
Maintenance

J.E. Burge, D.C. Brown

Abstract: One of the many difficulties encountered while performing soft-

ware maintenance is determining the impact of potential changes on what

already exists. One way to address this difficulty is to give the maintainers

access to the Design Rationale of the original system. This rationale would

provide the intent behind the design and implementation decia sions, as well

as a history of design alternatives that have been considered. Unfortunately,t

this information is difficult and time consuming to capture and therefore is

rarely available. Our approach to this problem is to look at how the ration-

ale could be used. Rationale needs to be useful to provide incentive for its

initial capture. We present SEURAT, a system that supports entry and dis-

play of the rationale as well as inferences over the rationale. It helps ensure

that the reasoning given for modifications made during software mainte-

nance is consistent with the designer’s initial intent.

Keywords: design rationale; software maintenance; inference, argumenta-

tion

Modifying working software that is currently in use is always a risky en-

deavor. It is very difficult to determine the impact of potential changes on

what already exists. The problem gets even worse if the original develop-

ers of the software are not available or if the maintenance is turned over to r

an organization that did not initially design and build the software.

Some of these risks could be mitigated if the maintainers had access to

the Design Rationale (DR) of the original system. DR documents the

decision making process by capturing the intent behind the design and im-

plementation decisions as well as a history of design alternatives that had

been considered. The DR would include any assumptions made when

developing the initial system and how they impacted the design.

Assumptions can become invalid over time, which is a key reason for why

software needs to continually evolve [19]. It is important to re-examine

assumptions during maintenance to ensure that they still hold.

Unfortunately, most developers do not capture the rationale behind their

decision-making. Recording rationale is seen as being time-consuming and

disruptive. Documenting the decisions can impede the design process if

13.1 Introduction

13 Rationale-Based Support for Software

274 J.E. Burge, D.C. Brown

decision recording is viewed as a separate process from constructing the

artifact [14]. Developers are also reluctant to document their mistakes by

keeping track of what they tried that did not work and are concerned about

potential liability if a decision they record becomes responsible for a catas-

trophic failure of the system [9]. Another issue is that once the rationale is

captured, will it be used and how, exactly, will it be d useful?

We have chosen to address the use of and usefulness of rationale be-

cause the use of the rationale is what is ultimately needed to motivate its

capture. Rationale has many potential uses throughout the software devel-

opment cycle. At each stage of the process, it is useful to know the reasons

behind the decisions made earlier. In addition, the act of recording the ra-

tionale can encourage developers to investigate alternative solutions and

can support their selections with arguments. We feel that rationale is espe-

cially useful, however, during the maintenance phase. Rationale is valu-

able because even if the original developers of the system are available

they may not remember all the details behind each decision made during a

process that could span years. The usefulness, of course, is still bounded

by what rationale has been captured and developers may still be reluctant

to record all reasons for their decisions. We feel, however, that the value of

the rationale outweighs its cost and that developing compelling uses for ra-

tionale is an important step towards motivating the developers to record it.

To investigate the uses of rationale, we have developed a prototype sys-

tem, SEURAT (Software Engineering Using RATionale) [6], that provides

both retrieval of, and inferencing over, rationale. The main focus has been

on developing uses that support maintenance but SEURAT could be used

during other development phases [12] as well. In this chapter, we will

summarize our research into how rationale can be used to support software

maintenance and how that can be done using the SEURAT system.

The remainder of the chapter is structured as follows: Sect. 13.2 de-

scribes related work, Sect. 13.3 describes how rationale can be used during

several types of software maintenance, Sect. 13.4 describes the SEURAT

system and how it represents, captures, presents, and inferences over the

rationale, Sect. 13.5 summarizes the SEURAT evaluation, and Sect. 13.6

concludes the paper and describes future work.

There has been significant work on capture, representation, and use of

design rationale in the field of engineering design. Lee [18] has written an

excellent survey of this work. The use of rationale for software

13.2 Related Work

Rationale-Based Support for Software Maintenance 275

development has been surveyed by Dutoit and Paech [11]. Potts and Bruns

[25] created a model of generic elements in software design rationale that

was then extended by Lee [17] to create Decision Representation Lan-

guage (DRL), the basis of the RATSpeak representation used by

SEURAT. Design Recommendation and Intent Model (DRIM) was used in

a system to augment design patterns with design rationale [24]. This sys-

tem is used to select design patterns based on the designers’ intent and

other constraints. WinWin [1] aims at coordinating decision-making activi-

ties made by various “stakeholders” in the software development process.

Bose [2] defined ontology for the decision rationale needed to maintain the

decision structure. The goal was to model the decision rationale in order to

support decision maintenance by allowing the system to determine the im-

pact of a change and propagate modification effects. Chung, et al. [10] de-

veloped an NFR Framework that uses nonfunctional requirements to drive

the software design process, producing the design and its rationale.

There are also other systems that perform consistency checking. C–Re–

CS [16] performs consistency checking on requirements and recommends

a resolution strategy for detected exceptions. Reiss [26] has developed a

constraint-based, semi-automatic maintenance support system that works

on the code, abstracted code, design artifacts, or meta-data to assist with

maintaining consistency between artifacts.

Lougher and Rodden [21] investigated maintenance rationale and built a d

system that attaches rationale to source code. Their approach differs from

ours, however, in that they argue that maintenance rationale is very differ-t

ent from that captured during development and is not in the form of argu-

mentation. Canfora et al. [7] also address maintenance rationale and break

rationale into two parts: rationale in the large (rationale for higher level

decisions in maintenance) and rationale in the small (rationale for change

and testing). The focus on the rationale in the small is on how the change

will be implemented but does not appear to focus on reasons behind im-

plementation choices at a low level. They developed the Cooperative

Maintenance Conceptual Model (CM2) which is based on the QOC [22]

argumentation format.

While the usefulness of rationale has not been studied in as much detail

as the capture and representation, there have been some experiments per-

formed. Field trials performed using itIBIS and gIBIS [9] indicated that

capturing rationale was found to be useful during both requirements analy-

sis and design, and that the process also helped with team communication

by making meetings more productive. Karsenty [15] studied how DR

could be used to evaluate a design. In this study, 50% of the designers’

questions were about the rationale behind the design and 41% of those

questions were answered using the recorded rationale. Bratthall et al. [3]

276 J.E. Burge, D.C. Brown

performed an experiment using rationale to assist in performing changes

on two different systems. For one system, rationale was shown to be

helpful in decreasing the time used to make the changes and improving the

correctness of the changes but results were inconclusive for the second

system.

Rationale for Software Maintenance

To determine how rationale can be used in software maintenance it is use-

ful to look at what types of maintenance might be performed. There are a

number of different classifications for types of software maintenance [8].

The three types that we address are corrective, adaptive (a combination of

four of Chapin’s types), and enhancive. We chose these types because they

affect modifications to the source code.

Corrective maintenance involves correcting failures of the system [20].

Rationale can be useful in detecting the source of some types of failures.

For example, if a failure occurs because an assumption is no longer valid,

the rationale may, in some cases, help detect what parts of the design and

code depend on the assumption being true. This would point out some

places where changes are likely to be necessary. The rationale may also

contain some possible alternatives that might be better candidates and, if

selected, could fix the problem. It can also indicate if there are alternatives

that should be avoided. Rationale can also be used proactively to find

problems that may not have appeared yet – if a failure points to a decision

made earlier it might be advisable to look at the reasons for making the de-

cision and see if these reasons were important in other choices as well.

This could indicate areas that might need changes to avoid future failures.

Adaptive maintenance involves making changes to the system that do

not change the functionality seen by the customer. This is a combination of

four of Chapin’s types: groomative (improving elegance or security),

preventive (improving maintainability), performance (improving perform-

ance), and adaptive (changing to account for different technology or re-

source use) [8]. The rationale can provide a guide to where improvements

should be made. There are likely to be cases where decisions were made

for reasons that are important in the short term but may require revision in

the future. For example, a developer may choose the alternative that will

be the fastest and easiest to code even though it may not be as desirable as

other alternatives. The rationale can be used to look for decisions made for

the sake of expediency and show what some of the better alternatives are

so that the developers can consider those when updating the code.

13.3

Rationale-Based Support for Software Maintenance 277

Enhancive maintenance involves replacing, adding, or extending “cus-

tomer-experienced functionality” [8]. It is important to ensure that the rea-

sons used to make the enhancements are consistent with those used while

developing the existing system. For example, if performance was impor-

tant in the initial system, it should also be considered important when add-

ing new functionality. It would be unfortunate if the new design choicesff

resulted in significantly slower response time. Rationale can be used to

check for any tradeoff violations that might be made by new additions to

the system. A tradeoff violation would occur if there were system attrib-

utes where more of one meant less of another (such as flexibility versusf

development time) and the maintainer only considered one of the attributes

when making a decision. Rationale can also be used to evaluate the

strength of new design alternatives based on priorities set when the initial

system was developed.

In all types of maintenance it is critical to “do no harm” to the working

system. Rationale can be used to capture dependencies between the differ-aa

ent alternatives considered. This would prevent developers from spending

time implementing an alternative that is incompatible with earlier design

choices.

The SEURAT System

We have developed the SEURAT system to support the use of rationale to

assist with software maintenance. SEURAT presents the rationale to the

maintainer and inferences over it to detect problems and inconsistencies

within the rationale that may also indicate problems with the design.

SEURAT also supports capture of rationale and fits into the RMS frame-

work [12] by providing a Rationale Capture Component, a Rationale Re-

trieval Component, and a Rationale Representation Component (with the

former two dependent on the latter). Our goal is to create a system that can

be tightly integrated with existing development tools so that rationale cap-

ture and use can become a part of the development process, not something

additional that is performed retrospectively after development is complete.

We have built the SEURAT system as a plug-in to the Eclipse Tool

Platform (www.eclipse.org) so that it can be tightly integrated with an In-

teractive Development Environment (IDE). This allows us to connect the

rationale with the code that it explains. This connection ensures that the

software maintainers are aware of and use the rationale. The rationale is

stored in relational database tables using MySQL.

13.4

278 J.E. Burge, D.C. Brown

SEURAT presents the relevant DR when it is needed and allows entry

of new rationale for the modifications. The new DR will then be verified

against the original DR to check for inconsistencies. There are two main

types of checks that are made: structural inferences to ensure that the ra-

tionale is complete, for the decisions recorded, and evaluation, to ensure

that the rationale is based on well-founded arguments. Of course, there isff

no way to ensure that all the designers’ reasoning is recorded but SEURAT

can check for omissions such as failing to select an alternative or selecting

an alternative without any argumentation given.

Figure 13.1 shows SEURAT as part of the Eclipse Java IDE. SEURAT

participates in the development environment in three ways: a Rationale

Explorer (upper left pane), that shows a hierarchical view of the rationale

and allows display and editing of it; a Rationale Task List (lower right

pane), that shows a list of errors and warnings about the rationale; and Ra-

tionale Indicators that appear on the Java Package Explorer (lower left

pane) and in the Java Editor (upper right pane), to show whether rationale

is available for a specific Java element. The examples in this chapter come

from a conference room scheduling system. Note that the screenshots are

in color, making the icons much easier to distinguish on the actual

SEURAT displays than when reproduced here in black and white.

This display design, which also reflects the architecture of the system,

was chosen because it very closely parallels the Eclipse Java IDE. For ex-

ample, the Rationale Explorer uses a tree view similar to that provided by

the Java Package Explorer where items in the tree can be brought up in an

editor by double-clicking on them. This tree format is also an appropriate

one for showing the rationale argumentation and provides a high-level

view of the rationale where the maintainer can choose how deep into the

argumentation structure they want to go by “expanding” the rationale ele-

ments much like they would expand the view of Java files to show attrib-

utes and methods. The Rationale Task List was designed to be similar in

appearance to the Tasks display provided by Eclipse. The Tasks display

shows compilation errors and warnings about problems in the code while

the Rationale Task List shows errors and warnings about problems in the

rationale. The Java Editor used in SEURAT is the same as the one used in

Eclipse. The Bookmark display is also the same except that SEURAT has

added associations between alternatives in the rationale and elements in

the code (files, classes, attributes, or methods) to the list. The maintainer r

can find the code mentioned in the bookmark by clicking on it and can find

the rationale associated with code shown in the editor by moving their

mouse cursor over the bookmark that indicates that rationale is present.

The software developer enters the rationale to be stored in SEURAT

while the software system the rationale describes is being developed.

Rationale-Based Support for Software Maintenance 279

SEURAT supports this by providing rationale entry screens for each type

of rationale element.

Fig. 13.1. SEURAT and Eclipse

SEURAT performs two main types of inferences over the rationale: syn-

tactic inferences, which are concerned mostly with the structure (such as

looking for missing relationships), and semantic inferences, which look at

the content (such as evaluating the choices made). When problems are de-

tected, they are displayed in two places: in the Rationale Explorer, as error

and warning icons on the rationale, and on the Rationale Task List, which

gives a more detailed explanation of what the problem is.

In the following sections, we will describe a subset of the capabilities

provided by SEURAT and describe their use during software maintenance.

The examples come from the rationale for a conference room scheduling

system.

280 J.E. Burge, D.C. Brown

Before describing how rationale can be used, we first need to explain what

our rationale contains. A DR representation needs to be formalized and

well structured, as opposed to just free text, so that computer-based check-

ing and inferences are possible. We have generated a rationale representa-

tion, called RATSpeak, and have chosen to use an argumentation format

because we feel that argumentation is the best means for expressing the

advantages and disadvantages of the different design options considered.

Each argumentation format has its own set of terms but the basic goal is

to represent the decisions made, the possible alternatives for each decision,

and the arguments for and against each alternative.

We have based RATSpeak on Lee’s Decision Representation Language

(DRL) [17] because DRL appeared to be the most comprehensive of the

rationale languages and was designed to capture rationale for software de-

sign. Even so, it was necessary to make some changes because DRL did

not provide a sufficiently explicit representation of some types of argu-

mentation (such as indicating if an argument was for or against an alterna-

tive).

RATSpeak uses the following elements as part of the rationale:

− Requirements – these include both functional and nonfunctional

requirements. They can either be represented explicitly in the rationale

or be pointers to requirements stored in a requirements document or da-

tabase. Requirements serve two purposes in RATSpeak. One is as the

basis of arguments for or against alternatives. This allows RATSpeak to

capture cases where an alternative satisfies or violates a requirement.

The other purpose is so that the rationale for the requirements them-

selves can be captured.

− Decision Problems – these are the decisions that must be made as part of

the development process.

− Questions – these are questions that need to be answered before the an-

swer to the decision problem can be defined. A question can include the

procedures or programs that need to be run or who should be asked to

get the answer. Questions augment the argumentation by specifying the

source of the information used to make the decisions (the procedure,

program, or person).

− Alternatives – these are alternative solutions to the decision problems.

Each alternative will have a status that indicates if it is accepted, re-

jected, or pending.

− Arguments – these are the arguments for and against the proposed alter-

natives. They can either refer to requirements (i.e., an alternative is good

13.4.1 Representation

Rationale-Based Support for Software Maintenance 281

or bad because of its relationship to a requirement), claims about the

alternative, assumptions that are reasons for or against choosing an al-

ternative, or relationships between alternatives (indicating dependencies

or conflicts). Each argument is given an amount (how much the

argument applies to the alternative, e.g., how flexible, how expensive)

and an importance (how important the argument is to the overall system

or to the specific decision).

− Claims – these are reasons why an alternative is good or bad. Each claim

maps to an entry in an Argument Ontology of common arguments for or

against software design decisions. Each claim also indicates what direc-

tion it is in for that argument. For example, a claim may state that a

choice is NOT safe or that an alternative IS flexible. This allows claims

to be stated as either positive or negative assertions. Claims also contain

an importance, which can be inherited or overridden by the arguments

referencing the claim.

− Assumptions – these are similar to claims except that it is not known if

they are always true or whether they will continue to hold in the future.

Assumptions do not map to items in the Argument Ontology.

− Argument Ontology – this is a hierarchy of common argument types

that serve as types of claims that can be used in the system (e.g., Devel-

opment Cost; Portability). These are used to provide the common vo-

cabulary required for inferencing. Each ontology entry contains a default

importance that can be overridden by claims that reference it. These

arguments are tailored to the software development domain. A complete

list of ontology entries can be found in Burge [4].

− Background Knowledge – this contains Tradeoffs and Co-Occurrence

Relationships that give relationships between different arguments in the

Argument Ontology. This is not the considered part of the argumenta-

tion but is used to check the rationale for any violations of these

relationships.

Figure 13.2 shows the relationships between the different rationale enti-

ties.

RATSpeak provides the ability to express several different types of

arguments for and against alternatives. One type of argument is that an

alternative satisfies or violates a requirement. Other arguments refer to

assumptions made or dependencies between alternatives. A fourth type of

argument involves claims that an alternative supports or denies a Non-

Functional Requirement (NFR). These NFRs, also known as “ilities” [13]

or quality requirements, refer to overall qualities of the resulting system, as

opposed to functional requirements, which refer to specific functionality.

As we describe in [5], the distinction between functional and nonfunctional

282 J.E. Burge, D.C. Brown

is often a matter of context. RATSpeak also allows NFRs to be represented

as explicit requirements.

Fig. 13.2. Relationships between rationale entities

The RATSpeak representation describes the NFRs as part of the Argu-

ment Ontology. The Argument Ontology is a hierarchy of reasons for

choosing one design alternative over another with abstract reasons at the

root and increasingly detailed reasons towards the leaves. This is needed to

provide a common vocabulary to support inferencing over the content of

the rationale in addition to over its structure.

Figure 13.3 shows the top level of the Argument Ontology displayed in

SEURAT.

Fig. 13.3. Top level of argument ontology

Each of these criteria then has subcriteria at increasingly more detailed

levels. As an example, Fig. 13.4 shows some of the subcriteria for Usabil-

ity as displayed in SEURAT. The ontology terms are worded in terms of

Rationale-Based Support for Software Maintenance 283

arguments: i.e., <alternative> is a good choice because it <ontology

entry>, where ontology entry starts with a verb. The SEURAT system has

been designed so that the user can easily extend this ontology to incorpo-

rate additional arguments that may be missing. With use, the ontology will

continue to be augmented and will become more complete over time. It is

possible to add deeper levels to the hierarchy but that will make it more

time consuming for the developer to find the appropriate item when adding

rationale.

Fig. 13.4. Argument ontology for usability

Similar hierarchies have been developed for other high-level criteria in

addition to Usability. One thing to note is that it is not a strict hierarchy –

there are many cases where items contributing toward one criterion also

apply to another. One example of this is the strong relationship between

scalability and performance. Throughput and memory use, while primarily

thought of as performance aspects, also impact the scalability of the

system. In this case, and others that are similar, items will belong to more

than one category.

284 J.E. Burge, D.C. Brown

The goal behind the development of SEURAT was to evaluate potential

uses of rationale. While this shifted the focus away from capture, there still

needed to be a way to capture rationale using SEURAT in order for it to

become a complete system. SEURAT facilitates this by being tightly inte-

grated with the IDE being used to write the code. The developer is more

likely to be willing to record their rationale if they do not need to start an

additional tool to do so.

Editing screens were developed for each of the different rationale items

supported by SEURAT and are accessible from the Rationale Explorer.

Each item is created by selecting a context-sensitive menu item from its

parent. Capture is also supported by automatic checking for rationale

completeness. If the developer does not enter all the required rationale for

a decision there will be an error indicated both in the Rationale Explorer

and in the Rationale Task List.

Design Rationale is very useful even if it is only used as a form of docu-

mentation that provides extra insight into the designer’s decision-making

process [15]. SEURAT supports the viewing of DR by allowing the soft-

ware developer to associate the rationale with the code and by using

Rationale Indicators to show which pieces of code have rationale available.

Figure 13.5 shows a portion of the Package Explorer from the Eclipse Java

IDE where the presence of rationale is indicated by a small modification to

the upper left-hand corner of the “J” icon that indicates a Java file. The

associations are made by first selecting the Java element in the Package

Explorer with the mouse, then selecting the alternative it implements in the

Rationale Explorer, and then using a context-sensitive menu from the

Rationale Explorer to indicate that the code and alternative are associated.

DR can provide even more useful information about the design and modi-

fications made to the design if there is a way to perform inferences over it.

Due to the nature of DR, the results may be in the form of warnings or

information (as opposed to conclusions) that help the developer keep track

of the development process and help the maintainer act carefully and

consistently. This support for inferencing classifies SEURAT as a

prescriptive, as well as descriptive [12], rationale system.

13.4.4 Inferencing

13.4.3 Presentation

13.4.2 Capture

Rationale-Based Support for Software Maintenance 285

Fig. 13.5. Package explorer showing rationale associations

SEURAT supports four categories of inference: syntactic, semantic,

queries, and historical. Syntactic inferences are those that are concerned

mostly with the structure of the rationale. They look for information that is

missing. Semantic inferences require looking into the content of the ration-

ale to evaluate the consistency of the design reasoning. These inferences

point out cases where less-supported decisions were made by evaluating

each alternative based on the number and importance of the arguments for

and against it. These are not logical inferences but calculations of the rela-

tive value of the alternatives. Rationale queries give the user the ability to

ask questions about the rationale, and historical inferences use a history of

rationale changes to help the user learn from past mistakes, rather than

repeating them.

The following sections give a few examples of some of the SEURAT

inferences. Each inference can have many uses but, for convenience, we

have grouped them by the type of maintenance being performed.

Corrective Maintenance

As mentioned earlier, a common source of error in software is when an as-

sumption that was true when the system was developed no longer holds.

SEURAT provides the ability to capture these assumptions during devel-

opment. When the assumption is no longer valid, the maintainer can

disable the assumption. SEURAT then performs inferencing over all por-

tions of the rationale that refer to the assumption and re-evaluates the

affected alternatives. If the removal of the assumption means that there are

286 J.E. Burge, D.C. Brown

selected alternatives that are no longer the best choice for their decision,

the user will be informed of this.

One of the decisions that had to be made for the conference room

scheduler system was how to specify the location of the room. There were

two alternatives considered: combining the room and building names into

a single string or specifying them separately. Figure 13.6 shows the

Rationale Explorer after the assumption “customer normally combines

room and building” has been disabled.

Fig. 13.6. Rationale explorer with disabled assumption

The assumption, denoted by an icon containing an “A,” is changed to

have a “D” in the upper right-hand corner showing it is disabled. When the

decision is re-evaluated, a warning icon is shown because the selected al-

ternative which combines them into one string (denoted by an “S” in the

upper right-hand corner) is no longer the best supported (shown by the

triangle icon with an exclamation point shown in the lower left-hand

corner of the diamond shaped decision icon). The new warning is added to

the bottom of the Rationale Task List shown in Fig. 13.7.

SEURAT also assists with corrective maintenance by providing access

to any alternatives that have been either considered or implemented previ-

ously. This is useful both for pointing out what some possible corrections

might be and to help make sure that a solution is not tried that was consid-

ered earlier and rejected. SEURAT also keeps track of dependencies

between alternatives so that the user will be informed if they de-select an

alternative on which another selected alternative depends.

For example, one response to the warning generated by the disabled

assumption presented above would be to choose the other alternative,

which separates out the specifications. This interacts with the alternative

Rationale-Based Support for Software Maintenance 287

selected for the decision about how to represent the conference room. If

the room and building need to be displayed separately then they need to be

stored separately in a conference room class, not combined as a string.

Since the string representation alternative is currently selected, choosing

an alternative that depends on there being a class for the conference room

will give an error. Figure 13.8 shows this error as indicated on the Ration-

ale Explorer (by the square with a white “X” in the middle appearing at the

lower left-hand corner of the diamond-shaped decision icon) while

Fig. 13.9 shows the error in the Rationale Task List. The entire explanation

is available in SEURAT by either scrolling or resizing the Rationale Task

List window of the SEURAT display.

Fig. 13.7. Rationale task list with new warning

Adaptive Maintenance

SEURAT supports adaptive maintenance by providing an easy way to

evaluate the impact of any of the arguments in the Argument Ontology on

the design and implementation. This is done by allowing the maintainer to

perform “what-if” inferencing to see what might happen if their design

priorities change. In SEURAT, each claim or argument can inherit its im-

portance from importance values that the developer stored in the Argument

Ontology. Lowering the importance of an argument will point out deci-

sions that should probably change if that argument is no longer an impor-

tant design goal. Increasing the importance of an argument will point out

decisions that need to change if the argument becomes a higher priority.

One argument that was used very frequently in the conference room

scheduling system was the argument that choosing an alternative would

reduce development time because it was easy to code. Changing the

importance of that argument showed places in the system where there may

have been better alternatives that were not chosen because they were per-

ceived to be more difficult. One example was for a decision of how to

display error messages. Figure 13.10 shows the Rationale Explorer with

the rationale for that decision. The importance of “Reduces Development

288 J.E. Burge, D.C. Brown

Time” has been decreased and the decision now has a warning (indicated

by a triangle icon with an exclamation point in it on the lower left-hand

corner of the decision icon) because the alternative of displaying errors as

a line of text on the main display is now not supported as well as the alter-

native to display them in a pop-up box. Figure 13.11 shows the warning

displayed on the Rationale Task List.

Fig. 13.8. Rationale explorer with decision error

Fig. 13.9. Rationale task list explaining the error

Rationale-Based Support for Software Maintenance 289

Fig. 13.10. Rationale explorer showing error message alternatives

Fig. 13.11. Rationale task list with the warning

Enhancive Maintenance

The inferences mentioned earlier as supporting other maintenance types

will also support enhancive maintenance. During enhancive maintenance it

is important to ensure that the rationale for decisions made when extending

functionality are consistent with the rationale for the initial version(s) of

the system. One way to do this is to make use of the tradeoffs background

knowledge stored in SEURAT. Tradeoffs are used to indicate that there are

two characteristics of the software that oppose each other and should

always appear on opposite sides of an argument. The elements in the trade-

off are both items from the Argument Ontology described earlier. The

new decisions made during enhancive maintenance should consider both

sides of the tradeoff and be consistent with the designer’s original intent.

An example of this in the meeting scheduler is the tradeoff between

increased flexibility and reduced development time. The developer has

290 J.E. Burge, D.C. Brown

added a tradeoff to SEURAT that indicates that if flexibility is increased,

the amount of time to develop the system also increases. This is a non-

symmetric tradeoff since increased development cost does not necessarily

mean more flexibility. When the developer decided how to represent dates

in the scheduling system, they chose to create a customized class to do this

rather than using the Java Calendar class. This decision was made because

the specialized class was thought to be more flexible. The cost of the new

class was not considered. SEURAT detects that this is a tradeoff violation

and warns the user. This lets the developer (or maintainer) know that the

reasoning might not be complete. Figure 13.12 shows the rationale in the

Rationale Explorer with the decision marked as having a problem (shown

by the small triangle containing an exclamation point on the lower

left-hand corner of the decision icon) and Fig. 13.13 shows the tradeoff

explanation in the Rationale Task List. Note that the full explanation is

available in SEURAT by scrolling across the window.

Another way that SEURAT can assist in checking decisions for consis-

tency is by allowing arguments to inherit their importance from the global

defaults stored in the Argument Ontology. If new decisions are made

without overriding the defaults, SEURAT will evaluate them based on the

same priorities as the rest of the design. This allows the software developer

to define their priorities for the different nonfunctional requirements at a

global level. This information will then propagate through the rationale

when the different alternatives for a decision are evaluated and compared

by SEURAT. If the best-evaluated alternative is not selected, the user will

be informed both by warning icons in the Rationale Explorer (shown in

Fig. 13.12) and warning descriptions in the Rationale Task List (shown in

Fig. 13.13).

Fig. 13.12. Rationale for date representation

Rationale-Based Support for Software Maintenance 291

Fig. 13.13. Rationale task list with tradeoff violation

Both presentation of the rationale and inference over the rationale require

that the system support efficient retrieval of the rationale elements. This is

supported by storing the rationale in a MySQL database. The power of the

relational database makes it possible for SEURAT to perform a number of

different queries over the rationale. Several rationale queries, briefly men-

One interesting feature of SEURAT is the ability to look for common

arguments occurring in the rationale. This can be valuable to the maintain-

ers by giving them an overview of what the original developers thought

was the most important criteria. The information can be shown for all al-

ternatives or only for the selected ones.

An initial evaluation was performed using SEURAT to assist with the

three types of maintenance tasks described earlier: adaptive, corrective,

and enhancive. Twenty subjects, a mixture of graduate students and indus-

try professionals, were separated into control and experimental groups.

The groups were divided in order to be balanced, based on their work

experience and Java expertise. None of the subjects had used SEURAT

before although some had attended research presentations describing the

system. All were given a brief tutorial on how to use the system. The

tioned in Sect. “Enhancive Maintenance”, have been implemented in

SEURAT. These include searching for entities of a particular type (require-

ment, decision, etc.); searching for requirements with a particular status

(such as violated); searching for status messages that were overridden by

the user so they could be re-enabled if necessary; and searching for

claims and arguments where the default importance was overridden.

13.5 SEURAT Evaluation

13.4.4 Rationale Retrieval

292 J.E. Burge, D.C. Brown

control group used the Eclipse IDE alone to perform the tasks while the

experimental group used Eclipse with the SEURAT plug-in and rationale

that had been recorded for the system. The goal was to compare subject

performance with and without access to rationale and the support of

SEURAT. In this case, the primary performance measure was the time re-

quired to complete the task, not the quality of the result. This is because

the tasks were relatively simple in order to allow the experiment to be

completed in a reasonable amount of time (less than 4 h per subject). The

system being modified was the Conference Room Scheduling System de-

scribed earlier. This was a Java program that had been originally written

five years earlier as a meeting scheduler and had been adapted over the

years to schedule meetings in multiple rooms. It had many characteristics

of legacy code, such as using an obsolete version of Java and having been

written by multiple developers.

Each subject was timed for each task with two times being measured:

the time required to find the portion of the code that needed to be changed

to complete the task and the time required to complete the task. The results

were not statistically significant, suggesting that more experiments need to

be performed, but the group using SEURAT did perform better on average

than the control group. In addition, SEURAT helped nonexperts more than

experts. We would expect this result to change when more challenging

maintenance tasks are used. Figure 13.14 shows the average times for the

delta (time to find change) and total time for each task.

Fig. 13.14. Average times for each task

Rationale-Based Support for Software Maintenance 293

A survey asking the subjects who used SEURAT what they thought of it

was also administered. These questions asked the subjects to give their

opinion on a Likert scale where SA means Strongly Agree, A means

Agree, U means Undecided, D means Disagree, and SD means Strongly

Disagree. Figure 13.15 shows the summary of these results. The survey re-

sults indicated that the majority of the participants using SEURAT thought

it was a useful tool and that it assisted them in performing the tasks given

in the experiment.

Fig. 13.15. SEURAT usefulness survey results

Conclusions and Recommendations

A way to help reduce the risk, and thereby the cost, of software mainte-

nance is to give the maintainers insight into the intent behind the original t

design, i.e., the design rationale. This can be made even moa re useful if new

changes can be checked to ensure that the reasoning behind new decisions

is consistent with the original system. Conversely, if the goals of the sys-

tem have changed, it would be useful if the maintainer could know how

that would affect decisions made earlier.

To support DR use, we have developed the SEURAT system, which

tightly integrates with an IDE to support the entry of, display of, and infer-

encing over the rationale. SEURAT allows the maintainer to take advan-

tage of the knowledge captured during initial development to assist in

maintenance changes, both by helping the maintainer figure out what

needs to be changed and by verifying that new additions are consistent

13.6

294 J.E. Burge, D.C. Brown

with the designers original intent. This is helpful for all types of software

maintenance.

One of the next steps planned for SEURAT is integration with

additional tools used at different stages of the design process. These would

include requirements tools, design tools, and possibly testing tools. This

would allow us to continue to investigate the differences in the rationale

generated and used at different stages in the development process. The

goal is for SEURAT to be used during all stages of development by

augmenting current development process and practice to support rationale

capture and use. We also will address scalability concerns to transition

SEURAT from a research prototype to a tool that can be used in full-scale

software development.

We would also like to extend SEURAT to handle multiuser rationale.

One thing that rationale can be very useful for is to capture the different

viewpoints expressed by team members while making decisions [23]. It

would be interesting to explore how capturing potentially conflicting in-

formation from different developers could be used in evaluating the design

decisions. We also want to investigate systems that SEURAT could be in-

terfaced with to assist in the capture process. Some possible sources of ra-

tionale are configuration management and problem reporting systems.

We feel that a system like SEURAT would be invaluable during soft-

ware maintenance. The SEURAT system contributes a detailed, reusable

list of reasons for making software decisions in the Argument Ontology.

SEURAT then uses those reasons to support semantic inferencing to de-

termine the impact of these decisions on the software system (and to pro-

mote consistency in the rationale). SEURAT also provides an integrated

environment where rationale capture and use can be performed using the

same tools that are used in development and maintenance. There are many

benefits to having the design rationale available during maintenance but

only with appropriate system support, such as that provided by SEURAT,

can rationale live up to its full potential.

References

[1] Boehm B, Bose P (1994) A collaborative spiral software process model

based on theory W. In: Proceedings of the International Conference on the

Software Process, Reston, VA, pp. 59–68
[2] Bose P (1995) A model for decision maintenance in the WinWin Collabora-

tion Framework. In: Proceedings of the Conference on Knowledge-based

Software Engineering, Boston, MA, pp. 105–113

[3] Bratthall L, Johansson E, Regnell B (2000) Is a design rationale vital when

predicting change impact? A controlled experiment on software architecture

Rationale-Based Support for Software Maintenance 295

evolution. In: Proceedings of the International Conference on Product Fo-

cused Software Process Improvement, Oulu, Finland, pp. 126–139
[4] Burge JE (2005) Software Engineering Using design RATionale. Ph.D. the-

sis, Worcester Polytechnic Institute

[5] Burge JE, Brown DC (2002) NFRs: fact or fiction? Technical Report WPI-

CS-TR-02-01. Worcester Polytechnic Institute.

[6] Burge JE, Brown DC (2004) An integrated approach for software design

checking using rationale. In: Design Computing and Cognition ‘04, Gero J

(ed). Kluwer Academic, Dordrecht, pp. 557–576

[7] Canfora G, Casazza G, De Lucia A (2000) A Design rationale based envi-

ronment for cooperative maintenance. International Journal of Software En-

gineering and Knowledge Engineering 10(5):627–645

[8] Chapin N (2000) Software maintenance types – a fresh view. In: Proceedings

of the International Conference on Software Maintenance, San Jose, CA, pp.

247–252
[9] Conklin J, Burgess-Yakemovic K (1995) A process-oriented approach to de-

sign rationale. In: Design Rationale Concepts, Techniques, and Use, Moran

T, Carroll J (eds.). Lawrence Erlbaum, Mahawah, NJ, pp. 293–428

[10] Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-Functional Require-

ments in Software Engineering. Kluwer Academic, Dordrecht,

[11] Dutoit AH, Paech B (2001) Rationale management in software engineering.

In: Handbook of Software Engineering and Knowledge Engineering, Chang

SK (ed). World Scientific, Singapore, pp. 787–816

[12] Dutoit AH, McCall R, Mistrik I, Paech B (2006) Rationale management in

software engineering: Concepts and Techniques. In: Rationale Management

in Software Engineering, Dutoit AH, McCall R, Mistrik I, Paech B (eds.).

Springer, Berlin Heidelberg New York, pp. 1–48
[13] Filman RE (1998) Achieving ilities. In: Proceedings of the Workshop on

Compositional Software Architectures, Monterey CA

[14] Fischer G, Lemke A, McCall R, Morch A (1995) Making argumentation

serve design. In: Design Rationale Concepts, Techniques, and Use, Moran T,

Carroll J (eds.). Lawrence Erlbaum, Mahawah, NJ, pp. 267–294
[15] Karsenty L (1996) An empirical evaluation of design rationale documents.

In: Proceedings of the Conference on Human Factors in Computing Systems.

Vancouver, BC, pp. 150–156

[16] Klein M (1997) An exception handling approach to enhancing consistency,

completeness and correctness in collaborative requirements capture. Concur-

rent Engineering Research and Applications 5(1):37–46

[17] Lee J (1991) Extending the Potts and Bruns model for recording design ra-

tionale. In: Proceedings of the International Conference on Software Engi-

neering, Austin, TX, pp. 114–125

[18] Lee J (1997) Design rationale systems: understanding the issues. IEEE

Expert 12(3): 78–85

[19] Lehman M (2003) Software evolution cause or effect? Stevens Award

Lecture: International Conference on Software Maintenance, Amsterdam

296 J.E. Burge, D.C. Brown

[20] Lientz BP, Swanson EB (1988) Software Maintenance Management. Addi-

son-Wesley, Reading, MA

[21] Lougher R, Rodden T (1993) Group support for the recording and sharing of

maintenance rationale. Software Engineering Journal 8(6):295–306

[22] MacLean A, Young RM, Bellotti V, Moran TP (1995) Questions, Options

and Criteria: Elements of Design Space Analysis In: Design Rationale Con-

cepts, Techniques, and Use, Moran T, Carroll J (eds.). Lawrence Erlbaum,

Mahawah NJ, pp. 201–251

[23] Peña-Mora F, Sriram D, Logcher R (1995) Design rationale for computer-

supported conflict mitigation. ASCE Journal of Computing in Civil

Engineering 9(1):57–72
[24] Peña-Mora F, Vadhavkar S (1996) Augmenting design patterns with design

rationale. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing 11(2):93–108
[25] Potts C, Bruns G (1988) Recording the reasons for design decisions. In:

Proceedings of the International Conference on Software Engineering. Sin-

gapore, pp. 418–427

[26] Reiss SP (2002) Constraining software evolution. In: Proceedings of the

International Conference on Software Maintenance, Montreal, Que. Canada,

pp. 162–171

