
Rationale Management in Software

Engineering: Concepts and Techniques

A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

Abstract: Rationale is the justification behind decisions. It is captured and

used in many different forms during software engineering. While it has not

achieved widespread use in practice, several approaches have emerged and

successfully been used in selected projects. The goal of this chapter is to re-

view the current state-of-the art of rationale management approaches and

tool support in software engineering, and map future research directions.

Keywords: design rationale, rationale management, software engineering,

software architecting, software requirements

Rationale1 is the justification behind decisions. It is captured and used in

many different forms during software engineering (SE). The availability of

rationale increases the developers’ understanding of the system, making it

easier to adapt or maintain. Being able to explain past decisions also facili-

tates the training of new members in a development team. However,

rationale is often only captured partially and informally, often as natural

language in design documents and in communication artifacts, making it

difficult to access and maintain.

In the 1980s, the SE community, along with several others, started using

1 Historically, much reasearch about rationale focuses on design and, hence, the

term design rationale is most often used in the literature. In Sects. 1.1–1.5,

which cover fundamentals of rationale management, we use the term design ra-

tionale. However, in Sects. 1.6–1.8, we use the term software engineering ra-
tionale to emphasize that rationale models are used during all activities of de-

velopment, including requirements engineering, architectural design,

implementation, testing, and system deployment.

1.1 Introduction

1

rationale apaa proaches. Process-based apa proaches, such as the use of Issue

Based Information System (IBIS) described by Conklin and Burgess-
Yakemovic [9], represent rationale as decision-making steps, capturing

the argumentation behind designs as it occurs. Structural approaches, such

as Questions, Options, and Criteria (QOC) [38], represent rationale as a

space of alternatives and evaluation criteria, reconstructing rationale after

decisions are made. In both cases, capturing rationale entails the elicitation

2 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

A rationale management system (RMS) is one that aims to address the

above-stated issues. RMSs enable the capturing and accessing of rationale.

The potential benefits of employing the services of an RMS include the

following:

− Providing greater support to project management

− Improving dependency management

− Providing greater design support

− Helping support collaboration

− Supporting downstream users of design

− Allowing more detailed documentation

− Helping in requirements engineering

− Aiding in design reuse and ultimately provide a learning tool for

evaluating design [36]

The complete rationale for even a small system is impossible to represent;

consequently, developers are faced with selecting which rationale to

represent in an RMS. Other implementation issues raised by researchers

[46] are the formality (or informality) of the design rationale (DR)

representation [21], and the approach to capturing rationale (e.g.,

reconstruction, apprentice shadowing, automatic generation). An RMS

also aims to address the disruption caused by capturing rationale, recording

rationale as a side effect of other activities, such as requirements elaboration,

risk management, or process enactment.

The goal of this chapter is to review the current state-of-the art of

rationale management approaches and tool support in SE, and map future

research directions. Section 1.2 defines DR concepts. Section 1.3 discusses

the fundamental DR approaches, such as IBIS, DRL, and QOC, from a

historical perspective. Section 1.4 identifies and categorizes uses of design

rationale. Section 1.5 identifies inherent limitations of DR approaches and

proposes possible remedies. Section 1.6 discusses rationale in the specific

context of SE, in terms of opportunities and a survey of the current state of

the art. In Sect. 1.7 we synthesize our observations of Sect. 1.6 and

discuss future research directions in Sect. 1.8.

and formalization of tacit knowledge, potentially introducing much overhead

and disruption in the development process [4]. Rationale also features many

elements and interdependencies, making it often difficult to keep up to date.

propose an architectural framework for RMSs in SE. We conclude and

Rationale Management in Software Engineering: Concepts and Techniques 3

Systematic documentation of rationale for practical decisions began more

than 35 years ago with work on rationale for design [30], in particular,

design of buildings and cities. In the 1980s, interest in rationale spread to

other fields involved with design, including SE and mechanical engineer-

ing. In recent years, researchers in SE have begun to look at rationale for

activities other than design, and we argue later that this is an essential

trend for the future of the field. Nevertheless, rationale for design remains

the dominant theme in rationale research in SE. To understand the history

and current state of the field, it is essential to understand the work done on

design rationale. This section therefore defines the term design rationale

Our definitions are meant to accommodate many points of view about DR.

The definitions we have chosen are similar to those given by MacLean

et al. [38]:

1. We start by defining a design process as one that aims at devising an

appropriate design for an artifact. A design we define as an artifact

description that is detailed enough for use in implementing

(constructing) that artifact. We consider a design appropriate if the

artifact described would satisfy requirements while not being

unacceptable in other ways, e.g., by producing an unacceptable set of

side- and after-effects. Two major categories of artifacts are (1)

physical artifacts, such as buildings, cities and computer hardware, and

(2) cognitive artifacts, such as notation systems and software.

2. We define a designer to be anyone participating in a design process. r

This definition depends on how the term participating is defined and g

leaves open the possibility that users and clients could be designers.

3. Design rationale (DR) is the reasoning that goes into determining the

design of the artifact. It can include not only direct discussion of

artifact properties but also any other reasoning influencing design of

the artifact. Note that our definitions do not imply that design starts

only after requirements have been fully determined. During

requirements specification many design decisions are made and these

are relevant for design rationale. Similarly, design does not stop before

implementation begins. Feedback from implementation and testing

could be part of the design rationale.

1.2.1 Definitions

1.2 Design Rationale Fundamentals

and introduces fundamental characteristics of DR approaches.

4 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

There are already many different approaches to DR, and more are coming

into existence on a regular basis. This multiplicity of approaches shows

that the DR field is healthy, but it also creates the need to make sense of

this variety by finding organizing principles. In this section, we will there-

fore look at some ways of characterizing DR approaches to facilitate

comparison, reveal trends and highlight issues. Describing even briefly thet

many approaches used is beyond the scope of this chapter, but we

will describe some approaches that are frequently used and others that

challenge widely held assumptions.

There are three ways of characterizing approaches to DR that reveal

fundamental differences and similarities among them. One is to look at the

way in which DR is represented and d processed in an approach. Another isd

to describe the extent to which approaches are descriptive or prescriptive

with respect to design. The third is to describe their intrusiveness in the

design process.

Representation and Process Implementation

− DR representation form. Almost invariably, DR is represented by

being divided up into chunks that are assigned certain properties and/or

relationships. By far, the most common way of doing this is through use

of a DR schema, i.e., a fixed, semi-formal, conceptual schema that

represents the types of elements (chunks), properties and relationships in

terms of which DR is represented. An alternative approach to DR

representation involves linking DR chunks to features of the artifact they

discuss. Yet another approach is to link DR chunks to steps in a descrip-

tion of the process of using the artifact.

− DR process implementation. Using a DR approach involves making

commitments about how to implement three basic processes:

o
and recording it

o Formalizing rationale, the process of transforming rationale into the f

desired representation form, such as a DR schema

o Providing access to rationale, the process of getting recorded rationale

to the people who need it

A given rationale approach typically indicates how each of these processesy

is to be implemented. It indicates which entities perform processes, i.e.,

1.2.2 Making Sense of the Varieties of DR Approaches

It is useful to characterize DR approaches by how they represent rationale

and by how they implement basic DR processes.

Capturing rationale, the process of eliciting rationale from designers

Rationale Management in Software Engineering: Concepts and Techniques 5

whether they are done by computers or humans, and, if humans, which by

which humans. It also indicates when the processes are carried out, e.g.,

Capturing rationale might be done in different ways. Designers might do

it themselves or have it done by nondesigners who are specialists in

DR documentation. A third possibility is to extract DR from records of

communication among participants in a project. A fourth is to capture it as

a side-effect of the use of design-support software.

Traditionally, capturing and formalizing rationale were combined in a

single operation. In recent years, however, alternative approaches separate

the formalizing of rationale from its capture. One way of implementing

formalization is to have it done by the same people who state the rationale.

An alternative is to have it formalized by personnel specially trained in

formalizing rationale. Yet another approach is to use software tools that

partially or completely formalize informally stated rationale.

The most common approach to accessing DR is through use of a system

that lets users browse a hyperdocument containing the rationale. Conven-

tional information retrieval (IR) search techniques can also be used. A

third approach to accessing DR uses knowledge-based critics that alert

users to the existence of DR they might need.

Descriptive or Prescriptive

− Descriptive approaches. Some approaches to DR are aimed only at

describing whatever thinking processes designers might choose to use.

Such approaches make no attempt to alter designers’ reasoning. They

might, however, use records of DR to improve processes outside of

design, such as implementation, maintenance, or reuse of designed

artifacts. They might also use DR to bring new members of a design

team up-to-date. Such approaches are only interested in DR as a descriptive

model of designers’ thoughts, utterances or actions. l

− Prescriptive approaches. On the other hand, some approaches are aimed

at improving design processes by improving the reasoning of designers.

They typically attempt to remedy perceived deficiencies in design

reasoning by making it more correct, more consistent and more thorough.

As with descriptive approaches, prescriptive approaches can create

records of DR that are used to improve processes outside of design. It

should also be noted that the descriptive and prescriptive are not always

mutually exclusive. For example, some approaches are primarily

descriptive in intent yet also have some prescriptive goals.

during design or afterwards.

6 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

Intrusiveness

Another useful way of characterizing DR approaches is by their intrusive-

ness in the design process. This includes not only how intrusive they are

but in what respects they intrude. Thus, an approach might be highly

nonintrusive during capture of DR but relatively intrusive during retrieval

and display of rationale. Measures of intrusiveness can include the degree

to which a DR approach dictates the way design is done as well as the

amount of extra effort required to use the approach. And the acceptability

of intrusiveness may differ for capture, formalization and access.

− More-intrusive approaches. Most proposed DR approaches are highly

intrusive with respect to DR capture in that they intervene in the design

process to guide the way rationale is elicited from designers. Typically

such interventions use a DR schema that defines what types of elements

of rationale should be elicited from designers and how these elements

should be linked together.

− Less-intrusive approaches. Over the past 15 years, a number of

researchers have sought less intrusive ways of capturing and formalizing

DR. This is due to concern about difficulties experienced in getting

rationale capture to work in design projects. Specifically, many of these

researchers believe that intrusiveness has been a central obstacle to

effective capture of rationale, though there have been few complaints

about intrusiveness as a barrier to accessing it.

One might imagine that prescriptive approaches were generally intrusive

while descriptive modes were nonintrusive, but the actual story is not so

simple. For example, QOC [38] is a highly intrusive yet primarily descrip-

however, that descriptive approaches sometimes facilitate use of nonintrusive

means to capture DR. Examples include the capture of DR from CAD

usage [47] and use of natural language processing to structure computer

mediated communication in design [45].

By itself, no representation scheme, such as a DR schema, is intrusive. It

only becomes intrusive when used with an intrusive processing implemen-

tation mode, as when a schema is used to guide rationale elicitation. In

such cases, however, different schemas can have different levels of

intrusiveness. Generally, a more fine-grained schema will be more

intrusive, because it makes designers perform more categorization and

linking tasks. In addition, schemas that organize rationale in a way that is

different from the way designers would intuitively organize it create a

tive, while use of domain-oriented issue bases in Procedural Hierarchy of

Issues (PHI) [17] is prescriptive yet highly nonintrusive. It is true,

Rationale Management in Software Engineering: Concepts and Techniques 7

cognitive dissonance that adds to the cognitive overhead that designers

must cope with.

and DRL

The most commonly used way of treating DR is as a type of argumenta-

tion that is structured according to a given schema. There are many ways

in which DR argumentation might be structured, but there have historically

been two major branches of thought. One branch uses some variant of the

schema for argument structure devised by Toulmin [63]. The other uses

prominent members. Interest in the former branch seems to have faded

over the past 15 years, while the latter continues as perhaps the dominant

trend in the field. We will concentrate exclusively on the latter approach

to argumentation. In particular, we will examine the similarities and

differences among IBIS, QOC, and DRL.

IBIS

Historically, the DR movement began with Rittel’s IBIS (Issue-Based

Information System), which was not a software system but a way of modeling

argumentation [30]. By 1967, Rittel had become convinced that design

problems were wicked problems and fundamentally different from the

approach” to wicked problems and used IBIS to implement this approach

[55]. In the 1970s and 1980s he applied IBIS to large-scale projects in

planning and policy making for the United Nations, the Commission

of European Communities and the West German government. Other

researchers applied IBIS to architecture and planning [41].

In the mid-1980s Conklin discovered Rittel’s writings on wicked problems

and saw this theory as a way of understanding the profound difficulties

1.3.1 Three related approaches to argumentation – IBIS, QOC,

1.3 Approaches to Design Rationale

well-defined problems of science [7, 54]. He called for an “argumentative

This section focuses on three argumentative approaches to DR: IBIS, QOC,

and Decision Representation Language (DRL). It thereby gives an intro-

duction into the most prominent issues in providing DR support. It also con-

trasts argumentative approaches with problem-based, scenario-based, and

generative approaches.

one of a group of DR schemas having IBIS, QOC, and DRL as its most

8 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

that software design had run into. He then contacted Rittel, who told him

about IBIS [53]. Conklin then adapted IBIS for use in SE and created the

Rittel’s IBIS had the following elements:

− Issues

− Positions

− Arguments

− Resolutions

In addition, there was a variety of inter-element relationships.

IBIS considers the pros and cons of positions, which are proposed

alternative answers to questions, which are called issues. Positions are

evaluated on the basis of arguments about the relative merits of the

positions as well as the merits of other arguments. In principle, these

arguments can range in size from a brief sentence to many paragraphs,

though typically they are one to three sentences in length. Issue discussion

often involves a multilevel structure of arguments for and against positions

as well as arguments for and against other arguments. The decision on

which position to accept is called the resolution of the issue.

Rittel’s IBIS used several relationships to link different issue discus-

sions. These included more general than, logical successor to, temporal

successor to, replaces and similar to. Variants of IBIS developed by others

often used relationships that differed from Rittel’s to lesser or greater

degrees.

Rittel looked at IBIS as a way of representing debate of controversial

questions that arise in design. In fact, he intended IBIS to be a means for

promoting debate of such questions from many different points of view.

He was much less interested in the treatment of noncontroversial design

questions, which were labeled trivial issues and not dealt with by IBIS.

Rittel’s approach was from the outset both prescriptive and intrusive, as

were almost all of his IBIS projects. Other researchers, however, have

sought much less intrusive ways of using IBIS.

PHI

troversial issues and rethought the relationships between issues. The

centerpiece of PHI is the subissue relationship, where one issue’s resolution e

depends on the resolution of another. In PHI a design project is a

quasi-hierarchical structure of subissues that resembles a calling structure

of subroutines in procedural programming. (A quasi-hierarchy is a directed

acyclic graph with some added cyclical structures.) This is in contrast to

the “spaghetti” structure of issue networks in Rittel’s original version of

graphical IBIS (gIBIS) hypertext system to support this use of IBIS [m 8, 9].

Procedural hierarchy of issues (PHI) [40, 41] extended IBIS to noncon-

Rationale Management in Software Engineering: Concepts and Techniques 9

IBIS. PHI was intended to facilitate the creation of larger and more

comprehensive models of design reasoning. While Rittel’s IBIS typically

dealt with 30–50 issues in a project, PHI typically dealt with 200–400 issues.

PHI also revised IBIS to better reflect actual practice in the IBIS

community in the 1970s. The term answer was adopted (instead of r posi-

tion), since this term was widely used in this community. Also, the concept

of subanswer was added so that hierarchies of answers could be repre-r

sented. Such hierarchies were also in widespread use by IBIS practitioners,

yet had no formal status in IBIS. PHI extended this naming scheme to ar-

guments: the arguments on other arguments got labeled t subarguments.

This meant that hierarchies of issues, answers, and arguments could all be

dealt with using a uniform naming scheme.

Originally PHI was both prescriptive and intrusive. Over the past 20

years, however, PHI has been used in ways that are increasing nonintrusive.

The central tenet of PHI was that the key to improving design reasoning is

to raise more subissues. In other words, the attitude behind PHI was that

better treatment of an issue means thinking about what other issues its

resolution depends on. For example, a house designer might raise the

issue, “How many stories should the house have?” You can do a better

job resolving this issue if you consider what other issues (subissues) the

resolution depends on. For example, the number of stories for a house

might depend on the following subissues:

A number of hypertext systems were created to support PHI, starting

with PROTOCOL [41] in the late 1970s. This was succeeded by

also created to support delivery of PHI-based rationale to designers.

A crucial application of PHI is to create domain-oriented issue bases.

have a high degree of recurrence in different projects in a given problem

domain, e.g., design of houses. An issue’s rationale might not include its

resolution, since this varies from project to project. There is no claim that

an issue base contains all the rationale for a project; instead, it is merely a

convenient starting point for creating that rationale. Typically, much more

work goes into designing a domain-oriented issue base than it is reasonable

to spend on DR design in a single project. This extra work pays off when

an issue base is used to inform many design projects within a domain.

These are structured collections of issues, answers, and arguments that

PHIDIAS [42, 43] in the 1990s. In this period, the JANUS [17] system was

MIKROPLIS [39, 44] in the early 1980s, which in turn evolved into

− How much land is available for the house?

− How many people will live in the house?

− Will elderly or disabled people be living in the house? (since such

people may have difficulty with stairs)

10 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

QOC

A second schema for argumentative DR is used by the QOC approach to

DR. While QOC stands for Questions, OptionsC , and Criteria, it actually has

six major types of elements:

− Questions

− Options

− Criteria

− Assessments

− Arguments

− Decisions

In addition, QOC has relationships between elements, including

inter-question relationships. Since QOC’s schema appears similar to

IBIS’s, it will be useful to point out the differences between the two as we

explain QOC. Like IBIS, QOC centers DR on the discussion of questions.

A crucial difference between QOC and IBIS is that while IBIS’s questions,

i.e., issues, can concern any design topic, QOC’s questions deal exclu-

sively with features of the artifact being designed. An example of a QOC

question given by MacLean et al. is, “How should the scrollbar be

displayed?” This, of course, would also count as an issue in IBIS. While

QOC potentially deals only with a subset of the questions that an IBIS

might deal with, QOC has the advantage of not allowing the designer to

ignore questions about features of the artifact. IBIS, by contrast, does not

mandate that such questions be dealt with, though they typically are.

Alternative answers to QOC questions are called options. Options represent

possible features of the artifact being designed. These are identical to positions

on IBIS issues that deal with the features of the artifact. The following are ff

1. Have the scroll bar permanently fixed to the edge of the window

2. Have the scroll bar invisible normally but visible when the cursor

‘rolls over’ the edge of the window

Questions and their options in QOC together constitute the design space,

which corresponds to the set of possible alternative designs for the artifact.

The use of QOC is referred to as design space analysis.

One crucial respect in which QOC differs from IBIS is in the way in

which the alternative answers to questions are evaluated. QOC, first of

all, requires use of explicitly stated criteria to evaluate proposed answers

(options). Criteria indicate desirable properties of options or requirements

does well according to a criterion and a negative link indicating that it does

examples of mm options adapted from an account by MacLean et al. [38]:

they should satisfy. Second, QOC requires that answers be linked by

positive or negative links to criteria, a positive link indicating that an option

Rationale Management in Software Engineering: Concepts and Techniques 11

poorly. The links of criteria to options are called assessments. IBIS does

not require this sort of consistent evaluation. It only asks for arguments for

or against the answers (positions((). Nevertheless, each assessment in QOC

could be represented in IBIS as an argument for or against a position.

Like IBIS, QOC can have arguments that challenge or support any

element. In QOC emphasis is given to arguments on assessments. As with

IBIS, argumentative structures can have multiple levels of arguments on

arguments. Finally, QOC has decisions indicating which options to accept

for each question. These correspond to resolutions of issues in IBIS.

In summary, there are two main things that distinguish QOC’s schema

from IBIS’s. One is that QOC’s questions always have possible answers

(options) that describe properties of the artifact being designed,

whereas issues in IBIS can include these questions as well as the many

other questions that arise in a design project. QOC has no way of dealing

with the multilevel subissue structures that are the hallmark of the PHI

version of IBIS. On the other hand, the IBIS schema cannot guarantee that

QOC-type questions are addressed. The second thing distinguishing the

schemas is that QOC uses assessments indicating how answers (options)

perform with respect to explicit criteria. While these assessments can be

stated in IBIS as arguments, IBIS has no explicit representation of criteria

as elements.

The goals of QOC approach are primarily descriptive, in that the main

purpose of the system is to create a description of designers’ rationale that

is sufficiently detailed to inform other phases of the artifact lifecycle.

QOC’s process implementation mode is intrusive in its use of designers’

time to guarantee that the description is thorough.

The authors of QOC have not created software to support QOC, though

a number of other researchers have incorporated such support into their

systems.

DRL

Potts and Bruns model of DR [49], which was itself an extension of IBIS.

Lee and Lai [35] argue that DRL is more expressive than other argumenta-

tion schemas in the sense that it enables the answering of a broader range

of questions that might arise in various phases of the artifact lifecycle.

What this claim primarily boils down to is having DRL provide a finer

level of granularity in certain parts of its schema. Lee and Lai do not claim

that DRL provides more comprehensive coverage of DR than other

approaches. They state that their schema is for decision rationale and does

Decision Representation Language (DRL) [34] began as an extension of the

12 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

not deal with all aspects of design rationale, such as deliberations on how

to generate design alternatives. IBIS can deal with these aspects.

The primary elements of DRL are as follows:

− Decision problems

− Alternatives

− Goals

− Claims

− Groups

DRL also has various relationships between these elements. Many of

these elements and relationships correspond to the aspects of QOC and

IBIS.

A decision problem is something to be decided. Lee and Lai claim that a

decision problem is equivalent to both a question in QOC and an issue in

IBIS, but they appear not to recognize that a QOC question is not equivalent

to an IBIS issue. It seems, however, that a decision problem actually

corresponds to a QOC question rather than an IBIS issue becauser alterna-

tives, i.e., the alternative solutions to decision problems, are always artifact

features. An alternative is the same as an option in QOC and can be

represented as a position in IBIS. A goal is used for compl arative evaluation

of alternatives and corresponds to a criterion in QOC, but has no

explicit representation in IBIS. Alternatives can be linked to goals by

achieves relationships, which correspond to positive assessments in QOC.

Alternatives are evaluated by claims about the achieves relationships

between alternatives and goals, a scheme that mirrors QOC’s use of argu-

ments to discuss its assessment relationships between t options and criteria.

These can be modeled as IBIS arguments, but doing so buries the goals in

texts rather than explicitly representing them as elements. Further claims

can be linked to other claims by support or t deny relationships, which are

semantically identical to relationships in both QOC and IBIS.

So far DRL looks nearly identical to QOC, but DRL has some features

not found in QOC or IBIS. One is a presupposes relationship between

claims. In addition, each claim has three attributes: evaluation, plausibility,

and degree, the value of the evaluation attribute being determined from the

values of the plausibility and degree attributes. Plausibility represents the

likelihood that the claim is true, and degree represents the degree to which

it is true. DRL also allows the creation of goal–subgoal hierarchies. DRL l

also includes a subdecision relationship between decision problems that

corresponds to a subissue relationship among issues in PHI. Also DRL’s

claims represent a sentential level of granularity for argumentation, f

whereas IBIS arguments provide only a syllogistic level of granularity.

Rationale Management in Software Engineering: Concepts and Techniques 13

The stated goal of making DRL more expressive than other methods

suggests that the system is primarily descriptive, but a number of the questions

that Lee and Lai list in defining DRL’s expressiveness have implications

for improving design. So DRL appears to be more prescriptive than QOC,

though less prescriptive than IBIS.

IBIS, QOC, and DRL Compared

DRL’s schema seems to correspond to a superset of QOC’s, because every

QOC feature appears to correspond to a DRL feature, though not the other

way around. Both QOC and DRL are more expressive than IBIS in that

they provide more fine-grained models of the argumentation that directly

deals with evaluation of artifact features. But IBIS is more comprehensive

in that it can represent the discussions of some design questions (issues)

that neither QOC nor DRL treats. Lee and Lai state that DRL deals only

with decision rationale and that this does not include all of DR. Since DRL

is a superset of QOC, this limitation would also apply to QOC. Neither

Rittel’s IBIS nor its PHI variant has this limitation.

What aspects of DR are left out of decision rationale? Lee and Lai give

only one example: discussions related to generating feature alternatives. In

PHI there are two major classes of subissues: those that help in evaluating

alternative answers (positions)((and those that help in generating them. Leeg

and Lai are, in effect, saying that the latter cannot be represented in DRL,

and, by implication, QOC. A simple example of an alternative-generating

subissue might be, “How have multiple ‘screens’ of information been

displayed in other software systems?” Such an issue identifies possible

alternatives for artifact features, such as, “by scrolling” and “by showing

multiple ‘cards’ of information, as in NoteCards and HyperCard.” Yet

such an issue it is not a decision problem, because answering the issue

does not decide which feature alternative to adopt. Neither DRL nor QOC

has any explicit way of dealing with such issues.

QOC, however, can deal with certain design questions that do not have

alternative answers that are artifact features, for some criteria in QOC areff

represented as questions. Such questions would clearly count as issues in

with things, such as requirements, that can be used to directly evaluate

alternative artifact features. One example of questions that neither count asmm

QOC questions or criteria is found in an example of an area of design

discussion where MacLean et al. acknowledge that the “overlap” with

Lee created SYBIL, a knowledge-based hypertext system to support coll-

aborative use of DRL [32, 33]. SYBIL is built on ObjectLens [31], a general

tool for building CSCW applications.

IBIS (and subissues in PHI); but criteria in QOC (goals in DRL) only deal

14 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

Design Space Analysis “is relatively weak.” In this example from an

empirical study software designers say the following:

What is causing the long queue[?] Is it people just going through these

steps, or is it people adding options to other services, and then using the

other option?

MacLean et al. describe the process of addressing such questions as buildingf

an ad hoc theory, something that QOC does not handle. IBIS requires no

special new way of handling such questions; they are simply issues.

Originally, both the IBIS and QOC schemas were used in intrusive DR

approaches. But over the past 15 years, research on the PHI has sought to

devise nonintrusive means for capture, formalization and delivery.

The QOC approach concentrates on the design of rationale rather

than recording the processes of rationale generationf , such as in the process

implementation mode in the use of IBIS de escribed by Conklin and

Burgess-Yakemovic [9]. Apparently, on the basis of this difference

“on the fly” and therefore only records a history of a design process,

35-year history IBIS has often been used in the same way QOC is used,

i.e., to create “logical argumentation.” For example, using PHI to create

domain-oriented issue bases [17] is entirely concerned with designing

“logical” rationale and leaves no record of the process by which the rationale

is produced. In other words, the schemas of Rittel’s IBIS and its PHI variant

have been used with different DR process implementation modes.

Here, it is important to point out a fact that makes it difficult to compare

DRL with QOC: writings on DRL generally contain little information

about process implementation mode. DRL seems not so much a DR

approach as a schema that might be used in various DR approaches.

It is perhaps surprising that there are so few significant differences in

the schemas of IBIS, QOC, and DRL. The differences that do exist appear

to be features of one schema that could profitably be added to the other

two. In fact, MacLean et al. state that they would like to make QOC more

like DRL, and Lee and Lai say that they see DRL as extending the changes

that PHI made in IBIS. This suggests that it might be both possible and

useful to combine the three schemas.

MacLean et al. have claimed IBIS is restricted to capturing rationale

whereas QOC records the “logical argumentation.” Actually, over its

Rationale Management in Software Engineering: Concepts and Techniques 15

Problem-Based Evaluation

Lewis et al. [37] present a novel approach for evaluating alternative

features of an artifact. They describe their own software design process as

using a suite of problems for conceptual evaluation of different proposals

for a computational environment they devised. Their experiences may

sound familiar to other software designers, and yet no other DR approach

has taken such experiences into account. Among other things, their work

suggests that argumentation alone may not be the only, or even the

best, means of evaluating alternatives, and this, in turn, challenges the

sufficiency of existing argumentative approaches to DR. Implications of

the Lewis–Riemann–Bell insight for other types of design, including other

types of software design, need to be looked into. How their work might

augment an argumentative approach to DR also needs to be worked out.

Scenario-Based Evaluation

Carroll and Rosson [6] propose a way of evaluating software features

that does not document the reasoning of designers but rather the potential

reasoning of users in hypothetical scenarios of human–computer interaction.

While this is fundamentally different from standard argumentative

approaches, a potential point of connection with argumentative DR is that

the four examples of scenarios that Carroll and Rosson provide are all

question-answering processes. Another connection is that scenario-based

design involves the analysis of claims. Carroll and Rosson emphasize,

however, that the claims they study deal only with the psychological

consequences of artifact features and are “embodied” in, and thus inferable

from, the artifact and its use. They see their work as a more abstract

version of the problem-based approach of Lewis, Riemann, and Bell. They

also see it as similar to QOC in some ways, but as being at a higher level

of analysis and more connected to use situations.

Generating DR from Data and Models

Gruber and Russell [23] argue that argumentative schemas do not include

all the rationale that designers use, because all of them are prescriptive

about what information is relevant. No collection of DR, they claim, could

answer all of the questions that might be raised about the rationale for an

artifact. Rather than having designers elicit highly detailed models of their

rationale, it would be better to collect engineering data and models and

then later use these to infer DR in response to questions that arise about it.

1.3.2 Approaches to DR that Go Beyond Argumentation

16 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

There are many potential uses of DR, some aimed at improving design,

others at improving other phases of the artifact life cycle. Frequently

proposed uses are listed below. Note that there are some overlaps and

dependencies among items in this list. We group them into four main

categories: the first focuses on collaboration, the second on reuse and

change, the third on quality improvement, and the fourth on knowledge

transfer.

Promoting Coordination in Design Teams

DR can help to coordinate many aspects of a design team’s work. Different

members of a team can use a common repository of DR to understand

what others in the team are doing and what the consequences are for their

own work. This can promote the identification of both potential conflicts

between team members and opportunities for mutual support.

Exposing Differing Points of View

One use of DR is to expose differing points of view. Sometimes these are

merely differences of opinion on detailed issues, but sometimes they are

also profound differences of worldview on fundamental topics, e.g., open-

source vs. de facto commercial standards. Sometimes they arise from

differences in domain expertise in a functionally differentiated design

team. Sometimes they arise from the different goals of different stake-

holders in a project. Exposing differing points of view and the reasoning

behind them was a central goal in Rittel’s use of IBIS. Not all DR

approaches share Rittel’s aim of promoting debate. Some are more aimed

at promoting a rapid convergence on agreement.

Facilitating Participation and Collaboration in Design

DR can be used to promote both collaborative and participatory design.

Rittel argued that participation by users in design is often inhibited because

they do not understand what rationale designers are using, what questions

they are addressing, what alternative answers they are considering, what

arguments they are using. He looked at IBIS as a way of making designers’

reasoning transparent, i.e., a glass box rather than a black box, and thus

empowering users to ask questions and to make comments and suggestions.

1.4.1 Supporting Collaboration

1.4 Uses of DR and DR Methods

Rationale Management in Software Engineering: Concepts and Techniques 17

Similarly, he saw collaboration as also being inhibited when members of a

design team did not understand the rationale being used by other members.

DR approaches other than IBIS can also be used this way.

Building Consensus

Many users of IBIS have complained that it lacks adequate means for

promoting consensus and reaching decisions. Other DR methods might be

better for creating consensus for the simple reason that they do not go to

such lengths as IBIS goes to promote debate.

Supporting Future Changes

The most commonly mentioned reason for using DR in SE is to support

future changes in software, a problem that is perhaps more pressing in this

field than in any other design or engineering field. This does not necessar-

ily require a prescriptive approach to DR. This goal might be well served

by approaches that merely record what designers happened to think.

People who want to make future changes need to understand the effects of

those changes; knowledge of the rationale for the design can help in

achieving that understanding. Sometimes that rationale may also reveal

that some planned changes are actually inappropriate. It is not uncommon

that a design feature that seems wrong to a new designer was originally

arrived at, through a painful process of trial-and-error in which all the

“intuitive” approaches failed. Without a record of the rationale, this painful

process might have to be repeated, perhaps many times.

Supporting Reuse

Software reuse is often considered the “holy grail” of software design. But

Increasing Consistency of Decisions

Often it is only by making rationale explicit that consistency can be

achieved. For example, it is not uncommon in large projects for the same

1.4.3 Improving Quality

1.4.2 Supporting Reuse and Change

before software can be reused it needs to be understood and/or modified.

This requires knowing the reasoning behind its original design. DR can

also help to identify parts of software that might be extracted and reused.

18 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

decision tasks to be done by different groups within the design team.

Recording rationale makes it easier to identify this fact and to make sure

that decisions are mutually consistent. This use of DR is prescriptive, for it

seeks to change the way designers think, i.e., making it more consistent.

Though this use of DR requires methods that go beyond mere historical

description of designer’s rationale, such description may be of value

because it exposes designers’ reasoning to critical scrutiny.

Verifying Designs (Supporting Traceability)

This use of DR requires an explicit linking of requirements criteria to the

descriptions of artifact features that satisfy these criteria. In the case of

software, it also suggests the desirability of linking the criteria to actual

features of the implemented software. This requires a schema that makes

criteria explicit, as QOC and DRL do, rather than schemas where criteria

are embedded in larger arguments, as is the case with IBIS.

Supporting Maintenance

One possible use of DR is to support debugging, fixing problems, and

extending the functionality of an artifact. This problem is probably more

critical with software than with any other type of artifact. DR can be used

to spot conceptual errors in design as well as implementation errors, and

errors of omission as well as errors of commission.

Learning from the Past

To learn from the past, we need to understand the reasoning behind past

decisions. Most DR researchers maintain that this can best be done through

explicit recording of the rationale for those decisions, something that

requires nothing more than a descriptive model of whatever it was that the

designers were thinking when they made decisions. Gruber and Russell

[23], however, have presented evidence that designers are often able to

effectively reconstruct the rationale for past designs from data other than

an explicit record of rationale. These authors even suggest that it may be

more useful to record such data rather than the rationale itself.

1.4.4 Supporting Knowledge Transfer

Rationale Management in Software Engineering: Concepts and Techniques 19

Validating Designs

To maximize learning from the past, we need to be able to compare

designers’ expectations about the consequences of their decisions with the

actual consequences. This requires more than an understanding of the

reasoning behind past decision; it requires evaluation of artifacts in use.

One approach to doing this is found in case-based reasoning (CBR)

projects by Kolodner [29]. Especially interesting is the ARCHIE project,

which records the experiences of users of artifacts (buildings) and links

these experiences to representations of the artifact.

Organizing and Delivering Reusable Knowledge

The issue of learning from the past is also fundamentally connected to the

reuse of knowledge. Reuse can be thought of not only as using the success-

ful ideas and rationale from the past, but also a matter of preserving

records of what not to do. There is no point in reinventing the wheel, but it

makes even less sense to reinvent the square wheel. Thus, the blunders of

past designers represent an important type of reusable knowledge.

There are two basic approaches to the reuse of knowledge: the

alized approach. The latter term is intended here as an umbrella term for a

number of approaches that try to put knowledge in a generalized form that

goes beyond the mere annotation of individual cases. There are currently a

number of generalized approaches, including patterns and issue bases.

Patterns, as used in SE, constitute one of the most heavily used

Domain-oriented issue bases have only been created with PHI. Such issue

bases contain hierarchies of issues, positions, and arguments that are

commonly raised in projects in the domain. Most issues are left unresolved

and designers are invited to make their own minds up on the issues. Wher-

ever the software technology permits, issue bases are extensible by designers,

who can add to them and even edit them for use in specific projects.

Supporting Training

One use of DR is to bring new members of a design team up-to-date on

case-based approach, mentioned above, and what we might call the gener-

approaches for organizing reusable knowledge [19]. Integrating rationale

more completely into such patterns could be an important way of making

rationale reusable. The patterns used in SE ultimately derive from Alexander’s

concept of pattern used in his work on architecture and urban planning [1].
This pattern concept has rationale explicitly built in, though this rationale

is relatively unstructured.

work in a current project. DR can function as a sort of larger-scale

20 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

version of an FAQ, so that a new member can understand the rationale for

Providing External Design Memory

DR is useful as a memory aid for members of a design team. This is especially

important where projects go on for long periods of time and where designers

leave the team. It is very important when designers leave a project that all

knowledge of their project rationale does not leave with them.

Despite the many approaches to DR suggested and the many software

systems devised, DR has not found ongoing use in real-world design.

There are cases where DR has been applied successfully; but these often

depend on special circumstances, such as the presence of a “DR champion” h

[9], that cannot be expected to exist in the majority of cases.

There are a number of ways in which DR methods can fail to be used in

practice. One is the use for eliciting and recording rationale from

designers, which is generally known as capturing DR. The other way is

for retrieval and display of recorded rationale, what we shall call providing

access to DR. We will focus here on the former, because it has been the

central obstacle to the practical applications of DR. In fact, so little DR has

been captured to date that has been relatively little opportunity to investi-

gate the problem of DR access in real-world settings.

There seems to be a broad consensus that DR capture has generally not

worked in practice. Designers have typically resisted rationale capture.

Why they resist is a central question in research on DR capture and one of

the most important issues in the DR field. If we were certain of how to

answer this question, we would know the conditions, if any, under what

the capture problem is solvable and how to begin solving it.

There are a number of possible explanations for resistance to DR

capture. Some researchers point to its intrusiveness as the problem. One

kind of intrusiveness is due to the work required for capture. Most capture

involves designers writing up their rationale in a given DR schema. This

requires a great deal of work in addition to the normal work of design.

1.5.1 The Capture Problem

1.5 Limitations of Current DR Approaches and Software

the current state of the artifact’s design before suggesting changes to it.

Rationale Management in Software Engineering: Concepts and Techniques 21

Other reasons for resistance to capture can include political and legal

factors. Designers might not want their bosses or the public to know

the real reasons for their decisions. They might also want to protect

themselves from potential law suits. There is also the problem that any

argument can be a double-edged sword that provides others with a way to

attack decisions made.

For descriptive approaches, the extra work of DR capture can be a

record the rationale are unlikely to be the ones who use it. Designers might

thus have little motivation to do the capture. Descriptive approaches run

afoul of Grudin’s principle that collaborative systems tend to fail when

Grudin argues that in developing commercial off-the-shelf (COTS)

software DR capture might not pay off at all for later phases. COTS

projects are failure prone, because (1) most products fail commercially and

(2) up to 90% of projects are not completed. Failed projects do not need

DR, and using resources for its capture could make failure more likely.

Grudin also suggests that in COTS development design decision making

is often highly distributed. Experts and stakeholders of many types shape

the design. There is often no way of compelling these individuals to share

their rationale, much less to use a DR software system.

Grudin analyzes DR capture in three additional development contexts.

For in-house development in organizations and competitively bid contract

development he finds that incentives for DR t capture offset some of the

disincentives he found in COTS development. For customized software

development, however, the only real disincentive he finds is that the firms

doing it are often small and lack resources to invest in new software tools.

Another possible explanation for resistance to DR capture is that the

quantity of work required for capture is greater in time than designers have

for in a project even if they want to do it. Design is an intense activity that

tends to absorb all the resources of time and personnel available.

For prescriptive approaches, there is supposedly a benefit to designers

for capturing DR, so designers should be more motivated to do it. Yet even

here, it has not succeeded. A simple reason for this might be that investing

resources in DR capture has less benefit than investing it in design.

Another possible reason for the failure of DR capture in both descriptive

and prescriptive approaches is that DR capture might actually be detrimen-

tal to design in ways that go beyond its cost in resources. For example,

Fischer et al. [17] use Schön’s theory of Reflective Practice [56] to argue

that DR can actually disrupt designers’ thinking. Schön sees design as

involving two very different cognitive processes: an intuitive process of

skillful action, which he calls knowing-in-action, and a reasoned process of

those who do the work are not the beneficiaries of that work [24, 25].

fundamental problem. Since such approaches do not aid design, those who

22 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

reflection, which he calls reflection-in-action. He sees design as continually

alternating between the two. The two processes cannot be done simultane-

ously, because reflection disrupts knowing-in-action. Reflection is only

productive when intuition fails to cope with some new circumstance

arising in design. To Fischer et al. this means that the explicit argumentation

of DR is only appropriate for reflection-in-action. This in turn implies that

rationale capture can actually degrade the quality of design if it is intrusive

into the intuitive processes of knowing-in-action.

Another possible explanation for the resistance to capture is that we still

are not collecting the right information. The work of Gruber and Russell,

Lewis, Riemann, and Bell as well as that of Carroll and Rosson suggest

that argumentation by itself may not be enough to account for designers’

reasoning. There are enough dissenters from the argumentative view of DR

to leave room to doubt that we are capturing the right information. Never-

theless, there is little evidence to date that differences in information

recorded have made any difference to the success of DR capture in practice.

Traditionally, DR literature has emphasized that devising the right schema,

i.e., one that captures the right information and structures it correctly, is

the way to solve the problems of DR usage. Yet designers’ resistance to R

DR capture exists regardless of what schema is used. Solving the capture

problem will require research on more than schema design.

problem is to try to reduce the intrusiveness of DR capture, either by rr

reducing the work of DR capture or reducing its disruptiveness in design

reduced the work of managing DR by providing extensive support for

browsing, modification, and retrieval. This, by itself, however, was not

enough. The cognitive overhead of DR capture remained daunting. R

One approach to reducing the cognitive overhead of capture is to use

the strategy of differential description, in which designers only need to

describe how the rationale for the current project differs from other rationale.

One way to do this uses domain-oriented issue bases in PHI [18]. These

contain rationale commonly used in projects in a given domain, including

1.5.2 Approaches to Solving the Capture Problem

or both. The MIKROPLIS [39, 44] and gIBIS [8] hypertext systems

A more radical position on intrusiveness is taken by Shipman and Marshall

[57]. They argue that semi-formal schemas are themselves the problem. As

they see it, all such schemas are obstacles to capture information. They advo-

cate doing away with structured user input and using only informal input.

One direction taken by researchers working on solving the capture

Rationale Management in Software Engineering: Concepts and Techniques 23

commonly raised issues, positions and arguments. Designers need to add

only the missing information, including their decisions on the issues.

There are other ways in which differential description might be imple-

mented. One would be by using rationale-annotated cases of similar

projects, such as those provided by the ARCHIE system [29]. Another way

might be to use design patterns annotated with rationale.

Of course, differential description only works for domains where previous

design work has been done and where someone has built collections of

issue-based discussion, precedent cases, or design patterns. By definition,

this approach is not useful for unprecedented problems. It should also be

noted here that Rittel’s theory of wicked problems, which led to the first

DR method, included the notion that design problems are “essentially

unique,” and thus not easily solved by looking to precedents [54].

A number of researchers have explored ways of capturing DR without

use of any schema, either because schemas are too labor intensive to use or

because they interfere cognitively with capture. For example, Shipman and

his collaborators from Xerox PARC built “spatial hypertext systems” [61]

that enable informal input of information in a 2D space and then infer the

structure of that information from its spatial arrangement, work inspired in

part by gIBIS’s graphical representation of IBIS structure. Reeves [52]

also created a system that uses a schema-free approach to capture. With

his system designers write their rationale as textual notes in the graphical

representation of a physical artifact in a CAD system. The design history

of the artifact then becomes the means by which rationale is structured. A

different schema-free and completely nonintrusive approach is used by

Myers et al. [47]. They add semantic information to a CAD system’s

symbol library and then infer the DR from the designer’s use of the system.

This approach, however, does not produce argumentation as such.

The idea of abandoning use of an explicit schema is controversial in the

DR field. On one side of the debate, there are MacLean et al. [38] arguing

for intrusive, schema-based approach to DR capture. At the opposite end

that abandon use of schemas.

Another approach to facilitating DR capture tries to find when rationale

is naturally elicited as part of design communication [60]. In these cases

eliciting DR is not an extra task for designers and does not interfere with

design. It is instead an already existing and accepted part of the design

process. In fact, it is the means by which collaboration takes place in design.

There are two approaches that can be taken in using design communication

as the basis for DR capture. One is to structure that communication using a

schema. Another approach is to record it in its natural, informal form and

are Shipman and Marshall [57, 58, 59] arguing for nonintrusive approaches

24 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

then structure it retroactively, for example, by using natural language

processing [45].

This section focuses on rationale-based approaches specific to software

engineering (SE). First, we describe different types of SE projects where

the use of rationale could have the most benefits, that is, in which addressingt

the limitations described in the previous section could yield a significant

return on investment. In Sect. 1.6.2, we analyze for each SE activity how

rationale can be captured and used. Using the SPICE process standard as a

framework for discussing activities [http://www.sqi.gu.edu.au/spice/], we

conclude that the concept of DR is too limited to encompass all the rationale-

based processes of SE. We suggest that the concept of SE rationale (SER)

is more general and more useful for discussing rationale management in

SE. In Sect. 1.6.3, we present representative SER management approaches.

Finally, we summarize the different SER approaches by activity, usage,

schema, and original features.

Despite the challenges to the capture of rationale discussed in Sect. 1.5,

there are also specific contexts in SE where the benefits of rationale

capture could outweigh the costs. Below we list four contexts suitable for

the four categories of uses introduced in Sect. 1.4.

− Distributed projects. A current trend of SE projects is the outsourcing

of development, sometimes to organizations that are in different time

zones. This leads to a breakdown in informal communication, where

rationale is usually communicated peer-to-peer. Thus, approaches that

use rationale to support collaboration could help here.

− Product-line projects. As products become instances of a product line,

the life cycle of the product line becomes longer and the number of

products that impact its design is high. Rationale can then be used to

relate features of the product lines to specific product needs. It also

can be used to externalize knowledge to guard against staff turnover.

This could be alleviated by rationale uses focusing on reuse and

change.

− Safety critical systems. Traceability of decisions is an important

prerequisite for high-quality decisions, in particular when dealing

1.6.1 Opportunities for Rationale in Software Engineering

1.6 Rationale Management in Software Engineering

Rationale Management in Software Engineering: Concepts and Techniques 25

with change requests. Some organizations such as EUROCONTROL

require this explicitly. Rationale can support this traceability. Clearly,

rationale focusing on quality is most valuable here. Furthermore, in t

this context the high cost of failure changes the perception of the cost

involved in rationale management.

− COTS-based or mobile systems. When systems are assembled from

existing parts (either at deployment time of even at execution time in

case of mobile systems) rationale can be useful to externalize knowledge

between customer and supplier. Approaches focusing on knowledge

transfer are most valuable here.

As described in Sect. 1.4, there are many different uses of rationale.

Clearly, rationale can be provided on all decisions during SE. According

distinguishes the following process areas:

− Acquisition and supply (CUS1 and CUS2)

− Engineering (CUS3, ENG1, and ENG2)

− Operation (CUS 4)

− Support Processes (SUP1 to SUP8)

− Management (MAN1 to MAN4)

− Reuse (ORG6)

− Process improvement (ORG1, ORG2, and ORG5)

− Resource and infrastructure (ORG3 and ORG4)

In the following, we describe these process areas and analyze how ration-

ale management could support ongoing or future activities.

When we defined DR in Sect. 1.2.1, we used a broad definition of the

design process. But no reasonable definition of design is broad enough to

encompass all the processes described in SPICE. Many of these processes

involve decision making that is not part of design. If we consider carefullyt

how the rationale associated with these decisions is generated and used, it

becomes clear that the concept of DR is not broad enough to include all the

rationale that needs to be managed in SE

We have defined the term DR in a way that corresponds to how it is

typically defined in the literature. In this definition, DR includes two

things: (1) rationale generated by designers, regardless of who makes use

of that rationale and (2) rationale used by designers, regardless of who

generates that rationale. Thus, if rationale generated by designers is used

by software maintenance personnel, it is typically called DR. If rationale

1.6.2 Supporting Software Engineering with Rationale

to the sketch of the new version to be published in summer 2006, SPICE

26 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

generated by software maintenance personnel is used by designers, e.g.,

to design a future version of the software, then it is also typically called

design rationale.

This definition of DR might seem to suggest that the only rationale

in SE is design rationale. But we can see that this is not so by looking

carefully at decisions taken in the nondesign processes of an SE project,

for example, decision made in software maintenance. The people who

make such decisions often do so, on the basis of explicitly stated rationale.

Some of this rationale might be useful for design, as indicated earlier, and

we could, according to our definitions, count this as DR. It is quite possible,

however, that some of the rationale is only useful for maintenance, e.g., for

keeping track of which maintenance decisions have been made and what

the justification was for these decisions. In this case, the label DR is

not appropriate. We would have to call this something like maintenance

rationale. Once we acknowledge the legitimacy of such a term, however, it

seems that some of what we have called DR might with equal justification

be labeled maintenance rationale. By extension we can see that every

process within SE has an equal claim to having rationale of its own.

Since design is only one of many SE processes, the term DR is not

general enough to encompasses all the types of rationale that a rationale

management systems needs to deal with in SE. In the following sections

we will therefore use the term software engineering rationale (SER) to

encompass all these different types of rationale. We use the term rationale

when we do not specifically address the difference between SER and DR.

There is every reason to expect that the discussion on DR (SER for

design) presented in the previous sections will be true for every other kind

of SER. There may, however, turn out to be additional facets.

Acquisition and Supply

Acquisition encompasses the preparation (in terms of definition of criteria

and provision of resources), the selection of a supplier, the monitoring of

the supplier during engineering, and the acceptance of the product through

the customer. Supply mirrors these activities on the side of the supplier.

SER on the current customer system and on the supplied components

supports the communication between customer and supplier.

During acquisition preparation, SER of the current customer system

could help to understand the current software and its limitations (both by

the customer and the supplier). In particular, the decision about whether to

extend the current system or to buy a new one would be facilitated.

Rationale Management in Software Engineering: Concepts and Techniques 27

During supplier selection, SER of the supplied components could be

used to justify how the components satisfy the acquisition requirements.

The same holds true during supplier monitoring and the acceptance test.

Engineering

Engineering encompasses the entire development process including software

requirements analysis, software design, construction, and integration, as

well as software testing, system integration, and testing, as well as system

and software maintenance.

In this process area SER essentially improves the communication between

stakeholders and the quality of the products (Fig. 1.1). By communication,

we mean in particular elicitation of knowledge, any kind of negotiation f

and structuring of meetings. With quality we mean consistency and cor-

rectness of decisions with respect to decision criteria, including automatic

checks.

Requirements
rationale

Design
rationale

Construction
and integration

rationale

Test
rationale

Designer

Maintainer

Constructor

Tester

Requirements
Stakeholder

Fig. 1.1. Engineering rationale use

As for acquisition, preparation rationale about the current system

supports the shaping of requirements on a new system. Rationale on the

elicited requirements supports communication between the requirements

stakeholders and to the designers, maintainers, and testers. SER of the design

supports the (automatic) verification of the design against the require-

ments, and the communication between the designers and the constructors,

maintainers, and testers. Similarly, SER of the construction supports the

(automatic) verification of the construction against the design and the

communication between constructors and the maintainers and testers. In

28 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

the same manner, integration can be verified against requirements and design,

and needs to be communicated between customers and suppliers (in

particular, testers). During testing, SER can be captured with respect to test

coverage decisions. This can be used to verify that tests cover all require-

ments and to support communication between testers and to maintainers.

Maintenance is one of the most popular rationale usage areas so far. Asr

with respect to possible changes, pretraceability to identify what

prompted the change in the system element, posttraceability to identify

what is influenced by the system element and impact analysis to identify

the consequences of a change. All of these decisions profit from

SER about the system being maintained. In addition, SER rationale on the

maintenance actions helps to verify that the changed system meets its

requirements and supports the communication between customers and

suppliers on the changes.

Operation

During operation, both the customer and those supplying support need to

understand how the system will behave. Both can be aided in gaining this

Support

Support encompasses a number of specific processes within the engineering

process area, namely, documentation, configuration management, quality

assurance, verification, validation, joint review, audit, and problem resolu-

tion. As mentioned with respect to engineering, verification is supported

by rationale. The same holds true for validation, which tries to show that

the systems meets the user expectations. For the review of a product (e.g.

requirements or design) the rationale concerning the product facilitates

understanding by the reviewers. Similarly, for the audit of a process, the

rationale about that process facilitates understanding by the assessors. As a

special case, quality assurance ensures that the processes required by the

customer were followed and the required artifacts were produced. SER

could be used to justify why specific processes were not executed or why

certain artifacts were not provided. As SER is particularly well suited for

making alternatives explicit, it could facilitate configuration management

by making configuration options explicit and enabling automatic configu-

ration. Furthermore, SER helps to make argumentation from differing

points of view explicit. This could be used to generate documentation for

discussed in [12, 15] maintenance decisions concern sensitivity analysis

understanding by SER captured during engineering.

Rationale Management in Software Engineering: Concepts and Techniques 29

people with fundamentally different perspectives on the SE process, e.g.,

different stakeholders.

Management

SER captured in the above-mentioned process areas can be used to support

communication with management, as management needs to understand the

forces that have lead to special project situations. For example, the number

of unresolved issues or the priority of certain requirements can serve as

indicators of project status. SER produced during project management

could focus on risks. This would support both the communication about

and the evaluation of those risks.

Reuse

Software reuse is another popular usage of rationale. The SER of any

artifact produced or of any process step can indicate the situations in which

the artifact or step is reusable and in what way it is reusable. This kind

of SER is typically consolidated to enable quick and informed reuse

decisions. One popular example where SER is crucial for a reusable

artifact is a design pattern.

Process Improvement

establishment, SER for specific process facets can increase the acceptance

of the process. During process assessment, SER will support understanding

by the assessors. Consolidated SER (e.g., as a part of patterns) can be used

to suggest new process steps (see also reuse).

Resource and Infrastructure

Finally, the SER of any artifact or process step part of the current project

helps newcomers to understand the current situation. This is particularlyt

helpful for new employees to become quickly involved in the team.

In Sect. 1.6.2, we analyzed the potential use of SER for each SE activity.

In this section, we present selected rationale approaches for SE, illustrating

the current state-of-the-art for each activity. Our goal is not to provide a

complete survey, but rather to select representative examples illustrating

how the limitations described in Sect. 1.5 can be addressed. While most SE

1.6.3 Survey

Clearly, SER is very beneficial during process improvement. During process

30 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

activities could benefit from SER, current research has focused mostly on

engineering, management, reuse, and process improvement.

Engineering

Eliciting Requirements – SCRAM

SCRAM [62] is a requirements elicitation approach combining several

techniques, including scenario-based requirements elicitation and QOC. To

elicit requirements, end users are presented a mockup of the system in the

context of a usage scenario. Next, SER of key aspects of the mockup is

shown to end users as a QOC model, emphasizing its advantages and

weaknesses compared to other alternatives with respect to a set of criteria

that have been identified so far. By making the SER explicit to the end us-

ers, requirements engineers not only can evaluate the current solution, but

also elicit additional criteria and priorities among criteria. In general, the

presentation of several options provided more discussion opportunities for

end users and resulted in more kinds of information being elicited. Thus,

collaboration and knowledge transfer is enhanced. SCRAM differs from

Design Space Analysis in that recording SER is not a long-term goal in

itself, but rather, a short-term means for eliciting additional knowledge

from the client.

Elaborating Requirements – Inquiry Cycle
The Inquiry Cycle is a general process model for requirements elaboration

[50]. It includes three activities, expression, discussion, and commitment,

which are repeated in sequence. During the expression activity, stake-

holders acquire domain-related knowledge, propose new requirements or

scenarios. During the discussion activity, stakeholders comment and

annotate the proposed requirements. During the commitment activity,

stakeholders make decisions, generate change requests, or commit to find

missing information. The cycle is repeated as often as necessary. Tool

support for the Inquiry cycle included IBIS-like support for discussions,

allowing stakeholders to track questions, answers, reasons, and require-

ments within the same tool. Like SCRAM, rationale is used for eliciting

more information from stakeholders (as opposed to capturing long-term

rationale). Unlike SCRAM, the Inquiry Cycle focuses on asynchronous

and ad hoc use of SER, as opposed to post hoc use of a design space.

Refining Nonfunctional Requirements – NFR Framework
The NFR Framework [10] is a method for tracking the relevant nonfunc-

tional requirements for each decision, evaluated alternative, and interaction

among nonfunctional requirements. Nonfunctional requirements are

Rationale Management in Software Engineering: Concepts and Techniques 31

treated as goals to be met. To address the difficulty that nonfunctional

requirements are usually high-level and subjective, goals are refined and

clarified by decomposing them into subgoals. Goals and subgoals are

represented as nodes in a goal graph. Decomposition relationships are

represented as directed arcs. The NFR Framework provides two types of

decompositions:

− AND decomposition. A goal can be decomposed into subgoals, all of

which need to be met to help the parent goal.

− OR decomposition. A goal can be decomposed into alternative subgoals,

any one of which needs to be satisfied to help the parent goal.

The top-level goals (specified by the client and the users) are hence

refined by developers into lower-level and more concrete goals. Note that

a single subgoal can be related to more than one parent goal. Moreover, the

NFR Framework provides additional types of links to capture other rela-

tionships. For example, correlation links between two goals indicate how

one goal in the graph can support or hinder the other goal. Since nonfunc-

tional requirements are rarely qualities that are either met or not, links in a

goal graph represent how much a goal contributes to or hinders

another goal. A goal is satisficed (as opposed to satisfied) when the

selected alternative meets the goal within acceptable limits. Otherwise, the

goal is said to be denied. Root nodes represent high-level goals specified

by the client. As these goals are refined into more concrete ones the

refinement activity moves toward system features. Goals that represent

system features are called operationalizing goals.

The NFR framework enables stakeholders to evaluate trading off different

options against a set of conflicting criteria. By the end of the refinement

process, the stakeholders can record the selected option as well as the d

explored alternatives and their reasons for not selecting them.

Tracing to Human Sources – Contribution Structures

Contribution structures [22] record the authors of requirements and their

role in shaping the requirement, so that the originators of requirements can

be identified, or, minimally, their intent better understood, when require-

ments are changed. The contribution structures framework distinguishes

three capacities:

− The Principal motivates the requirement and is responsible for its l

effects and consequences.

− The Author develops the requirements’ structure and content and is r

responsible for its form and semantics.

32 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

− The Documentor records or transcribes the requirements’ content and isr

responsible for its appearance.

Recording the role of a contributor with respect to a requirement provides

a simple way to document the commitment and responsibility of the con-

tributor. Although contribution structures do not capture an explicit intent

in the way IBIS or QOC does, traceability to human sources enable change

requirements prioritization and change requests to be directed to the right

contributor, based on the nature of the change and the requirements being

changed.

Post-Traceability – REMAP
REMAP is a conceptual model extending IBIS to include requirements and

design elements to process knowledge during requirements engineering

[51]. A prototype of REMAP was built to demonstrate how requirements,

design elements, design decisions, constraints, and argumentation are

captured in a graph, representing the process by which requirements and

design were generated and negotiated. Using a truth maintenance system,

the REMAP prototype propagates constraints and the validity (or invalidity)

of assumptions through the graph, illustrating the benefit of traceability

from requirements through SER and design elements. REMAP is in

essence similar to DRL.

Requirements Checking – C-ReCS
C-ReCS is a tool for supporting collaborative requirements and recording

a formal language, a semantic net composed of predefined entities. The

tool then provides users a suite of tools for detecting, diagnosing, and pro-

posing resolutions for exceptions, such as consistency, completeness, and

correctness problems. Once an exception is detected, the diagnosis

attempts to explain to the user the underlying cause of the exception, using

a predefined decision tree.

For example, C-ReCS detects inconsistencies based on the propagation

of constraints in the requirements graph. A diagnosis would then present

the propagation trace and the two constraints that are in conflict. This in

turn serves as a basis for suggesting that the user relaxes one or the other

constraint. When changing the requirements to remove the inconsistency,

the user can link to the diagnostic as SER for the change.

Design Checking –g SEURAT
SEURAT is a tool for recording and using SER of the system under

construction at the level of source code [5]. SEURAT is integrated into the

development environment, making it easier to switch back and forth

decisions [27, 28]. It enables users to specify requirements and their SER in

Rationale Management in Software Engineering: Concepts and Techniques 33

between development and documentation tasks. It is based on an extension

of DRL, allowing the representation of detailed arguments and dependen-

cies. It also provides a rich ontology of arguments, making it easy for

the developer to reuse arguments. The ontology, combined with rules for

syntactic and semantic checking, enables SEURAT to automatically

identify inconsistencies or omissions in the rationale.

The rich and extensible argument ontology aims at lowering the effort

for developers to capture SER, while increasing its accuracy. Making it

accessible in a development environment, and providing services that are

similar to standard style and consistency checking on source code,

SEURAT also aims at increasing the short-term incentives for developers

to use the SER they provided.

Long-term Collaboration – Sysiphus

Sysiphus provides a simple and integrated solution to manipulate system

models and SER, embedding only minimal process specific knowledge

[14,16]. This allows different development processes and the use of SER

for a broad range of activities. Sysiphus includes a tool suite centered on

a repository, which stores all models, SER, and user information. The

repository controls access and concurrency enable multiple users to work

at the same time on the same models. SER elements are first class objects

(as opposed to buried notes or comments) and are accessed the same way

as system model elements. The tool puts equal focus on the system and the

SER. The end user can browse back-and-forth between SER and system

models. Changes made by the end user are propagated synchronously to

other end users working on the same model, enabling users to collaborate

synchronously. When overlaps are discovered, the end user is prompted by

the system to merge conflicting changes.

Sysiphus adopts a similar approach to SEURAT for lowering the

threshold for capturing SER and increasing short-term developer incentive.

However, Sysiphus focuses on the modeling and collaboration environment

while SEURAT focuses on the development environment.

Management

WinWin
WinWin [3] is an approach where SER is used in support of risk management.

WinWin resulted from the observation that satisfying all key stakeholders

is a necessary condition for project success. Often, the issue of dealing

with conflicting success criteria is not only to reconcile conflicting views,

but also to identify the key stakeholders of the system and to clarify

their success criteria. Once these criteria are known to all, it is much easier

34 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

to identify conflicts and to resolve them by negotiating compromise

alternatives.

The WinWin negotiation model, similar to the QOC model described in

Sect. 1.3, includes four elements. Win conditions are criteria, originated

by stakeholders that, if not met, result in the failure of the project. Issues

represent areas of disagreements typically a conflict between Win condi-

tions that need to be further clarified or negotiated. Options represent

alternatives for resolving issues, and Agreements represent decisions for

closing an issue. Finally, Win conditions and agreements are classified

into taxonomy categories. The taxonomy is specific to the system under

construction and is used to relate large numbers of win conditions and

agreements to broad requirements categories.

WinWin is tightly integrated into Boehm’s spiral model. For the each

iteration, critical stakeholders are identified and the win conditions

relevant to the current iteration are elicited and reconciled. Win conditions

are prioritized and scheduled to iterations based on risk. For example, a

strong area of disagreement can result in a small set of win conditions

being addressed in an early iteration, to ensure that an area of agreement

can be found and to build trust among stakeholders.

Reuse

Augmenting Design Patterns with Rationale – DRIMER

DRIMER is a software development process and tool for applying design

patterns [48]. Developers can search a design pattern catalog based on

their intents, and examine specific examples of use of the design pattern.

SER for each example is also provided following the DRIM schema,

making it easier for a novice developer to understand unfamiliar patterns

and for the experts to validate their usefulness. DRIM is similar to DRL,

provides elements for representing intents, proposals, recommendations,

justifications, and context of decisions. By integrating the process of finding

reusable solutions with the process of recording experiences, DRIMER

aims to create short-term incentives for developers to provide SER

information while lowering the effort involved with capturing it.

Process Improvement

CoMoKit

CoMoKit is a process modeling and enactment tool that automatically

records dependencies among products [11]. A process model specifies how

products are generated and used by tasks. Tasks can be refined into

subtasks, all of which need to be completed for the parent task to be

Rationale Management in Software Engineering: Concepts and Techniques 35

completed. The process model can include several methods for accomplishing l

the task, each possibly resulting in different products.

The approach assumes that there is a causal relationship between the input

products of a task and its outputs. When the process model is enacted (i.e.,

when the user executes tasks, selects methods to create products), the tool

records causal dependencies between products and decisions. Moreover,

the user can add additional justifications for or against decisions.

When decisions or products are invalidated, CoMoKit automatically

retracts other decisions and products that were derived from the newly

invalidated element.

products and decisions, and uses a truth maintenance system to propagate

validity. Unlike REMAP, CoMoKit captures some dependencies automati-

cally and provides a unified representation for both user-specified and

generated rationale.

A summary of the SER approaches surveyed in this section is given in

Table 1.1. Much progress has been made on the development of such

Table 1.1. Summary of SER approaches

Approach Schema SE activity rationale use

SCRAM (1995) QOC requirements

elicitation

collaboration

Inquiry Cycle

(1994)

IBIS requirements

elaboration

collaboration

NFR Framework

(1999)
Goal graph nonfunctional

requirements

refinement

improve quality

Contribution

structures (1994)

 requirements

change

collaboration

REMAP (1992) IBIS++ requirements

management

improve quality

C-ReCS (1997) DRCS requirements

elaboration

improve quality

SEURAT (2004) DRL++ development improve quality

Sysiphus (2001) IBIS/QOC any collaboration

WinWin (1994) IBIS risk manage- collaboration

1.6.4 Summary

CoMoKit is similar to REMAP, in that it captures dependencies between

ment

DRIMER (1996) DRIM reuse

CoMoKit (1996) process im-

provement

improving quality

36 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

This section describes an ideal tool support for rationale management

in SE (rationale management system, RMS for short). In Sect. 1.7.1 ,we

describe the life cycle of SER knowledge, which is used to deduce the

functional requirements of an RMS. In Sect. 1.7.2, we discuss further

requirements to overcome the challenges identified in the earlier sections.

In Sect. 1.7.3, we describe a generic RMS in terms of an architectural

framework populated by a set of components.

In Sect. 1.4, we described the uses of rationale, that is, the ways in which

rationale adds value to a development project. When developing tool

support for rationale management, however, we need to consider the entire

lifecycle of rationale knowledge, from planning to preservation. In view of

general knowledge management, we can identify the following rationale

management tasks [13]:

− Rationale goal definition

− Rationale measurement

− Rationale identification

− Rationale acquisition

− Rationale development

− Rationale distribution

− Rationale use

− Rationale preservation

Rationale goal definition, measurement, and rationale identification are

critical for identifying the kind of rationale needed, but they are strategic

planning activities and, thus, are typically not supported by an RMS.

However, the outcome of these activities is a critical prerequisite for

deploying an effective RMS. We discuss this further in Sect. 1.7.2.

All the other tasks can be directly supported by an RMS. In the following,

we list the required features:

1.7.1 Rationale Life Cycle

1.7 Tool Support for Rationale Management

approaches and tools since the early 1980s. A number of important proto-

types have been developed, but few rationale management systems have

made it into practical use in industry. Recent research tends to combine rr

these systems with other forms of design support systems [2, 26].

Rationale Management in Software Engineering: Concepts and Techniques 37

− Rationale acquisition is most often called rationale capture. Here

the major question is how rationale is captured, for example, through

reconstruction, apprentice shadowing of designers, or automatic genera-

tion. Other possibilities include capture during communication and

reasoning.

− Rationale development structures and packages rationale. The major

question is how to represent rationale. Lee [36] identifies three layers as

representative of a generic structure of an RMS:

o A decision process layer which stores the rationale, e.g., into five

sublayers: issue, argument, alternatives, evaluation, and criteria

o A design artifact layer which links the rationale to the development

process artifacts, e.g., a product-process model

o A design intent layer: meta-information underlying design decisions,

such as intents, strategies, goals, and requirements

Further questions are whether representations are informal, semi-formal,

− Rationale distribution makes the rationale available for concurrent

users. An important issue here is ease of retrieval e.g., through a user-

adaptable feature to browse, view, and filter the rationale. This should

also enable the answering of questions and the review of similar

design cases. Another important issue is collaboration, as rationale is

often captured during collaboration.

− To support rationale use, the RMS must be closely integrated into the

tool support for the SE tasks. Furthermore, it should support reasoning

about the available rationale and the development artifact, for example,

evaluation of given artifacts based on their rationale or suggestions for

enhancements and modifications of artifacts based on available rationale.

− To allow long-term usage of the rationale, the RMS should support

rationale preservation, for example, by filtering out redundant rationale

or by giving priority to rationale that has been critical during develop-

ment.

The above features must be adapted to the context in which the RMS is

used. For example, development could be more process-oriented or more

feature-oriented at different development stages. In fields with a relatively

high degree of understanding of problems, solution technologies and

standardization of artifacts, the feature-oriented approach can be used to

give logical representation of artifacts, to follow the rules of the process.

In development where the problems or solution technology are poorly

understood and where there is little standardization of artifacts a process-

oriented approach can provide historical representation of artifacts [9].

or formal and is visual modeling used [20, 21].

38 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

Ideally, the RMS should support these features throughout all SE activities.

So far, however, RMSs have been most successful when adapted to

specific activities and specific goals. These goals depend mostly on the

rationale usages identified in Sect. 1.4.

In addition to supporting rationale tasks, an RMS must deal with the limi-

tations discussed in Sect. 1.5. In particular, strategic decisions made

during the rationale goal definition and rationale identification tasks can

significantly impact the selection and tailoring of the framework components.

− Assessing cost vs. benefits. The project or organization must a priori

identify areas in which the use of rationale can yield a return on invest-

ment. For a project developing a safety critical system, rationale may

facilitate the safety analysis of the design. For a COTS-based project,

selecting a COTS with its available rationale may reduce the effort for

integrating it into the system.

− Addressing the capture problem. In addition to identifying what kinds of

rationale should be captured, a means and incentive for capturing it must

also be identified. This can range from schema-free capture and

automated structuring using natural language processing or inference to

demonstrating compliance with review certification criteria. Developers

capturing rationale should have a clear short-term use or benefit for

capturing it.

− Dealing with scale and complexity. The scale and complexity of

captured rationale depends on the selected granularity, the scale and

complexity of the system and application domain, and on the rate of

change of decisions. Accordingly, the RMS needs to account for these

issues, by providing the necessary traceability links, search, versioning,

filtering, and customization features. Automating syntactical and seman-

tic checks, such as in SEURAT, enforces a higher level of consistency in

the captured rationale, especially when many end users are involved.

Tool support for rationale has been often viewed as a stand-alone system.

A monolithic tool supports the capture, representation, and use of ration-

ale, either as a general-purpose tool such as gIBIS or a tool specialized

to an activity, such as CoMoKit for process enactment. Instead, we view a

rationale system as supporting designers in handling designs within a

1.7.3 An Architectural Framework for Rationale Management

1.7.2 Dealing With Rationale Challenges

Rationale Management in Software Engineering: Concepts and Techniques 39

framework. An RMS is mostly transparent, appearing as an extension of

the design environment, adaptable to the specific project situation.

In system terms, we propose that tool support for rationale should be

viewed as a framework of components, each supporting a different activity

and able to produce outcomes compatible with other components. In this

section, we describe such a framework, its components, its interfaces to the

design environment, and the constraints it must satisfy (Fig. 1.2).

Capture Components

An RMS supports rationale acquisition with a number of capture compo-

nents for recording rationale from developers, extracting it from artifacts,

or inferring it from developer actions. Such components might support:

− Rationale capture by supporting collaboration. Systems such as gIBIS,

WinWin, or Sysiphus support project participants for communication

and collaboration by providing a structured set of actions and entities for

exchanging their opinions and criteria. In effect, the tool structures the

collaboration to elicit the rationale to be captured and to reduce

the overhead for structuring it. To increase collaboration through the

component, many such SER components also provide a complete range

of groupware features, such as group awareness, synchronous and asyn-

chronous modes of communication, and support for multimedia.

− Rationale extraction from artifacts. An alternative approach is to extract

rationale from communication or design artifacts after the fact. Natural

language processing approaches identify key issues and arguments

from natural language text, removing the burden from the participants to

follow predefined schemas.

− Rationale capture in design reasoning. Systems such as SEURAT

provide design support, either on their own or integrated into a larger

development environment. This enables the capture of traceability links

and inference of knowledge from the actions of the developer.

− Rationale as justification. Developers currently document rationale for

decisions that are not obvious or that could impact other decisions.

Systems like CoMoKit recognize the need for explicit capture of justifi-

cations and relate them with rationale captured or inferred by other

components.

We expect that the most development projects will require a combination

of the above components, depending on project-specific opportunities and

constraints for capturing rationale.

40 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

Fig. 1.2. RMS component overview

Representation Component

Even if the input of rationale is schema free and its formalization

automated (see Sect. 1.5), an RMS supports rationale development with a

representation component that provides a schema for storing and relating

the rationale to other artifacts. A minimum amount of structuring is

necessary for making it easier for developers to maintain, search, or relate

to the design context. Most RMSs provide their own proprietary represen-

tation component, based on the specific SE activity that they support. A

general RMS spans many activities and, as such, requires an open and

extensible representation so that rationale can be captured at different

levels of detail or be categorized according to different ontologies, based

on the project context and activities supported. Such a representation could

be used to enable different activities in the same environment to use either

IBIS or QOC, organize issues hierarchically as in PHI, and capture intents

as in DRL. A critical feature of the representation component is its ability

to relate captured rationale to design artifacts, in particular, specific

versions or configurations of the software, documents, or models.

Retrieval Components

An RMS supports access to rationale with retrieval components whose

task is to derive information from rationale to facilitate their current task.

Retrieval components range from simple generic components for navigating

Rationale Management in Software Engineering: Concepts and Techniques 41

the rationale to specialized components that check for design rule

violations or that evaluate designs:

− General-purpose components

− Retrieve by query

− Navigate rationale

− Visualize rationale

− Specialized components

− Formulate design documents

− Answer designer’s questions

− Identify similar design cases

− Design reasoning

− Evaluate design

Preservation Components

An RMS supports rationale preservation with components for restructuring

and reformulating rationale for long-term use. For example, rationale

captured from communication is often incomplete. Terminology evolves

and specializes over the course of the project, making initial requirements

rationale more difficult to understand. There is a need for explicit preser-

vation components. There has been little research in this dimension

of RMSs so far, because the attention has been focused so heavily on

rationale capture.

Interfaces to Legacy Components

The primary focus of a designer is on the plan leading to the artifact.

Developers produce system designs that lead to the construction of

software. A project manager produces task plans that lead to the consump-

tion of resources and the production of economic value for the project.

Rationale is a support function and is not the main focus of the designer.

Consequently, there has been a trend towards tight integration of design

the RMS being treated as an extension of the design system. An RMS must

be able to interface with many external artifacts and tools (Fig. 1.3):

− Product history. Rationale evolves with the system under construction.

As the system changes, developers need to justify changes and update

rationale already captured. Consequently, they need to link to the design

repository, that means different versions and configurations of the system

and its design when formulating justifications.

rationale representations with other design representations [5, 14, 27] with

42 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

− Knowledge base. Organizations accumulate knowledge that lives

across individual projects, in terms of guidelines, lessons learned, and

standards. Such knowledge finds its source in actual cases and also

serves as the basis for decisions in subsequent projects. An RMS should

also provide the ability to link to and from this knowledge.

− Patterns base. Developers refine pattern solutions for recurring design

problems. As such pattern solutions become more general and refined,

it becomes necessary to document its possible usage and trade-offs

encountered during their uses. By attaching rationale to pattern solutions,

developers can more easily identify which pattern to apply and how to

refine it. Similarly, linking design decisions with a patterns base avoids

repeating this rationale in the design.

− Process models and enactment. Recording rationale (justification behind

process-level decisions, as for example in CoMoKit [11]) similarly

enables organizations to reuse and evolve processes. While we do not

expect process and product rationale to overlap significantly, using a

uniform environment for capturing both would reduce training overhead

and increase familiarity among project participants.

Fig. 1.3. An example of RMS architecture with legacy interfacestt

Rationale Management in Software Engineering: Concepts and Techniques 43

In this chapter, we reviewed the state-of-the-art in rationale management in

SE. We first provided a historical perspective by examining DR research

in general. We then identified challenges and limitations faced by rationale

approaches in SE. We also explained that to describe the rationale for all

the processes of SE we need a more general term than DR; and for this

purpose we adopted the term SER. We then discussed selected rationale

approaches applied to SE, illustrating how specific challenges could be

overcome. Finally, we presented an architectural framework for rationale

management tool support.

Over the past decades, the research community has achieved some con-

sensus on selected rationale research issues. For example, it is now widely

accepted that having developers formalize the rationale for their decisions

as they work is disruptive and that collaborative or post hoc approaches

have better chances of capturing rationale. While general-purpose methods

have not been widely adopted, specialized approaches addressing narrow

problems have emerged, such as providing rationale with design patterns

to facilitate their reuse, both in terms of design and DR.

As solutions are found for front-end issues, we anticipate that the

research focus will include rationale preservation issues. For example:

Activity cross-pollination. Approaches presented in Sect. 1.6 often focus

on a single use or activity of rationale. As rationale is used across several

activities, the cost of capturing and training developers will be lower,

relative to benefits. It is unclear, however, how to manage such overlaps.

Development environment integration. Parts of the research community

have come to the consensus that rationale support should be tightly

integrated into the development environment. First, rationale supports

design and could be captured as a side-effect of the design methodology.

Second, as system models and decisions are revisited, their accompanying

rationale needs to be re-examined. This entails strong traceability between

rationale and system models. There is a consensus that there should be a

tight integration, but it is unclear, how to achieve it beyond specialized

cases.

Rationale maintenance. An often-advertised benefit of rationale is to

support changes, across time, staff turnover, and organizational bounda-

ries. This means that rationale knowledge is also long-term knowledge that

needs to be updated and consolidated as systems and designs evolve, and

that contains obsolete knowledge that should be retired. Surprisingly, there

is little research on rationale maintenance. As capture and structuring

1.8 Conclusion

44 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

methods become more successful, rationale maintenance in particular, and

rationale preservation in general, will need to be explicitly addressed.

Rationale management research has made inroads in a broad variety of

disciplines, both within and outside the field of SE. As the confronted

issues become more systemic, the interdisciplinary character of rationale

research will be a critical asset in finding solutions that work beyond

specialized situations.

Acknowledgments. We are grateful to David Brown, Janet Burge, Manny

Lehman, Philippe Palanque, and Debbie Richards for their constructive

and detailed feedback. All remaining errors are our own.

References

[1] Alexander C, Ishikawa S, Silverstein M, King I, Angel S, Jacobson M (1977)

A Pattern Language: Towns, Buildings, Construction. Oxford University

Press, Oxford

[2] Banares-Alcantara R, King JMP (1997) Design support systems for process

engineering – design rationale as requirement for effective support. Comput.

Chem. Eng. 21(3): 202–212
[3] Boehm B, Egyed A, Kwan J, Port D, Shah A, Madachy R (1998) Using the

WinWin spiral model: A case study. IEEE Computer 31(7): 33–44

[4] Burge J (1998) Design rationale. Technical Report, Worcester Polytechnic

Institute, Computer Science Dept., In:

http://www.cs.wpi.edu/Research/aidg/DRRpt98.html (accessed: 02/17/2005).

[5] Burge J, Brown DC (2004) An integrated approach for software design

checking using rationale. In: Gero, J (ed) Design Computing and Cognition

‘04. Kluwer Academic Publishers, Netherlands, pp. 557–576

[6] Carroll JM, Rosson MB (1996) Deliberated evolution: Stalking the view

matcher in design space. In: Moran T P, Carroll J M (eds.) Design Rationale:

Concepts, Techniques, and Use. Lawrence Erlbaum Associates, Mahwah,

NJ, pp. 107–145

[7] Churchman CW (1967) Wicked problems. Guest editorial, Manage. Sci., 14

(4): 141–142
[8] Conklin J, Begeman M (1988) gIBIS: A hypertext tool for exploratory policy

discussion. ACM Trans. Off. Inform. Syst. 4: 303–331

[9] Conklin J, Burgess-Yakemovic K C (1991) A process-oriented approach to

design rationale. Hum.–Comp. Interact. 6: 357–391

[10] Chung L, Nixon BA, (1996) Dealing with change: An approach using

non-functional requirements. Requir. Eng. J. 4: 238-–260

[11] Dellen B, Kohler K, Maurer F (1996) Integrating software process models

and design rationales. In: Proceedings of 11th Knowledge-Based Software

Engineering Conference (KBSE ‘96) September 25–28, Syracuse, NY,

pp. 84–93

Rationale Management in Software Engineering: Concepts and Techniques 45

[12] Dutoit AH, Paech B (2000) Supporting evolution: Rationale in use case

driven software development. In: Proceedings of the International Workshop

on Requirements Engineering: Foundations of Software Quality

(REFSQ’2000), Stockholm, June, pp. 99–112
[13] Dutoit AH, Paech B (2001) Rationale management in software engineering.

In: Chang SK (ed.) Handbook of Software Engineering and Knowledge

Engineering. Vol. 1. World Scientific, Singapore

[14] Dutoit AH, Paech B (2002) Rationale-based use case specification. Requir.

Eng. J. 1: 3–9
[15] Dutoit AH, Paech B (2003) Eliciting and maintaining knowledge for

requirements evolution. In: Aurum A, Jeffery R, Wohlin C, Handzic M (eds.)

Managing Software Engineering Knowledge. Springer, Berlin, pp. 135–156

[16] Wolf T, Dutoit AH (2004) A rationale-based analysis tool. 13th International

Conference on Intelligent and Adaptive Systems and Software Engineering,

July 1–3, Nice, France

[17] Fischer G, Lemke A, McCall R, Morch A (1996) Making argumentation

serve design. In: Moran TP, Carroll JM (eds.) Design rationale: Concepts,

techniques, and use. Lawrence Erlbaum, Mahwah, NJ, pp. 267–294

[18] Fischer G, McCall R, Morch A (1989) Design environments for constructive

and argumentative design. In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems: Wings for the Mind, March, ACM

New York, pp. 269–275

[19] Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns. Addison-

Wesley, Reading, MA

[20] Ganeshan R, Garrett J Jr, Finger S (1994) A framework for representing

design. Int. J. Design Stud. 1 : 59–84

[21] de la Garza J, Alcantara P (1997) Using parameter dependency network to

represent design rationale. J. Comput. Civil Eng., 2(2): 102–112
[22] Gotel O, Finkelstein A (1995) Contribution structures. In: Proceedings Inter-

national Symposium on Requirements Engineering, IEEE, York, pp. 100-–107

[23] Gruber TR, Russell DM (1996) Generative design rationale: Beyond the

record and play paradigm. In: Moran TP, Carroll JM (eds.) Design Rationale:

Concepts, Techniques, and Use. Lawrence Erlbaum, Mahwah, NJ, pp. 323–349
[24] Grudin J (1988) Why CSCW applications fail: problems in the design and

evaluation of organization of organizational interfaces. In: Proceedings of the

1988 ACM Conference on Computer-supported Cooperative Work, ACM,

New York, pp. 85–93

[25] Grudin, J (1996) Evaluating opportunities for design capture. In: Moran

TP, Carroll JM (eds.) Design Rationale: Concepts, Techniques, and Use.,

Lawrence Erlbaum, Mahwah, NJ, pp. 453–470

[26] King JMP, Banares-Alcantara R (1997) Extending the scope and use of

design rationale. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 11(2): 155–167

[27] Klein M (1993) DRCS: An integrated system for capture of designs and

their rationale. In Gero J (ed.) Artificial Intelligence in Design ‘92. Kluwer

Academic Publishers, Boston, pp. 393–412

46 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

[28] Klein M (1997) An exception handling approach to enhancing consistency,

completeness and correctness in collaborative requirements capture. Concur-

rent Engineering Research and Applications, 5(1): 37–46

[29] Kolodner J (1993) Case-based reasoning. Morgan Kaufmann, San Mateo,

CA

[30] Kunz W, Rittel H (1970) Issues as elements of information systems.

Working Paper 131, Center for Urban and Regional Development, Univer-

sity of California, Berkeley.

[31] Lai K, Malone T, Yu K (1989) Object lens: A ‘Spreadsheet’ for cooperative

work. ACM Transaction on Office Information Systems, 6(4): 332–353

[32] Lee J (1990) SIBYL: a tool for managing group design rationale. In:

Proceedings of the ACM Conference on Computer-supported Cooperative

Work, ACM, New York, pp. 79–92
[33] Lee J (1990) SIBYL: A qualitative decision management system. Artificial

intelligence at MIT expanding frontiers. MIT Press, Cambridge, MA

[34] Lee J (1991) Extending the Potts and Bruns model for recording design

rationale. In: Proceedings of the 13th International Conference on Software

Engineering (ICSE’13), IEEE Computer Society Press, r Los Alamitos, CA,

pp. 114–125
[35] Lee J, Lai K (1996) What is design rationale? In: Moran TP, Carroll JM

(eds.) Design Rationale: Concepts, Techniques, and Use. Lawrence Erlbaum

Associates, Mahwah, NJ, pp. 21–52
[36] Lee J (1997) Design rationale systems: Understanding the issues. AI in

Design, IEEE Expert, May/June: 78–85

[37] Lewis C, Rieman J, Bells B (1996) Problem-centered design for expressive-

ness. In: Moran TP, Carroll JM (eds.) Design Rationale, Concepts,

Techniques and Use, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 147–184 u

[38] MacLean A, Young RM, Bellotti VME, Moran T (1996) Questions, Options

and Criteria. In: Moran TP, Carroll JM (eds.) Design Rationale, Concepts,

Techniques and Use, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 53–106 u

[39] McCall R (1989) MIKROPLIS: A hypertext system for design. Des. Stud.

10(4): 228–239
[40] McCall R (1991) PHI: a conceptual foundation for design hypermedia. Des.

Stud. 1: 30–41
[41] McCall R (1979) On the structure and use of issue systems in design.,

Doctoral Dissertation 1978, University of California, Berkeley, University

Microfilms

[42] McCall R, Bennett P, d’Oronzio P, Ostwald J, Shipman F, Wallace N (1990)

PHIDIAS: A PHI-based design environment integrating CAD graphics into

dynamic hypertext. In: Rizk A, Streitz N, André J (eds.), Proceedings of the

European Conference on hypertext (ECHT’90), INRIA, France, Cambridge

University Press, New York, NY, pp. 152–165

[43] McCall R, Bennett P, D’Oronzio P, Oswald J, Shipman FM III, Wallace N

(1992) PHIDIAS: Integrating CAD graphics into dynamic hypertext. In:

Streitz N, Rizk A, André J (eds.), Hypertext: Concepts, Systems and Appli-

cations, Cambridge University Press, New York, NY, pp. 152–165

Rationale Management in Software Engineering: Concepts and Techniques 47

[44] McCall R, Mistrík I, Schuler W (1981) An integrated information and Com-

munication system for problem solving. In: Proceedings of the Seventh

International CODATA Conference, Kyoto, Japan, pp. 107–115
[45] McCall R, Mistrík I (2005) Capture of software requirements and rationale

through collaborative software development. In: Maté JL, Silva A (eds.)

Requirements Engineering for Sociotechnical Systems. Information Science

Publishing, pp. 303–317
[46] Moran TP, Carroll JM (1996) Design Rationale: Concepts, Techniques and

Use, Lawrence Erlbaum Associates, Mahwah, NJ

[47] Myers KL, Zumel NB, Garcia PE (1999) Automated rapture of rationale for

the detailed design process. In: Proceedings of the Eleventh National Con-

ference on Innovative Applications of Artificial Intelligence (IAAI-99),
AAAI Press, Menlo Park, CA, pp. 876–883

[48] Pena-Mora F, Vadhavkar S (1996) Augmenting design patterns with

design rationale. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 11: 93–108
[49] Potts C, Bruns G (1988) Recording the reasons for design decisions. In:

Proceedings of the 10th International Conference on Software Engineering

(ICSE’10). Los Alamitos, CA, pp. 418–427
[50] Potts C, Takahashi K, Anton A (1994) Inquiry-based requirements analysis.

IEEE Software, March,: 21–32

[51] Ramesh B, Dhar V (1992) Supporting systems development by capturing de-

liberations during requirements engineering. IEEE Trans. Softw. Eng. 18 (6):

498–510

[52] Reeves B, Shipman FM III (1992) Supporting communication between

designers with artifact-centered evolving information spaces In: Proceedings

of the 1992 ACM Conference on Computer-supported Cooperative work,

November 1–4, Toronto, Ont., Canada, pp. 394–401

[53] Rittel H (1985) personal communication

[54] Rittel H, Weber M (1973) Dilemmas in a general theory of planning. Policy.

Sci. 4: 155–169
[55] Rittel HWJ (1972) On the planning crisis: Systems analysis of the first and

second generations. Bedriftsokonomen, Norway, 8:390–396
[56] Schön D (1983) The reflective practitioner. How professionals think in

action. Temple Smith, London

[57] Shipman FM III, Marshall CC (1999) Formality considered harmful: Experi-

ences, emerging themes, and directions on the use of formal representations

in interactive systems. Comput. Support. Cooperat. Work 8(4): 333–352
[58] Shipman FM III, McCall R (1994) Supporting knowledge-base evolution

with incremental formalization. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, Boston, Massachusetts, US, pp.

285–291

[59] Shipman FM III (1993) Supporting knowledge-base evolution with

incremental formalization. PhD dissertation, Technical Report CU-CS-658-93,

Department of Computer Science, University of Colorado, Boulder

48 A.H. Dutoit, R. McCall, I. Mistrík, B. Paech

[60] Shipman FM III, McCall R (1997) Integrating different perspectives on

design rationale: Supporting the emergence of design rationale from design

communication. Artif. Intell. Eng. Des., Anal., Manuf., 11(2): 141–154

[61] Shipman FM III, Marshall C (1999) Spatial hypertext: An alternative to

navigational and semantic links. ACM Computing Surveys, ACM, New

York, 31(4es): 14

[62] Sutcliffe A, Ryan M (1998) Experience with SCRAM, a scenario require-

ments analysis method. In: Proceedings of the 3rd International Conference

on Requirements Engineering, Colorado Springs, CO, pp. 164–173

[63] Toulmin S (1958) The Uses of Argument. Cambridge University Press, UK

