
Three Studies of Design Rationale as

Explanation

S.R. Haynes

Abstract: Prior research has pointed out the potential for design rationale to

act as a base of explanatory knowledge about an evolving or completed de-

sign. One of the benefits of design rationale and its associated techniques

and tools is that they help to answer questions about why a particular design

possesses the structure and behaviors that it does. Answers to these why

questions are explanations. To date, little empirical work has investigated

the challenges and opportunities that emerge when attempting to realize the

utility of design rationale as explanations. The three short case studies re-

ported here describe examples of research that explores the use of design ra-

tionale as a means to enhance communication and comprehension among

the stakeholders in complex systems projects. Lessons learned from the

three studies are provided and some areas for future research are identified.

Keywords: design rationale, explanation, case studies, usability

This chapter examines the relationship between the rationale that emerges

in the systems design and development context and the explanations

constructed in the context of system development, evolution, and use.

Motivating this work is the proposition that as systems become more

pervasive, complex, and intelligent, better means of explaining their

structure and behavior will be required to ensure adoption and effective

use. The use of design rationale (DR) as the basis for system explanations

is an important part of the DR value equation. Justifying the cost and effort

of DR capture involves developing ways to use the products of these

efforts more effectively. Access to DR may be particularly important in

more complex systems, intelligent, distributed systems, for example,

because of the degree of understanding and trust required between these

systems and their users as they work together in a problem domain.

DR captures the intentions underlying creation of a system artifact, and

the issues, questions, argumentation, and decisions made in the process of

navigating a given design space. The knowledge base represented by DR

provides the raw material for active construction of system explanations in

these contexts. As Dutoit et al. ([12], Chap. 1 in this book) point out there

is a range of different uses for DR including, importantly, knowledge R

2.1 Introduction

2

54 S.R. Haynes

transfer among different stakeholders in a systems development project.

DR is about helping to make explicit much of the assumed, tacit knowl-

edge that underlies shared understanding between stakeholders in the same

and in different roles. The studies reported here describe three example

“use cases” of DR as explanation.

DR as explanation is both a descriptive and a prescriptive thesis. DR is

about capturing and communicating the “why” underlying the structure

and behavior of a system. DR as explanation is therefore a descriptive

idea; it is the essence of the rationale-centric approach to the thinking

about the design knowledge. To really leverage the potential power of

these explanations, however, requires acknowledging the communicatory

power and value of rationales. Explanations are pervasive in the use of

DR. Whether among designers or between designers and other project

stakeholders, explanations based on the underlying rationale of particular

design are the means by which systems are comprehended, adopted,

used effectively, enhanced, reused in new settings, and so on. Software

engineering is a team-oriented and knowledge-intensive enterprise; DR is

the currency that facilitates exchange of knowledge among the project

team members.

The chapter first explores complex system explanations and frames

these relative to the capabilities provided by access to DR. Prior research

in knowledge-based systems and in software engineering has suggested a

role for DR as the basis for system explanations, and this work is reviewed

in support of the chapter’s main arguments. Section 2.2 describes three

opment of the system help content. In the second, scenarios and claims

designed to assist potential technology adopters in comprehending the

technology and how it might fit with their own organizational objectives

and priorities. In the third, scenarios and claims were again employed, this

time as a means for evaluating a collaborative system in the field. This last

case shows how evaluation results can be transformed into retrospective

DR, and how these can be used to develop new design meta-criteria for fu-

ture system developers.

Options–Criteria (QOC, [17]) approach was emplomm yed to sud ppouu rt devel-

specific cases of DR as explanation. In the first of these, the Questions–

analysis [7,8,9] are being used to construct a technology transfer package

 Three Studies of Design Rationale as Explanation 55

Mirel [19] describes complex systems as those used to help structure and

solve ill-structured problems. She defines the domains and tasks that give

rise to complex systems development as characterized by some core attributes

including:

− Indeterminacy of both task goals and criteria for task completion

− Requiring higher order cognitive skill and integrating knowledge from

different areas

− Requiring advanced learning and instruction for effective performance

Design for systems created to meet these challenges is correspondingly

complex. The indeterminacy of task goals requires the design of flexible

systems that rely on abstract software components. The higher the level of

abstraction from a particular behavioral or structural requirement, the more

difficult it becomes for developers and end users to reconstruct this process

of abstraction later, and thereby relate the abstraction to the design delib-

erations, or rationale, that gave rise to it [3]. The integration of different

knowledge in design and use, and the assumption of variable cognitive

skills on the part of end users introduce additional complexity to the task

of understanding how a particular system form emerges from a particular

set of requirements. That these systems require advanced learning on the

part of their users raises questions about where they obtain the information

needed to facilitate this learning.

Today, many routine computing tasks are supported by high-

functionality applications (HFAs, [29]), which typically include hundreds

or even thousands of features and are used to manage large volumes of

heterogeneous information. Each feature of such a system may be realized

by a number of complexly interacting software components [1]. Intra- and

inter-component interactions, as well as the distributed, intersystem inter-

actions that increasingly define the modern computing milieu, make

comprehending these systems difficult because of the cognitive load introduced

when attempting to comprehend their structure and functionality.

The nature of complex systems suggests that the kinds of explanations

knowledge to include how and, especially, w why a design assumes a particular y

requests for instructions, are usually concerned with acquiring some deep

knowledge of the event or entity in question. Explanations are provided in

occurrence of the event or existence of the entity.

2.2 Explanations of Complex Systems

required to convey understanding go beyond relatively simple, descriptive

structure and set of behaviors. Explanation requests, compared to, say,

response to why questions that appeal to the causal chain that resulted in

56 S.R. Haynes

In the design context, this causal chain can potentially include a large,

heterogeneous network of factors and influences that combine to inform

the design decisions being made, in other words, the DR. For example,

the second of the three development cases reported later in the chapter

involved selection and implementation of certain decision-theoretic tools f

to support antiterrorism planning. The rationale for why a particular set of

tools was selected, and how important domain concepts were translated

into working software has proven to be of considerable interest to project

stakeholders.

Providing even the briefest explanation of a complex system is a knowledge

intensive activity. Providing a parsimonious explanation typically requires

awareness of substantial implicit and tacit factors including the purpose

motivating the explanation request, the current task at hand, what the

explanation requestor already knows, and other contextual details that

point to the essential information required to fulfill the explanation request

[13]. People have adapted to inferring this detail from the environment and

do it almost effortlessly. Computer-based information systems, however,

are largely unable to ascertain the contextual detail needed to provide

focused explanations to even the most well-formed explanation-seeking

questions. Section 2.3 discusses related work on identifying appropriate

explanation content for complex systems.

content. His work on the explainable expert system (EES) project was an

attempt to address some of the explanation content deficiencies identified

in early expert system research. In this earlier work, especially Mycin [4]

and derivative projects [10], researchers found significant gaps between

the problem-solving strategies systems built to replicate or enhance, and

the structural properties of the systems created to realize these strategies.

edge representing the translation of domain requirements into functional

software systems. The nature of this support knowledge presented a

knowledge engineering conundrum because it represented a huge and

seemingly intractable base of knowledge that was not germane to the

application domain per se, but which was required to explain to domain

users how system functionality emerged in relation to their domain

requirements.

2.3 Design Rationale as Explanation Content

Clancey [10, 11] identified this missing link as the detailed support knowl-

Swartout [26, 27] first identified the potential utility of DR as explanation

Swartout’s attempt to mitigate the effects of this knowledge gap

involved construction of an automatic expert system generator that tracked

and logged decisions made by the system as it produced rules and control

logic based on input in the form of relatively abstract, domain-specific

problem-solving goals. The early XPLAIN system and later work on

principles to translate goals into a system of productions, or rules. The log

of automatic design decisions served as justifications for why the resulting

system was appropriate given the domain model and principles and the

problem-solving goals as expressed by the system developer.

One of the challenges faced by the EES developers was to elucidate the

link between domain-independent, strategic concepts and the domain-

concept in a particular goal scenario. For example, a design principle such

as “simplify wherever possible” might be instantiated in a software design

as “we can combine these two modules into one with no loss of cohesion.”

The EES attempts to solve this linkage problem through the concept of

capability descriptions, which relate system goals to operationalized plans

to achieve those goals. Capability descriptions are used to define what the

plan does, its competencies. System goals are mapped to plans and associated

methods used to achieve those goals through these capability descriptions.

The EES was thereby designed to ‘understand’ the goals that it might be

called upon to explain.

Several researchers outside the intelligent and knowledge-based systems

community have since highlighted the potential for DR to act as an explana-

utility of DR as the basis for informed discussion between system designersd

and system users, and between designers and external stakeholders. Some

have claimed that DR’s primary benefit is as a facilitator of this cross-

party communication, rather than as a cognitive aid to designers or as a

form of documentation, as it is often assumed [24].

DR helps to narrow the “gulf of understanding” [21] that exists between

users who are domain experts and designers who understand how a

particular system was intended to operate within a domain. DR is a critical

element in the portfolio of communications tools that are employed in

a complex development project. The techniques and tools developed to

support DR capture and transfer are communications and organizational

memory devices that can help to bridge the knowledge gap between what a

given system “knows” about the domain, tasks, and user, and what users

know about the complex tools that they use [28].

 Three Studies of Design Rationale as Explanation 57

tory knowledge base [14, 15, 18, 20]. These works point to the potential

the EES relied on the existence of a domain model and problem-solving

specific or instance-specific information that is needed to apply a strategic

58 S.R. Haynes

Prior research discussed in Sect. 2.3 highlights the potential for DR to

improve the understanding of end users and other stakeholders external to

the development team on a complex systems project. Despite this promise,

relatively little work has empirically investigated this potential. In the

sections that follow, I describe three condensed case studies that explore

various aspects of these ideas. The first study was carried out with graduate

student participants in a partially controlled environment. The second and

third are field studies where DR was captured and is being used, in the

first as a vehicle for a technology transfer and in the second as the basis for

system evaluation and iterative redesign. The three cases reveal some of

the challenges to harnessing the explanatory potential of DR, but also the

opportunities for DR to contribute to the comprehensibility of complex

systems.

The first case is the VentureQuery project, which explored whether

concepts and techniques of DR could be leveraged to provide an imple-

mentable model of embedded explanations for a software application. As

discussed earlier, the theory underlying this research is that DR-based

explanations may help to make more transparent the structure of a system

by exposing design team deliberations including system requirements,

envisioned use scenarios, and the technical, cognitive, organizational, and

other constraints applied in the development process.

The VentureQuery project involved analysis, design, and construction of

a software system to create and automatically publish electronic question-

naires on the web. A goal of the research design was to provide a project

of realistic complexity to act as a source for DR, and to capture and

structure the DR in a system capable of providing it back to system users.

The team decided that the target application would consist of a web-based

question–answer system in the form of a venture capital-seeking “game”.

The application was intended to help to educate novice e-business entre-

preneurs in the venture capital-seeking process.

The project team consisted of 12 graduate students drawn from a

Masters of Science course at a UK university. About half of the project

team had significant systems development experience and all had a strong

interest in the process of system design. Twenty-one meetings of the core

design team were recorded on audiotape. An additional three meetings

between members of the design team and various project reviewers and

2.4.1 A Transparent User Interface: VentureQuery

2.4 Three Cases of Design Rationale as Explanation

potential users were also recorded in full. Meetings averaged 90 min.

Tapes were transcribed to text files resulting in over 400 pages of design

meeting dialog. In addition to the design meeting tapes, other project

artifacts were analyzed for their contribution to the DR including domain

analysis documents, design documents (e.g., flip chart drawings), various

Unified Modeling Language (UML) diagrams, meeting agendas and notes,

and e-mail between team members.

Design meeting transcripts were analyzed using the Atlas/ti

(www.atlasti.de) qualitative analysis software package. Coded transcript

fragments were fairly coarse-grained to ensure that the context of a given

design deliberation was not lost in analysis. Based on word counts,

approximately 52% of the content of the design meetings related directly

to design of the application. Design deliberations were coded, extracted,

and then captured as DR in a database developed to act as a knowledge

base for the systems explanation facility.

The Questions, Options, Criteria (QOC), DR semi-formalism [17] was

used as the representational medium for the study. This selection was

made based on QOC’s balance of ease of use with representational fidelity.

QOC is a relatively simple and sparse method for representing DR. This

simplicity was deemed an essential trait in the context of this study, as it

was felt to most closely parallel the selection criteria likely to be applied in

applied project settings, where practitioners are unlikely to invest

time learning a potentially more richly expressive, but necessarily more

complex and difficult to use formalism.

In the QOC notation, Questions highlight issues that have been identified

as relevant to the design, Options are the potential solution approaches that

have been identified to address a given question, and Criteria are the

reasons that are considered for or against each of the identified options.

Whether a criterion is considered a positive or negative factor in the

evaluation of a given option is represented in the links, known as Assess-

ments, between Options and Criteria. Assessments in QOC are not

assigned weights to represent their relative importance to the argument for

an Option. Criteria may be instances of Metacriteria (such criteria are

called bridging criteria by QOC’s designers), though this relationship is

not required. Finally, Questions may be derived from Options (the Conse-

quent Questions of QOC) as a particular design issue is discussed. In

addition, the framework was elaborated with the code QOC Outline, which

was used to relate a particular element of the DR to the specific application

component (generally, a Java class). The code set used and data counts

appear in Table 2.1.

 Three Studies of Design Rationale as Explanation 59

60 S.R. Haynes

Table 2.1. QOC code set and data counts

QOC element # captured

QOC outline elements 25

total questions 151

total options 339

total criteria 122

meta-criteria 21

bridging criteria 87

consequent questions

new questions that arose as a result of a selected option.

32

assessed option–criterion Pairs

option–criterion pairs for which an explicit assessment, + or −, was

derivable directly from the meeting transcripts and other materials.

114

un-assessed option–criterion pairs

option–criterion pairs for which no explicit assessment, + or −, was

derivable directly from the meeting transcripts and other materials.

322

After being coded as QOC, elements of the DR were cross-coded to

identify the explanatory information represented by each QOC component.

The code set used was based on a taxonomy of explanation types derived

purpose of this cross-coding was to identify the types of explanations

provided by DR and to serve as a schema for explanation delivery at appli-

cation runtime. Explanation types are divided into two types: operational

explanations that provide basic information about the design, and why

explanations conforming more closely to conceptions of explanation

content as appealing to deeper knowledge about the application domain.

in Tables 2.2. and 2.3.

Though the operational explanation types are straightforward, the why

explanation types require further definition. Deductive-nomological (law-

based) explanations are those based on the constraints (laws) imposed by

the underlying technical aspects of the system and from the need to conform

to standards and legislative statutes. Functional explanations are those that

relate directly to the purpose or requirement of a system or component, for

example, use scenarios and desired outcomes from use.

from prior research on the philosophy of explanation see [15]. The

Both the operational and why explanation code sets and data counts appear

Table 2.2. Operational explanation code set and data counts

operational

explanations

count (%) examples

What is it? 56/37 what is user answer?

what are the attributes of user answer?

how do I use it? 35/23 what user answer input formats are sup-nn

ported?

can question wording be varied?

how does it work? 54/36 how are user answers validated?

how are question dependencies managed?

other 6/4 who will system test the application?

who will own the rights to the application?

Table 2.3. Why explanation code set and data counts

why
explanations

count

(%)

Examples

D–N (law-

based) explana-

tion

14/11
we are constrained by http

EU privacy laws prevent us from storing that

functional ex-

planation
108/89

what is the purpose of user answer?

we need user square path to tailor questions
based on prior responses

Discussion and Lessons Learned

One of the most important results from the VentureQuery case study

was that much of the design deliberation, including crucial assessments of

criteria against design options, as well as the actual process of deciding on

elements of a final design, were not made explicit in the design process,

as shown in Table 2.1. Though this retrospective approach to rationale

capture did help to work around some of the design process disruption

associated with integrating QOC into a project “ecology” [5], in the context

of explanation content capture the costs of not following the approach

appear to be too great. The decision not to follow an explicit DR process

meant that deliberations on a particular design issue did not always result

in a complete QOC structure, with, for example, multiple Options generated

for each Question, and each Criterion explicitly applied to the evaluation

 Three Studies of Design Rationale as Explanation 61

62 S.R. Haynes

of each Option. This finding lends weight to Schön’s argument [23] that

deliberate techniques must be applied in technological design in order to

promote explicit consideration and reflection during the design problem

solving process.

Though it has been claimed that the most significant issues in any

software project are discussed in design meetings, rather than informal

discussions or not at all [24], it is also possible that certain implementation

decisions are made in isolation by individual members of the project team,

and therefore, never deliberated and never recorded as part of the rationale.

Such “rationale ambiguity” may be an unavoidable, even essential charac-

teristic of technological design and construction [2]. If large, complex

design and development projects are to be completed within their inherent

resource constraints, not every decision and relevant factor can be deliberated,

and the challenge becomes one of defining an acceptable level of ambiguity

rather than eliminating it altogether. That said, this ambiguity poses a

significant challenge to providing comprehensive explanations.

Another problem that emerged was that of explanatory completeness

with respect to design questions and how they appear to be answered

in practice. Analysis of full-text meeting transcripts suggests that design

options sometimes emerge almost mystically from design discussions. It

was sometimes difficult to see the chain of reasoning that led to a particular

design option being proposed and then being either accepted or rejected.

This problem was especially acute in situations where a design option

took the form of a high-level design object, for example, a class, and then

candidate object components were enumerated in rapid succession. We

might expect such cases to generate a rich set of rationales, but the conver-

sation moved so quickly between foci that much of the information

required to populate the QOC was found to be missing. This again high-

lights the potential role of a reflective design process in helping to make

these assumptions more explicit.

There was an apparent asymmetry with respect to the amount of discussion

allocated to certain features over others. This asymmetry was especially

acute with respect to what questions vs. t how questions. Relatively little

discussion was evoked by the identification of a new candidate entity for

the system, while discussions of new processes more often resulted in

long discussions. This seemed to lead in many cases to the inclusion in the

design of system entities that were poorly defined and poorly understood

outside the context of the processes in which they played a role. This is

problematic in the context of object-oriented design, where the generation

of a complete justification and description for a given entity can assist with

the creation of more modular system objects with more well-defined

semantics and behaviors.

The second case is an investigation into the use of DR as a facilitator of

technology transfer. Since the Spring of 2002, we have been working with

the United States Marine Corps on a decision model and cognitive support

(ATFP) resources at Marine Corps installations. A central concern for the

ATFP work is the migration or transfer of the technology across institu-

tional boundaries and its adoption into local practices. In this particular

case, technology developed in an academic partnership with a unit within

the Marine Corps is to be transferred to other units both within the Marine

Corps and to other services and government organizations. The work is

ongoing and the report here is only a preliminary treatment.

The decision model and system developed for Marine Corps antiterrorism

officers, facilities planners, public works officers, and military police provides

support for asset prioritization, calculation of antiterrorism mitigation

project utilities, resource allocation, and acts as a repository for organiza-

tional learning in the ATFP domain. Requirements have been gathered and

refined through a series of briefings, informal and formal design reviews of

the evolving prototype, and cognitive walkthroughs [22] with prospective

users at Marine Corps installations. Over 100 Marine Corps officers and

civilian personnel have reviewed the project, and over 30 have participated

in focused cognitive walkthroughs.

In addition to the core decision model and cognitive support system that

implements it, the project involved development of a range of knowledge

resources to aid users working in the domain including a training module

and explanation facility. The project’s Website includes a scenario editor

that captures details of real and envisioned interactions with the system in

response to a range of decision making and planning problems collected in

the field.

Discussion and Lessons Learned

We have found that a range of factors impact opportunities for successful

adoption of the ATFP system at different installations. These include

‘microscopic’ issues such as domain terminology, which is unfamiliar to

many planners facing ATFP problems for the first time, and ‘macroscopic’

issues such as whether the Department of Defense or Headquarters Marine t

Corps would mandate the use of a particular ATFP planning approach and

supporting tools.

An initial finding from this work is that DR, in the form of scenarios of

 Three Studies of Design Rationale as Explanation 63

2.4.2 Design Rationale for Technology Transfer: ATFP

system to aid effective allocation of antiterrorism and force protection

use and associated claims analyses [8] can act as boundary objects [25]

to faff cilitate knowledge sharing, adoption decision-making, and technology

64 S.R. Haynes

…if we had more of these [scenarios], more well fleshed out and then

these linked to these models, and someone could browse the scenarios and

say, okay, that’s sort of like my scenario, kind of like what I’m going to do

here.

We are actively exploring ways in which scenarios and other elements

of the ATFP system DR can be most effectively captured and then

packaged to facilitate explaining complex systems, and thereby fostering

their adoption, and use. For example, we are exploring the use of a claims

taxonomy tuned to the requirements of technology transfer as suggested

in prior research. One such taxonomy focuses on relating each scenario to

aspects of system comprehensibility, development organization credibility,

and system adoption cost. The ultimate objective of this work is to provide

prospective system adopters with means to understand how a particular

system design relates to specific scenarios of use, and what this mapping

The third and final case involves another system project from the Marine

Corps domain. This project does not involve design per se, but rather an

evaluation project in which DR concepts and representational tools have

been used as focusing principles to guide the work and organize its results.

As in the second case, techniques from scenario-based design and claims

analysis were used, although adapted here to the task of evaluation of a

2.4.3 Design Rationale from Evaluations: PMLAV

entails for the technology adopting organization.

evaluation across organizations. Boundary objects are “those objects that
are plastic enough to be adaptable across multiple viewpoints, yet maintain
continuity of identity” [25]. Central to the utilization of boundary objects
as a theoretical orientation for technology transfer is Star’s claim for the
efficacy of boundary objects as touchstones for understanding among
members of distributed and culturally diverse communities. According to
Star, a ‘good’ or effective boundary object has many identities, definitions,
and interpretations. One important insight is that the most effective bound-
ary objects are those that are able to evoke and make explicit the largest
quantity of tacit knowledge in a particular problem context [6]. In this
way, the use of DR as boundary objects serves as the basis for the active
construction of explanations for end users and other project stakeholders.
In reviews and walkthroughs of the ATFP system, we witnessed cases
where prospective users developed their understanding of the application
by reflecting on scenarios supplied by previous users and how they were
employed in development of a decision model, as exemplified in the walk-
through quote:

complex, computer-supported cooperative work (CSCW) system that

supports product lifecycle management (PLM).

Once again, the setting for the study is a unit of the United States

Marine Corps, the office of the program manager, light armored vehicles

(PM LAV). The PM LAV has implemented an integrated digital environ-

ment (IDE) to support the cooperative and collaborative work of both

civilians and Marines in their use, maintenance and evolution of the LAV.

The IDE is used by 70 PM LAV personnel as well as at Marine maintenance

depots in the United States and in the field.

The PM LAV IDE includes communications (e-mail, videoconferencing),

workflow, document management, project management, collaborative

engineering, and performance reporting functionality. The PM LAV

monitors a fleet of about 800 light armored vehicles deployed worldwide

in a variety of configurations and tasked with a range of missions. The

program manager is responsible for monitoring LAV health and field

performance, developing enhancements to the vehicle, and directing vehicle

maintenance. The IDE is designed to support this work with an integrated

environment for communications and information management.

We interviewed PM LAV personnel across the organization from

staff assistants to division chiefs with a range of responsibilities including

engineering, logistics, and business operations. We used a semi-structured

interview guide. The guide was designed to elicit scenarios and claims

(DR tools) as the basic unit of analysis for the evaluation. An abbreviated

version of the interview guide appears in Fig. 2.1.

Fig. 2.1. PM LAV IDE interview guide

The interviews were recorded, transcribed, and then coded. We were

particularly interested in obtaining participant descriptions of their use

scenarios and how they felt that IDE support for these scenarios contributed uu

to their work and to the mission of the PM LAV.

Analysis of the interview transcripts yielded 43 unique scenarios.

Twenty seven of these are scenarios describing actual, current use of the

system, and 16 were scenarios envisioned by study participants. We identi-

fied 464 total claims in the transcripts, where claims were propositions

1. General questions: elicit roles, task goals, & setting

• Position, role, key tasks and priorities, collaborators, etc

2. Questions related to current system use: scenarios & claims

• Describe scenarios of use with the IDE

• How do these scenarios contribute to the PM LAV mission? (evaluative

claims)

• (follow-on questions, probes)
3.

 Three Studies of Design Rationale as Explanation 65

Questions related to prospective system use

66 S.R. Haynes

made about the system’s support for scenarios. Following the claims

analysis technique, these propositions were assessed as either positive or

negative. Individual scenarios were related to between 0 and 22 claims

each, with a mean of 5.6. In addition, the method identified 223 claims

that were disconnected from any one scenario but in general represented

statements about the IDE system as a whole. After the scenarios and

claims had been gathered, we went back to the PM LAV to validate our

scenario-claim sets in focus groups. Results from this part of the study

suggested that our scenarios and claims were relatively complete and fairly

representative of PM LAV perceptions towards the system.

Discussion and Lessons Learned

The scenarios and claims we extracted from the study may be seen as a

reverse engineering of the original DR. They represent in many ways the

consequences of the original DR, and describe how the system is perceived

by its users in use. They help explain how the system is performing and

how it is perceived by users. At the same time, they serve as a blueprint for

redesign of the system and, further, account for the use context that is

impossible to predict at design time.

Among the interesting aggregate findings from the study was the extent

to which the scenario-based technique was able to ground evaluation in

situations where the system is heavily used and in situations where use is

especially consequential in the daily work life of the study participants. Of

the 74 discrete features of the IDE (identified by us at a relatively arbitrary

level of granularity), scenario coverage identified only 19 of these as being

all important or impactful to the organization’s mission and priorities. Thisa

finding has important implications for requirements engineering, at least in

this case, and suggests that the use of scenario-based design in the early

stages of the project may have helped focus development time and money

on the most important aspects of the system.

The technique was able to elicit evaluative claims spanning a range of

topics including how the organization’s technical infrastructure, the design

of the IDE itself, psychological and social–psychological, and organiza-

tional factors were all implicated in either or both the success or failings

of the system. In terms of the IDE design, for example, we identified

a number of critical areas for redesign including areas where the system

possessed insufficient functionality, problems with usability and ease

of use, inflexible task support, performance and reliability issues, and

problems with security and accessibility of the system. Because claims in

each of these areas are linked to specific scenarios of use, they implicate

particular system features and functionality and suggest how they can be

improved through future development efforts.

One area where the evaluation technique failed was in helping to

identify the contributions gained from implementation of the IDE within

the organization. Costs of systems such as this are relatively easy to

system integrators (though this of course does not account for the true

lifecycle costs of these systems). Effective techniques to measure the benefits

of distributed, collaborative systems, however, remain elusive. One of the

chief aims of the method as described here was to link perceptions of system

benefits, in the form of claims, to the specific scenarios supported by the

IDE. Of the 212 claims we identified as relating to the system’s contribu-

tions, only 6% were truly measurable benefits, with 26% being what we

classified as tangible but immeasurable benefits, and 68% intangible.

as Explanation

A number of challenges and research opportunities emerge from consid-

eration of the findings from these three studies. Results from the Venture-

Query case study highlight the difficulties associated with capturing

complete DR when design activities occur not only in formal meetings,

but also in informal and individual forums. If completeness is a critical

attribute of the DR for a system, such as when it is used to provide an

explanatory knowledge base, then design knowledge capture is one of the

most pressing challenges for research. Design is a ubiquitous activity and

can happen as often in the mind of a single individual riding on the train

as it does in more formal contexts where it is amenable to capture. The

challenge of pervasive design capture raises many questions to occupy

researchers.

of a DR process, in addition to notations and supporting tools, may

help ensure capture of a more complete design knowledge base. Process

prescriptions for experienced designers are, however, notoriously difficult

to enforce as they are seen as disempowering these creative individuals.

Explorations into better ways of integrating DR techniques into the day-to-

day work of designers may help ease this problem, as might better tool

support for DR capture.

Our work with the Marine Corps on antiterrorism planning decision

models and tools has suggested a role for DR, in the form of scenarios,

 Three Studies of Design Rationale as Explanation 67

2.5 Challenges and Opportunities for Design Rationale

measure; just sum the invoices from the development contractors and

Our experience on the VentureQuery project also suggests that adoption

68 S.R. Haynes

claims, and related systems artifacts, as a vehicle to facilitate transfer of

technology between organizations. This work is ongoing and our results

are tentative but experiences with antiterrorism planners in the field

suggests the potential utility of DR, in the form of scenarios and claims

analyses, as explanatory transfer packages to help prospective system

adopters evaluate new technologies. Questions have already emerged

about the form such a package should take, and the kinds of DR that are

most useful for technology adopters in different roles and contexts.

Our work with the Marine Corps PM LAV on complex, distributed

system evaluation suggests that there may be valuable linkages to be

developed between evaluation techniques and tools and those used for DR.

Developing techniques to relate DR to evaluation, then forward to redesign

and subsequent evaluation in a cycle of learning and artifact improvement

may be one way to achieve a truly progressive systems design science.

Still under-researched are the downstream consequences of design

decisions made when a system is still an abstract model as unrealized in

working software. Repositories of DR that provide a longitudinal view of

design deliberations and their consequences may help us better understand

the effectiveness of the different design methodologies and tools created to

support the systems design process.

It is not expected that the cases presented here and the lessons learned

from their analysis will apply to all settings in which DR and design

capture are attempted. In particular, situations less contrived than the ‘zoo’

study reported in the first case, and less structured and formal than in the

second and third, may exhibit very different characteristics and outcomes.

Still, empirical studies of DR are lacking and it is hoped that these

cases can contribute to the evolving base of experiences with DR in both

controlled and field settings.

This chapter has described three cases of design rationale in use as expla-

nations. The theory motivating this work is that access to DR by an

expanded group of project stakeholders, to include end users, may have the

potential to significantly increase the comprehensibility of systems tools.

This potential may be greatest for users of sophisticated software applica-

tions in complex domains, especially those users who require or desire a

deeper understanding of the contextual factors that guide and constrain

the design process. DR techniques and tools may have the added benefit of

facilitating a kind of virtual participatory design in which users are able

to provide meaningful input to the evolution of their systems. For design

2.6 Conclusion

rationale to make sense may depend on showing how the costs of capture

can be recovered through new and innovative uses of these design knowledge

stores. Focusing on DR as a means to facilitate explanation and other

communication between development project stakeholders may represent

one way to expose this value proposition.

Acknowledgments. This work was supported by the United States Marine

Corps through the Marine Corps Research University. The chapter was

substantially improved by three anonymous reviewers who commented on

an earlier draft.

References

[1] Bar-Yam, Y (1997) Dynamics of complex systems, Addison-Wesley, Reading,

MA

[2] Bowker G, Leigh-Star S (1994) Knowledge and infrastructure in interna-

tional information management: Problems of classification and coding. In:

Bud-Frierman L (ed) Information Acumen: The Understanding and Use of

Knowledge in Modern Business, Routledge, London, pp. 187–216
[3] Brooks, FP (1987) No silver bullet: Essence and accidents of software

engineering. IEEE Computer, 20(4): 10–19
[4] Buchanan, BG, Shortliffe, EH (1984) Rule-based expert systems:

the MYCIN experiments of the Stanford Heuristic Programming Project.

Addison-Wesley, Reading, MA

[5] Buckingham Shum S, MacLean A, Bellotti V, Hammond N (1997) Graphical

argumentation and design cognition. Hum.–Comput. Interact., 12(3): 267–300

[6] Carlile PR (2002) A pragmatic view of knowledge and boundaries: Boundary

objects in new product development. Org Science, 13(4): 442–455

[7] Carroll, JM (1995) Scenario-based design: Envisioning Work and Technol-

ogy in System Development, Wiley, New York

[8] Carroll, JM (2000) Making Use: Scenario-Based Design of Human–

Computer Interactions, MIT Press, Cambridge, MA

[9] Carroll, JM, Rosson MB (1992) Getting around the task-artifact cycle: How

to make claims and design by scenario. ACM Trans. Inform. Sys., 10(2):

181–212

[10] Clancey WJ (1983) The epistemology of a rule-based expert system – A f

framework for explanation. Artificial Intelligence, 20: 215–251
[11] Clancey WJ (1987) Knowledge-Based Tutoring: The GUIDON Program, d

MIT Press, Cambridge, MA

[12] Dutoit, AH, McCall R, Mistrik I, Paech B (2006) Rationale Management in

Software Engineering. In: Dutoit AH, McCall R, Mistrik I, Paech B (eds.)

Rationale Management in Software Engineering, Springer, Berlin Heidelberg

New York

 Three Studies of Design Rationale as Explanation 69

70 S.R. Haynes

[13] Graesser AC, Person N, Huber J (1992) Mechanisms that Generate

Questions. In: Lauer TW, Peacock E, Graesser AC (eds.) Questions and

Information Systems, Lawrence Erlbaum, Hillsdale, NJ, pp. 167–187

[14] Gruber T (1991) Learning why by being told what. IEEE Expert, 6(4): 65–74

[15] Gruber TR, Russell, DM (1996) Generative design rationale: Beyond the re-

cord and relay paradigm. In: Moran TP, Carroll JM (eds.) Design Rationale:

Concepts, Techniques and Use. Lawrence Erlbaum, Mahwah, NJ, pp. 21–51
[16] Haynes SR (2000) Explanation in information systems: Can philosophy

help? Paper presented at The Eighth European Conference on Information

Systems (ECIS), July 3–5, 2000, Vienna, Austria

[17] MacLean A, Young RM, Bellotti VME, Moran, T (1996) Questions, Options,

and Criteria: Elements of Design Space Analysis. In Moran TP, Carroll JM

(eds) Design Rationale: Concepts, Techniques and Use, Lawrence Erlbaum,

Mahwah, NJ, pp. 21–51
[18] MacLean A, McKerlie, D (1995) Design Space Analysis and Use-

Representations. In: Carroll JM (ed.) Scenario-Based Design: Envisioning

Work and Technology in System Development, Wiley, New York

[19] Mirel B (1998) Minimalism for complex tasks. In: Carroll JM (ed.) Minimalism

beyond the Nurnberg Funnel, MIT Press, Cambridge, MA, pp. 179–218
[20] Moran TP, Carroll JM (1996) Design Rationale: Concepts, Techniques, and

Use. Lawrence Erlbaum, Mahwah, NJ

[21] Norman DA (1986) Cognitive Engineering. In: Norman DA, Draper SW
(eds) User Centered System Design: New Perspectives on Human–Computer

Interaction. Lawrence Erlbaum, Hillsdale, NJ, pp. 31–61
[22] Polson PG, Lewis C, Rieman J, Wharton C (1992) Cognitive walkthroughs:

A method for theory-based evaluation of user interfaces. Inf t. J. Man–Mach.

Stud., 36: 741–773

[23] Schön DA (1983) The reflective practitioner: how professionals think in

action. Basic Books, New York

[24] Shipman, FM, McCall, RJ (1996) Integrating Different Perspectives on

Design Rationale: Supporting the Emergence of Design Rationale from

Design Communication (PDF CSDL 96-001). College Station, TX: Center

for the Study of Digital Libraries, Texas A&M University

[25] Star SL (1989) The Structure of Ill-Structured Solutions: Heterogeneous

Problem-Solving, Boundary Objects and Distributed Artificial Intelligence.

In: M. Huhns M, Gasser L (eds.) Distributed Artificial Intelligence, Vol. 2,

Morgan Kauffmann, Menlo Park CA, pp. 37–54

[26] Swartout W, Paris C, Moore J (1991) Design for explainable expert systems.

IEEE Expert (June): 58–64

[27] Swartout WR (1983) XPLAIN: A system for creating and explaining expert

consulting programs. Artif. Intell., 21: 285–325

[28] Winograd T (1995) Forward. In: Newman WM, Lamming MG (eds.) Inter-

active System Design. Addison-Wesley, Reading, MA

[29] Ye Y, Fischer G (2002) Information Delivery in Support of Learning

Reusable Software Components on Demand. Paper presented at the Interna-

tional Conference on Intelligent User Interface (IUI), January 13–16, r

2002

 Three Studies of Design Rationale as Explanation 71

