasks and take

care of rationale.

4.2.2 The Rationale Paradox

software engineering. The Potts and Bruns model [15] was used by Lee

tic web” with qualified relationships, similar to ontologies [20]. However,

[11] to describe rationale. The result resembm les a specific kind of “seman-

[2,3], light-weight approaches to rationale capturing were studied and

− Csikszentmihalyi [5] talks about the flow statel in which knowledge

94 K. Schneider

rupted in their professional activities in order to become aware of the

might endanger motivation and will slow down work. To avoid this,

the team tends to focus on “essential constructive tasks” in the project

– while capturing rationale is deferred.

When the project gets into a slower phase, rationale will already be

partially forgotten (see above), so there is again little motivation to

document it. Most software developers prefer doing what they consider

“productive work” like designing or programming over documentation.

They will rather make new decisions and continue designing or

implementing than capturing rationale. As a consequence, rationale is least

likely to be captured when it would be easiest to grab.

Chapter 1 described many situations in which rationale can be beneficial in

software projects. Section 4.2 indicated different situations in which

rationale is communicated within a project. In many cases, there are only

talks, telephone calls, or a few sketches in which the rationale is ever being

made explicit. Usually, very little rationale is captured and documented.

According to the above-mentioned Rationale Paradox, this is not an

accident but an inevitability.

The approach presented in this paper is a generalization from several

attempts we made at two different universities and a company to face the

above-mentioned challenges of capturing rationale. The two applications

stated below (FOCUS and Risk Analysis) are the most advanced imple-

mentations that incorporate the idea of “Rationale as a By-Product.”

The term approach refers to a set of guiding principles for someone to

follow in order to achieve a certain goal.

The By-Product Approach is defined by two goals and seven principles:

Goals

(1) Capture rationale during specific tasks within software projects

(2) Be as little intrusive as possible to the bearer of the rational

4.3.1 Definition of the By-Product Approach

4.3 Rationale as a By-Product

− Schön [19] and Fischer [7] discuss how practitioners need to be inter-

tacit (internalized [d 14]) expertise they currently applaa y, including

experience and rationale. However, interrupting their flow (as in [19])

 Rationale as a By-Product 95

Principles

(1) Focus on a project task in which rationale is surfacing

(2) Capture rationale during that task (not as a separate activity)

(3) Put as little extra burden as possible on the bearer of the rationale

 (but maybe on other people)

(4) Focus on recording during the original activity, defer indexing,

 structuring etc. to a follow-up activity carried out by others.

(5) Use a computer for recording and for capturing additional task-

specific information for structuring

(6) Analyze recordings, search for patterns

(7) Encourage, but do not insist on further rationale management

All together, the principles shift effort away (1) from the time when

project tasks are being carried out and (2) from experts and bearers of

design rationale. Therefore, it may look from their perspective like the

The style of describing a “method” or “approach” by a list of intercon-

nected principles was successfully used by Beck in his widely known

description of eXtreme Programming [2].

The principles respond to the challenges mentioned in Sects. 4.1

and 4.2. They were inferred from observations and hypotheses in the

above-mentioned attempts to capture rationale. Like in Beck’s description

of eXtreme Programming, principles are not fully comprehensible by read-

ing their titles only. In the remainder of this section, each principle will be

explained with respect to the entire approach. Neither goals nor principles

may sound extremely new or innovative. The difference is in their details

and their combination.

For the purpose of the following discussion, a learner role is introduced.

A learner in this context is a person who will need to use a certain kind of

rationale in the future. Without support, a learner might simply talk to the

bearer of the rationale and search additional material to read. This is a

tedious task, as experts are often busy or not available. There may be a

larger group of learners sharing similar interests and information needs.

Instead of asking the same questions again and again, capturing rationale

and keeping it persistent will assist in distributing it. Moreover, by

focusing and supporting the teaching process the By-Product Approach is

intended to pay off even with only one learner involved.

The By-Product Approach can be applied to different situations and

activities in software engineering. It helps to identify rewarding activities

and to design specific computer support. To build those software features,

rationale is really “captured as a by-product of doing normal work.” This is

what counts. It justifies the name “By-Product Approach”.

96 K. Schneider

substantial technological preparation is required. It reduces effort during

the capturing step so that rationale seems to be captured “as a by-product.”

Each of the principle is now explained. Reasons for each principle are

provided. By referring to related work, the principles are further clarified.

Focus on a Project Task in which Rationale Surfaces

The approach uses an existing task to capture rationale, called the “focus

task”. This refers to a selected task or activity that is part of the usual

software process – not one inserted for the favor or rationale capturing or

rationale management. Many experiences in real projects support the Ra-

tionale Paradox: during interesting project phases, even the slightest addi-

tional “task” will not be accepted. Therefore, no additional task is inserted.

Section 4.2 mentions different kinds of decisions made during different

project activities. Principle 1 requires focusing on one such focus task in

which the desired type of rationale is created or discussed. Rationale is

said to surface when it is discussed, documented or communicated, either

in phone calls, meetings, or prototype demonstrations.r

In the terminology of Chap. 1, the approach is concerned with descrip-

tive rationale, and there is a clear commitment to avoid intrusions during

structures and extra tasks on project personnel. That is carefully avoided in

the By-Product Approach.

Capture Rationale During that Task

It is important to capture rationale where it surfaces. Waiting to capture it

later will probably fail: Much will be forgotten, and project pressure will

force people to prefer project tasks over rationale management duties.

This principle may seem to contradict the previous one: what is the

difference between inserting an extra rationale task (above) and capturing

rationale during an existing task? g

An important psychological issue is the need to schedule and carry out

an additional task in the first case, while in the second case there may only

be a small percentage of extra effort during the existing task, with no

reduce the effort of capture, it just increases acceptance. However, the next

principle calls for reduction of this extra effort as the main optimization

goal – even at the cost of sophisticated preparation and lengthy follow-upl

4.3.2 Principles and Related Work

that selected project task. Approaches like gIBIS [4] impose argumentationmm

additional time slot needed. Of course, this principle by itself does not

 Rationale as a By-Product 97

work. Once again, this may not reduce overall effort, but it does reduce

effort during the rationale-prone project task.

It has been argued (see Chap. 1) that IBIS captures rationale “on the fly”

By-Product Approach is descriptive in that same respect, it puts far more

emphasis on low effort.

Put as Little Extra Burden as Possible on the Bearer of the
Rationale

This principle makes a clear statement about the distribution of effort

within the team. It is especially important that those who are the sources of

rationale be spared the extra work of capturing it. This is contrary to many

rationale capturing approaches that assume the experts will have to do

most of the work (several mentioned in Chap. 1).

the work?” reminds us to design work processes with the benefits and

efforts of all stakeholders in mind. Grudin claims (originally in the field of

CSCW) an approach will not be successful if some people are charged

with extra work, while others receive all the benefits. Projected on captur-

ing design rationale, the bearers of rationale will see little personal benefit

in sharing or even documenting what they know. It is an old lesson from

knowledge management that there may be incentives beyond money

to create benefit. Demonstrating to experts the appreciation for their

our work with the two applications described later, the bearers of rationale

recognized and appreciated our obvious attempts to save them time.

Nevertheless, some effort needs to be invested for capturing and

structuring. As a consequence, someone else has to do it, and at a later

time. This differentiates the By-Product Approach from others that attempt

to distribute the effort more “equally”. However, benefits and potential

contributions are not distributed equally, so why should efforts be? It is a

conscious decision of this approach to let those people do most of rationale

management work who benefit most from a well-structured base of ration-

ale. Those who need the rationale are the ideal people to do that job.

Of course, there is a limit to all principles. When a learner has made an

attempt to organize material, there should be the option for a feedback

session. The expert could meet the learner and look through the results, as

long as the expert is still available. The By-Product Approach and the tools

developed to support each of its instantiations will support this feedback

and provide a good basis for structuring and indexing (as explained later).

When there is no time or opportunity for such a session, the By-Product

[13], just capturing the historyrr of rationale as it occurs. While the

Grudin’s seminal work [9] on “who is the beneficiary and who does

knowledge and help has often been a valuable benefit to them [6]. During

98 K. Schneider

Approach will try to continue without: “raw” material in the form of paths

can often be used since paths follow a well-known structure of products or

work-processes. It is, in fact, not so raw. Skipping feedback will decrease

the learning value, but not to zero (Principle 7).

Most of the extra work load for capturing rationale is shifted away from

the focus project task, and most of the remaining rationale-related duties

are assigned to learners or observers rather than bearers of rationale. Here

is the capturing bottleneck.

As Chap. 1 points out, many approaches have shifted from intrusive to

less-intrusive variants. We consider it important to distinguish the rolest

and balance effort, duties, and (potential) benefit, with a clear focus on

relieving experts from any extra work.

Focus on Recording Rationale First

This principle is rather concrete compared to the first three principles. It

resembles more a practice than a principle in Beck´s terminology [2]. It

describes one contribution to fulfill the first three principles: The main

rationale-related activity is supposed to be recording, but recording of

many different kinds (e.g. audio, video, event traces, paths, and structures

used, see example cases).

According to Principles 2 and 3, recording devices and environment

need to be set-up in a nonintrusive way. Recording must either be trivial,

or the recording devices should be operated by a learner (beneficiary of

rationale transfer, see Principle 3).

Use a Computer for Recording and for Capturing Additional
Task-Specific Information for Structuring

This principle differentiates the approach from simple recording. While

audio or video recording would not necessarily require a computer, this

principle demands the recordings to be computerized (at least in the end).

But there is more to this principle: the more one knows about the focus

task at hand, the more additional information can be recorded on the side.

There is often an internal structure associated with a task or a discussion.

For example, the table of content of a document under discussion, the

agenda of a meeting, or the file structure of a software project provide

hooks and opportunities to refer to.

Since we know that the focus task is related to software engineering,

and due to focusing on only one task, typical structures can be identified

and used. Assume a meeting in which requirements are discussed with a

customer. At some point, participants point to a requirement in a DOORS

 Rationale as a By-Product 99

database, at another point they execute and comment a prototype. Time-

stamped paths facilitate cross-referencing between DOORS document

structures, code execution traces, and oral comments by the participants.

What happened at the same time may be related. Analyses built upon the

combined recordings will add value beyond simple replay, but will also

require substantial up-front implementation work.

Natural language understanding, or any sophisticated form of artificial

intelligent, is not the purpose. Time-stamped recordings are used as time-

indexed paths through the discussion space. Given structures and paths

provide an additional perspective on recorded rationale (e.g., code

structure or DOORS-links).

There is a lot of similarity to approaches like domain-oriented design

DODEs. By stressing path and structures typical for the focus task at hand,

the principle helps the user of the approach to narrow down on an issue.

Analyze Recordings, Search for Patterns

Additional paths and structures are captured while audio or video sources

are recorded. For example, simple recordings can be replayed. In the end,

there are several different recordings from one recorded session, e.g. a

sequence of DOORS requirements discussed (sequence of Req.-IDs),

specification structure (requirements within table of contents), and

audio recording of discussion (time-indexed stream). All those parallel

recordings are related through time stamps.

It is straightforward to link all recordings together for browsing, with an

option to jump from one track of the record (audio, video, paths) to the

other at common time-stamps. Looking at different perspectives (at the

same recorded time) or following any of the paths creates an extended

exploration space for learners. At the same time, the network of paths and

structures is always associated with plain audio or video records that

contextualize and explain things. One of the main values comes from guid-

ing learners within a complex structure, such as a document or program.

We have also explored the opportunity to let a program search for

suspicious or interesting patterns. In the FOCUS example, only a few

trivial patterns were used, concerning hot spots (frequently executed or

explained elements) and path deviations (when a method is executed but

never explained) (issue explained but never executed).

environments [8], but this principle is less general and more specific than

100 K. Schneider

Encourage, but do not Insist on Further Rationale Management

Most approaches about design rationale include capturing as well as index-

ing and structuring. Raw data is considered unreadable and unsuited for

into more manageable rationale is indispensable.

According to this principle, the By-Product Approach is different. The

recordings and paths and structural information usually add up to a large

amount of data. A single Camtasia (screen video and audio) record of a

one-hour meeting may easily be 100 MB large. However, there will be

only a few of those essential meetings, and only a few recordings. This

principle again represents a conscious and rather extreme decision: Do not

care about a few Gigabytes of storage space, when they fit easily on a

2$-DVD. If no one takes the initiative to further extend or modify or

transcribe recordings, the web of recorded “raw” data from one session

might just be burnt on a DVD and represent a snapshot of the project

history. If desired, it can always be loaded back into the computer and

updated. It was our initial intention to keep the rationale alive over an

extended period of time. During the experiments with the two case

examples, we had to accept that this rarely happens. In most cases, the

effort required for creating a snapshot is much less than the effort needed

for continuous rationale management. This approach was shaped by

observations in software projects and optimized from a pragmatic point of

view. Continuing rationale management is certainly desirable from a

methodological perspective.

From Principles to Practices

concrete instantiation of the approach, principles need to be turned into

concrete, operational practices, techniques, or rules. In that sense, each of

the principles explained earlier can be implemented quite differently.

The following two applications show different instantiations of the

approach. First of all, the focus tasks are different (prototypes and risk

management). Consequently, relevant rationale looks different and needs

to be captured in a different way. The principles help to approach both

cases.

learner use by some [13]. The task of abstracting and structuring raw data

As with agile methods [2,3], principles are guidelines to follow. For each

Rationale as a By-Product 101

FOCUS is a strategy and a family of tools to capture knowledge sparked

kinds of prototypes that are built with different goals in mind.

The definitions of various types of prototypes are listed below, with

respective rationale mentioned in parentheses.

− Demonstrators elicit requirements (and rationale for raising those

requirements) from customers.

− Prototypes proper try out implementation ideas (soliciting design r

rationale) implementing the core functionality only.

− Breadboard prototypes try out single technical solutions in isolation.

They produce insights in how to fulfill a requirement (and why!).

− Pilot systems start out as prototypes and slowly turn into product soft-

ware (all kinds of rationale play a role during this full development that

shares all aspects of other prototypes).

FOCUS was initially created to solve the specific problem of capturing

All those findings were compiled and generalized to the “Rationale as

By-Product Approach,” weaving in related other approaches like LIDs

prototypes elicit different aspects of rationale (as differentiated in Sect.

4.2). In the terminology of Chap. 1, it is basically “supporting knowledge

transfer” (Sect. 1.4.4) that is supported by FOCUS.

Where Does Rationale Occur?

When one of the above types of prototypes is selected, a certain kind of

information and rationale is sought. During prototype development, further

rationale is created (why to do it that way?). During development, the flow

process. However, as soon as the prototype is presented to other people,

developers will use this opportunity to talk about their findings and

successes. Observers have a chance to ask questions. This is a good

opportunity to capture and record rationale. We have experimented with

separate tape recorders and with computer-based audio and on-

screen video recording. FOCUS now uses the Camtasia commercial tool to

record both a screen video and audio of the explanations given

4.4.1 FOCUS Implementation of the Principles

4.4 Case 1: Capturing Rationale in Software Prototypes

by prototyt pes [16]. According to Lichter et al. [12], there are different

knowledge frff om prototypes in a light-weight m way [16]. Experience

elicitation in software projects may follow a similar approach [17].

[17] or Collaborative Risk Management [18]. The different kinds of

state [5] may be reached, and an interruption will hampmm er the creation

102 K. Schneider

(http://www.techsmith.com/). Demos often convey highly condensed

information, far beyond “raw rationale”.

Fig. 4.1. From the FOCUS panel (left) commands are issued to control a codet
browser (top), code execution (not visible) and the rationale reader (right)t

How to Shift Extra Effort Away from Experts?

There is very little extra effort from their perspective: The recording soft-

ware is integrated in the FOCUS panel (see Fig. 4.1). Experts giving the

demonstrations just follow the lines from top to bottom and press a few

buttons, in order to start or stop recording.

A typical FOCUS use case follows the buttons in the FOCUS panel: (1)

a learner or expert has marked the code to be discussed. After pushing the

“instrument” button, all methods within that piece of code will be traced

when executed. (2) A demo is started and recorded as both a Camtasia

(video) file and as a sequence of executed methods (specific path). (3) The

path may remote-control the code browser to guide follow-up explana-

tions. In that case, method by method is displayed that was previously

executed. During this second part of the demo, experts explain how the

demoed features were implemented. (4) This explanation is again recorded

via Camtasia into an “explanation path,” which is a sequence of methods

visited.

This original implementation was carried out in Smalltalk (Fig. 4.1).

It is important to use an integrated environment that is used for writing,

Rationale as a By-Product 103

running, and explaining code. Smalltalk was such an environment. How-k

ever, FOCUS as an instance of the By-Product Approach is not restricted

to any single language. To demonstrate this, we recently completed an

Eclipse/Java version of FOCUS (see Fig. 4.2). Eclipse is a widely used

Java development platform. Four Eclipse plug-ins (integrated platform

extensions) were implemented to allow instrumentation and tracing of

selected methods, linking and replay of different recorded paths and videos

in an integrated way.

Fig. 4.2. Eclipse/Java version of FOCUS: On the right of the FOCUS window, t
there is a small Camtasia preview window (can be enlarged), buttons for stepwise

replay of paths (method by method), and a slider for fast navigation. Of course,

Camtasia videos with attached paths can also be replayed in continuous mode. Us-

ers may browse the entire web of paths and recordings at any point

In Fig. 4.2, a list of previously recorded paths provides access to the

methods they consist of. From each recorded method, a learner can explore

all paths that include that method.

Who will Benefit?

A prototype is created to answer questions about customer requirements

or about technical options. Usually, only a small subset of developers is

involved with prototyping, but their findings are used in a much larger

team. Any person in that larger team who needs to learn about the proto-m

type is an ideal candidate for transcribing or summarizing the audio record

– if it is ever done.

What can be Captured During What Task?

That same computer that runs the demo, also executes Camtasia and

path recording (see above). A main advantage is a perfect synchronization

between explanations (audio), what is explained (video), and what part of

the code is actually affected (path).

104 K. Schneider

Additional Computer Recording or Analysis?

Prototype code is instrumented with tracing information. By running the

code, a trace of executed (Smalltalk or Java) methods is created as a by-

product. The sequence of executed methods is called an “execution path”.

Recordings of explanations and screen video were synchronized with

the execution paths and explanation paths through time stamps. The

specific strength of FOCUS comes from its integration with the develop-

ment platform, and code base. By being fully integrated, the code structure

(inheritance, packages) is related to the execution and explanation paths

through the methods executed or explained.

In addition, simple patterns can be detected by FOCUS. It may ask for

is no “artificial intelligence” involved, just pattern matching. No attempt

was made to have the computer explain a pattern. Explaining remains a

task for human experts, as would be the case in a normal demonstration.

In the next example, a very different task in software project management

is supported by the “Rationale as a By-Product” approach. Risk manage-

ment is a crucial project task to avoid running into foreseeable problems.

For example, a subcontractor may have been unreliable in the past.

Relying on this same contractor in a new project is a risk: it could cause a

delay, and maybe contractual fees. Risk analysis is at the core of risk

management. It deals with reasons and probabilities and consequences of

risks. Since there is uncertainty involved, different stakeholders may use

different reasoning (rationale) in assessing those risk parameters. In this

phase, the Risk Analysis Tool comes into the picture.

Where does Rationale Occur?
During the discussion by stakeholders (project leader, experienced

project staff), a lot of the previous experience made with the subcontractor

or with other risks surfaces. Discussions elicit risk mitigation options.

How to Shift Extra Effort Away from Experts?

Usually, risk analysis is carried out in a regular project meeting as a

separate topic. However, risks should be discussed frequently. When the

project is running, risk analysis may only focus on the changes since the

last meeting. Risk meetings are short, but they require that many stake-

holders participate. A larger project might be distributed over different

locations or buildings, causing traveling expenses.

We developed a Risk Analysis Tool that enables the team to save

time by holding risk analysis meetings online. The tool offers a user

interface displayed in Fig. 4.3. At the core, there is a chat facility (left) and

4.5 Case 2: Risk Analysis

rationale on “all methods that were explained but never executed.” Theret

Rationale as a By-Product 105

a portfolio (right) on which risks are placed with respect to their probability

and their impact. Numbered circles represent risks. They are described

after the portfolio. Relative positions imply different priorities for mitigation.

Fig. 4.3. Risk Analysis Tool. Integrates chat (left), portfolio (t right), and recordingt

What can be Captured During What Task?

In the tool, an interactive risk portfolio is combined with a chat

component. Both components are time-stamped and recorded. Since many

comments refer to the same set of risks (on the portfolio), all chat contribu-

tions that mention a certain risk can be identified and cross-referenced. Of

course, there could be a NetMeeting or Voice over IP component instead

of the chat component. Nothing would change in principle as long as all

relevant activities are recorded, time-stamped, and related. Again, the

By-Product Approach can be implemented in several different ways. We

used chat as the easiest option and because it can be easily demonstrated

on paper and slides.

Who will Benefit?
Participants who would like to remember the meeting and the course of

the discussion without taking notes. Future project members who would

Portfolios are the typical tool for discussing risks during risk analysis [10].

controltt (hidden). Risks are represented by circles and listed below portfolio [18]

106 K. Schneider

like to learn about earlier concerns and discussions on risks. New team

members trying to understand the project better, are good candidates to

summarize the recordings, if at all necessary. Project leader assistants

could carry out those things as well, as they usually have to keep track of

the project status.

Additional Computer Recording or Analysis?

Recorded sequence of events (chat contributions, risk movements)

can be filtered and presented in different forms. Besides a simple replay,

filtering for participants or for individual risks is afforded. Also, the path

of a risk circle on the portfolio during discussion can be visualized. For

example, a risk may have entered as low-probability, low-impact in the

lower left corner, and now follow an increasing curve to higher probability

and impact: participants move it up as they agree on increased risk

exposure. Such a pattern might be detected by either the tool or a human

user when looking at the path. Without the tool, such a path may escape

attention, especially when it consists of several smaller shifts. Once

detected, a pattern like this will trigger high-priority risk mitigation

actions.

The concept of capturing rationale “as a by-product” was stimulated by the

FOCUS project, the Risk Analysis Tool, and some smaller projects. Simi-

lar challenges and similar opportunities lead to similar solutions. In this

paper, the “Rationale as a By-Product Approach” was factored out and

explicitly described. This approach provides guidance in setting-up tools to

capture rationale by recording project tasks. The approach is pragmatic in

taking constraints and observations from practice seriously – and accepting

that some nice features will probably not be used a lot.

The two applications were developed in university and industry

environments, respectively. They have been applied to different projects,

and have demonstrated the feasibility of the approach: there were no

fundamental breakdowns or objections, and some participants were

delighted. However, we consider this anecdotal evidence and recommend

empirical validation of future tools built according to the Rationale as a

By-Product Approach. With our new Eclipse implementation of FOCUS,

we plan to validate the approach with a series of increasingly rigid experi-

ments. We are aware, however, that a full validation will take months or

years: the tools will only unfold their full potential when the bearers of

rationale are no longer available or cannot remember what was recorded.

So far we have seen only short-term effects.

4.6 Discussion

Rationale as a By-Product 107

becomes obvious: in all cases, there is almost no interruption of work.

There is a low threshold for rationale bearers to use the techniques, as they

require little or no extra work. There is always a form of recording “raw

information” that contains valuable rationale. Mere recording and replay is

already an important support for capturing rationale, but hardly deserves

being called an “approach”. But when computer tools are enriched with

further recording features, and when the resulting web of paths is offered

as guidance, a new level of support is reached. Indexing by time-stamps

and task-specific paths are crucial means for fast retrieval. Pattern match-

ing and advanced analysis and presentation facilities can add yet another

step. The two cases give some concrete examples.

The approach presented in this paper focuses on the capturing and

“saving” aspects of rationale management. By focusing on one essential

project task, it is highly restricted and very specific. Due to that small

focus, powerful recording mechanisms (e.g. executed program methods,

risk movement events) can be identified and supported.

Care needs to be taken to reintroduce the rationale when it is needed

later. It would go beyond the scope of this paper to discuss this aspect in

depth, but the approach obviously facilitates presentation of rationale, too.

Paths could be visualized, and they always should be used to browse the

space of recorded material. In that respect, the approach typically leads

to “Rationale Capturing” components that are tightly integrated with path-

oriented “Rationale Retrieval” components (as defined in Chap. 1).

Capturing rationale “as a by-product” sounds easy, but requires

sophisticated technological preparations. Rebuilding FOCUS within

Eclipse, for example, consumed more than four persons–months of a

highly skilled software developer. Obviously, there is no way to get ration-

ale for free. This approach simply shifts all the effort into building a

computer tool like FOCUS or the Risk Analysis Tool and away from the

actual project task in which rationale surfaces.

“Rationale as a By-Product” is an approach for building tools and

techniques that have a realistic chance of being accepted and successful in

real projects.

4.7 Conclusions

From developing and applying techniques like FOCUS [16], Risk

Analysis Tool [18] or Lr IDs [17], the merit of the by-product approach

108 K. Schneider

References

[1] Alexander IF, Stevens R (2002) Writing Better Requirements. Addison-

Wesley, Reading, MA

[2] Beck K (2000) Extreme Programming Explained. Addison-Wesley, Reading,

MA

Cockburn A (2002) Agile software development. Addison-Wesley Reading,

MA

Conklin J, Begeman ML (1988) gIBIS: A hypertext tool for exploratory

policy discussion. ACM Trans. Off. Autom. Syst. 6(4): 303–331

Csikszentmihalyi M (1990) Flow: The Psychology of Optimal Experience.

HarperPerennial, New York

Davenport TGP (2000) Knowledge management case book – Best practices.

Publicis MCD, Wiley, München Berlin Heidelebrg New York, Germany,

p. 260

Fischer G (1994) Turning breakdowns into opportunities for creativity.

Knowledge-Based Syst.. 7(4): 221–232
Fischer G (1994) Domain-oriented design environments, Autom. Softw. Eng.

1(2): 177–203

and who gets the benefit. In: INTERACT’87. IFIP Conference on Human

Computer Interaction. Stuttgart, Germany, pp. 805-811

improvement framework, and empirical evaluation. In: Department of Com-

puter Science and Engineering. Helsinki University of Technology, p. 248

rationale. In: International Conference on Software Engineering, ICSE-13

industrial software projects – bridging the gap between theory and practice.

In: International Conference on Software Engineering (ICSE-15), IEEE

Computer Society Press, pp. 221–229

and criteria. In: Moran TP, Carroll JM (eds.) Design Rationale: Concepts,

Techniques and Use, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 21–52
Moran T, Carroll J (1996) Design Rationale: Concepts, Techniques, and Use.

Lawrence Erlbaum Associates, Mahwah, NJ

Oxford University Press, Oxford

International Conference on Software Engineering, ICSE-10

knowledge from prototypes. In: 18th International Conference on Software

Engineering (ICSE-18) 1996. Berlin, Germany, pp. 522–531

[3]

[4]

[5]

[6]

[7]

[8]

[9] Grudin J (1987) Social evaluation of the user interface: Who does the work

[10] Kontio J (2001) Softwff are engineering risk mk anagement – A method,

[11] Lee J (1991) Extending the Potts and Brunrr s model for recorr ding design

[12] Lichter H, Schneider-Hufschmidt Mt , Züllighoven H (1993) Prototypyy ing in

[13] MacLean A, Young RM, Bellotti VME, Moran T (1996) Questions, options

[14] Nonaka I, Hirotaka T (1995) The KnKK owledge-Creating Compmm any. 17 ed.

[15] Potts C, Bruns G (1988) Recording the reasons for dr esign decisions. In:

[16] Schneider Kr (1K 996) Prototypes as assets, not toys. Why and how to extrtt act

109

and reuse. In: Product Focused Software Process Improvement (PROFES

2000). Oulo, Finland, Springer, Berlin Heidelberg New York, pp. 407–424

storing them. In: Conference on Product Focused Software Process

Improvement PROFES 2001. Kaiserslautern, September 2001, pp. 126–140

action. Basic Books, New York

KBS development. Int. J. Hum.–Comput. Stud. 46 (2–3): 183–292

Rationale as a By-Product

[17] Schneider K (2r 000) LIDs: A light-weight approach to experience elicitation

[18] Schneider K (2001) Experience magnets – Attracting experiences, not just

[19] Schön DA (1983) The Reflective Practitioner: How Professionals Think in

[20] Van Heiji st G, Schreiber AT, Wielinga BJ (1997) Using explicit ontt ologies in

