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Foreword

Thirty years ago, I first entered the dark realm of software engineering,

through a prior interest in documentation. In those days, documentation

pretty much meant functional specifications. The idea that stakeholders in

a system (its implementers, its end-users, its maintainers, and so forth) 

might want something other than an alphabetic list of function definitions 

was just taking hold. There was an exciting (to me) vision of stakeholders

accessing and contributing to explanations of how and why aspects of  

and perhaps even accounts of why other possible approaches were not 

followed.

There were many challenges to overcome in achieving this vision. The

most formidable is the belief that people do not like to create or use docu-

mentation. This negative image of documentation is (unfortunately) more 

than just the bias of a few incorrigible system developers. It is more like a 

deep truth about human information behavior, about how human beings 

construe and act towards information. Humans are, by default, active users

of information; they want to try things out, and get things done. When 

documentation is interposed as a prerequisite between people and a desired 

activity, they try to skip through it, circumvent it, or undermine it. Design-

ing information to suit the needs and interests of its users is an abiding 

challenge, but we have come a long way from functional specifications as

the only answer.   

A second formidable challenge is that some of the most important 

information about systems is tacit. Tacit knowledge is typically conveyed 

among people through enactment; for example, the way that office 

colleagues show one another how to configure and manage a printer in the 

course of just doing it. Exchanging tacit knowledge through the course of 

joint endeavor can be highly effective with respect to organizing work-

place learning and performance. However, it does not produce an explicit 

rendering of what was shared, and therefore it does not document critical

concepts, techniques, and practices. If or when current participants  

move on, tacit knowledge is lost to the organization. Nowadays, this is 

sometimes called the challenge of knowledge management. 

Twenty years ago, I first encountered the term design rationale as a labeld

for the reasons and the reasoning that supports a design. In the latter 1980s,

design rationale became a rallying concept for a diverse set of contribu-

tions to the new vision of system documentation, and to a view of system

a system work as they do, tradeoff analysis of concomitant downsides,  
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design as a process of managing knowledge. Design rationale research, at 

that time, drew upon and integrated the insights of Alexander, Rittel, 

Sch n and Simon into design problem solving.  It asked a variety of fairly 

A huge amount of technical progress and cultural evolution has occurred 

through the past two decades. It is not unusual now for software organiza-

tions to expect developers to explain their designs in ways useful to them-

selves and to other stakeholders, and to cultivate organizational knowledge

as a substantive asset created in the system development process. The  

traditional and onerous goal of generating (and then not using) more sys-

tem documentation, has been overtaken by the objective of creating better 

documentation. We have clearly moved a long way towards a culture of 

the software development enterprise that is less craft-like, and ever more t

like a science of software design, to use a current touchstone of the US  

National Science Foundation. 

Ten years ago, with Tom Moran, I edited a book entitled “Design 

Rationale.” I think that book has held up quite well, though a decade 

onward it does seem a bit prefatory – conceptual and methodological

analysis, discussion of notations and ontologies, small experiments and 

relatively focused field studies. It is past time for another detailed  

summary of research on design rationale. Allen Dutoit, Ray McCall, Ivan 

Mistrík, and Barbara Paech have done an excellent job of this in “Ration-

ale management in software engineering.”  The chapters in this volume

show how design rationale can be incorporated into the heart of the 

software development process – into requirements engineering, software 

architecture, and code design. The issue of capture seems particularly well

developed, relative to 10 years ago.  

I am delighted to see that the rethinking of system documentation and 

the emergence of design rationale as a new paradigm has not lost any 

steam, but has developed greater depth and breadth.  

n

VIII

“ ” “
can tradeoffs be usefully represented? Who will create design rationale 

basic questions, such as What kinds of rationale can there be? , How “ ” “

Can rationale help designers generatedocumentation and who will use it?”, “
”, “

novel ideas? Can it help different stakeholder groups communicate more ”, “
effectively? How will people create and use design rationale, and how”,  “
will they be motivated? ”,  “and  “How much rationale is enough, and of what 

kind?  ”

John M. Carroll 
Edward M. Frymoyer Professor of Information Sciences and Technology

Penn State University, USA
ACM CHI Lifetime Achievement Award



Preface

A.H. Dutoit, R. McCall, I. Mistrík, B. Paech 

Successful software engineering is contingent on the decision-making 

abilities of the stakeholders involved. Rationale is the justification behind 

decisions and is indispensable for communicating decisions. This book 

collects the current status of capturing and using rationale for software  

engineering as a resource and an incentive for all software engineers who 

strive to enhance their ability to make decisions.

Introduction

Nowadays, software engineers are busy keeping pace with the ever-growing

wealth of technologies (e.g., web-oriented, components, application 

frameworks), and process models (e.g., agile, risk-oriented, model-driven).

These new technologies and process models reflect the challenges of  

today’s software engineering (SE): building more complex software in  

distributed teams, faster, and at a lower cost. However, the emphasis on 

technologies and process models obscures the fact that SE is primarily a 

human-based activity and that the success of a project or product is contin-

gent on the decisions made during engineering. Due to the nonmaterial 

nature of software, the development process is characterized by a step-wise

reduction of uncertainty, mutual learning, continuous consensus building, 

and many interdependent creative construction and accurate control activities. 

This can only be balanced by a transparent and convincing decision 

making process which supports all stakeholders in making their decisions 

explicit, in convincing each other of the value of these decisions, and  

in sharing the work of implementing (in the most general sense) these 

decisions.

Rationale management (RM) is concerned with just this: supporting 

explicit decision making by capturing and using the rationale, i.e., the 

justifications behind decisions. RM has been explored since 1970 in many 

application domains, most prominently for political debates and engineering 

activities. In the 1980s, software engineers started to adapt the first 

approaches to their needs. It soon became apparent that it is time-

consuming to capture rationale, that it can be disruptive, and that there is 

not just one convenient way to express rationale. This led to a wealth of 

approaches for RM in specific SE activities. However, none of these 



approaches supports even half of the overall project activities. In other 

words, we are far away from having integrated RM support for SE decision 

making. However, by looking at these approaches in detail, we can develop

an understanding of what it means to capture and use SE rationale. We

think that it is now time to draw a picture of RM for SE research and 

practice, to look for similarities and synergies, and to start building an  

integrated baseline. 

The aim of this book is to encourage software engineers to explore  

Book Overview 

This book begins with an editorial chapter, followed by four parts. The

editorial chapter provides a historical survey of rationale approaches, both

in general and for SE in particular. Part 1 describes fundamental problems

of RM and how some of them might be solved. This part should be read 

right after the editorial chapter. The other parts focus on the three most 

prominent uses for RM in SE today and can be read in any order. The three 

Part 1: Fundamentals – Rationale Representation, Capture, and Use

To many early researchers in design rationale, the obvious value of  

recorded rationale meant that RM systems would soon be in widespread 

use in real-world projects. In reality, there was little such use. It became 

clear that researchers working in many different application domains had 

badly underestimated the difficulties of making RM practical. 

It now seems that there is a core of domain-independent problems that 

confront any attempt to apply RM to real-world projects. These problems

concern the capture of rationale as well as its representation and use. Part 1 

deals with these problems and how they might be solved in SE. 

Part 1 contains four chapters that address issues of RM in SE projects.

One of these chapter inventories the problems that an RM system must

solve to be effective. Two chapters argue for diametrically opposed  

approaches for solving the worst problem confronting the field: rationale

Preface

different ways for RM in research and practice and  help to make RM

uses are: RM during requirements, where the decisions on the scope and

functional and nonfunctional properties are made; RM during software

architecting, where the fundamental decisions on the construction are made,

a well-recognized ingredient foff r successfuff l softff ware engineering.

and finally, RM for organizing reusable bodies of knowledge.  

X 
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capture. The fourth proposes a new use for design rationale and thus 

indirectly supports capture by providing greater motivation for doing it.

Part 2: Rationale Management for Requirements Engineering

Requirements engineering exemplifies the concept of “wicked problem” 

that RM aims to address: different stakeholders with conflicting views and 

different frames of reference must agree on a problem that is not well  

understood. Once a solution is formulated (i.e., the requirements for the 

future system) leading to a shared understanding of the problem, the initial 

problem changes, resulting in new requirements, possibly conflicting with 

earlier requirements. To make matters more challenging, requirements 

engineering, more than other areas of SE, is inherently creative and insight 

driven.

Part 2 contains five chapters dealing with RM approaches adapted to 

deal with these challenges, such as supporting different stakeholders 

achieving shared understanding of the problem under consideration,  

consensus over the scope of the solution, capture the origins of the  

requirements, or supporting reconceptualization and reformulation of re-

quirements after new insights have been gained.

Part 3: Design Rationale and Software Architecting 

The importance of capturing and managing knowledge for architectural

decisions has been recognized by many researchers and practitioners. It

has also been acknowledged that the quality requirements are heavily  

influenced by the architecture of the system and capturing the relationship

between architectural design decisions and quality attributes provides an 

important new role for rationale.

Part 3 primarily contains articles dealing with rationale in the context of

software architecture. One chapter brings the message that a certain level

of uncertainty in real-world software  results always exists. Another chapter

on software maintenance covers the important issue of determining the 

impact of potential changes on what  already exists. Topics covered in this

part include a framework for capturing and managing architecture design

knowledge, capturing and using  rationale for software architecture, software

maintenance using rationale, role of rationale in design of product line archi-

tectures, role and impact of assumptions in SE and its products, and using

design decisions to bridge rationale and architecture.

 XI



Part 4: Rationale for Organizing Bodies of Knowledge 

Rationale for organizing bodies of knowledge comprises knowledge and 

justifications for decisions to be reused in any kind of software engineering 

project. It is more widespread than rationale for individual projects and 

products, as it can be used by many different people and thus the effort for 

its capture is more generally accepted. Furthermore, it is often easy to 

access, e.g., in open repositories or textbooks.t

process participants. 
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Part 4 contains four chapters dealing with such universal rationale. One  

chapter generalizes the notion of design spaces and shows how this alle-

viates architectural decision-making in industry. There are two chapters on

capturing and using process rationale in terms of patterns. These patterns

describe typical activities during software engineering, in one case focusing

on agile processes, in the other case focusing on requirements engineering 

conflict situations. Another chapter shows how to capture and use rationale

during process improvement to enhance the understanding and buy-in of the 

the Technische Universität München, Prof. Bernd Brügge sponsored Allen
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Rationale Management in Software 

Engineering: Concepts and Techniques 

A.H. Dutoit, R. McCall, I. Mistrík, B. Paech 

Abstract: Rationale is the justification behind decisions. It is captured and 

used in many different forms during software engineering. While it has not 

achieved widespread use in practice, several approaches have emerged and 

successfully been used in selected projects. The goal of this chapter is to re-

view the current state-of-the art of rationale management approaches and 

tool support in software engineering, and map future research directions. 

Keywords: design rationale, rationale management, software engineering,

software architecting, software requirements

Rationale1 is the justification behind decisions. It is captured and used in 

many different forms during software engineering (SE). The availability of 

rationale increases the developers’ understanding of the system, making it 

easier to adapt or maintain. Being able to explain past decisions also facili-

tates the training of new members in a development team. However,  

rationale is often only captured partially and informally, often as natural 

language in design documents and in communication artifacts, making it 

difficult to access and maintain.

In the 1980s, the SE community, along with several others, started using 

1  Historically, much reasearch about rationale focuses on design and, hence, the 

term design rationale is most often used in the literature. In Sects. 1.1–1.5,

which cover fundamentals of rationale management, we use the term design ra-

tionale. However, in Sects. 1.6–1.8, we use the term software engineering ra-
tionale to emphasize that rationale models are used during all activities of de-

velopment, including requirements engineering, architectural design,

implementation, testing, and system deployment. 

1.1  Introduction 

1

rationale apaa proaches. Process-based apa proaches, such as the use of Issue

Based Information System (IBIS) described by Conklin and Burgess-
Yakemovic [9], represent rationale as decision-making steps, capturing

the argumentation behind designs as it occurs. Structural approaches, such

as Questions, Options, and Criteria (QOC) [38], represent rationale as a

space of alternatives and evaluation criteria, reconstructing rationale after

decisions are made. In both cases, capturing rationale entails the elicitation
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A rationale management system (RMS) is one that aims to address the 

above-stated issues. RMSs enable the capturing and accessing of rationale.

The potential benefits of employing the services of an RMS include the 

following:

− Providing greater support to project management 

− Improving dependency management

− Providing greater design support 

− Helping support collaboration 

− Supporting downstream users of design 

− Allowing more detailed documentation

− Helping in requirements engineering

− Aiding in design reuse and ultimately provide a learning tool for  

evaluating design [36] 

The complete rationale for even a small system is impossible to represent; 

consequently, developers are faced with selecting which rationale to  

represent in an RMS. Other implementation issues raised by researchers 

[46] are the formality (or informality) of the design rationale (DR)  

representation [21], and the approach to capturing rationale (e.g., 

reconstruction, apprentice shadowing, automatic generation). An RMS 

also aims to address the disruption caused by capturing rationale, recording 

rationale as a side effect of other activities, such as requirements elaboration,

risk management, or process enactment. 

The goal of this chapter is to review the current state-of-the art of  

rationale management approaches and tool support in SE, and map future 

research directions. Section 1.2 defines DR concepts. Section 1.3 discusses

the fundamental DR approaches, such as IBIS, DRL, and QOC, from a 

historical perspective. Section 1.4 identifies and categorizes uses of design

rationale. Section 1.5 identifies inherent limitations of DR approaches and 

proposes possible remedies. Section 1.6 discusses rationale in the specific

context of SE, in terms of opportunities and a survey of the current state of 

the art. In Sect. 1.7 we synthesize our observations of Sect. 1.6 and 

discuss future research directions in Sect. 1.8.

and formalization of tacit knowledge, potentially introducing much overhead 

and disruption in the development process [4]. Rationale also features many

elements and interdependencies, making it often difficult to keep up to date.

propose an architectural framework for RMSs in SE. We conclude and 
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Systematic documentation of rationale for practical decisions began more

than 35 years ago with work on rationale for design [30], in particular, 

design of buildings and cities. In the 1980s, interest in rationale spread to 

other fields involved with design, including SE and mechanical engineer-

ing. In recent years, researchers in SE have begun to look at rationale for 

activities other than design, and we argue later that this is an essential

trend for the future of the field. Nevertheless, rationale for design remains

the dominant theme in rationale research in SE. To understand the history 

and current state of the field, it is essential to understand the work done on

design rationale. This section therefore defines the term design rationale

Our definitions are meant to accommodate many points of view about DR.

The definitions we have chosen are similar to those given by MacLean 

et al. [38]: 

1. We start by defining a design process as one that aims at devising an 

appropriate design for an artifact. A design we define as an artifact 

description that is detailed enough for use in implementing

(constructing) that artifact. We consider a design appropriate if the

artifact described would satisfy requirements while not being 

unacceptable in other ways, e.g., by producing an unacceptable set of 

side- and after-effects. Two major categories of artifacts are (1) 

physical artifacts, such as buildings, cities and computer hardware, and 

(2) cognitive artifacts, such as notation systems and software.

2. We define a designer to be anyone participating in a design process. r

This definition depends on how the term participating is defined and g

leaves open the possibility that users and clients could be designers. 

3. Design rationale (DR) is the reasoning that goes into determining the 

design of the artifact. It can include not only direct discussion of 

artifact properties but also any other reasoning influencing design of 

the artifact. Note that our definitions do not imply that design starts 

only after requirements have been fully determined. During 

requirements specification many design decisions are made and these 

are relevant for design rationale. Similarly, design does not stop before 

implementation begins. Feedback from implementation and testing 

could be part of the design rationale. 

1.2.1 Definitions

1.2  Design Rationale Fundamentals 

and introduces fundamental characteristics of DR approaches. 
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There are already many different approaches to DR, and more are coming

into existence on a regular basis. This multiplicity of approaches shows 

that the DR field is healthy, but it also creates the need to make sense of 

this variety by finding organizing principles. In this section, we will there-

fore look at some ways of characterizing DR approaches to facilitate  

comparison, reveal trends and highlight issues. Describing even briefly thet

many approaches used is beyond the scope of this chapter, but we  

will describe some approaches that are frequently used and others that

challenge widely held assumptions. 

There are three ways of characterizing approaches to DR that reveal

fundamental differences and similarities among them. One is to look at the 

way in which DR is represented and d processed in an approach. Another isd

to describe the extent to which approaches are descriptive or prescriptive

with respect to design. The third is to describe their intrusiveness in the 

design process. 

Representation and Process Implementation

− DR representation form. Almost invariably, DR is represented by  

being divided up into chunks that are assigned certain properties and/or 

relationships. By far, the most common way of doing this is through use 

of a DR schema, i.e., a fixed, semi-formal, conceptual schema that 

represents the types of elements (chunks), properties and relationships in

terms of which DR is represented. An alternative approach to DR  

representation involves linking DR chunks to features of the artifact they

discuss. Yet another approach is to link DR chunks to steps in a descrip-

tion of the process of using the artifact.

− DR process implementation. Using a DR approach involves making

commitments about how to implement three basic processes:

o
and recording it 

o Formalizing rationale, the process of transforming rationale into the f

desired representation form, such as a DR schema 

o Providing access to rationale, the process of getting recorded rationale 

to the people who need it 

A given rationale approach typically indicates how each of these processesy

is to be implemented.  It indicates which entities perform processes, i.e.,

1.2.2  Making Sense of the Varieties of DR Approaches

It is useful to characterize DR approaches by how they represent rationale

and by how they implement basic DR processes. 

Capturing rationale, the process of eliciting rationale from designers 
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whether they are done by computers or humans, and, if humans, which by 

which humans. It also indicates when the processes are carried out, e.g., 

Capturing rationale might be done in different ways. Designers might do 

it themselves or have it done by nondesigners who are specialists in  

DR documentation. A third possibility is to extract DR from records of 

communication among participants in a project. A fourth is to capture it as 

a side-effect of the use of design-support software.  

Traditionally, capturing and formalizing rationale were combined in a

single operation. In recent years, however, alternative approaches separate 

the formalizing of rationale from its capture. One way of implementing 

formalization is to have it done by the same people who state the rationale. 

An alternative is to have it formalized by personnel specially trained in 

formalizing rationale. Yet another approach is to use software tools that 

partially or completely formalize informally stated rationale.  

The most common approach to accessing DR is through use of a system 

that lets users browse a hyperdocument containing the rationale. Conven-

tional information retrieval (IR) search techniques can also be used. A 

third approach to accessing DR uses knowledge-based critics that alert  

users to the existence of DR they might need.

Descriptive or Prescriptive

− Descriptive approaches. Some approaches to DR are aimed only at  

describing whatever thinking processes designers might choose to use. 

Such approaches make no attempt to alter designers’ reasoning. They 

might, however, use records of DR to improve processes outside of 

design, such as implementation, maintenance, or reuse of designed 

artifacts. They might also use DR to bring new members of a design 

team up-to-date. Such approaches are only interested in DR as a descriptive 

model of designers’ thoughts, utterances or actions. l

− Prescriptive approaches. On the other hand, some approaches are aimed 

at improving design processes by improving the reasoning of designers. 

They typically attempt to remedy perceived deficiencies in design  

reasoning by making it more correct, more consistent and more thorough.

As with descriptive approaches, prescriptive approaches can create  

records of DR that are used to improve processes outside of design. It 

should also be noted that the descriptive and prescriptive are not always

mutually exclusive. For example, some approaches are primarily 

descriptive in intent yet also have some prescriptive goals. 

during design or afterwards.
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Intrusiveness

Another useful way of characterizing DR approaches is by their intrusive-

ness in the design process. This includes not only how intrusive they are 

but in what respects they intrude. Thus, an approach might be highly  

nonintrusive during capture of DR but relatively intrusive during retrieval 

and display of rationale. Measures of intrusiveness can include the degree 

to which a DR approach dictates the way design is done as well as the

amount of extra effort required to use the approach. And the acceptability

of intrusiveness may differ for capture, formalization and access.

− More-intrusive approaches. Most proposed DR approaches are highly

intrusive with respect to DR capture in that they intervene in the design

process to guide the way rationale is elicited from designers. Typically

such interventions use a DR schema that defines what types of elements 

of rationale should be elicited from designers and how these elements

should be linked together.

− Less-intrusive approaches. Over the past 15 years, a number of  

researchers have sought less intrusive ways of capturing and formalizing

DR. This is due to concern about difficulties experienced in getting 

rationale capture to work in design projects. Specifically, many of these

researchers believe that intrusiveness has been a central obstacle to  

effective capture of rationale, though there have been few complaints 

about intrusiveness as a barrier to accessing it. 

One might imagine that prescriptive approaches were generally intrusive 

while descriptive modes were nonintrusive, but the actual story is not so 

simple. For example, QOC [38] is a highly intrusive yet primarily descrip-

however, that descriptive approaches sometimes facilitate use of nonintrusive 

means to capture DR. Examples include the capture of DR from CAD  

usage [47] and use of natural language processing to structure computer 

mediated communication in design [45].

By itself, no representation scheme, such as a DR schema, is intrusive. It 

only becomes intrusive when used with an intrusive processing implemen-

tation mode, as when a schema is used to guide rationale elicitation. In

such cases, however, different schemas can have different levels of 

intrusiveness. Generally, a more fine-grained schema will be more 

intrusive, because it makes designers perform more categorization and 

linking tasks. In addition, schemas that organize rationale in a way that is 

different from the way designers would intuitively organize it create a 

tive, while use of domain-oriented issue bases in Procedural Hierarchy of 

Issues (PHI) [17] is prescriptive yet highly nonintrusive. It is true, 
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cognitive dissonance that adds to the cognitive overhead that designers

must cope with.

and DRL 

The most commonly used way of treating DR is as a type of argumenta-

tion that is structured according to a given schema. There are many ways

in which DR argumentation might be structured, but there have historically 

been two major branches of thought. One branch uses some variant of the

schema for argument structure devised by Toulmin [63]. The other uses

prominent members. Interest in the former branch seems to have faded 

over the past 15 years, while the latter continues as perhaps the dominant 

trend in the field. We will concentrate exclusively on the latter approach  

to argumentation. In particular, we will examine the similarities and  

differences among IBIS, QOC, and DRL. 

IBIS

Historically, the DR movement began with Rittel’s IBIS (Issue-Based  

Information System), which was not a software system but a way of modeling 

argumentation [30]. By 1967, Rittel had become convinced that design 

problems were wicked problems and fundamentally different from the

approach” to wicked problems and used IBIS to implement this approach 

[55]. In the 1970s and 1980s he applied IBIS to large-scale projects in

planning and policy making for the United Nations, the Commission  

of European Communities and the West German government. Other  

researchers applied IBIS to architecture and planning [41].

In the mid-1980s Conklin discovered Rittel’s writings on wicked problems

and saw this theory as a way of understanding the profound difficulties 

1.3.1 Three related approaches to argumentation – IBIS, QOC, 

1.3  Approaches to Design Rationale 

well-defined problems of science [7, 54]. He called for an “argumentative 

This section focuses on three argumentative approaches to DR: IBIS, QOC,

and Decision Representation Language (DRL). It thereby gives an intro-

duction into the most prominent issues in providing DR support. It also con-

trasts argumentative approaches with problem-based, scenario-based, and 

generative approaches.

one of a group of DR schemas having IBIS, QOC, and DRL as its most
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that software design had run into. He then contacted Rittel, who told him 

about IBIS [53]. Conklin then adapted IBIS for use in SE and created the 

Rittel’s IBIS had the following elements:

− Issues

− Positions

− Arguments

− Resolutions

In addition, there was a variety of inter-element relationships.

IBIS considers the pros and cons of positions, which are proposed 

alternative answers to questions, which are called issues. Positions are 

evaluated on the basis of arguments about the relative merits of the  

positions as well as the merits of other arguments. In principle, these  

arguments can range in size from a brief sentence to many paragraphs, 

though typically they are one to three sentences in length. Issue discussion

often involves a multilevel structure of arguments for and against positions

as well as arguments for and against other arguments. The decision on

which position to accept is called the resolution of the issue.

Rittel’s IBIS used several relationships to link different issue discus-

sions. These included more general than, logical successor to, temporal 

successor to, replaces and similar to. Variants of IBIS developed by others 

often used relationships that differed from Rittel’s to lesser or greater 

degrees.

Rittel looked at IBIS as a way of representing debate of controversial 

questions that arise in design. In fact, he intended IBIS to be a means for 

promoting debate of such questions from many different points of view. 

He was much less interested in the treatment of noncontroversial design 

questions, which were labeled trivial issues and not dealt with by IBIS.  

Rittel’s approach was from the outset both prescriptive and intrusive, as 

were almost all of his IBIS projects. Other researchers, however, have 

sought much less intrusive ways of using IBIS. 

PHI

troversial issues and rethought the relationships between issues. The 

centerpiece of PHI is the subissue relationship, where one issue’s resolution e

depends on the resolution of another. In PHI a design project is a  

quasi-hierarchical structure of subissues that resembles a calling structure

of subroutines in procedural programming. (A quasi-hierarchy is a directed 

acyclic graph with some added cyclical structures.) This is in contrast to

the “spaghetti” structure of issue networks in Rittel’s original version of 

graphical IBIS (gIBIS) hypertext system to support this use of IBIS [m 8, 9]. 

Procedural hierarchy of issues (PHI) [40, 41] extended IBIS to noncon-
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IBIS. PHI was intended to facilitate the creation of larger and more 

comprehensive models of design reasoning. While Rittel’s IBIS typically 

dealt with 30–50 issues in a project, PHI typically dealt with 200–400 issues.

PHI also revised IBIS to better reflect actual practice in the IBIS  

community in the 1970s. The term answer was adopted (instead of r posi-

tion), since this term was widely used in this community. Also, the concept 

of subanswer was added so that hierarchies of answers could be repre-r

sented. Such hierarchies were also in widespread use by IBIS practitioners, 

yet had no formal status in IBIS. PHI extended this naming scheme to ar-

guments: the arguments on other arguments got labeled t subarguments.

This meant that hierarchies of issues, answers, and arguments could all be

dealt with using a uniform naming scheme.

Originally PHI was both prescriptive and intrusive. Over the past 20

years, however, PHI has been used in ways that are increasing nonintrusive. 

The central tenet of PHI was that the key to improving design reasoning is

to raise more subissues. In other words, the attitude behind PHI was that

better treatment of an issue means thinking about what other issues its

resolution depends on. For example, a house designer might raise the 

issue, “How many stories should the house have?” You can do a better  

job resolving this issue if you consider what other issues (subissues) the 

resolution depends on. For example, the number of stories for a house 

might depend on the following subissues: 

A number of hypertext systems were created to support PHI, starting

with PROTOCOL [41] in the late 1970s. This was succeeded by

also created to support delivery of PHI-based rationale to designers.

A crucial application of PHI is to create domain-oriented issue bases.

have a high degree of recurrence in different projects in a given problem

domain, e.g., design of houses. An issue’s rationale might not include its

resolution, since this varies from project to project. There is no claim that 

an issue base contains all the rationale for a project; instead, it is merely a

convenient starting point for creating that rationale. Typically, much more 

work goes into designing a domain-oriented issue base than it is reasonable 

to spend on DR design in a single project. This extra work pays off when

an issue base is used to inform many design projects within a domain. 

These are structured collections of issues, answers, and arguments that 

PHIDIAS [42, 43] in the 1990s. In this period, the JANUS [17] system was 

MIKROPLIS [39, 44] in the early 1980s, which in turn evolved into

− How much land is available for the house?

− How many people will live in the house?

− Will elderly or disabled people be living in the house? (since such 

people may have difficulty with stairs) 
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QOC 

A second schema for argumentative DR is used by the QOC approach to

DR. While QOC stands for Questions, OptionsC , and Criteria, it actually has 

six major types of elements: 

− Questions

− Options

− Criteria

− Assessments

− Arguments

− Decisions

In addition, QOC has relationships between elements, including  

inter-question relationships. Since QOC’s schema appears similar to 

IBIS’s, it will be useful to point out the differences between the two as we

explain QOC. Like IBIS, QOC centers DR on the discussion of questions.

A crucial difference between QOC and IBIS is that while IBIS’s questions, 

i.e., issues, can concern any design topic, QOC’s questions deal exclu-

sively with features of the artifact being designed. An example of a QOC

question given by MacLean et al. is, “How should the scrollbar be  

displayed?” This, of course, would also count as an issue in IBIS. While

QOC potentially deals only with a subset of the questions that an IBIS 

might deal with, QOC has the advantage of not allowing the designer to 

ignore questions about features of the artifact. IBIS, by contrast, does not 

mandate that such questions be dealt with, though they typically are. 

Alternative answers to QOC questions are called options. Options represent 

possible features of the artifact being designed. These are identical to positions

on IBIS issues that deal with the features of the artifact. The following are ff

1. Have the scroll bar permanently fixed to the edge of the window 

2. Have the scroll bar invisible normally but visible when the cursor 

‘rolls over’ the edge of the window 

Questions and their options in QOC together constitute the design space, 

which corresponds to the set of possible alternative designs for the artifact. 

The use of QOC is referred to as design space analysis. 

One crucial respect in which QOC differs from IBIS is in the way in 

which the alternative answers to questions are evaluated. QOC, first of  

all, requires use of explicitly stated criteria to evaluate proposed answers 

(options). Criteria indicate desirable properties of options or requirements

does well according to a criterion and a negative link indicating that it does

examples of mm options adapted from an account by MacLean et al.  [38]: 

they should satisfy. Second, QOC requires that answers be linked by 

positive or negative links to criteria, a positive link indicating that an option 
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poorly. The links of criteria to options are called assessments. IBIS does 

not require this sort of consistent evaluation. It only asks for arguments for 

or against the answers (positions(( ). Nevertheless, each assessment in QOC 

could be represented in IBIS as an argument for or against a position.

Like IBIS, QOC can have arguments that challenge or support any 

element. In QOC emphasis is given to arguments on assessments. As with

IBIS, argumentative structures can have multiple levels of arguments on 

arguments. Finally, QOC has decisions indicating which options to accept 

for each question. These correspond to resolutions of issues in IBIS.

In summary, there are two main things that distinguish QOC’s schema 

from IBIS’s. One is that QOC’s questions always have possible answers

(options) that describe properties of the artifact being designed,  

whereas issues in IBIS can include these questions as well as the many 

other questions that arise in a design project. QOC has no way of dealing

with the multilevel subissue structures that are the hallmark of the PHI 

version of IBIS. On the other hand, the IBIS schema cannot guarantee that 

QOC-type questions are addressed. The second thing distinguishing the 

schemas is that QOC uses assessments indicating how answers (options)

perform with respect to explicit criteria. While these assessments can be

stated in IBIS as arguments, IBIS has no explicit representation of criteria

as elements.

The goals of QOC approach are primarily descriptive, in that the main 

purpose of the system is to create a description of designers’ rationale that 

is sufficiently detailed to inform other phases of the artifact lifecycle. 

QOC’s process implementation mode is intrusive in its use of designers’

time to guarantee that the description is thorough. 

The authors of QOC have not created software to support QOC, though

a number of other researchers have incorporated such support into their 

systems. 

DRL

Potts and Bruns model of DR [49], which was itself an extension of IBIS. 

Lee and Lai [35] argue that DRL is more expressive than other argumenta-

tion schemas in the sense that it enables the answering of a broader range 

of questions that might arise in various phases of the artifact lifecycle. 

What this claim primarily boils down to is having DRL provide a finer 

level of granularity in certain parts of its schema. Lee and Lai do not claim

that DRL provides more comprehensive coverage of DR than other  

approaches. They state that their schema is for decision rationale and does

Decision Representation Language (DRL) [34] began as an extension of the 
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not deal with all aspects of design rationale, such as deliberations on how

to generate design alternatives. IBIS can deal with these aspects.

The primary elements of DRL are as follows: 

− Decision problems 

− Alternatives 

− Goals

− Claims 

− Groups

DRL also has various relationships between these elements. Many of 

these elements and relationships correspond to the aspects of QOC and 

IBIS. 

A decision problem is something to be decided. Lee and Lai claim that a 

decision problem is equivalent to both a question in QOC and an issue in 

IBIS, but they appear not to recognize that a QOC question is not equivalent 

to an IBIS issue. It seems, however, that a decision problem actually  

corresponds to a QOC question rather than an IBIS issue becauser alterna-

tives, i.e., the alternative solutions to decision problems, are always artifact 

features. An alternative is the same as an option in QOC and can be  

represented as a position in IBIS. A goal is used for compl arative evaluation 

of alternatives and corresponds to a criterion in QOC, but has no 

explicit representation in IBIS. Alternatives can be linked to goals by 

achieves relationships, which correspond to positive assessments in QOC.

Alternatives are evaluated by claims about the achieves relationships 

between alternatives and goals, a scheme that mirrors QOC’s use of argu-

ments to discuss its assessment relationships between t options and criteria.

These can be modeled as IBIS arguments, but doing so buries the goals in

texts rather than explicitly representing them as elements. Further claims 

can be linked to other claims by support or t deny relationships, which are 

semantically identical to relationships in both QOC and IBIS.

So far DRL looks nearly identical to QOC, but DRL has some features 

not found in QOC or IBIS. One is a presupposes relationship between

claims. In addition, each claim has three attributes: evaluation, plausibility,

and degree, the value of the evaluation attribute being determined from the 

values of the plausibility and degree attributes. Plausibility represents the 

likelihood that the claim is true, and degree represents the degree to which 

it is true. DRL also allows the creation of goal–subgoal hierarchies. DRL l

also includes a subdecision relationship between decision problems that 

corresponds to a subissue relationship among issues in PHI. Also DRL’s

claims represent a sentential level of granularity for argumentation, f

whereas IBIS arguments provide only a syllogistic level of granularity.
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The stated goal of making DRL more expressive than other methods 

suggests that the system is primarily descriptive, but a number of the questions

that Lee and Lai list in defining DRL’s expressiveness have implications

for improving design. So DRL appears to be more prescriptive than QOC, 

though less prescriptive than IBIS.

IBIS, QOC, and DRL Compared

DRL’s schema seems to correspond to a superset of QOC’s, because every

QOC feature appears to correspond to a DRL feature, though not the other 

way around. Both QOC and DRL are more expressive than IBIS in that 

they provide more fine-grained models of the argumentation that directly 

deals with evaluation of artifact features. But IBIS is more comprehensive

in that it can represent the discussions of some design questions (issues)

that neither QOC nor DRL treats. Lee and Lai state that DRL deals only

with decision rationale and that this does not include all of DR. Since DRL 

is a superset of QOC, this limitation would also apply to QOC. Neither 

Rittel’s IBIS nor its PHI variant has this limitation.  

What aspects of DR are left out of decision rationale? Lee and Lai give

only one example: discussions related to generating feature alternatives. In 

PHI there are two major classes of subissues: those that help in evaluating

alternative answers (positions)((  and those that help in generating them. Leeg

and Lai are, in effect, saying that the latter cannot be represented in DRL, 

and, by implication, QOC. A simple example of an alternative-generating

subissue might be, “How have multiple ‘screens’ of information been 

displayed in other software systems?” Such an issue identifies possible 

alternatives for artifact features, such as, “by scrolling” and “by showing

multiple ‘cards’ of information, as in NoteCards and HyperCard.” Yet 

such an issue it is not a decision problem, because answering the issue

does not decide which feature alternative to adopt. Neither DRL nor QOC

has any explicit way of dealing with such issues. 

QOC, however, can deal with certain design questions that do not have 

alternative answers that are artifact features, for some criteria in QOC areff

represented as questions. Such questions would clearly count as issues in

with things, such as requirements, that can be used to directly evaluate 

alternative artifact features. One example of questions that neither count asmm

QOC questions or criteria is found in an example of an area of design  

discussion where MacLean et al. acknowledge that the “overlap” with  

Lee created SYBIL, a knowledge-based hypertext system to support coll-

aborative use of DRL [32, 33]. SYBIL is built on ObjectLens [31], a general 

tool for building CSCW applications.

IBIS (and subissues in PHI); but criteria in QOC (goals in DRL) only deal
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Design Space Analysis “is relatively weak.” In this example from an  

empirical study software designers say the following: 

What is causing the long queue[?] Is it people just going through these 

steps, or is it people adding options to other services, and then using the 

other option? 

MacLean et al. describe the process of addressing such questions as buildingf

an ad hoc theory, something that QOC does not handle. IBIS requires no 

special new way of handling such questions; they are simply issues.

Originally, both the IBIS and QOC schemas were used in intrusive DR 

approaches. But over the past 15 years, research on the PHI has sought to

devise nonintrusive means for capture, formalization and delivery. 

The QOC approach concentrates on the design of rationale rather  

than recording the processes of rationale generationf , such as in the process

implementation mode in the use of IBIS de escribed by Conklin and 

Burgess-Yakemovic [9]. Apparently, on the basis of this difference 

“on the fly” and therefore only records a history of a design process, 

35-year history IBIS has often been used in the same way QOC is used, 

i.e., to create “logical argumentation.” For example, using PHI to create 

domain-oriented issue bases [17] is entirely concerned with designing 

“logical” rationale and leaves no record of the process by which the rationale

is produced. In other words, the schemas of Rittel’s IBIS and its PHI variant 

have been used with different DR process implementation modes.

Here, it is important to point out a fact that makes it difficult to compare 

DRL with QOC: writings on DRL generally contain little information

about process implementation mode. DRL seems not so much a DR  

approach as a schema that might be used in various DR approaches.  

It is perhaps surprising that there are so few significant differences in 

the schemas of IBIS, QOC, and DRL. The differences that do exist appear 

to be features of one schema that could profitably be added to the other 

two. In fact, MacLean et al. state that they would like to make QOC more 

like DRL, and Lee and Lai say that they see DRL as extending the changes 

that PHI made in IBIS. This suggests that it might be both possible and 

useful to combine the three schemas. 

MacLean et al. have claimed IBIS is restricted to capturing rationale 

whereas QOC records the “logical argumentation.” Actually, over its
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Problem-Based Evaluation

Lewis et al. [37] present a novel approach for evaluating alternative 

features of an artifact. They describe their own software design process as 

using a suite of problems for conceptual evaluation of different proposals

for a computational environment they devised. Their experiences may

sound familiar to other software designers, and yet no other DR approach 

has taken such experiences into account. Among other things, their work 

suggests that argumentation alone may not be the only, or even the  

best, means of evaluating alternatives, and this, in turn, challenges the 

sufficiency of existing argumentative approaches to DR. Implications of 

the Lewis–Riemann–Bell insight for other types of design, including other 

types of software design, need to be looked into. How their work might 

augment an argumentative approach to DR also needs to be worked out. 

Scenario-Based Evaluation 

Carroll and Rosson [6] propose a way of evaluating software features 

that does not document the reasoning of designers but rather the potential

reasoning of users in hypothetical scenarios of human–computer interaction.

While this is fundamentally different from standard argumentative 

approaches, a potential point of connection with argumentative DR is that 

the four examples of scenarios that Carroll and Rosson provide are all 

question-answering processes. Another connection is that scenario-based 

design involves the analysis of claims. Carroll and Rosson emphasize,

however, that the claims they study deal only with the psychological 

consequences of artifact features and are “embodied” in, and thus inferable

from, the artifact and its use. They see their work as a more abstract 

version of the problem-based approach of Lewis, Riemann, and Bell. They

also see it as similar to QOC in some ways, but as being at a higher level 

of analysis and more connected to use situations. 

Generating DR from Data and Models 

Gruber and Russell [23] argue that argumentative schemas do not include

all the rationale that designers use, because all of them are prescriptive

about what information is relevant. No collection of DR, they claim, could 

answer all of the questions that might be raised about the rationale for an

artifact. Rather than having designers elicit highly detailed models of their 

rationale, it would be better to collect engineering data and models and 

then later use these to infer DR in response to questions that arise about it. 

1.3.2 Approaches to DR that Go Beyond Argumentation 
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There are many potential uses of DR, some aimed at improving design, 

others at improving other phases of the artifact life cycle. Frequently  

proposed uses are listed below. Note that there are some overlaps and  

dependencies among items in this list. We group them into four main 

categories: the first focuses on collaboration, the second on reuse and 

change, the third on quality improvement, and the fourth on knowledge

transfer.

Promoting Coordination in Design Teams 

DR can help to coordinate many aspects of a design team’s work. Different 

members of a team can use a common repository of DR to understand 

what others in the team are doing and what the consequences are for their 

own work. This can promote the identification of both potential conflicts

between team members and opportunities for mutual support.

Exposing Differing Points of View 

One use of DR is to expose differing points of view. Sometimes these are

merely differences of opinion on detailed issues, but sometimes they are 

also profound differences of worldview on fundamental topics, e.g., open-

source vs. de facto commercial standards. Sometimes they arise from  

differences in domain expertise in a functionally differentiated design

team. Sometimes they arise from the different goals of different stake-

holders in a project. Exposing differing points of view and the reasoning

behind them was a central goal in Rittel’s use of IBIS. Not all DR  

approaches share Rittel’s aim of promoting debate. Some are more aimed 

at promoting a rapid convergence on agreement.  

Facilitating Participation and Collaboration in Design 

DR can be used to promote both collaborative and participatory design. 

Rittel argued that participation by users in design is often inhibited because

they do not understand what rationale designers are using, what questions

they are addressing, what alternative answers they are considering, what 

arguments they are using. He looked at IBIS as a way of making designers’ 

reasoning transparent, i.e., a glass box rather than a black box, and thus 

empowering users to ask questions and to make comments and suggestions.

1.4.1 Supporting Collaboration 

1.4  Uses of DR and DR Methods 
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Similarly, he saw collaboration as also being inhibited when members of a

design team did not understand the rationale being used by other members. 

DR approaches other than IBIS can also be used this way. 

Building Consensus 

Many users of IBIS have complained that it lacks adequate means for 

promoting consensus and reaching decisions. Other DR methods might be

better for creating consensus for the simple reason that they do not go to

such lengths as IBIS goes to promote debate. 

Supporting Future Changes 

The most commonly mentioned reason for using DR in SE is to support  

future changes in software, a problem that is perhaps more pressing in this 

field than in any other design or engineering field. This does not necessar-

ily require a prescriptive approach to DR. This goal might be well served 

by approaches that merely record what designers happened to think. 

People who want to make future changes need to understand the effects of 

those changes; knowledge of the rationale for the design can help in 

achieving that understanding. Sometimes that rationale may also reveal 

that some planned changes are actually inappropriate. It is not uncommon 

that a design feature that seems wrong to a new designer was originally 

arrived at, through a painful process of trial-and-error in which all the 

“intuitive” approaches failed. Without a record of the rationale, this painful 

process might have to be repeated, perhaps many times.  

Supporting Reuse 

Software reuse is often considered the “holy grail” of software design. But 

Increasing Consistency of Decisions 

Often it is only by making rationale explicit that consistency can be 

achieved. For example, it is not uncommon in large projects for the same

1.4.3 Improving Quality

1.4.2 Supporting Reuse and Change 

before software can be reused it needs to be understood and/or modified. 

This requires knowing the reasoning behind its original design. DR can 

also help to identify parts of software that might be extracted and reused. 
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decision tasks to be done by different groups within the design team.  

Recording rationale makes it easier to identify this fact and to make sure 

that decisions are mutually consistent. This use of DR is prescriptive, for it 

seeks to change the way designers think, i.e., making it more consistent. 

Though this use of DR requires methods that go beyond mere historical

description of designer’s rationale, such description may be of value  

because it exposes designers’ reasoning to critical scrutiny. 

Verifying Designs (Supporting Traceability)

This use of DR requires an explicit linking of requirements criteria to the

descriptions of artifact features that satisfy these criteria. In the case of 

software, it also suggests the desirability of linking the criteria to actual

features of the implemented software. This requires a schema that makes 

criteria explicit, as QOC and DRL do, rather than schemas where criteria 

are embedded in larger arguments, as is the case with IBIS. 

Supporting Maintenance

One possible use of DR is to support debugging, fixing problems, and  

extending the functionality of an artifact. This problem is probably more 

critical with software than with any other type of artifact. DR can be used

to spot conceptual errors in design as well as implementation errors, and 

errors of omission as well as errors of commission. 

Learning from the Past

To learn from the past, we need to understand the reasoning behind past 

decisions. Most DR researchers maintain that this can best be done through 

explicit recording of the rationale for those decisions, something that 

requires nothing more than a descriptive model of whatever it was that the 

designers were thinking when they made decisions. Gruber and Russell 

[23], however, have presented evidence that designers are often able to 

effectively reconstruct the rationale for past designs from data other than 

an explicit record of rationale. These authors even suggest that it may be

more useful to record such data rather than the rationale itself.

1.4.4 Supporting Knowledge Transfer 
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Validating Designs 

To maximize learning from the past, we need to be able to compare 

designers’ expectations about the consequences of their decisions with the 

actual consequences. This requires more than an understanding of the  

reasoning behind past decision; it requires evaluation of artifacts in use.

One approach to doing this is found in case-based reasoning (CBR) 

projects by Kolodner [29]. Especially interesting is the ARCHIE project,

which records the experiences of users of artifacts (buildings) and links

these experiences to representations of the artifact. 

Organizing and Delivering Reusable Knowledge 

The issue of learning from the past is also fundamentally connected to the 

reuse of knowledge. Reuse can be thought of not only as using the success-

ful ideas and rationale from the past, but also a matter of preserving  

records of what not to do. There is no point in reinventing the wheel, but it 

makes even less sense to reinvent the square wheel. Thus, the blunders of 

past designers represent an important type of reusable knowledge.

There are two basic approaches to the reuse of knowledge: the

alized approach. The latter term is intended here as an umbrella term for a 

number of approaches that try to put knowledge in a generalized form that 

goes beyond the mere annotation of individual cases. There are currently a

number of generalized approaches, including patterns and issue bases. 

Patterns, as used in SE, constitute one of the most heavily used 

Domain-oriented issue bases have only been created with PHI. Such issue

bases contain hierarchies of issues, positions, and arguments that are 

commonly raised in projects in the domain. Most issues are left unresolved 

and designers are invited to make their own minds up on the issues. Wher-

ever the software technology permits, issue bases are extensible by designers,

who can add to them and even edit them for use in specific projects. 

Supporting Training 

One use of DR is to bring new members of a design team up-to-date on

case-based approach, mentioned above, and what we might call the gener-

approaches for organizing reusable knowledge [19]. Integrating rationale 

more completely into such patterns could be an important way of making 

rationale reusable. The patterns used in SE ultimately derive from Alexander’s

concept of pattern used in his work on architecture and urban planning [1].
This pattern concept has rationale explicitly built in, though this rationale

is relatively unstructured. 

work in a current project. DR can function as a sort of larger-scale 
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version of an FAQ, so that a new member can understand the rationale for 

Providing External Design Memory 

DR is useful as a memory aid for members of a design team. This is especially 

important where projects go on for long periods of time and where designers

leave the team. It is very important when designers leave a project that all 

knowledge of their project rationale does not leave with them.

Despite the many approaches to DR suggested and the many software 

systems devised, DR has not found ongoing use in real-world design.

There are cases where DR has been applied successfully; but these often 

depend on special circumstances, such as the presence of a “DR champion” h

[9], that cannot be expected to exist in the majority of cases.  

There are a number of ways in which DR methods can fail to be used in

practice. One is the use for eliciting and recording rationale from 

designers, which is generally known as capturing DR. The other way is 

for retrieval and display of recorded rationale, what we shall call providing 

access to DR. We will focus here on the former, because it has been the 

central obstacle to the practical applications of DR. In fact, so little DR has 

been captured to date that has been relatively little opportunity to investi-

gate the problem of DR access in real-world settings. 

There seems to be a broad consensus that DR capture has generally not 

worked in practice. Designers have typically resisted rationale capture. 

Why they resist is a central question in research on DR capture and one of 

the most important issues in the DR field. If we were certain of how to  

answer this question, we would know the conditions, if any, under what 

the capture problem is solvable and how to begin solving it. 

There are a number of possible explanations for resistance to DR  

capture. Some researchers point to its intrusiveness as the problem. One

kind of intrusiveness is due to the work required for capture. Most capture

involves designers writing up their rationale in a given DR schema. This 

requires a great deal of work in addition to the normal work of design. 

1.5.1 The Capture Problem 

1.5  Limitations of Current DR Approaches and Software 

the current state of the artifact’s design before suggesting changes to it.
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Other reasons for resistance to capture can include political and legal 

factors. Designers might not want their bosses or the public to know 

the real reasons for their decisions. They might also want to protect 

themselves from potential law suits. There is also the problem that any  

argument can be a double-edged sword that provides others with a way to

attack decisions made.  

For descriptive approaches, the extra work of DR capture can be a  

record the rationale are unlikely to be the ones who use it. Designers might 

thus have little motivation to do the capture. Descriptive approaches run 

afoul of Grudin’s principle that collaborative systems tend to fail when

Grudin argues that in developing commercial off-the-shelf (COTS)

software DR capture might not pay off at all for later phases. COTS 

projects are failure prone, because (1) most products fail commercially and 

(2) up to 90% of projects are not completed. Failed projects do not need 

DR, and using resources for its capture could make failure more likely.

Grudin also suggests that in COTS development design decision making

is often highly distributed. Experts and stakeholders of many types shape

the design. There is often no way of compelling these individuals to share 

their rationale, much less to use a DR software system. 

Grudin analyzes DR capture in three additional development contexts. 

For in-house development in organizations and competitively bid contract 

development he finds that incentives for DR t capture offset some of the  

disincentives he found in COTS development. For customized software 

development, however, the only real disincentive he finds is that the firms 

doing it are often small and lack resources to invest in new software tools.

Another possible explanation for resistance to DR capture is that the 

quantity of work required for capture is greater in time than designers have 

for in a project even if they want to do it. Design is an intense activity that 

tends to absorb all the resources of time and personnel available.

For prescriptive approaches, there is supposedly a benefit to designers

for capturing DR, so designers should be more motivated to do it. Yet even

here, it has not succeeded. A simple reason for this might be that investing 

resources in DR capture has less benefit than investing it in design.

Another possible reason for the failure of DR capture in both descriptive

and prescriptive approaches is that DR capture might actually be detrimen-

tal to design in ways that go beyond its cost in resources. For example, 

Fischer et al. [17] use Schön’s theory of Reflective Practice [56] to argue

that DR can actually disrupt designers’ thinking. Schön sees design as  

involving two very different cognitive processes: an intuitive process of 

skillful action, which he calls knowing-in-action, and a reasoned process of 

those who do the work are not the beneficiaries of that work [24, 25].

fundamental problem. Since such approaches do not aid design, those who
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reflection, which he calls reflection-in-action. He sees design as continually 

alternating between the two. The two processes cannot be done simultane-

ously, because reflection disrupts knowing-in-action. Reflection is only 

productive when intuition fails to cope with some new circumstance  

arising in design. To Fischer et al. this means that the explicit argumentation 

of DR is only appropriate for reflection-in-action. This in turn implies that

rationale capture can actually degrade the quality of design if it is intrusive

into the intuitive processes of knowing-in-action.

Another possible explanation for the resistance to capture is that we still

are not collecting the right information. The work of Gruber and Russell,

Lewis, Riemann, and Bell as well as that of Carroll and Rosson suggest 

that argumentation by itself may not be enough to account for designers’ 

reasoning. There are enough dissenters from the argumentative view of DR 

to leave room to doubt that we are capturing the right information. Never-

theless, there is little evidence to date that differences in information 

recorded have made any difference to the success of DR capture in practice. 

Traditionally, DR literature has emphasized that devising the right schema, 

i.e., one that captures the right information and structures it correctly, is 

the way to solve the problems of DR usage. Yet designers’ resistance to R

DR capture exists regardless of what schema is used. Solving the capture 

problem will require research on more than schema design.

problem is to try to reduce the intrusiveness of DR capture, either by  rr

reducing the work of DR capture or reducing its disruptiveness in design

reduced the work of managing DR by providing extensive support for 

browsing, modification, and retrieval. This, by itself, however, was not 

enough. The cognitive overhead of DR capture remained daunting. R

One approach to reducing the cognitive overhead of capture is to use  

the strategy of differential description, in which designers only need to  

describe how the rationale for the current project differs from other rationale.

One way to do this uses domain-oriented issue bases in PHI [18]. These 

contain rationale commonly used in projects in a given domain, including 

1.5.2 Approaches to Solving the Capture Problem 

or both. The MIKROPLIS [39, 44] and gIBIS [8] hypertext systems 

A more radical position on intrusiveness is taken by Shipman and Marshall 

[57]. They argue that semi-formal schemas are themselves the problem. As

they see it, all such schemas are obstacles to capture information. They advo-

cate doing away with structured user input and using only informal input.

One direction taken by researchers working on solving the capture
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commonly raised issues, positions and arguments. Designers need to add 

only the missing information, including their decisions on the issues. 

There are other ways in which differential description might be imple-

mented. One would be by using rationale-annotated cases of similar 

projects, such as those provided by the ARCHIE system [29]. Another way

might be to use design patterns annotated with rationale.

Of course, differential description only works for domains where previous

design work has been done and where someone has built collections of 

issue-based discussion, precedent cases, or design patterns. By definition,

this approach is not useful for unprecedented problems. It should also be

noted here that Rittel’s theory of wicked problems, which led to the first 

DR method, included the notion that design problems are “essentially 

unique,” and thus not easily solved by looking to precedents [54].

A number of researchers have explored ways of capturing DR without 

use of any schema, either because schemas are too labor intensive to use or 

because they interfere cognitively with capture. For example, Shipman and 

his collaborators from Xerox PARC built “spatial hypertext systems” [61]

that enable informal input of information in a 2D space and then infer the

structure of that information from its spatial arrangement, work inspired in

part by gIBIS’s graphical representation of IBIS structure. Reeves [52] 

also created a system that uses a schema-free approach to capture. With  

his system designers write their rationale as textual notes in the graphical 

representation of a physical artifact in a CAD system. The design history 

of the artifact then becomes the means by which rationale is structured. A

different schema-free and completely nonintrusive approach is used by

Myers et al. [47]. They add semantic information to a CAD system’s  

symbol library and then infer the DR from the designer’s use of the system. 

This approach, however, does not produce argumentation as such. 

The idea of abandoning use of an explicit schema is controversial in the 

DR field. On one side of the debate, there are MacLean et al. [38] arguing 

for intrusive, schema-based approach to DR capture. At the opposite end 

that abandon use of schemas. 

Another approach to facilitating DR capture tries to find when rationale

is naturally elicited as part of design communication [60]. In these cases

eliciting DR is not an extra task for designers and does not interfere with

design. It is instead an already existing and accepted part of the design

process. In fact, it is the means by which collaboration takes place in design. 

There are two approaches that can be taken in using design communication 

as the basis for DR capture. One is to structure that communication using a 

schema. Another approach is to record it in its natural, informal form and

are Shipman and Marshall [57, 58, 59] arguing for nonintrusive approaches
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then structure it retroactively, for example, by using natural language

processing [45].

This section focuses on rationale-based approaches specific to software 

engineering (SE). First, we describe different types of SE projects where

the use of rationale could have the most benefits, that is, in which addressingt

the limitations described in the previous section could yield a significant 

return on investment. In Sect. 1.6.2, we analyze for each SE activity how

rationale can be captured and used. Using the SPICE process standard as a 

framework for discussing activities [http://www.sqi.gu.edu.au/spice/], we

conclude that the concept of DR is too limited to encompass all the rationale-

based processes of SE. We suggest that the concept of SE rationale (SER)

is more general and more useful for discussing rationale management in

SE. In Sect. 1.6.3, we present representative SER management approaches. 

Finally, we summarize the different SER approaches by activity, usage, 

schema, and original features.

Despite the challenges to the capture of rationale discussed in Sect. 1.5, 

there are also specific contexts in SE where the benefits of rationale  

capture could outweigh the costs. Below we list four contexts suitable for 

the four categories of uses introduced in Sect. 1.4. 

− Distributed projects. A current trend of SE projects is the outsourcing

of development, sometimes to organizations that are in different time 

zones. This leads to a breakdown in informal communication, where

rationale is usually communicated peer-to-peer. Thus, approaches that 

use rationale to support collaboration could help here.

− Product-line projects. As products become instances of a product line, 

the life cycle of the product line becomes longer and the number of 

products that impact its design is high. Rationale can then be used to 

relate features of the product lines to specific product needs. It also 

can be used to externalize knowledge to guard against staff turnover.

This could be alleviated by rationale uses focusing on reuse and 

change.

− Safety critical systems. Traceability of decisions is an important 

prerequisite for high-quality decisions, in particular when dealing 

1.6.1 Opportunities for Rationale in Software Engineering 

1.6  Rationale Management in Software Engineering 
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with change requests. Some organizations such as EUROCONTROL 

require this explicitly. Rationale can support this traceability. Clearly, 

rationale focusing on quality is most valuable here. Furthermore, in t

this context the high cost of failure changes the perception of the cost 

involved in rationale management. 

− COTS-based or mobile systems. When systems are assembled from

existing parts (either at deployment time of even at execution time in

case of mobile systems) rationale can be useful to externalize knowledge 

between customer and supplier. Approaches focusing on knowledge 

transfer are most valuable here. 

As described in Sect. 1.4, there are many different uses of rationale.

Clearly, rationale can be provided on all decisions during SE. According 

distinguishes the following process areas: 

− Acquisition and supply (CUS1 and CUS2)

− Engineering (CUS3, ENG1, and ENG2) 

− Operation (CUS 4) 

− Support Processes (SUP1 to SUP8) 

− Management (MAN1 to MAN4)

− Reuse (ORG6) 

− Process improvement (ORG1, ORG2, and ORG5) 

− Resource and infrastructure (ORG3 and ORG4)

In the following, we describe these process areas and analyze how ration-

ale management could support ongoing or future activities.

When we defined DR in Sect. 1.2.1, we used a broad definition of the 

design process. But no reasonable definition of design is broad enough to

encompass all the processes described in SPICE. Many of these processes 

involve decision making that is not part of design. If we consider carefullyt

how the rationale associated with these decisions is generated and used, it 

becomes clear that the concept of DR is not broad enough to include all the 

rationale that needs to be managed in SE 

We have defined the term DR in a way that corresponds to how it is 

typically defined in the literature. In this definition, DR includes two 

things: (1) rationale generated by designers, regardless of who makes use 

of that rationale and (2) rationale used by designers, regardless of who

generates that rationale. Thus, if rationale generated by designers is used 

by software maintenance personnel, it is typically called DR. If rationale

1.6.2 Supporting Software Engineering with Rationale 

to the sketch of the new version to be published in summer 2006, SPICE 
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generated by software maintenance personnel is used by designers, e.g.,  

to design a future version of the software, then it is also typically called 

design rationale.  

This definition of DR might seem to suggest that the only rationale 

in SE is design rationale. But we can see that this is not so by looking  

carefully at decisions taken in the nondesign processes of an SE project, 

for example, decision made in software maintenance. The people who 

make such decisions often do so, on the basis of explicitly stated rationale. 

Some of this rationale might be useful for design, as indicated earlier, and 

we could, according to our definitions, count this as DR. It is quite possible, 

however, that some of the rationale is only useful for maintenance, e.g., for 

keeping track of which maintenance decisions have been made and what 

the justification was for these decisions. In this case, the label DR is 

not appropriate. We would have to call this something like maintenance

rationale. Once we acknowledge the legitimacy of such a term, however, it 

seems that some of what we have called DR might with equal justification

be labeled maintenance rationale. By extension we can see that every

process within SE has an equal claim to having rationale of its own. 

Since design is only one of many SE processes, the term DR is not 

general enough to encompasses all the types of rationale that a rationale

management systems needs to deal with in SE. In the following sections

we will therefore use the term software engineering rationale (SER) to 

encompass all these different types of rationale. We use the term rationale

when we do not specifically address the difference between SER and DR. 

There is every reason to expect that the discussion on DR (SER for  

design) presented in the previous sections will be true for every other kind 

of SER. There may, however, turn out to be additional facets.

Acquisition and Supply 

Acquisition encompasses the preparation (in terms of definition of criteria 

and provision of resources), the selection of a supplier, the monitoring of 

the supplier during engineering, and the acceptance of the product through 

the customer. Supply mirrors these activities on the side of the supplier. 

SER on the current customer system and on the supplied components  

supports the communication between customer and supplier. 

During acquisition preparation, SER of the current customer system 

could help to understand the current software and its limitations (both by 

the customer and the supplier). In particular, the decision about whether to

extend the current system or to buy a new one would be facilitated. 
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During supplier selection, SER of the supplied components could be

used to justify how the components satisfy the acquisition requirements. 

The same holds true during supplier monitoring and the acceptance test.

Engineering

Engineering encompasses the entire development process including software 

requirements analysis, software design, construction, and integration, as 

well as software testing, system integration, and testing, as well as system 

and software maintenance.

In this process area SER essentially improves the communication between 

stakeholders and the quality of the products (Fig. 1.1). By communication, 

we mean in particular elicitation of knowledge, any kind of negotiation f

and structuring of meetings. With quality we mean consistency and cor-

rectness of decisions with respect to decision criteria, including automatic 

checks.

Requirements
rationale

Design
rationale

Construction 
and integration 

rationale

Test
rationale

Designer

Maintainer 

Constructor

Tester 

Requirements
Stakeholder

Fig. 1.1. Engineering rationale use

As for acquisition, preparation rationale about the current system  

supports the shaping of requirements on a new system. Rationale on the

elicited requirements supports communication between the requirements

stakeholders and to the designers, maintainers, and testers. SER of the design 

supports the (automatic) verification of the design against the require-

ments, and the communication between the designers and the constructors, 

maintainers, and testers. Similarly, SER of the construction supports the

(automatic) verification of the construction against the design and the 

communication between constructors and the maintainers and testers. In
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the same manner, integration can be verified against requirements and design, 

and needs to be communicated between customers and suppliers (in  

particular, testers). During testing, SER can be captured with respect to test 

coverage decisions. This can be used to verify that tests cover all require-

ments and to support communication between testers and to maintainers.

Maintenance is one of the most popular rationale usage areas so far. Asr

with respect to possible changes, pretraceability to identify what 

prompted the change in the system element, posttraceability to identify

what is influenced by the system element and impact analysis to identify

the consequences of a change. All of these decisions profit from 

SER about the system being maintained. In addition, SER rationale on the 

maintenance actions helps to verify that the changed system meets its 

requirements and supports the communication between customers and 

suppliers on the changes.

Operation

During operation, both the customer and those supplying support need to

understand how the system will behave. Both can be aided in gaining this 

Support

Support encompasses a number of specific processes within the engineering

process area, namely, documentation, configuration management, quality 

assurance, verification, validation, joint review, audit, and problem resolu-

tion. As mentioned with respect to engineering, verification is supported 

by rationale. The same holds true for validation, which tries to show that 

the systems meets the user expectations. For the review of a product (e.g.

requirements or design) the rationale concerning the product facilitates  

understanding by the reviewers. Similarly, for the audit of a process, the 

rationale about that process facilitates understanding by the assessors. As a

special case, quality assurance ensures that the processes required by the

customer were followed and the required artifacts were produced. SER 

could be used to justify why specific processes were not executed or why 

certain artifacts were not provided. As SER is particularly well suited for 

making alternatives explicit, it could facilitate configuration management

by making configuration options explicit and enabling automatic configu-

ration. Furthermore, SER helps to make argumentation from differing 

points of view explicit. This could be used to generate documentation for 

discussed in [12, 15] maintenance decisions concern sensitivity analysis 

understanding by SER captured during engineering.
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people with fundamentally different perspectives on the SE process, e.g., 

different stakeholders.

Management

SER captured in the above-mentioned process areas can be used to support 

communication with management, as management needs to understand the 

forces that have lead to special project situations. For example, the number 

of unresolved issues or the priority of certain requirements can serve as 

indicators of project status. SER produced during project management 

could focus on risks. This would support both the communication about 

and the evaluation of those risks. 

Reuse

Software reuse is another popular usage of rationale. The SER of any 

artifact produced or of any process step can indicate the situations in which

the artifact or step is reusable and in what way it is reusable. This kind 

of SER is typically consolidated to enable quick and informed reuse 

decisions. One popular example where SER is crucial for a reusable 

artifact is a design pattern.

Process Improvement 

establishment, SER for specific process facets can increase the acceptance 

of the process. During process assessment, SER will support understanding 

by the assessors. Consolidated SER (e.g., as a part of patterns) can be used 

to suggest new process steps (see also reuse). 

Resource and Infrastructure 

Finally, the SER of any artifact or process step part of the current project 

helps newcomers to understand the current situation. This is particularlyt

helpful for new employees to become quickly involved in the team. 

In Sect. 1.6.2, we analyzed the potential use of SER for each SE activity. 

In this section, we present selected rationale approaches for SE, illustrating 

the current state-of-the-art for each activity. Our goal is not to provide a

complete survey, but rather to select representative examples illustrating 

how the limitations described in Sect. 1.5 can be addressed. While most SE 

1.6.3 Survey

Clearly, SER is very beneficial during process improvement. During process 
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activities could benefit from SER, current research has focused mostly on

engineering, management, reuse, and process improvement.

Engineering 

Eliciting Requirements – SCRAM 

SCRAM [62] is a requirements elicitation approach combining several

techniques, including scenario-based requirements elicitation and QOC. To 

elicit requirements, end users are presented a mockup of the system in the

context of a usage scenario. Next, SER of key aspects of the mockup is 

shown to end users as a QOC model, emphasizing its advantages and 

weaknesses compared to other alternatives with respect to a set of criteria 

that have been identified so far. By making the SER explicit to the end us-

ers, requirements engineers not only can evaluate the current solution, but 

also elicit additional criteria and priorities among criteria. In general, the

presentation of several options provided more discussion opportunities for 

end users and resulted in more kinds of information being elicited. Thus, 

collaboration and knowledge transfer is enhanced. SCRAM differs from 

Design Space Analysis in that recording SER is not a long-term goal in  

itself, but rather, a short-term means for eliciting additional knowledge

from the client. 

Elaborating Requirements – Inquiry Cycle
The Inquiry Cycle is a general process model for requirements elaboration

[50]. It includes three activities, expression, discussion, and commitment,

which are repeated in sequence. During the expression activity, stake-

holders acquire domain-related knowledge, propose new requirements or 

scenarios. During the discussion activity, stakeholders comment and  

annotate the proposed requirements. During the commitment activity, 

stakeholders make decisions, generate change requests, or commit to find 

missing information. The cycle is repeated as often as necessary. Tool 

support for the Inquiry cycle included IBIS-like support for discussions, 

allowing stakeholders to track questions, answers, reasons, and require-

ments within the same tool. Like SCRAM, rationale is used for eliciting

more information from stakeholders (as opposed to capturing long-term  

rationale). Unlike SCRAM, the Inquiry Cycle focuses on asynchronous 

and ad hoc use of SER, as opposed to post hoc use of a design space.  

Refining Nonfunctional Requirements – NFR Framework 
The NFR Framework [10] is a method for tracking the relevant nonfunc-

tional requirements for each decision, evaluated alternative, and interaction

among nonfunctional requirements. Nonfunctional requirements are 
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treated as goals to be met. To address the difficulty that nonfunctional  

requirements are usually high-level and subjective, goals are refined and 

clarified by decomposing them into subgoals. Goals and subgoals are  

represented as nodes in a goal graph. Decomposition relationships are 

represented as directed arcs. The NFR Framework provides two types of 

decompositions:

− AND decomposition. A goal can be decomposed into subgoals, all of 

which need to be met to help the parent goal. 

− OR decomposition. A goal can be decomposed into alternative subgoals,

any one of which needs to be satisfied to help the parent goal. 

The top-level goals (specified by the client and the users) are hence 

refined by developers into lower-level and more concrete goals. Note that 

a single subgoal can be related to more than one parent goal. Moreover, the

NFR Framework provides additional types of links to capture other rela-

tionships. For example, correlation links between two goals indicate how 

one goal in the graph can support or hinder the other goal. Since nonfunc-

tional requirements are rarely qualities that are either met or not, links in a

goal graph represent how much a goal contributes to or hinders 

another goal. A goal is satisficed (as opposed to satisfied) when the  

selected alternative meets the goal within acceptable limits. Otherwise, the 

goal is said to be denied. Root nodes represent high-level goals specified

by the client. As these goals are refined into more concrete ones the  

refinement activity moves toward system features. Goals that represent

system features are called operationalizing goals. 

The NFR framework enables stakeholders to evaluate trading off different 

options against a set of conflicting criteria. By the end of the refinement 

process, the stakeholders can record the selected option as well as the d

explored alternatives and their reasons for not selecting them. 

Tracing to Human Sources – Contribution Structures 

Contribution structures [22] record the authors of requirements and their 

role in shaping the requirement, so that the originators of requirements can 

be identified, or, minimally, their intent better understood, when require-

ments are changed. The contribution structures framework distinguishes 

three capacities: 

− The Principal motivates the requirement and is responsible for its l

effects and consequences. 

− The Author develops the requirements’ structure and content and is r

responsible for its form and semantics. 
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− The Documentor records or transcribes the requirements’ content and isr

responsible for its appearance.

Recording the role of a contributor with respect to a requirement provides 

a simple way to document the commitment and responsibility of the con-

tributor. Although contribution structures do not capture an explicit intent 

in the way IBIS or QOC does, traceability to human sources enable change 

requirements prioritization and change requests to be directed to the right 

contributor, based on the nature of the change and the requirements being

changed.

Post-Traceability – REMAP 
REMAP is a conceptual model extending IBIS to include requirements and 

design elements to process knowledge during requirements engineering 

[51]. A prototype of REMAP was built to demonstrate how requirements,

design elements, design decisions, constraints, and argumentation are 

captured in a graph, representing the process by which requirements and 

design were generated and negotiated. Using a truth maintenance system, 

the REMAP prototype propagates constraints and the validity (or invalidity) 

of assumptions through the graph, illustrating the benefit of traceability

from requirements through SER and design elements. REMAP is in 

essence similar to DRL.  

Requirements Checking – C-ReCS 
C-ReCS is a tool for supporting collaborative requirements and recording

a formal language, a semantic net composed of predefined entities. The 

tool then provides users a suite of tools for detecting, diagnosing, and pro-

posing resolutions for exceptions, such as consistency, completeness, and 

correctness problems. Once an exception is detected, the diagnosis 

attempts to explain to the user the underlying cause of the exception, using 

a predefined decision tree. 

For example, C-ReCS detects inconsistencies based on the propagation

of constraints in the requirements graph. A diagnosis would then present 

the propagation trace and the two constraints that are in conflict. This in 

turn serves as a basis for suggesting that the user relaxes one or the other 

constraint. When changing the requirements to remove the inconsistency, 

the user can link to the diagnostic as SER for the change.

Design Checking –g SEURAT
SEURAT is a tool for recording and using SER of the system under 

construction at the level of source code [5]. SEURAT is integrated into the 

development environment, making it easier to switch back and forth  

decisions [27, 28]. It enables users to specify requirements and their SER in 
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between development and documentation tasks. It is based on an extension

of DRL, allowing the representation of detailed arguments and dependen-

cies. It also provides a rich ontology of arguments, making it easy for 

the developer to reuse arguments. The ontology, combined with rules for 

syntactic and semantic checking, enables SEURAT to automatically 

identify inconsistencies or omissions in the rationale.

The rich and extensible argument ontology aims at lowering the effort 

for developers to capture SER, while increasing its accuracy. Making it 

accessible in a development environment, and providing services that are

similar to standard style and consistency checking on source code,

SEURAT also aims at increasing the short-term incentives for developers

to use the SER they provided. 

Long-term Collaboration – Sysiphus 

Sysiphus provides a simple and integrated solution to manipulate system 

models and SER, embedding only minimal process specific knowledge

[14,16]. This allows different development processes and the use of SER 

for a broad range of activities. Sysiphus includes a tool suite centered on  

a repository, which stores all models, SER, and user information. The  

repository controls access and concurrency enable multiple users to work 

at the same time on the same models. SER elements are first class objects 

(as opposed to buried notes or comments) and are accessed the same way

as system model elements. The tool puts equal focus on the system and the

SER. The end user can browse back-and-forth between SER and system

models. Changes made by the end user are propagated synchronously to

other end users working on the same model, enabling users to collaborate 

synchronously. When overlaps are discovered, the end user is prompted by

the system to merge conflicting changes. 

Sysiphus adopts a similar approach to SEURAT for lowering the 

threshold for capturing SER and increasing short-term developer incentive. 

However, Sysiphus focuses on the modeling and collaboration environment 

while SEURAT focuses on the development environment.  

Management

WinWin 
WinWin [3] is an approach where SER is used in support of risk management.

WinWin resulted from the observation that satisfying all key stakeholders 

is a necessary condition for project success. Often, the issue of dealing 

with conflicting success criteria is not only to reconcile conflicting views, 

but also to identify the key stakeholders of the system and to clarify  

their success criteria. Once these criteria are known to all, it is much easier
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to identify conflicts and to resolve them by negotiating compromise 

alternatives.

The WinWin negotiation model, similar to the QOC model described in

Sect. 1.3, includes four elements. Win conditions are criteria, originated  

by stakeholders that, if not met, result in the failure of the project. Issues

represent areas of disagreements typically a conflict between Win condi-

tions that need to be further clarified or negotiated. Options represent 

alternatives for resolving issues, and Agreements represent decisions for 

closing an issue. Finally, Win conditions and agreements are classified  

into taxonomy categories. The taxonomy is specific to the system under 

construction and is used to relate large numbers of win conditions and 

agreements to broad requirements categories. 

WinWin is tightly integrated into Boehm’s spiral model. For the each  

iteration, critical stakeholders are identified and the win conditions  

relevant to the current iteration are elicited and reconciled. Win conditions

are prioritized and scheduled to iterations based on risk. For example, a

strong area of disagreement can result in a small set of win conditions  

being addressed in an early iteration, to ensure that an area of agreement 

can be found and to build trust among stakeholders. 

Reuse

Augmenting Design Patterns with Rationale – DRIMER 

DRIMER is a software development process and tool for applying design

patterns [48]. Developers can search a design pattern catalog based on 

their intents, and examine specific examples of use of the design pattern. 

SER for each example is also provided following the DRIM schema, 

making it easier for a novice developer to understand unfamiliar patterns

and for the experts to validate their usefulness. DRIM is similar to DRL, 

provides elements for representing intents, proposals, recommendations,

justifications, and context of decisions. By integrating the process of finding 

reusable solutions with the process of recording experiences, DRIMER 

aims to create short-term incentives for developers to provide SER 

information while lowering the effort involved with capturing it. 

Process Improvement 

CoMoKit 

CoMoKit is a process modeling and enactment tool that automatically  

records dependencies among products [11]. A process model specifies how 

products are generated and used by tasks. Tasks can be refined into 

subtasks, all of which need to be completed for the parent task to be  
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completed. The process model can include several methods for accomplishing l

the task, each possibly resulting in different products. 

The approach assumes that there is a causal relationship between the input 

products of a task and its outputs. When the process model is enacted (i.e., 

when the user executes tasks, selects methods to create products), the tool 

records causal dependencies between products and decisions. Moreover, 

the user can add additional justifications for or against decisions.

When decisions or products are invalidated, CoMoKit automatically  

retracts other decisions and products that were derived from the newly 

invalidated element.

products and decisions, and uses a truth maintenance system to propagate

validity. Unlike REMAP, CoMoKit captures some dependencies automati-

cally and provides a unified representation for both user-specified and 

generated rationale. 

A summary of the SER approaches surveyed in this section is given in

Table 1.1. Much progress has been made on the development of such 

Table 1.1. Summary of SER approaches

Approach Schema SE activity rationale use

SCRAM (1995) QOC requirements

elicitation

collaboration 

Inquiry Cycle 

(1994)

IBIS requirements 

elaboration

collaboration 

NFR Framework 

(1999)
Goal graph nonfunctional 

requirements

refinement 

improve quality 

Contribution

structures (1994)

 requirements

change

collaboration

REMAP (1992) IBIS++ requirements 

management 

improve quality 

C-ReCS (1997) DRCS requirements 

elaboration

improve quality 

SEURAT (2004) DRL++ development improve quality

Sysiphus (2001) IBIS/QOC any collaboration

WinWin (1994) IBIS risk manage- collaboration

1.6.4 Summary 

CoMoKit is similar to REMAP, in that it captures dependencies between

ment 

DRIMER (1996) DRIM reuse

CoMoKit (1996) process im-

provement 

improving quality 
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This section describes an ideal tool support for rationale management 

in SE (rationale management system, RMS for short). In Sect. 1.7.1 ,we 

describe the life cycle of SER knowledge, which is used to deduce the

functional requirements of an RMS. In Sect. 1.7.2, we discuss further  

requirements to overcome the challenges identified in the earlier sections.

In Sect. 1.7.3, we describe a generic RMS in terms of an architectural 

framework populated by a set of components. 

In Sect. 1.4, we described the uses of rationale, that is, the ways in which 

rationale adds value to a development project. When developing tool  

support for rationale management, however, we need to consider the entire 

lifecycle of rationale knowledge, from planning to preservation. In view of 

general knowledge management, we can identify the following rationale 

management tasks [13]:

− Rationale goal definition 

− Rationale measurement 

− Rationale identification 

− Rationale acquisition 

− Rationale development 

− Rationale distribution

− Rationale use 

− Rationale preservation 

Rationale goal definition, measurement, and rationale identification are

critical for identifying the kind of rationale needed, but they are strategic

planning activities and, thus, are typically not supported by an RMS.  

However, the outcome of these activities is a critical prerequisite for  

deploying an effective RMS. We discuss this further in Sect. 1.7.2. 

All the other tasks can be directly supported by an RMS. In the following, 

we list the required features:

1.7.1 Rationale Life Cycle 

1.7  Tool Support for Rationale Management 

approaches and tools since the early 1980s. A number of important proto-

types have been developed, but few rationale management systems have

made it into practical use in industry. Recent research tends to combine rr

these systems with other forms of design support systems [2, 26].
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− Rationale acquisition is most often called rationale capture. Here 

the major question is how rationale is captured, for example, through 

reconstruction, apprentice shadowing of designers, or automatic genera-

tion. Other possibilities include capture during communication and 

reasoning.

− Rationale development structures and packages rationale. The major 

question is how to represent rationale. Lee [36] identifies three layers as

representative of a generic structure of an RMS: 

o A decision process layer which stores the rationale, e.g., into five 

sublayers: issue, argument, alternatives, evaluation, and criteria 

o A design artifact layer which links the rationale to the development 

process artifacts, e.g., a product-process model 

o A design intent layer: meta-information underlying design decisions, 

such as intents, strategies, goals, and requirements

Further questions are whether representations are informal, semi-formal, 

− Rationale distribution makes the rationale available for concurrent 

users. An important issue here is ease of retrieval e.g., through a user-

adaptable feature to browse, view, and filter the rationale. This should 

also enable the answering of questions and the review of similar 

design cases. Another important issue is collaboration, as rationale is  

often captured during collaboration.  

− To support rationale use, the RMS must be closely integrated into the

tool support for the SE tasks. Furthermore, it should support reasoning

about the available rationale and the development artifact, for example,

evaluation of given artifacts based on their rationale or suggestions for 

enhancements and modifications of artifacts based on available rationale.

− To allow long-term usage of the rationale, the RMS should support  

rationale preservation, for example, by filtering out redundant rationale

or by giving priority to rationale that has been critical during develop-

ment.

The above features must be adapted to the context in which the RMS is 

used. For example, development could be more process-oriented or more 

feature-oriented at different development stages. In fields with a relatively

high degree of understanding of problems, solution technologies and 

standardization of artifacts, the feature-oriented approach can be used to

give logical representation of artifacts, to follow the rules of the process. 

In development where the problems or solution technology are poorly 

understood and where there is little standardization of artifacts a process-

oriented approach can provide historical representation of artifacts [9].

or formal and is visual modeling used [20, 21]. 
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Ideally, the RMS should support these features throughout all SE activities. 

So far, however, RMSs have been most successful when adapted to  

specific activities and specific goals. These goals depend mostly on the  

rationale usages identified in Sect. 1.4.

In addition to supporting rationale tasks, an RMS must deal with the limi-

tations discussed in Sect. 1.5. In particular, strategic decisions made  

during the rationale goal definition and rationale identification tasks can

significantly impact the selection and tailoring of the framework components. 

− Assessing cost vs. benefits. The project or organization must a priori

identify areas in which the use of rationale can yield a return on invest-

ment. For a project developing a safety critical system, rationale may  

facilitate the safety analysis of the design. For a COTS-based project, 

selecting a COTS with its available rationale may reduce the effort for 

integrating it into the system. 

− Addressing the capture problem. In addition to identifying what kinds of 

rationale should be captured, a means and incentive for capturing it must 

also be identified. This can range from schema-free capture and  

automated structuring using natural language processing or inference to 

demonstrating compliance with review certification criteria. Developers

capturing rationale should have a clear short-term use or benefit for 

capturing it. 

− Dealing with scale and complexity. The scale and complexity of  

captured rationale depends on the selected granularity, the scale and 

complexity of the system and application domain, and on the rate of 

change of decisions. Accordingly, the RMS needs to account for these 

issues, by providing the necessary traceability links, search, versioning, 

filtering, and customization features. Automating syntactical and seman-

tic checks, such as in SEURAT, enforces a higher level of consistency in 

the captured rationale, especially when many end users are involved.

Tool support for rationale has been often viewed as a stand-alone system. 

A monolithic tool supports the capture, representation, and use of ration-

ale, either as a general-purpose tool such as gIBIS or a tool specialized 

to an activity, such as CoMoKit for process enactment. Instead, we view a 

rationale system as supporting designers in handling designs within a 

1.7.3 An Architectural Framework for Rationale Management 

1.7.2  Dealing With Rationale Challenges 
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framework. An RMS is mostly transparent, appearing as an extension of 

the design environment, adaptable to the specific project situation.

In system terms, we propose that tool support for rationale should be

viewed as a framework of components, each supporting a different activity

and able to produce outcomes compatible with other components. In this

section, we describe such a framework, its components, its interfaces to the

design environment, and the constraints it must satisfy (Fig. 1.2). 

Capture Components

An RMS supports rationale acquisition with a number of capture compo-

nents for recording rationale from developers, extracting it from artifacts,

or inferring it from developer actions. Such components might support:  

− Rationale capture by supporting collaboration. Systems such as gIBIS,

WinWin, or Sysiphus support project participants for communication

and collaboration by providing a structured set of actions and entities for 

exchanging their opinions and criteria. In effect, the tool structures the 

collaboration to elicit the rationale to be captured and to reduce 

the overhead for structuring it. To increase collaboration through the 

component, many such SER components also provide a complete range

of groupware features, such as group awareness, synchronous and asyn-

chronous modes of communication, and support for multimedia.

− Rationale extraction from artifacts. An alternative approach is to extract 

rationale from communication or design artifacts after the fact. Natural 

language processing approaches identify key issues and arguments 

from natural language text, removing the burden from the participants to 

follow predefined schemas. 

− Rationale capture in design reasoning. Systems such as SEURAT 

provide design support, either on their own or integrated into a larger 

development environment. This enables the capture of traceability links

and inference of knowledge from the actions of the developer. 

− Rationale as justification. Developers currently document rationale for 

decisions that are not obvious or that could impact other decisions. 

Systems like CoMoKit recognize the need for explicit capture of justifi-

cations and relate them with rationale captured or inferred by other 

components.

We expect that the most development projects will require a combination 

of the above components, depending on project-specific opportunities and 

constraints for capturing rationale. 
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Fig. 1.2. RMS component overview 

Representation Component

Even if the input of rationale is schema free and its formalization  

automated (see Sect. 1.5), an RMS supports rationale development with a 

representation component that provides a schema for storing and relating

the rationale to other artifacts. A minimum amount of structuring is 

necessary for making it easier for developers to maintain, search, or relate 

to the design context. Most RMSs provide their own proprietary represen-

tation component, based on the specific SE activity that they support. A

general RMS spans many activities and, as such, requires an open and  

extensible representation so that rationale can be captured at different  

levels of detail or be categorized according to different ontologies, based 

on the project context and activities supported. Such a representation could 

be used to enable different activities in the same environment to use either 

IBIS or QOC, organize issues hierarchically as in PHI, and capture intents 

as in DRL. A critical feature of the representation component is its ability

to relate captured rationale to design artifacts, in particular, specific  

versions or configurations of the software, documents, or models. 

Retrieval Components

An RMS supports access to rationale with retrieval components whose 

task is to derive information from rationale to facilitate their current task. 

Retrieval components range from simple generic components for navigating
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the rationale to specialized components that check for design rule 

violations or that evaluate designs:

− General-purpose components 

− Retrieve by query

− Navigate rationale 

− Visualize rationale 

− Specialized components

− Formulate design documents

− Answer designer’s questions 

− Identify similar design cases 

− Design reasoning 

− Evaluate design 

Preservation Components

An RMS supports rationale preservation with components for restructuring

and reformulating rationale for long-term use. For example, rationale  

captured from communication is often incomplete. Terminology evolves 

and specializes over the course of the project, making initial requirements 

rationale more difficult to understand. There is a need for explicit preser-

vation components. There has been little research in this dimension  

of RMSs so far, because the attention has been focused so heavily on 

rationale capture. 

Interfaces to Legacy Components

The primary focus of a designer is on the plan leading to the artifact. 

Developers produce system designs that lead to the construction of  

software. A project manager produces task plans that lead to the consump-

tion of resources and the production of economic value for the project.  

Rationale is a support function and is not the main focus of the designer.

Consequently, there has been a trend towards tight integration of design  

the RMS being treated as an extension of the design system. An RMS must

be able to interface with many external artifacts and tools (Fig. 1.3): 

− Product history. Rationale evolves with the system under construction.

As the system changes, developers need to justify changes and update 

rationale already captured. Consequently, they need to link to the design 

repository, that means different versions and configurations of the system

and its design when formulating justifications. 

rationale representations with other design representations [5, 14, 27] with 
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− Knowledge base. Organizations accumulate knowledge that lives  

across individual projects, in terms of guidelines, lessons learned, and 

standards. Such knowledge finds its source in actual cases and also

serves as the basis for decisions in subsequent projects. An RMS should 

also provide the ability to link to and from this knowledge. 

− Patterns base. Developers refine pattern solutions for recurring design

problems. As such pattern solutions become more general and refined,  

it becomes necessary to document its possible usage and trade-offs  

encountered during their uses. By attaching rationale to pattern solutions, 

developers can more easily identify which pattern to apply and how to

refine it. Similarly, linking design decisions with a patterns base avoids 

repeating this rationale in the design.

− Process models and enactment. Recording rationale (justification behind 

process-level decisions, as for example in CoMoKit [11]) similarly 

enables organizations to reuse and evolve processes. While we do not 

expect process and product rationale to overlap significantly, using a

uniform environment for capturing both would reduce training overhead 

and increase familiarity among project participants.  

Fig. 1.3. An example of RMS architecture with legacy interfacestt
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In this chapter, we reviewed the state-of-the-art in rationale management in

SE. We first provided a historical perspective by examining DR research 

in general. We then identified challenges and limitations faced by rationale

approaches in SE. We also explained that to describe the rationale for all 

the processes of SE we need a more general term than DR; and for this 

purpose we adopted the term SER. We then discussed selected rationale 

approaches applied to SE, illustrating how specific challenges could be 

overcome. Finally, we presented an architectural framework for rationale 

management tool support. 

Over the past decades, the research community has achieved some con-

sensus on selected rationale research issues. For example, it is now widely 

accepted that having developers formalize the rationale for their decisions 

as they work is disruptive and that collaborative or post hoc approaches 

have better chances of capturing rationale. While general-purpose methods 

have not been widely adopted, specialized approaches addressing narrow 

problems have emerged, such as providing rationale with design patterns

to facilitate their reuse, both in terms of design and DR. 

As solutions are found for front-end issues, we anticipate that the  

research focus will include rationale preservation issues. For example:

Activity cross-pollination. Approaches presented in Sect. 1.6 often focus 

on a single use or activity of rationale. As rationale is used across several

activities, the cost of capturing and training developers will be lower, 

relative to benefits. It is unclear, however, how to manage such overlaps.  

Development environment integration. Parts of the research community 

have come to the consensus that rationale support should be tightly  

integrated into the development environment. First, rationale supports  

design and could be captured as a side-effect of the design methodology.

Second, as system models and decisions are revisited, their accompanying 

rationale needs to be re-examined. This entails strong traceability between 

rationale and system models. There is a consensus that there should be a 

tight integration, but it is unclear, how to achieve it beyond specialized 

cases.

Rationale maintenance. An often-advertised benefit of rationale is to

support changes, across time, staff turnover, and organizational bounda-

ries. This means that rationale knowledge is also long-term knowledge that 

needs to be updated and consolidated as systems and designs evolve, and 

that contains obsolete knowledge that should be retired. Surprisingly, there

is little research on rationale maintenance. As capture and structuring 

1.8  Conclusion 
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methods become more successful, rationale maintenance in particular, and 

rationale preservation in general, will need to be explicitly addressed. 

Rationale management research has made inroads in a broad variety of 

disciplines, both within and outside the field of SE. As the confronted 

issues become more systemic, the interdisciplinary character of rationale

research will be a critical asset in finding solutions that work beyond  

specialized situations.  
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Part 1

Fundamentals – Rationale Representation, 

Capture, and Use 

R. McCall 

This part focuses on basic issues of rationale management in software en-

gineering, including the following: 

− How to capture rationale, i.e., how to elicit it and record it 

− What form to represent rationale in

− How to formalize rationale, i.e., get it into the desired representational 

form 

− How recorded rationale can be used 

− What the potential barriers are to capture, representationaa , formalization,

and use 

A newcomer to the subject of rationale management (RM) might be

surprised to find that issues so basic remain unresolved, and in some cases

In the early days of research on design rationale many expected that RM 

would rapidly find widespread practical application. Certainly, no one

foresaw how hard it would be to devise approaches and systems that

worked in practice. Nowadays, researchers on RM in software engineering 

are aware of these problems, and much of their work is aimed at under-

standing and solving them. The four chapters in this part share this aim.  

Many problems of RM are not unique to the domain of software  

engineering (SE). For example, there appears to be widespread agreement 

that effectively capturing rationale is the single greatest problem facing

RM in SE. This same problem is the main barrier to successful RM appli-

cations in mechanical and civil engineering, as well as in building design, 

urban design, and policy making. In fact, it now seems clear that there is a 

core of domain-independent problems that must all be solved for the ra-

tionale management to be practical in any field. 

While many of the problems confronting RM in SE are domain  

independent, solving these problems may well depend on exploiting feature

specific to the SE domain. In fact, there is a good reason to think that SE

hotly disputed, more than 35 years after research on design rationale began.

The reason for this situation is that extraordinary difficulties have plagued

attempts to create RM systems that are effective in real-world projects,

and these difficulties appear to have a lot to do with the basic issues listed

here.
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has decisive advantages over other domains that seek to create practical 

RM systems. For one thing, there is a crucial difference between the  

role of the computer in SE and in other design domains. In other domains 

computers typically support design by creating a model of the artifact, l

e.g., a digital model of a building. But in SE it is the artifact itself, i.e., the ff

software, that is created on the computer. In fact, SE is perhaps the only 

domain where the computer is used not only for design of an artifact but 

also for its implementation and use. Since the computer is also the best 

tool for capture, representation, and delivery of rationale, there exists a 

unique potential for connecting rationale with the software artifact itself 

and for integrating RM into every stage of the software lifecycle.  

The first paper in Part 1 is Chap. 2, “Three Studies of Design Rationale 

as Explanation,” by Steven Haynes. This chapter centers on studies in 

which software systems were created to address specific needs. The 

purpose of these studies was to explore the practical difficulties and advan-

tages of using design rationale as a basis for constructing explanations that 

can help users to better understand complex systems. Along the way,

Haynes encounters a number of basic issues of capture and representation 

of rationale. 

One study extracted rationale from transcripts of free-wheeling discus-

sions at design meetings, and put the rationale into QOC [5] format. This

nonintrusive approach to rationale capture was used so as not to disrupt 

design discussion, but it resulted in the captured rationale being inadequate 

in a number of respects. Haynes concludes that the costs of not disrupting 

design were excessive. He concludes that it might have been better to use

an intrusive approach that guided the discussion with an explicit rationale 

schema, but he also acknowledges that designers have often resisted this. 

The two other studies had greater success, using a scenario-and-claims

approach to rationale [1] as a basis for creating explanations of the soft-

ware systems. The third study owed its positive result in part to using a 

semi-structured technique to guide elicitation of rationale in the form of 

scenarios and claims. This, like the first study, argues for the value of using in-

trusive techniques of guided elicitation to capture higher quality 

rationale.

Chapter 3, “Effective Design Rationale: Understanding the Barriers,” by 

John Horner and Michael Atwood is an inventory of the many problems

that design rationale approaches must solve if they are to be sucessful.

Researchers who have applied such approaches in real-world projects

typically know a lot about the many difficulties of doing so sucessfully;

yet it is hard to find much indication of this in the literature. There is

a tendency for articles in the field to acknowledge the existence of pro-

blems only when their authors think they have a way of solving them.
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There is also the so-called “rectifier effect” that results in the publication 

almost exclusively of “successes” of RM and the suppression, however, f

unintentional, of accounts of the many failures of RM. These and other 

factors have resulted in a general tendency to under-report the difficulties

of making RM work in practice. Chap. 3 is a valuable corrective for that 

tendency.  

Horner and Atwood approach the subject of barriers to effective design 

rationale not as advocates of design rationale, but as “outsiders” who seek 

to keep the “insiders” honest about the challenges they face. While many 

of the barriers they describe will be familiar to those who have used design 

rationale, seeing them listed at length in Chapt. 3 is a sobering reminder of 

the work that remains to be done.  

Chapter 4 is “Rationale as a By-Product” by Kurt Schneider, and 

Chap. 5 is “Hypermedia Support for Argumentation-Based Rationale: 15 

Years on from gIBIS and QOC” by Simon Buckingham Shum, Albert 

Selvin, Maarten Sierhuis, Jeffrey Conklin, Charles Haley, and Bashar 

Nuseibeh. These two chapters represent fundamental opposites in several 

respects. Schneider is one of those researchers who, at some time in the 

past dozen years or so, have come to believe that intrusiveness of rationale 

capture is the most significant barrier to making RM work in practice. His 

chapter describes prototypes he has created in an attempt to capture and 

formalize rationale with minimal intrusion on software design. On the 

other hand, Buckingham Shum et al. remain committed to an intrusive 

approach to rationale capture and formalization. This approach, which has

its roots in Rittel’s use of IBIS [4] in the 1970s, has been described as, 

“constructively disruptive” of design processes because it improves the 

quality of the designed artifact. The Compendium system they describe is 

not a mere prototype; it is a software system mature enough for use in in-

dustrial settings.

Schneider lists the goals and principles of his “by-product” approach 

and then describes two system prototypes created to demonstrate its feasi-

bility. Schneider’s approach to formalization eschews use of a schema 

for representing design rationale. He instead structures rationale by the 

structure of the software processes to which it relates. He thus exploits the

fact that design, implementation, and use of software can all take place on

the same device (the computer) that is used for rationale capture and delivery. 

He acknowledges that some of his techniques for formalization might not 

provide adequate indexing for retrieval, but he argues that this is really a 

task better left to the people who are motivated to retrieve the rationale.

Shum et al. describe the sophisticated functionality of the Compendium 

system, which uses a graphical approach to representing rationale that has 

its roots in gIBIS [2]. They then describe three different practical applications
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of Compendium to capture argumentative rationale. The first application 

involved constructing satisfaction arguments [3] in the analysis of system 

security. The second two applications involve use of IBIS. The first of 

these applications used IBIS for Y2K risk assessment, while the second 

used it to index videos of meetings. With its ten-year history and its use in

100 projects, Compendium may well have the best claim to making RM a

practical reality. 

The four chapters contained in Part 1 provide only a small sample of t

the ongoing discussion of the basic issues of rationale management listed 

earlier. They do, however, give some idea of the nature of this discussion 

and some indication of why the debates on many of these issues remain 

unresolved. While few can doubt the sophistication of the Compendium

system and its successful application to practical problems, a number of 

researchers continue to have doubts about the traditional, schema-driven

rationale elicitation, and formalization that is the basis for use of Compen-

dium. At the same time, it is clear that the development of alternatives to

this approach is still in their early stages and too early to know yet whether 

they will prove viable in the long run. It is also clear that whatever success 

RM systems have had to date, these successes have yet to live up to the

lofty expectations of the pioneers of the field. Much remains to be done,

but researchers continue to generate innovative ideas about how to make 

RM a practical reality in SE.
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Three Studies of Design Rationale as 

Explanation

S.R. Haynes

Abstract: Prior research has pointed out the potential for design rationale to 

act as a base of explanatory knowledge about an evolving or completed de-

sign. One of the benefits of design rationale and its associated techniques

and tools is that they help to answer questions about why a particular design

possesses the structure and behaviors that it does. Answers to these why

questions are explanations. To date, little empirical work has investigated 

the challenges and opportunities that emerge when attempting to realize the

utility of design rationale as explanations. The three short case studies re-

ported here describe examples of research that explores the use of design ra-

tionale as a means to enhance communication and comprehension among 

the stakeholders in complex systems projects. Lessons learned from the 

three studies are provided and some areas for future research are identified. 

Keywords: design rationale, explanation, case studies, usability 

This chapter examines the relationship between the rationale that emerges 

in the systems design and development context and the explanations 

constructed in the context of system development, evolution, and use.  

Motivating this work is the proposition that as systems become more 

pervasive, complex, and intelligent, better means of explaining their 

structure and behavior will be required to ensure adoption and effective 

use. The use of design rationale (DR) as the basis for system explanations 

is an important part of the DR value equation. Justifying the cost and effort 

of DR capture involves developing ways to use the products of these 

efforts more effectively. Access to DR may be particularly important in 

more complex systems, intelligent, distributed systems, for example,  

because of the degree of understanding and trust required between these

systems and their users as they work together in a problem domain. 

DR captures the intentions underlying creation of a system artifact, and 

the issues, questions, argumentation, and decisions made in the process of 

navigating a given design space. The knowledge base represented by DR 

provides the raw material for active construction of system explanations in

these contexts. As Dutoit et al. ([12], Chap. 1 in this book) point out there 

is a range of different uses for DR including, importantly, knowledge R

2.1 Introduction 

2
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transfer among different stakeholders in a systems development project. 

DR is about helping to make explicit much of the assumed, tacit knowl-

edge that underlies shared understanding between stakeholders in the same

and in different roles. The studies reported here describe three example

“use cases” of DR as explanation. 

DR as explanation is both a descriptive and a prescriptive thesis. DR is

about capturing and communicating the “why” underlying the structure

and behavior of a system. DR as explanation is therefore a descriptive

idea; it is the essence of the rationale-centric approach to the thinking 

about the design knowledge. To really leverage the potential power of 

these explanations, however, requires acknowledging the communicatory

power and value of rationales. Explanations are pervasive in the use of 

DR. Whether among designers or between designers and other project 

stakeholders, explanations based on the underlying rationale of particular 

design are the means by which systems are comprehended, adopted, 

used effectively, enhanced, reused in new settings, and so on. Software 

engineering is a team-oriented and knowledge-intensive enterprise; DR is 

the currency that facilitates exchange of knowledge among the project 

team members.

The chapter first explores complex system explanations and frames

these relative to the capabilities provided by access to DR. Prior research

in knowledge-based systems and in software engineering has suggested a 

role for DR as the basis for system explanations, and this work is reviewed 

in support of the chapter’s main arguments. Section 2.2 describes three 

opment of the system help content. In the second, scenarios and claims

designed to assist potential technology adopters in comprehending the

technology and how it might fit with their own organizational objectives 

and priorities. In the third, scenarios and claims were again employed, this 

time as a means for evaluating a collaborative system in the field. This last

case shows how evaluation results can be transformed into retrospective

DR, and how these can be used to develop new design meta-criteria for fu-

ture system developers. 

Options–Criteria (QOC, [17]) approach was emplomm yed to sud ppouu rt devel-

specific cases of DR as explanation. In the first of these, the Questions–

analysis  [7,8,9] are being used to construct a technology transfer package
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Mirel [19] describes complex systems as those used to help structure and 

solve ill-structured problems. She defines the domains and tasks that give 

rise to complex systems development as characterized by some core attributes 

including:

− Indeterminacy of both task goals and criteria for task completion 

− Requiring higher order cognitive skill and integrating knowledge from

different areas 

− Requiring advanced learning and instruction for effective performance 

Design for systems created to meet these challenges is correspondingly

complex. The indeterminacy of task goals requires the design of flexible

systems that rely on abstract software components. The higher the level of 

abstraction from a particular behavioral or structural requirement, the more 

difficult it becomes for developers and end users to reconstruct this process

of abstraction later, and thereby relate the abstraction to the design delib-

erations, or rationale, that gave rise to it [3]. The integration of different 

knowledge in design and use, and the assumption of variable cognitive

skills on the part of end users introduce additional complexity to the task 

of understanding how a particular system form emerges from a particular 

set of requirements. That these systems require advanced learning on the 

part of their users raises questions about where they obtain the information

needed to facilitate this learning.

Today, many routine computing tasks are supported by high-

functionality applications (HFAs, [29]), which typically include hundreds

or even thousands of features and are used to manage large volumes of 

heterogeneous information. Each feature of such a system may be realized

by a number of complexly interacting software components [1]. Intra- and 

inter-component interactions, as well as the distributed, intersystem inter-

actions that increasingly define the modern computing milieu, make  

comprehending these systems difficult because of the cognitive load introduced 

when attempting to comprehend their structure and functionality. 

The nature of complex systems suggests that the kinds of explanations 

knowledge to include how and, especially, w why a design assumes a particular y

requests for instructions, are usually concerned with acquiring some deep 

knowledge of the event or entity in question. Explanations are provided in

occurrence of the event or existence of the entity.  

2.2 Explanations of Complex Systems 

required to convey understanding go beyond relatively simple, descriptive

structure and set of behaviors. Explanation requests, compared to, say,  

response to why questions that appeal to the causal chain that resulted in
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In the design context, this causal chain can potentially include a large, 

heterogeneous network of factors and influences that combine to inform 

the design decisions being made, in other words, the DR. For example, 

the second of the three development cases reported later in the chapter  

involved selection and implementation of certain decision-theoretic tools f

to support antiterrorism planning. The rationale for why a particular set of 

tools was selected, and how important domain concepts were translated

into working software has proven to be of considerable interest to project 

stakeholders.

Providing even the briefest explanation of a complex system is a knowledge 

intensive activity. Providing a parsimonious explanation typically requires

awareness of substantial implicit and tacit factors including the purpose 

motivating the explanation request, the current task at hand, what the 

explanation requestor already knows, and other contextual details that 

point to the essential information required to fulfill the explanation request 

[13]. People have adapted to inferring this detail from the environment and 

do it almost effortlessly. Computer-based information systems, however, 

are largely unable to ascertain the contextual detail needed to provide  

focused explanations to even the most well-formed explanation-seeking 

questions. Section 2.3 discusses related work on identifying appropriate

explanation content for complex systems.

content. His work on the explainable expert system (EES) project was an

attempt to address some of the explanation content deficiencies identified 

in early expert system research. In this earlier work, especially Mycin [4]

and derivative projects [10], researchers found significant gaps between 

the problem-solving strategies systems built to replicate or enhance, and 

the structural properties of the systems created to realize these strategies.

edge representing the translation of domain requirements into functional 

software systems. The nature of this support knowledge presented a 

knowledge engineering conundrum because it represented a huge and 

seemingly intractable base of knowledge that was not germane to the  

application domain per se, but which was required to explain to domain 

users how system functionality emerged in relation to their domain 

requirements.

2.3 Design Rationale as Explanation Content 

Clancey [10, 11] identified this missing link as the detailed support knowl-

Swartout [26, 27] first identified the potential utility of DR as explanation 



Swartout’s attempt to mitigate the effects of this knowledge gap  

involved construction of an automatic expert system generator that tracked 

and logged decisions made by the system as it produced rules and control

logic based on input in the form of relatively abstract, domain-specific 

problem-solving goals. The early XPLAIN system and later work on  

principles to translate goals into a system of productions, or rules. The log

of automatic design decisions served as justifications for why the resulting 

system was appropriate given the domain model and principles and the 

problem-solving goals as expressed by the system developer.

One of the challenges faced by the EES developers was to elucidate the 

link between domain-independent, strategic concepts and the domain-

concept in a particular goal scenario. For example, a design principle such

as “simplify wherever possible” might be instantiated in a software design

as “we can combine these two modules into one with no loss of cohesion.”

The EES attempts to solve this linkage problem through the concept of  

capability descriptions, which relate system goals to operationalized plans 

to achieve those goals. Capability descriptions are used to define what the

plan does, its competencies. System goals are mapped to plans and associated 

methods used to achieve those goals through these capability descriptions.

The EES was thereby designed to ‘understand’ the goals that it might be 

called upon to explain. 

Several researchers outside the intelligent and knowledge-based systems 

community have since highlighted the potential for DR to act as an explana-

utility of DR as the basis for informed discussion between system designersd

and system users, and between designers and external stakeholders. Some 

have claimed that DR’s primary benefit is as a facilitator of this cross-

party communication, rather than as a cognitive aid to designers or as a 

form of documentation, as it is often assumed [24]. 

DR helps to narrow the “gulf of understanding” [21] that exists between

users who are domain experts and designers who understand how a  

particular system was intended to operate within a domain. DR is a critical

element in the portfolio of communications tools that are employed in 

a complex development project. The techniques and tools developed to

support DR capture and transfer are communications and organizational

memory devices that can help to bridge the knowledge gap between what a 

given system “knows” about the domain, tasks, and user, and what users 

know about the complex tools that they use [28]. 
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tory knowledge base [14, 15, 18, 20]. These works point to the potential  

the EES relied on the existence of a domain model and problem-solving

specific or instance-specific information that is needed to apply a strategic 
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Prior research discussed in Sect. 2.3 highlights the potential for DR to  

improve the understanding of end users and other stakeholders external to 

the development team on a complex systems project. Despite this promise, 

relatively little work has empirically investigated this potential. In the  

sections that follow, I describe three condensed case studies that explore 

various aspects of these ideas. The first study was carried out with graduate 

student participants in a partially controlled environment. The second and 

third are field studies where DR was captured and is being used, in the 

first as a vehicle for a technology transfer and in the second as the basis for 

system evaluation and iterative redesign. The three cases reveal some of 

the challenges to harnessing the explanatory potential of DR, but also the 

opportunities for DR to contribute to the comprehensibility of complex 

systems. 

The first case is the VentureQuery project, which explored whether  

concepts and techniques of DR could be leveraged to provide an imple-

mentable model of embedded explanations for a software application. As 

discussed earlier, the theory underlying this research is that DR-based  

explanations may help to make more transparent the structure of a system

by exposing design team deliberations including system requirements,  

envisioned use scenarios, and the technical, cognitive, organizational, and 

other constraints applied in the development process.

The VentureQuery project involved analysis, design, and construction of 

a software system to create and automatically publish electronic question-

naires on the web. A goal of the research design was to provide a project 

of realistic complexity to act as a source for DR, and to capture and  

structure the DR in a system capable of providing it back to system users.

The team decided that the target application would consist of a web-based

question–answer system in the form of a venture capital-seeking “game”. 

The application was intended to help to educate novice e-business entre-

preneurs in the venture capital-seeking process.

The project team consisted of 12 graduate students drawn from a  

Masters of Science course at a UK university. About half of the project 

team had significant systems development experience and all had a strong

interest in the process of system design. Twenty-one meetings of the core 

design team were recorded on audiotape. An additional three meetings 

between members of the design team and various project reviewers and 

2.4.1 A Transparent User Interface: VentureQuery

2.4  Three Cases of Design Rationale as Explanation 



potential users were also recorded in full. Meetings averaged 90 min. 

Tapes were transcribed to text files resulting in over 400 pages of design 

meeting dialog. In addition to the design meeting tapes, other project 

artifacts were analyzed for their contribution to the DR including domain 

analysis documents, design documents (e.g., flip chart drawings), various

Unified Modeling Language (UML) diagrams, meeting agendas and notes,

and e-mail between team members. 

Design meeting transcripts were analyzed using the Atlas/ti 

(www.atlasti.de) qualitative analysis software package. Coded transcript 

fragments were fairly coarse-grained to ensure that the context of a given

design deliberation was not lost in analysis. Based on word counts, 

approximately 52% of the content of the design meetings related directly

to design of the application. Design deliberations were coded, extracted, 

and then captured as DR in a database developed to act as a knowledge

base for the systems explanation facility.

The Questions, Options, Criteria (QOC), DR semi-formalism [17] was 

used as the representational medium for the study. This selection was 

made based on QOC’s balance of ease of use with representational fidelity.

QOC is a relatively simple and sparse method for representing DR. This 

simplicity was deemed an essential trait in the context of this study, as it 

was felt to most closely parallel the selection criteria likely to be applied in 

applied project settings, where practitioners are unlikely to invest 

time learning a potentially more richly expressive, but necessarily more 

complex and difficult to use formalism.

In the QOC notation, Questions highlight issues that have been identified  

as relevant to the design, Options are the potential solution approaches that 

have been identified to address a given question, and Criteria are the 

reasons that are considered for or against each of the identified options. 

Whether a criterion is considered a positive or negative factor in the

evaluation of a given option is represented in the links, known as Assess-

ments, between Options and Criteria. Assessments in QOC are not  

assigned weights to represent their relative importance to the argument for 

an Option. Criteria may be instances of Metacriteria (such criteria are 

called bridging criteria by QOC’s designers), though this relationship is

not required. Finally, Questions may be derived from Options (the Conse-

quent Questions of QOC) as a particular design issue is discussed. In 

addition, the framework was elaborated with the code QOC Outline, which

was used to relate a particular element of the DR to the specific application 

component (generally, a Java class). The code set used and data counts 

appear in Table 2.1. 
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Table 2.1. QOC code set and data counts 

QOC element # captured

QOC outline elements 25

total questions 151

total options 339

total criteria 122

meta-criteria 21

bridging criteria 87

consequent questions 

new questions that arose as a result of a selected option.

32

assessed option–criterion Pairs

option–criterion pairs for which an explicit assessment, + or −, was

derivable directly from the meeting transcripts and other materials.

114

un-assessed option–criterion pairs 

option–criterion pairs for which no explicit assessment, + or −, was 

derivable directly from the meeting transcripts and other materials.

322

After being coded as QOC, elements of the DR were cross-coded to

identify the explanatory information represented by each QOC component. 

The code set used was based on a taxonomy of explanation types derived 

purpose of this cross-coding was to identify the types of explanations  

provided by DR and to serve as a schema for explanation delivery at appli-

cation runtime. Explanation types are divided into two types: operational

explanations that provide basic information about the design, and why

explanations conforming more closely to conceptions of explanation  

content as appealing to deeper knowledge about the application domain.

in Tables 2.2. and 2.3.

Though the operational explanation types are straightforward, the why

explanation types require further definition. Deductive-nomological (law-

based) explanations are those based on the constraints (laws) imposed by 

the underlying technical aspects of the system and from the need to conform 

to standards and legislative statutes. Functional explanations are those that 

relate directly to the purpose or requirement of a system or component, for 

example, use scenarios and desired outcomes from use.  

from prior research on the philosophy of explanation see [15]. The  

Both the operational and why explanation code sets and data counts appear 



Table 2.2. Operational explanation code set and data counts

operational  

explanations

count (%) examples

What is it? 56/37 what is user answer?

what are the attributes of user answer?

how do I use it? 35/23 what user answer input formats are sup-nn

ported?

can question wording be varied?

how does it work? 54/36 how are user answers validated? 

how are question dependencies managed?

other 6/4 who will system test the application? 

who will own the rights to the application?

Table 2.3. Why explanation code set and data counts 

why
explanations

count

(%)

Examples

D–N (law-

based) explana-

tion

14/11
we are constrained by http

EU privacy laws prevent us from storing that

functional ex-

planation
108/89 

what is the purpose of user answer?

we need user square path to tailor questions 
based on prior responses

Discussion and Lessons Learned 

One of the most important results from the VentureQuery case study 

was that much of the design deliberation, including crucial assessments of 

criteria against design options, as well as the actual process of deciding on 

elements of a final design, were not made explicit in the design process,  

as shown in Table 2.1. Though this retrospective approach to rationale  

capture did help to work around some of the design process disruption  

associated with integrating QOC into a project “ecology” [5], in the context 

of explanation content capture the costs of not following the approach  

appear to be too great. The decision not to follow an explicit DR process

meant that deliberations on a particular design issue did not always result 

in a complete QOC structure, with, for example, multiple Options generated 

for each Question, and each Criterion explicitly applied to the evaluation 
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of each Option. This finding lends weight to Schön’s argument [23] that

deliberate techniques must be applied in technological design in order to

promote explicit consideration and reflection during the design problem 

solving process. 

Though it has been claimed that the most significant issues in any 

software project are discussed in design meetings, rather than informal  

discussions or not at all [24], it is also possible that certain implementation 

decisions are made in isolation by individual members of the project team, 

and therefore, never deliberated and never recorded as part of the rationale. 

Such “rationale ambiguity” may be an unavoidable, even essential charac-

teristic of technological design and construction [2]. If large, complex 

design and development projects are to be completed within their inherent 

resource constraints, not every decision and relevant factor can be deliberated,

and the challenge becomes one of defining an acceptable level of ambiguity 

rather than eliminating it altogether. That said, this ambiguity poses a 

significant challenge to providing comprehensive explanations. 

Another problem that emerged was that of explanatory completeness

with respect to design questions and how they appear to be answered 

in practice. Analysis of full-text meeting transcripts suggests that design 

options sometimes emerge almost mystically from design discussions. It 

was sometimes difficult to see the chain of reasoning that led to a particular 

design option being proposed and then being either accepted or rejected. 

This problem was especially acute in situations where a design option  

took the form of a high-level design object, for example, a class, and then

candidate object components were enumerated in rapid succession. We

might expect such cases to generate a rich set of rationales, but the conver-

sation moved so quickly between foci that much of the information  

required to populate the QOC was found to be missing. This again high-

lights the potential role of a reflective design process in helping to make 

these assumptions more explicit.  

There was an apparent asymmetry with respect to the amount of discussion 

allocated to certain features over others. This asymmetry was especially 

acute with respect to what questions vs. t how questions. Relatively little

discussion was evoked by the identification of a new candidate entity for 

the system, while discussions of new processes more often resulted in  

long discussions. This seemed to lead in many cases to the inclusion in the

design of system entities that were poorly defined and poorly understood 

outside the context of the processes in which they played a role. This is 

problematic in the context of object-oriented design, where the generation

of a complete justification and description for a given entity can assist with

the creation of more modular system objects with more well-defined 

semantics and behaviors. 



The second case is an investigation into the use of DR as a facilitator of 

technology transfer. Since the Spring of 2002, we have been working with

the United States Marine Corps on a decision model and cognitive support 

(ATFP) resources at Marine Corps installations. A central concern for the

ATFP work is the migration or transfer of the technology across institu-

tional boundaries and its adoption into local practices. In this particular 

case, technology developed in an academic partnership with a unit within

the Marine Corps is to be transferred to other units both within the Marine 

Corps and to other services and government organizations. The work is 

ongoing and the report here is only a preliminary treatment.

The decision model and system developed for Marine Corps antiterrorism 

officers, facilities planners, public works officers, and military police provides 

support for asset prioritization, calculation of antiterrorism mitigation 

project utilities, resource allocation, and acts as a repository for organiza-

tional learning in the ATFP domain. Requirements have been gathered and 

refined through a series of briefings, informal and formal design reviews of 

the evolving prototype, and cognitive walkthroughs [22] with prospective  

users at Marine Corps installations. Over 100 Marine Corps officers and 

civilian personnel have reviewed the project, and over 30 have participated 

in focused cognitive walkthroughs. 

In addition to the core decision model and cognitive support system that 

implements it, the project involved development of a range of knowledge

resources to aid users working in the domain including a training module 

and explanation facility. The project’s Website includes a scenario editor 

that captures details of real and envisioned interactions with the system in 

response to a range of decision making and planning problems collected in

the field.

Discussion and Lessons Learned 

We have found that a range of factors impact opportunities for successful

adoption of the ATFP system at different installations. These include  

‘microscopic’ issues such as domain terminology, which is unfamiliar to

many planners facing ATFP problems for the first time, and ‘macroscopic’ 

issues such as whether the Department of Defense or Headquarters Marine t

Corps would mandate the use of a particular ATFP planning approach and 

supporting tools. 

An initial finding from this work is that DR, in the form of scenarios of 
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2.4.2 Design Rationale for Technology Transfer: ATFP

system to aid effective allocation of antiterrorism and force protection

use  and associated claims analyses [8] can act as boundary objects [25]

to faff cilitate knowledge sharing, adoption decision-making, and technology
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…if we had more of these [scenarios], more well fleshed out and then

these linked to these models, and someone could browse the scenarios and 

say, okay, that’s sort of like my scenario, kind of like what I’m going to do 

here.  

We are actively exploring ways in which scenarios and other elements 

of the ATFP system DR can be most effectively captured and then 

packaged to facilitate explaining complex systems, and thereby fostering

their adoption, and use. For example, we are exploring the use of a claims 

taxonomy tuned to the requirements of technology transfer as suggested  

in prior research. One such taxonomy focuses on relating each scenario to

aspects of system comprehensibility, development organization credibility, 

and system adoption cost. The ultimate objective of this work is to provide

prospective system adopters with means to understand how a particular 

system design relates to specific scenarios of use, and what this mapping 

The third and final case involves another system project from the Marine 

Corps domain. This project does not involve design per se, but rather an 

evaluation project in which DR concepts and representational tools have

been used as focusing principles to guide the work and organize its results.

As in the second case, techniques from scenario-based design and claims

analysis were used, although adapted here to the task of evaluation of a 

2.4.3 Design Rationale from Evaluations: PMLAV

entails for the technology adopting organization.

evaluation across organizations. Boundary objects are “those objects that 
are plastic enough to be adaptable across multiple viewpoints, yet maintain 
continuity of identity” [25]. Central to the utilization of boundary objects 
as a theoretical orientation for technology transfer is Star’s claim for the
efficacy of boundary objects as touchstones for understanding among 
members of distributed and culturally diverse communities. According to
Star, a ‘good’ or effective boundary object has many identities, definitions, 
and interpretations. One important insight is that the most effective bound-
ary objects are those that are able to evoke and make explicit the largest 
quantity of tacit knowledge in a particular problem context [6]. In this
way, the use of DR as boundary objects serves as the basis for the active
construction of explanations for end users and other project stakeholders. 
In reviews and walkthroughs of the ATFP system, we witnessed cases
where prospective users developed their understanding of the application 
by reflecting on scenarios supplied by previous users and how they were
employed in development of a decision model, as exemplified in the walk-
through quote:



complex, computer-supported cooperative work (CSCW) system that  

supports product lifecycle management (PLM). 

Once again, the setting for the study is a unit of the United States 

Marine Corps, the office of the program manager, light armored vehicles 

(PM LAV). The PM LAV has implemented an integrated digital environ-

ment (IDE) to support the cooperative and collaborative work of both 

civilians and Marines in their use, maintenance and evolution of the LAV.

The IDE is used by 70 PM LAV personnel as well as at Marine maintenance

depots in the United States and in the field.

The PM LAV IDE includes communications (e-mail, videoconferencing), 

workflow, document management, project management, collaborative 

engineering, and performance reporting functionality. The PM LAV 

monitors a fleet of about 800 light armored vehicles deployed worldwide 

in a variety of configurations and tasked with a range of missions. The 

program manager is responsible for monitoring LAV health and field 

performance, developing enhancements to the vehicle, and directing vehicle

maintenance. The IDE is designed to support this work with an integrated 

environment for communications and information management. 

We interviewed PM LAV personnel across the organization from  

staff assistants to division chiefs with a range of responsibilities including 

engineering, logistics, and business operations. We used a semi-structured 

interview guide. The guide was designed to elicit scenarios and claims

(DR tools) as the basic unit of analysis for the evaluation. An abbreviated 

version of the interview guide appears in Fig. 2.1. 

Fig. 2.1. PM LAV IDE interview guide

The interviews were recorded, transcribed, and then coded. We were 

particularly interested in obtaining participant descriptions of their use  

scenarios and how they felt that IDE support for these scenarios contributed  uu

to their work and to the mission of the PM LAV.

Analysis of the interview transcripts yielded 43 unique scenarios.

Twenty seven of these are scenarios describing actual, current use of the

system, and 16 were scenarios envisioned by study participants. We identi-

fied 464 total claims in the transcripts, where claims were propositions

1. General questions: elicit roles, task goals, & setting 

• Position, role, key tasks and priorities, collaborators, etc

2. Questions related to current system use: scenarios & claims 

• Describe scenarios of use with the IDE

• How do these scenarios contribute to the PM LAV mission? (evaluative

claims) 

• (follow-on questions, probes) 
3.
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Questions related to prospective system use
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made about the system’s support for scenarios. Following the claims

analysis technique, these propositions were assessed as either positive or 

negative. Individual scenarios were related to between 0 and 22 claims

each, with a mean of 5.6. In addition, the method identified 223 claims  

that were disconnected from any one scenario but in general represented 

statements about the IDE system as a whole. After the scenarios and

claims had been gathered, we went back to the PM LAV to validate our 

scenario-claim sets in focus groups. Results from this part of the study

suggested that our scenarios and claims were relatively complete and fairly

representative of PM LAV perceptions towards the system.

Discussion and Lessons Learned 

The scenarios and claims we extracted from the study may be seen as a  

reverse engineering of the original DR. They represent in many ways the 

consequences of the original DR, and describe how the system is perceived 

by its users in use. They help explain how the system is performing and 

how it is perceived by users. At the same time, they serve as a blueprint for 

redesign of the system and, further, account for the use context that is  

impossible to predict at design time. 

Among the interesting aggregate findings from the study was the extent 

to which the scenario-based technique was able to ground evaluation in

situations where the system is heavily used and in situations where use is

especially consequential in the daily work life of the study participants. Of 

the 74 discrete features of the IDE (identified by us at a relatively arbitrary 

level of granularity), scenario coverage identified only 19 of these as being 

all important or impactful to the organization’s mission and priorities. Thisa

finding has important implications for requirements engineering, at least in 

this case, and suggests that the use of scenario-based design in the early

stages of the project may have helped focus development time and money 

on the most important aspects of the system.

The technique was able to elicit evaluative claims spanning a range of 

topics including how the organization’s technical infrastructure, the design 

of the IDE itself, psychological and social–psychological, and organiza-

tional factors were all implicated in either or both the success or failings 

of the system. In terms of the IDE design, for example, we identified 

a number of critical areas for redesign including areas where the system 

possessed insufficient functionality, problems with usability and ease 

of use, inflexible task support, performance and reliability issues, and 

problems with security and accessibility of the system. Because claims in 

each of these areas are linked to specific scenarios of use, they implicate



particular system features and functionality and suggest how they can be 

improved through future development efforts. 

One area where the evaluation technique failed was in helping to  

identify the contributions gained from implementation of the IDE within

the organization. Costs of systems such as this are relatively easy to 

system integrators (though this of course does not account for the true 

lifecycle costs of these systems). Effective techniques to measure the benefits

of distributed, collaborative systems, however, remain elusive. One of the 

chief aims of the method as described here was to link perceptions of system 

benefits, in the form of claims, to the specific scenarios supported by the

IDE. Of the 212 claims we identified as relating to the system’s contribu-

tions, only 6% were truly measurable benefits, with 26% being what we

classified as tangible but immeasurable benefits, and 68% intangible.

as Explanation 

A number of challenges and research opportunities emerge from consid-

eration of the findings from these three studies. Results from the Venture-

Query case study highlight the difficulties associated with capturing  

complete DR when design activities occur not only in formal meetings, 

but also in informal and individual forums. If completeness is a critical  

attribute of the DR for a system, such as when it is used to provide an  

explanatory knowledge base, then design knowledge capture is one of the 

most pressing challenges for research. Design is a ubiquitous activity and 

can happen as often in the mind of a single individual riding on the train  

as it does in more formal contexts where it is amenable to capture. The 

challenge of pervasive design capture raises many questions to occupy 

researchers.

of a DR process, in addition to notations and supporting tools, may 

help ensure capture of a more complete design knowledge base. Process

prescriptions for experienced designers are, however, notoriously difficult 

to enforce as they are seen as disempowering these creative individuals.  

Explorations into better ways of integrating DR techniques into the day-to-

day work of designers may help ease this problem, as might better tool

support for DR capture. 

Our work with the Marine Corps on antiterrorism planning decision 

models and tools has suggested a role for DR, in the form of scenarios,
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2.5  Challenges and Opportunities for Design Rationale 

measure; just sum the invoices from the development contractors and  

Our experience on the VentureQuery project also suggests that adoption
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claims, and related systems artifacts, as a vehicle to facilitate transfer of 

technology between organizations. This work is ongoing and our results

are tentative but experiences with antiterrorism planners in the field 

suggests the potential utility of DR, in the form of scenarios and claims

analyses, as explanatory transfer packages to help prospective system 

adopters evaluate new technologies. Questions have already emerged

about the form such a package should take, and the kinds of DR that are 

most useful for technology adopters in different roles and contexts.  

Our work with the Marine Corps PM LAV on complex, distributed  

system evaluation suggests that there may be valuable linkages to be 

developed between evaluation techniques and tools and those used for DR. 

Developing techniques to relate DR to evaluation, then forward to redesign 

and subsequent evaluation in a cycle of learning and artifact improvement 

may be one way to achieve a truly progressive systems design science. 

Still under-researched are the downstream consequences of design  

decisions made when a system is still an abstract model as unrealized in

working software. Repositories of DR that provide a longitudinal view of 

design deliberations and their consequences may help us better understand 

the effectiveness of the different design methodologies and tools created to 

support the systems design process. 

It is not expected that the cases presented here and the lessons learned 

from their analysis will apply to all settings in which DR and design  

capture are attempted. In particular, situations less contrived than the ‘zoo’ 

study reported in the first case, and less structured and formal than in the

second and third, may exhibit very different characteristics and outcomes.

Still, empirical studies of DR are lacking and it is hoped that these  

cases can contribute to the evolving base of experiences with DR in both 

controlled and field settings.

This chapter has described three cases of design rationale in use as expla-

nations. The theory motivating this work is that access to DR by an  

expanded group of project stakeholders, to include end users, may have the

potential to significantly increase the comprehensibility of systems tools.

This potential may be greatest for users of sophisticated software applica-

tions in complex domains, especially those users who require or desire a 

deeper understanding of the contextual factors that guide and constrain 

the design process. DR techniques and tools may have the added benefit of 

facilitating a kind of virtual participatory design in which users are able 

to provide meaningful input to the evolution of their systems. For design

2.6 Conclusion 



rationale to make sense may depend on showing how the costs of capture

can be recovered through new and innovative uses of these design knowledge 

stores. Focusing on DR as a means to facilitate explanation and other 

communication between development project stakeholders may represent 

one way to expose this value proposition.
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Effective Design Rationale: Understanding 

the Barriers 

J. Horner, M.E. Atwood 

Abstract: One goal of design rationale systems is to support designers by

providing a means to record and communicate the argumentation and  

reasoning behind the design process. However, there are several inherent 

limitations to developing systems that effectively capture and utilize design 

rationale. The dynamic and contextual nature of design and our inability to 

exhaustively analyze all possible design issues results in cognitive, capture, 

retrieval, and usage limitations. In this chapter, we analyze these issues in 

terms of current perspectives in design theory, and describe the implications

to design research. We discuss the barriers to effective design rationale 

in terms of three major goals: reflection, communication, and analysis of 

design processes. We then suggest alternate means to achieve these goals

that can be used with or instead of design rationale systems. 

Keywords: design rationale, design theory, information retrieval

Design is a goal-oriented process aimed at solving problems, meeting 

Design rationale (DR) is the reasoning and argumentation that underlies 

the activities that take place during the design process. DR tools are 

intended to support various design activities. In upstream design activities,

where vague requirements are translated into concrete system specifica-

tions, DR schemas can provide a framework with which one can carefully

mechanism by which people with different goals can communicate their 

positions on design issues. People involved in maintenance or redesign 

activities can use the documentation produced to avoid spending time 

reconsidering decisions that have been previously considered. This record 

can also be an aid in building a cumulative base of design knowledge,

which would be a useful learning tool to both students of design and  

communication, reflection, and analysis in design. DR systems provide 

support at various phases of design, including conceptual design, detail  

design, implementation, and maintenance. And, DR is used in a variety of 

design domains. In some situations, DR is the appropriate tool for the task; 

3.1  Introduction 

3

needs, improving situatiomm ns, or creating something new or useful [8].

reflect upon design decisions. Structuring design arguments also provides a 

practicing designers [25]. DR systems are primarily intended to support
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however, it may not be in other situations. In this chapter, we will discuss 

many of the challenges that have impeded the ability for DR to effectively

support designers. 

DR systems are intended to support people in the design process by allowing

designers to share, structure, and record their thought processes that drive 

the tangible actions of design. In order to understand how DR can aid in 

the design process, it is important to understand current perspectives in 

design theory. There is no universally accepted definition of design within

the broader design community [2] so the following paragraphs will briefly

describe some of the diverse views.

as goal-oriented information processors. He argues that design involves 

devising courses of action aimed at changing current situations into 

preferred ones. This broad view of design includes, as Simon states, “the

ing and navigating through a state-space. He argues that people do not,  

and cannot, consider all possible conditions, alternatives, and constraints, 

and therefore cannot design an optimal course of action. This cognitive

considering design issues, people choose satisfactory solutions based on 

the information available. 

The argumentation structure of DR is argued to provide a natural

framework in which designers can reflect on decisions. This structure can

help focus the search for design alternatives, making cognitive processing 

more effective.  Although designers cannot consider all possible alterna-

tives, if rationale is recorded, maintainers will better be able to identify

which ideas were deliberated upon. Reviewers who are working on  

different projects may identify important issues that they would not have

otherwise considered. And, students and researchers could assess the  

impact of design decisions based on the outcome of a design project. 

However, it is often impossible to identify causal relationships in design 

because of the subtle factors that can influence the effectiveness of design 

projects. Recording DR creates the opportunity for people to perform a 

post hoc analysis of design decisions. Designers are constrained by the

amount of information they can process. Because of this, they may be hesitant 

3.2.1 Symbolic Information Processing

3.2  Design Perspectives and Rationale 

Simon [26] viewed design as symbolic im nformation processing and humans

limitation he termed bounded rationality [26]. Rather than exhaustively

core of all professional training.” Design is viewed as a process of generat-
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to record decisions that could later be scrutinized by people with more 

information at their disposal.  

Rittel and Weber [21] dissented from Simon’s notion that design could be

represented as a state-space, stating that planning problems are “wicked 

problems, including the lack of a definitive formulation, stopping rules, or 

definitive measures of success. They also argue that each problem is essen-

tially unique in certain aspects, and state there is not an enumerable set of 

potential solutions. Moreover, discrepancies in wicked problems can be 

explained in many ways, and the choice of explanation determines the 

nature of the resolution. In other words, different people will look at a 

single problem in different ways, and the way the problem is represented

determines how the solution will be derived. For this reason, design can be

viewed as an argumentative process aimed at coming to collective under-

standing of how to explain a problem.  

Issue-based information system (IBIS) was developed by Rittel as a 

means to structure this argumentation. In this sense, DR is intended to 

support collaborative design that involves designers with differing goals 

and perspectives. The structure afforded by DR provides a mechanism for

designers to communicate their diverse thoughts with other designers

working on the same task.  

The primary benefit of DR from this perspective is that it can act as a 

collaborative communication tool. In fact, the unique nature of planning 

problems would present a potential barrier to the reuse of DR by students

of designers and persons working on other projects. Still, the DR record 

could be used as a communication tool between initial designers and later 

designers or maintainers, who may have different views than the initial  

designers.

ment, and suggests that designers reflect on what they are doing in the  

action present. The action present is a term used to describe a time when 

the effects of an action can still be influenced. This reflection-in-action

allows people to design based on the feedback that is received during the

design situation.

Effective Design Rationale: Understanding

3.2.3 Situated Action 

3.2.2 Wicked Problems

problems.” They list several reasons why planning problems are wicked

Schön [22] describes design as a reflective conversation with the environ-
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Schön notes that designers are most inclined to reflect on their activities 

when they receive unexpected feedback from the environment. Designers

in familiar situations may not see a need to capture their rationale as they

are routinely going though their design process, especially if it interrupts 

the efficiency of the process. During these breakdowns, DR can help 

designers reflect on what may have resulted in the problem. Tracking the

associated DR would help to communicate issues to future designers who 

may run into a similar problem. However, the designer’s cognitive energy

will be focused on understanding the situation and resolving the problems 

when these breakdowns occur. It is therefore important that if DR is used

informal rationale into formal notations. Incremental formalization allows 

designers to easily capture DR in the act of designing and later come 

back and formalize the information into a DR schema. Incremental formal-

ization allows designers to both reflect in the act of designing and also

communicate their rationale. 

Systems that support a more efficient design process by making 

solutions easily apparent could reduce the amount of reflection involved in

the design process.  Therefore, it is useful to consider whether DR systems 

should support efficient identification of solutions or reflective understand-

ing of the problem. 

Alexander [1] describes the utility of patterns in design, which can be f

thought of as common solutions that resolve conflicting tendencies. He  

describes successful patterns in the architectural and city planning domains 

as “timeless” solutions that resolve the forces in a given area.

Designers may not be satisfied to trust that a given solution will work in

a context without understanding the underlying reasons. And, recognizing 

why a pattern successfully resolves conflicting forces in a given environ-

ment can help give early insight into the success or failure of a solution.  

However, Alexander argues that patterns depend on stability, not  

purpose (p. 119). He argues this point by comparing the streets in Greek

villages to cafés in Los Angeles.  In Greek villages there are whitewashes

outside every house to allow people to set up chairs and contribute to the

street life, while the cafés in Los Angeles are indoors away from the side-

walk so the food does not get contaminated.  Alexander argues that while 

both of these patterns have purpose, only the Greek villages are alive and 

self-sustaining. Villagers keep the whitewashes clean “because it is deeply 

3.2.4 Patterns 

to support reflection, the efforts in recording these aspects are minimal.  

Incremental formalization [24] is the process of gradually translating 



connected to their own experience” (p. 120). The Los Angeles cafés are 

not alive because the pattern is forced by law. The pattern will change

when the law is changed because people want to be outdoors on a spring 

day.  Alexander’s point is that the purpose of a solution is not as important 

is its stability because solutions that do not naturally resolve the conflicts 

will eventually fail. 

This suggests that applying design patterns requires both a thorough 

understanding of the context and a set of “timeless” solutions that work  

in these contexts. In the architectural domain, it is possible to look back 

thousands of years and identify patterns that seem to fit into a given con-

text. However, in software engineering, solutions have typically only been 

around for a few decades. And, because of the rapidly changing advances 

in technology, there are few solutions that can be considered stable. 

the theoretical underpinnings of potential DR benefits, and also illuminate

several potential barriers that impede the effective utilization of rationale.

Table 3.1 summarizes the benefits and barriers to using DR that can be  

inferred from each of the four previously described design perspectives. 

Table 3.1. Theoretical implications

theory positive implications potential barriers

symbolic 

information 

processing 

DR can focus cognitive energy and 

provide reviewers an opportunity to 

view what considerations were

given the most attention.

additional issues increase the  

complexity of a design problem, and, 

DR allows for a post-hoc analysis of 

decisions by people with more 

information than initial designer 

wicked prob-

lems

DR Structure support integration of 

issues by people with different 

perspectives.

wicked nature of planning problems

present barriers to using DR at a  

different time or in a different project 

situated

action

DR can help designers reflect on

what decisions contributed to a 

breakdown. And, Incremental 

formalization could support the 

goals of both reflection-in-action 

and communication 

using DR to identify solutions could 

result in less reflection. And, intrusive

DR capture can hinder reflection on 

problems as they arise  

patterns DR provides a mechanism for  

designers to understand the  

problem context. 

because of the rapid advances in 

software engineering, there are few 

stable design patterns. 
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3.2.5 Implications 

A brief analysis of these diverse perspectives on design helps to clarify
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DR systems are intended to help support reflection, communication, and 

analysis. However, there are numerous barriers that hinder the effective 

use of DR for these purposes. In this chapter, we classify these barriers

into four categories: 

− Cognitive limitations 

− Capture limitations 

− Retrieval limitations

− Usage limitations  

People have a limited capacity to process information.  This limitation can

is bounded and we cannot consider all possible alternatives. Therefore,

people choose satisfactory rather than optimal solutions. Since we are

bounded by the amount of information we can process, DR is necessarily

incomplete.

What Was not Considered

It is important to recognize the potential for unintended consequences,  

designers may want to ensure that they have exhaustively covered the  

design space so as to minimize the risk for unanticipated effects. The key

question in this type of query is “what are we missing?” DR is a potential 

solution to help designers identify issues that they may have otherwise left 

unconsidered. Systems could allow designers to search for similar projects

or issues to identify issues that were considered in those projects. 

In order to use DR to identify what is missing, there must be a mecha-

nism to relate projects to other projects that are most similar. It is also  

important that there is a large enough base of rationale to ensure that 

there will be enough comparable design projects. And, it is necessary to

represent the information so that the most pertinent missing information is

easily identifiable. 

Added Complexity  

One mechanism to more exhaustively analyze the design space is to use 

collaboration in the design process [6]. However, in any collaborative 

3.3.1 Cognitive Limitations 

3.3  The Fundamental Barriers 

hinder the effectiveness of DR. Simon [26] states that our rationalitytt

especially in systems where the risks are high [27]. In these situations,



design context, maintaining conceptual integrity is important to keep the 

design project focused [4]. More people are capable of considering more

team up to speed.  It also increases the effort of integrating diverse  

perspectives.

possible alternatives, so we choose options that are satisfactory. Even if 

DR can effectively elicit additional issues, designers will not be able to 

spend more time reflecting on each issue. Therefore, it is important that 

DR be used to help designers think about the right issues. In situations 

where there are different viewpoints as to which of several alternative  

solutions should be used, reflecting on the why aspects of design can help

identify better solutions.  However, in situations where solution ideas are 

still being formulated, it may be better be spend time thinking about what 

options are possible rather than why each option is appropriate.

Groupthink 

One goal of DR is to support collaboration among designers. A problem a

with collaborative design is that when poor processes are followed, teams 

may quickly arrive at a poor solution and focus the rest of their energy on 

think, and noted that highly cohesive teams working on complex designs 

under strict deadlines where it is important to arrive at a solution are most 

at risk to undergo this detrimental phenomenon.

If designers used DR to explicitly structure their conversation around 

the issues that are most important to decision-making, they would be less

likely to make poor decisions. However, a tool alone will not necessarily 

result in better design processes. If DR tools are used to support reflection, 

how the tool can be used to support good design processes should be  

emphasized.  It is important that tools support and enhance good work t

practices, but should not be expected to change poor practices. 

There are two different situations in which DR may not be captured. In one

case, the omission is unintentional. In the other, it is quite intentional. We 

consider both.

the BarriersEffective Design Rationale Unde: erstanding 79

3.3.2 Capture Limitations  

ideas, but this adds complexity and effort in keeping persons on the design

Simon [26] also notes that we are unable to exhaustively consider all r

relatively insignificant issues. Janis [13] termed this phenomenon group-
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Capturing Rationale in Context 

DR may be considered, but unintentionally not recorded by the capture

process. There are several reasons why considerations could be uninten-

tionally omitted from DR. If the DR capture takes place outside of the  

design process, it is possible that contextual cues may not be present, and 

designers may not recall what they deliberated upon, or designers may not 

be available at the time the rationale is captured.

For these reasons, it would appear that rationale should be captured int

the context of design. However, it is not always possible or advantageous

development environments, exploring design space can be detrimental 

because it diverts critical resources. Additionally, many design decisions 

are considered in informal situations, where capturing the rationale is  

the persons present at the time of DR capture, their roles and expertise, and 

the environmental context of the capture can help reviewers infer why 

specific information was considered.  

Tacit Knowledge 

are not able to bring to consciousness. It is possible that DR may uninten-

tionally be omitted because a designer may not be able to explicate their aa

tacit knowledge. Designers may not be able or willing to spend the energy

to articulate their thoughts into the DR system, especially when they reach R

breakdowns and are focusing on understanding and resolving the problem 

at hand. Conklin and Burgess-Yakemovic [6] state that designers focus

should be on solving problems and not on capturing their decisions. 

During routine situations, designers react to problems as they arise without 

consciously thinking about them. Collaborative design can aid in eliciting

tacit knowledge through the articulation of reasoning to others in the 

design. However, this elicitation is necessarily costly to the designers, and 

will only bring out ideas that are pertinent to the current design problem, 

which is not necessarily what someone reviewing the rationale will need. 

Representation

DR may also be omitted because of inappropriate representations. Ration-

ale capture tools can involve varying degrees of human involvement, but 

regardless of the technique, the type of information captured is dependent 

rationale inadequately captures domain expressiveness, resulting in people 

to capture rationale in the design context. Grudin [11] notes that in certain

infeasible [23]. Tracking the location of where the ratf ionale was recorded,

Tacit knowledge [20] is a term used tom  describe things that we know, but

on the representation of the rationale. Lee and Lai [15] argue that design 



not being able to get the information they need out of DR. The Questions,

was argued to better fit the natural discussions of design. Others have  

argued that DR should be focused around concrete problems to make  

More comprehensive representations allow for more rationale to be cap-

tured, but the added effort to capture the rationale can shift the cognitive 

effort from the design process. More flexible notations, such as free text, 

are more difficult to index and utilize. Less intrusive techniques, such  

as capturing rationale during meetings, can ease problems associated with 

interrupting the design process. But, these techniques are likely to capture

lesser amounts of rationale because designers may not be present at these

meetings or contextual clues may not be present.

Communication Through Omission 

There are also situations where the designers may communicate informa-

tion through omission. For example, a manager may ask anyone on the 

design team with experience in a particular programming language to 

contact her or him. In this situation, certain employees will communicate 

their inexperience with the programming language by not responding. 

However, it is entirely possible that certain individuals did not respond 

because of other reasons. People may also communicate their reasoning 

through silence when they disagree with a particular viewpoint, but do not 

want to appear confrontational. DR systems do not adequately capture this

information. It may be useful to link rationale with the generating designer 

and method of capture. 

Incentive

There are situations where designers feel it is advantageous not to record 

their rationale. Design environments are constrained by time, costs, and 

to prioritize which deliberated upon information to articulate. Often design

deliberations under strict deadlines only discuss specific matters that are

viewed by the designer as highly significant at the time.  

Sharing knowledge can be detrimental to designers, especially if the  

information they share could potentially be used against them. Designers 

may be hesitant to simply give away knowledge without knowing who will

use it or how it will be used. Rewarding knowledge sharing is a challeng-

ing task that involves creating tangible rewards for intangible ideas. This is
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Options, and Criteria notation was suggested by MacLean et al. [17] and

deliberations more tangible [15].

changing personnel [23]. Designers who are constrained by time will need 
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especially difficult considering that there is often no way to evaluate which 

ideas resulted in the success or failure of an artifact.  

Moreover, the time spent exhaustively searching design space and  

is therefore important to lessen the cost to designers in capturing rationale.

However, removing the cost of DR capture is not always possible. And,

reducing the costs to designers often displaces it to the reviewers who  

then may not be able to utilize the rationale because it is incomplete or  

inaccurate.

Cost and Benefit

Complex design is normally a group activity, and tools to support design-

several problems involved in developing groupware. Specifically, one  

of the obstacles he discusses is of particular interest to DR systems. He 

contends that there should not be a disparity between who incurs the cost 

and who receives the benefit. If the focus of DR is placed only on mini-

mizing the cost to designers, it can add significant costs to the reviewers. A 

major shortcoming in DR is the failure to minimize the cost to reviewers. 

replay paradigm, and collect data that can benefit reviewers, while also not 

being a burden on designers. But, it is also important that DR provide a net 

benefit to the design process. And, capturing incomplete rationale can

harm the design process if reviewers make inaccurate inferences based on 

the rationale.

Privacy and Security

In certain contexts, there are privacy and security concerns with the DR.

For instance, organizations may want to keep their rationale secure so that 

competing organizations cannot gain a competitive advantage. Similarly,

there may be political repercussions or security breaches if policy makers

make their rationale available to the public. For example, designers  

may not want to document all of their considerations because politically 

motivated information could be held against them. There are also situa-

tions where people working outside the specified work procedures may not 

want to document their work-arounds in fear that it will be detrimental to

them.  Designers may not want to capture rationale that could be viewed 

as detrimental to themselves or certain other people, and therefore will 

intentionally omit certain rationale. Additionally, individual designers may

not want their design considerations to be available for post hoc scrutiny. 

recording DR may cause designers to miss windows of opportunittt ytt  [11]. It 

Gruber and Russell [9] contend that DR must go beyond the record and 

ers can therefore be considered a typeff of groupware. Grudin [10] describes



Therefore, it is important to give designers a sense of security, and  

implement privacy and security features into rationale tools.  

were by far the most frequent questions during design evaluation meetings. 

However, only 41% of the DR questions were answered by the DR  

documentation. The reasoning for the discrepancy between the needed and 

captured DR is broken into several high level explanations, including 

analysts not capturing questions, options, or criteria, the inadequacy of the 

DR method, and the lack of understanding. Other literature has focused 

on several issues that contribute to this failure, including inappropriate 

the design environment at the time when the rationale is captured and the

Relevance

Initial designers and subsequent users of rationale may have different 

relevance as a relationship between a user and a piece of information, and 

as independent of truth. Relevance is based on a user’s situational under-

standing of a concern. Moreover, he argues that situational relevance is an 

inherently indeterminate notion because of the changing, unsettled, and 

undecided character of our concerns.  This suggests that the rationale 

constructed at design time may not be relevant to those reviewing the  

rationale at a later time in a different context. When rationale is 

exhaustively captured, there is an additional effort required to capture the 

information. And, when too little information is captured, the reviewers’

questions remain unanswered.

Belkin [3] describes information retrieval as a type of communication

whereby a user is investigating their state of knowledge with respect to a

problem. Belkin contends that the success of the communication is 

dependent upon the extent to which the anomaly can be resolved based on 

the information provided, and thus is controlled by the recipient. This 

suggests that designers cannot recognize the relevance of rationale until a 

person queries it. And, reviewers may not be able to specify what informa-

tion will be most useful, but rather will only recognize that they do not 

have the necessary knowledge to resolve a problem. 
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3.3.3  Retrieval Limitations

Karsenty [14] evaluated design documents and found that DR questions

representations [15, 17] the added workload required of designers [6, 12]

exigent organizational constraints [23] and contextual differences between

time when it is needed [9].

notions of what is relevant in a given design context.Wilson [29] describes
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Indexing

A more structured representation can make it more difficult to capture 

design ideas, but can facilitate indexing and retrieval. One problem is that 

there is an inherent tradeoff between representational flexibility and ease 

of retrieval. Unstructured text is easier to record, but more difficult to 

structure in a database. One solution is to push the burden on to those who 

However, if the potential users of the rationale find the system to be too  

effortful, it will go unused. Then, designers will not be inclined to spend 

time entering DR into a system that will not be used.

People reviewing DR have a goal and a task at hand which they hope the 

DR will support. Often, these people are also involved in designing, or 

resolving ill-defined problems. If this is the case, the reviewers may not 

know whether retrieved rationale is applicable to their current problem. aa

Uniqueness

Because design problems are unique, even rationale that successfully  

resolved one design problem may not be applicable to a different problem.

In addition to the problem of accurately and exhaustively capturing ration-

ale, recognizing the impact of rationale can be a difficult task.

Understanding rationale tied to one problem could help resolve similar 

problems in the future. However, design is contextual, and external factors

often interact with multiple subproblems. Therefore, designers must  

consider the holistic affects of external factors. Reviewers of rationale are 

interested in understanding information to help them with their task-at-

hand, and without understanding the context of those problems, utilization 

of the information becomes difficult. The inherent problem of identifying

the impact of rationale across different design problems adds a net cost tot

utilizing rationale, decreasing the overall utility in the design process. 

These costs should be evaluated against the overall payoff of using the  

rationale.

Measuring Effectiveness

gulf of evaluation refers to the effort involved in identifying how well the

expectations of a system have been met. Bridging the gulf of evaluation

3.3.4  Usage Limitations

are receiving the benefit [10] which would be the retrievers in this case.

Norman [19] states that systems need to bridge the gulf of evaluation.  The 



involves giving users feedback on whether their actions have moved them

closer to achieving their goal. One problem with DR systems is that there 

is no absolute measure of effectiveness. A DR system can give users 

feedback to indicate that the information was stored, but this does not  

necessarily mean that the system was effective. An inherent problem in  

using DR to support temporally distributed designers is that the designers

will not immediately know what rationale will be most useful. Because of 

the complex nature of design, it may never be possible to evaluate the  

impact of rationale.

We note that there are three primary goals of DR systems, which are  

reflection, communication, and analysis. The previously described cogni-

tive, capture, retrieval, and usage limitations do not equally impact each 

goal. The impact of each barrier is influenced by many factors, including 

the goal of the system and the social system in which the system is used. 

DR provides a framework that can be used to reflect upon the design 

process or resulting artifact. But DR can also distract from design activities 

if the emphasis of DR is on recording for other people, rather than support-

ing the current design activities. The problem with using DR as both a 

reflective tool and a communication tool is that these goals tend to conflict 

at times, especially if there is significant effort needed in the communica-

tion. In these cases, DR can distract from reflection. To move beyond these

barriers, it is important that DR systems facilitate communication with  

little effort during the design process. DR systems should focus on 

supporting one primary goal.  If the goal of a DR system is to support  

reflection, features that are used for documenting the rationale should be 

either eliminated or extremely nonintrusive. 

Brown and Duguid [5] note caused context, background, history,  

common knowledge, and social resources to be ignored when envisioning 

solutions to problems. They note that “attending too closely to information
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3.4.1 Reflection

3.4  Transcending the Barriers 

Reflection is a goal of many DR systems, and supporting this goal involves

transcending the barriers associated with communicating ideas while in

ing, and prioritizing what to reflect upon. 

the act of designing, using overly restrictive frameworks to structure think-
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overlooks the social context that helps people understand what that  

information might mean and why it matters” (p. 5). And, viewing 

problems in a less restricted view can offer “alternatives, breadth of vision,

and choices” (p. 1).  

Using DR schemas that are focused on specific aspects of arguments

may overly focus thoughts on aspects that may not be the most vital to  

design deliberations. It is therefore important to prioritize what items to 

reflect upon. Sometimes it is more important to think about the what,

these cases, it may be more appropriate to reflect on usage scenarios, 

design patterns, or project management constraints. Research into how to 

integrate DR with other reflective activities would help make DR systems

more useful. 

As a communication tool, DR systems provide both structure and 

availability. The degree of structure refers to the variation flexibility that a

system allows.  And, the availability refers to how many people have 

access to communications.  DR systems range from requiring specific 

fields of information to be completed (e.g. questions, criteria, etc.) to 

having designers record their deliberations in free-form notation. In any 

case, the structure provides a framework within which designers can  

design work is done through evolutionary redesign, and long-term collabo-

ration is essential. Long-term collaboration requires designers at one time 

to communicate with designer at another time. Written notes, letters,  

diagrams, photographs, electronic mail, and databases all record informa-

tion that can later be reviewed. In Sect. 3.4.3, we will differentiate various 

modes of communication and suggest which may be appropriate in  

different situations. 

Alternate Means of Communication

Communication can be classified based on its levels of structure and 

availability. Some communications are stored for extended periods of  

time and can be reviewed by anyone. Other communications take place  

informally between a limited number of people. 

Informal conversations between designers occur through telephone

calls, face-to-face conversations, before and after meetings, and through 

instant messaging tools. These communications are useful for designers

3.4.2 Communication 

where, who, or when aspects of design rather than the why [13, 31]. In

effectively focus their communicm ation. Fischer [7] argues that much of the



because they can share ideas and gather feedback about what others think 

about the reasoning behind design decisions, while still having a certain 

degree of privacy and security.   

These informal communications can also be captured for later review by 

integrating DR tools into web browsers, e-mail clients, phone systems,  

instant messaging tools, and meeting support tools. Communications 

can also be structured, yet remain unrecorded. Meetings may be following 

formal processes, and brainstorming strategies structure processes for  

identifying a wide range of alternatives. 

Social communities offer another form of availability. Designers can 

share ideas within a social community, where other designers can freely 

share that information. Social communities in software engineering are 

composed of both Communities of Practice (CoP) and Communities of  

groups with different backgrounds and work activities all collaborating on

where the answers are known, and CoI are associated with ill-defined 

problems where there is no one right answer.  

Muller and Carey [18] note that one difficulty in supporting designers

through CoP is that designers are often the sole practitioners of their ff

discipline within a multifunctional team. When designers are acting as sole 

practitioners, social communities may not be the appropriate outlet to

make informal communications available.

Choosing a Mode of Communication

There are a number of factors that influence the amount of structure that 

should be used in communication. 

When the primary goal of a DR system is to support reflection, using 

nonintrusive systems is more appropriate. And, it may not be advantageous

to track preliminary and noncritical decisions that take place in design

processes, even when the goal is to support temporal communication. 

Structured communications may be useful for focusing arguments

among designers with different goals. However, when privacy, security, or 

the risks of misinterpretation are important, steps should be taken to make 

the rationale less available. In these cases, it may be appropriate for DR 

systems to support multiple types of communication, whereby designersf

can choose what information to make available. Similarly, supporting both

informal and formal representations of rationale are useful when structur-
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a single problem. Fischer [7] notes that CoP more often deal with problems

Interest (CoI) [28]. Communities of interest are heterogeneous social 

ing rationale could hinder the design process [24].
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When the reason for structuring DR is to support later analysis, the  

information should be structured based on the analysts’ needs. When the 

structuring is intended to provide a framework for communication, it is 

important to identify a structure that will best focus the communication. 

When DR is captured and structured, it can be utilized by those outside the

design context to analyze artifacts and the influence of the decisions made 

in the process of designing the artifact. Effective use of DR as an analysis 

tool requires an accurate depiction of the design process. 

Causal analysis in design is difficult, if not impossible, due to the

wicked nature of design problems. The same process can lead to different 

results in different environments. Because of the complexity of design

processes, the influence of decisions can never be completely known. DR 

can be used to identify factors that could have led to failures or successes; d

however, because of the complex nature of design, it is possible that the

decisions may not have been very influential. 

Therefore, any analysis of design processes should not place a heavy 

emphasis on the influence of the captured decisions. It is possible that the 

effects were caused by other factors. This barrier can be diminished by 

using additional tools and methods when analyzing design processes. DR 

is only one tool for analyzing design processes and artifacts and only 

shows a small part of the total activity. Other methods, such as ethno-

graphy, interviews, and quantitative analyses of a project’s cost and  

measures of success can be used in conjunction to gain a fuller picture of 

the design process. 

In this paper, we have looked at a number of barriers that impede DR as an

effective tool for reflection, communication, and analysis. The barriers 

were discussed in terms of cognitive, capture, retrieval, and usage limita-

tions. It is possible that the rationale was not considered, it was considered 

One intent of DR is to transmit information from a designer working at 

one time and in one context to another designer working at another time 

and context; and, a second intent is to facilitate communication among 

designers working at the same time. The goal of research on DR is to 

3.5  Conclusions 

3.4.3 Analysis 

but either intentionally or unintentionally unrecorded, it could be recorded

but not retrieved or it could be retrieved but not effectively applied.



improve the quality of designs. There are fundamental barriers to develop-

ing computer systems that support communication among designers  

working on design problems. Therefore, the focus of DR should be on

identifying what tools are most appropriate for the task. Using less  

persistent modes of communication, putting a greater emphasis on support-

ing design processes rather than design tools, and creating systems that are 

optimized for a single purpose are necessary steps for improving design. 
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Rationale as a By-Product 

K. Schneider 

Abstract: Rationale is an asset in software engineering. Rationale is 

communicated during several project activities, like design or prototyping. 

Nevertheless, very little rationale is captured today. There seems to be an aa

inherent tension between creating or externalizing rationale, and capturing it 

successfully. In this chapter, the “Rationale as a By-Product Approach” is

defined through seven principles. Those principles were identified while 

building two applications. In both, tools were tailor-made to support captur-

ing design rationale on the side while working on software project tasks as 

usual. The approach is best applied to project tasks that create or elicit a lot 

of rationale.

Keywords: capturing rationale, by-product, task-specific path, FOCUS 

Rationale is among the most important information a software project t

produces. It is important to know why a decision has been made and why 

one design or solution has been preferred over another. Later decisions are

facilitated by knowing why earlier decisions have been made. During

maintenance, documented rationale can save a large percentage of effort.

Chapter 1 introduced many important aspects of when and how to use  

rationale.

However, capturing rationale is not straightforward. The most produc-

tive project phases in terms of decisions and concepts are the least likely to 

accommodate opportunities for documenting rationale. Exactly at the point 

in projects where most design decisions are made, documentation is often

not a high priority. All available resources and time slots are devoted to the 

product but none is devoted to (or “wasted on”) documentation or rationale.

Capturing “rationale as a by-product” takes those constraints into 

account. A number of principles describe the core of this approach. 

Selected human interactions are recorded in several modes in parallel: In

addition to audio or video recording, specific “paths” are recorded and 

reused to index the large amount of audio/video data. A path is a time-

indexed sequence of elements (e.g. code modules) visited during the 

human interaction. For example, the sequence of all modules explained by 

an expert is logged as one such path. 

4.1 Introduction 

4
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In Sect. 4.2, some situations are described in which rationale is built and 

communicated. The Rationale Paradox describes the phenomenon that 

usually none of the surfaced rationale gets captured where it occurs.  

Section 4.3 defines what is meant by the “Rationale as a By-Product  

Approach.” There is a general definition and explanations of the principles

that make up the approach. Related work is mentioned in this context. Twok

instantiations of the approach are introduced as examples: Sect. 4.4  

addresses software prototypes, and Sect. 4.5 is devoted to risk manage-

ment. The approach is discussed in Sect. 4.6. Section 4.7 concludes.  

As described in Chapt. 1, there are many uses for rationale in software 

projects. But where and when do different kinds of rationale surface?  

Where could they be captured? 

Visions, requirements, and reasons for them first appear in the earliest 

project phase. Communication in this phase is typically based on informal 

meetings, slide presentations, and oral discussions. After a while, more 

formal requirements engineering takes over. 

Design decisions are mainly discussed by technical experts and 

architects during the design phase. Decisions are made by groups and by

individuals. They are typically communicated through overview charts, 

architecture sketches, and oral explanations.  

Prototypes are often used to decide between design alternatives. Differ-

Prototypes spark insights that add to the rationale for technical decisions.

Demonstration prototypes elicit customer requirements and rationale. 

During the entire project, requirements are further negotiated, priori-

tized, and rearranged [1]. Some of these activities will require initial 

design proposals or prototypes. Reducing project risks is a constant task in 

project management. Identified risks may cause design decisions. Different

stakeholders may disagree on requirements or risks – probably disagreeing

on deeper assumptions and rationale as well. Compromises must be found 

that will be accompanied by rationale. Much of the above-mentioned 

rationale resides in the heads of project participants. Rationale is seldom 

documented.  

4.2.1 Rationale Occurs when Decisions are Made 

4.2 Origins of Rationale in Software Projects 

ent kinds of prototytt pes were differentiated by Lichter et al. [12]. The types

of information provided by those prototypes have also been analytt zed [16].
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Documenting rationale in a systematic way has long been an issue in

a sophisticated (and maybe “intrusive”) representation calls for effort,

time, and resources to build and to maintain. This chapter advocates a very 

different approach. In analogy to agile methods in software engineering

adopted. Light-weight indicates a clear priority to save time and effort t from

the perspective of bearers of rationale. This reduction of effort is afforded 

by sophisticated preparation and tools: tailor-made recording software is

used, and masses of data are recorded just to capture some of the above-

mentioned valuable rationale. The trick is to pick the right occasion and 

the right indexing-mechanism (“paths”) for each specific activity observed. 

Since rationale is so essential for project success, one would expect it to be 

highly regarded and captured carefully. However, that is seldom the case, 

as Chap. 1 states in some detail and with reference to the literature. Due to 

its perplexing nature, I call this observation the “Rationale Paradox”:

The Rationale Paradox:

  When most rationale is created, chances to capture it are lowest.

This paradox is supported by a number of observations: 

− Rationale is created when key decisions are made.  

− During decision-making, participants are very attentive.  

− Rationale is considered important and “evident” at the time when it  

is created. At that time, no one can imagine how it could ever be 

forgotten.

− Usually, further decisions are based on earlier ones, so there is  

pressure to continue fast in the project. New decisions overlay old  

rationale.

and experience come together easily and knowledge workers seem to

“flow” through their highly demanding work. During the flow state,

knowledge workers are typically not willing to switch tasks and take 

care of rationale.

4.2.2 The Rationale Paradox 

software engineering. The Potts and Bruns model [15] was used by Lee

tic web” with qualified relationships, similar to ontologies [20]. However,

[11] to describe rationale. The result resembm les a specific kind of “seman-

[2,3], light-weight approaches to rationale capturing were studied and 

− Csikszentmihalyi [5] talks about the flow statel in which knowledge
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rupted in their professional activities in order to become aware of the 

might endanger motivation and will slow down work. To avoid this, 

the team tends to focus on “essential constructive tasks” in the project 

– while capturing rationale is deferred. 

When the project gets into a slower phase, rationale will already be 

partially forgotten (see above), so there is again little motivation to  

document it. Most software developers prefer doing what they consider 

“productive work” like designing or programming over documentation. 

They will rather make new decisions and continue designing or 

implementing than capturing rationale. As a consequence, rationale is least 

likely to be captured when it would be easiest to grab.

Chapter 1 described many situations in which rationale can be beneficial in

software projects. Section 4.2 indicated different situations in which  

rationale is communicated within a project. In many cases, there are only

talks, telephone calls, or a few sketches in which the rationale is ever being

made explicit. Usually, very little rationale is captured and documented.

According to the above-mentioned Rationale Paradox, this is not an 

accident but an inevitability.

The approach presented in this paper is a generalization from several  

attempts we made at two different universities and a company to face the 

above-mentioned challenges of capturing rationale. The two applications 

stated below (FOCUS and Risk Analysis) are the most advanced imple-

mentations that incorporate the idea of “Rationale as a By-Product.”  

The term approach refers to a set of guiding principles for someone to 

follow in order to achieve a certain goal.

The By-Product Approach is defined by two goals and seven principles:

Goals

(1) Capture rationale during specific tasks within software projects 

(2) Be as little intrusive as possible to the bearer of the rational

4.3.1 Definition of the By-Product Approach 

4.3 Rationale as a By-Product 

− Schön [19] and Fischer [7] discuss how practitioners need to be inter-

tacit (internalized [d 14]) expertise they currently applaa y, including

experience and rationale. However, interrupting their flow (as in [19]) 
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Principles

(1) Focus on a project task in which rationale is surfacing 

(2) Capture rationale during that task (not as a separate activity) 

(3) Put as little extra burden as possible on the bearer of the rationale

     (but maybe on other people)

(4) Focus on recording during the original activity, defer indexing,

 structuring etc. to a follow-up activity carried out by others. 

(5) Use a computer for recording and for capturing additional task-

specific information for structuring 

(6) Analyze recordings, search for patterns 

(7) Encourage, but do not insist on further rationale management

All together, the principles shift effort away (1) from the time when  

project tasks are being carried out and (2) from experts and bearers of  

design rationale. Therefore, it may look from their perspective like the  

The style of describing a “method” or “approach” by a list of intercon-

nected principles was successfully used by Beck in his widely known  

description of eXtreme Programming [2]. 

The principles respond to the challenges mentioned in Sects. 4.1  

and 4.2. They were inferred from observations and hypotheses in the 

above-mentioned attempts to capture rationale. Like in Beck’s description 

of eXtreme Programming, principles are not fully comprehensible by read-

ing their titles only. In the remainder of this section, each principle will be  

explained with respect to the entire approach. Neither goals nor principles 

may sound extremely new or innovative. The difference is in their details

and their combination. 

For the purpose of the following discussion, a learner role is introduced. 

A learner in this context is a person who will need to use a certain kind of 

rationale in the future. Without support, a learner might simply talk to the

bearer of the rationale and search additional material to read. This is a  

tedious task, as experts are often busy or not available. There may be a  

larger group of learners sharing similar interests and information needs.  

Instead of asking the same questions again and again, capturing rationale 

and keeping it persistent will assist in distributing it. Moreover, by 

focusing and supporting the teaching process the By-Product Approach is

intended to pay off even with only one learner involved.

The By-Product Approach can be applied to different situations and 

activities in software engineering. It helps to identify rewarding activities

and to design specific computer support. To build those software features, 

rationale is really “captured as a by-product of doing normal work.” This is

what counts. It justifies the name “By-Product Approach”.
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substantial technological preparation is required. It reduces effort during 

the capturing step so that rationale seems to be captured “as a by-product.”

Each of the principle is now explained. Reasons for each principle are  

provided. By referring to related work, the principles are further clarified.

Focus on a Project Task in which Rationale Surfaces 

The approach uses an existing task to capture rationale, called the “focus

task”. This refers to a selected task or activity that is part of the usual 

software process – not one inserted for the favor or rationale capturing or 

rationale management. Many experiences in real projects support the Ra-

tionale Paradox: during interesting project phases, even the slightest addi-

tional “task” will not be accepted. Therefore, no additional task is inserted. 

Section 4.2 mentions different kinds of decisions made during different 

project activities. Principle 1 requires focusing on one such focus task in 

which the desired type of rationale is created or discussed. Rationale is 

said to surface when it is discussed, documented or communicated, either 

in phone calls, meetings, or prototype demonstrations.r

In the terminology of Chap. 1, the approach is concerned with descrip-

tive rationale, and there is a clear commitment to avoid intrusions during

structures and extra tasks on project personnel. That is carefully avoided in 

the By-Product Approach.

Capture Rationale During that Task  

It is important to capture rationale where it surfaces. Waiting to capture it 

later will probably fail: Much will be forgotten, and project pressure will

force people to prefer project tasks over rationale management duties. 

This principle may seem to contradict the previous one: what is the  

difference between inserting an extra rationale task (above) and capturing 

rationale during an existing task? g

An important psychological issue is the need to schedule and carry out 

an additional task in the first case, while in the second case there may only 

be a small percentage of extra effort during the existing task, with no 

reduce the effort of capture, it just increases acceptance. However, the next 

principle calls for reduction of this extra effort as the main optimization 

goal – even at the cost of sophisticated preparation and lengthy follow-upl

4.3.2 Principles and Related Work

that selected project task. Approaches like gIBIS [4] impose argumentationmm

additional time slot needed. Of course, this principle by itself does not
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work. Once again, this may not reduce overall effort, but it does reduce  

effort during the rationale-prone project task.

It has been argued (see Chap. 1) that IBIS captures rationale “on the fly”

By-Product Approach is descriptive in that same respect, it puts far more 

emphasis on low effort. 

Put as Little Extra Burden as Possible on the Bearer of the 
Rationale

This principle makes a clear statement about the distribution of effort 

within the team. It is especially important that those who are the sources of 

rationale be spared the extra work of capturing it. This is contrary to many

rationale capturing approaches that assume the experts will have to do

most of the work (several mentioned in Chap. 1).

the work?” reminds us to design work processes with the benefits and  

efforts of all stakeholders in mind. Grudin claims (originally in the field of 

CSCW) an approach will not be successful if some people are charged 

with extra work, while others receive all the benefits. Projected on captur-

ing design rationale, the bearers of rationale will see little personal benefit 

in sharing or even documenting what they know. It is an old lesson from 

knowledge management that there may be incentives beyond money 

to create benefit. Demonstrating to experts the appreciation for their 

our work with the two applications described later, the bearers of rationale

recognized and appreciated our obvious attempts to save them time.  

Nevertheless, some effort needs to be invested for capturing and 

structuring. As a consequence, someone else has to do it, and at a later 

time. This differentiates the By-Product Approach from others that attempt 

to distribute the effort more “equally”. However, benefits and potential 

contributions are not distributed equally, so why should efforts be? It is a 

conscious decision of this approach to let those people do most of rationale 

management work who benefit most from a well-structured base of ration-

ale. Those who need the rationale are the ideal people to do that job.  

Of course, there is a limit to all principles. When a learner has made an 

attempt to organize material, there should be the option for a feedback  

session. The expert could meet the learner and look through the results, as 

long as the expert is still available. The By-Product Approach and the tools 

developed to support each of its instantiations will support this feedback 

and provide a good basis for structuring and indexing (as explained later).

When there is no time or opportunity for such a session, the By-Product 

[13], just capturing the historyrr of rationale as it occurs. While the

Grudin’s seminal work [9] on “who is the beneficiary and who does 

knowledge and help has often been a valuable benefit to them [6]. During 
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Approach will try to continue without: “raw” material in the form of paths

can often be used since paths follow a well-known structure of products or 

work-processes. It is, in fact, not so raw. Skipping feedback will decrease 

the learning value, but not to zero (Principle 7).

Most of the extra work load for capturing rationale is shifted away from

the focus project task, and most of the remaining rationale-related duties

are assigned to learners or observers rather than bearers of rationale. Here 

is the capturing bottleneck. 

As Chap. 1 points out, many approaches have shifted from intrusive to

less-intrusive variants. We consider it important to distinguish the rolest

and balance effort, duties, and (potential) benefit, with a clear focus on  

relieving experts from any extra work.

Focus on Recording Rationale First

This principle is rather concrete compared to the first three principles. It 

resembles more a practice than a principle in Beck´s terminology [2]. It 

describes one contribution to fulfill the first three principles: The main 

rationale-related activity is supposed to be recording, but recording of 

many different kinds (e.g. audio, video, event traces, paths, and structures 

used, see example cases).  

According to Principles 2 and 3, recording devices and environment

need to be set-up in a nonintrusive way. Recording must either be trivial,

or the recording devices should be operated by a learner (beneficiary of 

rationale transfer, see Principle 3). 

Use a Computer for Recording and for Capturing Additional
Task-Specific Information for Structuring 

This principle differentiates the approach from simple recording. While 

audio or video recording would not necessarily require a computer, this

principle demands the recordings to be computerized (at least in the end). 

But there is more to this principle: the more one knows about the focus 

task at hand, the more additional information can be recorded on the side.

There is often an internal structure associated with a task or a discussion. 

For example, the table of content of a document under discussion, the

agenda of a meeting, or the file structure of a software project provide 

hooks and opportunities to refer to. 

Since we know that the focus task is related to software engineering, 

and due to focusing on only one task, typical structures can be identified 

and used. Assume a meeting in which requirements are discussed with a

customer. At some point, participants point to a requirement in a DOORS
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database, at another point they execute and comment a prototype. Time-

stamped paths facilitate cross-referencing between DOORS document

structures, code execution traces, and oral comments by the participants.

What happened at the same time may be related. Analyses built upon the

combined recordings will add value beyond simple replay, but will also

require substantial up-front implementation work. 

Natural language understanding, or any sophisticated form of artificial 

intelligent, is not the purpose. Time-stamped recordings are used as time-

indexed paths through the discussion space. Given structures and paths

provide an additional perspective on recorded rationale (e.g., code  

structure or DOORS-links). 

There is a lot of similarity to approaches like domain-oriented design

DODEs. By stressing path and structures typical for the focus task at hand,

the principle helps the user of the approach to narrow down on an issue. 

Analyze Recordings, Search for Patterns

Additional paths and structures are captured while audio or video sources 

are recorded. For example, simple recordings can be replayed. In the end,

there are several different recordings from one recorded session, e.g. a  

sequence of DOORS requirements discussed (sequence of Req.-IDs),

specification structure (requirements within table of contents), and  

audio recording of discussion (time-indexed stream). All those parallel  

recordings are related through time stamps.

It is straightforward to link all recordings together for browsing, with an 

option to jump from one track of the record (audio, video, paths) to the

other at common time-stamps. Looking at different perspectives (at the

same recorded time) or following any of the paths creates an extended 

exploration space for learners. At the same time, the network of paths and

structures is always associated with plain audio or video records that  

contextualize and explain things. One of the main values comes from guid-

ing learners within a complex structure, such as a document or program.  

We have also explored the opportunity to let a program search for  

suspicious or interesting patterns. In the FOCUS example, only a few  

trivial patterns were used, concerning hot spots (frequently executed or 

explained elements) and path deviations (when a method is executed but 

never explained) (issue explained but never executed).

environments [8], but this principle is less general and more specific than
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Encourage, but do not Insist on Further Rationale Management 

Most approaches about design rationale include capturing as well as index-

ing and structuring. Raw data is considered unreadable and unsuited for 

into more manageable rationale is indispensable. 

According to this principle, the By-Product Approach is different. The

recordings and paths and structural information usually add up to a large 

amount of data. A single Camtasia (screen video and audio) record of a 

one-hour meeting may easily be 100 MB large. However, there will be

only a few of those essential meetings, and only a few recordings. This

principle again represents a conscious and rather extreme decision: Do not 

care about a few Gigabytes of storage space, when they fit easily on a  

2$-DVD. If no one takes the initiative to further extend or modify or 

transcribe recordings, the web of recorded “raw” data from one session

might just be burnt on a DVD and represent a snapshot of the project  

history. If desired, it can always be loaded back into the computer and 

updated. It was our initial intention to keep the rationale alive over an  

extended period of time. During the experiments with the two case 

examples, we had to accept that this rarely happens. In most cases, the 

effort required for creating a snapshot is much less than the effort needed 

for continuous rationale management. This approach was shaped by  

observations in software projects and optimized from a pragmatic point of 

view. Continuing rationale management is certainly desirable from a

methodological perspective. 

From Principles to Practices

concrete instantiation of the approach, principles need to be turned into 

concrete, operational practices, techniques, or rules. In that sense, each of 

the principles explained earlier can be implemented quite differently. 

The following two applications show different instantiations of the 

approach. First of all, the focus tasks are different (prototypes and risk 

management). Consequently, relevant rationale looks different and needs

to be captured in a different way. The principles help to approach both

cases.

learner use by some [13]. The task of abstracting and structuring raw data

As with agile methods [2,3], principles are guidelines to follow. For each 
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FOCUS is a strategy and a family of tools to capture knowledge sparked 

kinds of prototypes that are built with different goals in mind. 

The definitions of various types of prototypes are listed below, with  

respective rationale mentioned in parentheses.  

− Demonstrators elicit requirements (and rationale for raising those  

requirements) from customers. 

− Prototypes proper try out implementation ideas (soliciting design  r

rationale) implementing the core functionality only.

− Breadboard prototypes try out single technical solutions in isolation. 

They produce insights in how to fulfill a requirement (and why!).

− Pilot systems start out as prototypes and slowly turn into product soft-

ware (all kinds of rationale play a role during this full development that 

shares all aspects of other prototypes).   

FOCUS was initially created to solve the specific problem of capturing 

All those findings were compiled and generalized to the “Rationale as 

By-Product Approach,” weaving in related other approaches like LIDs

prototypes elicit different aspects of rationale (as differentiated in Sect.

4.2). In the terminology of Chap. 1, it is basically “supporting knowledge 

transfer” (Sect. 1.4.4) that is supported by FOCUS. 

Where Does Rationale Occur? 

When one of the above types of prototypes is selected, a certain kind of 

information and rationale is sought. During prototype development, further 

rationale is created (why to do it that way?). During development, the flow

process. However, as soon as the prototype is presented to other people,

developers will use this opportunity to talk about their findings and 

successes. Observers have a chance to ask questions. This is a good 

opportunity to capture and record rationale. We have experimented with

separate tape recorders and with computer-based audio and on- 

screen video recording. FOCUS now uses the Camtasia commercial tool to

record both a screen video and audio of the explanations given 

4.4.1 FOCUS Implementation of the Principles 

4.4 Case 1: Capturing Rationale in Software Prototypes 

by prototyt pes [16]. According to Lichter et al. [12], there are different 

knowledge frff om prototypes in a light-weight m way [16]. Experience 

elicitation in software projects may follow a similar approach [17].

[17] or Collaborative Risk Management [18]. The different kinds of

state [5] may be reached, and an interruption will hampmm er the creation
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(http://www.techsmith.com/). Demos often convey highly condensed 

information, far beyond “raw rationale”. 

Fig. 4.1. From the FOCUS panel (left) commands are issued to control a codet
browser (top), code execution (not visible) and the rationale reader (right)t

How to Shift Extra Effort Away from Experts?

There is very little extra effort from their perspective: The recording soft-

ware is integrated in the FOCUS panel (see Fig. 4.1). Experts giving the 

demonstrations just follow the lines from top to bottom and press a few 

buttons, in order to start or stop recording. 

A typical FOCUS use case follows the buttons in the FOCUS panel: (1) 

a learner or expert has marked the code to be discussed. After pushing the 

“instrument” button, all methods within that piece of code will be traced 

when executed. (2) A demo is started and recorded as both a Camtasia 

(video) file and as a sequence of executed methods (specific path). (3) The 

path may remote-control the code browser to guide follow-up explana-

tions. In that case, method by method is displayed that was previously 

executed. During this second part of the demo, experts explain how the

demoed features were implemented. (4) This explanation is again recorded 

via Camtasia into an “explanation path,” which is a sequence of methods 

visited.

This original implementation was carried out in Smalltalk (Fig. 4.1).  

It is important to use an integrated environment that is used for writing, 
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running, and explaining code. Smalltalk was such an environment. How-k

ever, FOCUS as an instance of the By-Product Approach is not restricted 

to any single language. To demonstrate this, we recently completed an 

Eclipse/Java version of FOCUS (see Fig. 4.2). Eclipse is a widely used 

Java development platform. Four Eclipse plug-ins (integrated platform  

extensions) were implemented to allow instrumentation and tracing of  

selected methods, linking and replay of different recorded paths and videos

in an integrated way. 

Fig. 4.2. Eclipse/Java version of FOCUS: On the right of the FOCUS window, t
there is a small Camtasia preview window (can be enlarged), buttons for stepwise 

replay of paths (method by method), and a slider for fast navigation. Of course,

Camtasia videos with attached paths can also be replayed in continuous mode. Us-

ers may browse the entire web of paths and recordings at any point 

In Fig. 4.2, a list of previously recorded paths provides access to the

methods they consist of. From each recorded method, a learner can explore 

all paths that include that method.  

Who will Benefit? 

A prototype is created to answer questions about customer requirements

or about technical options. Usually, only a small subset of developers is 

involved with prototyping, but their findings are used in a much larger 

team. Any person in that larger team who needs to learn about the proto-m

type is an ideal candidate for transcribing or summarizing the audio record 

– if it is ever done.

What can be Captured During What Task?

That same computer that runs the demo, also executes Camtasia and 

path recording (see above). A main advantage is a perfect synchronization

between explanations (audio), what is explained (video), and what part of 

the code is actually affected (path). 
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Additional Computer Recording or Analysis? 

Prototype code is instrumented with tracing information. By running the

code, a trace of executed (Smalltalk or Java) methods is created as a by-

product. The sequence of executed methods is called an “execution path”.  

Recordings of explanations and screen video were synchronized with 

the execution paths and explanation paths through time stamps. The 

specific strength of FOCUS comes from its integration with the develop-

ment platform, and code base. By being fully integrated, the code structure

(inheritance, packages) is related to the execution and explanation paths

through the methods executed or explained. 

In addition, simple patterns can be detected by FOCUS. It may ask for 

is no “artificial intelligence” involved, just pattern matching. No attempt 

was made to have the computer explain a pattern. Explaining remains a

task for human experts, as would be the case in a normal demonstration.   

In the next example, a very different task in software project management 

is supported by the “Rationale as a By-Product” approach. Risk manage-

ment is a crucial project task to avoid running into foreseeable problems. 

For example, a subcontractor may have been unreliable in the past. 

Relying on this same contractor in a new project is a risk: it could cause a 

delay, and maybe contractual fees. Risk analysis is at the core of risk 

management. It deals with reasons and probabilities and consequences of 

risks. Since there is uncertainty involved, different stakeholders may use 

different reasoning (rationale) in assessing those risk parameters. In this 

phase, the Risk Analysis Tool comes into the picture.

Where does Rationale Occur?
During the discussion by stakeholders (project leader, experienced 

project staff), a lot of the previous experience made with the subcontractor 

or with other risks surfaces. Discussions elicit risk mitigation options. 

How to Shift Extra Effort Away from Experts?

Usually, risk analysis is carried out in a regular project meeting as a 

separate topic. However, risks should be discussed frequently. When the 

project is running, risk analysis may only focus on the changes since the 

last meeting. Risk meetings are short, but they require that many stake-

holders participate. A larger project might be distributed over different 

locations or buildings, causing traveling expenses.  

We developed a Risk Analysis Tool that enables the team to save  

time by holding risk analysis meetings online. The tool offers a user  

interface displayed in Fig. 4.3. At the core, there is a chat facility (left) and 

4.5  Case 2: Risk Analysis 

rationale on “all methods that were explained but never executed.” Theret
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a portfolio (right) on which risks are placed with respect to their probability 

and their impact. Numbered circles represent risks. They are described  

after the portfolio. Relative positions imply different priorities for mitigation.

Fig. 4.3. Risk Analysis Tool. Integrates chat (left), portfolio (t right), and recordingt

What can be Captured During What Task? 

In the tool, an interactive risk portfolio is combined with a chat 

component. Both components are time-stamped and recorded. Since many 

comments refer to the same set of risks (on the portfolio), all chat contribu-

tions that mention a certain risk can be identified and cross-referenced. Of 

course, there could be a NetMeeting or Voice over IP component instead 

of the chat component. Nothing would change in principle as long as all 

relevant activities are recorded, time-stamped, and related. Again, the 

By-Product Approach can be implemented in several different ways. We 

used chat as the easiest option and because it can be easily demonstrated 

on paper and slides. 

Who will Benefit?
Participants who would like to remember the meeting and the course of 

the discussion without taking notes. Future project members who would 

Portfolios are the typical tool for discussing risks during risk analysis [10].

controltt (hidden). Risks are represented by circles and listed below portfolio [18]
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like to learn about earlier concerns and discussions on risks. New team 

members trying to understand the project better, are good candidates to

summarize the recordings, if at all necessary. Project leader assistants

could carry out those things as well, as they usually have to keep track of 

the project status.

Additional Computer Recording or Analysis? 

Recorded sequence of events (chat contributions, risk movements)  

can be filtered and presented in different forms. Besides a simple replay,

filtering for participants or for individual risks is afforded. Also, the path

of a risk circle on the portfolio during discussion can be visualized. For 

example, a risk may have entered as low-probability, low-impact in the

lower left corner, and now follow an increasing curve to higher probability 

and impact: participants move it up as they agree on increased risk  

exposure. Such a pattern might be detected by either the tool or a human

user when looking at the path. Without the tool, such a path may escape 

attention, especially when it consists of several smaller shifts. Once  

detected, a pattern like this will trigger high-priority risk mitigation  

actions.

The concept of capturing rationale “as a by-product” was stimulated by the

FOCUS project, the Risk Analysis Tool, and some smaller projects. Simi-

lar challenges and similar opportunities lead to similar solutions. In this 

paper, the “Rationale as a By-Product Approach” was factored out and  

explicitly described. This approach provides guidance in setting-up tools to

capture rationale by recording project tasks. The approach is pragmatic in

taking constraints and observations from practice seriously – and accepting 

that some nice features will probably not be used a lot.  

The two applications were developed in university and industry  

environments, respectively. They have been applied to different projects,

and have demonstrated the feasibility of the approach: there were no  

fundamental breakdowns or objections, and some participants were 

delighted. However, we consider this anecdotal evidence and recommend 

empirical validation of future tools built according to the Rationale as a

By-Product Approach. With our new Eclipse implementation of FOCUS, 

we plan to validate the approach with a series of increasingly rigid experi-

ments. We are aware, however, that a full validation will take months or 

years: the tools will only unfold their full potential when the bearers of 

rationale are no longer available or cannot remember what was recorded. 

So far we have seen only short-term effects.

4.6 Discussion 
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becomes obvious: in all cases, there is almost no interruption of work.

There is a low threshold for rationale bearers to use the techniques, as they 

require little or no extra work. There is always a form of recording “raw 

information” that contains valuable rationale. Mere recording and replay is

already an important support for capturing rationale, but hardly deserves

being called an “approach”. But when computer tools are enriched with 

further recording features, and when the resulting web of paths is offered 

as guidance, a new level of support is reached. Indexing by time-stamps

and task-specific paths are crucial means for fast retrieval. Pattern match-

ing and advanced analysis and presentation facilities can add yet another 

step. The two cases give some concrete examples. 

The approach presented in this paper focuses on the capturing and 

“saving” aspects of rationale management. By focusing on one essential 

project task, it is highly restricted and very specific. Due to that small  

focus, powerful recording mechanisms (e.g. executed program methods, 

risk movement events) can be identified and supported.  

Care needs to be taken to reintroduce the rationale when it is needed 

later. It would go beyond the scope of this paper to discuss this aspect in

depth, but the approach obviously facilitates presentation of rationale, too.

Paths could be visualized, and they always should be used to browse the

space of recorded material. In that respect, the approach typically leads  

to “Rationale Capturing” components that are tightly integrated with path-

oriented “Rationale Retrieval” components (as defined in Chap. 1). 

Capturing rationale “as a by-product” sounds easy, but requires  

sophisticated technological preparations. Rebuilding FOCUS within 

Eclipse, for example, consumed more than four persons–months of a

highly skilled software developer. Obviously, there is no way to get ration-

ale for free. This approach simply shifts all the effort into building a  

computer tool like FOCUS or the Risk Analysis Tool and away from the 

actual project task in which rationale surfaces. 

“Rationale as a By-Product” is an approach for building tools and 

techniques that have a realistic chance of being accepted and successful in

real projects.  

4.7 Conclusions 

From developing and applying techniques like FOCUS [16], Risk 

Analysis Tool [18] or Lr IDs [17], the merit of the by-product approach
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Hypermedia Support for Argumentation-

Based Rationale: 15 Years on from gIBIS and 

QOC

S.J. Buckingham Shum, A.M. Selvin, M. Sierhuis,  

J. Conklin, C.B. Haley, B. Nuseibeh

Abstract: Having developed, used and evaluated some of the early IBIS-

based approaches to design rationale (DR) such as gIBIS and QOC in the
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to the challenge of negotiating the overheads of capturing this form of 
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representational scheme as simple as possible to enable real time meeting

mediation and capture, attending explicitly to the skills required to use the

approach well, particularly for the sort of participatory, multistakeholder 

requirements analysis demanded by many design problems. However, we
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service of specific methodologies, supported by a customizable hypermedia rr
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Few would disagree with this book’s opening chapter that the systematic 

management of design rationale (DR) is not yet common software  

engineering practice. By extension this applies to the particular flavor of 

DR with which we work, namely the IBIS/QOC approaches to creating 

graphical argumentation maps of design deliberation (reviewed in Chap. 1 n

and classed as “prescriptive, intrusive” in nature). It is the “intrusive”  

nature of such notations that represent an obstacle to adoption (we will 

unpack in more nuanced terms what this means), and which has led many

to the conclusion that DR based around explicit, graphical argument maps

is yet another failure of exciting research ideas to overcome the harsh 

realities of actual day-to-day practice.

5.1  Introduction and Overview 

5
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This chapter argues that the story is more complicated but more hopeful. 

Since the late 1980s, through business and industrial case studies, detailed 

lab analysis, and continual design refinement, we have been reflecting on 

the set of interacting factors which together can “make or break” them in 

the heat of collaborative analysis, modeling and design. The Compendium 

technique and tool has matured to the point where a steering group (a sub-

set of the authors) is coordinating the development of an open source Java

hypermedia IBIS mapping tool, with an international user community 

spanning government, NGOs, education and business, documented case 

silver bullets, but progress has been made since the intense activity that led 

up to the first DR book in 1996, and the subsequent decline in activity as

the challenges of truly embedding argumentation-based DR in work prac-

tices sank in. In particular, although quality software support is required, it 

turned out to be the human factors that required closer attention.

current Compendium approach and tool.

Chapter 1 has already provided a broad summary of the rationale behind 

Horst Rittel’s IBIS, and the ways on which software engineering DR re-

searchers have appropriated and extended it, so we will not duplicate that 

review. What we can add by way of introduction is an amplification of the 

rationale behind “prescriptive, intrusive” approaches, whose goal is to 

support and improve design reasoning. A converging strand of research in

the history of computing to augment intellectual work, Rittel’s work con-

verged with that of computing pioneers such as Vannevar Bush, Douglas 

Engelbart and John Seely Brown to forge an exciting vision of the power 

of cognitive, collaborative tools to both capture and augment design rea-

soning. The research community envisioned that hypertext groupware

would make it easy to capture and structure the spectrum of informal and

formal knowledge that goes into DR. Designers could capture their delib-

erations on the fly during design sessions. Visual networks of icons would 

be intuitive enough to realize the vision of participatory analysis amongst 

diverse stakeholders, who would not need to learn cryptic formal schemes

in order to contribute tangibly to system requirements. Captured DR’s 

might be reusable, or at least would contribute greatly to the process of 

5.2  The Vision 

The objective of this chapter is to update the software engineering

[10, 11] we helped to create originally, have subsequently evolved into the 

studies, and training courses and online resources. Clearly, there are no

community on how and why the QOC [20, 21] and gIBIS approaches 
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maintaining and evolving that system over time by providing a skeletal

group memory to help reconstruct what led to a decision. 

We are simplifying a little for brevity (we review the roots to the field in

more depth in [3]), but something close to the above vision was very much

the driving energy in the decade from about 1986 in many leading com-

puter science and HCI research groups. As will become clear, we consider 

many aspects of this exciting vision to merit continued pursuit, since pro-

viding traces of complex intellectual work has enormous potential. How-

ever, as we will elaborate in Sect. 5.3, great attention needs to be paid to 

the socio-technical skills required to successfully use such an approach,

and there was naivety in some of the early assumptions. In particular, we

had to solve “the DR capture problem.” 

The capture problem is the specter haunting all DR efforts (indeed, all 

knowledge management efforts attempting to meaningfully capture ele-

ments of human reasoning and discourse). How does one acquire quality

input to a rationale management system, without disrupting the very proc-

ess it is designed to support, or without having to employ dedicated scribes 

who do nothing but maintain rationale libraries? 

The cost–benefit tradeoff is a slippery tightrope to walk, and has fo-

cused our energies on a “value now, value later” imperative. As Grudin

[13] has pointed out, there cannot be a disparity between who invests effort 

in a groupware system, and who benefits. No designer can be expected to

altruistically enter quality DR solely for the possible benefit of a possibly

unknown person at an unknown point in the future for an unknown task.

There must be immediate value. The difficulty, of course, is that it is not 

merely a “capture” problem, but “useful capture”. One could minimize the

capture effort and simply video record every design meeting, but this 

would not render a useful archive. Computationally tractable structure 

must be added by some means. Extracting useful content automatically 

from multimedia meeting records is an active research area, but very chal-

lenging. Later, we will report on the synergy of combining the richness of 

video-based DR with argumentation-oriented approaches, but let us first 

focus on the specific capture problem associated with the latter.  

Very soon after “idea processing” visual hypertext systems such as 

ports began to emerge of “cognitive overhead”. A 1994 survey [3] found

comparatively weak evidence regarding usability and utility compared to 

what might have been expected given the scale of system development 

5.3  The Design Rationale Capture Problem 

NoteCards [14] and gIBIS [10] began to be used for structuring ideas, re-
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efforts. A later survey echoed this, highlighting the pattern of failure in 

many kinds of interactive systems that assume the willingness of users to 

structure information [30]. The ray of hope that somehow we might find 

just the right balance of intuitive user interface, natural representation 

scheme, and fast computers began to dim, and many researchers moved on

to other challenges.

Nonetheless, encouraged by the limited success of the gIBIS prototype 

in an industrial case study [11] that the problems stated earlier were sur-

mountable, the early 1990s saw the launch by Conklin and colleagues of a 

commercial software tool that combined graphical hypertext, IBIS and 

groupware capabilities. The QuestMap Windows single user and group-

ware product made a mark in the hypertext and groupware communities, 

and even resulted in a few isolated cases of extended industrial-strength

use [8]. However, this product ultimately succumbed to market pressures,

and is no longer available. Much was learnt from this episode, in particular 

an appreciation of the value that can be added in design meetings once

people have learnt the meta-cognitive skills of using IBIS, some of whom 

may then appreciate quality software support to overcome the limits of 

mapping on paper, whiteboards, or a generic drawing tool. Let us consider 

the nature of this skill in more detail.

We have studied the issue of “intrusiveness” (see Chap. 1) in depth via de-

tailed, video-based analyses. Moreover, we are interested in characterizing 

not just the initial learning curve (which is what most people have focused 

on) but also the nature of highly skilled practice.  

One study of beginners focused on software designers learning to use

QOC (on paper), and provided a detailed account of how designers must 

learn to manage four interleaving cognitive tasks [2]: unbundling (g identify-

ing and separating constituent elements of ideas which have been ‘bundled 

together’ when they were initially expressed, but which from an argumen-

tation perspective need to be teased apart), classification (deciding whether 

a contribution is a Question, Option, or Criterion), naming (g labeling the 

new contribution succinctly but meaningfully), and structuring (linking in 

a new element to other ideas).  

Should we be surprised that this feels like extra work? In introducing ff

argued that “On reflection, reports of cognitive overhead should not be 

surprising. The basis on which [concept mapping tools] work is that deeper 

understanding of a domain comes through the discipline of expressing

S.J. Buckingham Shumm , et al.

5.4  Understanding Cognitive Overhead 

subsequent video analyses of these designers, Buckingham Shum et al. [4]
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knowledge within a structural framework, working to articulate important 

distinctions and relationships.”

At this point, however, although Buckingham Shum had a lab-based ac-

count of when QOC seemed useful or obstructive, he had a poorly devel-

oped conception of how to turn that effort to the group’s advantage. This

was a “missing piece of the jigsaw” that some of the other authors of this 

chapter provided: Conklin from a facilitation perspective developed during 

the QuestMap/IBIS consulting period, and later, Selvin and Sierhuis from 

a collaborative modeling perspective [25]. Section 5.5 describes how these 

insights combine in our current understanding.

Beyond the initial learning curve for novices, we have recently begun to

characterize the learning curve as one gains proficiency. What does it 

mean to become an expert in mapping IBIS structures to support problem

solving and design cognition? Selvin [26] has characterized the kinds of 

skills that such a practitioner needs to possess, and more recently has  

begun to articulate, based on video analysis of Compendium in use in web-

mediated meetings, the kinds of ‘moves’ that a mapper can make to assist 

the team in the problem solving, and the associated skills [27].

To summarize, DR that yields insight into the complex ideas and argu-

ments that may lie behind a decision does not come “for free”: effort must 

be invested at some point in the rationale management lifecycle. 

Compendium represents our current effort to take the raw conception of 

IBIS, and deliver it in a form where it can smoothly integrate in the ‘ma-

trix’ of everyday tools and practices. Our technical objective is to provide 

a robust, open environment in the IBIS/argumentation-based DR para-

digm, which can then be integrated with other DR paradigms and tools,

such that services can be implemented over the extended-IBIS representa-

tional substrate.

Our approach to the capture problem is to invest rationale structuring 

effort primarily at the point of capture, validating it with the key stake-

holders. This capturing process serves the stakeholders’ needs to under-

stand each other and know that their viewpoint has been heard. This 

co-evolves a shared picture of the problem, possible ways forward, and the

rationale for deciding how to proceed. This is supported by a software tool 

which can further lower the data entry overhead: data already entered in 

other key tools can be imported, and data entered in the rationale tool can 

automatically populate other tools, or generate documentation.

5.5  Compendium 
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There are three dimensions to understanding Compendium: (1) its func-

tionality as a hypermedia concept mapping environment, (2) how it uses

IBIS to support collaborative modeling of a problem using any conceptual

framework, and (3) in the context of mapping ideas in real time during a 

meeting, the role of the person doing the mapping to facilitate the task at 

hand.

Compendium comes “preloaded” with node and link types for IBIS, de-

rived from QuestMap’s interpretation of the notation, for connecting keyf

issues, possible responses to these, and relevant arguments. Figure 5.1 

shows the default node types, which include additional nodes beyond IBIS 

for Lists and Maps (containers for nodes), Decisions, Notes, and Refer-

ences that can hyperlink to open a web page or other document.

Fig. 5.1. IBIS plus additional node types rendered in Compendium. Any applica-

tion document or website can be dropped in to create a hyperlink. Nodes can  

contain text content, and links can be labeled if desired 

Figure 5.2 shows a DR extract from a project meeting, in which an issue

is raised, two options explored, and one justified. Figure 5.3 shows the use

of Compendium simply to record decisions (about metadata). While these

might simply have been recorded in a word processor or slide tool,  

such tools do not support (i) the possibility of capturing important  

REFERANCE: Press 'R' key

key

ey

y

s 'U' key

What are kin
th
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5.5.1 Hypermedia Concept Mapping
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discussion/rationale if it arises, or (ii) the reuse of a decision in subsequent 

other contexts – see the links on the bottom node to its other appearances

in the database. Users can also define their own custom modeling lan-

guage, by building their own palettes of icons (called Stencils) and rela-f

tional types (Linksets). This is not currently a full meta-modeling tool,

however, in that constraints cannot be specified between nodes and links:

any two nodes can be linked using any linktype. 

Fig. 5.2. Extract from a software design meeting, in which Compendium is used to

map issues, options, arguments, the decision, and a relevant website. (This meet-

ing was an Internet video conference, with Compendium viewed by participants

via a desktop sharing application)

Fig. 5.3. Recording decisions (in this case without any significant rationale) in 

Compendium. Rolling the mouse over the digit on a node displays a link menu to

other maps which contain the node
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Compendium maps are not ‘flat’ drawings, but views onto a relational

database that can be rendered in multiple formats. A given node (e.g.,  

representing an idea, argument, entity, or document) can appear and be 

updated in multiple views. Since any application document or URL can be

dragged and dropped into a map as a Reference node, so an external

document can be linked into one or more discussions and tracked – that is, 

given one or more meaningful contexts where it plays a role. Corrections

or updates to a node are immediately updated in every context in which it 

appears. This provides precisely the representational capability needed to

build semi-structured models in which a particular object is systematically 

reused (e.g. an idea, plan, person, system, location).  

Compendium is implemented as a Java application that can swap 

between either the MySQL2 or Apache Derby3 relational databases. XML 

export/import enables data between clients using a Document Type Defini-

tion (DTD), and in research projects, interoperability has been extended to

the semantic web’s RDF. An Applications Programming Interface (API)

enables other systems to read and write to the database directly, so concept 

maps can be generated from another data source or interpreted for process-

ing by another system. Full groupware capabilities are not yet imple-

mented, although demand for this is growing. A shared database can be 

maintained either by using an MySQL server, or in experimental versions, 

through mirroring databases synchronously between two clients over the 

Internet, using the Jabber XML messaging protocol (which also enables

Compendium to send and receive nodes from Jabber instant messaging 

clients on any device4). The most common means of sharing data is via 

XML. All maps can be published to the Web as interactive image maps or 

linearised as HTML outline documents. 

Compendium extends the use of IBIS from modeling a discussion, to more

systematic modeling of a problem. A modeling approach focuses attention

on a specific subset of issues and information, it may constrain the kinds of 

options one considers, and it may also focus attention on how one assesses

them. In Compendium, a modeling approach is translated into an issue 

template, which can also be created simply to deal with any well under-

stood situation where there is a recommended approach to proceed, for 

2 See http://www.mysql.com. 
3 See http://db.apache.org/derby.
4  See the CoAKTinG Project: www.aktors.org/coakting 
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5.5.2 Overlaying Conceptual Frameworks  
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instance, from best practice or a standard operating procedure. Figure 5.4 

shows a template for modeling a business process, prior to its instantiation. 

Templates were created to support structured modeling within the IBIS

framework, which by definition moves the tool into the space of reasona-

bly well-structured problems. These are much easier contexts in which a 

beginner can use Compendium, since they are provided with a representa-

tional scaffold for working through a set of predefined issues. Assuming 

the meeting has faith in the template, when its questions have been 

answered, the meeting can be confident that they have made some  

progress. A hallmark of the approach is, however, the ability to break from

formal and prescribed representations into informal, ad hoc communica-

tion, incorporating both in the same view if that is helpful to the partici-

pants (e.g. “in this context we should really ask a different question…”).

Hypertext nodes and links can thus be added either in accordance with 

templates or in an opportunistic fashion. 

Fig. 5.4. An issue template that can be imported when required, linked to other 

views, and tagged with metadata. The issues raised are now stepped through, link-

ing in answers and arguments as appropriate, and breaking out of the template if 

necessary to capture unexpected material, ideas or argumentation 



120

A complement to issue templates are tags (metadata keywords) assigned 

to any concept (node) in the database to show connections through mem-

bership in a common category. Tags serve to specialize a node type with asrr

many attributes as required for it to play multiple roles in different 

contexts. At the end of the session all of the nodes so marked can be har-

vested. In modeling, nodes sharing a tag are often tracked as a ‘catalogue’ 

of nodes stored for future reuse. Tags may reflect generic meeting proc-

esses (e.g. Action-Jane), or may be driven by an underlying methodology

that Compendium is being used to support (e.g. Data-Provider). Alterna-

tively, ad hoc tags can be created on the fly, to reflect the emergence of a 

new theme. 

As reviewed in Chap. 1, it has long been recognized that DR cannot 

exist in a vacuum but must be connected to relevant design artifacts and 

views. This can be done by dropping an application document or Web 

URL into Compendium to create a hyperlinked Reference node, but tags

provide a mechanism for deeper level connections. Since nodes may origi-

nate from other systems (written directly via the MySQL API or manually 

imported as XML) it is possible to use tags to mirror attributes of the 

domains which these external systems model. The world of IBIS is thus 

connected via the simple mechanisms of templates, tags and hyperlinks to 

any other relevant domain, from end-user scenarios and organizational 

processes, to software architecture and project management. 

Turning to the third element of the approach, facilitation, Dialogue 

Mapping5 is a set of skills for mapping ideas as IBIS structures in order to 

support the analysis of wicked problems, as defined by Rittel.6 It has 

turned out to be a critical development in argumentation-based DR, since it 

provides a way to negotiate the capture bottleneck: the structure required 

to construct useful DR is added in real time during the meeting, adding

immediate value to the participants, but also creating a record. Mapping 

ideas in IBIS during a meeting is unquestionably an acquired ability, but 

equally, one that can be learnt (there is an international Compendium user 

community). This was the key oversight in early argumentation-based DR 

research, which experimented with small-scale demonstration examples, 

5   For an introductory account of how Dialogue Mapping is used during a meeting,

see the fictional scenario at www.cognexus.org/dmepaper.htm.
6  Churchman [7] appears to be the first person to have published the term ‘wicked 

problem’, in 1967, but in this brief editorial, he credits Rittel with the term. 
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5.5.3 Meeting Facilitation Through Dialogue Mapping
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and did not invest enough in what we now think of as hypermedia/IBIS

“literacy”. See Conklin [8] for a longer introduction to the craft skill  

involved in choreographing meetings and representational activities that 

we introduce later, and [9] for an extended resource. 

The facilitation perspective places the Dialogue Mapper in a potentially

very powerful role, quite the opposite of the lowly “DR scribe” whose role 

runs the risk of relegation to minute-taker or documenter. The mapper  

actively crafts structures on a shared display screen that both capture the 

meanings and ideas of the group and reflect back to it the larger implica-

tions of their thinking. There is a spectrum of how strongly discourse is 

mediated via this display (described in the DR continuum [3]). It may be 

used to periodically summarize and review “normal discussion” (e.g., at 

decision time), screens can be shown to reflect on progress, or the discus-

sion and the map can “dance” – each shaping the other. It is hard to convey 

this in writing, but we contend that it exemplifies the kind of synergy be-

tween tools and sensemaking that was envisioned by the developers of 

early “idea processing”/DR hypertext systems. 

To borrow a musical metaphor, there are several shifts in the “rhythm” 

or “timbre” of a meeting when Compendium is used well: 

− Beneficial slowing down. A complaint sometimes heard when argumen-

tation-based DR is first introduced to meetings, is that it disrupts the

flow of the meeting [2,12]. When done appropriately, however, we find 

that it can be extremely beneficial to “disrupt” dysfunctional dynamics 

by focusing attention on a feature of the hypertext map. After a period of 

use, people become noticeably unhappy when their contributions are not 

mapped, because once captured on screen, they know that their view has 

been heard, correctly recorded, and will be harder to ignore when the

map is assessed at decision time. 

− Depersonalization of conflict. When ideas and concerns are mediated 

via a shared display, challenges to positions assume a more neutral, less 

personal tone. In situations where there are competing agendas, it helps 

participants clarify the nature of their disagreement (e.g., the definition

of ‘the problem’; understanding different criteria of “success”). We have 

seen Compendium defuse meetings which otherwise looked to be polar-

ized, for instance, by surfacing the different connotations of a particular 

question. Recent work with Compendium has deployed specifically in

conflict resolution and mediation [24].

− Flexible rhythmic review. To a surprising degree, collaborative knowl-

edge work can be characterized as “group list processing.” Whether the 

list is a set of requirements, budget items, or action items, a common  

activity is group review of a list of potentially complex elements. Whilef
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some items draw little comment, others can lead into deep discussions

and even debate. A good mapper can establish a “call and response” 

rhythm with the group, creating a sense of shared purpose and momen-

tum. When occasional elements lead to intense discussions about mean-

ing, or spark disagreement among group members, the Compendium 

practitioner can open a new map and keep mapping or modeling the new 

conversation. With the new issues captured in the shared display, the

group can return to the previous review task without losing momentum. 

Referring back to Chap. 1’s lists of requirements for future software engi-

neering DR environments, in principle, Compendium’s functionality could 

contribute to any software engineering activity and phase where issue-

based deliberation or modeling is required. But our interest in collective 

sensemaking clearly has a particular orientation to the tasks listed under 

“supporting collaboration”. 

The evolution of Compendium from QuestMap and gIBIS has, however,

opened the door technically and conceptually for integration with other 

software engineering tools and DR tools. Compendium does not come with

any preprogrammed verification services that can perform structural

checking (which could for instance be used to provide a DR service such 

as dependency management). Given the breadth of our user community, 

which goes beyond just software engineering and DR, our strategy has

been twofold: (1) to create an open architecture (unlike QuestMap’s) with 

a standard SQL database, XML DTD, and Java source code to enable other 

groups to access all levels of the system functionality and data; (2) to 

provide a visual user interface and generic issue-oriented representational

substrate as described earlier (extended IBIS, a customizable visual 

language, tags, templates, node reuse, graphs, and lists) which can be  

appropriated to express many different kinds of design knowledge.

We have already shown (in the mission planning domain) that Compen-

dium can be integrated with a tool that uses a more formal issue ontology

and planning engine to reason about available options and constraints on

issues [31]. We are now beginning to explore the requirements for a new 

layer over the generic environment, which would extend Compendium 

with services to support argumentation around the security of requirements

specifications, a domain which provides the worked example described 

shortly. 

S.J. Buckingham Shumm , et al.

5.6  Reasoning Services and Verification 
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After over 15 years’ deployment in the field (gIBIS, QuestMap, Compen-

dium), there is now a response to those who have argued that the need to

be skilled in the use of IBIS is a fundamental weakness of the approach. 

First, this has now been shown to be an effective strategy to negotiate 

the cost/benefit tradeoff associated with IBIS and its descendants: people

can learn to do this, and can construct representations which their peers 

value both in the meeting, and afterwards. All of this evidence is from the 

field, often anecdotal from practitioners who are not interested in writing 

research papers, but experiences are beginning to be documented 

software tool, a physical tool, or a musical instrument), Compendium 

yields greater benefits with practice.  

That being said, a DR approach is of no use if people cannot learn it in a

reasonable period of time. The “facilitation” perspective has proven to be 

an important step forward in providing us with a language and orientation

to describe to new users how personal and collective deliberation, a subset 

of which will be DR, can be captured. Two-day Dialogue Mapping train-

ing courses and on-line tutorials are available.7 Experience to date suggests 

that novices can gain value from the tool as a personal concept mapping 

aid within days, while confident, effective use in meetings takes longer, ff

although we have seen people use it effectively in meetings with minimal 

practice. Expert Compendium practitioners may be needed in contentious, 

unstructured contexts, but less experienced users can use the approach in

more stable contexts by completing templates. 

It is by no means the case that everyone who attends the two-day train-

ing course goes on to use the approach at work, but we are now supporting 

a sizeable online user community, with over 5,000 downloads of the appli-

cation to date. Several consulting companies currently use Compendium to

support clients in clarifying and integrating multistakeholder requirements

in wicked problem contexts, and the approach is also in internal use within

both commercial and nonprofit organizations. 

7  Compendium training: www.CompendiumInstitute.org/training/training.htm. 

5.7  Revisiting ‘Intrusiveness’ 

[6, 8, 23, 25, 27, 29]. Second, like any other complex artifact (whether a  
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8

some of which are concerned with software and broader socio-technical

systems design, though by no means all of them. Readers seeking empiri-

cal evidence of the approach’s learnability and effectiveness from analysesa

deployment of gIBIS [11] and a decade long deployment of QuestMap [8],

and Reuter have reflected on HyperIBIS [17] and Fischeret al. [12] on 

In this section, we present a small software engineering worked example

that illustrates Compendium support for a particular form of argumentation 

in software engineering. We then extend this with two different examples

to show first, the use of templates to drive organizational modeling and 

generate documentation, and secondly, the use of Compendium maps to 

index, navigate and query videos of meetings. 

Satisfaction arguments [16] need to be constructed when analyzing the 

security needs of a system. One begins by representing the system using 

Jackson’s problem frames [18], adds security requirements in the form of 

constraints [22], and then attempts to argue that the system satisfies the  

security requirements. These arguments are the satisfaction arguments. 

In most cases, an initial argument will not be sufficiently convincing for 

one or more reasons: 

1. The argument depends on properties of the system that are not currently

known

2. The behavior of domains (the actors/components in the system) is not 

sufficiently understood 

3. Domains required to satisfy the security requirements are not included

in the system 

To address the first two cases, the analyst might choose to go deeper 

into the system with the goal of better understanding the behavior and 

properties of the domains in the system. Unfortunately, this process can go

8  Compendium case studies: www.CompendiumInstitute.org/library/library.htm. 
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5.8.1 Security Satisfaction Arguments in Compendium

5.8  Examples of Compendium in Use 

Compmm endium has been used on over 100 projects during the last 10 years

of real world cases in the field can review [6, 8, 23, 25, 28, 29], while

IBIS and PHI. 

close video analysis is found in [27]. Pre-Compendium, video analysis of 

Carr [5] has used QuestMap to teach legal argumentation, while Isenmann

the QOC approach can be found in [2, 3, 4]; Conklin has reported on a large 
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on for a long time and, in the end, be inconclusive. At some point the ana-

lyst will decide to trust that the stated behavior and properties are as t

described. These decisions are called trust assumptions [15], and become 

an integral part of the satisfaction argument. 

To support this kind of modeling, a new Compendium Stencil was cre-

ated to provide a palette of Problem Frame modeling icons, specializations m

of the generic Reference node. If desired, a specific relational vocabulary

(Linkset(( ) can also be defined to provide labeled edges. 

Consider a simple human resources personnel information display sys-

tem. The proposed system has one requirement: provide the HR data  

requirement: only to HR staff. A problem diagram is constructed.ff

The attempt to construct a satisfaction argument that data is indeed pro-

vided only to HR staff shows that the analyst does not have sufficient 

information. One cannot answer the question How do we know that “Us-

ers” consists of HR staff? The problem information is not complete, and 

therefore the problem diagram must be changed. The choice made is to add 

authentication and authorization to the problem. The resulting problem 

diagram is shown in Fig. 5.5, and Fig. 5.6 the revised satisfaction argu-

ment.

Fig. 5.5. Problem diagram with authentication

requested by a user. Security goal analysis [1, 19, 24] results in one security 
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Fig. 5.6. Map of the satisfaction argument

The process by which the trust assumptions were agreed on is not shown 

in Figs. 5.5 and 5.6, but this could of course have been supported by 

Dialogue Mapping, possibly driven by a template (see the next example).

Furthermore, if the design meeting was recorded on video, then the maps 

could become indices back into the video (third example). 

Another case study [29] documented Compendium’s use in a time-

pressured initiative to conduct an enterprise-wide risk assessment for a 

Year 2000 Contingency Plan. In this project, as in many others, one of the

most common purposes of meetings was to advance a project deliverable 

of some sort, in this case to generate organizational documents. Figure  5.7 

illustrates how an IBIS map served first as the participatory user interface

to elicit information from domain experts, after which it was then exported 

to a data flow diagram, and a requirements specification text. 

S.J. Buckingham Shumm , et al.

5.8.2 From Template-driven Modeling To Documentation
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Fig. 5.7. Generating two alternative forms of documentation from a Compendium

issue template

Our second extension to the worked example illustrates a recent dimension 

to meeting and rationale capture: Compendium integration with meeting 

videos. In the context of NASA mission planning [6], a multimedia Meet-

ing Replay extension to Compendium was developed to assist the indexing

and navigation of the meeting videos to assist one team’s understanding of 

another’s meetings, decisions, and rationale (Fig. 5.8).9

9  Developed by the University of Southampton and the Open University as part of 

the CoAKTinG project: www.aktors.org/coakting. 

5.8.3 Rationale Management Via IBIS-Indexed Video  
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Fig. 5.8. Compendium-based Meeting Replay tool to help the science team on 

Earth recover the rationale behind the Mars crew’s analysis and decisions

The upper region of Fig. 5.8 shows the video of the crew’s meeting inset 

into the Compendium map they are building. The lower region contains

summary information about the meeting: who was there, who was speak-

ing, the agenda, and an overview of the current topic (derived from the f

Compendium map). Some of this information is presented as a timeline,

providing a visual index for an RST member to navigate the video, jump-

ing to relevant or interesting parts of the discussion by clicking on the

timeline or moving the slider. As well as being able to navigate using the 

event streams at the footer, Compendium was extended to support concep-

tual navigation: thus, to see discussion prior to the recording of a particular 

argument, one can click on this node in the Compendium client and the  

replay jumps to the point in the meeting shortly before that node was 

created. Work is now under way to develop this infrastructure for wider 

use.10

10  The Memetic project: www.memetic-vre.net.

S.J. Buckingham Shumm , et al.
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In one sense, the whole of this chapter is an extended account of ‘lessons

aids for design deliberation in the face of ill-structured, ‘wicked’ problems 

is an exciting one, but ‘cool tools’ alone cannot deliver this vision. The 

technologies of hypertext, digital video, and open standards for interopera-

bility provide a powerful infrastructure, but to move from designers’ fluid 

discussions to structured rationale representations, designers must become

skilled with DR tools. Reluctance to persist long enough to gain some flu-

ency with these new tools and their languages will result inevitably in the

familiar complaints of intrusiveness. We have sought to show that the art 

and craft of DR – at least DR of this particular sort – is to know how to use 

the tools well enough that they are constructively disruptive, delivering 

immediate value to those using it, as well as supporting longer-term mem-

ory. 

We recognize of course that there are representational limits to this  

particular paradigm, and organizational obstacles to the very idea of DR 

capture, as reviewed in Chap. 1. We have thus sought to assist in technical 

integration with other forms of rationale management tool. At this point, 

however, we do not yet have any examples to report, and welcome  

approaches from groups interested in collaboration.

In conclusion, as one would expect from the broad conception of 

“wicked problem,” and the generic nature of IBIS as a representational 

scheme, Compendium is now finding application in many domains other 

than software engineering, but this is a virtuous circle: as the approach and 

infrastructure evolve to meet the challenges of new domains, they in turn 

provide new methodological insights (e.g., the nature of practitioner exper-

tise; the disciplined use of templates) and practical functionality (e.g. data 

interoperability; modeling stencils; improved usability; document genera-

tion). Together these should assist the integration of argumentation-based 

rationale management with other forms of rationale, and the other tools of 

software engineering.
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5.9  Lessons Learnt and Conclusions 

learnt about the human factors of IBIS tools.’ The vision of computational
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Part 2 

Rationale Management

for Requirements Engineering 

A.H. Dutoit 

This part focuses on rationale management approaches for supporting and 

understanding requirements engineering activities, such as eliciting appli-

cation domain knowledge and end-user needs, formulating and structuring

requirements into a coherent model, or negotiating the scope of the system. 

Historically, requirements engineering has been an early field of applica-

tion of rationale approaches, as it exemplifies the concept of “wicked  

problems” as originally defined by Rittel and Weber [5]. For instance, let 

us examine three of the characteristics of wicked problems in the context 

of requirements engineering:

− There is no definite formulation of a wicked problem. End-user needs

are usually not well understood until after requirements are formu-

lated. Furthermore, requirements are reinterpreted and reformulated as

development progresses [4].

− Wicked problems have no objective stopping rule. The stakeholders’ 

understanding of user needs and of the system changes. Deploying the

system impacts the way in which the user works, resulting in changed 

or new user needs. In other words, user needs are never completely 

addressed. Successful systems are upgraded and expanded until re-

sources are depleted or stakeholders lose interest [6]. 

− Solutions to wicked problems are not true-or-false but better-or-

worse. Stakeholders, such as the client, end users, application domain

experts, and requirements engineers, have different perspectives on 

the system. Stakeholders have different frames of reference for evalu-

ating requirements [2]. 

Looking at each of these characteristics, rationale approaches seem to 

offer much promise in supporting requirements engineering:

− No definite formulation. Requirements often embody system deci-

sions, together with assumptions made by stakeholders about the  

system and the environment. Stakeholders capture the current state of 

their shared understanding by attaching rationale information to re-

quirements, explaining how a requirement was surfaced, which user 

needs it addresses, and what other alternatives were considered.   
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Instead of viewing a requirement as a final, definite statement of how

the system should perform, stakeholders accept that requirements will 

evolve and capture sufficient context to facilitate future changes. 

− No stopping rule. As requirements decisions are revisited, captured 

rationale can provide context for reevaluating the decision. Reopening 

an issue and elaborating new alternatives then leverages off insights

gained earlier. Examining new requirements in the light of the ration-

ale of past releases can make it easier to identify which parts of the 

system should evolve (and which should remain untouched).

− No true-or-false solutions. Making rationale explicit makes stake-

holders’ criteria explicit. Discussing rationale creates opportunities

for discovering misunderstandings, in particular in areas where terms 

are superficially similar, but have distinct meanings. Capturing 

rationale emphasizes the multiple frames in which requirements have

to fit. 

While rationale approaches in requirements engineering encounter the 

same obstacles in other domains (e.g., such as those discussed in depth in 

Part 1), requirements engineering provides particular opportunities for ra-

tionale approaches, including, for example, the relative high cost of 

requirements failures or the need for explicitly documented agreements in 

the presence of a contentious or distributed set of stakeholders. 

This part includes five chapters, each proposing a rationale approach 

emphasizing one of the above characteristics of wicked problems.

Chapter 6, “A Hybrid Approach to Upstream Requirements: IBIS and 

Cognitive Mapping,” by Rooksby, Sommerville, and Pidd, tackles the 

issue of problem formulation during the earliest phases of requirements.

The proposed method, called Wisdom, is a hybrid between a cognitive 

mapping method (SODA [1]) for facilitating problem structuring, and  

dialog mapping techniques (IBIS [3]) for incrementally formalizing  

requirements and building consensus among stakeholders.  

Chapter 7, “From DREAM to Reality: Specificities of Interactive Sys-

tems Development with respect to Rationale Management,” by Lacaze, 

Palanque, Barboni, Bastide, and Navarre, tackles the problem of options

exploration in the domain of interactive safety critical systems. In contrast 

stead, their attention is on the details of interaction between the users and 

the system. To deal with the criteria from various stakeholders, a number 

of solutions are explored concurrently, making the management of their 

rationale challenging. The proposed approach provides a notation (TEAM) 

and a tool (DREAM) for capturing rationale and relating it with models

from task analysis, software architecture, and prototypes. 

to Chap. 6, stakeholders have already defined the scope of the system. In-
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Chapter 8, “The WinWin Approach: Using a Requirements Negotiation 

Tool for Rationale Capture and Use,” by Boehm and Kitapci, tackles the 

problem of making explicit different stakeholders’ frame of reference, on

achieving an agreement on a set of user needs, and on maintaining this 

agreement throughout development. The proposed approach, centered on 

the EasyWinWin tool, supports the collaborative elicitation and reconcilia-

tion of mutually satisfactory Win conditions. The set of success critical 

stakeholders and their Win conditions are reidentified and reevaluated at

the beginning of each development cycle. 

The approaches described in Chaps. 6–8, while sharing common origins 

in the work of Rittel, cover a broad spectrum: Wisdom features a trained 

facilitator using a simple and responsive tool. DREAM features a sophisti-

cated meta-model relating information from many different sources, 

focusing on the management of a large number of dependencies. WinWin 

includes prioritization and voting features for resolving conflicts in long 

lists of Win conditions. 

The last two chapters in this part focus on our understanding of  

requirements engineering. Chapter 9, “Design Rationale in Exemplary

Business Process Modeling,” by Breitling, Kornstädt, and Sauer, examine

the issue of understanding of a client’s (current and future) business proc-

esses. They investigate an existing object-oriented method for modeling 

business processes (EBPM). They identify what rationale is already cap-

tured or can be inferred from existing models. They then discuss how such

a method could be enhanced with rationale approaches.  

Chapter 10, “Promoting and Supporting Requirements Engineering

Creativity,” by Nguyen and Swatman, tackles the issue of supporting 

creativity during requirements engineering. Creativity in requirements en-

gineering is often acknowledged but seldom taken into account in current 

methods. This has often led to the misconception that requirements engi-

neering is an incremental and orderly activity. Instead, focusing on  

encouraging creativity, this chapter proposes a hybrid approach, combin-

ing ad hoc and post hoc recording of rationale to support creative explora-

tion and problem restructuring, respectively.

In summary, these five chapters propose a diverse set of rationale 

approaches. In evaluating their work with actual requirements engineering 

problems and case studies, they investigate many practical concerns that 

are typically encountered when using rationale approaches. More impor-

tant, stepping back, looking at requirements engineering through rationale

glasses, these chapters offer a fresh perspective, often challenging 

long-held assumptions about both requirements engineering and rationale

management.
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A Hybrid Approach to Upstream 

Requirements: IBIS and Cognitive Mapping

J. Rooksby, I. Sommerville, M. Pidd 

Abstract: We address the problem of eliciting requirements for large-scale 

technical systems with multiple stakeholders, significant technological un-

certainties and extended timescales. Our focus is on the early, ‘upstream’ 

stage where options and commitment are just beginning to emerge. Draw-

ing both on problem structuring methods found in management science and 

on design rationale techniques found in software engineering, we have  

developed a hybrid process and accompanying software tool support to fa-

cilitate consensual problem definition.  Negotiation occurs through a com-

bination of informal group problem structuring (cognitive mapping) and in-

cremental formalism (dialogue mapping with IBIS) of requirements.  The 

process and tool have been successfully used in (1) strategy development

for revision of a UK Government administrative system, and (2) the nego-

tiation of a 25 year vision by stakeholders in a major technology company.

Keywords: design rationale; decision making; requirements engineering; 

IBIS; cognitive mapping

Large-scale systems do not come into existence easily.  Stakeholders rarely

share a unique problem definition, and political, social, economic and en-

vironmental factors can have a significant and often dominant influence on 

the decisions made [16]. An initial obstacle is to get from an unstructured 

set of requirements [19]. This is what we term the ‘upstream’ stage of re-

quirements engineering.

Existing approaches to requirements engineering acknowledge that 

requirements stem from different stakeholders, from the operational  

environment, from the enterprise, and from the availability of new tech-

nologies.  These approaches also acknowledge that the gestation period 

may be many years, in which time the staff involved, the available tech-

nologies, the organizations priorities and economic situation may change. 

Reconciling the requirements and implementing them is a crucial issue and 

is logically and technically difficult [16], is political [1] and is prone to 

points of crisis [22]; however, eliciting the requirements is often treated as 

if it were simple, if it is discussed at all.  In fact, elicitation is often a 

6.1  Introduction 

6

mess [17, 24] to a workable problem definition, and from that to an early



138 J. Rooksby, I. Sommerville, M. Pidd 

highly fraught, conflictual undertaking requiring careful and intensive

management by project managers and engineers.

In this chapter, we present a process and tool entitled Wisdom.  The 

Wisdom process and tool addresses the primary obstacle in eliciting 

requirements: problem definition. This phase revolves around how to

structure the problem or need which the system will answer.  These early 

stages of requirements elicitation are primarily concerned with the high-

level business or organizational requirements. Failure to get these right 

means that the more detailed requirements will not be aligned with the

needs of the organization.  At this early upstream stage, getting the right 

information (from multiple sources) is only part of the problem.  Interact-

ing around that information to structure it in ways that people will accept is

also crucial.  Conflicts are inevitable at this phase of negotiation [16].  The 

Wisdom process and tool negotiates these conflicts using a combination of 

formal and informal group processes supported by software.  It also seeks 

to render this kind of negotiation accountable. Wisdom can therefore be 

characterized as a “prescriptive” and “intrusive” approach.  By using the 

name Wisdom we are not attempting to specify what it means to be wise or

receive wisdom, there being a diverse literature on this.  Rather, the name 

is used to emphasize use of the process and tool to draw out existing  

organizational knowledge at the right time. We are concerned with how 

expansive rationale can be captured at the beginning of a project, and is-

sues be explored without decisions necessarily being made.  

In Sect. 6.2 of this chapter, we provide a description of the Wisdom

process.  In Sect. 6.3, we provide an account of the Wisdom tool, which is

designed to support the process, with examples of usage in Sect. 6.4. 

Finally, in Sect. 6.5, we reflect on experiences with the system.    

The Wisdom process is a hybrid of existing techniques from management 

science and software engineering. This section will begin by describing 

those techniques and then continue by explaining why Wisdom brings the

two together and describing how this is done.

Two problem-structuring techniques provide the background to Wisdom. 

The first is cognitive mapping, used in conjunction with the SODA  

(Strategic Options Development and Analysis) [12] approach to assisting

6.2.1 Background

6.2  The Process 
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strategic decision making.  The second is dialogue mapping with IBIS.  

Cognitive mapping as a problem structuring technique has previously been

introduced into requirements engineering [16]. The design rationale field, 

while not explicitly focused upon requirements engineering, has historical 

links to the problems faced: design rationale was originally proposed in the

context of software system design as a means of presenting ‘the design  

alternatives which were considered, the arguments for and against these 

alternatives and the reason why final design decisions were made’ [21].  

Dialogue mapping with IBIS is a particular technique useful for capturing 

and structuring design rationale.

Cognitive Mapping 

The development and use of cognitive maps within management science

nitive map by a node and links between different nodes are intended to

represent the relationship between the concepts [13].  These links are 

causal, in that “concept A” may lead to, or have implications for “concept 

B”. This linking structures the concepts into a hierarchy showing the posi-

tive or negative cause and effect between individual concepts across the 

model (see Fig. 6.1).  A complete model that represents the problem space

comprises a series of interconnected maps.

Node types can be distinguished in the cognitive map by using different 

fonts and color coding for each goal, strategy, option and issue. Ad hoc 

coding of the concepts helps with visualizing or navigating the map, as

well as analyzing it.  The key to supporting decision making with cognitive 

maps lies in the SODA process of building maps collaboratively in work-

shops with groups sharing and negotiating problem issues. 

An SODA workshop usually begins with a relatively free ranging  

brainstorm prompted by a question such as, “what are the issues facing the 

organization over the next x years?”  These concepts are clustered and 

further developed by the group. Links are added between concepts and 

concepts color coded according to their type. This problem structuring 

helps build the big picture and identify key concepts. These key concepts

are then ranked by voting to prioritize the issues on which to spend work-

shop time.  The choice of activity at any particular point depends on what 

the facilitator considers most appropriate to the task.  

During the course of a typical SODA workshop a group might cycle

through several different brainstorming activities and elaborate various key

issues through in-depth discussion. Goals, objectives, strategies, and op-

tions will be established before agreeing actions and a way forward. 

owes much to the work of Eden. [12, 13].  An idea is represented in a cog-
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Commitment to the action plan is achieved through developing shared un-

derstanding between participants through participation in the workshop 

process. Beginning problem definition in this way negotiates conflict m

upfront, rather than trying to resolve it after requirements have been 

articulated.

Fig. 6.1. Cognitive map

Dialogue Mapping

Here we discuss dialogue mapping, a facilitated form of argument 

visualization [7] that can be used as a means to capture design rationale. In

dialogue mapping, maps of linked nodes similar to cognitive maps are 

produced, but with stronger semantics and a finer grain of detail.  There 

are a number of different argument visualization approaches with support-

ing software tools [15]. Most of these have been inspired by the work of 

Rittel [25] who devised IBIS. Of these, the most expressive is DRL, im-

plemented in SIBYL [18]. The expressive power of DRL stems from a rich

polymorphic node type hierarchy and a set of typed relations that can be

used to connect node instances. In contrast to DRL, QOC [20] is a much 

simpler notation which involves three node types: question, option, and 

criteria. Options can be evaluated in terms of criteria by linking instances 

of these node types using supports or challenges relationships. IBIS differs 

from the other design rationale notations in that it is not concerned with 

evaluating alternatives, but is geared towards the deliberation process. 

Conklin has further extended IBIS with regard to the process of using it in

face-to-face meetings [8].  Buckingham Shum [5] provides a comprehen-

sive introduction to the aims, uses and applications of the principal design

rationale notations and presents the realities of using them.   

The nodes of an IBIS map are labeled as questions, ideas or arguments

(pros and cons). A map begins by asking a question around an issue that 

prompts for ideas. The pros and cons that are raised are added against each 

idea.  The links are not causal rather nodes are connected by links with  r

9: Node 

8: Node 

11: Node 

12: Node 

10: Node 

13: Node 
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different semantic types. For example, ideas respond to questions and 

arguments support or object to these ideas (see Fig. 6.2). The IBIS notation

ensures that the map represents the dialogue taking place in the group,

rather than representing the decision space. The IBIS notation represents

both the argument and provides a protocol for interacting. Questions are 

central to IBIS, particularly when there is disagreement or misunderstand-

ing around an issue. The issue is transformed by the facilitator into 

a question, which is then explored as part of the map. This diffuses the per-

sonal issues that arise from adversarial discussion and supports collabora-

tive enquiry of the “Yes, and ...” rather than “Yes, but ...” kind.

A session does not begin with a wide-ranging brainstorming activity, 

instead a question is posed that prompts for ideas (options) that directly 

address the problem. A map is built outwards from this, with parallel maps 

being added. This initial stage is less wide-ranging than SODA and risks

elaborating a side issue in great depth before the true problem is identified 

[31]. It relies on the group self correcting itself to identify the real issues. It 

does however lend itself to fine-grained analysis of a specific issue and its 

structure makes it easier to maintain the map over time. 

Fig. 6.2. Dialogue map 

Both cognitive mapping and dialogue mapping address different aspects of 

the problem of eliciting upstream requirements. While both techniques

have been used in isolation by the management science and computing 

communities respectively, we are not aware of any work that has com-

bined them.  The value of the Wisdom process lies in capitalizing on the 

6.2.2 The Wisdom Process 
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strengths of both cognitive mapping and dialogue mapping; we view the 

two techniques as complementary. 

For typical systems engineering projects, the upstream requirements 

phase is essential to generate a sufficient level of understanding of the pro-

ject. Furthermore, this understanding should be agreed and common to the 

many stakeholders who have an interest in the project.  The Wisdom  

process is not a hard process leading to finalized requirements but aims to 

provide stakeholders with a common and agreed understanding with which 

they can proceed. Cognitive mapping is used in the initial phases of the

Wisdom process. As reported earlier, cognitive mapping is fundamentally

used with a group process to support procedural rationality. The result of 

cognitive mapping is agreement and commitment to a way forward that 

will likely have involved negotiation. Dialogue mapping is used in later 

phases of the Wisdom process. Dialogue mapping differs to cognitive 

mapping since its starting point is a relatively narrow issue. Dialogue

mapping is more suited to situations where the key issues tend to be known

and the focus is a more detailed analysis of these. In addition, argument

visualization languages are more formal, being based on a type system 

with defined semantics. In the context of the problem definition phase, we

use dialogue mapping to explore key issues that have been identified dur-

ing cognitive mapping. The more formal maps enable rigorous discussion 

and analysis of individual issues. During the early phase, cognitive map-

ping gives a macro view of the problem, and in the later phase, design  

rationale maps provide a micro view.

We suggest that for systems engineering projects, cognitive mapping 

and dialogue mapping are not just complementary, but necessary. Cogni-

tive mapping naturally promotes divergent brainstorming activities that are 

necessary to understand the systemic nature of the problem. Furthermore,

cognitive mapping avoids groupthink, which is where a single issue  

becomes the focus of a group. This constrains creativity and impedes di-

vergent thinking. Having identified the key issues, dialogue maps can be

used to explore each issue in greater depth. A dialogue map explicitly cap-r

tures the arguments that emerge for each issue. In essence, cognitive map-

ping is better at developing an understanding of the whole, while dialogue

maps enable in-depth and detailed deliberation around particular issues.

The benefit is twofold, not only is the rationale ‘captured’, but in the proc-

ess of doing so that rationale is forced to be expansive and well articulated.d

The effectiveness of a meeting is dependent on the skills of a neutral fa-

meeting. Rather the facilitator’s objective is to foster procedural rational-

ity, where stakeholders agree that sensible decisions have been made and 

commit to them. In practice, a facilitator ensures that a meeting remains 

cilitator [9, 30]. A facilitator is not merely a passive agent who minutes a 
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focused, that the evolving cognitive map accurately reflects the ongoing

discussion, that stakeholders get the opportunity to air their views and that 

the decision process is sensible. During the problem definition phase, such 

decisions will have an impact on the subsequent requirement definition

phase. It is clearly important that where compromises have been made, af-

fected stakeholders are aware of them and are willing to commit to them.  m

In developing the Wisdom process, we experimented with three meth-

ods of representation: QOC, DRL, and IBIS. With DRL, we found that its 

complex type hierarchy caused people without a background in computing 

difficult to use.  QOC is a much simpler language, but similarly to DRL, is 

concerned with evaluating options to relatively well-understood problems. 

QOC is well suited to making long-term rationale explicit [11].  Since IBIS 

has been designed to support deliberation and discussion as opposed to 

evaluating particular design options, we have found it better suited the 

problem definition phase. Moreover, its simple and intuitive type system is 

easy to use by nontechnical personnel.

As final comments on the Wisdom process we will discuss preparation 

and final documentation. We recognize that stakeholders are likely to be

represented by senior personnel from geographically distributed locations.

These factors mean that organizing meetings is difficult and that they 

should be as productive as possible. We emphasize the benefit of holding

face to face meetings at times such as the upstream stage where the ‘what’

and the ‘why’ must emerge.  Distributed, facilitated meetings are possible 

but are still not as rich as face-to-face interactions [9]. Prior to meetings, 

we suggest a preparatory activity where all stakeholders are invited to pro-

vide initial input. Based on these inputs, a first-cut cognitive map is gener-

ated in terms of nodes but without links. This enables the facilitator to gain 

familiarity with the problem, in terms of issues, and to do initial work such 

as removing synonym issues. Furthermore, the preparatory activity allows 

meetings to be constructive more quickly than having to start from a blank 

sheet. Documentation from the problem definition phase is critical since it

determines system requirements. Moreover, personnel who join a project 

can use the documentation to understand how and why requirements have

been derived. The maps that result from the problem definition phase are

the first of many documents that should be held in a project repository.  
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We have developed a tool to support the wisdom process. We will begin 

this section with a background discussion of cognitive mapping and design

rationale tools, and then continue with a discussion of the Wisdom tool. 

Cognitive mapping and dialogue mapping software exists (including Deci-

sion Explorer™, Questmap™ and Compendium™), and it is also true that 

whiteboards or sticky notes can be used to support the processes.  So why

develop a new piece of software? For a start, software is essential to man-

age the scale and complexity of data. For example, it is not uncommon for 

half-day workshops to generate 300 nodes. More importantly, during 

successive ‘gathers’ each participant may input several dozen ideas. The 

facilitator needs software to manage the flow of text that results from asyn-

chronous and synchronous input.  It is also important to store the data to

make the rationale for decisions accessible at later stages of development. 

Given that the Wisdom process combines cognitive mapping and dialogue 

mapping, a software tool that allows users to work with both techniques is 

clearly required. Furthermore, for hybrid maps, the use of separate 

tools for each technique is unworkable. Although cognitive mapping and 

dialogue mapping software exists, no other tool readily supports both tech-

niques.

The Wisdom tool (Figs. 6.3 and 6.4) supports facilitated meetings with

functionality to create, edit, store, and browse cognitive maps, dialogue 

maps, and hybrid maps. Hybrid maps allow cognitive mapping and dia-a

logue mapping activities to be intermixed where appropriate. For example, 

where a particular issue is being deliberated using IBIS, inclusion of cog-

nitive mapping elements that relate to the holistic view may be desirable to

clarify the context of the specific issue or to resolve uncertainty.  

Based on formative evaluations, we have refined the tool in order to

minimize its overhead in a facilitated session. A cumbersome tool is det-

rimental to the effectiveness of the facilitator. Indeed, this is consistent 

with our argument to use cognitive mapping as opposed to dialogue map-

ping in the early stages of problem definition since the overhead associated 

with using dialogue mapping may unduly constrain brainstorming work.  

6.3.2 The Wisdom Tool

6.3.1 Background

6.3  The Tool 
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The tool does little more than support meetings and store maps from those 

meetings. Features associated with management of rationale over the dura-

tion of a project, or over a number of projects are deliberately left absent.  

We concentrated on producing a tool that runs at a consistently fast speedt

and offers nothing that is not core to the process. In particular, we concen-

trated on producing a streamlined user interface. Rather than include 

features for rationale management, we decided to create a facility to export 

maps to dedicated rationale management software.

Fig. 6.3. Wisdom screen, cognitive map  

To address premeeting preparation, the tool provides a distributed gather 

service. Initially, the facilitator uses this service to construct a question-

naire. The tool generates a web-based form which remote participants are 

then invited to complete. Based on the participants’ responses, the tool 

generates a cognitive map. The facilitator uses this map to prepare for  

subsequent facilitated sessions. The same functionality can be used during

meetings so that meeting participants can simultaneously build a cognitive

map which the facilitator can structure “on the fly”. For traceability, the 

tool stores maps and provides simple reporting facilities in addition to the 

graphical views.



146 J. Rooksby, I. Sommerville, M. Pidd 

We investigated whether we should provide support for the transition

from cognitive to IBIS maps. For the latter, we considered building a set of 

heuristics that could be used. For example, one guideline involved finding 

cognitive mapping nodes which are tightly connected to others and make

such nodes candidate IBIS questions. In this way, issues would be priori-

tized. However, based on experiments, it appears that active human  

involvement in this process is important to maintain a group’s collective

cognition of the problem. Furthermore, the transition requires human 

judgment, experience, and intelligence. More generally, the need to gener-

ate more formal representations of maps remains an important avenue of 

further work. 

Fig. 6.4. Wisdom screen, dialogue map

In Sect. 6.5 of this chapter, we will discuss real experiences of using Wis-

dom. As a result of the sensitivity of the information produced during 

those sessions we cannot publish the results in any detail and so will first 

use a scenario to illustrate the use of Wisdom. The scenario will concern

6.4  Example 
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upstream requirements in procurement of a high performance computing 

service.

Eliciting requirements for a national high performance computing

(HPC) service is a complex procedure, encountering all of the problems a

typical requirements engineering project might expect [26], including 

multiple stakeholders, extended timescales and limited resources.  HPC 

procurement involves negotiation and agreement of multimillion pound,

custom built machines. Different architectures suit different types of scien-

tific computing and thus different stakeholders, and in addition different 

stakeholders will have different requirements for the services surrounding 

these machines including data visualization, acceptable queuing times and 

data security. Managing requirements is an intensive task, and in particular 

the upstream stage is complicated and difficult to get right.  Bad decisions 

made at this point can have serious and costly repercussions later on.  The

upstream stage must address many issues, including how UK science 

might benefit from a new machine, which forms of science will be catered

for, and whether the timing is right. The upstream stage will involve 

general discussions of possible technologies, but at this point should not 

involve decisions about them.   

Using the Wisdom process to address these upstream issues, a workshop 

for senior stakeholders in national HPC would be convened. The stake-

holders must include those with responsibility for the project, those with a

good understanding of national scientific policy and practice, and with a 

good understanding of HPC. A few days prior to the workshop, the facili-

tator should gather information from participants via Wisdom’s web-based 

gather facility. The facilitator will pose a very open question such as 

“What issues must the procurers of a new national HPC service address?” 

This will help to get stakeholders to start thinking about what they will 

discuss at the workshop. The facilitator will arrange the issues on a cogni-

tive map to provide a starting point for the workshop. The workshop 

proper would begin with further brainstorming. In Fig. 6.3 we give an 

imagined cognitive map from such a brainstorming.  The initial node on

this map is node 20: “single or multiple machines?” This node will have 

been taken from a larger, more general map made earlier and is surrounded 

by issues that have arisen in response to it. The node has links to two other 

nodes: node 28 “multiple” and node 29 “single”. Note that these two nodes

have been put in later than some of the nodes they lead to. This has re-f

sulted from the facilitator reorganizing the map after a number of nodes 

have been added in response to node 20. Doing this reorganization makes

the map easier to read, and also makes it easier to see that stakeholders are 

not fixated on, say, issues surrounding multiple machines.  
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At this point the facilitator will hold a discussion on what issues need to

be focused on in the remainder of the workshop, and if necessary a vote. 

Later in the workshop, dialogue maps will begin with the issues selected. 

In Fig. 6.4 a dialogue map is begun with the question “should we have a 

single machine or multiple machines?” This question echoes the node dis-

cussed in the cognitive map. The facilitator has deliberately not divided the

answers up into “single” and “multiple” here to avoid the stakeholders be-

ing pushed into conflict or to make a decision that would be too early at 

this point. Selected nodes from the cognitive map have been written up as

ideas. The stakeholders are asked to focus more on the pros and cons of 

ideas here, and the idea “multiple machines would suit more users” is sup-

ported with the pro node “the increasing costs means we should expand the

user base.” By focusing on the issue, however, a stakeholder has begun to

question its validity. The stakeholders have up to this point made the as-

sumption that different scientists require different architectures, but the 

question is raised “Do users actually require different architectures?” and it 

transpires from this that different algorithms require different architectures

and so the relationship between scientists’ needs and their algorithms come

into question. From discussions such as this, we believe that the problem

becomes much better articulated and understood and the following steps in

establishing requirements for, in this case a high performance computer, 

can be taken more competently.  

This section will outline two uses of Wisdom and discuss the broad issues

that arose. We discuss the revision of a UK Government administrative 

system, and negotiation of a 25-year vision for a military technology or-

ganization.  The first took place as formative evaluation, with an early ver-

sion of Wisdom, and a “friendly” client.  The second took place with a

completed version of Wisdom. We were fortunate in being able to use

Wisdom in these major upstream requirements exercises, but with that 

comes the problem that we cannot reproduce the data from these exercises 

in print.

Substantive formative evaluation took place with a ‘friendly’ client un-k

dertaking a major project. A UK Government department was looking at 

wholesale revision of its administrative system and logistical support, and 

invited the Wisdom team to run a three-hour workshop with six of its em-

ployees. The client had devised an interim set of proposals and used the 

workshop to develop a strategy to take work forward. It was an ambiguous 

6.5  Experience 
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and complex problem with distributed stakeholders. Decisions made at that 

point would have a knock on effect for the remainder of the project. The 

client found the workshop useful, and proceeded using the strategy begun 

there. The workshop was a test case for Wisdom, in which we were able to 

get a good grasp of the divergence and convergence that the Wisdom proc-

ess affords and to gain practical requirements for the software tool (such as 

the speeds it must allow node entry, appropriate font size and more) and to

expose bugs.   

Later, substantive evaluation took place with a planning project for a 

major military technology company.  The client wished to hold a series of 

workshops to consider what they should be producing in 25-years time.  

Given the very long lead time for complex military systems, this meant 

that they were interested in developing high-level systems requirements 

now that could serve as a basis for technology assessment and conceptual 

system design. They had organized training in dialogue mapping for two 

of its employees, who became interested in Wisdom. The Wisdom team

were invited to part run three workshops in collaboration with these two

client employees.  The Wisdom process and tool were used in two work-

shops and the Wisdom process and a commercially available tool in the 

third. Many high-ranking members of the client company were brought to-

gether, each with their own viewpoints, concerns and agendas. Wisdom is 

ideal for the upstream combination of ambiguous problem and multiple

stakeholders. No decision or explicit consensus was sought as an outcome

of the workshops but a map of the various issues.  

The workshops were held with approximately 10–15 stakeholders at-

tending plus a trainee facilitator from within the organization sharing the 

facilitator role with an experienced facilitator from the Wisdom team.  In 

the first workshop, Wisdom was used to support a brainstorming session

that produced 83 separate nodes.  These were then discussed and reduced 

to 15 key issues. One of these issues, to give an example, was safety. Thus

Wisdom was used to support an initial divergent phase and a following

convergent activity. At this point the stakeholders wished to vote on the

importance of each issue. This vote is not a part of the generic Wisdom

process, but the process is flexible enough to allow for its inclusion.  The 

importance ascribed to each issue was used to determine how long was 

spent discussing it. The Wisdom process was then continued with a dia-

logue mapping activity. The outcome of the workshop was an agreed map 

of the issues small enough to be printed on one side of A4 paper.  The sec-

ond workshop was dominated by brainstorming and clustering of ideas and

by use of the Wisdom tool for cognitive mapping. Dialogue maps were 

used for the clustering of ideas. The third workshop was almost entirely 
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composed of dialogue mapping, complementing the outcome of the sec-

ond.  

Our experience in the workshops was that the Wisdom process led to

divergent followed by convergent group activity and that this was demon-

strated to be particularly useful in relation to conflict. One issue that was

raised by a participant was met be hostile groans by other participants and 

met with indifference by others. The issue was a cross cutting concern with 

potential relevance to much of the decisions to be made. The participant 

who raised it felt strongly about it. The facilitator was able to handle this 

by entering a divergent phase of mapping out the issue, covering why it 

might or might not be relevant, what the implications might be and at-

tempts to recall precedents set for this issue in other planning situations

and indeed legal issues related to it. This issue became accepted as having 

relevance, but as being of low priority. A very small IBIS map was pro-

duced around the issue.  

The Wisdom process was used in all three of the workshops described 

earlier, however, the tool was not used throughout as the facilitator wished 

to use a commercially available tool for dialogue mapping.  This was

through no shortcoming of the Wisdom tool but because, as a product of a 

research project, the Wisdom tool cannot be given guaraaa nteed support after aa

the project is complete.  This did not seem to adversely affect the work-

shop as the stakeholders did not seem to notice the change of software, al-

though we question whether more hybrid maps might have been produced d

had we used the Wisdom tool throughout.  The significant problem that 

arose for us was that when asked to comment on the effectiveness of the 

workshop, the workshop participants did not differentiate between Wis-

dom and the commercial tool. The comments made by participants at the 

end of the workshops were exclusively positive, but again were not simply 

attributable to Wisdom as the participants had rarely been in the same 

room together and so commented not just on how effective the Wisdom

workshop was, but on how effective it is to have any sort of workshop in 

the first place.     

Evaluation and requirements engineering methodology do not always go 

hand in hand. Evaluation is very difficult in this situation; as we have dis-

cussed in the earlier section, comparison of a particular technique with an-

other, or of one tool with another is often impossible in practice. Dix [10] 

points out that in situations such as this, evaluation can be methodologically 

6.6  Discussion 
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unsound, and that rather than attempting to conform to some model of 

experimentation we must concentrate on qualitative insight. Research in

this instance is investigation and exploration and not the construction of a 

product. Wisdom is not a product but a research project and our writing

here is to communicate the insights from the research. We do not wish to 

persuade people to specifically use the Wisdom process and tool but to 

pick up upon the lessons learned and incorporate them into their own re-

search or practice. It is true in much requirements engineering and design 

rationale research that the results presented are qualitative insights, and we

believe that is no bad thing.    

Given that the participants in our workshops were rarely in the same

country, let alone the same room together, and that they had not used any 

visual argumentation in a facilitated requirements workshop before, they 

were unable to separate the value of Wisdom from the value of simply

holding a workshop.  Given that these were workshops to plan a 25-year 

vision, the outcomes and the connections of these outcomes to work done 

over the next quarter of a century are ambiguous. In this situation, we can-

not make substantial claims about Wisdom being any more effective than

alternative methods, but can conclude that Wisdom as a hybrid technique 

does work and is seen by participants to be better than no technique at all. 

This might be seen as a small claim, but it is a foundation for the legiti-

macy of the insights offered in this chapter. 

We have focused on the early stage of requirements engineering, the  

upstream stage, where the “what” and “why” of a system must emerge.  

This is a stage where eliciting rather than managing rationale is required,r

and in conjunction with handling conflict, encouraging coverage of possi-ff

bilities and formation of a team with ownership of the system. As a deci-

sion support tool, Wisdom is a tool for not making decisions, our notion 

being that it is too easy to rush into decisions without sufficient grounding.

We put conflict up front, using early sessions that allow conflicting issues

to be mapped out without forcing judgments to be made. We then seek to 

manage conflict, but not necessarily resolve it, by using a convergent tech-

nique that supports “yes…and” rather than “yes…but” argumentation.   

whereby stakeholders iteratively negotiate shared “win” conditions for 

software and systems requirements.  The WinWin technique is longitudi-

nal and attempts to balance the discovering, negotiating, elaborating and 

prioritizing of objectives with things like maintaining a creative flow of 

ideas [4], and ensuring validity of the models produced [14].  Compen-

argumentation with knowledge management. It differs to Wisdom in that 

dium [27, 29] is a method (with a suite of associated tools) for combining

A negotiation technique that has covered similar issues is WinWin [2, 3]



152 J. Rooksby, I. Sommerville, M. Pidd 

it does not address divergent cognitive mapping (although it has been put 

to other innovative uses [6,28]) and that it offers extensive facility for lon-

gitudinal knowledge management.  At the time we compared the Wisdom 

tool to the Compendium tools we found the latter ran marginally too slow 

for our purposes.   

Nguyen and Swatman [22] give an interesting account of the require-

ments engineering process as necessarily containing a number of crisis 

points where the problem space must be reconfigured. Our intention was to 

draw out conflict up front, but while doing that might be useful, it is prob-

able that conflicts will always arise at points in a project. It is possible that 

a Wisdom style workshop would be appropriate for use at these various 

crisis points. We end with two broader points useful when thinking about 

what has been achieved in Wisdom and where future work may be needed.  

Law [17] makes the point that when representing complex situations we 

usually try to make the mess absent. He suggests rehabilitation of mess, or 

finding ways to know mess. Finally, making an interesting contrast to our 

intention to capture expansive rationale, Nietzsche has said “There is a 

great deal I do not want to know – wisdom sets bounds even to knowl-

edge” [23,p. 73].      
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From DREAM to Reality: Specificities of 

X. Lacaze, P. Palanque, E. Barboni, R. Bastide, D. Navarre 

Abstract: This chapter presents a notation and a tool dedicated to the sup-

port of exploration of options and traceability of choices during the devel-

opment process of interactive safety critical systems. The paper presents

first the notation TEAM (Traceability, Exploration and Analysis Model) 

and its specificities with respect to other Design Rationale notations. Both 

the notation and the tools called DREAM (Design Rationale Environment 

for Argumentation and Modeling) are presented on a case study showing

how they can support design of interaction techniques for Air Traffic Con-

trol work-stations. 

Keywords: design rationale in software engineering; human computer in-

teraction; case study; tool support; TEAM, DREAM, QOC

Interactive systems construction requires customized development proc-

more salient the implication of users throughout the various phases and 

especially during requirements elicitation and evaluation for which evalua-

tion with users is critical. In the same way these development processes 

advocate the design of multiple solutions (in order to foster users’ 

involvement) providing users with various kinds of prototypes (both low-

paper or software, are proposed and evaluated, increases the communica-

tion between designers and users and also increases usability of the 

system. However, this proliferation of options and solutions makes ration-

ale management much more cumbersome. 

In the field of safety critical interactive software, such as Air Traffic 

Control workstations or interactive cockpits, rationale management be-

comes more and more critical. Incidents/accidents investigation and certi-

fication prior to deployment are two main reasons for such an interest in

the rationale for selected design options. Our approach focuses mainly on 

safety critical systems (see Sect. 1.6.1) to provide high-quality decisions. 

7.1  Introduction 

7

Interactive Systems Development With 

Respect To Rationale Management 

esses (with respect to main stream som ftware engineering) [20] making

fidelity and high-fidelitytt ) [24]. The fact that several prototytt pes, either 
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Since 1990 we have been working in the field of formal description

techniques for safety critical interactive distributed software. This work 

encompasses the definition of a formalism called Interactive Cooperative

Objects based on High-level Petri nets and objects [3,4] specific extensions 

Our notation and tools have been applied to several application domains

tary cockpits (RAFALE Aircraft) [7] or interactive civil aircraft cockpits

Applying our research results to several domains has brought a new

light on our work by showing that providing a reliable solution is not more

valuable than providing the detailed rationale for that particular solution.

Adding rationale behind decision improves the quality of interactive sys-

tems (see Sect. 1.4.3.). For approximately three years now, we have been

working on a project for finding ways of providing the various participants 

throughout the development process of interactive safety critical software 

with notations and tools for the rationale management. The first version of 

the notation called TEAM (Traceability, Exploration and Analysis Mode) 

and its CASE tool (called DREAM for Design Rationale Environment for 

Argumentation and Modeling) are available on the web at the following

address http://liihs.irit.fr/dream. They have been applied to several case 

studies and the aim of the chapter is to present those results in detail.

Systems

agement and argumentation have been the focus of many research activi-

ties.

Interactive systems design (and more broadly speaking the Human–

to interactive system engineering that involves users in various phases. For t

instance, task analysis and modeling provide support for capturing and 

formation is then incorporated in many places in the design process as, for 

instance, in the design phases when the allocation of functions between the

system and the users is defined, or later (in the evaluation phases) when 

7.2  State of Art in Rationale Management for Interactive 

for distributed interactive systems [5, 6] and a CASE tool called PetShop 

[17, 18] for the edition, formal analysis and execution of the models.

such as satellite command and control workstations [22], Air Traffic Con-

trol workstation for en-route air traffic management [23], interactive mili-

(Airbus A380) [19]. 

Since the seminal work from Toulmin [27] in the late 1950s, design man-

Computer Interaction field) prommm otes a user-centered design approach [21]

representing user activities [9] while interacting with a system. Such in-
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the system is tested in order to check whether or not user activities are ex-

haustively supported by the system. 

Our approach in design rationale is related to argumentation as defined 

in Sect. 1.3. The main notations related to this type of design rationale are 

to capture argumentation and alternatives during the design process. These

notations cannot store specific information related to interactive systems

such as system modeling, task models, etc. Our proposal (detailed in 

Sect. 7.3) is to provide interactive systems designers with a notation for ra-

tionale management able to take into account specificities of interactive

systems and more precisely safety critical ones. To this end, our approach 

focuses on Human–Computer Interaction concepts and how to integrate 

them. Besides, our approach is tool supported in order to address both 

scalability and cost/benefit concerns. 

The TEAM (Traceability, Exploration and Analysis Mode) notation is 

several extensions in order to deal with the specificities of safety critical 

interactive systems and also to address some of the usability issues of 

QOC. The rationale for extending QOC is mainly based on its simplicity

and readability that makes it understandable by most of the actors involved 

in interactive systems design such as graphic designers, developers, cus-

tomers, certification authorities, etc. This easy to read and write notation, 

enhances collaboration between the participants as previously defined in 

the reusability of the models (see Sect. 1.4.2.). 

MacLean introduced the notion of criteria and criteria that are more gen-

eral in order to gather criteria. Having the same name for two concepts 

makes diagrams fuzzy, thus we decided to define criteria that are more

general into factors (which is a concept largely used in software engineer-

factors. The notion of criteria in QOC is thus defined by the following: (1) 

7.3.1 Dealing with Usability (Criteria and Factors) 

7.3  TEAM Notation 

IBIS (Issue-Based Information System) [12], see Sect. 1.3.1. and QOC

(Questions, Options, Criteria) [14] see Sect. 1.3.2. These notations are able

based on QOC (as stated above introduced by MacLean [14]) and proposes

Sect. 1.4.1. QOC was designed to support reuse [16] in order to improvemm

ing). We exploit the definition from McCall’s work on factors fromm [15]

and from other work [25] that defines a relationship between criteria andm
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quality factors correspond to requirements expressed by the clients and/or 

users; (2) quality criteria are elements that can be measured; (3) metrics: is

the actual value of a couple option–criterion for a given scenario of use. 

Metrics values can be written on the connector between an option and a

criterion. Metrics information must be considered as quantitative informa-

we have done in the field explains how such values can be computed using

performance evaluation techniques. 

QOC users need to be able to compare the criteria related to an option (i.e., 

to express which one is more important for instance). To address this issue, 

our proposal is to associate a weight to criteria and to factors. Weights 

range from 1 (important) to 5 (optional). This extension allows users to 

capture more information in the models. However, Buckingham Shum

warns that weight can make it possible for users to distort argumentation. 

We propose to relate argument entities, previously defined by MacLean,

to all elements of the models and not only to argue the evaluation put on 

the links option/criterion.  

Task analysis and modeling [9] is also a critical element of user-centered 

design methods and thus critical for the engineering of safety critical inter-

active systems. A task model is a representation of user tasks often involv-

ing some form of interaction with a system influenced by its contextual 

environment. We propose extensions to QOC in order to deal explicitly 

with task models as well as with scenarios that correspond to execution

paths in the task models. We add two new entities to the QOC notation 

namely task models and scenarios. A design option, dealing with the dia-

logue aspect (see Sect. 7.3.3), can propose a task model. From the task 

model we can extract relevant scenarios. A relevant scenario focuses on

one of the metrics (introduced earlier) we want to measure on the interac-

tive system. To this end, a scenario is related to a couple criterion–option

and the metrics are directly stored on the edge between the option and the

criterion.

X. Lacaze, et al.

7.3.2 Integrating Task Analysis/Task Modeling Aspects 

tion and not as qualitative information. Additionally, previous work [13]

Buckingham Shum’s [26] usability studies on QOC notation reveals that 
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Management

Software architectures dedicated to interactive software have been pro-

posed since the early 1980s and the most known ones are the Seeheim 

the Seeheim model. We chose the ARCH model because it proposes a 

generic view of an interactive system. The ARCH model breaks down an 

interactive system into five components: domain specific component,  

domain adaptor component, dialogue component, logical presentation

component, and physical presentation component. We turn this model into 

a simple ARCH model within only three components. The first two com-

ponents are dedicated to the noninteractive part of an interactive system 

and are thus merged in a component called functional core. As we are less

concerned with implementation issues than design ones, we have decided 

to merge presentation components together in a component called presen-

tation component. In our models, questions can be structured according to

that architecture and thus related to one of the components: functional 

core, dialogue, and presentation. This relationship might not be defined 

and thus a question is not necessarily related to a component to capture, for 

instance, broader topics.

This structuring supports decomposition of problems adequately when 

dealing with interactive systems. In addition, it makes it possible for man-

aging the argumentation at various levels of abstraction from higher-level

phases such as specifications but also at lower level phases such as de-

tailed design and implementation phases and this for any of these compo-

nents.

All the extensions proposed are dedicated to the support of designers’  

activities such as structuring of models, editing of models and information

retrieval from models. All the extensions supported by TEAM notation are 

tional extensions such as design choices for each node (i.e., questions, op-

tions, etc.) connection of arguments…are available in TEAM but have not 

been presented in the previous sections, as they are standard extensions in d

rationale management and not specific to interactive systems.

7.3.4 Conclusion 

7.3.3  Software Architecture Structuring of Rationale

summarized in the entity relationship diagram prm esented in Fig. 7.1. Addi-

model [10] or the ARCH model [1,2]. The ARCH model is an extension of
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Fig. 7.1. Entity relationship model describing TEAM notation 

Rectangles represent entities; entity name is the first item in the box and 

the attributes describing the content of the entity below. Similarly, rounded 

rectangles represent relationships. Keys attributes are both bold and under-

lined while required attributes (at modeling time) are highlighted in bold.

A cross in the circle highlights exclusions constraints between relation-

ships.

The TEAM notation is supported by a tool and an environment called 

DREAM (Design Rationale Environment for Argumentation and Model-

ing) for the edition of models (taking into account all the elements of the 

notation presented above), the analysis of models (to check whether all the 

options have been argued, commented,…) and the exploitation of models

X. Lacaze, et al.

7.4   DREAM Tool 

Fig. 7.1 displays the entity relationship model of the TEAM notation.
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(to allow for argumentation and traceability of the models throughout the

project and to allow for reuse for further projects).

The DREAM tool also supports the management of teamwork and ses-

sions thus supporting traceability of decisions according to the people that 

make them, but also according to the time when those decisions have been 

made. A session is made up of three elements: the model, the date, and the

list of people involved in the construction of the model. Most of the time, a

session corresponds to a meeting or an iteration in an UCD approach. 

DREAM tool does not address issues such as the capture problem defined 

in Sect. 1.7.2 because our first goal was to build a tool able to edit and 

store TEAM models. DREAM11 is publicly available and can be 

downloaded on the following web page: http://liihs.irit.fr/dream/.

five frames. Frame 5 is the main editing zone where users can create, edit,

modify and visualize models. Frame 1 displays the list of authors that con-

tributed to the model. This list can be edited. Frame 2 contains the history

of changes made to the model and displays all the sessions related to the 

current model. Selecting a session changes the display in frame 5 and  

replaces current model in that frame by the one stored in the selected  

session. Frame 3 presents a mini-map global view of the edited model dis-

played in frame 5; the red rectangle corresponds to the portion of the

whole diagram that is displayed in frame 5. Modification of the displayed 

zone can be done using direct manipulation of the red rectangle in frame 3. 

Frame 4 presents another representation of the model; this tree like view is 

based on bifocal tree visualization techniques [8].

Edition of TEAM models can be done using direct manipulation of 

nodes and edges. A given node (let say criterion 3) can appear in several 

places in a model. In order to do so, the second occurrence of this node 

must be created by copying and pasting the first occurrence. These two oc-

currences of the same node are then linked i.e., one modification of one

occurrence being automatically performed on the other instance. Node du-

plication reduces significantly the number of crossing edges in a model. It 

also makes the model more readable as all the criterion or options appear 

close to each question. User manages spatial arrangements in order to 

11 DREAM is fully based on model-view-controller architecture and develops in

Java. Data are stored in XML (eXtensible Markup Language) files, according

to a syntax described in a DTD (Document Type Definition).

7.4.1 Overview and Principle

As can be seen in Fig. 7.2, the DREAM user interface is broken down into



162

make the model layout in a way that makes it easier to read. However, it 

increases significantly the complexity of some tasks such as, identifying allf

the options related to a given criterion if that criterion has been duplicated 

several times12. Frame 4 has been introduced in order to solve this problem. 

Indeed, manipulation in that frame allows users to select a given node to

precisely check all its connected nodes. It is important to note that the spa-

tial arrangement of the elements is free.

Fig. 7.2. User interface of DREAM 

Performing a user-centered design approach on our tool, we have done aa

some task analysis on users involved in rationale management. Two main 

tasks have been identified; first model creation and modification (called 

models edition); second model exploitation involving reading, printing,

checking verification. The DREAM tool explicitly supports these two

tasks (described in Sects. 7.4.2 and 7.4.3) providing users with highly in-

teractive manipulation and visualization techniques. 

The main advantages of the DREAM tool relative to the other tools, are

a graphical representation and a direct manipulation of elements. It should 

also been noted that DREAM has not yet been tested by users, but it has

been taught and used on a Masters in human computer interaction. The au-

thors of the chapter have edited models presented in the following 

sections.

12

models is cumbersome. Indeed, users spend 52% of the time in renaming nodes 

when reusing criteria to keep consistency in the diagrams.

X. Lacaze, et al.

 Buckingham Shm um’s studitt es have shown that [t 11] papaa er-based use of QOC
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Users build models by creating and editing TEAM models elements such

as questions, options, criteria, links, etc. A toolbar allowing the creation of 

elements is available at the top of the window. Once a node is created, the 

user sets its label. Model edition is made in the workspace (frame 5). The 

global view (frame 3) and workspace (frame 5) display models in a differ-

ent scale in order to help users focus and work on a detailed question while

remaining aware of contextual information i.e., where the currently edited 

zone is located in the whole diagram. DREAM embeds some constraints 

about edition, making it impossible to build models that are not compatible

Each node has a graphical representation made up of two elements: a 

glyph (i.e., a shape) and a color. Questions are depicted as red rounded 

squares, options as orange discs, criteria as green triangles, factors as blue 

triangles, arguments as grey triangles, etc. When a decision has been made

about an option, its appearance changes to an orange disc with a black bold 

line (see the option on the right-hand side of the black 5 in frame 5. Shape

and color for criteria and factors change according to the weight assigned 

to them. A strong weight is represented by a brightness color and straight 

shape, whereas a weak weight is displayed by a pastel color and a fuzzy 

shape. Users can zoom-in and zoom-out models. 

DREAM allows users to enter detailed information about a node using

(that will appear in the caption of the shape) is entered in area 1. A more 

detailed textual description about the node is edited in area 2. Area 3 pro-

vides a way to add external information about the node via attachments

such as a web page, picture, video, text file, spreadsheet, Petri nets descrip-

tion, task model, etc. Area 4 relates the node to the components of the  

architectural model for interactive systems presented in Sect. 7.3.3. 

11

22
33

44

Fig. 7.3. Edition of detailed information for a node 

As stated above, in order to support an iterative process, TEAM can

store several versions/sessions of a model. Earlier sessions can be visual-

ized, but not modified. Session management can be done by creating an

7.4.2 Models Edition

with the constraints described in the entity/relationship diagram of m Fig. 7.1.

the edition window displayed in Fig. 7.3. Label information about a node
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empty new model or by copying current model to a new file. As TEAM 

notation is capable to store all versions, and then all decisions, refine-

ments, back tracking in a model, it fully supports history management of 

the rationale.

TEAM offers several ways for users to extract information from models.

One way is directly provided thanks to the graphical representation of the

elements of TEAM, another one is offered by session history. 

First of all, the graphical representation of models reveals several as-

pects of the diagram. Questions solved (i.e., presenting one and only one 

selected option) and questions still to be resolved are quickly identified by 

users. This is mainly due to the different appearance of these two types of 

options. Poorly argumented questions are also highlighted by the lack of 

criteria associated to their options. As we split design into four mains

trends (related to architectural concerns) such as the dialogue part, func-

tional core part, presentation part, and miscellaneous part, it is easy to de-

tect which parts of the design have been the focus of a significant amount 

of work and which ones have not. The more the model contains resolved 

questions the more likely the model construction is close to be finished. 

A lot of information can be extracted from sessions. Sessions offer a 

view of the diagram evolution: appearance of new branches, and disap-

pearance of dead branches. New branches are the new questions, and dead 

branches are question not discussed anymore without having reached a 

consensus i.e., an option selected. Exploration of all sessions provides in-

formation about designers’ backtracking, i.e., an option selected in one

session and not selected anymore in following sessions. A regularly ex-

panding part of a model clearly states that the question under consideration 

is important, gets a growing interest and raises hard to solve new prob-

lems. 

DREAM provides support for constructing consistent models. All items 

of a duplicated option (i.e., several items sharing the same data) should 

have the same state: selected or not. DREAM detects such inconsistencies

and notifies users. It is also possible to retrieve information (i.e., node) by 

query, by navigation, and visualization; these three points were defined in

section ‘Retrieval Components’ in Chap  1.

DREAM provides three visualizations and two different representations

of the same model. Bifocal tree representation (frame 4) modifies model 

representation into tree representation. Indeed, TEAM diagrams are not

tree-like due to possible duplication of nodes. Leaves are factors and/or 

X. Lacaze, et al.

7.4.3 Exploitation and Analysis of Models 
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criteria. Criteria (respectively, factors) are duplicated for each relation with 

options (respectively, criteria). Arguments, task models and scenarios are

not represented in the tree to prevent cyclic tree. A bifocal tree representa-

tion allows users to focus on a specific option without interference of other 

option evaluations. The bifocal tree visualization was built to support the

reading activity and analyzing the importance of nodes for the design by 

looking (for instance) at their number of occurrence in the model. 

Both representations are synchronized, a node selected in one of the 

view being also selected and displayed in the other views. Scalability  

issues (as defined in Sect. 1.7.2.) are also addressed by the bifocal tree

visualization as this visualization technique has been explicitly design to 

handle large trees [8]. 

This section presents the use of TEAM and DREAM on a case study. This 

case study comes from the Air Traffic Management domain and deals with 

interaction design issues on an Air Traffic Control workstation. 

The case study has been developed with colleagues at the CENA 

(French Centre for Studies on Air Traffic Management) and is based on an 

interactive application designed and developed by them. The context is the 

one of approach air traffic controllers i.e., controllers in charge of aircraftt

approaching an airport. Landing aircrafts are handed over to them by en-

route air traffic controllers and they are supposed (after appropriately pre-

paring the route of aircraft) to transfer them to the tower controllers inr

charge of take-off, landing and taxiing at the airport.

The approach air traffic controller can be in charge of a significant 

number of aircraft and might have to issue a lot of clearances13 in a very

short period of time. This activity is different from the one of the other 

types of controllers (such as enroute) for whom time scale is much longer.

13 A clearance is the name given to the orders sent by the controller to the pilot.

This can be modifying heading, flight level, speed, route,….

7.5.1 Context 

7.5    Case Study 



166

The air traffic controller interaction on the application is the following:

select a flight, choose a clearance, and valid or cancel the clearance.

Fig. 7.4. Left: Cyclic access to level menu. Right: functions related to keys 

Ten kinds of clearances are identified, only four buttons are available. 

Functions are classified by themes and statically associated to keys (see

− Key “num lock” corresponds to level menu: CFL (Clearance Flight 

Level), TFL (Transfer Flight Level), PFL (Planned Fight Level), RFL

(Requested Flight Level) 

− Key “/” corresponds to direct menu

− Key “*” corresponds to cap menu (Cap, Right Cap, Left Cap)

− Key “-” corresponds to speed menu (Speed, Rate) 

“num lock” key. Menus are cyclic, for example to reach the PFL function 

users must press three times the (modulo four) “num lock” key.

The interactive system designed by CENA was mainly aimed at allow-

ing air traffic controllers to issue clearances as rapidly as possible. Other 

(secondary) concerns were making the error rate as low as possible and 

avoiding syntactically incorrect clearances as much as possible. The  

current interactive application consists of a radar screen, a mouse and a 

keyboard. The radar screen displays all flights controlled by the air traffic

controllers as well as incoming and outgoing flights. Each flight is graphi-

the past five positions of the aircraft and speed vector (a straight line) 

providing information about both speed (line length) and direction (line di-

rection). The flight label contains the following information flight id, plane

id and altitude level. 

X. Lacaze, et al.

7.5.2 System Designed

Fig. 7.4):

Fig. 7.4 (right) presents the four functions accessible sequentially via the 

cally represented by a label (see Fig. 7.4, left), a set of dots representing 
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erative approach. After some information gathering, they implemented a

first prototype. This version evolved during several meetings involving us-

ers and designers. After each meeting minutes were prepared and distrib-

uted. Those meetings, held on a regular basis, offered the opportunity for r

users to comment and practice the various prototypes. The process ended 

after the tenth meeting. 

In order to validate the DREAM/TEAM approach we, the authors of the

chapter, used the tool and the notation to model all the information  

contained in the minutes. The information gathered ranged from graphical 

design sketches (representing graphical appearance of objects), automata

(describing the interaction technique) as well as decisions about the 

retained and discarded design options. A last report summarizing all the

choices made during the meeting was also available and has been used by 

the CENA team as a set of requirements for the development of the final 

application. In order to trace the process we built diagrams starting from 

these ten reports and the summarizing report. We built a first diagram and 

this diagram evolved with information extracted from meetings in a

chronological way. Only six sessions appear in the diagram as four ses-

sions were not containing relevant information or ended prematurely. We

then presented the models to the design team at the CENA to check if the 

models corresponded to the minutes. The design team validated the mod-

els. The customers/users gave two strong requirements: data entries have

to be fast and application had to be quickly implemented. 

Due to space constraints, we do not present in this section the modeling

process itself but we describe the output of the process. Task models and 

scenarios were not used in the design process by CENA and this is the rea-

son why they do not appear in the diagram. Four criteria were identified 

and are duplicated (i.e., “rapid,” “honesty,”14 “user’s automatism,” and “ef-

ficient quickly”). They are connected to most of the options. The resulting 

options, 21 criteria, 6 factors, and 20 arguments). The point here is not to

describe individually each node but to present salient information that pro-

vides insights about the process, the notation and the tool. Fig. 7.5, left 

presents the entire diagram resulting from the modeling process while right 

hand side emphasizes five graphs extracted from the diagram and are  

discussed hereafter. 

14 Honesty means honesty of the system. 

7.5.3 Models 

diagram is displaym ed on Fig. 7.5 and contains 203 nodes (41 questions, 55

The design team at the CEm NA followed a user-centered design [20] and it-
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The five rectangles highlight one couple criterion/factor, see graph 4 on

right side of the figure. This couple appears five times in the diagram. The 

criterion is “performance” meaning that performance can be assessed in

several places in the diagram for several options. The factor is “rapid” and 

models a customer/user requirement that interaction is required to be fast.

DREAM manages redundancy of information, if users modify factor 

“rapid” or criterion “performance,” DREAM updates and provides an ani-

mated feedback on all entities.

Fig. 7.5. Entire model of the case study and focus on relevant part of the model

Frame 1 shows a structured and argued section of the model. The first

question (on the top) deals with keyboarding policy. Two solutions are

available, one suggests an auto completion and the other one a full key-

boarding (i.e., all the characters have to be fully typed in). Relevant criteria

are honesty, performance (high weight), and user’s automatism (i.e., that 

option that is the closer to users’ habits). Performance criterion supports 

the auto completion option whereas honesty and user’s automatism both

support full keyboarding option. Even though performance has a strong

weight, a choice has been made with respect to the all the criteria and thus 

X. Lacaze, et al.
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designers chose the full keyboarding option. This discrepancy between the 

DR model and the choice can be easily seen in a TEAM diagram. 

The second question deals with default values to be provided by the sys-

tem when data or commands have to be entered. This question does not 

follow recommendations of the QOC notation as the options are only yes

and no. The choice made by designers is to provide a default value and this

choice is conformant with the model as it favors performance criterion. We 

can notice that the option “yes” produces the following two subquestions

that deal with the content of the default value to be presented to the user.

Due to space constraints, only the doted lines leading to these subquestions

are represented.  

Frame 2 is one of the most disputed points of the diagram and has been 

modified at each meeting. It deals with the syntax of each clearance (head-

ing, speed, rate, TFL, PFL, RFL) and aims at defining how to represent au-

thorized values. N represents a digit between one and nine andN n a digit be-

tween zero and nine; for example, Nnn5 means that 5605 is a correct value,

and 0125 is a wrong value. In the first session, designer proposed a differ-

ent syntax for each clearance with no argumentation and only one option 

for each question. We believe that this is the main reason why users dis-

cussed strongly that point. As we can see, in the final session argumenta-

tion is still not present and no criteria have been provided.

Frame 3 deals with unexpected moves of the mouse. This question has

been raised by an Air Traffic Controller during the second session.  

Designers broke down this issue into two different questions depending on

when the mouse move occurs. If movement occurs when a function is  

selected, they propose to cancel the current input while if move occurs

when an input has already been made, they propose to cancel the current 

selection or lock the current input (via the keyboard). As it can be easily 

seen in the diagram, no choice has been made by the designers. During the 

following sessions the question was not raised again. We believe that this

point has been lost during the design process. The TEAM notation pro-

vides support for this issue by making explicit these unsolved dead 

branches.

Additionally, session management as provided by DREAM helps stor-

ing and retrieving information about design management. Discussed points 

can be modified at each step, modifications can be traced and the visual 

representation supports readers in identifying poorly/nicely argued points,

solved issues and diagram evolution. Session management also provides 

information about backtrackings made during the design process (a choice 

made early in the design process and then cancelled later on). 
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In this case study we have shown that the TEAM notation was able to 

store all the information related to the design process. Factors were inte-

grated easily and made the customer’s requirements explicit. Impacts of 

user requirements appear in the entire diagram. Weights associated to cri-

teria and factors help in understanding and reading the diagrams as well as

in understanding choices made during the design process. Iterative process

and meeting with users advocate the need for session management. The

DREAM tool supports DR management activities by making impossible

the edition of inconsistent diagrams. 

This chapter has presented a notation (TEAM) and a tool (DREAM) dedi-

cated to the engineering of interactive systems. Instead of focusing on the 

result of the development process i.e., the actual application, this approach 

focuses on the process itself and provides several means for improving it. 

The notation is anchored in HCI research and provides explicit links to 

architecture (Arch), user-centered development process (iterative prototyp-

ing), task analysis modeling and scenarios thus provides a generic frame-

work for gathering these multiple information sources in a single model. 

The approach builds on existing work in the field of design rationale  

integrating successful aspects and providing solutions to the identified 

limitations. The approach has been applied to several case studies includ-aa

ing interaction techniques design, graphics design, and to the software  

engineering side of interactive systems design. The work presented in this 

chapter aims at supporting activities currently under considered in the field 

of interactive systems design and engineering such as the certification 

phase of safety critical applications. If product certification (when the ac-

tual application is checked through by the certifiers) cannot be considered 

as feasible when large applications are concerned, process certification 

(when the design process itself is evaluated) can be highly facilitated by

exploiting an approach like DREAM/TEAM. In order to improve the tool

and to perceive clearly the benefits from the use of the tool, we plan to 

carry out user testing.
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The WinWin Approach: Using a 

Requirements Negotiation Tool for Rationale 

Capture and Use

B. Boehm, H. Kitapci 

Abstract: A highly cost-effective approach for rationale capture and man-

agement is to provide automated support, and capture the resulting artifacts 

of the process by which software and system requirements and solutions are 

negotiated. The WinWin process model, equilibrium model, and collabora-

tive negotiation tool provide capabilities for capturing the artifacts. The 

MBASE software process model provides an approach for using and  

updating the rationale artifacts and process to keep it in a win-win state. 

Supporting requirements negotiation with attaching rationale can have a

high impact on all phases of development by enabling much better context 

for change impact analysis as the increasingly frequent requirements 

changes arrive. The WinWin approach involves having a system’s success-

critical stakeholders participate in a negotiation process so they can  

converge on a mutually satisfactory or win-win set of requirements. Ther

WinWin framework in essence captures stakeholder-oriented objectives,  

options and constraints in the form of a decision rationale. 

Keywords: requirements negotiation; WinWin negotiation approach; 

rationale capture; Theory W; WinWin spiral model, EasyWinWin 

Negotiation techniques are critical success factor in improving the 

outcome of software projects. At the University of Southern California’s

Center for Software Engineering (USC-CSE), we have been developing a 

negotiation-based approach to software and system requirements engineer-

ing, architecture, development, and management. Our approach has three 

primary elements: 

1. Theory W, a management theory and approach, which says that makingWW

winners of the system’s key stakeholders is a necessary and sufficient

condition for project success [2].

2. The WinWin Spiral Model, which extends the spiral software develop-

ment model [1] by adding Theory W activities to the front of each cycle. 

3. EasyWinWin, a collaborative groupware negotiation tool that makes it 

easier for distributed stakeholders to negotiate mutually satisfactory 

(win–win) system specifications. 

8.1 Introduction 

8
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Defining requirements is a complex and difficult process, and defects in 

the process often lead to costly project failures [16]. Requirements emerge

in a highly collaborative, interactive, and interdisciplinary negotiation 

process that involves heterogeneous stakeholders. The EasyWinWin ap-

proach involves having a system’s success-critical stakeholders participate 

in a negotiation process so they can converge on a mutually satisfactory

(win–win) set of requirements. 

Some difficulties within requirements engineering, e.g., determining a 

feasible and mutually satisfactory set of requirements, are eliminated by 

achieving a reconciliation of customer expectations with developer capa-

bilities before firmly committing to a set of requirements. A hard to

achieve customer’s or user’s win condition will conflict with the devel-

oper’s win condition to minimize the risk of delivering an acceptable 

product within budget and schedule. Conflicting requirements must be

identified and negotiated, relevant alternatives must be made explicit and it 

must be assured that the “right” decision is made. In the WinWin ap-

proach, this conflict is identified as an issue needing resolution before

stakeholders commit on the agreements. 

The overall WinWin negotiation approach is similar to other team ap-

proaches for software and system definition such as gIBIS [9], SIBYL 

[13], and REMAP [15]. Our primary distinguishing characteristic is the 

use of the stakeholder win–win relationship as the success criterion and 

organizing principle for the software and system definition process. Our 

negotiation guidelines are based on the Harvard Negotiation Project’s tech-

niques [11].

In this chapter, we first introduce the WinWin Spiral Model. Next, we

identify the fundamental concepts of WinWin model and the use of Win-

Win model in software development process. Then we introduce the 

EasyWinWin tool for converging stakeholders’ interests to win–win

agreements and the WinWin equilibrium state to test whether the negotia-

tion process has converged. We provide an example of WinWin require-

ments negotiation results from our USC CS577 Software Engineering 

course projects. We then discuss how such results can serve as captured ra-

tionale for later user in avoiding mistakes in subsequent project decisions.

We conclude with a discussion of using captured rationale to improve later 

decisions, related work, and future directions in requirements negotiation

and rationale capture.
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Development Process 

The foundation for the WinWin approach is Theory W, a management 

theory similar to Theories X, Y, Z. Theory W’s fundamental principle is 

that a necessary and sufficient condition for a successful enterprise is that 

the enterprise makes winners of all its success-critical stakeholders. It is 

well-matched to the problems of software project management. It holds 

that software project managers will be fully successful if and only if 

they make winners of all the other participants in the software process:  

superiors, subordinates, customers, users, maintainers, etc. This principle

is particularly relevant in the software field, which is a highly people-

intensive area whose products are often unfamiliar with user and manage-

ment concerns. 

Making everyone a winner may seem like an unachievable objective.

Most situations tend to be zero–sum, win–lose situations. Nevertheless, 

win–win situations exist, and often they can be created by careful attention 

to people’s interests and expectations. The best work on creating them has

been done in the field of negotiation. The book “Getting to Yes” [11] is a

classic in the area. Its primary thesis is that successful negotiations are not 

achieved by haggling from preset negotiation positions, but by following a 

four-step approach whose goal is basically to create a win–win situation

for the negotiating parties (1) separate the people from the problem, (2)  

focus on interests, not positions, (3) invent options for mutual gain, (4) in-

sist on using objective criteria. 

The Theory W approach to software project management expands on 

these four steps to establish a set of win–win preconditions, and some  

further conditions for structuring the software process and the resulting 

software product.

The original spiral model [1] uses a cyclic approach to develop increas-

ingly detailed elaborations of a software system’s definition, culminating 

in incremental releases of the system’s operational capability. Each cycle 

involves four main activities:

− Elaborate the system or subsystem’s product and process objectives,

constraints, and alternatives 

− Evaluate the alternatives with respect to the objectives and constraints.t

Identify and resolve major sources of product and process risk 

8.2.2 WinWin Spiral Model 

8.2.1 Theory W

8.2  The Theory W and WinWin Spiral Model in Software 



176      B. Boehm, H. Kitapci 

− Elaborate the definition of the product and process

− Plan the next cycle, and update the life-cycle plan, including partition of 

the system into subsystems to be addressed in parallel cycles. This can 

include a plan to terminate the project if it is too risky or infeasible. Se-

cure the management’s commitment to proceed as planned 

Since its creation, the spiral model has been extensively elaborated and 

successfully applied in numerous projects. However, some common diffi-

culties led USC-CSE and its affiliate organizations to extend the model to 

the WinWin spiral model described in the following text.

WinWin Extensions: Negotiation Front End

One difficulty was determining where the elaborated objectives, con-

straints, and alternatives come from. The WinWin spiral model resolves

this by adding three activities to the front of each spiral cycle , as Fig. 8.1
shows: 

− Identify the system or subsystem’s key stakeholders 

− Identify the stakeholders’ win conditions for the system or subsystem 

− Negotiate win–win reconciliations of the stakeholders’ win conditionsf

Fig. 8.1. The WinWin spiral model of software engineering includes front-end 

activities (gray(( ) that show where objectives, constraints, and alternatives come

from. This lets users more clearly identify the rationale involved in negotiating 

win conditions for the product 
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The new model adds front-end activities that show where objectives, 

constraints and alternatives come from. This lets stakeholders more clearly

identify the rationale involved in negotiating win conditions for the prod-

uct. A key aspect of the model is that it introduces economic, product qual-

ity, and risk considerations into the decision making steps and introduces 

tradeoff exploration into the process to address risks and conflicts.

Process Anchor Points 

Another difficulty in applying the spiral model across an organization’s 

various projects was that the organization has no common reference points

for organizing its management procedures, cost and schedule estimates,

and so on. This is because the cycles are risk driven, and each project has

different risks. In attempting to work out this difficulty with USC-CSE’s

industry and government affiliates using our COCOMO II cost model [7],

Over the years of developing electronic services applications for the

USC Libraries, we have been evolving Model-Based Architecting and Sys-

tem/Software Engineering (MBASE). MBASE involves early reconcilia-

tion of a project’s success models (correctness, business case, stakeholder 

(performance, reliability,…). It extends the previous spiral model in two 

ways:

− Initiating each spiral cycle with a stakeholder win–win stage to deter-

mine a mutually satisfactory set of objectives, constraints, and alterna-

− Orienting the spiral cycles to synchronize with a set of life cycle anchor 

points: Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), 

and Initial Operational Capability (IOC)

The LCO version focuses on establishing a sound business case for the 

package. It need only show that there is at least one feasible architecture. 

The LCA version commits to a single choice of architecture and elaborates 

it to the point of covering all major sources of risk in the system’s life cy-

cle. The LCA is the most critical milestone in the software’s life cycle. The 

IOC version focuses on a workable initial operational capability for the 

tives for the system’s next elaboration during the cycle.

we found a set of three process milestones, or anchor points, which we

process models (waterfall, evolutionary, spiral,…); and property models

could relate to both the completion of spiral cycles and to the organiza-

winwin,…); product models (domain, requirements, architecture,…); 

tion’s major decision milestones. 
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project including system preparation, training, use, and evolution support 

for user, administrators, and maintainers. 

The general win–win approach evolved more or less independently as an

interpersonal-relations [17], success-management [10], and project-

management [2] approach. We usually define it as “a set of principles, 

practices, and tools, which enable a set of interdependent stakeholders to

work out a mutually satisfactory (win–win) set of shared commitments.” nn

Interdependent stakeholders can be people or organizations. Their 

shared commitments can relate to information system requirements in par-

ticular (the WinWin groupware system’s primary focus) or can cover most

continuing relationships in work and life (for example, international di-

plomacy). Mutually satisfactory generally means that people do not get 

everything they want but can be reasonably assured of getting whatever it

was to which they agreed. Shared commitments are not just good  

intentions but carefully defined conditions. If someone has a conditional

commitment, he or she must make it explicit to ensure all stakeholders un-

derstand the condition as part of the agreement. 

The WinWin approach is descriptive, in that the main purpose of the 

system is to negotiate a set of mutually satisfactory agreements that are 

foundations to requirements, constraints, and plans of the project.

The WinWin negotiation approach addresses some of the problems  

related with rationale capture. It reduces the work required to gather 

rationale by providing a well-defined structure and process to negotiate. In 

addition, the negotiation allows all success-critical stakeholders to partici-

pate the process where both recorders and users of the rationale are in-

volved. The process also makes it easy to collect and share the rationale

behind the decisions made. Stakeholders using the system simultaneously 

make rationale capture easier and faster. Rationale geff nerated during nego-

tiation is captured within EasyWinWin. The brainstorming statements are

attached to the resulting win conditions to preserve the brainstorming ra-

tionale. Issues are attached to win conditions. The traceability links and the

containment relations between elements are used to display the reasoning 

and knowledge behind the agreements. Moreover, the impact of changing

decisions is traceable to the related elements. 

8.3.1 The WinWin Approach 

8.3    Fundamental WinWin Concepts 
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In requirements negotiation, nobody wants a lose–lose outcome. Win–lose 

might sound attractive to the party most likely to win, but it usually turns

into a lose–lose situation. Table 8.1 shows three classic win-lose patterns 

among the three primary system stakeholders in which the loser’s outcome 

usually turns the two “winners” into losers [6]. 

Table 8.1. Frequent software evelopment win–lose patterns

Winner 

quickly build a cheap, sloppy

product 

developer and customer user 

add lots of bells and whistles developer and user customer 

drive too hard a bargain customer and user developer 

As the table shows, building a quick and sloppy product might be a low-

cost, near-term win for the software developer and customer, but the user 

(and maintainer) will lose in the long run. In addition, adding lots of mar-

ginally useful bells and whistles to a software product on a cost-plus con-

tract might be a win for the developer and users, but it is a loss for the cus-

tomer. Finally, “best and final offer” bidding wars that customers and users 

impose on competing developers generally lead to lowball winning bids,

which place the selected developer in a losing position.

However, nobody really wins in these situations. Quick and sloppy 

products destroy a developer’s reputation and have to be redone – inevita-

bly at a higher cost to the customer. The bells and whistles either disappear 

or (worse) crowd out more essential product capabilities as the customer’s 

budgets are exhausted. Inadequate lowball bids translate into inadequate

products, which again incur increased customer costs and user delivery de-

lays to reach adequacy. 

Why WinWin Works 

Builds Trust and Manages Expectations
If stakeholders consistently find other stakeholders asking about their 

needs and acting to understand and support them, they will end up trusting

each other more. In addition, if they consistently find them balancing their 

needs with other stakeholders’ needs, they will have more realistic  

expectations about getting everything they want. As they work together to 

negotiate their requirements, they give the project shape, and their merged 

visions become a system that all stakeholders can accept. If, on the other 

Win–Lose Does Not Work 

Proposed solution Loser 
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hand, stakeholders do not negotiate together, there is little chance the re-

sulting system will accommodate their needs, and the project will fail.

Helps Stakeholders Adapt to Changes in the Environment that Affect Re-

quirements
Instead of rigorous requirements in ironbound contracts, doing business in

Internet time requires stakeholders with a shared vision and the flexibility 

to quickly renegotiate a new solution once unforeseen problems or oppor-

tunities arise [3]. A WinWin approach builds a shared vision among stake-

holders and provides the flexibility to adapt to change. 

Helps Build Institutional Memory
The decisions, the why behind the what, that lead to a work result often 

vanish. By capturing and preserving stakeholder negotiations, WinWin

supports long-term availability of the decision rationale and thus helps

build institutional memory. Having more auditable decisions creates more 

detailed, accurate, and complete deliverables. 

Key activities of WinWin negotiation model include (1) the identification

of success-critical stakeholders; (2) the elicitation of the success-critical 

stakeholders’ primary win conditions; (3) the negotiation of mutually satis-

factory win-win situation packages (requirements, architectures, plans, 

critical components, etc.); and (4) value-based monitoring and control of a

win-win equilibrium throughout the development process.

The WinWin negotiation model has four main conceptual artifacts: Win 

condition: capturing the desired objectives and constraints of the stake-

holder; Issue: capturing the conflict between win conditions and their 

associated risks and uncertainties; Option: capturing a decision choice for 

resolving an issue; Agreement: capturing the agreed upon set of win condi-

tions which satisfy stakeholder win conditions and/or capturing the agreed

options for resolving issues. 

The negotiation model guides success-critical stakeholders in elaborat-

ing mutually satisfactory agreements. Stakeholders express their goals as 

win conditions. If everyone concurs, the win conditions become agree-

ments. When stakeholders do not concur, they identify their conflicted win 

conditions and register their conflicts as issues. In this case, stakeholders

invent options for mutual gain and explore the option trade-offs. Options 

are iterated and turned into agreements when all stakeholders concur. It is 

important to notice that open, unresolved issues represent potential project 

8.3.2 How Does the WinWin Negotiation Model Work
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risks or conflicts that need to be addressed. Additionally, a domain taxon-

omy is used to organize WinWin artifacts, and a glossary captures the do-

main’s important terms. The stakeholders are in a WinWin equilibrium 

state when the agreements cover all of the win conditions and there are no

outstanding issues (see Fig. 8.2). The negotiation proceeds until all of the

stakeholders’ win conditions are entered and the WinWin equilibrium state

is achieved, or until the stakeholders agree that the project should be dis-

banded because some issues are irresolvable. In such situations, it is much

preferable to determine this before rather than after developing the system. 

Fig. 8.2. The WinWin negotiation model 

The WinWin negotiation model aims at coordinating decision-making

activities made by various stakeholders in the software development proc-

ess. It belongs to the category of supporting collaboration described in

Sect. 1.4.1. It guides success-critical stakeholders through a process of 

eliciting, elaborating, prioritizing, and negotiating requirements. It also 

provides the support for future changes by keeping the traceability of the 

artifacts and their rationale. 

The negotiation process supports the engineering and management 

activities of rationale capture. The artifacts and their rationale captured 

during requirements negotiation shapes the decision made through the soft-

ware development. In addition, the artifacts provide additional information 

to check the project status and manage the project risks. The higher num-

ber of issues identified and resolved helps reduce risks early in a project 

and the chances of it derailing later. 

The rationale capture during negotiation improves the communication

between stakeholders and the quality of the products. Rationale on the ne-

gotiation results supports communication between all success-critical

stakeholders.
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EasyWinWin is a requirements negotiation methodology that combines the 

WinWin Spiral Model of Software Engineering from USC’s Center for 

Software Engineering with state-of-the-art collaborative knowledge tech-

niques and automation of a Group Support System (GSS) from GroupSys-

tems.com. A GSS is a suite of software tools that can be used to create, 

sustain, and change patterns of group interaction in repeatable, predictable 

ways [14].

EasyWinWin helps a team of stakeholders to gain a better and more 

thorough understanding of the problem and supports cooperative learning

about other’s viewpoints. Moreover, it helps increase stakeholder in-

volvement and interaction. EasyWinWin defines a set of activities guiding

stakeholders through a process of gathering, elaborating, prioritizing, and 

negotiating requirements. The nominal purpose of the EasyWinWin meth-

odology is to create an acceptable set of system requirements. Teams can

use EasyWinWin throughout the development cycle to create a shared 

project vision, to develop high-levels requirements definition, to produce 

detailed requirements for features, functions, and properties, COTS acqui-

sition and integration, COTS product enhancement, and to plan require-

ments for transitioning the system to the customer and user. 

The negotiation model provides the capture, representation, and use of 

rationale. Rationale is captured during stakeholders’ communication and 

negotiation in a structured way in which the relations between the artifacts

are clear to the stakeholders. The tool provides the distribution of rationale 

feature for concurrent user. It is both easy to capture, modify, and review

rationale during negotiation. It increases collaboration and coordination 

with group awareness, synchronous and asynchronous modes of communi-

cation, and support for trade-off analysis. Rationale used during and after 

negotiation to agree on the development artifacts. However, the tool 

doesn’t provide support for rationale preservation and interfaces to legacy 

components currently because of the reason it is being used for require-

ments negotiation.

The input to an EasyWinWin workshop is typically a mission statement 

outlining the high-level objectives of a project and another statement 

specifying the negotiation purpose, i.e., the objectives of a negotiation

within a project. In each activity in this process the team adds details and 

increases precision. The EasyWinWin process is comprised of the follow-

ing activities: 

8.4.1 The Negotiation Process 

8.4 Tool Support for WinWin Requirements Negotiation 
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Review and expand negotiation topics. Stakeholders jointly refine and 

customize an outline of negotiation topics based on a taxonomy of 

software requirements. The shared outline helps to stimulate thinking, to 

organize negotiation results, and serves as a completeness checklist for  

negotiations. 

Brainstorm stakeholder interests. Stakeholder share their goals, perspec-

tives, views, background, and expectations by gathering statements about 

their vested interests. 

Converge on win conditions. Stakeholders jointly craft a list of clearly 

stated, unambiguous win conditions by considering and discussing all 

ideas contributed in the brainstorming session. 

Capture a glossary of terms. Stakeholders define and share the meaning

of important terms of the project in a glossary. 

Prioritize win conditions. Stakeholders prioritize the win conditions to

define the scope of work and to gain focus.

Reveal issues and constraints. Stakeholders surface and understand is-

sues.

Identify issues and options. Stakeholders surface the issues that arise

due to constraints, risks, uncertainties, and conflicting win conditions.

They propose options to resolve these issues. 

Negotiate agreements. Stakeholders negotiate mutual commitments by

considering win conditions that raised no issues and all proposed options.

The activities of the EasyWinWin process are summarized above and 

shown in Fig. 8.3 with related work products (for a more detailed descrip-

well-defined deliverable (1) negotiation topics organized in a domain tax-

onomy, (2) a glossary defining key project terms, (3) agreements providing 

the foundation for further plans, (4) open issues addressing constraints, 

conflicts, and known problems, as well as (5) further rationale showing the 

negotiation history (comments, win conditions, issues, options, etc.). 

Major results of the negotiation process are a list of agreements and a

list of unresolved issues (e.g., caused by stakeholder dissent), which have

to be managed as potential projects risks. Agreements of success-critical 

stakeholders are input to the project contract and to refinement during  

requirements engineering activities. The WinWin tree shows how agree-

ments and open issues can be traced back to stakeholder win conditions.

8.4.2 The Negotiation Process Deliverables

tion please refer to [8, 12]). The results of each activity in the process is a 
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Fig. 8.3. EasyWinWin activities and work products with relationships to important 

work products in the software life-cycle

Development 

EasyWinWin has been used in more than 100 real-world projects in 

various domains (e.g., digital libraries, e-marketplace, and collaboration

technology). By using the MBASE approach throughout the software de-

velopment, we find that using a WinWin requirements negotiation ap-

proach helps stakeholders prioritize their requirements and capture the ra-

tionale for their decisions. 

One of project from the real-world projects that we will use as an exam-

ple is as follows: 

“Information Services Division (ISD) would like to replace its current

timecard and timesheet (paper) system with an electronic, web-based sys-

tem to simplify data collection, to more accurately record hours worked for 

all its employees, and to provide personnel management tools for supervi-

sors and directors.”

The EasyWinWin workshop started with the team reviewing and ex-

panding the negotiation topics based on domain taxonomy which helped 

8.5  An Example – Using WinWin in Software 
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organize the artifacts that emerge later in the process. Figure 8.4 shows 

part of the taxonomy for our project.

Fig. 8.4. Part of the domain taxonomy 

Then stakeholders brainstormed on the project and contributed their in-

terests. Some examples are:

− The system must provide some benefit to the employees that are using it 

– such as providing them with their current vacation balance. 

− System should have capability to correct errors on previous timecards. 

− Hierarchical structures can provide several levels of access for different 

management groups. 

− Some ISD constituents would prefer a card swipe or biometric clock-in/-

out system connected to the network.  Supervisors feel this will reduce 

clocking-in/-out for others.

The resulting collection of stakeholder statements and ideas provided a

starting point and rationale for elaborating win conditions and defininga

important terms of the project domain. The brainstorming statements were 

attached to resulting win conditions to preserve brainstorming rationale.  

After that, stakeholders voted on each win condition according to two 

criteria: Business Importance and Ease of Implementation. During this ac-

tivity, developers typically focused on technical issues, while clients and 

users concentrated on the business relevance (see Fig. 8.5).

In the next step, stakeholders examined the results of the prioritization 

and identified issues and options in several iterations. During the revealing
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issues and constraints, the stakeholders modified the priorities according to 

the updated information they got. The WinWin equilibrium state holds 

when all win conditions are covered by agreements, and there are no 

outstanding issues. As soon as some stakeholder enters an issue and an as-

sociated conflicting win condition, the negotiation leaves the WinWin 

equilibrium state, and the stakeholders attempt to formulate options to re-

solve the issue. For example, if the conflicting win conditions are to have 

the system run on a Windows platform and a UNIX platform, an accept-

able option might be to build the system to run on a Java Virtual Machine.

Fig. 8.5. Some voting results of Win Conditions – gray as consensus,y black as lack k
of consensus 

The WinWin Tree has all the information gathered during the require-

ments negotiation: Unique numbers for artifacts that help tracing the  

artifacts through the software’s life cycle, priorities for win conditions,

stakeholders who identified issues and options, and the taxonomy elements

those artifacts belong to. The WinWin Tree also captures the rationale for 

win conditions and how stakeholders reach an agreement by including all

proposed options, whether adopted or not, all issues which eventually  

addressed and all win conditions (see Fig. 8.6).

The negotiation results, mainly agreements, become the foundations of 

requirements whereas the other artifacts are the rationale for further deci-

sions made during the development life cycle such as major risks, iteration 

plans, etc. Agreements that cover the lower-priority win conditions  

become evolution requirements, providing the basis for architecting the 

system to easily drop them (if necessary to meet the schedule) or incorpo-

rate them in later increments. For example, “W12 [FGT] System should 

support web-based and/or card swipe interfaces. [Taxonomy 3.1]” be-

longed to User Interface Requirements during the negotiation. However, 

after the prioritization it is categorized as not important and very difficult 

to implement. An issue identified by the administrator as “I12 Supporting 

card swipe interfaces requires additional hardware purchase and integra-
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tion [Administrator] [Taxonomy 3.1]”. This issue occurred because of a

budget limit for the project. So the stakeholders provided an option to have

web-based user interface first, and left the card swipe interface as a tech-

nology evolution requirements. At the end there were two requirements (1) 

Web-based interface as interface requirements, (2) adding new input de-

vices as magnetic card readers as an evolution requirement.

Fig. 8.6. A small part of WinWin Tree – initial capability and interface sections 

The team using EasyWinWin is able to develop a broader and deeper set 

of results in a shorter time. An EasyWinWin negotiation results in a sig-

nificantly higher number of artifacts compared to traditional paper or 

blackboard-based approaches: our experience to date shows that typical

negotiations about system requirements with 10+ stakeholders result in 

300+ brainstorming ideas, 100+ win conditions, 50+ issues, 50+ options,

and 100+ agreements in less time than other traditional techniques. Even 

though, the teams had a similar educational background and basically the 

same win conditions, they came up with very different negotiation ap-

proaches and solutions.

The focus on consensus leads to a higher acceptance of decisions and to

an increased mutual understanding among the involved parties. The

evaluation of the WinWin model shows that the use of an issue model for 

negotiation support enhances trust and shared understanding among share-

holders, even in the presence of uncertainties and changing requirements. 
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Decisions

Design rationale is documented in the WinWin artifacts to provide a 

corporate memory. Risks are explicitly addressed in WinWin to pinpoint 

possible breakdowns and propose early fixes. This makes it easier to in-

crement and evolve requirements in the spiral model. 

As the project unfolds, the WinWin results are useful in many ways.

First and foremost it is the highest-level expression of requirements. All 

subsequent requirements specifications refer back to the WinWin results. 

This provides an answer to the often-asked questions, “Where did these 

requirements come from? Why were they adopted? Which requirements

satisfy which needs of which stakeholders? Who will be affected if we 

change the specification?” The WinWin results provide a common 

reference point for organizing management procedures, cost estimates, 

schedules, etc.

An initial developer win condition was to save development time and 

money by reusing a research planning module. An issue entered by the

maintainer indicated that module would be risky and expensive to 

maintain. An agreement to drop the win condition was recorded. Later, the 

project got behind schedule and the new developer manager proposed to 

recover by reusing the research planning module. Without the captured ra-

tionale, the project would have done this and caused major maintenance 

problems. With the captured rationale, the developers can check the status

of the planning module and reject its use if it is still risky and expensive to 

maintain.

Thus, capturing the rationale behind the decisions generated by the

WinWin negotiation enables the stakeholders to avoid mistaken decisions

often associated with personnel turnover. This allows the designers to ac-

commodate a much broader set of needs, and allows the stakeholders to

negotiate trade-offs with one another based on well understood interest. 

WinWin also makes it far easier to modify requirements part-way through

the project as new constraints are discovered because every requirement 

can be tied back to some set of win conditions, which in turn tied back to 

some set of stakeholders. For example, a budget cut would invalidate some

previous agreements. Therefore, change management is necessary to ac-

commodate changes in objectives, constraints, or alternatives. In addition,

the rationale for previous requirements needs to be incorporated to help de-

termine how to change requirements. 

8.6  Using the Captured Rationale to Improve Later 
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Rationale capture models for software requirements and design decisions

capture dependencies between multiple stakeholder objectives, issues, re-

quirements, design, and trade-off options. IBIS addresses multistakeholder 

consideration by supporting relations among system objectives. Issues can

be viewed as requirements that impact on design decisions. Conklin et al. 

[9] attempted to allow less disruption to the design process with a graphi-

cal tool, gIBIS, to record the rationale. Although IBIS structures support 

analysis of requirements interactions, no tools are provided for analyzing 

trade-offs, so the design decision may overlook optimal solutions. There is

also no negotiation strategy embedded to reconcile different perspectives. 

The WinWin approach is specifically for recording architectural rationale. 

While both gIBIS and WinWin attempt to reduce the overhead in capturing

rationale, they focus on particular elements that must still be formally

documented during the discussions. 

The WinWin approach is aimed to provide not as much structure as at-

tempted in gIBIS, SIBYL, and REMAP, which have difficulties in scaling 

up to large systems. However, the Win–Win Spiral Process model and 

WinWin are also trying to provide stronger support for scalable shared on-

tologies and for collaboration objectives via the domain taxonomy and via 

the conceptual bases for collaboration and software development provided 

by Theory W and the Spiral Model. For example, the objective of achiev-

ing a win–win situation among stakeholders’ win conditions provides a

much more explicit answer to the question, “What are we trying to col-

laborate about?” than other conceptual frameworks for collaboration.

EasyWinWin helps smooth the transition from WinWin stakeholder 

agreements to requirements specifications. Mapping the WinWin domain 

taxonomy onto the table of contents of the requirements specification and 

requiring the use of the domain taxonomy as a checklist for developing 

WinWin agreements effectively focused stakeholder negotiations. But the 

result of a WinWin negotiation is typically not a complete, consistent,tt

traceable, testable requirements specification. For example, stakeholders 

may become enthusiastic about proposed new capabilities and ratify ideal-

istic agreements such as “anytime, anywhere” service. We are exploring 

how to automate parts of the requirements transition to make it even 

smoother. For rationale capture, further formatting and indexing capabili-

ties need to be researched and experimented with to capture rejected  

as well as accepted win conditions and options. Also, some research  

8.8 Future Directions 

8.7 Related Work 
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capabilities are experimented with rationale capture such as audio or video

clips are now becoming economically feasible to incorporate.
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Design Rationale in Exemplary Business 

Process Modeling 

H. Breitling, A. Kornstädt, J. Sauer 

Abstract: Exemplary Business Process Modeling (EBPM) is an efficient 

approach to object-oriented software application design. With the help of 

EBPM, a substantial amount of information about business processes and t

work practice in the application domain can be gathered and connected to

the design and usage model of the software system under scrutiny. Al-

though EBPM was not originally conceived for this purpose, the experience

which we share in this article suggests that EBPM should be a standard 

method for building a basis of knowledge from which design rationale can 

be gathered. 

Keywords: design rationale in software engineering; exemplary business 

process modeling; cooperation scenario; scenario-based design; object ori-

entation

The Exemplary Business Process Modeling (EBPM) approach is a sce-

nario-based method that encompasses models and methodologies for the

analysis and design of business processes and the software that supports

them. It can be employed to model present as well as future processes.

EBPM was developed cooperatively at C1 WPS and Hamburg Univer-

sity in the context of the Tools and Materials approach and its application-

was hedged when it occurred to us that neither texts nor standard UML 

diagrams alone are sufficient to discuss questions of work routine and soft-

ware systems with users. Building on Krabbel’s and Wetzel’s Cooperation 

diagrams we added element after element and finally tool support on the 

basis of BOC’s Adonis modeling tool.

The main benefit of EBPM is the comprehensibility of its models and its 

suitability for both software designers and domain experts. Therefore, it 

can be used in workshops and modeling sessions with participants from 

technically-oriented and domain-oriented groups. Its focus is on modeling

exemplary, concrete scenarios without case differentiation. 

Being exemplary instead of exhaustive and capturing knowledge about 

current and future business processes instead of decisions, EBPM is not a 

design rationale methodology. Instead, EBPM is a valuable auxiliary 

methodology on which methodologies that capture design rationale can 

9.1  Overview of Exemplary Business Process Modeling  

9

oriented document types [19] – significantly influenced by Züllighoven. It
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foot. We have employed EBPM for several years to capture current and fu-

ture processes in banking, insurance and logistics projects, often in the

context of migrating between software systems. Depending on the cardi-

nality of process groups under scrutiny, well over 100 EBPM models were 

furnished per project.

We capture design rationale in order to provide a sound basis for deciding 

about how to design new or how to evolve existing software systems. To

this end, we document decisions during the software development process

together with problems, influencing variables, alternatives (also the dis-

carded ones), arguments, and discussions. It has been shown that this in-

formation is extremely valuable when it comes to explain the system to 

new members of the development team [9]. 

A couple of methodologies for capturing design rationale have been  

developed (see [4][Chap. 1 in this book] for an introduction). In these in-

terpretations of design rationale management, participants aim at recording

every decision including its underlying decision base (every option (dis-

carded or not), every influencing variable, and every discussion). These 

exhaustive forms of rationale management require substantial – sometimes 

prohibitive – investments of resources (see Sect. 1.5.1 for a discussion of 

the capture problem). 

Experience from our projects suggests that in many cases it is not viable

to manage design rationale information to that extent – especially when it

comes to recording decisions which concern design alternatives that have

been discarded and do not become a part of the shipped software product.

Instead we follow suggestions brought forward by Dutoit and Paech [5] to

closely integrate requirements engineering and capturing design rationale. 

Therefore, we aim at striking a balance between the need for – potentially 

quite costly – design rationale information and limiting ourselves to the  

information that we find to be essential when it comes to make design  

decisions.

But what rationale information is essential? We found that as in re-

quirements engineering, the users’ work context is the ultimate source for k

justifying the system’s design. It is concepts and processes from that 

source that are responsible for the vast majority of requests for adding new 

or changing existing features. As EBPM was devised for capturing the 

users’ work context complete with processes, work objects, and underlying 

concepts, it is ideally suited to form the basis for design rationale 

9.2  The EBPM Paradigm 
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extraction, especially in the context of customized software development.

It is these aspects of EBPM that we focus on in this contribution.

Regarding the categorization given in [4][Chap. 1 in this book], EBPM

is a prescriptive approach in the sense that its models’ basic structure is 

given by a meta model that has to be used and that guides the thinking of 

designers. EBPM aims to be less intrusive by granting the designers some 

flexibility in adopting this meta model for their specific needs.

The term scenario was established in informatics at the latest at the begin-

ning of the nineties. In [1] (pp. 46–47), Carroll describes them as follows: 

− Scenarios are stories – about persons and their actions

− Scenarios are set in a specific context 

− Scenarios contain agents or actors that have goals that they follow 

− Scenarios have a plot; they consist of a sequence of actions and events

− The scenario’s plot is supposed to be supported at least in part with the

help of a software application 

In EBPM, scenarios are represented graphically with

− Icons for actors, business objects and other artifacts 

− Arrows for actions and 

− Memo sheets for context information

See Fig. 9.1 for an example.

Scenarios are modeled in three layers with different model types: Coop-

eration Scenarios focus on the interaction between several actors, Work-

place Scenarios focus on the actions that an individual actor carries out at 

his workplace alone and IT Interaction Scenarios describe the interaction

of an individual actor with a single application system or a group of related aa

systems. In every scenario type, the flow of action is clearly discernible. 

Artifacts from these models can be associated with a Model of Terms

that relates business terms with another and can give explanations for them

in the form of a glossary. Different roles of actors can be described in a 

model of roles.

If a substantial number of cooperation scenarios needs to be modeled, 

business use case diagrams are added to provide a graphical overview. 

9.2.1  EBPM as Scenario-Based Method 
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Fig. 9.1. Example cooperation scenario 

A business process is typically modeled with EBPM in two to four re-

lated scenarios. As already said, scenarios depict one relevant, exemplary 

sequence of events without case differentiation. This greatly improves the

comprehensibility of the models. If there are important variants, then these

are depicted in scenarios of their own. Minor variants can be annotated in

textual form with notes that are added to certain steps of scenarios. 

Sometimes we develop EBPM models with only one or two participants in 

direct interviews. Most often though, we hold modeling workshops with 

many participants from technically oriented and domain oriented groups. 

The processes can be treated from different angles in these workshops.

It has been constantly shown in our projects that the participants from 

different group can equally contribute their point of view and their knowl-

edge. We have found that EBPM models are comprehensible for partici-

pants with different backgrounds and serve well as a common basis and 

design platform. This is mainly because the models capture domain spe-

cific actors and their action together with the related artifacts in a simple, 

graspable notation. 

The models are created during the workshops. We often use a setting 

with a moderator who is in charge of the discussion and a modeler at a lap-

top connected to a video projector. The modeler immediately translates the 

9.2.2 Modeling Workshops
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contributions of the participants into EBPM models that are visible to  

everyone. This procedure shortens the feedback loop significantly. 

Even though the EBPM can be used with a flip chart, pen, and paper, soft-

ware tool support is essential for its efficient use. A standard tool for 

graphical modeling (like MS Visio) can be used, but a specific software

tool offers several advantages like stepwise visualization of scenarios, que-

ries over a large quantity of models and navigation between models in a

hypertext style. Such a tool enables the efficient, direct creation of models

during modeling sessions.

We are using a tool that offers many more possibilities, e.g., the attach-

ment of arbitrary files to all model elements or the automatic numbering of 

steps. This facilitates the modelers’ work a lot and offers expanded possi-

bilities. All models are filed in a centralized repository to promote coordi-

nation in the design team. 

In this section, we will present the main models of EBPM and their inter-

connections.

The starting point of EBPM is the Cooperation Scenario. Figure 9.2 shows 

the basic underlying meta model. A visual language is used to represent a

specific cooperative work scenario. A fundamental part of the scenario isff

its background story, a short text that explicitly describes the story’s con-

text and states the domain-related assumptions made for the model. It 

needs to be reasonably strict in order to motivate the specific scenario and 

exclude alternative courses of action.

The story that is being told is divided into consecutive, numbered steps. 

Every step is performed by an actor. In a Cooperation Scenario step, an ac-

tor can basically do two things: either cooperate with another actor – byr

just communicating, or else transferring a work object to her or him for 

further processing – or inspect and/or modify a work object on her or his

own. Each action type is visually represented by a different type of arrow.  

9.3.1 Cooperation Scenario

9.3  EBPM Models 

9.2.3 Tool Support for EBPM 
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Fig. 9.2.  Basic meta model of the Cooperation Scenario. For clarity, the corre-

sponding EBPM symbols are located next to each box

Work objects are first level model elements of their own. A lightning 

bolt symbol indicates that the work object is not physically present but ex-

its in an IT system only. The steps of the Cooperation Scenario are to be 

read in sequence according to the numbers on the action arrows. Thus, the m

Cooperation scenario is a story in pictures, resembling storyboards or

comic strips. This is illustrated in Fig. 9.3 that starts showing step 1 only 

and then incrementally adds steps.

The steps of the Cooperation Scenario correspond to elementary sen-

tences in natural language. For example, step 2 in Fig 9.3 reads as: “The

Mail Room (team) uses a bar code sticker to attach an application number 

to the X-Ray”. The actor performing the step takes the role of the subject, 

the action itself is represented as a verb, the involved other actor and the

work objects become objects in the grammatical sense.

Also note that this closeness to natural language sentences requires that

work objects are duplicated for every step. This means that there is not

only one instance of a work object but it appears as many times as it is 

used in an action. For example, the scanned application form occurs sev-

eral times in Figs. 9.1 and 9.3. 
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Fig. 9.3. The Cooperation Scenario as a story in pictures

When a cooperation scenario becomes crowded with too many actions,

they become less readable. Most of the time, not all actions have to deal

with cooperation but take place at one individual actor’s work place in-

stead. In order to unclutter the cooperation scenarios, actions that are con-

fined to one workplace only, can be “folded” into a Workplace Scenario

that acts as a sub-model of the main Cooperation Scenario (see Fig. 9.4 for 

an example). A Cooperation Scenario references each of its Workplace 

Scenarios as one single step of the entire sequence. The Workplace Sce-

narios for a specific actor are visualized as numbered items over a desk 

symbol that is shown next to the actor. This way, Workplace Scenarios can

be “stepped over” when examining the big picture of the Cooperation 

Scenario (see Fig. 9.4). 

9.3.2 Workplace Scenario
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indicated electronic documents. The presence of a workplace scenario is indicated

by the desk symbol next to the actor in the top left figuret

The Model of Terms contains the relevant terms for the domain concepts 

of one or more Cooperation as well as Workplace Scenarios and relates

them to each other. The work objects in the scenario models are instances 

of the concepts in the Model of Terms. 

The elements of the Model of Terms can be related via the “is-a” asso-

ciation, “is-part-of” association or a weak, untyped association type whoser

instances can be augmented with free text. Elements in the Model of 

Terms can be stereotyped as containers such as folders. Those are con-

nected with other objects using the “contains”-association. Furthermore, 

there are IT-inspired stereotypes Tool and Service (see details given later).

Although the Model of Terms of EBPM can be a starting point for IT 

system design, it is important to emphasize that it cannot naively be 

mapped to a UML Class Model or to an ER model. It is strictly domain-

oriented and does not define classes, class operations or the cardinality of 

relations. Consequently, transformation from the Model of Terms to 

UML’s Class Model cannot be automated. 

Fig. 9.4. Expanding a workplace step to a Workplace Scenario. Lightning bolts

9.3.3 Model of Terms
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Fig. 9.5. Metamodel overview

While the three diagram types discussed so far are invariably used when

modeling business processes, diagrams of the following three types are 

only used when the specific need arises. We will not describe meta models 

for these types here, but show how they relate to others in Fig. 9.5.

− Models of Roles can be used in complex organizations to indicate which 

roles certain actors can take. It liberates modelers from using individual

actors only.

− IT Interaction Scenarios depict one actor interacting with one or more IT
systems. These scenarios resemble UML’s sequence diagrams except 

that the communication shown is between the actor and the system, not 

inside a system

− Business Use Case Diagrams provide an overview of several Coopera-

tion Scenarios. The Business Use Case bubbles in the diagram reference 

the Cooperation Scenario models

In this section, we will elucidate how an application context captured with

the various kinds of EBPM models can help software professionals to

make rational design decisions about: the business object class model, the 

9.4  Capturing Design Rationale 

9.3.4 Other Diagram Types 
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relational database model, tool features, candidates for services, the front 

end technology, the communication infrastructure and the usage model as-

pects that are related to the work processes in the application context.

At this point it has to be stressed that in all of the following cases, 

references to attributes, methods, and class hierarchies only pertain to

those features that directly correspond to elements in the application 

domain. No software system can be constructed by referring to the applica-

tion domain alone. Most classes and class hierarchies will therefore have 

to have technology-based attributes and classes such as classes for persis-

tence and graphic display. However, these technological aspects only come

into play in design stages which are outside the domain of EBPM. 

We find that the problems of maintaining design models and linking 

them to EBPMs are not worth the effort. Instead, we use EBPMs as a mere

light-weight approach for gathering requirements as a basis for extracting 

design rationale. Based on these models, we usually build prototypes of 

low complexity (PowerPoint mocks, executable GUI mocks, or prototypes 

with a GUI and very limited functionality) to discuss our understanding of 

the application domain and our solution approach with users. Based on

these feedback cycles, we either modify EBPMs or refine our prototypes.

The most straightforward way of deriving a design decision from an

EBPM model is to take the Models of Terms as input for a class model of 

the application’s business objects. These models comprise a wealth of in-

formation that corresponds to features of class models:

− Each work object in a Model of Terms is a good candidate for a business

object class. This is in accordance with the underlying principle of ob-

ject-oriented design – namely that objects in the system correspond to 

objects in the application domain. This principle of responsibility driven 

programming language “Simula” [3], namely simulation. Depending on

the scope of a project, a certain number of work objects might not be

considered parts of the application. 

− A business class’s methods can be derived from a work object’s textual

description as well as from the way it is referenced in Cooperation and 

Workplace Scenarios.

− For design purposes, it is highly useful to use the links in the opposite 

direction, namely to go from a Model of Terms to Cooperation or Work-

place Scenarios, i.e., to find out in what way a work object is used in

which scenarios. 

9.4.1 Business Object Class Model

design (see [18]) follows the original purpose of the first object-oriented 



Design Rationale in Exemplary Business Process Modeling  201 

− In conjunction with information taken from annotations, the way a work 

object is used – and thus its methods – can be taken from its usage in

Cooperation and Workplace Scenarios.

− A business class’s attributes can be derived from its methods and de-

scriptive text plus from the aggregations indicated in Models of Terms.

While aggregation information can be inferred directly just by looking at 

the aggregates relationship in a Model of Terms, finding attributes can-

not be done visually but requires an examination of the methods (see 

above) and from the descriptive text: if there are methods that augment a 

work object in some way and others that query its status, then is obvious 

that there needs to be an attribute that holds that specific piece of infor-

mation. Information about additional attributes or their type might be 

obtained from a format description stored in the annotations, e.g., 

whether an integer or a String is more appropriate to represent document 

IDs.

− A business class’s position in a class hierarchy can be taken from its

position in is-a relations in Models of Terms.

By exploiting the same features as in the section “Business object class 

model,” elements of relational database model can be derived from 

EBPMs. Whereas strictly object-oriented features such as methods and 

class hierarchies cannot be transferred from EBPMs to a database model in

a meaningful way, the other features can be derived analogous to those in 

Sect. 9.4.1:

− Each work object in a Model of Terms is a good candidate for an entity

because these are the things that users work with. Even if it becomes 

obvious at later design stages that some work objects do not warrant in-

troducing separate entities, using work objects as starting points for enti-

ties is a good idea.

− A business class’s attributes can be derived from its methods and de-

scriptive text plus from the aggregations indicated in Models of Terms

(see above). 

− While a business class’s position in a class hierarchy cannot be directly

transferred into a relational database model, it is a good indicator that 

the work objects are closely connected: they represent similar concepts 

on different levels of concreteness and feature at least some common  

attributes. This is an indicator that these work objects might be mapped 

to a single entity. 

9.4.2 Relational Database Model
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On a general level, every application can be regarded as a tool that allows

users to accomplish a certain number of tasks with the help of an IT sys-f

tem. It is in accordance with this view to classify a calculator, a word 

processor or an ERP as tools. Nevertheless, in the context of modeling

business processes, considering a whole ERP as a tool would be too 

coarse-grained. We therefore limit our definition too those tools which (1)

typically have a main and sometimes some subwindows/dialogs and (2)

which serve to view/manipulate business objects.

Using EBPM, the use of tools can be modeled explicitly or implicitly.

Explicit modeling means that a tool appears as a specialized work object in

Cooperation Scenarios, Workplace Scenarios, and Models of Terms. In 

this case a tool’s features can be found by taking advantage of the link 

mechanism described in “Business object class model: Each link from a 

Model of Terms to Cooperation and Workplace Scenarios is followed and 

the accumulated ways of access are a tool’s feature list. Implicit modeling

means that a tool is not present yet but that there is high degree of similar 

access to a number of work objects. These similar ways of accessing a 

work object are indicative of potential tools.

Regardless of the way of modeling tools – which is usually a mixture of 

explicit and implicit modeling – other tool features can be gleaned from 

the EBPMs:

− Tool modes can be found be examining how tool use differs from user 

type to user type or from scenario to scenario. For example, some users

might just use basic functionality while specialist users call upon similar 

functionality but require a higher degree of detail or additional kinds of 

information.

− A tool’s versatility can be derived by looking at how many work object 

types are handled with a specific tool. Usage of just a single work object 

suggests a highly specialized tool while usage on many different work

object types hints at a quite generic tool such as a browser or spread-

sheet-like tool. 

Identifying candidates for services requires that tools have already been

found. On that basis, tools that make use of the same work object type in

similar ways in several Cooperation and Workplace Scenarios indicate that

the tools might be implemented by using the same service that provide  

access to business objects. 

9.4.4 Candidates for Services

9.4.3 Tool Features 
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In general, (1) the number of tools employed, (2) their modes, and (3) their 

usage frequency provide important information about the workplace a user 

requires in a certain scenario. By looking at all scenarios that a user par-

ticipates in, one can determine the degree of complexity, flexibility, and 

efficiency he or she requires. Based on those parameters, an informedd

choice of the appropriate front end technology, infrastructure, and usabil-

ity-related criteria can be made. This naturally extends to the choice of 

general communication infrastructure including hardware: for example, 

employment of barcode scanners in a work process would receive attention

in an EBPM Scenario. 

However – as mentioned at the start of this section – we do not augment 

EBPMs to include explicit and detailed rationale information, e.g., “the

front end technology for novice bank customers is an HTML 4.2 compliant 

web browser supporting JavaScript because most such customers are not 

willing to install new software on their home computers, do not have the

skills to properly reconfigure their firewall, and access their bank account 

information sufficiently infrequently that they do not require more com-

plex features of a graphical user interface.” Instead, we rather make sure 

that the EBPMs contain every domain-oriented detail that the users deem

important and base our decision thereon. 

When designing a software system, the designers not only determine the

behavior of an application but shape the future work processes. In most 

cases, these are bound to achieve the same effect (or a superset thereof) as 

the present ones, only faster and cheaper or with a higher quality. 

Because of this, EBPM is often used to model the relevant existing 

processes of the application domain before beginning to design. These 

models show the actors doing their work as they do in the present, using

today’s artifacts and IT systems (“as-is” models). Based on these models,

the future processes are designed with their respective future software sup-

port (“to-be” models). This helps to ensure that the old processes and the

services they provide are not broken in transit to the future design.  

For this purpose, the EBPM method offers an additional feature called 

Difference Annotations. Difference Annotations link specific actions in

Cooperation Scenarios to actions in other Cooperation scenarios and are 

commented textually. In this way, new or different actions in to-be models 

9.4.6 Difference Annotations

9.4.5 Workspace Types and Front End Technology 
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can point to their present counterparts and describe relevant differences 

between present and future.

Difference Annotations can furthermore be used to compare several 

future scenarios. The creation of alternative EBPM scenario models is 

justified if they can support decisions on important design issues. For ex-

ample, those scenarios can highlight different ways of distributing tasks inff

an organization or demonstrate the variety of possible usage models and 

their impact on the work process. A Difference Table as shown in Fig. 9.6

can be generated from the Difference annotations attached to a scenario.

action
referenced 

action

referenced 

scenario 
comment 

the Front Office is

automatically in-

formed that the

contract is ready

the Back Office 

calls the Front Of-

fice to inform them 

that the contract is

ready 

application -

minimal support 

replacing a phone

call by automation 

will speed things 

up, although detach-

ing Front and Back 

Office a bit.

Fig. 9.6. One row of a Difference Table (schematic)

Difference Annotations are a simple and effective technique when  

examining the scenarios, whether to analyze the gap between current and 

future processes or to compare alternative scenarios. Sometimes we attach

them while deriving a new scenario from a basic one. When analyzing ret-

rospectively, we take printed versions of the models and compare them.

First, we mark the differences with pen and paper, then, after evaluation, 

we attach them to the models in electronic form. This cannot be automated 

because it is all about finding the significant steps and interpreting them.

When merging alternative scenarios, we recommend documenting the  

Difference Table together with the derived decisions in a protocol that is

then attached to the “surviving” scenario. 

A second basis for deciding between different alternative scenarios is the 

quantification of EBPM scenarios. This is done very straightforward: the

domain experts give rough estimates for how long actions take. Transpor-

tation and/or wait time is used when annotating transfers of work objects.

Processing time is used when annotating inspections and modifications of 

work objects. 

9.4.7 Quantification
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There are other approaches in Requirements and Software Engineering as 

well as in economics that deal with the same issues as EBPM or have some 

overlap with it regarding the models and techniques that they use 

EBPM’s Cooperation Scenario is based on Krabbel’s and Wetzel’  

Cooperation Pictures (cf. [10]). EBPM adds the strictly scenario-based 

approach and the comprehensive meta model. Another method that is  a

remarkable for its visual representation and appropriateness for group

Design. Contrary to EBPM, it does not provide a straightforward of deriv-

ing an object model. 

Approaches sharing the scenario-based nature of EBPM come in a vari-

ous formats, for example Jacobson’s Use Cases (cf. [7]) and Rubin’s and 

focused on the dialogue between user and software system than EBPM and

less on the cooperative work process. They lack a visual representation for 

their scenarios and are therefore less suited for workshops with groups.

Use Cases are superior to EBPM regarding variations and case differentia-

tion when written as main success scenarios with extensions (cf. [2]). 

Examples for more formal diagram techniques for processes are UML’s

Activity Diagram (see [8]) and the Event-Driven Process Chains of Scheer 

fication of a process. On the other hand, they are not easily understandable

for people without education in math or IT and therefore not well-suited 

for communication with users and domain experts. They are less object-

oriented than EBPM because they do not focus on the domain objects and 

their usage (although there have been attempts to tackle this problem, see

EBPM which can be applied even to cooperative work that consist to great 

extent of situated actions. 

Concluding this section, we want to allude to approaches that deal with 

design rationale in a way that is potentially compatible to EBPM in the 

sense that only minor modifications would be necessary to fit them in. One

of these approaches is Claims Analysis (see [1]) which augments scenarios

that demonstrate specific design alternatives with claims that state ex-

pected advantages and disadvantages of those design decisions. Another 

one is Contribution Structures which adds to requirements explicit infor-

mation about the persons contributing to them (cf. [6]). Yet another one 

mends to incrementally refine scenarios and requirements documentation

9.5  Relations to Other Approaches 

work is PICTIVE (described in [11, 12]), which is rooted in Participatoryrr

Goldberg’s Object Bb ehavior Analysis (described in [15]). These are more

(see [16]). In contrast to EBPM, these can be used for a more formal speci-

for examplemm  [17]). Furthermore, they are unable to “tell stories” like 

is the Inquiryrr Cycle (see [13], [14]), a conceptual framework that recom-



206      H. Breitling, A. Kornstädt, J. Sauer 

and attach information to them about the related discussions happening in

the incremental process. 

Exemplary Business Process Modeling (EBPM) is a lightweight yet highly 

useful basis for design rationale management. The three main factors that 

make EBPM so advantageous are:

1. Its smooth integration with requirements engineering as suggested by 

Dutoit and Paech (see [5]). As EBPM already provides all necessary 

means, there is no need to duplicate the relevant information in a design

rationale management system. 

2. Its focus on just the most relevant scenarios. Thus, a maximum of the 

daily work routine can be captured with optimal effort. 

3. Its focus on positive in formation. While decisions against a certain  

alternative can still be derived by looking at the complement of the  

positive information, there is no need to keep, manage and update  

information about discarded alternatives. 

EBPM has many qualities that can be traced to other approaches: 

 –  It is scenario-based (like the Use Case approach and OBA) 

 –  It models business processes (like UML Activity diagrams or EPCs) 

 –  It analyzes cooperative work (like Cooperation Pictures) 

 –  It is suitable for collaborative workshops (like PICTIVE) 

EBPM is unique in its combination of those features. Its power lies in

the immediate understandability of its models: all models are rendered 

graphically and are based on a simple meta model; the story-like structure 

of the scenarios makes it easy for domain and software experts alike to 

discuss domain-related matters in workshops. Models are usually very sta-

ble at the end of the first workshop. Based on these models, a substantial 

amount of design rationale can be derived (see Fig. 9.7).

In addition to the design-rationale-related advantages, the analysis of 

EBPMs can be employed to obtain rationale information for  

roll-out/migration planning (based on which application parts are used how

intensively and on difference tables).

9.6  Conclusion 
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Provided by analysis of …

business object classes/

ER entities

term or concept in Model of Terms

business object class methods • Usage of work objects in Scenarios

• glossary from Model of Terms

business object class attrib-

utes/ER attributes
• aggregations from Model of Terms 

• glossary from Model of Terms

business object class hierar-

chy/OR mapping

Hierarchy of Terms in Model of Terms

tools • usage of work objects in Scenarios (explicitly 

modeled tools only) 

• glossary from Model of Terms (explicitly 

modeled tools only) 

• similar access to work objects in Scenarios  

• (implicit) 

• recurring sequences of work in Scenarios

tool modes differences in usage for different Scenarios

tool versatility number of work objects accessed (explicitly mod-

eled tools only)

workplace types • roles in Model of Roles 

• “work objects used from workplace

services How different tools provide similar methods on 

work objects 

endorsement of design decision • difference tables for “as-is” and “to-be” models 

• difference tables for several “to-be” models

• quantification information

Fig. 9.7. Rationale information provided by EBPM
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Engineering Creativity 

Abstract: Requirements Engineering (RE) is a commencing phase in the 

systems development life cycle and concerned with understanding and 

specifying the customer’s requirements. RE has been recognized as a com-

plex cognitive problem solving process which takes place in an unstructured 

and poorly understood problem context. A recent understanding describes 

the RE process as inherently creative, involving cycles of incremental 

building followed by insight-driven reconceptualization of the problem 

space. This chapter relates this new understanding to various creative proc-

ess models described in the creativity and psychology of problem solvingtt

literature.

A review of current attempts to support problem solving in RE using  

various design rationale approaches suggests that their common major 

weakness lies in the lack of support for the creative and insight-driven prob-

lem solving process in RE. In addressing this weakness, the chapter sug-

gests a new approach to promoting and supporting RE creativity using de-

sign rationale. The suggested approach involves the ad hoc recording of h

rationale to support the creative exploration complemented by a post hoc 

conceptual characterization of the problem space to support insight driven 

reconceptualization.

Keywords: RE process; problem solving; creativity; insight

Creativity plays an increasingly significant role in the competitive and dy-

namic business world by enabling organizations to differentiate and inno-

vate, to run more effective businesses, to attract customers and to compete 

with their rivals. In Requirements Engineering (RE), creativity manifests

in professional activities such as exploring business domains, inventing

and investigating ICT-enabled commercial opportunities and suggesting

application requirements to support organization business strategies. Al-

though creativity is required in RE, its study has recently emerged as an

important trend in the domain. The fundamental question is: how do we 

support and promote creativity in RE?  

As a problem solving process, RE involves intensive knowledge 

exploitation and decision making. There have been attempts to support 

this process in RE problem by capturing and accessing design rationale 

10.1 Introduction 

10  Promoting and Supporting Requirements 

L. Nguyen, P.A. Swatman



(DR) – information about the deliberations behind the RE process – but 

previous work tends to focus on techniques and notations by which to

structure and record an argument. The RE problem solving process to be

supported by DR is assumed to be characteristically top-down and system-

atic. The intrinsic opportunism of (and associated creativity within) the RE

process [6, 17, 34, 36,] has been largely ignored and thus the possibility of 

supporting creativity in RE using DR has not been fully explored.

In response, this chapter suggests a new approach to using DR with the 

potential to promote and support the inherently creative and insight-driven

problem solving process in RE. The suggested approach involves the ad

hoc recording of rationale to support creative exploration, complemented 

by a post hoc conceptual characterization of the problem space to support 

insight driven reconceptualization. The chapter also describes benefits and 

limitations of the suggested approach.

DR, in simple words, is information which represents and explains the rea-

soning behind the RE process. The notion of DR can be traced back to the 

philosopher Aristotle. The essence of Aristotelian logic lies in the deduc-

tive categorical syllogisms (premises and conclusions). Like Aristotelian 

logic, modern standard logic is also based on deductive rules or laws, such

as Boolean algebra with propositional and predicate calculus, or hy-

pothetico-deductivism with hypothesis proposal and testing, a widely 

adopted method in various scientific disciplines. While these traditional

logical approaches exhibit advantages in their objectivity, they are often

criticized by contemporary authors as being limited to well-defined deduc-

tive situations and as being less effective in inductive and social situations

[56, 57].  

Having criticized the deductive approaches as candid and insufficiently

elaborate, philosopher Toulmin [56] develops a more sophisticated  

structure of argument by analogy with jurisprudence. The Toulmin model, 

10.2 Overview of Design Rationale

210   L. Nguyen, P.A. Swatman

The structure of the chapter is as follows. Sect. 10.2 offers our  criti-

cal observations of benefits and problems we face in using DR.  Sect. 10.3

discusses the intrinsic nature of the problem we face in RE, reviews dif-

ferent perspectives on RE process, and describes a new  understanding

of the creative and insight-driven RE process. Sect. 10.4 describes creati-

vity models and discusses RE creativity in this context. Sect. 10.5 proposes

a new approach to using DR within RE to support and promote creativity.

Sect. 10.6 provides a summary and conclusion.
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represented in the graphical form, marks the first step in the area of mod-

ern “design rationale” and strongly influences subsequent DR notations.  

Over the last three decades, DR has received an increasing attention in

the research community. Various approaches, techniques and notations for 

the deliberations capturing and representing the deliberations behind the

design process have been developed. DR research has been drawn from 

multiple fundamental sources: artificial intelligence, cognitive study and 

design research. They are classified as three strategies: ad hoc, post hoc, 

and psychology-oriented DR [14]. The two most popular strategies are ad 

hoc (process-oriented) and post hoc (structured-oriented). The psychology-rr

oriented approach attempts to capture the psychological claims of usability 

in the artifact to suit the users’ tasks rather than the deliberation of the de-

signer during the RE process and will not be discussed in this chapter. This 

section focuses on presenting our conclusions drawn from a critical review 

of previous research into the two popular approaches to DR. Details about 

various DR notations, their descendants, techniques and tools can be found 

in Chap. 1 in this book. A more comprehensive review of previous DR 

research is available in [37]. 

Information Systems (IBIS) and its Descendants

Early in 1970s, Rittel [reprinted in [44, p. 321]] coins the term “wicked 

problem” to refer to problems which are vague and open for interpretation,

and have no stopping rule and no ultimate criteria for evaluation. In re-

sponse to the challenge of wicked problems, Kunz and Rittel [25] propose

and develop IBIS (Issue-Based Information System). IBIS offers a simple 

and intuitive notation: an Issue to be solved, a set of possible solutions 

(Positions) to solve it, a number of Arguments supporting or objecting the 

proposed Positions. It is used to record argumentative discussions as they

occur.  In this sense, IBIS supports the ad hoc approach to DR. 

Since then, IBIS has been taken up in a wide range of applications and 

domains. Benefits and issues in applying IBIS have been reported [e.g., 4, 

8, 43]. In our view, the previous research has focused limited to extending 

IBIS notations and the context of product development (soft-

ware/requirements) rather then studying IBIS at the level of conceptual

development of the problem. We offer two observations:

− IBIS DR rationale base could serve as a history of the design process.  

− The flow of issues and the links between chosen Positions should reflect 

the psychology of problem solving process. The central activity 

supported by IBIS, i.e., the generation followed with the evaluation of 

10.2.1  Capturing the Design Process through Issue-Bases 
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Issue, hints at an expectation of a systematic top-down development ap-

proach.

MacLean et al. [30] present an overview of the Design Space Analysis  

approach and propose the QOC notation to structure the design space 

analysis. Similarly to IBIS, the QOC notation consists of three core com-

ponents: a design Question, its alternative solutions (Options) and a set of 

Criteria for the assessment of Options. The additional component Argu-

ment may be used to justify the assessment of Options against Criteria. In 

contrast to IBIS, QOC does not represent the historical record of the design 

process. QOC concentrates on the global logical design space, which can

be retrospectively structured by the consideration of its alternatives. There-

fore, QOC supports the post hoc approach to DR.  

There are a growing number of intensive research projects into QOC.

Research in QOC can be classified into the following main directions: de-

veloping the QOC representation and process [e.g., 29, 30, 49], studying 

QOC usefulness and usability [e.g., 22, 50, 51] and incorporating QOC

within a specific design method [e.g., 21]. The QOC literature shows a 

common agreement that the strength of QOC is the promoted construction 

of highly abstract and reusable design knowledge and that the weakness of 

QOC is the additional time and effort required to construct a retrospective

analysis.  Two positions as when best to create QOC have emerged: using 

QOC to record the thought process during design [51, 53] or using QOC tor

retrospectively examine and structure the design space [22, 29, 30,]. 

Again, there was an assumption of a top down design process: “QOC does

not guide decomposition as clearly as some top down methods” [53, p.

154]. But is the design process (especially in relation to RE) actually top-

down and systematic in practice? We will return to this question in 

Sect. 10.3. 

The effective and efficient creation and use of DR are still subjects of 

concern within the Software/RE communities. There are two possible  

extremes: 

− Having an evolving DR base has advantages in providing a historical 

record of ‘flying thoughts’ while struggling with difficulties in manag-

ing and retrieving information from a large rationale base. 

− Capturing the deliberations in a purely post hoc manner has advantages r

of producing highly abstract and global analyses of the design problem 

10.2.3  Overall Assessment 

10.2.2  Representing Design Space Analysis with QOC

  L. Nguyen, P.A. Swatman
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while having difficulties of recognizing when to create rationale  

documents and requiring additional overhead effort to create them. 

One way to address the above concerns is to study the evolution of the 

rationale information in relation to the evolution of design artifacts based

on a deep understanding of the problem solving process in design. 

Understanding the RE Process 

The problems presenting in RE are ill-structured, complex, and rather do-

main specific.  Ill-structuredness in RE is defined as the incomplete and 

ambiguous representation of problems, the multidisciplinary domains and 

knowledge, the nondeterministic approach to solving requirements prob-

lems and the open-ended nature of solutions [2, 7, 17;]. RE problems can 

be described as “wicked” in Rittel’s [44] terms.  Further, problems in RE

are complex. Throughout the requirements development process, as the

problem space is explored, requirements continue to be acquired, clarified,

refined, and (re-)modeled by the RE. During this process, different facets 

of requirements problem are uncovered, leading to conflict identification 

and resolution. The problem space is evolving and involving many ele-

ments at different levels of abstraction. Carroll et al. [7] stated that “There 

is no problem tree representation for these problems” because require-

ments “are too complex; and there are many ways to ‘solve’ them” [7, p.

84].  Moreover, understanding and analyzing requirements often involves

subjective interpretation and perception by different participants. RE prob-

lems are intrinsic to the client’s business domains and their competitive

positions and perspectives, and often require both the RE and the client to 

engage in mutual learning activities in order to understand and specify the

client’s requirements [e.g., 1, 5, 9, 20, 28]. 

The above factors are also inter-related. For example, the multidiscipli-

nary domain of RE contributes to the ill-structuredness and complexity of 

the problem space. According to Batra and Davis [2, p. 87], requirements 

are constructed in a rather “open-ended” and “dd semantically rich problem 

space”. Together, these factors contribute to the nondeterministic nature of 

the RE process. This leads to an interesting question: How do people do 

RE?

Promoting and Supporting Requirements Engineering Creativity

10.3.1  What Kind of Problems do We Face in RE Problems? 

10.3
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There are numerous methodologies and approaches to capturing, structur-a

ing and representing requirements (e.g., SSADM, UML, Z, and Object Z),

and to managing the development process (e.g., Volere, SigSigma, and 

CMM). Throughout the literature, it is generally agreed: 

− that the RE process is a knowledge intensive, problem solving and  

decision making process [18, 46].  

− that RE requires creativity and heuristics as well as “standard” modeling 

techniques [18, 31, 36]. 

Interestingly, while most authors agree on the knowledge intensiveness 

and creativity in RE, the literature is limited in describing how the RE

process happens and why requirements take a particular form. A ‘classic’ 

and especially “worrying” finding from an early survey [27] was that pro-

fessionals find it hard to explain how they actually carry out their work. So 

how do professionals use their professional RE knowledge, skills and 

creativity during the RE process? More than a decade has passed.  This

question has not been clearly answered.

Two perspectives on the RE process emerge – one which views the RE 

process as being essentially systematic and evolutionary and one which 

views it as being rather opportunistic and insight-driven. 

There is common agreement within the RE community that the RE 

process is dynamic, evolutionary and involves continuous decisions.

Through the textbooks, the RE process is often described as cyclic with 

each cycle consisting of elicitation, analysis and validation activities [e.g., 

24, 26]. Robertson and Robertson [45] describe the RE process as an 

asynchronous network of activities which can be customized to specific 

applications.  Alexander [1] acknowledges the collaboration between the

users and developers and sees the RE process as consisting of four cycles

of co-operative inquiry.  Although the detailed description of the RE proc-

ess vary from author to author, at a high level of abstraction, the require-

ments problem space is structured and refined in a generally cumulative mode.  

Another school of thought in studying the RE process postulates the  t

opportunistic nature of the RE process [e.g., 6, 17, 23, 58]. According to

these authors, the RE process is not smoothly evolutionary; solutions to 

problems/subproblems are often insight-driven rather than being derived 

through a systematic evaluation of alternatives. As explained by Guindon 

[17], the ill-structuredness of the requirements problem is an important 

10.3.3  Two Emerging Perspectives of RE Process
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factor inducing the opportunistic behaviors of the designer. The human

working memory is limited, so mental simulations of the overall solution 

could not be performed, only simulations of partial solutions. With partial 

solutions it is possible to keep in memory the subsolutions’ values, calling 

others at a different (often lower) level of abstraction [16–18]. Guindon 

argues that the inferences of new information reduce the incompleteness

and ambiguity of the problem and lead to opportunistic design process. In d

addition, the new inferred constraints may provide early insights critical in 

reducing the space of design possibilities and in discovering decomposi-

tion.

Later Khushalani and his colleagues describe the RE process as an un-

predictable and adaptive exploration of problem areas, which is “charac-

terised by frequent discovery and/or adaptation of goals and activities, in 

response to changing circumstances” [23, p. 13]. Carroll and Swatman [6]

also suggest that requirements engineer’s traversal of the problem space is 

by no means orderly during the RE process. 

Previous studies (except [6]) focus primarily on the examination of de-

signer’s activities individually in the context of abstraction levels rather 

than provide a rich contextual analysis of the phenomenon.  Consequently,

they lack detailed examination of the dynamics of conceptual understand-

ing and perception of the problem by the designer.  Although Khushalani 

and his colleagues [23] profitably use QOC to represent and map cognitive

concepts graphically, the study does not examine the impact of critical op-

portunistic decisions on the conceptual understanding of the designer.  

Our action research [36] reveals the RE process as consisting of cycles 

of creative construction and insight-driven reconstruction of the problem

space. This new understanding of the RE process will be used a basis for 

the new approach to DR proposed in this chapter. 

Reconceptualizing of the Problem Space

RE is inherently creative, involving cycles of extension and restructure of 

the requirements model, in contrast to the systematic and smoothly  

incremental process generally described in the literature. We illustrate the

pattern of extension and restructure of the requirements model through our 

catastrophe-cycle RE process model (Fig. 10.1a).

The catastrophe-cycle RE process could be explained through the lens 

of three different types of complexity in the requirements model:

− Essential complexity represents the intrinsic understanding of the re-

quirements problem gained and embedded in the requirements model. 
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This type of complexity grows over time towards “completeness”.  We 

can assume that our understanding of the problem must not be decreas-

ing.

− Incidental complexity represents the complexity of representation rather 

than of substance in the model. In other words, it reflects the poor fit be-

tween the structure of the requirements model and the structure of the 

real world problem that the model attempts to mirror. Given an imper-

fect model structure, it becomes more difficult to fit new components 

into the model as it grows. Incidental complexity grows exponentially as

the model evolves and decreases significantly when the model is restruc-

tured.

− Accidental complexity represents the hidden knowledge in the require-

ments model which becomes explicit only as a result of insight at the 

crisis points. After the model is restructured, the accidental complexity 

becomes a part of the essential complexity which continues to grow over 

10.1a                                                                  10.1b 

Fig. 10.1. The catastrophe-cycle RE process

The catastrophe-cycle RE process can be explained in more detail using 

the dynamics of these types of complexity. As time progresses, the re-

quirements engineer continuously gathers information and details about 

the problem. Due to the complexity, ill-structured and context-based char-

acteristics of the problem, the requirements engineer is actively engaged in 

an intensive exploration, searching, and learning process to explore and 

learn about the problem and its specific context. Therefore, the problem 

space is continually expanded with new directions being explored and  

revealed, possible solutions and constraints being investigated and struc-

tured. Working on a problem area often requires the problem solver to  

revisit previous solved and/or partially solved problem areas. This is con-

sistent with the opportunistic characteristic of the design process 

described by Schön [48, p. 175]: “As you worked on a problem you are
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continually in the process of developing a path into it”. This path signifi-

cantly depends on the requirements engineer’s perceptions, knowledge and 

interactions with the specific involved organizational context and people. 

As the exploration and modeling of the problem space progresses, the

complexity of the requirements model progressively increased. The con-

struction a requirements model involves decision making activities, as a 

result of which, new components and their complex relationships are

elaborated and added into the model. Therefore, the essential complexity 

of the requirements model increases, reflecting the increasing inherent un-

derstanding of the requirements problem by the requirements engineer. 

This is consistent with Guindon’s description of RE as a knowledge dis-

covery process [16]. The more complex the model becomes, the harder it

becomes to add and fit new components to the growing model. The inci-

dental complexity grows rapidly over time. This is also consistent with 

what is described as the increasing entropy in software engineering litera-

ture.

At some stage, a sudden unexpected flash of insight occurs, a new way

of understanding and conceptualizing the problem suddenly becomes ap-

parent.  Insight is often referred to in many other human creative activities

as “Eureka!” or the “Aha!” moments. The new understanding gained by 

insight, referred to as the accidental complexity, leads to a significant 

change in the problem space. The problem is reconceptualized and the

model undergoes a major restructuring step. In addition, the incidental 

(and thus overall) complexity of the model significantly drops. This effect 

of reconceptualization insight can be illustrated as the dropping lines in 

Fig. 10.1b. After reconceptualization, the newly reconstructed model be-

comes the basis for further development cycles. 

The above understanding reveals two essential characteristics of the RE

process that it is a creative and insight-driven process – essentially, a de-

sign activity.  During RE, the model undergoes a creative process of explo-

ration and structuring of the problem space. At crisis point, as a result of 

insight the problem is reconceptualized and restructured. This often leads d

to the simplification of the model. This simplification should not be under-

stood merely in terms of the reduction of the number of components of the 

model. Instead, the model had a new architecture reflecting a new percep-

tion of the problem by the requirements engineer. The RE process is, in es-

sence, a design process. Gero [15, p. 435] offers a definition of design as 

“a purposeful, constrained, decision making, exploration, and learning ac-

tivity”. As Gero contends, this definition is an acceptable and sufficient to 

understand the creative design process. As described above, during RE, the 

requirements engineer continuously explores different problem areas and 

the problem context, searches for information and details, learns and 
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makes decision to structure the requirements model. This learning process

also involves occasional reconceptualization of the problem, subsequently 

major restructuring of the model, as a result of on-going conscious effort 

and unexpected insight. This understanding of the RE process can be com-

parable to Gero’s conclusion after examining various creative design proc-

ess models: “In design there is interest not only in synthesising solutions, 

even optimal solutions, but also in the novel and unexpected solution

which as a consequence of its existence changes our expectations. this may

require a change in structure, behavior or function—the essence of creative 

design [15, p. 448].”

Subsequently, this new understanding raises a new challenging question 

to the RE community: how to support the creative and insight-driven catas-

trophe cycle process in RE? 

RE Creativity in Relation to Psychology of Problem 
Solving

Creativity is the subject of lively and frequently discussion in the literature

of various disciplines, such as psychology of problem solving, design,

creative performing arts, creative writing, and many other human endeav-

ors and activities. Yet, it is still hard to define creativity in a precise and 

concise sentence for there appear to exist many forms and facets of crea-

tivity. In Sternberg’s [52] handbook on creativity, creative outcome is de-

scribed with the following qualities:

− Novelty. The outcome has to be new, original to a community. Boden 

[3] differentiates two levels of personal and historical creativity. 

This implies two creativity elements: the personal ability to produce 

something new and the social scope in perceiving/experiencing that 

something is novel. 

− Surprisingness. The outcome often offers unexpected features whichd

could be an interesting combination of existing ideas or the simplicity of g

a suggested solution. 

− Value. The outcome should be valuable and useful, for example an 

appropriate solution to a problem. This quality implies a process of pro-

ducing the value and an (often collective) judgment and t acceptance of 

value.

In general, person, process, product, and context are essential compo-

nents that form the basis for understanding creativity by many authors [e.g.

3, 11, 54, 55]. More recently, Plucker [42] described creativity as “the

10.4
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interplay between ability and process by which an individual or group 

produces an outcome or product that is both novel and useful as defined 

within some social context”.

Interestingly, there is an implication that creativity in problem solving

involves individuals engaged in a mental process to produce a valuable

outcome (ideas, products, solutions) which will be subject to a reflective

review by the creator and his/her peers. While these elements, as discussed

above, all play their roles in DR as well as in RE, one has to wonder why

creativity has been missing (or mysterious) in these disciplines? 

It is useful to briefly review existing creativity process models in the con-

text of the catastrophe-cycle model.  

Wallas’ creativity model [59] has dominated 20th century creativity lit-

erature. Wallas describes the creativity process as consisting of four stages: 

preparation, incubation, illumination (insight), and the verification and ex-

pression of insight. This model was supported and further developed: in

Hadamard’s work, creativity involves an unconscious mental process and 

insight is seen as a breakthrough by unconscious ideas [19].  

Gestalt psychology has been the dominant influence in the problem

solving literature on the importance of problem restructuring and insight f

[e.g., 33, 39]. According to Gestalt psychologists, problem space restruc-

turing is crucial in problem solving and reveals a new way of looking at 

the problem, often from a broader perspective. Restructuring is often asso-

ciated with the occurrence of insight, a sudden, unpredictable flash of ideas 

which often involves a surprise and solves. However, how to trigger in-

sight or make restructuring happen seem to remain an answered question:

“A restructuring event has an involuntary character; it is experienced as 

something that ‘happens’, rather than as something the problem solver 

‘does’” [39, p. 69].

In the above classic creativity models, creativity while involving inten-

tional mental effort by the problem solver (preparation phase), it is associ-

ated with insight and how insight happens is beyond control of the creator. 

Modern creativity models attempt to move toward to a more structured 

approach to exercising creativity. Osborn–Parnes’ Creative Problem Solv-

ing [13, 40], known as CPS, stresses the balance of analytical process and 

imagination through brainstorming: 

− Mess-Finding. Looking for Objective and Goals

− Data-Finding. Gather data  

− Problem-Finding. Clarify problems  
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− Idea-Finding. Generate ides

− Solution-Finding: Select and refine a solution

− Acceptance-Finding. Plan for actions to implement the solution  

Based on a synthesis of classic and modern creativity models, Plsek [41] 

suggested a Directed Creativity Cycle consisting of sophisticated phases 

namely preparation, imagination, development and action, each phase con-

sisting of sophisticated activities leading from one to the next phase.  

In Systems Engineering, Cropley and Cropley [10] suggested a compre-

hensive creative process model. This model attempts to synthesize a 

Wallas-based model of creativity process, extended to include information, 

communication and validation phases, with other emotional psychological

factors, such as interest, curiosity, determination, excitement, satisfaction, 

anticipation, pride, hope, and elation. These factors are associated with dif-

ferent systems engineering activities which happen in parallel with differ-

ent phases of the creativity process model. It is interesting that this model 

offers new associations between (rather positive) emotions often reported 

in “artistic” forms of creativity (performance and visual art) and insight 

and problem solving activities and seeks ways through these associations

to support creativity in systems engineering.  

Having examined the above models, we make the following observa-

tions:

− Although these models are helpful in understanding how creativity

could be supported, it is not clear how it happens. Interestingly, all mod-

els show a cyclic process of creativity. Although Gestalt psychologists 

do not state this explicitly, they recognize that unsuccessful attempts to

solve the problem contribute to the occurrence of restructuring [39]. In 

RE, the catastrophe cycle process model supports Wallas and Gestalt 

theory of insight and restructuring in problem solving.  

− While the modern creativity process models fail to describe the oppor-

tunistic behaviors of the problem solver in RE, they tend to structure and

support the analytical conscious phases in the classic creativity models. 

These can be related to the preparation phase in Wallas’s model, and 

Cropleys’ information and communication phases [10]. In the RE catas-

trophe-cycle model, these phases happen during the creative and reflec-aa

tive structuring of the requirements model. 

The above creativity process models, especially their links connecting

different creativity phases, indicate some potential benefits of recording, 

capturing, and representing the ideas generated using DR. The following 

section will describe our new DR approach to supporting creativity in RE. 

  L. Nguyen, P.A. Swatman



 221 

Using DR to Support Creative RE Process 

Our synthesis of previous discussions in previous sections about the nature 

and characteristics of RE problems and problem solving process, ad hoc

and post hoc approaches to DR, and dominant creativity models shows: 

− The problem understanding and problem solving in RE are intertwined.

RE is concerned with understanding and constructing the problem we 

are dealing with as well as suggesting and specifying the solution. 

− The RE process is highly creative, involving an interplay between cog-

nitive ability and problem solving process by which an individual or 

group of requirements engineers produces a new and useful understand-l

ing and representation of the requirements problem that is acceptable

and agreeable within some socio-organizational context  – i.e., the crea-t

tivity elements in Plucker’s [42] definition (see Sect. 10.4.1).  

− The RE process can “best” be described as catastrophe-cyclic of explor-

ing and uncovering of the problem space and structuring of the require-

ments model; and insight-driven reconceptualizing and restructuring of 

the model.  

Therefore, there are two types of RE creativity activities: 

− Activities which are associated with the preparation and incubation 

phase in Wallas’s model, and Cropley and Cropley’s [10] information

and communication phases. In the catastrophe-cycle model, these phases 

usually happen during the creative and reflective structuring of the 

requirements model. Such activities include brainstorming, eliciting, 

generating, connecting and evaluating information and ideas, and com-

municating, maintaining, sharing, and accessing previous information 

and ideas. These creativity activities aim at supporting the building up of 

a requirements model – a generally evolutionary process as described in 

the dominant literature [e.g., 24, 26, 45]. This type of creativity could be 

supported with ad hoc DR.   

− Activities which are associated with recognizing, evaluating and imple-

menting insight and restructuring in Wallas’s and Gestalt psychology.

This is insight-driven reconceptualization and restructuring of the re-

quirements model in the catastrophe cycle RE process model. Wallas 

model supporters and Gestalt psychologists agree on the importance and 

unpredictability of insight and restructuring. Modern creativity models

tend to respond to former with the evaluation and implementation of 

well-structured and rationalized ideas. However, modern creativity

models fail to actively address the unpredictability of insight and  
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restructuring. Post hoc DR could be used to evaluate and examine the 

restructured problem space.   

Based on a synthesis of the above theoretical development and findings 

from a previous empirical investigation [36], we suggest an integrated ap-

proach to supporting RE creativity using both ad hoc and post hoc DR. 

IBIS and QOC are selected as representative notations of ad hoc and post 

hoc DR.

Fig. 10.2. Using DR to support creativity in RE

Structuring of Requirements Model

IBIS arguments can be recorded during the RE meetings for various activi-

ties such as requirements analysis and modeling. The process of recoding

and retrieving of IBIS issues can be described as follows:

− During the requirements analysis and modeling activities, brainstorming

and divergent thinking sessions can be utilized to explore possibilities 

and generate ideas. IBIS arguments can be structured and recorded. 

Every time, a new IBIS Issue is recorded, an element Context can be

added to describe a specific situation in which the Issue is raised (see 

Fig. 10.3 for an example of Context in an IBIS issue). 

− During the elicitation of new requirements and further construction of 

the requirements model, related issues can be retrieved from the IBIS 

base to provide context for discussion and to avoid solving the same

problem over again.  

10.5.1  Using Ad Hoc Design Rationale to Support Creative
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Therefore, the IBIS base describes the on-going evolutionary develop-

ment of requirements, i.e., how the requirements develop over time. 

Fig. 10.3. An extract of an IBIS issue

IBIS supports creativity activities in the following ways:

− IBIS encourages generation and discussion of “conscious” ideas which

may otherwise be hidden in unconsciousness. Therefore, the construc-

tion of IBIS can be related to the Wallas’s preparation phase. 

− IBIS should be used in a flexible manner – issues with or without a full 

set of Positions or Arguments should be recorded to allow divergent 

thinking. Unsolves Issues should also be recorded. 

− The IBIS base provides the requirements engineer with an accumulated 

knowledge of the problem space. This could be associated with the 

information phase [10] and Wallas’s incubation phase.  

− IBIS supports the communication between requirements engineers 

through enabling the sharing and debating of issues and possible 

solutions. Communication phase is suggested in Cropleys’ model [10]. 

Two limitations of this approach include the locality of ad hoc argu-

ments due to the lack of context in which the Issue element is explored  

difficulty in searching and managing the large IBIS base. To overcome

former, we suggest extending the IBIS notation with a Context element.  

To overcome the latter, we suggest a supplementary use of post hoc QOC. 

Driven Reconceptualization in RE

QOC can be used as follows: 
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− QOC analyses can be constructed when the requirements model under-

goes a major revision or restructuring. This often happens as a result of a 

reconceptualization insight. When this happens, relevant IBIS 

arguments can be retrieved from the IBIS base to support the construc-

tion of QOC. This can be also conducted at a critical point which  

requires the requirements engineer to review a broad problem area or a 

number of related problem areas.

− QOC analyses describe a holistic examination of the problem space at

critical points during the RE project. This will assist the requirements

engineers take advantage of insight to evaluate the insight, review the

problem space and restructure the requirements model. 

− The construction of a QOC analysis as a result of insight is often associ-

ated with a new conceptualization of the problem and thus requiring fur-f

ther elicitation and exploration of the problem in the new light. This 

QOC analysis can be a useful, historical source of information in subse-

quent elicitation activities.

− Later during the modeling and evaluation of the requirements model, 

QOC analyses can be retrieved to provide structured and systematic ex-

planations of the problem space in order to resolve specific problems 

raised in new IBIS issues.

An example of a scenario of IBIS issues and QOC analysis can be found 

in Nguyen and Swatman [35]. 

QOC analyses describe the revolutionary development of requirements 

and why a requirement model takes a certain form it does. QOC supports 

creativity activities in the following ways:

− QOC assist the requirements engineer in evaluating insight and recon-

ceptualize the problem by constructing an examination of the new prob-

lem space. Therefore, QOC assists the requirements engineer in gaining 

the accidental complexity of the problem at crux points. 

− QOC provides the requirements engineer with an understanding of the 

current status of the requirements model. Therefore, QOC may be ac-

cessed during subsequent preparation and incubation phases when a 

specific local Issue is under consideration. 

In order to effectively construct QOC, it is important to recognize in-

sight events. Interestingly, insight events are often recognized by individu-

als, they may not be made available or receive sufficient attention by 

peers. The recognition, assessment and acceptance of new (out of the box) 

ideas may be affected by many factors such as personal traits, team com-

position and dynamics, and organizational culture [11, 12].
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In relation to catastrophe cycle model, IBIS would be useful in helping the

problem solver explore the problem, build the model and highlight ideas 

hidden in unconsciousness. In addition, by laying out the arguments, re-

quirements engineers are encouraged and supported to reflect-in-action.

This is a concept introduced by Schön [47] to express that professionals 

continually think about their actions while they are working on a problem.

In addition, the structure-oriented QOC analysis helps the problem 

solver to step aside, synthesize conscious ideas and have a broad view of 

the problem. Therefore, this mechanism enables them to work at higher 

levels of abstraction and widen problem areas to allow unconscious ideas

to emerge and break through at some point in time. When insight happens, 

QOC would be useful in gaining essential knowledge through more thor-

oughly and systematically articulating and evaluating insight. QOC assists

the requirements engineer in reflecting-on-action, a concept introduced by 

Schön [47] to describe that professionals re-examine and reflect upon the

whole process at a certain state in order to learn from their past actions.  t

In terms of overhead issues associated with applying both DR notations, 

the simplicity and ad hoc characteristics of the IBIS notation allow us to 

document the process nonintrusively while QOC could be used in taking 

advantage of insight and in interrogating and consolidating the IBIS base 

when needed. As discussed in Sect. 10.2.2, IBIS fails to enable an effective

search and retrieval of the rationale knowledge from a large and frag-

mented rationale base largely due to its approach to progressively re-

cording of local issues and their associated deliberations. In our proposed 

approach, the searching and retrieval of related IBIS issues are supported 

with supplementary QOC analyses. Required rationale information can be 

retrieved from a structured QOC base and newly created IBIS issues.  

As stated in Sect. 1.2.3, the overhead associated with the construction of d

QOC analyses was due to the retrospective nature of the approach. A rea-

son contributing to this problem was the unavailability of recorded process 

knowledge at time of QOC construction. In the proposed approach, the

availability of process knowledge in the form of IBIS issues will help  

reduce the additional effort required to construct retrospective QOC analy-

ses. Therefore, the complimentary approach to recording specific local 

IBIS issues and post hoc constructing QOC analyses will enable the effec-

tive capturing, structuring, and retrieving of rationale knowledge. 

Although the proposed approach involves two notations, there are 

similarities in terms of their simplicity and structure of the argumentation

components. Thus, the approach will be easy to learn and apply.  
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Moreover, the approach is grounded in a solid understanding of the 

creativity and insight-driven nature of the RE process. The suggested 

approach is descriptive, not prescriptive, therefore will:  

− support purposeful creative activities required during the building of the

requirements model using IBIS 

− allow opportunistic insights to occur using flexible, ad hoc IBIS  

− apply the post-hoc QOC to articulate and evaluate the reconceptualiza-

tion insights and review the state of the requirements model 

Hence, RE problem solving can be supported without significant inter-

ference to the process while allowing the flexibility needed for creative 

ideas to be generated and evaluated.

There is an interesting alternative attempt to integrate Wallas model 

within the RE process [32]. In their approach, divergent thinking tech-

niques are applied during the Preparation, Incubation, and Illumination 

phases. Convergent thinking techniques are applied during the Illumination

and Verification phases. The requirements model is revised after each 

Wallas cycle.  

Based on a synthesis of a review of current research into DR, the intrinsic

nature and creativity characteristics of the RE problem solving, specifi-f

cally the catastrophe cyclic RE process and its relation to creativity mod-

els, we propose a new approach to supporting different creativity aspects 

in RE using different strategies to DR.  Specifically, we suggest:

− Using ad hoc DR to capture and record the on the fly thoughts and ideas 

when exploring the problem space. 

− Using post hoc DR to analyze, reconceptualize and restructure the prob-

lem space when insight occurs. 

Future research will be conducted to further understand the nature and 

characteristics of the creative RE process and empirically evaluate the 

suggested DR approach to supporting this process. An observation labora-

tory facility called InSyL will be built in a near future at University of 

South Australia in collaborations with DSTO. The facility will enable  

researchers to observe “creative teamwork” in RE in various domains in-

10.6 Summary and Conclusion 
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− Video cameras and ambient microphones to capture and store audio-

video records. 

− Personal wireless microphones the output of which will run through a

system called AuTM, designed by DSTO. This system will automati-

cally create meeting transcripts. These transcripts can be semantically 

analyzed using Leximancer – a CASE tool software to assist in qualita-

tive data analysis.

− eBeam system to capture the dynamics of artifact creation on white-

boards.

With the above laboratory utilities, we hope to capture rich and 

multifacet data on the RE creative team work in the form of intermediate 

diagrams and brainstorming documents, verbal and nonverbal expressions, 

interactions and communications, and insight flash moments, and emotion

factors which may occur during the RE process. Benefits of using DR 

techniques in reaching shared understanding and improving RE team 

team dynamics. Expected research outcome is a deep understanding of the

cognitive and creative aspects of RE problem solving and an evaluation of 

the suggested approach. CASE tools can be selected or built to support the

construction, management and retrieval of rationale information and to 

support and promote RE creativity.  
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Part 3

Design Rationale and Software Architecting 

Design rationale as it applies to software architecture has become an  

established area of software engineering research. Design rationale can be

defined as an expression of the relationships between a design product (in 

this case, an architecture), its purpose, the designer’s (architect’s) concep-

tualization and the contextual constraints on realizing the purpose [12]. It 

represents knowledge that provides the answers to questions about a  

particular design choice or the process followed to make that choice [8]. 

Software architecture is concerned with the study of the structure of 

software, including topologies, properties, constituent components and  

relationships and patterns of interaction and combination [7,14]. A modern 

definition of software architecture is given by Bass et al. in [2]: “The soft-

ware architecture of a program or computing system is the structure or 

structures of the system, which comprise software elements, the externally 

visible properties of those elements, and the relationships among them”.

The importance of relating design rationale and software architecting 

has been recognized by many researchers and practitioners [5,14,15].  

Design rationale researchers have developed different representation sche-

mas, capture methods, repository models, and use cases for recording 

design decisions. However, most approaches represent only arguments 

surrounding design decisions [11]; more work remains to be done in repre-

senting domain knowledge in terms that are understandable to the domain

experts [9]. During the last 10 years it has been recognized that the quality

requirements are heavily influenced by the architecture of the system [2,3]

and capturing the relationship between architectural design decisions and 

quality attributes provides an important new role for rationale. 

There are important issues that need further research: 

− Architecture decisions are seldom documented in a rigorous and consis-

tent manner. Meaningful explanations should include information  

explaining the context, reasoning, tradeoffs, criteria, and decision 

making that led to the selection of a particular design from various de-

sign options [3,6].  

− Design rationale represents knowledge that provides the answers to

questions about a particular design choice or the process followed to 

make that choice [8]. 
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− If design rationale is not documented, knowledge concerning the domain 

analysis, design options evaluated, and decisions made are lost, and so is

unavailable to support subsequent decisions in the development lifecycle 

[3,13]. 

− The IEEE 1471 Standard [10] and the SARA WG [12] identify design

rationale as an important part of descriptions of software architecture 

and advocate capturing and maintaining rationale. There has been only 

one significant support mechanism for capturing and managing rationale

about architectural decisions namely, the Views and Beyond [4]. How-

ever, there is neither sufficient support for all necessary architectural

constructs nor conceptual guidance to develop a repository of architec-

ture design knowledge and the experience of using it [1]. 

− By using design decisions as first class entities to build architecture, ra-

tionale management systems can be combined with software architec-

ture, making architecture easier to use and communicate. 

Chapters in this part of the book are reporting on advances on the issues 

mentioned above. 

In particular, four chapters (Chaps. 11, 12, 14, 16) in this part deal with

various aspects of relating design rationale and software architectures. 

Chap. 13 discusses design rationale in the context of the maintenance and 

evolution of a designed software product. It presents SEURAT, a system

that supports entry and display of the rationale as well as inferences over 

the rationale. Chapter 15 argues that assumptions management is critical 

for evolving software, not only at the architectural level, but at all the lev-

els of representation of the software and provides high-level recommenda-

tions on how this could be achieved. The architectural level is one of the 

first places in which assumptions management should be done. 

Chapter 11 “A Framework for Supporting Architecture Knowledge and 

Rationale Management” by Muhammad Ali Babar, Ian Gorton, and Bar-

bara Kitchenham proposes a framework for capturing and managing archi-

tecture design knowledge. This framework consists of techniques for cap-

turing design knowledge, an approach to distilling design knowledge from

patterns, and a data model to characterize the architecture knowledge do-

main. The data model not only provides guidelines as to what constitutes 

architecture rationale but can also be implemented to build a knowledge

repository. Their approach to distilling architecture knowledge from pat-

terns is one of the means of populating such a repository. The other objec-

tive of mining patterns is to capture and represent pattern-based design

knowledge at an appropriate level of abstraction. The proposed template is

an effective way of representing such knowledge. A design knowledge re-

pository can provide a strong motivation for using and capturing rationale 
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during architecture design or evaluation. The novelty of this approach re-

sides in its ability to incorporate all three components into an integrated 

approach to capturing and managing architecture design knowledge.

Chapter 12 “Capturing and Using Rationale for Software Architecture”

by Len Bass, Paul Clements, Robert Nord, and Judith Stafford presents an 

approach focused on software architecture rationale that allows stake-

holders throughout the life of the system to determine why important de-

sign decisions were made, by tracing a design decision causally and as it 

relates to architectural structures. The architect needs some way to remem-

ber the conceptual path he or she has taken during the architecting process,

as well as a way not to repeat dead-end design paths. Developers and 

maintainers can gain important insights from reading the architect’s rea-

soning.  Testers can design tests to validate the architect’s precepts. Cus-

tomers can examine the rationale to convince themselves that their busi-

ness goals are being met by the design.  Stakeholders in general can read 

the rationale to make sure their interests have been addressed.

Chapter 13 “Rationale-based Support for Software Maintenance” by 

Janet Burge and David Brown describes SEURAT (Software Engineering 

Using RATionale) which is a prototype system that provides both retrieval

of and inferencing over, rationale. The main goal in developing SEURAT 

was to study uses of rationale during software maintenance. SEURAT 

checks for the likely completeness and consistency of design decisions by 

inferencing over the recorded rationale. The maintainer can also perform 

“what-if” inferencing by changing the priorities of rationale elements, as-

sumptions and requirements to see the impact on the support for previous

decisions. Entry and editing screens are provided for rationale capture. 

While SEURAT was designed for the maintenance phase, it could be used 

in other phases of development. Decisions made at the early stages of de-

sign, such as architecture, are the most risky to change. SEURAT supports

software architecting in two ways: (1) it allows the software developer to 

record their rationale in an argumentation format that captures where se-

lecting one alternative spawns additional decisions and (2) it performs in-

ferencing over the rationale to check the impact on the system of changing

those decisions further along in the development process.

Chapter 14 “The Role of Rationale in the Design of Product Line Archi-

tectures – A Case Study from Industry” by Jens Knodel and Dirk Muthig 

reports on an evaluation of alternative architectural concepts for a graphics

component, which is a subsystem of an embedded system. The product 

line engineering aims at an efficient production of variants mainly enabled 

by large-scale and systematic reuse of artifacts throughout all development

phases. A product line’s central artifact is its architecture that defines fun-

damental concepts, abstractions, and mechanisms that hold for all products
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of an organization (if successful) for a long period of time. Therefore, key

developers in organizations must fully agree on all decisions related to the 

definition of the product line architecture, as well as always reunderstand 

their rationales during architecture evolution. This chapter describes an in-

dustrial case of architecture evolution where one of the key mechanisms of 

an existing architecture was revisited as the potential subject of change.

Chapter 15 “Role and Impact of Assumptions in Software Engineering

and its Products” by Meir (Manny) Lehman and J.C. Fernández-Ramil 

presents the Principle of Software Uncertainty and the reasoning underly-

ing it. The principle states that the validity of the results of executing real-

world software cannot be absolutely guaranteed. A key argument in the 

chapter is that every program used in the real-world reflects an unbounded 

set of assumptions about the environment where it operates. The environ-

ment is subject to change and assumptions may become invalid at any

time. There have been software failures clearly due to “assumptions which

became invalid”. Examples include the software-related destruction of the

Ariane 501 rocket and the failure to provide the expected results of  

experiments with a large particle accelerator. The chapter explains why as-

sumptions are unbounded in number: it is impossible to record and monitor 

all the assumptions. However, in order to reduce the risk of software fail-

ure, software developers and maintainers should manage the assumptions 

they are conscious of. They will benefit from using techniques that support 

the systematic recording of assumptions that they reflect in the software as 

they make design and implementation decisions. Design rationale tech-

niques can contribute to make explicit many implicit assumptions that are 

made during software design, and to systematically review the validity of 

these assumptions over time and releases, helping to reduce the risk of un-

anticipated software failure and its consequences.

Chapter 16 “Design Decisions: The Bridge between Rationale and Ar-

chitecture” by Jan van der Ven, Anton Jansen, Jos Nijhuis, and Jan Bosch 

presents an approach in which the design decisions underlying software

architectures are made explicit. Currently, the design decisions that drive

the software architecture design remain implicit and are therefore easily 

lost and forgotten. This decreases the understandability of the architecture 

over time. Consequently, it is hard to make changes to the architecture 

when unknowledgeable about the underlying design decisions. Explicitly

describing design decisions in software architecture design deals with 

these problems. In this new perspective, software architectures are seen as

the result of the design decisions underlying them. The design decisions 

contain rationale, ranging from the issue(s) the decision tries to address to 

rationale explaining why certain alternative were (not) chosen. In this

sense, design decisions act as a bridge between rationale and architecture. 
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As a first step, the Archium tool illustrates that designing architectures

with design decisions is feasible. In Archium, a component and connector 

view of the system can be generated by creating a set of design decisions. 

The rationale is represented in the design decisions and is made traceable 

to the architecture. The authors envision that this close integration will 

help architects to represent the rationale of their decisions, making archi-

tectures easier to use and communicate. 
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Knowledge and Rationale Management 

M.A. Babar, I. Gorton, B. Kitchenham 

Abstract: There is growing recognition of the importance of documenting

and managing background knowledge about architecture design decisions. 

However, there is little guidance on the types of information that form Ar-

chitecture Design Knowledge (ADK), how to make implicitly described 

ADK explicit, and how such knowledge can be documented to improve ar-

chitecture processes. We propose a framework that provides a support 

mechanism to capture and manage ADK. We analyze different approaches ff

to capturing tacit and implicit design knowledge describe a process of ex-

tracting ADK from patterns and an effective way of documenting it. We

also present a data model to characterize architecture design primitives used 

or generated during architecture design and evaluation. This data model can 

be tailored to implement repositories of ADK. We complete this chapter 

with open issues that architecture research must confront in order to suc-

cessfully transfer technology for capturing design rationale to the industry. 

Keywords: software architecture; design rationale; knowledge management

Many researchers and practitioners acknowledge the importance of captur-

ing and maintaining knowledge underpinning architecture decisions [17, 

42, 52]. However architecture/design decisions are seldom documented in

a rigorous and consistent manner. Curtis et al. [19] and Bosch [12] suggest 

that a meaningful explanation should include information explaining the 

context, reasoning, tradeoffs, criteria, and decision making that led to the 

selection of a particular design from various design options. This type of 

knowledge is called design rationale (DR) [34, 43]. It represents knowl-

edge that provides the answers to questions about a particular design

choice or the process followed to make that choice [20, 24]. If it is not 

documented, knowledge concerning the domain analysis, patterns used, 

design options evaluated, and decisions made is lost, and so is unavailable

to support subsequent decisions in development lifecycle [12, 41, 52].  

Based on our experiences in designing and evaluating architectures for 

large-scale systems, we argue that lack of suitable techniques, tools, and 

guidance is one of the reasons that DR is not captured and managed. DR 

researchers have developed different methods, notations, and tools for  t

recording design decisions, such as IBIS [32], Decision Representation 

11.1 Introduction 

11  A Framework for Supporting Architecture 
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Language (DRL) [34], gIBIS [18], Questions, Options and Criteria (QOC)

[35], and so on. However, these approaches only capture and represent the 

space or history of arguments surrounding the design decisions [15], rather 

than representing domain knowledge or system design in terms which are 

understandable by the domain experts [26]. Moreover, these approaches 

are not scaleable to large scale systems; nor do they ensure creation of re-

usable assets, promote the use of DR, or improve the reuse of artifacts 

[25]. 

We propose a framework for managing DR to improve the quality of ar-

chitecture process and artifacts. This framework consists of techniques for 

capturing DR, an approach to distill and document architectural informa-

tion from patterns, and a data model to characterize architectural con-

structs, their attributes and relationships. These collectively comprise Ar-

chitecture Design Knowledge (ADK) to support architecting process. The 

central objective of our research is to develop a generic framework for 

capturing architecture process knowledge (DR attached to artifacts) and 

provide mechanism to manage the captured knowledge to support architec-

ture design decision making process.

In this chapter, like [20], we characterize DR as certain type of architec-

ture knowledge developed and used during software development. We take 

the view that management of such knowledge can be greatly improved by

considering the various tasks from a management perspective rather than

computer science or artificial intelligence perspective [31] . Thus, our ap-

proach considers DR management tasks as Knowledge Management (KM) 

tasks and uses a KM task model described in [46] and used in [20, 31].

This model consists of two strategic and six operational tasks.  

Background and Motivation 

A DR is an explanation of how and why an artifact, or some part of it, is

designed the way it is. DR represents knowledge about the reasoning  

justifying the resulting design. This includes how a structure satisfies func-

tional and quality requirements, why certain structures are selected over  

alternatives, and what type of behavior is expected under different envi-

ronmental conditions [24, 34]. Early research emphasizing the importance

of DR in software design can be found in [40, 43]. Since then, the software 

engineering community has experimented with several DR approaches 

such as Issue-Based Information Systems (IBIS) [32], Questions, Options, 

and Criteria (QOC) [35], Procedural Hierarchy of Issues (PHI) [36], and 

11.2.1  Design Rationale Approaches and Software Engineering

11.2
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Decision Representation Language (DRL) [34]. All these approaches pro-

vide argumentation models, which use small numbers of node and link 

types to organize a hierarchy of questions posed to address issues. Alterna-

tives, their rationales, and the final choice can be attached to the questions

to document discussion paths [25]. 

Most of these approaches have been adopted or modified to capture  

rationale for software design decisions [33, 43] and requirements specifi-

cations [21, 47, 51]. Another approach [45] combine rationale and scenar-

ios during requirements elicitation process to refine and review require-

ments. Dutoit and Paech [20] describe various tasks of rationale 

management in software engineering and their application. Heninnger de-

veloped an approach for supporting reuse-based software development by

explicitly capturing and using past rationale [25]. Pena-Mora and Vad-

havkar’s DRIM [41] approach combines patterns and rationale to support 

reusable software development. Our approach has some similarities with 

the last three approaches. But, instead of attaching DR to patterns like the

DRIM, we distill architectural information from patterns and represent it as

a reusable ADK. We believe that rationale should be attached to design 

decisions, which apply patterns, rather than patterns themselves. 

Software architecture (SA) researchers have also emphasized the need 

to document DR to maintain and evolve architectural artifacts and to avoid 

violating fundamental rules underpinning the original design decisions [8, 

12]. The IEEE 1471 standard [27] identifies DR as an important part of SA

description. However, there has not been any significant support mecha-

nism for capturing and managing rationale for architecture decisions ex-

cept the Views and Beyond (V&B)B approach to document SA [17].

Though, the V&B approach recommends explicit documentation of ration-

ale for design decisions, interface designs and the information that cuts 

across multiple views, it also has certain limitations mentioned later.    

Patterns as Architecture Design Knowledge 

A quality attribute is a nonfunctional requirement (NFR) of a software  

system, such as maintainability, performance and so forth. Scenarios have

been found effective and useful for specifying quality attributes. That is 

why scenarios are widely used to design and evaluate SA. Scenarios are 

considered flexible as they can be used for systematically reasoning about, 

or evaluating, most quality attributes [2, 29]. A pattern is a known solution

to a recurring problem in a particular context. Patterns provide a mecha-

nism for documenting design knowledge [22]. The architecture of complex 

 Supporting Architecture Knowledge  and Rationale Management

11.2.2  Relationship among Quality Attributes, Scenarios, and 
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systems is usually designed by successively integrating different patterns, 

which may be described at different levels of abstraction. Each pattern 

supports or inhibits certain quality attributes [8, 14]. 

Patterns documentation also contains reasons for the use of a pattern for 

a certain class of problems. Relating quality attributes, scenarios, and pat-

terns in this way forms architecturally significant knowledge, which may 

also have rationale about the relationships attached. Recently, there have 

been a few efforts to explicitly codify the relationships among quality at-

tributes, scenarios, and patterns [9, 23]. These approaches identify and link 

scenarios, quality attributes, and patters from sources other than the pat-

terns themselves. However, we have demonstrated that each pattern’s 

documentation contains implicit description of the relationships among

scenarios, quality attributes, and patterns [3]. 

Having reviewed various approaches to rationale management, we con-

clude that most of the efforts to introduce argumentation methods in soft-

ware engineering have experienced very limited success. There are many 

reasons for this, for example, the need for extensive training, changes in

thinking styles, focus on some tasks only, and lack of guidance on using 

past rationale [13, 25]. Generally, knowledge and rationale management 

support in the architecture domain is limited. 

Obbink et al. [39] and the IEEE 1471 standard [27] advocate capturing

and maintaining rationale but do not provide any support mechanism. 

V&B provides templates to capture knowledge about DR, which is docu-

mented along with the architecture description. However, there is no suffi-

cient support mechanism to capture and manage knowledge and rationale 

about other architectural constructs such as scenarios, patterns and so on,

and their relationships. Moreover, none of the existing approaches in the 

architecture domain help users to identify and define the main constructs

and their properties and relationships involved in forming ADK. Nor do 

they provide sufficient conceptual guidance to develop a repository of 

ADK and experiences of using it [6]. 

The main object of this research is to develop a support mechanism for 

capturing and maintaining ADK to improve architecting process. To 

achieve this goal, the issues that we intend to address are to identify tech-

niques that make the effort of capturing rationale worthwhile without 

heavily disrupting the design process, help utilize the large amount of 

architecturally significant information implicitly embedded in patterns, and 

to identify architectural constructs, their properties and relationship and 

put them into a framework that can be used to design and implement an 

organizational repository to store and retrieve ADK generated or used 

during architecting process. In Sect. 11.3, we propose a solution that  
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incorporates techniques that complement each other and provide an inte-

grated support framework for capturing and maintaining ADK.  

Managing Architecture Design Knowledge 

In this section, we present a framework for managing ADK . This frame-

work comprises three components:  

1. A means of capturing knowledge underlying decisions from architects 

as well as electronic sources such as annotations attached to artifacts. 

2. A procedure for capturing architecture knowledge and associated ration-

ale from patterns in order to explicate the relationships among scenarios, 

quality attributes, and patterns that is a form of reusable ADK.t

3. A model for characterizing the main architectural constructs and their 

relationships that form ADK and rationale. This data model can be tai-

lored and implemented to provide a repository for managing process 

knowledge, relating design knowledge to architecture artifacts or the re-

usable ADK extracted from patterns.

These three components complement each other to support the tasks of 

capturing ADK from different sources (such as architects, artifacts, and 

patterns), structuring and maintaining the captured ADK, which is  

presented in a format that is readily usable in making and assessing design

decisions with an informed knowledge of the consequences of those 

decisions. The first two components are aimed at capturing ADK, while 

the third component represents architecture domain knowledge that can 

help develop a knowledge base to store, maintain, and retrieve the captured 

ADK. The balance of this chapter is heavily skewed towards the pattern-

mining (3.1) and the data model (3.2)) components of the framework.g

However, we discuss briefly three approaches that are being used to cap-

ture DR, process knowledge, or experiences in software engineering:

1. Designers themselves can be required to document their DRs [4].

Knowledge can be captured during the design process or constructed af-

ter the fact [43]. In either case, the designer needs to be motivated to 

document the DR. In practice such motivation depends on appropriate 

rewards and explicitly demonstrated future benefits [25].

2. A knowledge engineer [50] or rationale maintainer [20] can be 

appointed to the task of capturing design knowledge from designers,

meeting recordings, emails, memos, and design documentation. Indus-

trial trials conclude that a KM tool and a knowledge engineer should be 

an integral part of software development process [50]. However, this 

Supporting Architecture Knowledge  and Rationale Management

11.3
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approach should be used with caution as the knowledge engineers may

become a bottleneck [25].  

3. ADK can be captured during architecting process. This is called contex-

tualised knowledge. Designers are provided d with appropriate tools so

that knowledge can be encoded into the system as part of the knowledge

creation process [25]. This is similar to the V&B approach, which  

provides templates to capture contextualized design knowledge [16]. 

We find the second and third approaches less disruptive and useful. We

are also studying the architectural processes to integrate design knowledge

capture practices in a manner that is not overly disruptive [25].   

conceived as part of our efforts to improve SA evaluation. We found that 

software patterns are a valuable source of abstract scenarios, which can be 

distilled to support SA evaluation. We later found that each pattern’s 

description is also a source of architecturally significant relationships that 

exist among scenarios, quality attributes, and patterns. We argued that such 

synergistic relationships form ADK that needs to be explicitly documented 

in a readily reusable format to support architecting process. 

Our initial experiences of capturing architectural artifacts and relation-

ships among them from patterns were encouraging. However, we found 

that being a manual procedure it relies heavily on the pattern miner’s  

experience with different classes of patterns (such as architectural, design

and platform specific) and with several formats of documenting patterns. 

In addition, the extracted information needs to be documented in a format

that explicates the relationships among scenarios, quality attributes, and 

patterns as ADK along with the rationale for using a pattern. Thus, we

have developed an approach to identify, capture and document architectur-

ally significant information from patterns as ADK.  

This approach consists of a process model, guidelines, and a template to

identify, capture, and document architecturally significant information

from patterns as architecturally significant reusable artifacts. We call this

process “pattern-mining” and the extracted information “Architecturally 

Significant Information extracted from Patterns (ASIP)” [3].  The novelty 

of our approach resides in its ability to incorporate all the components into

an integrated approach, which can be used to capture and populate ADK 

repository like [38] backed by an experience factory infrastructure [6] to

grow organizational capabilities in architecting process. 

11.3.1  Mining Patterns for Architecture Knowledge 

The idea of mining patterns for architecturally significant information was 
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Fig. 11.1. Pattern-mining process model

The pattern-mining process is shown in Fig. 11.1. This manual processg

consists of following six steps: 

1. Select a software pattern to be explored for architectural information 

2. Understand the pattern documentation format to identify the variations 

that exist among different patterns’ description styles

3. Explore different parts of the selected patterns to identify architectural 

information described in a pattern’s documentation

4. Capture each type of information separately 

5. Structure and document the extracted information

6. Validate and refine documented information based on domain knowl-

edge and experience of using different patterns

Patterns are usually documented in a variation of format used in [22], 

which require the inclusion of problem, solution, and quality consequences 

parts. We have found that scenarios are mostly found in problem and solu-

tion sections. Forces can also be found in these sections. However, there 

are some pattern description styles that use separate sections for forces.

The forces of a pattern describe the factors which can cause a problem if 

they interfere with one another. The pattern attempts to resolve clashes 

among those factors. Discussion of forces also captures necessary tradeoffs  

and justification for using that pattern, which is considered the DR of that 

pattern [23, 28]. The quality attributes (positively or negatively affected) 

are usually described at the end of a pattern’s description.

Supuu porting Architectutt re KnKK owledge and Rationale Management
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The ASIP must also be documented and presented in a format, which turnsP

it into architecture design knowledge that can facilitate reasoning during 

architecture process. We have designed and assessed a template  

(Table 11.1) to document and represent architectural constructs, including 

abstract scenarios, quality attributes, forces, tactics, and usage examples. 

This template makes the synergistic relationship among scenarios, quality

attributes, and patterns explicit, which forms ADK. The template also  

presents different parts of a pattern’s description in a succinct format at an

abstraction level suitable for architecture design and evaluation. Since de-

signers usually apply breadth first strategy to identify available solutions to aa

a design problem [49], too much detail presented in the current formats of 

pattern documentation may be counter-productive [3]. 

Apart from providing a structured way of documenting the ASIP, the

template also support the pattern-mining process by helping a pattern-g

miner (e.g., software architect) concentrate on the pieces of information 

that need to be extracted to populate the template. Moreover, the ADK pre-

sented in this template enables a user of the template to reason about ther

ramifications of the tactics being implemented by a particular pattern 

within the context of scenarios, quality attributes affected (positively or 

negatively), and usage examples, while considering the justification for us-

ing a certain pattern and tradeoffs needs to be made, information that 

forms rationale described by a pattern’s forces.  

The ASIP presented in Table 11.1 helps improve the scenario develop-P

ment task, select suitable reasoning frameworks and increase confidence  

in the capabilities of architecture to satisfy particular quality sensitive  

Table 11.1 A template to document ADK extracted from patterns

Pattern Name: Name of the pattern Pattern Type: Architecture, design, or style

Description A brief description of the pattern. 

Context The situation for which the pattern is recommended. 

Problem What types of problem the pattern is supposed to address?

Suggested What is the solution suggested by the pattern to address the problem?

Forces Factors affecting the problem and solution and pattern’s justification.  

Tactics What tactics are used by the pattern to implement the solution? 

Positively                  Negatively Affected 

Attributes Attributes supported Attributes hindered 

S A textual, system independent specification of a quality attribute. Abstract 

scenarios S  

Example  Some known examples of the usage of the pattern to solve the problems.

11.3.1.2  Documenting and Representing Design Knowledge
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scenarios as a result of using certain patterns. For example, architects can 

identify suitable patterns by comparing the scenarios and quality attributes

supported by different patterns with the ones required by the stakeholders. 

Moreover, the abstract scenarios extracted from patterns can be used to in-

stigate stakeholders’ thinking while developing quality sensitive scenarios 

or the abstract scenarios can be concretized to specify quality attributes for 

a particular system. We have found the template a promising way of cap-

turing, using, and transferring ADK [3].  

We have developed a conceptual data model that identifies and defines the

main architectural constructs and their relationships, which form ADK to 

support architecting process. A conceptual model is the first stage in the

development of an automated system for storing DR which could help 

organizations to store and access ADK [30]. The DAta Model for Software 

Architecture Knowledge (DAMSAK) is a customizable model to charac-

terize the data required to capture architecture knowledge and rationale. 

We believe that the DAMSAK can help develop a repository of reusable

ADK. To demonstrate the potential use of such a repository, we provide 

one example. One of the authors helped design an application which

needed instantaneous event notification to unknown number of client tools

(see [1] for details). The publish–scribe architecture pattern with a publish-

on-demand design pattern was selected for this mechanism. However, the

Java RMI was also considered, as it was decided it was not sufficiently

scaleable for expected increase in the number of notification requests. 

If there were a repository for ADK management, the architect or a 

knowledge engineer could have stored different architectural primitives as 

illustrated in Table 11.2. ADK can also be obtained from case studies 

such as described in [8, 17] or quality attribute sensitive design primitives 

Supuu porting Architectutt re KnKK owledge and Rationale Management

11.3.2  Modeling Architecture Knowledge and Rationale 

Table 11.2 Sample data for various architectural constructs

attribute 

Abstract scenario 

(Scenario entity).

Abstract scenario 

requests from increased number of clients (Scenario entity).

Architecture Decision  Event notification (Architecture Decision entity).

Design option 1  Publish scribe (Alternative entity). 

Design option 2  Java RMI (Alternative entity). 

Design Pattern  Publish on demand (Pattern entity).

Application shall be able to handle simultaneous notification

Application shall instantly notify changes to the interested clients 

Gener ci quality Flexibilitytt /Scalaba ilityt (ASR entitytt )
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reported in [7]. Thus, a ADK repository will be an organizational memory

analogous to engineers’ handbooks, which consolidate best knowledge [4]. 

Having access to a repository of generic ADK enables designers to use 

the accumulated “wisdom” in different projects. For example, instantiating

abstract scenarios into concrete ones, contextualizing design decisions and 

others. The project specific data model will also have other entities to cap-

ture and consolidate ADK and rationale that is specific to a project. For 

example, design history, findings of SA evaluation, architectural views of 

interest to each type of stakeholders and others. A project specific reposi-

tory system will be populated with the specialized versions of data drawn 

from the organizational repository, standard work products of the design

process, logs of the deliberations and histories of documentation [4].

The conceptual data model of architecture knowledge consists of 

primitives or semantic elements, which characterize the constructs and 

terminology used in designing and communicating architecture artifacts. 

To develop DAMSAK presented in Fig. 11.2, we used several approaches 

to arrive at an appropriate set of architectural constructs, namely:

− We read several textbooks on software architecture (e.g. [8, 11, 14, 17, 

22]) and analyzed their examples and case studies to support our explo-

ration of relevant architectural constructs and their attributes. 

− Our work on comparison and classification of SA evaluation methods

[2] was an important means of identifying relevant literature. 

− We reviewed a selected set of gray literature (such as PhD theses and

technical reports) in software architecture (e.g. [7, 10, 39]) and standards

for documenting architectures [27].

− We reviewed the literature in other engineering disciplines and Human–

Computer Interaction (e.g. [18, 24, 34, 44, 48] to discover appropriate 

constructs, which describe DR.

Our next step was guided by using the Unified Modeling Language for 

database design [37]. We assessed the model by reference to the literature,

in particular [27, 39], which provide reference models for describing and 

evaluating SA. Following is a brief description of the data model. 

of interest in the architecture process or product [39] such as developers, 

testers, managers, evaluators, maintainers, and many more [17]. This entity

helps keep track of the people who contribute to or consult a knowledge

base. Such information can be used to design a recognition program to  

motivate people to contribute or use an architecture knowledge repository. 

11.3.2.1  Model Development Process and Model Description

The Stakeholder entity characterizes those people who have any kind 
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Fig. 11.2. Data model characterizing SA knowledge and rationale

Suppuu orting Architecture Knowledge and Rationale Management
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that have broad cross-functional implications. Such requirements are often

Nonfunctional requirements (NFRs), also called Quality Attributes (QAs) 

[8, 39], but can also include functional aspects such as security functional-

ity. This entity is used to describe and explain various aspects of an ASR.

An ASR can be supported or hindered by one or more patterns used in a 

particular architecture decision. This is characterized by the EffectOfPat-

tern association entity.

into different types of ASR such as availability, reliability, and modifiabil-

ity [8]. A source attribute of a scenario describes whether the scenario has 

been elicited from a stakeholder or distilled from a pattern. A scenario has

a history of changes made to it. An abstract scenario can help identify one 

or more analysis models to analyze design decisions.

reason about the effect of different design tactics on required scenarios. A

reasoning framework provides the vocabulary and analytical machinery for 

describing and deducing particular system properties. It consists of a set of 

independent and dependent parameters, their relationships and associated t

rules that need to be observed in evaluating the effects of a tactic [5].

particular context [22]. The term pattern denotes design pattern, architec-

ture pattern, or architectural style. A pattern provides a mechanism for 

documenting and reusing design knowledge accumulated in terms of prob-

lem, solution, forces, and usage examples by experienced practitioners. mm

manipulating some aspect of an analysis model for that QA through design

decisions [5]. A tactic may be classified into different categories of tactics, 

for example architectural, design, or implementation. A pattern may con-

tain one or more tactics. A tactic is applied to satisfy one or more scenar-

ios. This entity also captures the rationale for a tactic and any rules that

should be observed to achieve the promised benefits of using that tactic.  d

set of ASR. If we conceptualize the architecture design process as a  

decision making activity, an architecture decision is a choice among design 

options based on certain criteria [24]. A decision may have a history of the 

changes made to it along with any consequences of the changes on the

other decisions. There may be interdependency between various decisions. 

For instance, an earlier decision may limit the options available or impose

some constraints on the subsequent decisions. Any changes in a decision

should consider the consequences for the dependency relationships.

Architecturally significant requirements (ASRs) are those requirements

Scenario is a textual definition of an ASR. A scenario can be classified

Analysis Model is a reasoning framework that is used to systematically

Pattern characterizes known solution to a recurring problem in a 

Tactic is a design mechanism for achieving the desired level of a QA by

Architecture Decision is a high-level design decision taken to satisfy a 
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satisfy one or more functional or nonfunctional requirements [24]. Design 

decisions may be related to each other such that the selection of one design 

option requires the selection or rejection of another design option. A pat-

tern may be used for one or more design options and a design option may

apply one or more patterns. A design decision may use several tactics.

consists of all the background information that may be used or generated 

during the decision making process. Such information is valuable to people 

who deal with the product of the decision making process [12, 24]. The 

DR associated with each design option records the required background 

knowledge essential to evaluate it with respect to other design options. The 

DR associated with an architecture decision cuts across all the design  

options selected for a particular architecture decision.  

a particular ASR [14]. This entity captures the reason behind certain types

of effect, information that forms the rationale. This is an association entity. 

There are a number of other association entities required to capture appro-

priate data: we show only the most important ones in Fig. 11.2. t

ground information to justify the choice of a specific architectural decision

for a particular scenario. This background information includes explana-

tion of the decision, risks considered, assumptions, and constraints. Such

information is valuable for reusability of an architecture decision.   

architecture according to certain standards or approaches (e.g. [16, 27]). 

An architecture description is usually organized into one or more views, 

which are models of architectural structures. Views can be categories into

view types and architectural description should also capture the relation-

ships among different views. The V&B [16] approach also emphasizes the 

need to capture information that cuts across several views. The view 

attribute of this entity is a complex attribute, which would be an entity in 

its own right in a fully normalized data model.

To the best of our knowledge, this data model represents a first system-

atic attempt to formally enumerate the architecture knowledge domain. 

There is always a tradeoff between the size and the representative ability 

of a data model as it is difficult to conceptualize a domain and tease it out 

to the level of entities, attributes, and relationships. Another source of  

difficulty in modeling architecture design knowledge is researchers and 

practitioners use different terms and describe architectures at various levels 

of abstractions. That is why we have developed a moderate size of data

Suppuu orting Architecture Knowledge and Rationale Management

DR is the reason behind a design decision (architecture or option). DR 

Design option is a design decision that can be evaluated and selected to 

Effect of Pattern defines the effect (positive or negative) of a pattern on

Support information is an association entity that captures the back-

Architecture Description characterizes the data required to document an 
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model that can be tailored or extended to various organizations’ needs,

e.g., to support the “architecture decision description templates” described 

in [52], to implement an architecture knowledge repository like [38], or to 

develop an architecture design decision support system. Moreover, this 

data model can be easily modified to cater the data needs of software 

architecture reviews, which help capture architecture DR.  

The three techniques to capture implicit and explicit design knowledge  mm

described in Sect. 3 have been empirically evaluated in research labs or  

industrial settings [4, 25, 50]. However, their effectiveness needs to be

empirically assessed in SA domain with real projects, something which we 

plan to achieve in the next step on the project. As mentioned earlier, the

conceptual data model has been assessed by reference to published litera-

ture as is evident from the citation for each entity. Moreover, this data 

model incorporates the concepts described in the meta-models of IEEE

standards for architecture description [27], architecture review context

conceptual model of SARA report [39]. Furthermore, it can capture most 

of the data recommended for V&B approach of documenting architecture 

[16]. However, we do not claim entity-to-entity mapping.  

To assess the effectiveness of the different components of the pattern-

mining approach and the usefulness of the g ASIP in architecture design and P

evaluation, we have designed and implemented an empirical research pro-

gram consisting of an observational study and two controlled experiments.tt

The observational study was aimed at finding out the average amount of 

time taken for mining patterns, the effectiveness of the pattern-mining

process, guidelines, template to support the process, and the perception of 

the participants of the usefulness of the ASIP. The controlled experiments

were designed to assess the value of ASIP during design and evaluation ac-P

tivities. The results of the observation study support the view that the pat-

tern-mining process is effective and that the g information obtained is useful

[3], all the 18 subjects that replied to our first questionnaire found the pro-

posed process and guidelines helpful in mining information from patterns. 

And 22 of the 24 subjects replying to subsequent questionnaires found the 

extracted information in templates more useful than standard pattern in-

formation for performing architecting activities. Objective quantitative

data gathered during controlled experiments are yet to be analyzed, and we 

are expecting that the findings of the controlled experiments will be avail-

able in the near future.

11.3.3  Empirical Assessment
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One of the general conclusions is that recording the rationale for architec-

ture decisions is an intuitively appealing idea, which has enormous poten-

tial benefits. However, there is little guidance and no support mechanism 

for capturing and managing ADK. In this chapter, we contribute to the

growing efforts of software architecture rationale management by propos-

ing a framework of three components to support the management of ADK. 

We hope that both researchers and practitioners can experiment with the

ideas presented in this chapter and provide us some insights to refine our 

approach. In particular, we look forward to seeing how the proposed data 

model can be applied in practice to develop an organizational repository,

which can be populated with ADK by following the “pattern-mining“ ”

process.

Despite continuous efforts by researchers and practitioners, including 

ours, the architecture community has a long way to go before ADK capture

becomes a widely accepted practice. As Conklin [18] mentioned, success-

ful transfer of any technology of capturing rationale will need to answer 

the questions like: what is the cost of not capturing and managing ADK,

who is responsible for capturing and maintaining it, what are the incentives

for the designers to take extra burden of documenting DR, and what are 

the mechanisms in place to prevent rationale being used for firing or 

prosecuting architects if a decision turns out to be an error? These are 

some of the issues that we plan to explore in our future efforts
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Architecture

Abstract: Documentation of design rationale acts as the collective memory 

for a system.  A special case of design, and therefore of design rationale, is

found by considering the set of design decisions that constitute a system’s

software architecture.  This chapter discusses the special role of architecture 

in design and the kinds of rationale that are important to capture.  We dis-

cuss capturing and structuring rationale using two different graphs (the 

causal graph and the structural graph) in order to facilitate its (possibly

automated) recovery and use in question–answering later in the life cycle. 

The information collected in these structures can be used manually (espe-

cially in the case of documentation) or as the basis for an automatic search 

to determine the answers to common questions asked of architectural design 

rationale such as how a requirement has been satisfied and what are the im-

plications of a proposed modification. 

tural tactic; architecture documentation; causal graph; structural graph

The reason for maintaining design rationale is to allow stakeholders 

throughout the life of the system to determine why important design deci-

sions were made, what those decisions were, and what alternatives were 

considered when making those decisions. Documentation of design ration-

ale acts as the collective memory for the system; without knowledge of the

reasoning behind decisions, decisions will be needlessly reconsidered and, 

in the future, unnecessary or incompatible decisions are likely to be made.   

Our vision of design is one in which rationale management is an integralaa

part of the design process. Tools to help manage design and related ration-

ale inherently support such a process. We envision design tools that man-

age rationale as a side effect of design, rather than as a separate rationale 

management tool that is very intrusive.

A special case of design, and therefore of design rationale, is found by 

considering the set of design decisions that constitute a system’s software

architecture. This chapter discusses the special considerations that 

come into play for documenting the rationale of a software architecture.  

We begin in Sect. 12.2 by discussing the special role of architecture in  

12.1 Introduction 
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design, why it is important, and the kinds of rationale that are particularly

important to capture. We go on to discuss two main ways of organizing 

that rationale: causally and structurally. Section 12.3 shows how the or-

ganization of design rationale facilitates its use in answering questions 

later in the life cycle. Section 12.4 discusses a representation and guide-

lines for capturing design rationale. Section 12.5 illustrates the approach

with an example of capturing and using design rationale. We conclude in 

Sect. 12.6. 

Our approach is focused on software architecture rationale and thus its

primary support of software engineering process areas (as distinguished by 

SPICE) is the process area of engineering. Secondary areas include opera-

tion and reuse, but only to the extent to which they support engineering.

A software architecture for a system is the structure or structures of the 

software, which comprise software elements, the externally visible proper-

ties of those elements, and the relationships among them [1]. Externally 

visible properties include both function (which we represent by  

responsibilities) [2] and quality attribute properties such as execution time,

probability of a failure, and so forth. A system’s software architecture

represents a cohesive set of design decisions that shape the system and also

shape the development project that produces the system. A system’s soft-

ware architecture permits or precludes many of the system’s important 

quality attributes such as performance, security, reliability, and others. The

architecture is the forum in which major design tradeoffs are engineered,a

requirements negotiated, and project and system resources are allocated.  

The architecture represents the earliest set of design decisions that begin to

address how the system will meet its requirements. No system can be suc-

cessful with the wrong software architecture. And, in many organizations,

an architecture represents a significant capital investment that can be lev-

eraged across an entire family of related systems. 

In addition to the ways just described, an architecture is important  

because it represents a set of design decisions that are made early and that 

have far-reaching scope. These decisions are critical to get right because 

they will be extremely difficult to change later.  We know from long ex-

perience that defects introduced early on can be orders of magnitude more

expensive to correct than defects introduced much later.  ff

12.2.1  The Special Role of Software Architecture 

12.2 Structuring Rationale 
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An architectural design decision can be seen as a transformation from the

state of the architecture prior to the design decision and the state of the ar-

chitecture subsequent to the design decision.  

This transformation can be a refinement of either the structural portions 

of the architecture or the responsibilities allocated to the various structural

elements (such as dividing an element into sub-elements where the respon-

sibilities in the subelements collectively satisfied the responsibilities in the 

original element), it can be a reallocation of responsibilities among struc-

tural elements (such as moving a responsibility from one element to an-

other), it can be an aggregation of structural elements (such as combining

two elements into one that provides a general set of responsibilities to sat-

isfy the responsibilities in the original two elements), or it can be the

change or addition of a property of one of the elements of the architecture.

The transformation depicted in Fig. 12.1 shows that the known need for a 

connector between a client and the server of a compositional control de-

pendence graph generator (CCDGG) system [3], which will be used as a 

running example in this chapter, has been refined to become a TCP/IP

connector.

Fig. 12.1. Architectural transformation brought about by an architectural design 

decision

A common approach used for recording rationale is based on argumen-

tation representations (as described in [4] [Chap. 1, Sect. 1.3 in this book]). 

Argumentation representations assume that the key element is the problem, 

i.e., the reason a decision is required. They then enumerate arguments for 

12.2.2  What is an Architectural Design Decision? 
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and against particular solutions to the problem and have a decision as the 

output. This approach captures the two key items for design rationale, what 

the decision is and why it was made, and sometimes the third key item,

where it is manifested in the design, but context and implications are cap-

tured only insofar as they become a portion of the argument. For instance, 

referring to another decision made during the architecture development of 

the CCDGG introduced above, the architect was faced with the problem

that a Control Flow Graph (CFG) builder is needed.  This is discussed fur-r

ther in Sects. 12.4 and 12.5 but in brief, possible solutions include writing

code in house or using a pre-existing component. Arguments for or against 

each of these revolve around costs and benefits of in house coding (benefit 

of optimized, custom solution vs. cost in terms of time and need for 

The determination of the context and the implications of a design deci-

sion when solely recording argumentation depends both on the designers

making context and implication an explicit portion of the arguments

brought forward and being correct about the context and the implications 

of a design decision. This assumption is problematical, particularly with 

respect to the implications of a decision. Frequently, the implications of a

decision are not known when the decision is made and may be so wide 

ranging that it is virtually impossible to document them. In our example, it 

may not be known at the time the arguments are being formed what the

cost of acquiring the needed expertise for developing a CFG builder, nor 

can the cost of using pre-existing components be known until the specific

component is selected, which will be handled as a separate problem.

Because of the particular nature of design, and especially software  

architectural design, however, the argumentation approach can be aug-

mented in a fashion that provides the context and implications relating to a 

design decision. Furthermore, the capturing of this information can be 

done as an integral (and nonintrusive) portion of the design process

through the use of augmented design tools that maintain traceability of  

design decisions.

This notion of transformation leads to formulating a design as a sequence 

of decisions. This is true for any kind of design, not just software. For ex-

ample, when drawing a picture, an early decision is the media to be used.

The choice of pencil, crayon, oil or watercolor will influence the style of 

12.2.3  A Causal Graph of Rationale

additional expertise); and the costs and benefits of using pre-existing com-

ponents (benefit of reuse of specialized CFG expertise and coding effort  

vs. cost of likely need to adapt outputs). 
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the picture. A subsequent choice is where to position the stylus for the ini-

tial segment. This choice will influence subsequent decisions as well.  

Given a design as a sequence of decisions, these decisions can be 

ordered temporally. These decisions could be to provide properties to ex-

isting architectural elements (one interpretation of Fig. 12.1) or it could be

to use a particular reusable component to implement the connector (an-

other interpretation of Fig. 12.1). Each decision constrains some, although 

not necessarily all, subsequent decisions. Furthermore, each decision is 

constrained by some set, although not necessarily all, of the prior 

decisions.

Observe that this formulation includes evolution of existing systems as 

well as the initial design. Evolutionary decisions would be temporally  

positioned after all of the decisions that went into the original system al-

though they would be constrained (most likely) by only a subset of the

original decisions. 

Any tool support for the design process can be augmented to capture the 

sequence of design decisions. Any change to the design represents a deci-

sion that is a portion of the causal graph. We see three levels of informa-

tion that the tool would record: 

1. Just the decision. This yields a temporal ordering of decisions. Gather-

ing this information does not intrude on the design process at all.rr

2. The decision together with its context. That is, what prior decisions do 

this decision depends on. This yields more structure to the temporal or-

der. Gathering this information is partially unobtrusive (the decisions 

that led to the decision element being modified area portion of the con-

text) and partially obtrusive (design elements not being modified might 

have some influence on the current decision). 

3. The decision together with whatever information is appropriate. Gather-

ing this information is equivalent to the argumentation approach in ob-

trusiveness.

This gives us our first notion of a useful way to represent rationale: a

causal graph. A causal view of design decisions is a directed acyclic graph 

where each node is a design decision, the parents of a node are those deci-

sions that constrained it and the arcs represent the relation “constrained

by”. The fact that two nodes are children of the same parent reflects the 

fact that the decisions represented by the nodes are constrained by the par-

ent but are independent and could have been made in any order. The fact 

that one node has two parents reflects that fact that constraints on that de-

cision came from multiple sources.  

Our assumption is that tools embedded in a design support environment

support the creation of the causal graph. If the design is performed in a tool 
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environment then every modification to the architecture is a design deci-

sion and can be placed in the causal graph in temporal order. 

The causal graph is similar to the decision tree introduced by Parnas for 

representing program families [5]. Parnas’s structure emphasizes the suc-

cession of program versions and variants (the nodes in the tree) that are 

created in response to design decisions (the arcs) in order to understand the 

relationships among members of a program family. Our causal graph, on 

the other hand, highlights the decisions, which are the nodes in our graph,

in order to support traceability and to help one understand why a system is

starting at the decision to use a client–server approach. 

Fig. 12.2. Causal graph for CCDGG

Architectural patterns (sometimes called styles) are a well-known ap-

proach for designing that are used to achieve specific quality attributes

and, as such, imply rationale. Patterns represent known (partial) solutions 

to recurring design problems, where the problems are often couched in

terms of quality attributes as well as desired functionality. For example, 

client–server is a well-known architectural pattern that is appropriate for 

use when it is desirable to decouple the provision of the service from the 

service itself. Using this pattern provides a basis for deploying the client 

12.2.4  A Structural Graph of Rationale

the way it is. Fig. 12.2 shows a part of the causal graph for the CCDGG
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on a different platform than the server. It also supports interoperability

with services on legacy systems. A client–server approach is useful when 

the quality attributes of performance, scalability, and reliability are a con-

cern.  In our CCDGG example, the decision to apply the client–server pat-

tern, which resulted in the architecture shown in Fig. 12.1A, was made in 

order to allow multiple, possibly geographically distributed, clients access 

to the CCDGG server. Catalogs of architectural patterns (e.g., [6]) can be 

consulted so that an architect does not have to reinvent known solutions to 

familiar problems. 

While architectural patterns have proven extremely valuable, the num-

ber of different design problems confronting an architect is quite large. 

The number of patterns needed to do the job would lead to catalogs of un-

wieldy size. Instead, recent work has focused on architectural tactics [1]. 

These are the fine-grained design decisions that are the building blocks of 

patterns.  Each quality attribute has associated with it a relatively small set 

of tactics.  Applying an architectural tactic transforms a software architec-

ture where the result of the transformation has a response measure for a 

quality attribute that has changed in a known direction. For example, 

Fig. 12.3 shows the available tactics that are related to performance. The

response measure for performance involves the ability of the system to 

meet deadlines and to perform within the bounds of constraints imposed by 

available resources. Introducing any of the tactics for performance will 

improve the response measure the system exhibits in this area.  

Fig. 12.3. Performance tactics 

An architect’s choice of patterns and tactics, then, represent specific and 

especially far-reaching design decisions that are taken to achieve quality
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attribute properties. They also suggest a way of regarding rationale that is 

different from the temporal view presented earlier: we are now discussing

a structural graph of rationale. This graph maps to the set of architectural

elements as they exist in the software. It captures the rationale that 

explains the origin of each architectural element in terms of the responsi-

bilities (function and quality attributes) that it will have a hand in produc-

ing and the design decision alternatives considered and chosen to achieve 

them. Looking ahead, Fig. 12.6 shows a part of the structural graph for the 

CCDGG in the Primary Presentation portion of the document with annota-

tions recorded in the Architecture Background. 

Observe that only one structural graph exists at any point in time. Any

modification to the structural graph will destroy the old version. The old 

version can be recovered either by consideration of the causal graph or by

maintaining old versions of the structural graph through some version 

control mechanism. Also, notice that the structural graph can be recon-

structed by traversing the causal graph. That is, the structural graph is a 

view of the current structure whereas the causal graph is a history of all of 

the decisions made to date. 

How will Architectural Design Rationale be Used? 

At this point we have identified two useful graphs to help one understand 

why a system is the way it is. The first is a causal graph that views design

as a sequence of decisions, with which we can trace the genealogy of a de-

sign decision. The second is a structural graph that views design as the 

structure of the software (the result of applying a decision), with which wef

can trace the genealogy of an architectural element.  Together, they record,

for any architectural transformation, the goal or problem being addressed,

the design decisions considered and chosen, the context of the decision,

and the resulting architectural elements.    

This section explores the usefulness of these two graphs in the context 

of questions that often arise of rationale for architecture. While maintainers

are primary consumers of architectural rationale, they are not the only 

stakeholders of interest.  Developers can gain important insights from

reading the architect’s reasoning. Testers can design tests to validate the 

architect’s precepts.  Customers can examine the rationale to convince

themselves that their business goals are being met by the design. In addi-

tion, these stakeholders, and others, can read the rationale to make sure 

their interests have been addressed. But the stakeholder with perhaps the 

most vested interest in capturing the motivation and background for design 

12.3



Capturing and Using Rationale for a Software Architecture      263 

decisions is the architect.  In the maelstrom of developmental activities, the 

architect needs some way to remember the conceptual path he or she has 

taken, as well as a way not to repeat dead-end design paths.

Although the structural graph can be recreated by traversing the causal

graph, the two graphs, in fact, serve different purposes as the Sects. 12.3.1
and 12.3.2. show. 

Two common questions asked of architectural design rationale are (1) 

“How is requirement X satisfied?” and (2) “What are the implications of 

making modification Y?”

Of course, there are many other questions that design rationale could be 

used to answer, but in our experience these two are the most important. 

Now let us reconsider the question of “How is requirement X satisfied?”f

requirements. Functional requirements are initially mapped to a set of 

responsibilities. These responsibilities are transformed through design  

decisions. As long as traceability is maintained as the architecture is trans-

formed, all of the decisions impacting a functional requirement can be

enumerated and the final form of the responsibilities for implementing a 

functional requirement can be determined (they are the leaves of the 

directed acyclic graph that is the causal graph of design decisions). 

Quality attribute requirements can be traced in a similar fashion. Each

design decision (transformation) is the application of one or more architec-

tural tactics. Each tactic that is applied is designed for the achievement of a

particular quality attribute. Thus, the quality attribute specified by a 

particular quality attribute requirement can be used to determine which  

application of tactics is relevant to the achievement of that particular  

requirement. Again, it is the leaves that represent the decisions that are  

incorporated in the current state of the design.

Functional requirements are linked to a sequence of transformations of 

responsibilities to achieve those requirements. Quality attribute require-

ments are linked to a sequence of transformations determined by the tactics 

used to achieve that quality attribute. These assignments show up in both

the causal graph and the structural graph of design decisions.  The former 

records when a decision is constrained by prior decisions. The latter  

records the rationale associated with the creation of each architectural  

element.

12.3.1  Using Rationale to See How Requirements are Satisfied

we distinguish between functional requirements and quality attribute 
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Now we turn our attention to the answering of the second common ques-

tion that is asked of design rationale: “What are the implications of making

modification Y?” 

The implications of making a particular modification are frequently a 

cause for concern because of uncertainty of the side effects associated with

any changes. A modification is made by locating portions of the system 

where the modification could be made, determining the potential side ef-

fects of making the modification in that location, and then implementing

the modification. The determination of potential side effects of making a 

modification in a particular location can be bounded through our proposed 

method of structuring rationale. 

Understanding the implications of making a modification is a matter of 

locating the decisions that are to be affected by a proposed change. The 

parents of those decisions are the context within which the decision was 

made (recall the decision to use TCP/IP described earlier); the children of 

those decisions are the decisions that will be affected by the proposed 

modification.

The use of a causal graph of design decisions enables understanding the 

direct consequences of making a particular modification. The decisions 

that are embodied in the portion of the system being modified have de-

scendents in the temporal graph and the implications of an envisioned 

modification on those descendents can be analyzed. 

It is the side effects of a modification that are a cause for concern. These 

side effects come about because of the manner in which particular respon-

sibilities are packaged (and hence interact) with other responsibilities. For 

the analysis of potential side effects we turn to the second graph of ration-

ale that we have identified: the one corresponding to element structure. 

We can view architectural design as leading to the structure or structures 

of the software.  The information captured during the series of transforma-

tion steps is organized structurally. This structural organization means that 

the determination of side effects is simplified, especially if the views cho-

sen include dependency relations. 

A side effect to a modification is caused by one of two phenomena. Ei-

ther a modification to a responsibility in a module affects another respon-

sibility in that module or a modification affects modules that are dependent 

on the originally modified module. In either case, the ability to track side 

effects of a modification can come from examining the appropriate view.  

A module decomposition view will locate a responsibility in the context 

of other responsibilities. The decisions that led to this collocation may not 

have depended on each other so this information is not necessarily deriv-

12.3.2  Determining the Implications of a Modification
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able from the temporal graph. The responsibilities collocated in the same

module as the modified responsibility are the ones that might suffer side

effects. Thus, the degree of isolation of a responsibility provides a means

of identifying potential side effects. 

Furthermore, the modules dependent in any fashion on the module being

modified can be identified through the dependency relation. Not all of 

these modules will be affected by the modification but tracking the de-

pendency relation scopes the possible side effects of a modification. 

We have seen that two basic graphs of rationale (causal and structural) willf

go a long way towards allowing us to answer the most common questions

posed to architecture rationale.  Ideally, there would be sophisticated tool-

ing available to help an architect construct these graphs or even do so

automatically. The fact is, no such tooling exists, and so we must examine 

the state of the practice today to see if we can derive the benefits of these 

two graphs from work likely to be carried out by a practicing architect. 

Modern approaches to software architecture engineer it and document it 

as a set of views.  A view is a representation of a set of system elements 

and relationships among them [7]. The current trend is not to prescribe a 

particular set of views, but rather to have the architect define the set of 

views that will be most relevant to the architecture’s stakeholders. This is

the approach prescribed by ANSI/IEEE-1471-2000 [8], the recommended 

best practice for documenting architectures of software-intensive systems.

The Software Engineering Institute’s “views and beyond” approach to

documentation [7] exemplifies this approach.  It holds that documenting a 

software architecture is a matter of choosing and documenting the relevant 

views, and then documenting information that applies to all of the views 

(for example, how the views relate to each other).  The V&B approach 

comes with a standard organization, or template, for a software architec-

ture documentation package.  This template, one version of which is 

summarized in Fig. 12.4, offers several places dedicated for capturing ra-

tionale behind architectural design decisions. In particular:

− Section 1 explains the structure and contents of the document. It in-

cludes an explanation – a rationale – for why a particular set of views 

was chosen, by framing the views as addressing the explicit concerns of 

a number of stakeholders.

12.4.1  How is Architecture and Rationale Documented?

12.4 Capturing Rationale 
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− Section 2 provides a dedicated place for capturing rationale whose scope 

is the entire architecture. Dedicated subsections are provided to record 

the system’s business goals, quality attribute goals that shape the archi-

tecture, the major architectural approaches – specifically, tactics and aa

patterns – chosen to meet the quality attribute goals, and analysis results 

that provide an argument that the chosen approaches satisfy the stated 

goals.

− Section 3 contains the views of the architecture.  Within each view, a

subsection called “Architecture Background” is dedicated to providing 

rationale for the design decisions associated with that view. This section 

is a microcosm of the information found in Sect. 2: What are the  

business goals and quality attribute constraints that drive the selection of 

architectural approaches within the context of this view?

− Section 4 relates the views to each other by showing how the elements

in one correspond to elements in another.  In this way, a holistic view of 

the architecture emerges, showing how the views cooperatively work to 

serve the purposes of the system. 

− Sections 5 and 6 are resources to help the reader find more information. 

Templates such as the one in Fig. 12.4 make the architecture process 

much more effective. An architect always has a place to record a design 

decision, and the reasons behind it, as soon as the decision is made.  The 

template provides a framework that helps gauge progress and the scope of 

remaining work. The architecture’s stakeholders benefit because they can

find specific information in predictable places, shortening their search time

and avoiding frustration.   

It is easy to see that a documentation template like the one in Fig. 12.4 

is geared towards the structural graph of rationale – the rationale for theaa

architectural structures and elements that appear in each view is docu-

mented alongside those structures and elements. 

We suggest the following guidelines to architects for capturing rationale. 

First, there are five key items associated with a design decision:  

1. What is it?

2. Why was it made?  

3. Where is it manifested in the design?

4. What was the context for the decision?  That is, what design decisions 

already in place led to it? 

5. What are the implications of that decision? 

12.4.2  How Should an Architect Capture Rationale? 
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Obviously item #4 is grist for building the causal graph. Item #3 may be 

self-evident by the location of the rationale in the documentation package, 

but in any case this provides the structural graph information. It may also

be desirable to add annotations so that additional information about the  

decision is recorded; for all decisions these five key items should be cap-

tured.  In addition, the same five items should be recorded for alternatives

considered but not chosen.  

1 Documentation Roadmap and Overview 

1.1 Document Management and Configuration Control Information 

1.2 Purpose and Scope of the Software Architecture Document 

1.3 How the Software Architecture Document Is Organized

1.4  Stakeholder Representation

1.5 Explanation of Views Chosen 

1.6 How a View is Documented 

1.7 Relationship to Other Software Architecture Documentstt

1.8 Process for Updating this Software Architecture Document

2 Architecture Background 

2.1  Problem Background 

2.1.1 System Overview 

2.1.2 Goals and Context 

2.1.3 Significant Driving Requirements 

2.2  Solution Background 

2.2.1 Architectural Approaches 

2.2.2    Causal graph 

2.2.3 Analysis Results

2.2.4 Requirements Coverage 

2.2.5 Summary of Changes in Current Version 

2.3 Product Line Reuse Considerations 

3 Views. Section 3 contains the set of views for the architecture.   

                 Each view is documented using the following outline:  

3.i.1 Primary Presentation 

3.i.2  Element Catalog: elements, relations, interfaces, and behavior 

3.i.3  Context Diagram 

3.i.4  Variability Mechanisms 

3.i.5  Architecture Background 

4 Relations Among Views 

4.1 General Relations Among Views 

4.2  View-to-View Relations 

5 Referenced Materials 

6 Directory:  Index, glossary, acronym list

FFig. 12.4. Summary of the V&B template with 2.2.2 (Causal graph) added 

3.i View #i:  <Insert view name> View 
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1. What is the alternative?  

2. Why was it not made? 

3. Where would it have been manifested in the design? 

4. What would have been the context for the decision (i.e., what design 

decisions already in place would have led to it)?

5. What are the implications if that alternative had been chosen? 

As an example, the following paragraph describes the rationale for  

deciding to use a pre-existing component to generate control flow graphst

needed in a system that identifies dependencies among statements in 

source code. The parenthesized numbers indicate where each of the five

pieces of rationale is communicated in the phrase: 

Use pre-existing generator for control flow graph (CFG) (1). A decision

needed to be made as to whether to develop the CFG builder in house or use read-

ily available one (2). In response to the input of source code, the control flow

graph generator produces control flow graphs, which are then used as input to the

control dependence graph generator (3). The module decomposition of the server 

resulted in a CFG Builder module (4). Because control flow graphs are used as a 

base for many code analysis tools, the use of pre-existing control flow graph gen-

erator is advisable because availability of a high-quality pluggable component can 

be assumed, which will save development time. However, the use of a pre-existing 

CFG generator may require adjustment of the CCDA algorithm, which expects a 

specific form of CFG. (5)

Rules of thumb for capturing rationale include:

− Document those design decisions that either have far-reaching effect, or 

which the architect spent a significant amount of time or effort to re-

solve. 

− Document the decision, the reason or goal behind it, and the context for 

making the decision. 

− Explain rejected alternatives and why they were rejected, as well as the 

approaches that were chosen. This will prevent the same dead ends from 

being fruitlessly re-explored in the future.

− Analysis or formal review results often make excellent rationale, in that ff

they illuminate goals and requirements driving the architecture and  

provide the connection between those constraints and the architectural 

decisions that satisfy them.  See [9] [Chap. 11 in this book] for an elabo-

ration of this concept.

The key to capturing the right rationale is to keep in mind the reason it 

is being written down – it will be used later to save time, effort, and conse-

quently money because it will help people remember why the architecture 

is the way it is.
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An Example of Capturing and Using Rationale 

We now return to the example that we have been using to illustrate the 

concepts and show how the pieces fit together.  Figures 12.5 and 12.6 

show excerpts of the example using the software architecture template.  

The structural and causal graphs are threaded throughout.  

Figure 12.5 shows excerpts from the Architecture Background section

of the template.  It makes the requirements and business goals explicit.  

Figure 12.6 shows excerpts from the Views section of the template.  A 

client-server C&C view is shown in Sect. 3.1.  Decisions 1 and 2 from the 

causal graph (Fig. 12.2) are linked to this view.  The tactic from Fig. 12.1
is documented as part of the rationale.

A decomposition of the server is shown in Sect. 3.2 showing the CFG

Builder in the context of the parent (server) and siblings (front end, dia-

grammatic output generator, CCDG Generator). Decision 3 is linked to the 

entire view; decision 4 is linked to the CFG Builder element within the 

view. Structurally this decomposition view has as its context the client-

server view. 

We can now reconsider the original two questions in light of this exam-

ple and how rationale is captured causally and structurally:

2.1.2 Goals and Context
Business goals
– Time to market…
– Maintain a quality reputation by providing robustness throughout

the application…

2.1.3 Significant Driving Requirements
Modifiability  
– Addition of legacy software… 

Reliability
– Handles errors gracefully…

2.2 Solution Background

2.2.1 Architectural Approaches
Client-server, pre-existing CFG generator… 

2.2.2 Causal graph (pointer)

2.2.3 Analysis Results
Analysis of cost/benefit of reusing CFG generator vs. new development shows
better return on investment by using pre-existing software…

12.5

Fig. 12.5. Excerpts from the Architecture Background section of the template 
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3 Views 

3.1 View #1: CCDGG Client-server 

View

3.1.1  Primary Presentation 

Transformation 1->2
vides rationale and analysis for the details 

of moving from Decision 1 to Decision 2. 

In addition to the change in structure re-

corded by the causal graph excerpt, the 

transformation includes the design forces

(e.g., quality attributes) under consideration

and any analysis done to verify the trans-

formation.

3.2

3.2.1  Primary Presentation 

3.2.2 

CFGBuilder_COMP: CFGBuilder 

(Decision 4: use pre-existing software) 

DOG_COMP:Diagrammatic Output
Generator 

(Decision5: use pre-existing software) 

myFrontEnd:FrontEnd 

(Decision 6: to build constructed in C)

myCCDGG:CCDG Generator 

(Decision 6: to build constructed in C)

3.2.3  Context Diagram 

3.2.5  Architecture Background 

Decisions 3 – 6  provide rationale

Concerns addressed: 

- Correctness and performance require-

- Superior graph layout tools exist 

- Costs of development vs. reuse

-

Fig. 12.6 Excerpts from the Views section of the template

1. How is requirement X satisfied? The business goals of time to market 

and quality (implicit in the textual description: “high-quality pluggable

component” and “save development time” and explicitly documented in

the template in Sect. 2.1.2 Goals and Context) lead to quality attribute

requirements of modifiability and reliability (explicitly documented in 

the template as Sect. 2.1.3 Significant Driving Requirements) whichff

lead to the general architecture approaches (Sect. 2.2.1) and onto the

specific approaches/design decisions in Sect. 3 (e.g., Decision 5 docu-

mented in Sect. 3.2).

3.1.5 Architecture Background Decisions

1 and 2 (Section 2.2.2) provide

design decisions that led to the final 

structure.

rationale in terms of sequence of 

(from Figure 12.1) pro-

View #2: CCDGG Server Decom-

position View

Element Catalog

(Section 3.1.1) 

CCDGG Server in the client-server view 

tools is common so availability can be 

assumed 

ments of CFG builder and need forr sr uch  

Staffing limitations and time constraints



Capturing and Using Rationale for a Software Architecture      271 

2. What are the implications of making modification Y?  To understand 

the implication of modifying the design to use pre-existing software for 

the CFG Builder presented in Sect. 3.2.1 we need to look at a more de-

tailed behavioral description of the components of the server (Fig. 12.7).  

Since the CFG Builder is predefined and cannot be changed, the other 

design elements are constrained by its responsibilities and interface. For 

example, the responsibilities of the CCDG Generator need to be ad-

justed since it shares knowledge of control flow graphs (CFGs) with the 

CFG Builder.

In this chapter, we have described how design rationale for software archi-

tecture can be captured and how it can be used to answer the most com-

mon questions asked of design rationale. By exploiting two different 

graphs (the causal graph and the structural graph) we have the informationt

necessary to determine how a requirement has been satisfied and what the 

implications of a proposed modification. The information collected in 

these structures can be used manually (especially in the case of documen-

tation) or as the basis for an automatic search.

The process of capturing rationale improves design. The resulting 

documentation is descriptive and used by system stakeholders for software 

development life cycle activities including but not limited to design, such 

as implementation and maintenance.  

Fig. 12.7. Behavioral description of the server 

12.6 Summary 
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The approach is less intrusive to the extent which it considers rationale 

capture as a side effect of design and not as a separate activity.  Some of 

the rationale is captured “for free” as part of good architecture documenta-

tion practices. Because the focus is on software architecture design, every

decision does not need to be rationalized.  The aim of the approach to be

less intrusive will not be fully realized, though, without tool support. 
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Maintenance

J.E. Burge, D.C. Brown

Abstract: One of the many difficulties encountered while performing soft-

ware maintenance is determining the impact of potential changes on what 

already exists. One way to address this difficulty is to give the maintainers

access to the Design Rationale of the original system. This rationale would 

provide the intent behind the design and implementation decia sions, as well

as a history of design alternatives that have been considered. Unfortunately,t

this information is difficult and time consuming to capture and therefore is 

rarely available. Our approach to this problem is to look at how the ration-

ale could be used. Rationale needs to be useful to provide incentive for its 

initial capture. We present SEURAT, a system that supports entry and dis-

play of the rationale as well as inferences over the rationale. It helps ensure

that the reasoning given for modifications made during software mainte-

nance is consistent with the designer’s initial intent. 

Keywords: design rationale; software maintenance; inference, argumenta-

tion

Modifying working software that is currently in use is always a risky en-

deavor. It is very difficult to determine the impact of potential changes on 

what already exists. The problem gets even worse if the original develop-

ers of the software are not available or if the maintenance is turned over to r

an organization that did not initially design and build the software.

Some of these risks could be mitigated if the maintainers had access to 

the Design Rationale (DR) of the original system. DR documents the 

decision making process by capturing the intent behind the design and im-

plementation decisions as well as a history of design alternatives that had 

been considered. The DR would include any assumptions made when  

developing the initial system and how they impacted the design.  

Assumptions can become invalid over time, which is a key reason for why

software needs to continually evolve [19]. It is important to re-examine 

assumptions during maintenance to ensure that they still hold. 

Unfortunately, most developers do not capture the rationale behind their 

decision-making. Recording rationale is seen as being time-consuming and 

disruptive. Documenting the decisions can impede the design process if 

13.1 Introduction 

13  Rationale-Based Support for Software 
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decision recording is viewed as a separate process from constructing the

artifact [14]. Developers are also reluctant to document their mistakes by 

keeping track of what they tried that did not work and are concerned about 

potential liability if a decision they record becomes responsible for a catas-

trophic failure of the system [9]. Another issue is that once the rationale is

captured, will it be used and how, exactly, will it be d useful?

We have chosen to address the use of and usefulness of rationale be-

cause the use of the rationale is what is ultimately needed to motivate its 

capture. Rationale has many potential uses throughout the software devel-

opment cycle. At each stage of the process, it is useful to know the reasons 

behind the decisions made earlier. In addition, the act of recording the ra-

tionale can encourage developers to investigate alternative solutions and 

can support their selections with arguments. We feel that rationale is espe-

cially useful, however, during the maintenance phase. Rationale is valu-

able because even if the original developers of the system are available 

they may not remember all the details behind each decision made during a

process that could span years. The usefulness, of course, is still bounded 

by what rationale has been captured and developers may still be reluctant 

to record all reasons for their decisions. We feel, however, that the value of 

the rationale outweighs its cost and that developing compelling uses for ra-

tionale is an important step towards motivating the developers to record it.

To investigate the uses of rationale, we have developed a prototype sys-

tem, SEURAT (Software Engineering Using RATionale) [6], that provides

both retrieval of, and inferencing over, rationale. The main focus has been 

on developing uses that support maintenance but SEURAT could be used 

during other development phases [12] as well. In this chapter, we will 

summarize our research into how rationale can be used to support software

maintenance and how that can be done using the SEURAT system.

The remainder of the chapter is structured as follows: Sect. 13.2 de-

scribes related work, Sect. 13.3 describes how rationale can be used during 

several types of software maintenance, Sect. 13.4 describes the SEURAT 

system and how it represents, captures, presents, and inferences over the 

rationale, Sect. 13.5 summarizes the SEURAT evaluation, and Sect. 13.6

concludes the paper and describes future work.

There has been significant work on capture, representation, and use of 

design rationale in the field of engineering design. Lee [18] has written an

excellent survey of this work. The use of rationale for software 

13.2 Related Work 
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development has been surveyed by Dutoit and Paech [11]. Potts and Bruns 

[25] created a model of generic elements in software design rationale that 

was then extended by Lee [17] to create Decision Representation Lan-

guage (DRL), the basis of the RATSpeak representation used by 

SEURAT. Design Recommendation and Intent Model (DRIM) was used in 

a system to augment design patterns with design rationale [24]. This sys-

tem is used to select design patterns based on the designers’ intent and 

other constraints. WinWin [1] aims at coordinating decision-making activi-

ties made by various “stakeholders” in the software development process. 

Bose [2] defined ontology for the decision rationale needed to maintain the 

decision structure. The goal was to model the decision rationale in order to

support decision maintenance by allowing the system to determine the im-

pact of a change and propagate modification effects. Chung, et al. [10] de-

veloped an NFR Framework that uses nonfunctional requirements to drive

the software design process, producing the design and its rationale. 

There are also other systems that perform consistency checking. C–Re–

CS [16] performs consistency checking on requirements and recommends 

a resolution strategy for detected exceptions. Reiss [26] has developed a

constraint-based, semi-automatic maintenance support system that works

on the code, abstracted code, design artifacts, or meta-data to assist with 

maintaining consistency between artifacts. 

Lougher and Rodden [21] investigated maintenance rationale and built a d

system that attaches rationale to source code. Their approach differs from

ours, however, in that they argue that maintenance rationale is very differ-t

ent from that captured during development and is not in the form of argu-

mentation. Canfora et al. [7] also address maintenance rationale and break 

rationale into two parts: rationale in the large (rationale for higher level

decisions in maintenance) and rationale in the small (rationale for change 

and testing). The focus on the rationale in the small is on how the change 

will be implemented but does not appear to focus on reasons behind im-

plementation choices at a low level. They developed the Cooperative 

Maintenance Conceptual Model (CM2) which is based on the QOC [22]

argumentation format.

While the usefulness of rationale has not been studied in as much detail

as the capture and representation, there have been some experiments per-

formed. Field trials performed using itIBIS and gIBIS [9] indicated that 

capturing rationale was found to be useful during both requirements analy-

sis and design, and that the process also helped with team communication 

by making meetings more productive. Karsenty [15] studied how DR 

could be used to evaluate a design. In this study, 50% of the designers’ 

questions were about the rationale behind the design and 41% of those

questions were answered using the recorded rationale. Bratthall et al. [3] 
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performed an experiment using rationale to assist in performing changes

on two different systems. For one system, rationale was shown to be 

helpful in decreasing the time used to make the changes and improving the

correctness of the changes but results were inconclusive for the second 

system.

Rationale for Software Maintenance 

To determine how rationale can be used in software maintenance it is use-

ful to look at what types of maintenance might be performed. There are a 

number of different classifications for types of software maintenance [8].

The three types that we address are corrective, adaptive (a combination of 

four of Chapin’s types), and enhancive. We chose these types because they 

affect modifications to the source code.

Corrective maintenance involves correcting failures of the system [20]. 

Rationale can be useful in detecting the source of some types of failures. 

For example, if a failure occurs because an assumption is no longer valid,

the rationale may, in some cases, help detect what parts of the design and 

code depend on the assumption being true. This would point out some 

places where changes are likely to be necessary. The rationale may also

contain some possible alternatives that might be better candidates and, if 

selected, could fix the problem. It can also indicate if there are alternatives 

that should be avoided. Rationale can also be used proactively to find 

problems that may not have appeared yet – if a failure points to a decision 

made earlier it might be advisable to look at the reasons for making the de-

cision and see if these reasons were important in other choices as well. 

This could indicate areas that might need changes to avoid future failures.

Adaptive maintenance involves making changes to the system that do 

not change the functionality seen by the customer. This is a combination of 

four of Chapin’s types: groomative (improving elegance or security),  

preventive (improving maintainability), performance (improving perform-

ance), and adaptive (changing to account for different technology or re-

source use) [8]. The rationale can provide a guide to where improvements

should be made. There are likely to be cases where decisions were made 

for reasons that are important in the short term but may require revision in 

the future. For example, a developer may choose the alternative that will

be the fastest and easiest to code even though it may not be as desirable as

other alternatives. The rationale can be used to look for decisions made for 

the sake of expediency and show what some of the better alternatives are

so that the developers can consider those when updating the code.

13.3
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Enhancive maintenance involves replacing, adding, or extending “cus-

tomer-experienced functionality” [8]. It is important to ensure that the rea-

sons used to make the enhancements are consistent with those used while

developing the existing system. For example, if performance was impor-

tant in the initial system, it should also be considered important when add-

ing new functionality. It would be unfortunate if the new design choicesff

resulted in significantly slower response time. Rationale can be used to

check for any tradeoff violations that might be made by new additions to 

the system. A tradeoff violation would occur if there were system attrib-

utes where more of one meant less of another (such as flexibility versusf

development time) and the maintainer only considered one of the attributes

when making a decision. Rationale can also be used to evaluate the 

strength of new design alternatives based on priorities set when the initial 

system was developed. 

In all types of maintenance it is critical to “do no harm” to the working

system. Rationale can be used to capture dependencies between the differ-aa

ent alternatives considered. This would prevent developers from spending 

time implementing an alternative that is incompatible with earlier design

choices.

The SEURAT System 

We have developed the SEURAT system to support the use of rationale to

assist with software maintenance. SEURAT presents the rationale to the 

maintainer and inferences over it to detect problems and inconsistencies 

within the rationale that may also indicate problems with the design. 

SEURAT also supports capture of rationale and fits into the RMS frame-

work [12] by providing a Rationale Capture Component, a Rationale Re-

trieval Component, and a Rationale Representation Component (with the 

former two dependent on the latter). Our goal is to create a system that can

be tightly integrated with existing development tools so that rationale cap-

ture and use can become a part of the development process, not something 

additional that is performed retrospectively after development is complete. 

We have built the SEURAT system as a plug-in to the Eclipse Tool

Platform (www.eclipse.org) so that it can be tightly integrated with an In-

teractive Development Environment (IDE). This allows us to connect the

rationale with the code that it explains. This connection ensures that the 

software maintainers are aware of and use the rationale. The rationale is 

stored in relational database tables using MySQL.

13.4
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SEURAT presents the relevant DR when it is needed and allows entry

of new rationale for the modifications. The new DR will then be verified 

against the original DR to check for inconsistencies. There are two main 

types of checks that are made: structural inferences to ensure that the ra-

tionale is complete, for the decisions recorded, and evaluation, to ensure 

that the rationale is based on well-founded arguments. Of course, there isff

no way to ensure that all the designers’ reasoning is recorded but SEURAT 

can check for omissions such as failing to select an alternative or selecting 

an alternative without any argumentation given.

Figure 13.1 shows SEURAT as part of the Eclipse Java IDE. SEURAT 

participates in the development environment in three ways: a Rationale

Explorer (upper left pane), that shows a hierarchical view of the rationale

and allows display and editing of it; a Rationale Task List (lower right

pane), that shows a list of errors and warnings about the rationale; and Ra-

tionale Indicators that appear on the Java Package Explorer (lower left 

pane) and in the Java Editor (upper right pane), to show whether rationale

is available for a specific Java element. The examples in this chapter come 

from a conference room scheduling system. Note that the screenshots are 

in color, making the icons much easier to distinguish on the actual 

SEURAT displays than when reproduced here in black and white. 

This display design, which also reflects the architecture of the system, 

was chosen because it very closely parallels the Eclipse Java IDE. For ex-

ample, the Rationale Explorer uses a tree view similar to that provided by 

the Java Package Explorer where items in the tree can be brought up in an

editor by double-clicking on them. This tree format is also an appropriate

one for showing the rationale argumentation and provides a high-level 

view of the rationale where the maintainer can choose how deep into the 

argumentation structure they want to go by “expanding” the rationale ele-

ments much like they would expand the view of Java files to show attrib-

utes and methods. The Rationale Task List was designed to be similar in

appearance to the Tasks display provided by Eclipse. The Tasks display 

shows compilation errors and warnings about problems in the code while 

the Rationale Task List shows errors and warnings about problems in the 

rationale. The Java Editor used in SEURAT is the same as the one used in 

Eclipse. The Bookmark display is also the same except that SEURAT has 

added associations between alternatives in the rationale and elements in

the code (files, classes, attributes, or methods) to the list. The maintainer r

can find the code mentioned in the bookmark by clicking on it and can find 

the rationale associated with code shown in the editor by moving their 

mouse cursor over the bookmark that indicates that rationale is present.

The software developer enters the rationale to be stored in SEURAT 

while the software system the rationale describes is being developed.
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SEURAT supports this by providing rationale entry screens for each type 

of rationale element.  

Fig. 13.1. SEURAT and Eclipse

SEURAT performs two main types of inferences over the rationale: syn-

tactic inferences, which are concerned mostly with the structure (such as 

looking for missing relationships), and semantic inferences, which look at 

the content (such as evaluating the choices made). When problems are de-

tected, they are displayed in two places: in the Rationale Explorer, as error 

and warning icons on the rationale, and on the Rationale Task List, which 

gives a more detailed explanation of what the problem is.

In the following sections, we will describe a subset of the capabilities 

provided by SEURAT and describe their use during software maintenance.

The examples come from the rationale for a conference room scheduling 

system.
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Before describing how rationale can be used, we first need to explain what 

our rationale contains. A DR representation needs to be formalized and 

well structured, as opposed to just free text, so that computer-based check-

ing and inferences are possible. We have generated a rationale representa-

tion, called RATSpeak, and have chosen to use an argumentation format 

because we feel that argumentation is the best means for expressing the 

advantages and disadvantages of the different design options considered. 

Each argumentation format has its own set of terms but the basic goal is

to represent the decisions made, the possible alternatives for each decision, 

and the arguments for and against each alternative. 

We have based RATSpeak on Lee’s Decision Representation Language 

(DRL) [17] because DRL appeared to be the most comprehensive of the

rationale languages and was designed to capture rationale for software de-

sign. Even so, it was necessary to make some changes because DRL did 

not provide a sufficiently explicit representation of some types of argu-

mentation (such as indicating if an argument was for or against an alterna-

tive).

RATSpeak uses the following elements as part of the rationale: 

− Requirements – these include both functional and nonfunctional 

requirements. They can either be represented explicitly in the rationale 

or be pointers to requirements stored in a requirements document or da-

tabase. Requirements serve two purposes in RATSpeak. One is as the 

basis of arguments for or against alternatives. This allows RATSpeak to

capture cases where an alternative satisfies or violates a requirement. 

The other purpose is so that the rationale for the requirements them-

selves can be captured.  

− Decision Problems – these are the decisions that must be made as part of 

the development process.

− Questions – these are questions that need to be answered before the an-

swer to the decision problem can be defined. A question can include the 

procedures or programs that need to be run or who should be asked to

get the answer. Questions augment the argumentation by specifying the 

source of the information used to make the decisions (the procedure,

program, or person). 

− Alternatives – these are alternative solutions to the decision problems.

Each alternative will have a status that indicates if it is accepted, re-

jected, or pending. 

− Arguments – these are the arguments for and against the proposed alter-

natives. They can either refer to requirements (i.e., an alternative is good 

13.4.1  Representation
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or bad because of its relationship to a requirement), claims about the 

alternative, assumptions that are reasons for or against choosing an al-

ternative, or relationships between alternatives (indicating dependencies

or conflicts). Each argument is given an amount (how much the 

argument applies to the alternative, e.g., how flexible, how expensive) 

and an importance (how important the argument is to the overall system 

or to the specific decision). 

− Claims – these are reasons why an alternative is good or bad. Each claim 

maps to an entry in an Argument Ontology of common arguments for or 

against software design decisions. Each claim also indicates what direc-

tion it is in for that argument. For example, a claim may state that a

choice is NOT safe or that an alternative IS flexible. This allows claims 

to be stated as either positive or negative assertions. Claims also contain 

an importance, which can be inherited or overridden by the arguments 

referencing the claim. 

− Assumptions – these are similar to claims except that it is not known if 

they are always true or whether they will continue to hold in the future. 

Assumptions do not map to items in the Argument Ontology. 

− Argument Ontology – this is a hierarchy of common argument types 

that serve as types of claims that can be used in the system (e.g., Devel-

opment Cost; Portability). These are used to provide the common vo-

cabulary required for inferencing. Each ontology entry contains a default 

importance that can be overridden by claims that reference it. These  

arguments are tailored to the software development domain. A complete 

list of ontology entries can be found in Burge [4].

− Background Knowledge – this contains Tradeoffs and Co-Occurrence 

Relationships that give relationships between different arguments in the

Argument Ontology. This is not the considered part of the argumenta-

tion but is used to check the rationale for any violations of these  

relationships.

Figure  13.2 shows the relationships between the different rationale enti-

ties.

RATSpeak provides the ability to express several different types of  

arguments for and against alternatives. One type of argument is that an 

alternative satisfies or violates a requirement. Other arguments refer to  

assumptions made or dependencies between alternatives. A fourth type of 

argument involves claims that an alternative supports or denies a Non-

Functional Requirement (NFR). These NFRs, also known as “ilities” [13] 

or quality requirements, refer to overall qualities of the resulting system, as 

opposed to functional requirements, which refer to specific functionality.

As we describe in [5], the distinction between functional and nonfunctional
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is often a matter of context. RATSpeak also allows NFRs to be represented 

as explicit requirements. 

Fig. 13.2. Relationships between rationale entities

The RATSpeak representation describes the NFRs as part of the Argu-

ment Ontology. The Argument Ontology is a hierarchy of reasons for 

choosing one design alternative over another with abstract reasons at the 

root and increasingly detailed reasons towards the leaves. This is needed to

provide a common vocabulary to support inferencing over the content of 

the rationale in addition to over its structure.  

Figure 13.3 shows the top level of the Argument Ontology displayed in

SEURAT.

Fig. 13.3. Top level of argument ontology 

Each of these criteria then has subcriteria at increasingly more detailed 

levels. As an example, Fig. 13.4 shows some of the subcriteria for Usabil-

ity as displayed in SEURAT. The ontology terms are worded in terms of 
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arguments: i.e., <alternative> is a good choice because it <ontology

entry>, where ontology entry starts with a verb.  The SEURAT system has 

been designed so that the user can easily extend this ontology to incorpo-

rate additional arguments that may be missing. With use, the ontology will

continue to be augmented and will become more complete over time. It is

possible to add deeper levels to the hierarchy but that will make it more 

time consuming for the developer to find the appropriate item when adding 

rationale.

Fig. 13.4. Argument ontology for usability

Similar hierarchies have been developed for other high-level criteria in 

addition to Usability. One thing to note is that it is not a strict hierarchy – 

there are many cases where items contributing toward one criterion also 

apply to another. One example of this is the strong relationship between 

scalability and performance. Throughput and memory use, while primarily

thought of as performance aspects, also impact the scalability of the  

system. In this case, and others that are similar, items will belong to more 

than one category. 
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The goal behind the development of SEURAT was to evaluate potential

uses of rationale. While this shifted the focus away from capture, there still

needed to be a way to capture rationale using SEURAT in order for it to

become a complete system. SEURAT facilitates this by being tightly inte-

grated with the IDE being used to write the code. The developer is more 

likely to be willing to record their rationale if they do not need to start an 

additional tool to do so.

Editing screens were developed for each of the different rationale items 

supported by SEURAT and are accessible from the Rationale Explorer.

Each item is created by selecting a context-sensitive menu item from its

parent. Capture is also supported by automatic checking for rationale  

completeness. If the developer does not enter all the required rationale for 

a decision there will be an error indicated both in the Rationale Explorer 

and in the Rationale Task List.

Design Rationale is very useful even if it is only used as a form of docu-

mentation that provides extra insight into the designer’s decision-making 

process [15]. SEURAT supports the viewing of DR by allowing the soft-

ware developer to associate the rationale with the code and by using  

Rationale Indicators to show which pieces of code have rationale available.

Figure 13.5 shows a portion of the Package Explorer from the Eclipse Java 

IDE where the presence of rationale is indicated by a small modification to

the upper left-hand corner of the “J” icon that indicates a Java file. The 

associations are made by first selecting the Java element in the Package

Explorer with the mouse, then selecting the alternative it implements in the

Rationale Explorer, and then using a context-sensitive menu from the  

Rationale Explorer to indicate that the code and alternative are associated.  

DR can provide even more useful information about the design and modi-

fications made to the design if there is a way to perform inferences over it.

Due to the nature of DR, the results may be in the form of warnings or  

information (as opposed to conclusions) that help the developer keep track 

of the development process and help the maintainer act carefully and  

consistently. This support for inferencing classifies SEURAT as a  

prescriptive, as well as descriptive [12], rationale system. 

13.4.4  Inferencing

13.4.3  Presentation

13.4.2  Capture
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Fig. 13.5. Package explorer showing rationale associations

SEURAT supports four categories of inference: syntactic, semantic,

queries, and historical. Syntactic inferences are those that are concerned 

mostly with the structure of the rationale. They look for information that is 

missing. Semantic inferences require looking into the content of the ration-

ale to evaluate the consistency of the design reasoning.  These inferences 

point out cases where less-supported decisions were made by evaluating 

each alternative based on the number and importance of the arguments for 

and against it. These are not logical inferences but calculations of the rela-

tive value of the alternatives. Rationale queries give the user the ability to

ask questions about the rationale, and historical inferences use a history of 

rationale changes to help the user learn from past mistakes, rather than  

repeating them.   

The following sections give a few examples of some of the SEURAT  

inferences. Each inference can have many uses but, for convenience, we 

have grouped them by the type of maintenance being performed. 

Corrective Maintenance

As mentioned earlier, a common source of error in software is when an as-

sumption that was true when the system was developed no longer holds.  

SEURAT provides the ability to capture these assumptions during devel-

opment. When the assumption is no longer valid, the maintainer can  

disable the assumption. SEURAT then performs inferencing over all por-

tions of the rationale that refer to the assumption and re-evaluates the  

affected alternatives. If the removal of the assumption means that there are 
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selected alternatives that are no longer the best choice for their decision,

the user will be informed of this.

One of the decisions that had to be made for the conference room

scheduler system was how to specify the location of the room. There were

two alternatives considered: combining the room and building names into

a single string or specifying them separately. Figure 13.6 shows the 

Rationale Explorer after the assumption “customer normally combines

room and building” has been disabled. 

Fig. 13.6. Rationale explorer with disabled assumption 

The assumption, denoted by an icon containing an “A,” is changed to 

have a “D” in the upper right-hand corner showing it is disabled. When the 

decision is re-evaluated, a warning icon is shown because the selected al-

ternative which combines them into one string (denoted by an “S” in the 

upper right-hand corner) is no longer the best supported (shown by the 

triangle icon with an exclamation point shown in the lower left-hand 

corner of the diamond shaped decision icon). The new warning is added to 

the bottom of the Rationale Task List shown in Fig. 13.7.

SEURAT also assists with corrective maintenance by providing access 

to any alternatives that have been either considered or implemented previ-

ously. This is useful both for pointing out what some possible corrections 

might be and to help make sure that a solution is not tried that was consid-

ered earlier and rejected. SEURAT also keeps track of dependencies  

between alternatives so that the user will be informed if they de-select an 

alternative on which another selected alternative depends. 

For example, one response to the warning generated by the disabled 

assumption presented above would be to choose the other alternative, 

which separates out the specifications. This interacts with the alternative 
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selected for the decision about how to represent the conference room. If 

the room and building need to be displayed separately then they need to be 

stored separately in a conference room class, not combined as a string.

Since the string representation alternative is currently selected, choosing

an alternative that depends on there being a class for the conference room 

will give an error. Figure 13.8 shows this error as indicated on the Ration-

ale Explorer (by the square with a white “X” in the middle appearing at the 

lower left-hand corner of the diamond-shaped decision icon) while

Fig. 13.9 shows the error in the Rationale Task List. The entire explanation 

is available in SEURAT by either scrolling or resizing the Rationale Task 

List window of the SEURAT display.

Fig. 13.7. Rationale task list with new warning

Adaptive Maintenance 

SEURAT supports adaptive maintenance by providing an easy way to

evaluate the impact of any of the arguments in the Argument Ontology on 

the design and implementation. This is done by allowing the maintainer to 

perform “what-if” inferencing to see what might happen if their design 

priorities change. In SEURAT, each claim or argument can inherit its im-

portance from importance values that the developer stored in the Argument 

Ontology. Lowering the importance of an argument will point out deci-

sions that should probably change if that argument is no longer an impor-

tant design goal. Increasing the importance of an argument will point out 

decisions that need to change if the argument becomes a higher priority.   

One argument that was used very frequently in the conference room 

scheduling system was the argument that choosing an alternative would 

reduce development time because it was easy to code. Changing the 

importance of that argument showed places in the system where there may 

have been better alternatives that were not chosen because they were per-

ceived to be more difficult. One example was for a decision of how to  

display error messages. Figure 13.10 shows the Rationale Explorer with 

the rationale for that decision. The importance of “Reduces Development 
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Time” has been decreased and the decision now has a warning (indicated 

by a triangle icon with an exclamation point in it on the lower left-hand 

corner of the decision icon) because the alternative of displaying errors as 

a line of text on the main display is now not supported as well as the alter-

native to display them in a pop-up box. Figure 13.11 shows the warning

displayed on the Rationale Task List.

Fig. 13.8. Rationale explorer with decision error 

Fig. 13.9. Rationale task list explaining the error 
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Fig. 13.10. Rationale explorer showing error message alternatives 

Fig. 13.11. Rationale task list with the warning

Enhancive Maintenance

The inferences mentioned earlier as supporting other maintenance types 

will also support enhancive maintenance. During enhancive maintenance it 

is important to ensure that the rationale for decisions made when extending

functionality are consistent with the rationale for the initial version(s) of 

the system. One way to do this is to make use of the tradeoffs background 

knowledge stored in SEURAT. Tradeoffs are used to indicate that there are 

two characteristics of the software that oppose each other and should  

always appear on opposite sides of an argument. The elements in the trade-

off are both items from the Argument Ontology described earlier.  The

new decisions made during enhancive maintenance should consider both 

sides of the tradeoff and be consistent with the designer’s original intent.

An example of this in the meeting scheduler is the tradeoff between 

increased flexibility and reduced development time. The developer has
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added a tradeoff to SEURAT that indicates that if flexibility is increased, 

the amount of time to develop the system also increases. This is a non-

symmetric tradeoff since increased development cost does not necessarily 

mean more flexibility. When the developer decided how to represent dates

in the scheduling system, they chose to create a customized class to do this

rather than using the Java Calendar class. This decision was made because 

the specialized class was thought to be more flexible. The cost of the new 

class was not considered. SEURAT detects that this is a tradeoff violation 

and warns the user. This lets the developer (or maintainer) know that the 

reasoning might not be complete. Figure 13.12 shows the rationale in the 

Rationale Explorer with the decision marked as having a problem (shown 

by the small triangle containing an exclamation point on the lower 

left-hand corner of the decision icon) and Fig. 13.13 shows the tradeoff 

explanation in the Rationale Task List. Note that the full explanation is

available in SEURAT by scrolling across the window.

Another way that SEURAT can assist in checking decisions for consis-

tency is by allowing arguments to inherit their importance from the global 

defaults stored in the Argument Ontology. If new decisions are made 

without overriding the defaults, SEURAT will evaluate them based on the 

same priorities as the rest of the design. This allows the software developer 

to define their priorities for the different nonfunctional requirements at a

global level. This information will then propagate through the rationale 

when the different alternatives for a decision are evaluated and compared 

by SEURAT. If the best-evaluated alternative is not selected, the user will 

be informed both by warning icons in the Rationale Explorer (shown in

Fig. 13.12) and warning descriptions in the Rationale Task List (shown in

Fig. 13.13).

Fig. 13.12. Rationale for date representation
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Fig. 13.13. Rationale task list with tradeoff violation 

Both presentation of the rationale and inference over the rationale require

that the system support efficient retrieval of the rationale elements. This is

supported by storing the rationale in a MySQL database. The power of the 

relational database makes it possible for SEURAT to perform a number of 

different queries over the rationale. Several rationale queries, briefly men-

One interesting feature of SEURAT is the ability to look for common

arguments occurring in the rationale. This can be valuable to the maintain-

ers by giving them an overview of what the original developers thought 

was the most important criteria. The information can be shown for all al-

ternatives or only for the selected ones. 

An initial evaluation was performed using SEURAT to assist with the 

three types of maintenance tasks described earlier: adaptive, corrective,

and enhancive. Twenty subjects, a mixture of graduate students and indus-

try professionals, were separated into control and experimental groups. 

The groups were divided in order to be balanced, based on their work  

experience and Java expertise. None of the subjects had used SEURAT  

before although some had attended research presentations describing the

system. All were given a brief tutorial on how to use the system. The 

tioned in Sect. “Enhancive Maintenance”, have been implemented in

SEURAT. These include searching for entities of a particular type (require-

ment, decision, etc.); searching for requirements with a particular status

(such as violated); searching for status messages that were overridden by

the user so they could be re-enabled if necessary; and searching for

claims and arguments where the default importance was overridden.

13.5 SEURAT Evaluation 

13.4.4  Rationale Retrieval 
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control group used the Eclipse IDE alone to perform the tasks while the 

experimental group used Eclipse with the SEURAT plug-in and rationale 

that had been recorded for the system. The goal was to compare subject

performance with and without access to rationale and the support of 

SEURAT. In this case, the primary performance measure was the time re-

quired to complete the task, not the quality of the result. This is because 

the tasks were relatively simple in order to allow the experiment to be

completed in a reasonable amount of time (less than 4 h per subject). The 

system being modified was the Conference Room Scheduling System de-

scribed earlier. This was a Java program that had been originally written

five years earlier as a meeting scheduler and had been adapted over the 

years to schedule meetings in multiple rooms. It had many characteristics

of legacy code, such as using an obsolete version of Java and having been

written by multiple developers. 

Each subject was timed for each task with two times being measured:

the time required to find the portion of the code that needed to be changed 

to complete the task and the time required to complete the task. The results 

were not statistically significant, suggesting that more experiments need to 

be performed, but the group using SEURAT did perform better on average 

than the control group. In addition, SEURAT helped nonexperts more than

experts. We would expect this result to change when more challenging

maintenance tasks are used. Figure 13.14 shows the average times for the

delta (time to find change) and total time for each task. 

Fig. 13.14. Average times for each task 
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A survey asking the subjects who used SEURAT what they thought of it 

was also administered. These questions asked the subjects to give their 

opinion on a Likert scale where SA means Strongly Agree, A means 

Agree, U means Undecided, D means Disagree, and SD means Strongly

Disagree. Figure 13.15 shows the summary of these results. The survey re-

sults indicated that the majority of the participants using SEURAT thought 

it was a useful tool and that it assisted them in performing the tasks given 

in the experiment.

Fig. 13.15. SEURAT usefulness survey results 

Conclusions and Recommendations 

A way to help reduce the risk, and thereby the cost, of software mainte-

nance is to give the maintainers insight into the intent behind the original t

design, i.e., the design rationale. This can be made even moa re useful if new 

changes can be checked to ensure that the reasoning behind new decisions

is consistent with the original system. Conversely, if the goals of the sys-

tem have changed, it would be useful if the maintainer could know how 

that would affect decisions made earlier.  

To support DR use, we have developed the SEURAT system, which

tightly integrates with an IDE to support the entry of, display of, and infer-

encing over the rationale. SEURAT allows the maintainer to take advan-

tage of the knowledge captured during initial development to assist in 

maintenance changes, both by helping the maintainer figure out what 

needs to be changed and by verifying that new additions are consistent 

13.6
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with the designers original intent. This is helpful for all types of software 

maintenance.  

One of the next steps planned for SEURAT is integration with  

additional tools used at different stages of the design process. These would 

include requirements tools, design tools, and possibly testing tools. This

would allow us to continue to investigate the differences in the rationale 

generated and used at different stages in the development process. The

goal is for SEURAT to be used during all stages of development by  

augmenting current development process and practice to support rationale 

capture and use. We also will address scalability concerns to transition 

SEURAT from a research prototype to a tool that can be used in full-scale 

software development. 

We would also like to extend SEURAT to handle multiuser rationale. 

One thing that rationale can be very useful for is to capture the different 

viewpoints expressed by team members while making decisions [23]. It 

would be interesting to explore how capturing potentially conflicting in-

formation from different developers could be used in evaluating the design

decisions. We also want to investigate systems that SEURAT could be in-

terfaced with to assist in the capture process. Some possible sources of ra-

tionale are configuration management and problem reporting systems. 

We feel that a system like SEURAT would be invaluable during soft-

ware maintenance. The SEURAT system contributes a detailed, reusable 

list of reasons for making software decisions in the Argument Ontology.

SEURAT then uses those reasons to support semantic inferencing to de-

termine the impact of these decisions on the software system (and to pro-

mote consistency in the rationale). SEURAT also provides an integrated 

environment where rationale capture and use can be performed using the

same tools that are used in development and maintenance. There are many 

benefits to having the design rationale available during maintenance but 

only with appropriate system support, such as that provided by SEURAT,

can rationale live up to its full potential.
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Product Line Architectures – A Case Study 

from Industry 

J. Knodel, D. Muthig 

Abstract: Product line engineering aims at an efficient production of vari-

ants mainly enabled by large-scale and systematic reuse of artifacts

throughout all development phases. A product line’s central artifact is its 

architecture that defines fundamental concepts, abstractions, and mecha-

nisms that hold for all products of an organization (if successfully) for a

long period of time. Therefore, key developers in organizations must  

fully agree on all decisions related to the definition of the product line  

architecture evolution. This chapter describes an industrial case of architec-

ture evolution where one of the key mechanisms of an existing architecture

was revisited as potential subject of change.

Keywords: architectural decisions; design; software architecture; product 

line architecture; product line engineering

Nearly all organizations today develop and maintain more than a single

product. Software organizations typically develop and maintain sets of 

similar products for different customers or market segments. This holds for 

organizations developing tailored systems individually for single custom-

ers, as well as for organizations developing products for mass markets. All

products of an organization, however, are typically situated in the same 

application domain. Hence, these products share some common character-

istics and thus can be viewed as a product line. 

Product line engineering is the according development paradigm that 

differs significantly from traditional single system development. It aims at 

an efficient production of members of a product line mainly enabled by 

large-scale and systematic reuse of artifacts throughout all development 

Product line engineering, thereby, analyzes the whole family of products 

rather than each product individually to systematically exploit commonal-

ity, proactively plan for variability and engineer variants efficiently. While

performing these activities, the definition and design of the product 

14.1 Introduction 

14  The Role of Rationale in the Design of 

phases (see [4] or [6] foff r defiff nitions of software product line). 

architecture, as well as they must always reunderstand their rationales during 
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line architecture is one of the most crucial activities. Since the architecture

spans over the whole product line (including current products and envi-

sioned or hypothetical products), the design decisions have a high strategic

value and deep impact on the development organization. For this reason 

key decisions have to be well-founded and the rationales behind such deci-

sions must be documented to be able to circumstantiate the decisions to the

various stakeholders.

This chapter presents a real industrial case where an industry organiza-

tion revisited one of the key mechanisms of an existing architecture while 

defining the product line architecture for its next generation of products. 

The evaluation of two alternative architectural concepts (i.e., a new candi-

date mechanism was identified to potentially replace a concept used in 

dozens of products of the previous generation), the common decision for 

one of the mechanisms, as well as the consistent documentation of the ra-

tionale was supported by an independent party, the Fraunhofer Institute for t

Experimental Software Engineering (IESE). 

The approach followed during these activities is part of Fraunhofer 

PuLSE™ (Product Line Software and System Engineering, see Fig.

14.1)15, which is presented in Sect. 14.2. Section 14.3 then describes the 

overall context by characterizing the analyzed TFT-panel product line – 

which is a main element in larger car radio and driver information systems 

product line – and, in particular, its Graphics component that is mainly  

impacted by the decision under consideration. Section 14.4 then presents 

details of the two alternative concepts, common design principles, and 

constraints on the decision. Finally, Sect. 14.5 concludes with experiences 

made and how the rationale approach additionally improved the quality of 

the product line architecture. Furthermore, impact and consequences of the 

decision are reflected with respect to both, concrete projects and the prod-

uct line. 

Fraunhofer’s PuLSE method is a complete product line approach covering 

all life cycle phases and product line activities, as well as organizational is-

sues or maturity models. Fig. 14.1 gives a complete overview of PuLSE 

components. 

15 PuLSE is a registered trademark of the Fraunhofer Institute for Experimental

14.2 Approach 

Softwff are Engineering (IESE), Kaiserslautern, Germany (see [2] and [5]).
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Fig. 14.1. PuLSETM Overview

PuLSE-DSSA (“architecting”) is one of its technical components cover-

ing all activities and aspects related to product line architectures (see [1] 

for details). It is mainly concerned with the definition, evaluation, and evo-

lution of product line architectures including the specification and execu-

tion of supporting reverse engineering activities. Overall, PuLSE-DSSA

Fig. 14.2. PuLSE-DSSA

follows an incremental approach (Fig. 14.2 depicts PuLSE-DSSA).
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Technically, PuLSE-DSSA is a scenario-driven approach whereby “sce-

nario” is defined consistently with the SEI’s architecture assessment meth-

ods SAAM and ATAM (see [3] for a definition). That is, PuLSE-DSSA 

uses the same scenarios for defining architectures as it uses for assessing 

them. 

While developing or evolving the architecture many decisions must be

taken, which define or change the fundamental concepts, abstractions, and 

mechanisms that hold for all products of an organization (if successfully)

for a long period of time. Therefore, key developers in organizations must 

fully agree on all decisions related to the definition of the product line ar-

chitecture, as well as they must always reunderstand their rationales during 

architecture evolution. Consequently, an approach for managing architec-

tural rationales is integrated into the general PuLSE-DSSA process, which

is – consistently with the overall approach – scenario-based. Furthermore,

it is prescriptive and intrusive because it is integrated with the decision

process itself and thus improves decision makers and consequently also the 

final architecture.

Conceptually, the approach encompasses five steps, namely problem

identification, criteria elicitation, evaluation and criteria assessment, deci-

sion making, and documentation: 

− Problem Identification

The first step is to identify, to understand and to learn about the problem 

that is linked to the decision. One the one hand one has to know the 

problem domain very well in order to be able to derive a sound decision,

and on the other hand, the strategic goals that should be fostered by the

decision have to be clear to everyone involved in the decision making 

process. These problem statements are often provided by the lead archi-

tect of the product line architecture. Usually they deal with crucial de-

sign problems in the development of the product line architecture. Other 

stakeholders having an interest in the decision have to be identified and

their concerns have to be collected. Representatives for the different al-

ternatives are required, so that each alternative has at least one advocate.

The advocates have to allocate sufficient time for the next steps because

based on their input, the decision will be drawn. The advocates are usu-

ally domain experts who promote or favor one of the solutions.

− Criteria Elicitation

There are a lot of criteria related to design problems of product line ar-

chitectures, and if there is enough time and effort, all these criteria have 

to be considered. In practice, however, there is always a certain project 

pressure, the work has to be done under tight time constraints, and the

availability of experts and stakeholders is very limited. Therefore, it is



 The Role of Rationale in the Design of Product Line Architectures  301

not efficient to assess all criteria. Some criteria have a higher priority 

than others, some cannot be influenced by the project management, de-

velopers or engineers, and again others are equivalent for all alterna-

tives. For this reason, this step has the goal to elicit the important and 

determining criteria, which are based on the high-priority scenarios of d

PuLSE-DSSA. Usually those criteria divide the alternatives from each 

other. By eliciting these criteria, the effort for decision making is re-

duced, but nevertheless focused on the aspects that swing the decision. 

For each identified relevant criteria, one assessment table is created (see 

criteria is given, so that the meaning is recorded. The fill in of the table

with content is done in the next two steps. 

− Evaluation and Criteria Assessment 

Each advocate presents his favored solution to a moderator (the product 

line architect should participate here, but it is not mandatory) and ex-

plicitly addresses the criteria with pros and cons. The moderator records

the arguments and the reasons why something is an advantage or a

drawback. Furthermore, the moderator should actively participate by

asking clarification questions. The same is done for other alternatives 

one after another. This results in filled criteria assessment tables, with 

the exception of the result cells. 

Decision Making

The decision making step is conducted in a workshop where the product 

line architect and the advocates together discuss the arguments for the

different alternatives. The goal of this joint workshop is to agree on the

best alternatives with respect to the assessed criteria. The criteria are

discussed stepwise so that obscurities are smoothed out and opposite

views come to an understanding of all stakeholders. The result docu-

ments for each criterion, which of the alternatives is considered as best 

and for which reasons. In the end, the stakeholders agree on the best

candidate based on the individual criteria. Furthermore, potential action

items for future improvements for the selected alternatives can be identi-

fied by comparing it to other alternatives. The moderator summarizes

the final decision and action items. Ideally, all involved stakeholders 

agree upon the decision.

− Documentation

The documentation of the final decision and the aspects that led to it is

an ongoing activity that accompanies all of the above steps. The final 

report contains the problem (i.e., why there was need to decide some-

thing), the alternatives (i.e., which solutions where considered for the

decisions), the criteria (i.e., what was assessed, and what were the main 

−

Table 14.1 for the template). Preceding the table, an explanation of the
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drivers leading to the final decision), the arguments (i.e., what were the

pros and cons of each alternative), and of course, the final decision, 

based on the important criteria (i.e., the selected solution), and derived 

action items (i.e., what has to be taken care of in future). The documen-

tation can be used to inform other people of the organizational unit, and 

to put the decision on a firm footing, in case the higher management or 

other people challenge the decision made.

Table 14.1. Template for criteria assessment 

Alternative 1 Alternative 2

Alternative 1 – 

Pro Argument 1
Alternative 2 – 

Pro Argument 1

Alternative 1 – 

Pro Argument 2
Alternative 2 – 

Pro Argument 2

Alternative 1 – 

Con Argument 1 
Alternative 2 – 

Con Argument 1 
CON

Alternative 1 – 

Con Argument 2 
Alternative 2 – 

Con Argument 2 

Result and the derived decision based on the arguments

The approach as described here usually has to be adapted slightly to the 

organization and the available resource constraints. Depending on the ar-

chitectural design problem, the number of alternatives and elicited criteriaf

can vary. The main goal is to consider only adequate alternatives (not eve-r

rything is feasible or appropriate) and to select only criteria that are central 

to the decision (not everything is important or relevant).

The TFT-Panel Product Line 

The case study was conducted in a larger context with the goal of the mi-

gration of an organization towards product line engineering. The activities 

were driven by the Fraunhofer Institute for Experimental Software Engi-

neering (IESE) in cooperation with one of its industry partners. Product 

line concepts were introduced incrementally in pilot projects whereas one 

of the projects was concerned with the construction of the panels for 1-

DIN navigation systems. 1-DIN navigation systems cover pure car radio 

products and navigation system products that provide route guidance solu-

tions. Such a system supports different data mediums (e.g., CD, DVD,

14.3
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HDD containing music data, voice data, video data, or navigation data)

that constraint the features offered to the driver.  

Fig. 14.3 depicts a sketch of the major components of a 1-DIN naviga-

tion system, which fits into the standard car radio slot of most vehicles. It d

is distinguished (physically and logically) between two embedded systems,

the silver box and the panel, but both are closely related to  

each other. The silver box contains the CD or DVD drive, the navigation 

processor, and all other parts not related to the display. The panel has an

integrated display for visualizing radio and navigation functionality. It 

consists of the display, different buttons and a physical interface to the 

silver box. Engineering panels deals not only with software, but also with

aspects of hardware and mechanics. 

Fig. 14.3. Panel of the 1-DIN navigation system

Most previous products of the company used monochrome panels only.

For these monochrome panels, the complete information to visualize was

provided by the silver box’s processor. Such panels can be regarded as

pure display facilities. On the contrary, the current development addresses 

a new type of panel, TFT-panels that become part of 1-DIN navigation 

systems. Such TFT-panels obtain some “intelligence” by having more

computing power inside the panel. The larger context of the case study was

to define a product line of TFT-panels that serves the current development 

and all upcoming car radio and navigation systems of the next years. 

When developing the product line architecture for the TFT-panel prod-

uct line, we reviewed the key concepts, mechanisms, and components 

of the existing monochrome panels, in order to decide, where reuse is pos-

sible and to identify the need of adaptation, and the need for the  

development of new components. 
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The Graphics component is one of the key components of the TFT-panel 

architecture. It is responsible for the communication between the silver 

box and the panel as well as for the composition and visualization of the 

correct output to the driver in the car. The interaction with the driver takes

place via predefined masks. A mask is defined as a collection of graphical

elements and positioning information (e.g., text fields, bitmaps, buttons, 

lists, labels). The graphical elements contributing to a mask are divided 

into two groups: 

− Static information relevant only for the Graphics component. These 

elements are static and will not change once the system is in operation.

It is decided at design time what these elements are and how they will

look like. The elements are only known to the Graphics component. Thekk

static elements include placeholders for dynamic information coming 

from the silver box. Examples include fonts, fix bitmaps, fix text (in all

supported languages), background pictures, etc. This graphical informa-

tion will not change once the TFT-Panel is in service.

− Dynamic sequence control information. The elements related to the se-

quence control are dynamic information that is context dependent. The 

dynamic elements are computed by the processor in the silver box based

on the current context (e.g., navigation map cut-outs are dependent on

the position of the car). They complete the static masks held in the

Graphics component with context relevant information that is only 

known at run time. Examples for such elements are headlines, radio sta-

tion names, frequencies, town names, and street names. 

The main architectural driver for the Graphics component is the minimiza-

tion of the data flow between panel and silver box. The communication in-

terface is an SPI (Serial Peripheral Interface) protocol offering logical 

channels and encapsulating the hardware connection between the panel 

and the silver box. 

Since the SPI bandwidth is limited, the amount of data transferred 

and the number of messages sent has to be kept as low as possible. This

performance criterion was already the main architectural driver for the  

development of the Graphics component for the monochrome panels of 

previous products. Fig. 14.4 shows an example how the human—machine

interaction (HMI is running in the silver box) communicates with the 

Graphics component (running in the panel) via the SPI interface. The mes-

sages received in the panel are parsed and decoded by the Graphics com-

14.3.2  Management and Transfer of Graphical Data 

14.3.1  The Role of the Graphics Component
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ponent, which then invokes basic painting functionality provided by a low-

level Graphics API.

Fig. 14.4. Communication between Graphics component and Silver Box 

When evaluating the existing architecture of monochrome panels for its

reuse potential, the question arose whether the mechanisms applied for the 

Graphics components of monochrome panels (called Mask-Oriented 

Communication, MOC) can serve as well as a basis for the TFT-panel 

product line architecture. The suitability was questionable because of the

required genericity of the Graphics component (i.e., to serve all variants of 

the product line), the uncertainty (i.e., to provide sufficient flexibility for 

anticipated changes), the changed technology (i.e., new type of panel, TFT 

instead of monochrome), and the increased computing power that enabled

new features (i.e., a processor inside the panel to take over graphical draw-

ing functionality). Some engineers of the company came up with an alter-

native mechanism for the Graphics component (called Framework-oriented mm

Communication, FOC). Since this new mechanism was developed from

scratch, no real project experiences were available, and the architects were 

doubtful about the reached maturity of the FOC mechanisms because onlyf

a first prototypical implementation existed at that moment. The project 

management became aware of the competing alternatives and demanded a 
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justified decision, especially addressing the technical problems and prod-

uct line aspects.  

Both mechanisms followed the general communication principle of us-

ing a logical channel of the SPI protocol to connect the panel to the silver 

box. The data model of both mechanisms was practically the same, that is,

identical sets of graphical elements were supported by both alternatives. 

The general mode of operation is that the silver box sends messages witht

parameters that contain the information to be displayed and the Graphics

component then parses the messages and displays the right graphical ele-

ments. The next sections will introduce the two alternatives (MOC and 

FOC) in more detail. The mechanisms mainly differ in what messages are

transferred (e.g., the content, format, the size, and the number of the mes-

sages), how the interpretation of these messages is addressed, and how the

different masks visible to the driver are specified, constructed, managed,

and maintained.

The first alternative, which was used for previous projects constructingd

monochrome panels, implements a mask-oriented transmission mecha-

nism. The graphical elements are transferred one after another and then put 

together in the Graphics component of the panel. 

Each message (e.g., ID_Tuner, ID_Frequenz “ffn”) contributing to a 

mask is streamed directly over the SPI interface. The Graphics component 

then parses the messages and finally decodes the received information (i.e.,

selection of masks, references to bitmaps, replacement of dynamic infor-

mation). Masks are composed in the panel’s background until the message

“ShowMask” is received by the Graphics component. The Graphics com-

ponent then initiates displaying the graphical information by using services

of the low-level Graphics API, which then triggers the display itself. 

The masks are built with the help of a construction kit that consist of a 

row of graphical elements. Mask specifications are captured in header files 

that are shared between the HMI running in the silver box and the Graph-

ics component running in the panel. Thus, the HMI can directly address all

graphical elements of the masks. Data required by different products is 

configured via a tool that ensures consistency of data. The tool generates 

the header files, which typically have to be adjusted few by developers, 

and takes over consistency checks to ensure the match of the header files 

in the silver box and in the panel. 

The MOC mechanism is realized in C and has been applied to several 

projects. The developers are experienced in applying this mechanism and 

know about the weaknesses and its pitfalls.  

14.3.3  Alternative 1: Mask-Oriented Communication (MOC) 
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(FOC)

The FOC alternative follows the principle of object-oriented GUI frame-

works as they are often implemented for desktop PCs. It is based on a

model, view, controller pattern whereas the view resides on the panel and 

the controller on the silver box. The framework offers certain standard 

ways of constructing, modifying, manipulating, and managing graphical 

objects. The communication between silver box and panel takes places

over abstract interfaces that are implemented by each graphical object.  

In the FOC mechanism, a mask is decomposed into a hierarchy of  

structural elements. Terminals of the hierarchy are basic elements such as 

buttons, list boxes, text fields, text label used to represent concrete GUI 

objects, which are then combined with structural elements (e.g., columns, 

rows, widgets, buttons) to compose complex masks. Each of these objects

is responsible for its own representation (a paint method invokes the 

respective functionality). Some masks require special extensions; these 

specialties are realized by inheritance from the most similar element. All

graphical objects inherit from an abstract class and are positioned into a 

hierarchy relative to their direct parent.

Messages sent from the silver box to the panel are limited to the inter-

faces of the abstract classes. The parameter string contains the required in-

formation to display a mask, or to change the status of displayed graphical

objects (e.g., scrolling, marking of an element). The realization of func-

tionality is realized by the base elements (e.g., activation of a button within

a button widget) from which other elements can inherit. The Graphics 

component takes over the serialization of graphical objects in order to en-

sure a smooth data exchange with the processor in the silver box.   

Currently, there is no tool support for the construction of the masks, and 

no practical, real project experiences were available. The implementation 

of the FOC mechanism prototype was realized in the C++ programming 

language, and it adopted a lot of object-oriented principles.  

Concept Assessment and Decision Making 

We applied the concept assessment and decision making steps as described

earlier to derive the decision whether to adapt the Mask-Oriented Commu-

nication or to extend the prototype of the FOC. IESE held the role of the

moderator, while the advocates and the product line architect were part of 

the industry partner’s development organization. The two alternative 

mechanisms were competing, each favored by different groups of develop-

ers. The concern of the product line architect was the question whether to 

14.4

14.3.4  Alternative 2: Framework-Oriented Communication
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reuse the “older” mask-oriented mechanism or to realize the “new”

framework-oriented mechanism. 

The impact of the decision to be made was regarded as critical by all

stakeholders (including developers, architects, and project management)

since the Graphics components of the TFT-panel product line is supposed 

to serve all upcoming variants of car radio and navigation system productsr

in the future. The decision and the rationale leading to it have to be well

understood and the key stakeholders have to fully agree on the decision

made to pull together towards the success of the envisioned product line 

and its underlying architecture. 

criteria. General aspects like available resources or time limitations were 

for both mechanisms the same, as well as some technical aspects like en-

ergy resource consumption or size of memory required on the TFT-panel. f

We left out these criteria and selected only relevant technical (e.g., SPI

messages, tool support) and product line related aspects (e.g., support of 

new technologies, specialties and configurability, map processing, integra-

tion with car radio products). 

One of the main criteria in favor for the FOC mechanism was the fitness 

towards very probable technology changes; the most likely are the  

introduction of touch screen functionality replacing mechanical buttons by

on-screen soft buttons and the replacement of the SPI by another interface

that enables faster communication between silver box and panel. The TFT-

panel product line architecture has to be flexible toward these changes in

underlying technologies. For instance, for the touch screen functionality, 

the Graphics component has to provide certain mechanisms to enable an

input channel from the panel and to interpret the touch screen buttons 

pressed. Table 14.2 shows the arguments and the result of the assessment 

for the criterion “Fitness for New Technologies”. 

One of the main criteria for the MOC mechanism was the “Tool 

Support” criterion, as the excerpt in Table 14.3 shows. 

14.4.1  Assessment

In the criteria elicitation step, it became clear that the assessment criteria

were threefold: technical constraints, general aspects, and product line related 



 The Role of Rationale in the Design of Product Line Architectures 309

replacement of the communication car-

rier: no rework is expected since trans-

missions are operating on a logical SPI 

channel 

replacement of the communication car-

rier: no rework is expected since trans-

missions are operating on a logical SPI 

channel

touch screen: direct mapping of buttons

to graphical elements facilitates han-

dling and resolution of touch screen 

events

P

R

O

touch screen buttons: fixed button posi-

tions can be handled with a work-

around

touch screen buttons:  

Position Change of buttons will require tt

no rework in the silver box. 

Touch screen: 

No support for touch screens events 

touch screen: 

realization is not yet completely real-

ized for this mechanism 

C

O

N

touch screen buttons:

major rework in the silver box and the 

panel

touch screen buttons:  

some rework for in the panel 

The FOC is the more future-proof mechanism since it already prepares the support 

of touch screen functionality.  

We continued to evaluate both mechanisms in the same way for all criteria. 

The arguments (pro and con) for each criterion were recorded one after  

another, and the results were documented together with the rationales.

Then all criteria were aggregated and put together to get the whole picture. 

The result shows that the framework-oriented communication mecha-

nism was rated overall as the better alternative in total. Furthermore, 

the FOC mechanism had higher ratings for the criteria with the highest 

priority. Those criteria were concerning product line related aspects (e.g.,

Fitness for New Technologies, Cross Organizational Product Line, Spe-

cialties and Configurability, Development Process Integration). Figure

14.5 depicts an overview on the assessed evaluation criteria. Overall, the 

FOC mechanism was evaluated to be more future-proof in this point than 

the already existing MOC. A side-effect was that all participants of the  

final workshop were able to understand each mechanism in detail, includ-d

ing advantages and drawbacks. 

Table 14.2. Assessment: Fitness for New Technologies

 MMask-Oriented Communication (MOC) 
FFramework-Oriented Communication 

((FOC)

14.4.2  Results and Decision 
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Fig. 14.5. Assessment results

Finally, all participants of the workshop (including both advocates and 

the product line architect) agreed on the framework-oriented communica-

tion mechanism as the solution to be implemented for the Graphics  

component of 1-DIN navigation systems with a TFT-panel. As shown in

the for “Fitness for New Technologies” criterion, the advantages of the

FOC mechanism outplay the MOC mechanism. In addition to the decision, 

some results of the workshop were identified as action items and im-

provements to the mechanism inspired by experiences with the other alter-

native.

Table 14.3.  Assessment: Tool support

MMask-Oriented Communication (MOC)  
FFramework-Oriented Communication 

((FOC)



 The Role of Rationale in the Design of Product Line Architectures  311

The learning effects were gained by the common understanding of both 

mechanisms in detail. In particular, review dates were arranged to monitor 

the realization and implementation of the new mechanism. Tool support to 

comprise mask generation and consistency checks was identified as an  

important issue, and therefore development of tooling was scheduled. In

addition to these product specific prerequisites, further architectural design 

goals for the TFT-panel product line have been documented. Both mecha-

nisms were not yet adequate to address these architectural requirements.

For instance, map processing features that generate the map within the 

panel and no longer in the silver box were not yet prepared, and the align-

ment of the overall development processes were an open issue with some

impact on the TFT-panel product line. The rationales leading to the result-

ing Graphics component (and the reason for rejecting the other alternative)

have been recorded. In case the decision is challenged by others develop-

ers or the higher management or other stakeholders not involved in the

technical decision process, it can be defended based on the documentation. 

To retrace and understand the rationales for, and to be able to relate to the

decision made, the criteria, the arguments and eventually the decision are

documented. This enables as well a good start for new developers when 

learning about the product line architecture and its underlying concepts.

In the design of product line architecture the architects will face hard  

decision, where they are not immediately able to say one solution is more

appropriate than the other. These decisions have a high impact and the

consequences have to be covered not only by a single product, but the 

whole product line. When facing such a problem, it pays off to invest some

effort and time to derive a sound, well-founded decision and to record the

rationale and the reasons on which the decision is based on. Another 

benefit is the better understanding and the improvement of the quality of 

the selected solution gained in the workshop, where the alternatives are

discussed in detail.

The approach we introduced here has not the goal to discuss all facets of 

tance to the strategic goals of the product line and have a high architectural 

relevance. By reducing the evaluation criteria in this way, only limited ef-

fort is needed and the expert involvement can be reduced to a reasonable

size.

One aspect in the introduction of product line engineering in the pilot 

14.5 Conclusion 

the alternatives, but to focus only the key aspects that are of a high impor-

project was to decide about the mechanism for the Graphics component. 

The two candidate mechanisms (MOC and FOC) were compared and
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the next steps in the realization of the product line. A positive attitude to-

ward the new mechanism was established and the stakeholders were highly 

motivated to start with the implementation. The explicit documentation of 

both mechanisms helped us to identify issues that must be addressed in the 

near future and topics that have to be addressed by the product line in a 

mid-term time frame.  

The importance of rationale in product line architecture is critical since

the product line architecture is the foundation for all derived variants. Next 

to putting the decision on a firm footing, the whole development team (and 

new members) can learn on the one hand about the design problem faced 

and the potential alternatives, and on the other hand about the reasons that 

lead to the decision made. By documenting it, the decision serves as well 

as justification in case the higher management or other architects challenge

the decision at a later point in time. The approach helped to select the FOC

mechanism and the experiences with this mechanism so far are very prom-

ising.
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assessed with respect to well-defined criteria. In examples, we highlighted

the strengths and weaknesses of the two mechanisms, and the reasons for

the decision were explained. The main reason for selecting the winning

mechanism was its superior characteristic with respect to anticipated

requirements of the envisioned product line. The common agreement (even

the advocate of the other mechanism agreed on it) is a major gain for 
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Abstract: This chapter presents the reasoning underlying a Principle of 

Software Uncertainty, first stated in 1989 and of primary significance in E-

type software, that is, software operating in the real-world. The Principle 

states that the validity of the execution results of an E-type program cannot 

be absolutely predicted. This is so because every E-type program reflects an 

unbounded number of assumptions about the application it addresses, the 

domains in which it operates and so on. Invalidation of assumptions is one 

of the drivers of the need for continual software evolution and a major 

source of uncertainty. Techniques such as those devised by researchers in 

the Design Rationale field can help to mitigate such uncertainty by captur-

ing, reviewing and generally managing assumptions embedded in the design 

and implementation of E-type programs.

Keywords: degradation of assumptions, E-type software, principle of soft-

ware uncertainty, software evolution, SPE program classification 

16

When computers first came into general use in the 1950s and 1960s it was

assumed that, after correct implementation of a computer program, the out-

come of execution in the real world that did not violate the limits set by

their specification, would be absolutely predictable. However, the contin-

ual validity of the results of execution cannot be absolutely guaranteed.

This is the inevitable consequence of the unbounded number of properties

of E-type applications and of the real world in which such systems operate 

and the inevitability of changes in all of these. This fundamental observa-

tion has been termed the Principle of Software Uncertainty [14–17,21,23].

The uncertainty referred to is a consequence of assumptions made, explic-

itly or implicitly, that become invalid during the software process as a con-d

sequence of changes in the application or the real world [19]. The embed-

ding of assumptions stems from a number of causes [19] when software is

created, solved, or used. This chapter provides background and stresses the

importance of their management by all those involved in these activities. 

This is a topic that researchers, in particular those looking into Rationale

Management in Software Engineering, and all those involved with soft-

16 The present chapter is a revised and updated version of an earlier paper [23]. 

15.1 Introduction

15  The Role and Impact of Assumptions in 
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ware, must take into account. This chapter refers to fundamental aspects of 

software, considers the reasons why assumptions are inevitable, and pro-

vides a justification for the Design Rationale field, discussing issues that, 

at best, are only addressed superficially, more often totally ignored.

Section 15.2 sets the scene with an overview of types of software. Sec-

tion 15.3 discusses why assumptions, known and unknown, are inevitably

reflected in E-type software which, as a consequence, is the most affected 

by uncertainty. Section 15.4 presents the Principle of Software Uncer-

SPE Classification Scheme and its Implications 

In order to explain why assumption are inevitably reflected in software and 

to derive implications, this chapter briefly presents an SPE program classi-

fication scheme previously described and discussed, e.g., [11,12,20,28].

S-type programs (S for specification) implement solutions to problems

that can be completely and unambiguously, possibly formally, specified so

that, in principal at least, a program that addresses them can be proven cor-

rect with respect to the specification. Issues of programming elegance and 

efficiency are an orthogonal concern. These programs solve problems that 

are fully defined in a closed, abstract domain. S-type programs represent 

the domain extensively discussed in the Computer Science literature on

formal methods, e.g., [5,8,30,32,34,35]. 

S-type programs stand in sharp contrast to those termed E (E for evolu-

tionary). The type E addresses real-world computer applications and/or 

supports real-world activity. Once installed in their operational domains, 

they operate within and interact with them [12] and the results of execution 

depend on real-world properties. Such programs have become pervasive at 

all levels of human activity. Thus they are of universal interest. The type 

does present challenges in a number of areas. In the present discussion, the

concern is the extent to which one can rely on their satisfactory behavior in

execution. E-type software address applications that cannot, as required for 

demonstrations of absolute correctness, be completely and unambiguously 

specified though individual parts can be. Any formal specification of an  

E-type program would, at best, be only partial. Moreover, even where a

partial specification is available, the proof of correctness would be incom-

plete because it could not address the unlimited properties of the  

real-world domain. However, correctness demonstration of even those

parts of a program that can be fully and precisely specified is not likely to

15.2

tainty. Section 15.5 provides examples of projects affected by invalid

assumptions. In Section 15.6 practical recommendations and topics for

further work are suggested. Section 15.7 concludes the paper. 
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be the major interest to real-world users or other stakeholders, who, in any 

case, often hold multiple, sometimes inconsistent, viewpoints or require-

ments [7]. Some increase in confidence that the software as a whole will 

satisfy its stakeholders may result from a partial demonstration that parts 

of the program are correct with respect to their individual specification.

The concern of stakeholders in general and users in particular will, 

however, in general be with the results of execution in the real-world.

These are applied and assessed in the context of problems being solved or 

applications being pursued in the operational domain. What matters, is 

their validity and applicability and that of the consequential behavior when 

outputs are used. Its determination will depend, in part at least, on criteria

for satisfactory execution. These will have been explicitly stated or may be 

considered intuitive in terms of what is required or desired. Such criteria

are the ultimate determinant of software acceptability in the real-world.

In discussing uncertainty in software it is necessary to consider the  

obstacles to complete and unambiguous specification of real-world appli-

cations. Some arise from the fact that the domains involved are essentially 

unbounded in the number of their properties and that many of these are 

subject to change, some as a consequence of installation or use of the sys-

tem. Moreover, when humans are involved in system operation, issues 

such as the unpredictability of individual human behavior also make for-

malization difficult or even impossible. Correctness, in the formal sense, is

meaningless in the E-type context. One can merely consider how success-

ful the system is in meeting its intended purpose. Conventionally, E-type 

program development is initiated by means of requirements elicitation,

e.g., [27]. However, as will be seen, only parts of the statement of re-

quirements, mathematical functions for example, can, at best, be fully and 

precisely described, defined and formalized. As remarked earlier, the crite-

rion of correctness is replaced by concern for validity or acceptability of 

the results of execution in real-world application. If results are unsatisfac-

tory in the context of the purpose for which the program was developed

and executed, the system is likely to be sent back for modification.

Whether the source of dissatisfaction originates in system conception, 

specification, software architecting (high level design), low level design 

and/or implementation is, in the context of the present discussion, not rele-

vant.

Since the real-world and activities within it are dynamic, always chang-

ing, such changes are not confined to the period when the system is devel-

oped, accepted and first used. Similar choices and the need for action will 

arise throughout the system’s active lifetime. The system must be continu-

ally evolved, adapted to a changing real-world and, in particular, to  
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application and operational domain properties, needs and opportunities

[10]. The changes may be the result of exogenous (e.g., [25]) or installa-

tion and usage changes, happenings that change the operational domain, 

the application implemented and/or the activity supported. As already 

stated evolution is intrinsic to E-type systems and inevitable. This is illus-

trated in Fig. 15.1 which presents a simplified, high level, view of the 

software evolution process as a feedback system [18]. In Fig. 15.1, the ori-

gin of an application is traced back to the activities of conceptualization, 

experimentation, and interaction between stakeholders which lead to the 

definition of an application and specification of software to address it.

Moreover, precise definition of a problem requires bounding to establish

its scope and limits. This, in itself introduces a whole series, in fact an un-

bounded number of assumptions, namely that each of the properties that

lies outside the bounds is irrelevant at the required level of precision.  

Development of the software then starts. Though many different processes 

can be followed, for the sake of simplicity, Fig. 15.1 shows a sequential 

process. At the end of the first iteration the operational program is de-

ployed in the application domain, effectively changing the domain (that 

output changes input is basic to the feedback concept). Exogenous changes

can and will influence the domain (e.g., [25]). The cloud represented by a 

segmented line indicates the limits of the domain which are subject to 

variation over time. Domain changes are likely to trigger the need for pro-

gram changes and so lead to program evolution indicated by the central

circular arrow. A more detailed view would show the evolution process to 

be a multilevel, multiloop, multiagent feedback system, e.g., [1,11,18]. 
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Application domain

Development

step i +1
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Development
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Bounding

Fig. 15.1. Installation, operation and evolution 
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The original scheme included a third, type P (P for problem). For this

type the program, the problem itself can be precisely defined. In theory a 

correct solution exists but circumstances prevent the development of a 

program that yields a correct solution. A chess playing program can be an 

example of this type. In theory, the program could calculate all possible  

future moves, from a given step in the game, and find out the next best 

move. However, computer memory and processing limitations would limit 

and how many moves could be evaluated at each stage. This represents a 

limit arising from an execution domain bound and suggests that such a 

program should be classified as of type E. In fact all P type programs may

be classified as of type S or E. Hence the P type is redundant and was 

it in the classification scheme.

The S-type program concept is of help in clarifying the practical useful-

ness of concepts such as complete specification, correctness, and  

verification. Examples of programs of this type that are studied, and even

used, in isolation are often described as toy programs. Their principal

and unambiguously specified, so be considered as of type S. The fact that 

its properties are mathematically verifiable, that the component can be

shown to be correct with regards to a formal specification, indicates, to

certain extent, the contribution it can make to overall system behavior. The

more system components can and are formally described the greater their 

contribution to likely system satisfaction. However, the specification of the 

problem solved by such components, though complete and precise in

themselves, must, as discussed further below, still reflect assumptions

about the application and the domains within which they execute. Once in-

tegrated into its E-type host system, that component becomes part of the 

execution domain. Uncertainty in the validity of system behavior may then

reflect back into component behavior. Hence, even if, in isolation, compo-

nents are of type S, they acquire E-type properties once integrated into and 

executed within the E-type system and its domain. 

The S-type property can make a contribution to achieving required va-

lidity of system behavior. It cannot guarantee the impact of that behavior 

in the encompassing domain. Nevertheless, it has a vital role to play in 

system building that will become ever more important as the use of  

components, COTS and reuse becomes more widespread. Knowledge of 

component properties and of assumptions made, explicitly or implicitly, 

during their conception, definition, architecting and design, implementa-

tion and testing, whether ab initio development for direct use, as a COTS

the number of moves forward a chess playing program could evaluate 

abandoned. However, recent work [4] has redefined type P and reinstated 

value is illustrative. However, a system component can often be completely 
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offer, or development for in-house reuse, is vital for subsequent integration

into a larger system. It has long been recognized that formal specification 

is a useful tool for recording, revealing, and understanding program behav-

ior [30,32,34]. It would appear desirable for COTS, reuse and product-line 

units to be specified and processed as S-type programs even though they

are to be used as bricks in E-type systems. 

The S-type concept is also significant for other reasons. Development of 

elemental units for integration into a system is normally assigned to one 

individual, or to a small group. The activity they undertake generally in-

volves assumptions, conscious or unconscious, that resolve on-the-spot is-

sues that arise as the design, code and/or documentation is evolved. 

Adopted resolutions of issues will generally be based on time and space-

local views of the problem and/or the solution being implemented and may

well be at odds with the design or implementation of other parts of the sys-

tem. Even when justified locally, the assumption(s) for such resolution will

be reflected in the system and can become a future source of failure, a de-

fect, changes in, for example, the application domain or other parts of the 

system. Assumptions are the seeds of uncertainty. In order to minimize this 

it has been suggested that, wherever possible, work assignments to indi-

viduals, whatever their function, should be of type S [12]. Application of 

the S-type program concept can simplify management of the potential con-

flicts, limit, and control the implanting of assumptions which arise when 

groups of people implement large systems, with individuals taking deci-

sions under limited information and communication with other implemen-

ters and stakeholders. Basing work-assignments to individuals or small

groups on a formal specification strictly limits their freedom of choice. It 

mitigates the risk of situations that force local decisions that are candidates 

for subsequent invalidation. Mitigates but does not remove, since unfore-

seen situations that arise later may again lead to local decision taking.

Working practice should then, however, involve appropriate changes to the

formal specification and, ideally, some form of assumption recording and 

their regular review [22]. 

Even S-type bricks, and software component technology, in general,

have limitations. No matter how detailed the definition when an S-type 

task is assigned, issues demanding implementation-time decisions will still

be identified by the implementer(s) during each step of development. In 

principle, they must be resolved by revision of the specification and/or 

other artifacts (e.g., design, documentation). However, explicit or implicit,

conscious or unconscious adoption of assumptions by omission or com-

mission will inevitably happen. Even if conscious they may remain unre-

corded and are likely to be based on a limited view of the system as a 

whole and of its intended application. Above all, they may eventually be



The Role and Impact of Assumptions    319

forgotten. Moreover, with the passage of time, and application and domain

changes that are, generally, inevitable, some of these assumptions  

are likely to become invalid. Thus even S-type bricks carry seeds of 

uncertainty that can trigger invalid results. But, though it does not elimi-

nate uncertainty, their use reduces the likelihood of failure, uncertainty at 

the lowest level of implementation, where sources of incorrect behavior 

are most difficult to identify. But overall the assumption issue is, as  

gram uncertainty.

E-type Programs and the Role of Assumptions 

The remainder of this chapter considers one aspect of the lifetime behavior 

of E-type software and applications. Underlying the phenomena to be 

software context [13,31,32]. 
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Though not indicated in the figure, a problem specification is also rec-

ognized by some as a theory of the application in its real-world operational

domain [31] obtained, for example, by an abstraction process. It may, for 

example be presented as a statement of requirements, with formal parts 

where possible. Conversely, the real-world and the program are both mod-

els of that theory, that is, of the specification. Programs may be achieved

by a reification process including successive refinement [35] or by other 

15.3

described in the Sect. 15.3, inescapable and a major source of E-type pro-

considered is a view, Fig. 15.2, of the relationships between a program, its

specification and the application it implements or supports. This view is a

theory and models in thedirect application of the mathematical concepts of 
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methods. Program elements formally specified should be verified and the

program, in part and as a whole, validated against the specification and ul-

timately, against the application in its operational domain. This is intended 

to ensure that, within bounds set by the specification and to the extent to 

which the validation process covers the most likely states of the opera-

tional environment, the program will meet the purpose of the intended 

application. Validation is not a once-only activity. It must be repeated, in 

whole or part, whenever changes are subsequently made to the program to 

maintain the validity of the real-world/specification/program relationship.

The real-world per se and the bounded real-world operational sub-

domain have an unbounded number of properties. Since a statement of 

requirements and a program specification are, of necessity, finite an 

unbounded number of properties will have been excluded. Such exclusions

will include properties that were unrecognized or assumed irrelevant with

respect to the sought-for solution. Every exclusion implies one or more  

assumptions that, explicitly or implicitly, by omission or commission,

knowingly or unknowingly become part of the specification. The con-

scious and unconscious bounding of the latter, of functional content and its

detailed properties during the entire development process, determines to a

great extent, the resultant unbounded assumption set. It will be up to the

subsequent verification and validation processes to confirm the validity of 

the set of known assumptions in the context of the application and its op-

erational domain. This cannot be done directly or completely, since, as al-

ready indicated, they are unbounded in number and mostly unknown.

The issue of assumptions does not arise only from the relationship  

between the specification and the intended application in its domain. The

reification process also adds assumptions. This is exemplified, for exam-

ple, by decisions taken to resolve issues not addressed in the specification 

which implies that, in generating the specification, they were overlooked 

or considered irrelevant. Moreover, the abstraction and reification proc-

esses are, generally, carried out independently and assumptions adopted in 

the two phases may well be incompatible. Real-world validation of the 

operational program is, therefore, necessary.

Figure 15.2 expresses the need for the program and the specification  

to be periodically (ideally continually) validated with respect to the real-

world domain. A desirable complementary goal is to maintain the specifi-

cation as a true abstraction of the real-world and the program. Testing over g

a wide range of input parameters and conditions is a common means for 

establishing the validity of the program. But the conclusions reached from 

tests are subject to Dijkstra’s stricture [5], that “… testing can only demon-

strate the presence of defects, not its absence”. In a dynamic world, test  

results are, at most, valid at the time when the testing is undertaken or in 



  321 

relation to the future as then foreseen and taken into account during the de-

sign of the test. The overall validity of the assumption set relates to real-

world properties at the time of validation.

Specification validation seeks to demonstrate that if precisely imple-

mented, the system will satisfy the purpose of the application. Since therr

real-world is dynamic, periodic validation, in whole or in part ensures, in-

ter alia, that, as far as possible, assumptions that have become invalid are 

fixed. Assumptions revealed by analysis failure or change analysis, must 

be included in the “known set” for subsequent validation. 

As illustrated in Fig. 15.3, assumption relationships between the three

entities, the specification, the application in its real-world domain and the

program are mutual. 
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The specification is necessarily based on assumptions about the applica-d

tion and its real-world operational domain because the latter are un-

bounded in the number of their properties and the specification is bounded. 

Moreover, in general, the application has potential for many more features

than can be included on the basis of available budgets and the time avail-

able to the intended completion point. Hence, the specification also reflects

assumptions about the application and implementation. Similarly, as they

pursue their various responsibilities, system implementers will make 

interpretations and assumptions about the specification, particularly in its 

informally expressed parts. And, probably to a lesser extent, those respon-

sible for developing the specification will make assumptions about the 
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program, its content, performance and the system domain (human and 
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nized and fully understood, attempts will be made to validate both individ-l

ual assumptions and the mutual compatibility of the set. But those that 

have been adopted unconsciously or arise from omission cannot, in gen-
eral be addressed. Nor will validity bounds have been determined or even d

recognized. All these factors represent sources of assumptions reflected in 

the program and that may become invalid as the real-world changes.

A Principle of Software Uncertainty 

Continual validity of the assumption set reflected in the program is essen-

tial for valid program execution. For E-type programs, the validity of the

latter cannot be proven, if only because one cannot identify all members of l

that set. And even those that can be identified may become invalid. Thus, 

if changes have occurred in the application or the domain and rectifying

changes have not been made in the system, the program may display un-

successful, unacceptable or invalid behavior no matter how acceptable or 

valid executions were in the past. 

Given the above background, we are now in a position to discuss the 

Principle of Software Uncertainty in its current form, a revision of earlier 

statements [14–17,21,23] on the basis of insights developed during earlier 

studies of software evolution [6,20]. The Principle may be stated as fol-

lows: “The validity of the results of the execution in the real-world of an 

E-type program cannot be absolutely predicted”. This statement makes no

reference to the source of the uncertainty. Clearly the possible presence of 

assumptions, known or implied, is sufficient to create uncertainty. There

may be other uncertainty sources [19]. Additional remarks with regards to 

the interpretation of the Uncertainty Principle are provided in [19]. 

Use of the terms acceptable/valid and d unacceptable/invalid in the state-d

ment is not intended to reflect individual or collective human judgment 

about the results of execution, though such judgment is certainly an issue,

a possible source of uncertainty. The terms are intended to relate to the is-

sue whether the results of execution fulfill the objective purpose of the

program. The Principle is stated in terms of acceptability/validity rather 

than satisfaction to avoid any ambiguity which might arise from the

mathematical meaning of satisfy [29] which, in the Computer Science con-

text is used to address the relationship between a formal specification and 

a program which has been verified with respect to it.

Though not the only source, there are sound reasons to believe (see dis-

cussion in Sect. 15.3) that assumptions are the main underlying source of 

15.4

hardware) in which it executes. To the extent that assumptions are recog-
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software uncertainty as reflected by the Principle of Software Uncertainty. 

Hence the latter indicates a need for assumption management. The original

work and its extensions since indicates that the study of assumptions and 

how they may, or rather must, be determined, managed and controlled is

vital to the future of a society that is becoming ever more dependant on

software.

Examples of Invalidation of Assumptions 

Given the reasoning that underlies its formulation it might be thought that 

the Principle is a curio of theoretical interest but of little practical value. 

Consider, for example, the statement that a real-world domain has an un-

countable number of properties and cannot, therefore, be totally covered

by an information base of finite capacity. The resultant incompleteness

implies an uncountable number of assumptions that underlie use of the sys-

tem and impact results achieved. The reader may well ask, “so what?”

Clearly, the overwhelming majority of these assumptions are not relevant 

in the context of the software in use or contemplated. Neither do they have 

any impact on behavior or on the results of execution. It is, for example,

quite safe to assume that one may ignore the existence of black holes in

outer space when developing the vast majority of programs. It will cer-

tainly not lead to problems unless one is working in the area of cosmology 

or, perhaps, astronomy. On the other hand, after a painful search for the 

cause of errors during the commissioning of a particle accelerator at 

CERN, a tacit assumption that one may ignore the influences of the moon

for earth bound problems has already been shown to be wrong when it was 

discovered that, as a result of the increased size of a new accelerator, an 

earlier assumption by default, the gravitational pull of the moon was a ba-

sic source of experimental error [3]. Another example: on June 4th 1996,

the Ariane 5 rocket with a payload of four satellites and at a total cost of 

USD 500 million was destroyed by a remote command issued by the 

ground controller soon after being launched. This was the maiden flight 

(501) of the Ariane 5 rocket. The investigative board determined that an

inadequate handling of an exception by the Inertial Reference System 

computer (SRI) software triggered the chain of events which eventually

led to the rocket loss. Part of the software for Ariane 5 was reused from 

Ariane 4, the previous version of the launcher. However, the two rocket 

versions have different requirements. Ariane 5 requirements were assumed 
to be correctly handled by the SRI software. During ascension, one 

software module stopped computing meaningful results. This triggered an

The Role and Impactmm  of Ast sumpmm tions
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exception, which was not properly handled, leading to the shut-down of 

the SRI computers, the loss of rocket’s ascension control and to a ground 

controller command to destroy it [26,28]. Many more examples [9,19]

could be cited as examples of software or system failure ultimately due to 

the invalidation of reflected assumptions. The examples suggest that as-

sumptions are of different types, but this is a matter for future research.

The conclusions that underlie the foregoing discussion were largely 

reached during the FEAST (Feedback, Evolution, And Software Technol-

ogy) [6,24] studies. In particular, they revealed that continual evolution is 

inevitable for real-world applications.  The empirical study [6] of a number 

of evolving E-type software have indirectly reinforced the reasoning that 

led to formulation of the Principle of Software Uncertainty as here stated. 

Unfortunately, sufficient relevant data, such as histories of fault reports  

relating to the industrial collaborators’ systems, to permit even initial 

meaningful estimate of the degree of satisfaction or acceptability of stake-

holders involved with the systems studied, were not available. It was, 

however, clear that continual change of portions of the software was 

present in all the systems observed, and that a portion of such changes ad-

dressed problems caused by invalidation of reflected assumptions. 

The previous sections of this chapter have discussed why assumptions are

inevitable and unbounded in number and the consequences of their pres-

ence: degradation of the assumption set reflected in software, in its widest 

sense, represents a major societal threat resulting from the ever wider,

more penetrating and integrated use of software. The Principle provides a

justification for the need of specific tools and technologies for rationale 

management in software engineering, including assumption recording, 

and, more generally, for uncertainty and risk management, particularly for 

long-lived critical software applications where the risks and penalties of 

assumption invalidation is the highest. There is room here for method and 

process research, development, and improvement, for finding out exactly

how assumptions might be captured as part of the Design Rationale and 

how they might be used. Practical approaches are needed for assumption

management and control. Despite its critical importance this topic has, 

with exceptions, e.g., [2,9,33], not been devoted the attention it deserves. 

Future research needs to address how assumptions might be obtained 

and recorded, and assess how hard they might be to collect, and how such 

collection be facilitated 

15.6 Practical Approaches and Recommendations 



  325

There follows a list of some recommendations [22] that, directly or indi-

rectly, address implications of the above. Others practical measures are 

discussed elsewhere [19]: 

a) when developing a computer software and associate systems, estimate

and document the likelihood of change in the various areas of the ap-

plication domains. Knowing which areas of the domain are likely to 

change, can simplify subsequent detection of assumptions that may 

have become invalid as a result of these changes 

b) capture assumptions made during program development or change us-

ing appropriate techniques (see other chapters in this volume).

c) store appropriate information in a structured form, related possibly to

the likelihood of change as in (a), so facilitating detection in a periodic

review to identify any that have become invalid 

d)  to facilitate such review, assess the likelihood or expectation of change 

in various categories of catalogued assumptions

e)  review the assumptions database by categories as identified in (c), and 

as reflected in the database structure, at intervals guided by the expec-

tation or likelihood of change or as triggered by events as in (d) 

f)  develop and provide methods and tools to facilitate all of the above 

(see other chapters in this volume) 

g)  when possible, separate implementation and validation teams to im-

prove questioning and control of assumptions

h) provide for ready access by the software development and mainte-

nance teams to all appropriate domain specialists with in-depth knowl-

edge and understanding of the application domain. 

Understanding the issues that lead to uncertainty is the essential first step 

in investigations seeking to produce means to overcome or at least mini-

mize, the effects that result from errors in all these sources. These will

arise both at creation time and as a consequence of changes in the domain

that the system serves. 

Provided the assumptions issue is recognized and acknowledged, solu-

tions will be found to reduce the impact of uncertainty and of the conse-

quences when failure to identify and resolve issues raised leads to system 

failure or erroneous results. The key issue is whether greater benefits are

achieved by the use of a system with the uncertainties as outlined or 

by abandoning their use. There appears to be little doubt that in most 

instances the former will be the case. But the question must be asked

The Role and Impactmm  of Ast sumpmm tions

15.7 Final Remarks 
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whenever a new application is planned and developed so as to mitigate the

risks by, for example, following the recommendations above indicated.

Much work is required in this area. 

Implicitly, the discussion has been exclusively in terms of programs, ex-

ecutable software and its documentation. More recently it has become

clear both from theoretical considerations and from analysis of practical

examples [6,9,19], that the phenomena identified are much more general,

appear to apply to most areas of human endeavor. And within each area 

they apply to the rationale that underlies the structure and design of their 

constituent parts, the architectures, structures, and processes for example.
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Rationale and Architecture 

J.S. van der Ven, A.G. J. Jansen, J.A. G. Nidd ji huis, J. Bosch

Abstract: Software architecture can be seen as a decision making process; 

it involves making the right decisions at the right time. Typically, these de-

sign decisions are not explicitly represented in the artifacts describing the

design. They reside in the minds of the designers and are td herefore easily

lost. Rationale management is often proposed as a solution, but lacks a 

close relationship with software architecture artifacts. Explicit modeling of

design decisions in the software architecture bridges this gap, as it allows 

for a close integration of rationale management with software architecture.

This improves the understandabilitytt of the software architecture. Conse-

quently, the software architecture becomes easier to communicate, main-

tain, and evod lve. Furthermore, it allows for analysis, improvement, and red -

use of design decisions in the design process.

Keywords: software architecture; architectural design decisions

Software design is currently seen as an iterative process. Often used phases

in this process include: requirements discussions, requirements specififf ca-

tion, software architecting, implementation, and testing. The Rationale

Unified Process (RUP) is an example of an iterative design process split

into several phases. In such an iterative design process, the software archi-

tecture has a vital role [19]. 

Architects describe the bare bones of the system by making high-level 

design decisions. Errors made in the design of the architecture generally

have a huge impact on the fiff nal result. A lot of effort is spent on making

the right design decisions in the initial design of the architecture. However,

the argumentation underlying the architecture is usually not documented,

because the focus is only on the results of the decisions (the architectural

artifacts). Therefore the evaluated ad lternatives, made tradeoffs and ratd ion-

ale aboua t the made decision remain in the heads of the designers. This tacit 

knowledge is easily lost. The lost architecture knowledge leads to evolu-

tion problems [8], increases the compmm lexity of the design [5], and obstructs

the reuse of design experience [14].

To solve the problem of lost architectural knowledge, often techniques 

for managing rationale are proposed. Experiments show that maintaining 

rationale in the architecture phase increases the understandability of the

16.1 Introduction 

16  Design Decisions: The Bridge between 
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design [6]. However, creating and maintaining this rationale is very 

time-consuming. The connection to the architectural and design artifacts is

usually very loose, making the rationale hard to use and d keep up-to-date

during the evolution of the system. Consequently, there seems to be a gap

between rationale management and software architecture.

To bridge this gap, we unite rationale and architectural artifacts into the

concept of a design decision, which couples rationale with software archi-

tecture. Design decisions are integrated with the software architecture  

design. By doing this, the rationale stays in the architecture, making it eas-

ier to understand, communicate, change, maintain, and evolve the design.

Section 16.2 of this chapter introduces software arcdd hitectures. Section

16.3 discusses how rationale is used in software architectures. Section 16.4 

introduces the concept of design decisions. Section 16.5 presents a con-

crete appa roach that uses this concept. After this, related and future work is

discussed, followed by a summaryrr , which concludes this chapter.

This section focuses on the knowledge aspects of software architectures. In 

different ways are presented to describe software architectural knowledge

architecture is discussed in Sect. 16.2.3.

A software architecture is based on td he requirements for the system. 

Requirements define what the system should do, whereas the software ar-t

chitecture describes how this is achieved. Many software architecture 

design methods exist (e.g., [2] and [4]). They all use different methodolo-

gies for designing software architectures. However, they can all be summa-

rized in the same absa tract software architecture design process.

Figure 16.1 provides a view of this abstract software design process and

its associated artifacts. The main input for a software architecture design t

process is the requirements documentdd . During the initial desidd gi n the sofo tff -

ware architecture is created, which satisfiff es (parts of)ff  the requirements 

stated in the requirement document. After this initial design phase, the 

quality of the software architecture is assesseaa d. When the quality of the 

architecture is not suffiff cient, it is modififf ed (architectural modidd fi icationff )n .

16.2.1  The Software Architecture Design Processff

16.2 Software Architecture  

Sect. 16.2.1, the software architecture design process is discussed. Next,

in Sect. 16.2.2. Subsequently, the issue of knowledge vaporization in software
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Fig. 16.1. An abstract view on the software architecture design process

Describing Software To modify the architecture, the architect can 

among others employ a number of tactics [2] or adopt one or more archi-

tectural styles or patterns [20] to improve the design. This is repeated, until

the quality of the architecture is assessed suffd iff cient.

There is no general agreement of what a software architecture is and what 

it is not. This is mainly due to the fact that software architecture has many 

different aspects, which are either technically, process, organization, or 

business oriented [4]. Consequentd ly, people perceive and express softwared

architectures in many different ways.

Due to the many different notions of software architectures, a combina-

tion of different levels of knowledge is needed for its description. Roughly, 

the following three levels are usually discerned:

− Tacit/implicit knowledge. In many cases, (parts of) software architec-

tures are not explicitly described or mod deled, but remain as tacit infor-

mation inside the head(s) of the designer(s). Making this implicit 

knowledge explicit is expensive, and some d knowledge is not supposed

to be written down, for example for political reasons. Consequently, 

(parts of)ff  software architectures of many systems remain implicit.

− Documented knowledge. Documentation approaches provide guidelines

on which aspects of the architecture should be documented and d how this

can be achieved. Typically, these approaches defiff ne multiple views on 

an architecture for different stakeholders [11]. Exampmm les include: 

the Siemens four view [10], and the work of the Software Engineering

Institute [7].  

16.2.2  Architectures
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− Formalized knowled dge. Formalized knowledge is a specialized form od f

documented knowledge. Architecture Description Languages (ADL)

[18], formulas and calculations concerning the system are examples of

formalized knowledge. An ADL provides a clear and concise descrip-

tion of the used arcd hitectural concepts, which can be communicated, re-

lated, and reasoned about. The advantage of formalized knowledge is 

that it can be processed by computers.

Often, the different kinds of knowkk ledge are used sd imultaneously. For

example, despite that UML was not invented for d it UML is often used tod

model certain architectural concepts [7]. The model structure of UML con-

tains formalized knowledge, which needs explanation in the form of 

documented knowledge. However, the use of the models is not unambigu-

ous, and it is often found td hat UML is used in different ways. This implies 

the use of tacit knowledge to be able to understand and interprr ret the UML

models in diffeff rent contexts.

There are several maja or problems with software architecture design

[5,12,14]. These problems come from the large amount of tacit architec-

tural knowledge. Currently, none of the existing approaches to describe 

only exist in the heads of the designers, which leads to the following prob-

lems:

− Desigi n gg decisions are cross cuttindd g ang d intertwined d.dd Typical design

decisions affect multiple parts of the design. However, these design de-

cisions are not explicitly represented in the architecture. So, the associ-

ated arcd hitectural knowledge is fragmented across vard ious parts of the 

design, making it hard to fd iff nd and d cd hange the decisions.

− Design rules and constraints are violated. During the evolution of the dd.d

system, designers can easily violate design rules and constrad ints arising

from previously taken design decisions. Violations of these rules and 

constraints lead to architectural drift [19], and its associated problems

(e.g. increased maintenance costs). 

− Obsolete design decisions are not removed. When obsolete design deci-ddd.d

sions are not removed, the system has the tendency to erode more rap-

idly. In the current design practice removing design decisions is

avoided, because of the effort needed, and td he unexpected effects td his

removing can have on the system.

16.2.3 Problems in Softff ware Architecture

software architectures (see Sect. 16.2.2) gives guidelines for describing the

design decisions underlying tht e architecture. Consequently, design decisions
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change, and td hey tend tod erode quickldd yll . Also, the reusabilitytt  of the archi-

tectural artifacts is limited if design decision knowledge vaporizes into the 

design. These problems are caused by the focusff in the software architec-

ture design process on the resulting artifacts (e.g., components and 

connectors), instead of the decisions that lead to them. Clearly, design de-

cisions currently lack a fk iff rst-class representation in software architecture

designs.

Rationale in Software Architecture 

To tackle the problems described in the previous section, the use of ration-

ale is often proposed. Rationale in the context of architectures describes

and explains the used concepts, considered alternatives, and structures of 

systems [11]. This section describes the use of rationale in software archi-

tectures. First, an abstract rationale construction process is introduced in 

Sect. 16.3.1. Then, the reasons for rationale use in software architectutt re are

described in Sect. 16.3.2. The section is concluded with a summary of 

problems for current rationale use in software architecture.

A general process for creating rationale is visualized in Fig. 16.2. First, the 

problems are identified (problem identification(p( ) and described in a prob-

lem statement. Then, the problems are evaluated (problems remaining(p( ) one

by one, and solutions are created (create solutions) for a problem. These 

solutions are evaluated and d wed ighted for d their suitabilia ty of solving the 

problem at hand (decision making). The best solution (for that situation) isg)

chosen, and the choice is documented together with its rationale 

(Choice + Rationale). If new problems emerge from the decision made, 

they have to be written down and be solved wd ithin the same process.  

This process is a generalized vd iew from different rationale based apd -

proaches (like the ones described in Sect. 1.3). Take for exampmm le QOC,

and td he scenario described in [17]. The design of a scroll bar for a user in-

terface is discussed. There are several questions (problems), like “Q1: How 

to display?” For this question, there are two options (solutions) described,

“O1: permanent” and “Od 2: appearing”. In the described examd plmm e, the

second option is considered as the best one, and selected. However, this

option generated a new questd ion (problem), “Q2: How to make it appear?”. 

16.3.1 The Rationale Construction Process

16.3

This new question needs to be solved in the same way. Other rationale 

management methods can be mapped on td his process view too.

As a result of these problems, developed systems have a high cost ofo
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Fig. 16.2. An aba stract view on the rationale management process

As is discussed in Sect. 1.4, there are many reasons for using rationale in

software projects. Here, the most important reasons are discussed, and re-

lated to the problems existing in software architecture.

− Supporting reusSS e and change (see Sect. 1.4.2). During the evolution of a

system and its architecture, often the rules and constrad ints from previous 

decisions are violated. Rationale needs to be used to d give the architects 

insight in previous decisions.

− Improving quag litytt (see Sect. 1.4.3). As posed in the previous section,  

design decisions tend to get cross-cut and d intertwined. Rationale based

solutions are used to check consistency between decisions. This helps in

managing the cross-cussing concerns.

− Supporting knowledge transfer (see Sect. 1.4.4). When using rationale r

for communication of the design. Transfer of knowledge can be done 

over two dimensions: location (different departments or compmm anies 

across the world) and td ime (evolution, maintenance). Transferring

knowledge is one of the most important goals of architecture.mppm

As described in this section, rationale could be beneficial in architecture

design. However, most methods developed for capturing rationale in archi-

tecture design suffer from the following problems: 
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16.3.3  Problems of Rationale Use in f Software Architecture ff

16.3.2  Reasons for Using Rationale in Software Architectureff
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− Capture overhead. Despite the attempt to automate the rationale captureddd.

process, both durdd ing and after td he design, it is still a laborious process

(see Sect. 1.5.1).

− For the designers, it is hard to see the clear benefit of documenting ra-t

tionale aba out the architecture. Usually most of the rationale capa tured is 

not used by the designer itself, and therefore capturing rationale is gen-

erally seen as boring and useless work. 

− The rationale typically loses the context in which it was created. When t

rationale is communicated in documented or formalized form, additional

tacit infoff rmation about the context is lost.

− There is no clear connection from the architectural artifacts to the ra-

tionale. Because the rationale and the architectural artifacts are usually

kept separated, it is very hard to d keep them synchronized. Especially

when the system is evolving, the design artifacts are updated, while the

rationale documentation tends to deteriorate.

As a consequence of these problems, rationale-based approacd hes are not 

often used in architecture design. However, as described in Sect. 16.2, 

there is a need for documenting the reasons behind the design. The follow-

ing section describes an approach which couples rationale to architecture.

Design Decisions: The Bridge Between Rationale 
and Architecture 

The problems from Sects. 16.2.3 and 16.3.3 can be addressed by the same

solution. This is done by including rationale and architectural artifacts into

one concept: the design decision. In the following section, the two proc-

esses from Sects. 16.2.1 and 16.3.1 are compared. In Sect. 16.4.2, design

decisions are introduced by example and a definition is presented in

Sect. 16.4.3. The last section discusses designing with design decisions. 

The processes described in Sects. 16.2.1 and 16.3.1 have some clear 

resemblm ances. Problems (requirements) are handled by Solutions (software

architectures/modifications), and the assessment determines if all the

problems are solved adequately. The artifacts created in both processes

tend to describe the same things (see Fig. 16.3). However, the software 

architecture design process focuses on the results of the decision process,

while the rationale management focuses on the path to the decision. 

16.4.1  Enriching Architecture with Rationale 

16.4



336

Problem

Identification

Create 

Solutions

nt

Choice + 

Rationale

Problems

gRemainingg

Decision

Making

So

Yes

Done

No

Legend

Process
Artifact

Decision

Requirement

Analysis

Initial 

Design

Requirements 

Document

Software

Architecture

Assessment
Architectural

Modification
tttInsufficienttttt

Done

tSufficienttt

Unrepresented 

Design 

Knowledge
Corresponding Artifacts

Software architecture

design

Rationale management
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tionale management process

Some knowledge which is captured in the rationale management process

is missing in the architecture design process (depicted as d black boxes in 

Fig. 16.3). There are two artifacts which contain knowledge that is not

available in the software architecture artifact: not selected solutions and

choice + rationale. On the other hand, the results of the design process (the

architecture and arcd hitectural modififf cations), are missing in the rationale

management process.  t

The concept of first-class represented design decisions, composed of 

rationale, architectural modifications, and alternatives, is used to bring the

J.S. van der Ven, et al.
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two processes together. A software architecture design process no longer 

results in a static design description of a sf ystem, but in a set of design deci-

sions leading up to the system. The design decisions reflff ect the rationale 

used for the decision making process, and form the natural bridge between

rationale and the resulting architecture. 

This section presents a simple case, which shows the impact of designing 

architecture with design decisions. The example is based on td he design of a

compact disc (CD) player. Changing customers’ needs have made the

software architecture of the CD player insufficient. Consequently, the ar-r

chitecture needs to evolve.

The software architecture of the CD player is presented in the top of

Fig. 16.4, tht e current design. The design decisions leading to the current

design are not shown in Fig. 16.4 and are instead represented as one design 

decision.

The CD players’ architecture is visualized in a component and connecd -

tor view [7]. The components are the principal computational elements that

execute at run-time in the CD player. The connectors represent which

component has a run-time pathway of interaction with another component. 

Two functional additions to the softff ware architecture are described.

First, a software-update mechanism is added. This is used to upd date the CD 

player, to make easier to fiff x bugs and ad dd new functd ionality in the future. 

Second, the Internet connection is used to download song information for 

the played CD, like song texts, additional artist information, etc.

As shown in Fig. 16.4, design decisions are taken to add td he described

functionality. The design decisions contain the rationale and td he functional

solution, represented as documentation and an architectural compmm onent and

connector view. Note that the rationale in the picture is shortened very

mucm h because of space limitations. The added functd ionality is directly rep-

resented by two design decisions, Updater andr SongDatagg base.

The first idea for solving the Internet connectivity was to add a compo-

nent which handled thd e communication to the Patcher. This idea was

reje ected, and another alternative was considered, to create a change to the

Hardware Controller. This change enaba led td he Internet connectivitytt  for the 

Internet song db too, and was consd idered better because it could rd euse a lot 

of the functionality of the existing Hardware Controller. Note that the viewdww

on the current design shows a complete architecture, while it is also a set

of design decisions. The resulting design (Fig. 16.5) is visualized wd ith the 

two design decisions taken: the Updater and td her SongDataSS base.

16.4.2  CD Player: A Design Decision Example
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Fig. 16.5. The result of the design decisions of Fig. 16.4 

In the exampmm le of Sect. 16.4.2, the software architecture of the CD player 

is the set of design decisions leading to a particular design, as depicted in

Fig. 16.4. In the classical notion of system design only the result depicted

in Fig. 16.5 is visible while not capturing the design decisions leading up 

to a particular design.

Although the term architectural design decision is often used [2, 7, 10], 

a precise defiff nition is hard to fd iff nd. Therefore, we defiff ne an architectural

design decision as:

We detail this defiff nition by describing the used ed lements:

− The consideredd d alternatived s are potential solutions to the requirement

the design decision addresses. The choice is the decision part of an 

architectural design decision; it selects one of the considered altd erna-

tives. For example, Fig. 16.4 contains two considered ad lternatives for the 

connectivity design decisions. The Ethernet Object alternative is not 

selected. Instead, the Internet Connectivity is selected. 

16.4.3  Design Decisions

A description of the choice and considered alternatives that (partially)
realize one or more requirements. Alternatives consist of a set of archi-
tectural additions, subtractions and modififf cations to the software
architecture, the rationale, and the design rules, design constraints and
additional requirements.  

“AAA

”



340    

− The architectural additionsdd , subtractions, and modificationst are the

changes to the given architecture that the design decision makes. For ex-

ample, in Fig. 16.4 the Song Database design decision has one addition

in the form of a new compmm onent (the Internet Song Database), and intro-

− The rationale represents the reasons behind an architectural design 

decision. In Fig. 16.4 the rationale is shortly described wd ithin the design

decisions.

− The design rules and constraints are prescriptions for further design 

decisions. As an example of a rule, consider a design decision that is 

taken to use an object-oriented database. All components and objects

that require persistence need to support the interface demanded by this

database management system, which is a rule. However, this design de-

cision may require that the complete state of the system is saved in this

object-oriented database, which is a constraint. 

− Timely fulfillment of requirements drives the design decision process.

The requirements not only include the current requirements, but also in-

clude requirements expected in the fuff ture. They can either be explicit,

e.g., mentioned in a requirements document, or implicit.

− A design decision may result in additional requirementsdd to be satisfiedff

by the architecture. Once a design decision is taken, new insights can 

lead to prevd ious undiscovered requd irements. For instance, the design de-

cision to use the Internet as an interface to a system will cause security

requirements like logins, secure transfer, etc.

The given architecture is a set of earlier made design decisions, which

represent the architectural design at the moment the design decision is

taken.

Architecture design decisions may be concerned with the application

domain of the system, the architectural styles and patterns used in the

system, COTS components and otd her infrastructure selections as well as 

other aspects described in classical architecture design. Consequently, ar-

chitectural design decisions can have many different levels of abstraction.ann

Furthermore, they involve a wide range of issues, from pure technical ones

to organizational, business, political, and social ones.

 J.S. van der Ven, et al.

duces two modd dififf cations to components (Info Shower and Internet d

Connection).
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decisions still uses these design methods. The main difference lies in the 

awareness of the architect, to explicitly capture the design decisions made

and the associated design knowledge.

Section 16.2.3 presented key problems in software architecture. Design-

ing with design decisions helps in handling these problems in the follow-

ing way: 

− Design decisions are cross cutting and intertwined. When designingddd.d

with design decisions the architect explicitly defines design decisions,

and the relationships between them. The architect is made aware of the 

cross cutting and intertwining of design decisions. In the short term, if

the identififf ed intertwining and crd oss cutting is not desirabla e, the in-

volved design decisions can be reevaluated and d ad lternative solutions can

be considered before the design is fuff rther developed. In the long term,

the architect can (re)learn which design decisions are closely intertwined 

with each other and what kind of problems are associated with this. 

− Design rules and constraints are violated. Design decisions explicitly ddd.d

contain knowledge about the rules and constrad ints they impose on the 

architecture. Adequate tool support can make the architect aware about 

these rules and constrad ints and provd ide their associated rationale. This is

mostly a long term benefit to the architect, as this knowledge is often

forgotten and no d longer available durdd ing evolution or maintenance of the

system.

− Obsolete design decisions are not removed.dd In evolution and mainte-

nance, explicit design decisions enable identififf cation and removad l of ob-

solete design decisions. The architect can predict the impact of the deci-

sion and the effort required for removal.  

Designing with design decisions requires more effort from the architect,

as the design decisions have to be documented ad long with their rationale.

In traditional design, the architect foff rms the bridge between architecture

and rationale. In designing with design decisions, this role is partially 

taken up by the design decisions.

Capturing the rationale of design decisions is a resource intensive proc-

ess (see Sect. 1.5.1). To minimize the capture overhead, close integration 

between software architecture design, rationale, and design decisions is re-

quired. The following section presents an example of an approach that

demonstrates this close integration.

Existing design methods (e.g., [2,4]) describe ways in which alternatives

are elicited and d trad de-offs are made. An architect designing with design 

16.4.4  Designing with Design Decisions 
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Section 16.4 presented a generad l notion of architectural design decisions. 

In this section, a concrete exampmm le realization of this notion is presented: 

Archium [13]. First, the basic concepts of Archium are presented, after

which this approach is illustrated wd ith an example.

Archium is an extension of Java, consisting of a compiler and run-td ime

platform. Archium consists of three different elements, which are inte-

grated with each other. The first element is the architectural model, which 

formally defines the software architecture using ADL concepts [18]. 

Second, Archium incorporates a decision model, which models design de-

cisions along with its rationale. Third, Archium includes a composition

model, which describes how the different concepts are composed together.  t

The focus in this section is on the design decision model. For the com-

position and architectural model see [13]. The decision model (see

Fig. 16.6) uses an issue-based appd roach [16]. The issues are problems, 

which the solutions of the architectural design decisions (partially) solve.

The rationale part of the decision model focuses on design decision ration-dd

ale and not d desidd gi n rationale in general (see section ‘DRL’ in Chap. 1). 

Archium captures rationale in customizable rationale elements. They are

described in natural text within the scope of a design decision. Rationale 

elements can explicitly refer to elements within this context, thereby creat-

ing a close relationship between rationale and design elements.

The motivation and cause ed lements provide rationale about the problem. 

The choice element chooses the right solution and mad kes a trade-off 

between the solutions. The choice results in an architectural modification.

To realize the chosen solution in an architectural design decision, the

components and connectors of td he architectural model can be altered. In

this process, new elements might be required and existing elements of the 

design might be modified or removed. The architectural modification 

describes these changes, and thereby the historyrr of the design. These archi-

tectural modifications are explicitly part of design decisions, which are

fiff rst-class entities in Archium. This makes Archium capable of describing

a software architecture as a set of design decisions [13].  

Rationale acquisition (see Sect. 1.7.1) is a manual task in Archium. The

approaca h tries to minimize the intrusiveness of the capturing process by

letting the rationale elements of the design decisions be optional. The only

intrusive factor is the identififf cation and namd ing of design decisions.

 J.S. van der Ven, et al.
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Fig. 16.6. The Archium design decision model

The rationale elements are to a certain extend sd imilar to that of DRL

[16] (see section ‘DRL’ in Chap. 1). The Problem element is comparabla e

to a Decision Problem in DRL. A SolutioSS n solves a Problem, likewise

Alternatives do in DRL. The Motivation element gives more rationale 

about the Problem and is compmm arable to a suppuu ortive Claim in DRL. A 

Cause can be seen as a special instance of a Goal in DRL. The l Conse-

quence element is like a DRL Claim about the expected impmm act of a 

Solution. The Pro and CoCC n elements are comparable to supporting and 

denying DRL Claims of a Solution SS (i.e., a DRL Alternative).

An example of a design decision and td he associated ratd ionale in Archium is

presented in Fig. 16.7. It describes the Updater design decision of r

Fig. 16.4. Rationale elements in Archium start with an @, which expresses

rationale in natural text. In the rationale, any design element or require-

ment in the scope of the design decision can be referred to usd ing square

brackets (e.g., [iuc:patcher]). In this way, Archium allows architects to  

relate their rationale with their design in a natural way. 

A design decision can contain multiple solutions. Each solution has a

realization part, which contains programming code that realizes the 

solution. A realization can use other design decisions or change existing

16.5.2  Example in Archium 
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compmm onents. In the InternetUII pUU date solution the realization contains the 

InternetUpdateChandd ge, which defiff nes the Patcher component and td he 

component modififf cations for the Internet ConnectioCC n (see Fig. 16.4).  

The IUCMapping defines how theg InternetUpdateChangII e is mappa ed onto

the current designdd , which is an argument of the design decision.

Fig. 16.7. The updater design decision in Archium 

To summarize, the architectural design decisions contain specific rationale 

elements of the architecture, thereby not only describing how the architec-

ture has become what it is, but also the reasons behind td he architecture.

Consequently, design decisions can be used as a bridge between the soft-

ware architecture and its rationale. The Archium environment shows that it 

is feasible to create architectures with design decisions. 

design decision Updater(CurrentDesign design) {

 @problem {# The CD player should be updatable.[R4] #} r

@motivation {# The system can have unexpected bugs or require 

                          additional functionality once it is deployed. #}

@cause {#Currently this functionality is not present in the [design], 

                as the market did not require this functionality before. #}

 @context {# The original [design].  #}

 potential solutions { 

  solution InternetUpdate {

     architectural entities { 

         InternetUpdateChange iuc;

         IUCMapping iucMapping; 

     }

   @description {# The system updates itself using a patch, which is downloaded from d

                                the internet. #}

        realization {

iuc = new InternetUpdateChange();

iucMapping = new IUCMapping(design,iuc); 

           return design composed wd ith iuc using iucMapping;

}

@design rules {# When the [iuc:patcher] fails to update, the system needs to

                                    revert back to tk he previous state.  #}

       @design constraints {#  #}

       @consequences {# The solution requires the system to have a [iuc:internetConnection]

                                       to work. #}

         pros { @pro {# Distribution of new patches is cheap, easy, and fast #d } }

         cons { @con {# The solution requires a connection to the internet to work. #} }

     }

    /* Other alternative solutions can be defined here */ 

}

 choice {

   choice InternetUpdate;      

   @tradeoff {# No economical other alternatives exist  #}      

 }

}

 J.S. van der Ven, et al.
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Related Work and Further Developments 

This section describes related and future work. The related work focusesur

on software architecture, as the related work about rationale management

is explained in more depth in previous chapa ters of this book. After this,

Sect. 16.6.2 describes future work onk design decisions. 

Software architecture design methods [2,4] focus on describing how the

right design decisions can be made, as opposed to our approach which fo-

cuses on capturing these design decisions. Assessment methods, like

ATAM [2], asses the quality attributes of a software architecture, and the 

outcome of such an assessment steers the direction of the design decision

process.

Software documentation approaches [7,10] provide guidelines for the

documentation of software architectures. However, these appaa roaches do

not explicitly capture the way to and the reasons behind the software archi-

tecture.

Architectural Description Languages (ADLs) [18] do not capture

the road leading up to the design either. An exception is formed by the 

architectural change management tool Mae [9], which tracks changes of

elements in an architectural model using a revision management system. 

However, this approach lacks the notion of design decisions and does not

capaa ture considered alternatives or rationale about the design. 

Architectural styles and patterns [d 20] describe common (collections of)ff

architectural design decisions, with known benefiff ts and drawbacks. Tactics

[2] are strategies for design decision making. They provide clues and hints

about what kind of design decisions can help in certain situations. How-

ever, they do not provide a complete design decision perspective. 

Currently, there is more attention in the software architecture commu-

nity for the decisions behind the architectural design. Kruchten [14],

stresses the importance of design decisions, and creates classifications of

design decisions and the relationship between them. Tyree and Akerman

[21] provide a first approach on documenting design decisions for software

architectures. Both approaches model design decisions separately and do 

not integrate them with design. Closely related to this is the work of Lago

[15], who models assumptions on which design decisions are often based, 

but not the design decisions themselves. 

Integration of rationale with the design is also done in the design ration-

ale fiff eld. With the SEURAT [3] system, rationale can be maintained in a 

16.6.1 Related Work

16.6
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RationaleExplorer, which is loosely coupuu led to the source code. This ra-

tionale has to be added to td he design tool, to let the rationale of the archi-

tecture and td he implementation be maintained correctd ly. DRPG [1] couples 

rationale of well-known design patterns with elements in a Java implemen-

tation. Likewise SEURAT, DRPG also depends on the fact that the  

rationale of the design patterns is added to the system in advance.

The notion of design decisions as fiff rst-class entities in a software architec-

ture design raises a couple of research issues. Rationale capture is very ex-

pensive, so how can we determine which design decisions are economical 

worth capturing? So far, we have assumed that all the design decisions can 

be capa tured in practice this would often not be possible or feasible. How 

do we deal with the completeness and uncertad inty of design decisions? 

How can we support addition, change, and removal of design decisions

during evolution?

First, design decisions need tod be adapted into commonly used design 

processes. Based on td his, design decisions can be formalized and d cated go-

rized. This will result in a thorough analysis of the types of design deci-

sions. Also, dependencies need to be described between the requirements

and design decisions, between the implementation and design decisions,

and between design decisions among themselves. 

Experiments by others have already proven that rationale management 

helps in improving maintenance tasks. Whether the desired effects out-

weigh the costs of rationale capturing is still largely unproven. The fact

that most of the benefiff ts of design decisions will be measurabla e after a 

longer period wd hen maintenance and evod lution takes place complicates the 

validation process. We are currently working on a case study which fo-

cuses on a sequence of architectural design decisions taken during evolu-

tion. Additional industrdd ial studies in different domains are planned in the 

context of an ongoing industrdd ial research projo ect, which will address some 

of the aforementioned questions.

This chapter presented td he position of rationale management in software

architecture design. Rationale is widely accepted as and important part of 

the software architecture. However, no strict guidelines or methods exist to

structure this rationale. This leaves the rationale management task in the

 J.S. van der Ven, et al.
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hands of the individual software architect, which makes it hard to reuse

and commund icate this knowledge. Furthermore, rationale is typically kept

separate from architectural artifacts. This makes it hard to see td he benefiff t 

of rationale and maintaining it. 

Giving design decisions a first-class representation in the architectural 

design creates the possibility to include problems, their solutions and the 

rationale of these decisions into one unififf ed concept. d This chapter de-

scribed an appa roach in which decisions behind thd e architecture are seen as

the new building blocks of the architecture. A first step is made by the 

Archium approach, which illustrated that designing an architecture with

design decisions is possible. In the future, we think tk hat rationale and ar-d

chitecture will be used tod gether in design decision like concepts, bridging

the gap between the rationale and the architecture.
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Part 4

Rationale for Organizing Bodies of Knowledge 

B. Paech

The earlier parts have focused on the capture of rationale within a particu-aa

lar project or specific to a certain product. The rationale should be used 

within the same organization in this and subsequent projects. This part fo-

cuses on the rationale capturing general knowledge which can be reused 

universally. We call the former project and product rationale (PPR for ((

short) and the latter rationale for organizing bodies of knowledge (OBR for 

short). Capture and use are very different for these two kinds of rationale:

1. For OBR the capture problem is less relevant. First, OBR is captured 

from several projects and second there is more time to consolidate the 

knowledge. Typically, there will be extra effort allocated to building up 

OBR, e.g., within a general knowledge management effort in an organi-

zation. Another possibility, as exemplified in the following chapters, is

that OBR is built in a research project or in a community effort.  

2. The users of OBR are not only developers. Often OBR will be used in

teaching or consulting. Teachers and consultants can be internal in an 

organization or external. This kind of rationale is often captured in text 

books and open repositories. So it is much easier for developers to ac-

cess this rationale. 

These two reasons explain the fact that OBR is much more widespread 

than PPR.

As mentioned in the editorial chapter, there are two kinds of OBR: case-

based OBR supports the capture of individual experiences, comparing 

them with the actual experience. Generalized OBR aims at the consolida-

tion of several individual cases. The chapters of this part focus on general-

ized OBR. 

The most well-known examples of generalized OBR in the software  

engineering community are patterns for architecture, design, or implemen-

tation [3]. Patterns typically consist of a problem description, a recom-

mended solution and the discussion of this solution. The problem descrip-

tion is often divided into a specific objective and a context which hinders

the achievement of this objective. So, in contrast to a schema for capturing

PPR such as QOC, patterns do not explicitly deal with several options for 

solving the problem. However, the discussion often alludes to alternatives. 

Furthermore, the criteria are mostly intertwined with the problem descrip-
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tion. Thus, patterns typically focus on how to solve a problem, not so much 

on why this solution works. 

an approach for capturing design knowledge focusing on the why. It intro-

duces the notion of a reusable rationale block which relates several options

and criteria important to solving a specific problem. The chapter demon-

strates how such a reusable rationale block can be used beneficially in the 

design of a complex architecture. In particular, it supports a systematic and 

transparent process without much overhead. The chapter also provides de-

tailed lessons learned e.g. on matching the actual problem to the OBR. 

Another typical form of generalized OBR is process models. Process 

models mostly describe one particular solution only, namely a set of steps

or practices to be followed during software engineering. The problems to 

be solved by the steps or practices are only implicitly mentioned. Simi-

larly, the criteria are mostly implicit in the description. Alternatives are 

very rarely presented. Furthermore, process models are often very mono-

lithic, requiring an all-or-nothing adaptation. This is true for heavy-weight 

processes such as the Rational Unified Process [4] as well as for light-

weight process such as Extreme Programming [1]. These facts often hinder 

the introduction of new processes, as managers cannot take the risk of a 

whole new process and developers are not willing to give up all of their 

accustomed practices. It is therefore very important to provide support for 

a more piecewise introduction of new processes.  

Chapter 18 “Defining Agile Patterns” by Teodora Bozheva and Maria 

Elisa Gallo proposes agile patterns as the basis for such a piecewise  

process change. Similar to the design patterns, agile patterns describe a 

particular practice to be applied to achieve a certain objective in a particu-

lar application scenario. Rationale is provided in terms of alternatives and

details for their application. The patterns are collected from several agile 

methods. Patterns depending on each other are grouped together as they

typically can only be introduced as a group. Thus, organizations can adapt 

groups of practices most suitable to their current situation.  

This approach is most suitable for organizations which already know the

strengths and weaknesses of their current process. It is, however, not trivial

to identify these. In the 1990s several approaches for process assessments 

have been introduced, some are top-down others bottom-up [6]. The for-

mer start with a set of best practices such as CMM or SPICE and assess 

how well the current process reflects these practices [2,5]. The latter, such 

as GQM, start from current problems or improvement goals, analyze them 

in detail (in particular by gathering data) and define individual improve-

ment steps to achieve the goal [7].  

Chapter 17 “Reusable Rationale Blocks: Improving Quality and Effi-

ciency of Design Choices” by Wiebe Hordijk and Roel Wieringa presents
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Chapter 19 “Capturing and Reusing Rationale Associated with Re-

quirements Engineering Process Improvement: A Case Study” by Bhavani

Palyagar and Debbie Richards shows how rationale can help to align such 

bottom-up process improvement to both, business goals and staff prob-t

lems. On the one hand the rationale provides general justification why a 

certain process parameter is important for a certain business goal, on the 

other hand the rationale captures reasons for process problems and for pri-

oritizing improvement actions. Thus, the former constitutes an OBR for 

generalized process improvement knowledge, while the latter helps to keep 

record of the improvement decisions. This is an interesting example of 

how (process improvement) project knowledge can be captured based on 

and intertwined with OBR, and how both help to improve the quality of 

process improvement. An industrial case study illustrates the details.

Engineering Process Rationales” by Lars Hagge, Frank Houdek, Kathrin 

Lappe, and Barbara Paech, emphasizes yet another aspect of process OBR. 

Again it uses patterns to describe a solution for a process problem. In con-

trast to e.g., Chap. 18, it does not focus on activities, but on how patterns 

help to solve a particular conflict during requirements engineering. Due tot

the emphasis on conflict situations in addition to the usual context descrip-

tion, the patterns reveal two or more forces characterizing the conflict. The 

patterns have been collected by an industry working group. The emphasis

on conflict situation reflects the industries’ need of generalized OBR be-

yond the usual process models and practice collections. Very often in a 

real project the participants are well aware of the standard recommenda-

tions but cannot act according to them because there are too many forces to

be taken care of. Of course, also one pattern cannot handle all aspects of 

such conflict situations. But the explicit forces help to analyze the conflict 

and to find a compatible group of patterns to alleviate the situation.

In summary, the four chapters show that despite many similarities there 

are many different ways of capturing and using OBR. It is encouraging to

see how useful all of them have been in the industry.

The final chapter, Chap. 20 “Using Patterns for Sharing Requirements
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Quality and Efficiency of Design Choices 

, R. Wieringa

Abstract: In the current practice of designing software for user organiza-

tions, as experienced by the authors, designers often produce design knowl-

edge again and again for every decision: they reinvent the wheel. We want 

to improve the quality, predictability, and efficiency of the software design 

process by reusing design knowledge. Our proposed solution consists of 

Reusable Rationale Blocks (RRBs). An RRB is a schema and a notation to

write down decision rationale. To manage RRBs, we introduce a general-

ized design space, that consists of a collection of RRBs. And to use RRBs, f

we define a process that can be added to any design process, as well as a set 

of heuristics to be used in applying this process. We illustrate our solution 

by a few examples taken from our own experience. 

Keywords: architecture; design; rationale management; reuse; software 

process improvement 

This chapter proposes an improvement of the process of designing soft-

ware for user organizations. It is based on our experience in designing en-

terprise information systems, but our solution is stated in general terms ap-

plicable to any software design process for user organizations. 

In current practice the use and production of design knowledge by practi-

tioners does not lead to a growth of design knowledge in the community of 

practitioners. Designers reinvent the wheel repeatedly [7] [see Chap 1, sec-

than needed. It also entails the risk of lower quality of results, and because 
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tion “Organizing and Delivering Reusable Knowledge”, in this book]. The

same knowledge is produced again and again, and is not reused for later, 

similar decisions. This means that design takes more effort from the designers

17.1.1  Problem

17.1 Introduction 

17 Reusable Rationale Blocks: Improving 

W. Hordijk*
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knowledge is not reused, it makes the properties of the final product hard 

to predict, loading a lot of risk on the project.

As stated, the goal of our approach is to improve the quality [7] [Chap. 1,

Sect. 1.4.3 in this book], predictability, and efficiency of the software de-

sign process by reusing design knowledge. We take a generalized ap-

proach to reuse [7] [Chap. 1, section “Organizing and Delivering Reusable 

produce and validate the design knowledge to be reused. 

Before we proceed, we need to clarify this goal in a number of ways. 

First, our goal is not to provide a general knowledge management tool for 

reuse of design knowledge. We focus on reuse of decision rationale. This 

is knowledge about which options there are for a design decision, and how 

each option affects the relevant requirements. It is useful to reuse other 

knowledge too, but this is not what we do here.

Second, the application of our solution is in the areas of Engineering of 

systems and Acquisition of system components and infrastructural compo-

nents [7] [Chap. 1, Sect. 1.6.6 in this book]. We do not rule out that the 

approach could be used in other process areas, but we have not looked at 

this.

Third, our experience is limited to Enterprise Information Systems 

(EISs), which are systems that serve administrative purposes in organiza-

tions and are used by people in those organizations. EISs typically store 

and use data, have some business logic, and one or more user interfaces. 

But the solutions that we come up with are stated in terms applicable to 

any software design problem. 

Fourth, we only consider custom-built applications, as opposed to off-

the-shelf software. These applications are of course built upon commer-

cially available components.

Fifth, we focus on higher-level design decisions, and not on the lower-

level decisions. The higher-level decisions cost more effort and represent 

more risks than lower-level decisions. Therefore, there is a higher demand 

for quality of higher-level decisions than there is for lower-level decisions. 

In our approach, we focus on the higher-level decisions. Also, these  

Knowledge”, in this book]. Decisions can be made more repeatable by re-

can be improved by recording their impact on software quality. To achieve 

our goal of reuse, we provide a structure and a process for such reuse, and we

using information used in them in later, similar decisions, and their quality 

17.1.2  Goal
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involve teams of people from different parts of an organization, and should 

be documented well for accountability and maintainability.

Our proposed solution consists of four parts: 

− Reusable Rationale Blocks (RRBs), a schema and a notation to write 

down decision rationale.

− A generalized design space, consisting of a collection of RRBs for EISs.

− A process description, where the use of RRBs is added to a standard de-

sign process. This description should enable you to add the use of RRBs 

to your own design process. The process also tells how to create RRBs. 

− A set of heuristics to be used in applying the RRB process. 

The RRBs are the core concepts of our approach. They are generalized

pieces of decision rationale. Each of them contain one question, a set of so-

lution options to the question, and an evaluation table where the options

are compared to each other with respect to a set of requirements, called cri-

teria. This is similar to the Questions–Options–Criteria (QOC) approach

[13]. As criteria we use quality indicators, taken from the extended ISO

9126 quality model [16] because they are measurable and of interest to the 

customer. See “QOC” section for a comparison between QOC and our ap-

proach.

The generalized design space is a set of RRBs on a web site 

(http://quids.ewi.utwente.nl/). It is called a generalized design space be-

cause a regular design space is about a concrete system, while a general-

ized design space is about a class of systems. We will just write “design

space” instead of “generalized design space”. In addition to the decision 

rationale in the RRBs, the design space adds a “super/subproblem” struc-

ture, giving designers a minimum checklist of decisions they should have

made before the design can be ready.

The process description is our idea of how RRBs should be used in

practice, both in systems design and in research, but focusing on design. 

We do not prescribe a particular design process, but rather show how a de-

sign process can be extended to use RRBs. Our solution thus is prescrip-

”

17.1.3  Solution Outline 

tive [7] [Chap. 1, section “Descriptive or Prescriptive”  in this book]. 
Our solution is highly intrusive [7] [Chap. 1, section “Intrusiveness

in this book] on one hand, because the design process is changed. On the
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assumptions, our approach is nonintrusive. In other words, documenting 

This section describes the differences between our solution and some al-

ternative approaches from rationale management and architecture research.  

Design Patterns 

An important approach to the reuse of design knowledge is the use of 

patterns, which are descriptions of problems and corresponding solutions 

according to some format [1,6,8,9]. Design Patterns describe solutions in 

detail, which makes them ideal for teaching, knowledge management, and 

for describing how a system is structured. One problem with patterns is

that they do not provide guidelines about how to choose among several

patterns that all in different ways satisfy a set of requirements. As men-

tioned in [7] [Chap. 20 in this book], one pattern describes rationale for 

one solution instead of several ones. In the terminology of Lee and Lai

[12], patterns contain design rationale (they tell us which problem a solu-

tion solves), but no decision rationale (they do not tell us how to choose

among patterns). RRBs, on the other hand, describe alternatives and ef-

fects, but do not explain the options in great detail. They are meant for 

making and justifying design decisions. Ideally, the options in an RRB are

described as patterns, or by references to known patterns, so that design  

rationale and explanation are in one place.

QOC 

The Question–Options–Criteria approach was introduced [13] to illustrate

and analyze the arguments that lead to design decisions about individual 

systems in a graphical way. Each option can score in only two ways on a

criterion: good or bad. Our approach generalizes this to generic design

problems and refines the scoring of options. Our design problems are 

QOC’s Questions, our options are their Options, and our quality indicators 

are a refinement of their Criteria. We use the term “design problem” 

because we think that the term “question” is too broad.

17.1.4  Related Work 

W. Hordiji k, R.Wieringa

other hand, we argue that a good designer naturally documents the argu-

mentation behind design decisions at the same time the decisions are made, 

and that doing this in our notation does not add extra effort. This is also

proposed in [7] [Chap. 1, Sect. 1.5.2 in this book]. In our opinion, deci-

sions should be first-class citizens of software architecture. Under those f

effort than just documenting the rationale. 

rationale in such a way that it can be reused later, should not take more
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We refined QOC by restricting ourselves to measurable quality indica-

tors, and by ranking options on each quality indicator on more than two

ranks. We felt we needed more ranks than two for codifying general design

knowledge.

Another difference is in the goals of the methods. QOC is a descriptive 

method, aimed at describing the rationale of decisions. Our approach is 

prescriptive, aimed at improving design processes, for which we use  

rationale as a means to an end.

Attribute Driven Design 

Attribute Driven Design (ADD) [5] is a field of research at the SEI. Their 

unit of research is the Design Primitive (also known as Architectural 

Mechanisms). An example of a design primitive is caching. Design  

primitives can be compared to our Solution Options, except that a Design 

Primitive is not linked to a Design Problem. Design primitives are prob-

lem-oriented: “The performance is too low, so we use caching to fix that.” 

RRBs are choice-oriented: “Should we use caching or not?” 

We start with a more thorough explanation of RRBs and the design space

in Sect. 17.2. Then we show how to use RRBs in Sect. 17.3 about the RRB 

Process. In Sect. 17.4, we illustrate the process in three cases from a sys-

tem design project in which one of the authors took part as an architect. In 

Sect. 17.5, we present the lessons learned from the cases, which make up 

the heuristics of our solution. 

Reusable Rationale Blocks and the Design Space 

This section first explains how design decisions and software quality are

related, and then explains how such knowledge is documented in RRBs. 

We start our explanation with an example of an RRB, after which we show

the general structure of RRBs. Then we proceed from individual RRBs to 

our design space.

Central to our approach is the assumption that decisions taken during the

design of a system partly define the quality that the system will have after 

Reusable Rationale Blocks

17.2.1  Design Decisions and Software Quality

17.2

17.1.5  Structure of This Chapter 
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implementation. The quality of a system falls apart in many quality attrib-

utes, which can be measured using quality indicators.  

Fig. 17.1.  Web site screen shot of  Reusable Rationale Bloc k “Data storage type.”  

http://www.prevayler.org/wiki.

jsp for more information 

Figure 17.1 shows (part of) the RRB of the design problem “data stor-

age type”. The leftmost column of the RRB shows the quality indicators 

that are affected by the solution options. The rows show how each solution 

option is ranked by each quality indicator. For example, the option “Rela-

tional database” scores best on the quality indicator “Failure ratio”. This

means that in a system where data are stored in a relational database, we 

expect the failure ratio will be lower than with other types of data storage.

Note that a single column when taken out of the table does not have mean-

See http://quids.ewi.utwente.nl/. Prevalent systems are a new and experimental 

kind of systems that keep all data in memory; see 

17.2.2  RRB Example 

W. Hordiji k, R.Wieringa
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ing: the RRB does not say that “Relational database” scores better on 

“Failure ratio” than it scores on “Initial cost”.

The orderings in a row are partial. When two options have equal ranks

for a quality indicator, such as Object databases and Prevalent systems for 

“Change effort”, we do not say that those options are indifferent with  

respect to that indicator, but rather that they are indistinguishable. The

statements we are making with respect to “Change effort” is that option 1
is worse than options 2 and 3, and option 4 is worse than all the other op-

tions.

Each row in the table is a hypothesis about the effects of options on the 

system’s quality. In our design space, we motivate these hypotheses by 

reference to the literature [6,9,11], as well as our own experience.

Fig. 17.2. Schematic representation of a Reusable Rationale Block in its environ-

ment. Some terminology is shortened because of space limitations

is described in conjunction with its available solution options and their  

effects. It occurs in the context of an earlier design problem, and provides 

the context for further design problems. In the RRB, we describe this in a 

general way, but in an actual piece of software we will encounter an actual 

Reusable Rationale Blocks

17.2.3  RRB General Structure

The general structure of a RRB is shown in Fig. 17.2. A design problem
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design problem in an actual context. The RRB, on the other hand, only de-

scribes a generic problem, existing in a context described generically, 

called a validity context. The designer must relate the actual context to the

validity context, and the actual problem to the generic design problem  

described in the design space. Then the designer can make his or her 

evaluation of the options based on knowledge of the actual problem in its

right-hand side, we show that every row in the table is a hypothesis that 

can be investigated by further empirical research. In future research, we 

will try to validate or refute some of the hypotheses in our design space

empirically. The structure of a design problem with its context can be re-

used in other situations, provided the design problem and context match 

the specific situation. 

Fig. 17.3. UML static structure diagram of the design space

As said earlier, an RRB contains knowledge about a particular problem in 

the design of systems, their solution options, and the relations between the

problems and solutions. Whenever a design problem is present, the corre-

sponding RRB documents its different options and their different t

effects on the system’s quality attributes. This can be modeled as a ternary 

17.2.4  Design Space

W. Hordiji k, R.Wieringa

actual context. This is shown at the left-hand side of Fig. 17.2. At the 
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relation called Effect between a design problem, solution option and t

To link multiple RRBs together into a design space, a solution option

can be the problem context for more detailed design problems. For exam-

ple, after choosing the option “relational database” for the design problem 

“where should the data be stored,” the design problem “what should the 

data model be?” is created, which also has a corresponding RRB in the 

design space. The design space therefore has the structure of a tree. 

The RRB process is an approach to software design which uses decision

rationale to improve design quality, predictability, and efficiency by reus-

ing design knowledge. In this approach, rationale is a necessary compo-

nent of the design, not a by-product for later use. Decisions are first-class

citizens of the design world, at least as important as classes, components 

and subsystems. Since design is a decision-making activity, documenting 

decision rationale should be as natural to a good designer as documenting 

source code is to a good programmer.

In this section, we propose how to use RRBs in practice and in research.

In Fig. 17.4 we show a process model consisting of the design cycle on the 

right-hand side, the research cycle on the left-hand side, and flows between 

them, making a double cycle.

problem, and identifies criteria by which the solution will be evaluated. 

ated. In the Solution synthesis phase, possible solution options are gener-

ated in some way. Sources for solution alternatives include the designer’s

experience, text books, and the Internet. The quality attributes of these 

alternatives are predicted next. This property prediction can be done for 

example by comparing solution alternatives to known existing systems, by 

modeling the solution, or by prototyping. Here the Effect relationships of 

predicted properties are evaluated against criteria (solution evaluation). 

This leads to either a choice for one of the alternatives, or a decision to

synthesize new solutions or analyze the problem more thoroughly. 

We extended this basic design cycle with a Problem matching activity,g

in which the designer uses RRBs. Problem matching influences some of g

Reusable Rationale Blocks

17.3 RRB Process 

qualityt indicator (Fig. 17.3). 

Problem analysis phase, the designer develops an understanding of the

The basic design cycle is shown on the far right of Fig. 17.4 [14]. In the

Here the Design problem and the Quality indicators of Fig. 17.3 are gener-

Fig. 17.3 are established. The properties can be presented in the form of a

rationale table such as in Fig. 17.1 or the tables in Sect. 17.4. Then the
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the other activities. In Problem matching, the designer tries to find an RRB

which matches the actual problem at hand. This means that the actual 

problem can be regarded as an instance of the RRBs problem, and the con-

text of the actual problem as an instance of the RRBs validity context. 

When a matching RRB is found, this makes the rest of the design cycle 

much easier. The RRBs options are input to the Solution synthesis activity,

and the effects that the options have on quality indicators are input to 

Property prediction. When Problem matching does not yield a matchingg

RRB, the regular design cycle activities are followed.

The designer must be aware that the RRB is more general than the 

actual problem, so in the actual problem, other options and effects may ap-

ply. That is why Problem matching does not replace the other activities.g

Fig. 17.4. Process diagram of the design cycle and research cycle linked together 

research hypotheses are stated in the form of RRBs. This research process 

can be used in an academic context to yield knowledge applicable to a

class of problems, as well as in an organization that needs the knowledge 

to solve a particular problem. 

linked together. Note that the RRB process has many similarities with 

the more generic Experience Factory approach [3]. Our approach is more 

W. Hordiji k, R.Wieringa

On the far left of Fig. 17.4 we find the research cycle, assuming that the 

Finally, Fig. 17.4 shows that the design cycle and research cycle are
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specific to design rationale. An RRB can be seen as a way to package 

experience, in the Experience Factory terminology. 

To make the RRBs at http://quids.ewi.utwente.nl/ practically usable, we

provided a Word template. Nothing more sophisticated is needed at this 

point in time. We use this template in the examples below. Note that in the 

Word template, we use pluses and minuses rather than vertical positioning

of crosses to indicate ranking. This is convenient in Word, but it has the 

danger that designers may believe that it is meaningful to add and subtract 

pluses and minuses. We applied the current version of the design space in 

an industry project at a large Dutch government body. We investigated the 

application of the theory by using action research, a research method in 

which the researcher is actively involved in the activities that are being in-

vestigated [2,4]. To improve understandability of the examples, we sim-

plify the system and the design decisions.

In these illustrations, all decisions are product choices. This is caused by 

the state of the project these examples have been taken from. We believe 

that other design decisions, like which pattern to use for a certain part of 

the software, can use the same process. To validate this is part of future re-

search.

These cases took place in a large Dutch government body. The system un-

der design (SuD) was an administrative system that supported one of the 

organization’s most important primary processes. A distributed architec-

ture had been chosen for the system, with a hub-and-spoke layout with one

central node and 150 remote nodes, and asynchronous messaging as com-

munication means between the nodes.  

The rationale for choosing asynchronous messaging was that some of 

the communication channels between the nodes had too high latency for 

the system to perform well enough with synchronous communication. The 

hub-and-spoke layout was given by the geographical distribution of the

end users. The organization had already chosen a programming language

and an application server. 

Reusable Rationale Blocks

17.4.1  Setting 

17.4 Illustrations 
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Up to this point, the architecture was given. These descriptions formed

the context of subsequent design problems, and those are the subjects of 

the case studies in this section. 

The team designing the system’s architecture consisted of one project 

leader who was also a domain expert, one software architect who was also 

a domain expert, and one software architect (Hordijk). The team met 

weekly with the “architecture board,” a group of representatives from the 

organization’s IT infrastructure department, technological policy makers,

and the application development team leader. The time frame of the design 

efforts was from November 2004 to April 2005, when implementation 

started.

Each case presented below is described according to the following format. d

− Introduction, describing the design problem that was solved in the case 

and the interest of the case to the chapter. 

− Narrative, describing the events that happened in relation to the case in 

chronological order. The narrative consists of paragraphs named accord-

ing to the steps in the design cycle, with an extra level for iterations in

the first case. Each step can appear more than once because of the itera-

tive nature of design. 

− Lessons learned from the case.

The most important decision for this system was which protocols and 

products to use for communication and message routing between the nodes 

of the system. For this decision, no matching RRB was found, so the regu-

lar design cycle was followed. We needed five iterations through the de-

sign cycle before arriving at a choice. We give no narrative here due to 

space limitations. The most important lessons learned are in Sect. 17.5. 

This case illustrates how to use an RRB in an actual design decision, and 

that designers must still use their own knowledge and common sense when 

applying an RRB.

17.4.4  Case 2: Remote Data Storage

17.4.3  Case 1: Message-Oriented Middleware

17.4.2  Case Description Format 

W. Hordiji k, R.Wieringa
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The next-most important design decision in our project was which kind 

of data storage to use for storing data on the remote nodes of the system. 

This decision limited the possible options for some other decisions, so it 

had to be answered first. 

Problem analysis. Problem analysis for this decision raised interesting

questions, which we answered in a meeting with domain experts. We 

needed to know what data were stored remotely and why. It turned out that 

two kinds of data were stored remotely. The first kind was data that was 

entered remotely, which was stored there for future reference but also sent 

to the central system. The second kind of data was entered in the central

node, sent out to the remote nodes and stored there, in a cache, for faster 

reference. So all data in a remote data store either came out of, or would 

soon be sent to, the central database. This made reliability and backup fa-

cilities less important for the remote data stores. 

Problem matching. After problem analysis, we found an RRB that 

ited and did not include any specific products, but only product types, we

decided to generate extra options and quality indicators to be complete.

Problem analysis for criteria and Solution synthesis. Options and quality 

indicators for this decision were generated in one brainstorm meeting with 

the architecture board. The brainstorm added new options and quality indi-m

cators to the RRB in Fig. 17.1. The options “Object Database” and “Preva-

lent system” were intentionally left out, because they did not score well 

enough on “Product fault density,” which is an indicator for Maturity. No 

matter how good these products may be, they were not yet widely in use, 

and our organization did not want to be a technological fore-runner. This 

ended the solution synthesis activity. The RRB was used further in prop-

erty prediction.

Property prediction. The property prediction of the options in the RRB in 

actual problem, three different RDBMS products were considered, with 

quite different quality indicator values. For example, we even regarded a 

particular RDBMS as less mature (indicated by scoring lower on product 

fault density) than file storage, while in the RRB, RDBMSs are considered 

more mature. Also, in the actual problem we added some quality indicators

that were relevant in the specific context. This illustrates that an RRB con-

tains generalized design knowledge, which should be tailored when used 

for actual problems. Still, RRBs are useful because they structure the deci-ff

sion and present an initial knowledge base to start from. 

Reusable Rationale Blocks

matched our problem, shown in Fig. 17.1. Because this RRB was a bit lim-

Fig. 17.1 and our actual problem differ on some quality indicators. In the 
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Comma-separated files XML files

failure ratio – +

initial cost – +

disk space usage + –

XML-

files

RDMS

“lite”

Open 

source

RDBMS

RDBMS

product A

change effort ++ – – +

failure ratio – + + ++

initial cost ++ +/– + ++ 

Performance – + + +

product fault density + + – ++

maintenance effort +/– + – + 

Installability + + ? –

resource efficiency ++ + + –

vendor lock–in ++ – + –

Solution evaluation and Choice. The criteria Product fault density, Failure

ratio and Initial cost were of high importance to the organization. Installa-mm

bility, Resource efficiency and Vendor lock-in were of minor importance.

Therefore, RDBMS product A was chosen. 

To make property prediction more efficient, we tried to reduce the num-
ber of options as quickly as possible. The option “comma-separated files” 
could be compared locally to the option “XML-files”, as shown in Table 
17.1. This shows that between the two, XML-files were better than 
comma-separated files, so we could discard comma-separated files. Like-
wise, the alternative RDBMS Product B was compared to Product A, and 
the only differences were that A had better Resource usage and B had bet-
ter Performance. Resource usage was more important at the remote nodes
and Product A would probably meet the minimum performance require-
ments, so Product B was discarded. Now we had four options left, and they 
were evaluated against all our criteria in Table 17.2. For this evaluation,
we used the information in the RRB in Fig. 17.5, supplemented with prod-
uct documentation and market knowledge.

W. Hordiji k, R.Wieringa

Table 17.1 Rationale for discarding the option Comma-separated files 
Disk space usage was added as a criterium in the brain storm sessionm

Table 17.2 Rationale table for remote data storage type

The last three criteria were added in the brain storm session 
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Lessons learned. This case illustrates how the knowledge contained in an 

RRB can be used in decision making. We learned the following lessons

from it. 

− It shows that matching the RRB to the actual problem is a difficult step, 

because many factors that influence which options are available, which 

quality indicators are important, and what effects the options have are

involved. One should therefore take these factors into account and tailor 

the RRB to the problem at hand.  

− The case also shows that designers should deal with the decision making 

process in an opportunistic way, cutting out options as early as possible

when they can show that an option is inferior to another in small itera-

tions of the design cycle. This opportunism saves time, but still pre-

serves the accountability and reusability of the rationale. 

− Another thing we learned from this case is that it was invaluable to have

access to people who know the local infrastructure and the products that 

run on it. This local knowledge may continue to be more valuable than 

the general knowledge stored in RRBs.

This case shows that application of the same RRB in different contexts 

can lead to different design decisions. Another important decision in our 

project was which kind of data storage to use at the central node of the sys-

tem. For this decision, the rationale table constructed in the second case

was reused. The quality indicators that were important for the central node

were different from those at the remote nodes, which led to a choice for the

same product but for different reasons.

Problem analysis. The quality indicators Maintenance effort, Installability,

and Resource efficiency were less important for the central data store than 

for the remote ones, because it was only one node instead of 150 and cen-

tral resources could easily be scaled up. Failure ratio and Product fault

density, however, were far more important, because the central database

double-served as a backup for the remote data stores. Also, some data was 

stored in the central database only. 

Problem matching, Solution synthesis, and Property prediction. From the 

an RDBMS was the only viable option. Because of Failure ratio and Prod-

uct fault density, we only wanted to consider the RDBMS products that 

were already in use in the organization. Now we still had the two RDBMS

Reusable Rationale Blocks

17.4.5  Case 3: Central Data Storage

original RRB in Fig. 17.1, we saw that according to our quality indicators,
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products A and B that the organization already used as options. These were 

RDBMS 

product A 

RDBMS

product B

change effort + –

failure ratio ++ ++

initial cost ++ +

performance + +

product fault density ++ ++

vendor lock-in – –

Solution evaluation and Choice. This evaluation was presented to the 

architecture board, and RDBMS product A was chosen unanimously be-

cause everyone could easily see that the difference in initial cost and 

change effort made product A the better choice. 

Lessons learned. This case shows that the same RRB applied to different 

design problems can yield the same result for different reasons. It did be-
cause the context of the actual problem was different. This case also shows 

that it is useful to reuse design knowledge, as the same knowledge in the

RRB was used in two cases, and the rationale table from the previous case

was reused in this one. 

Discussion and Conclusions 

Iterations through the design cycle do not always consist of sequences of 

steps through the entire cycle followed by a jump back to the start. Some 

iterations do, but others consist of backtracking to an earlier stage to get 

more information, and still others consist in jumping forward to later tasks

before proceeding with the current one. In general, though, earlier itera-

tions focus on earlier design tasks and later iterations focus on later tasks.

This agrees with an observation made by Witte in a massive empirical sur-

vey of decision processes [15].

17.5.1  Lessons Learned 

17.5

W. Hordiji k, R.Wieringa

Table 17.3 Rationale table for central data storage product

evaluated against each other in Table 17.3. Table 17.3 was derived from 
by removing the options that we could see were not viable and adding 

RDBMS product B back in. RDBMS A and B are evaluated against each
other.
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An existing RRB was used in case 2 and it was extended with quite 

some extra options and criteria. The results were fed back into the 

RRB and reused in case 3. With a less complex problem and most of the

knowledge already there, this decision was comparably easy.

We have found many cases in which one problem affects another  

problem. In those cases, we keep the problems apart, and first decide on 

the affecting problem, and later on the affected problem. This “divide and 

conquer” tactic keeps the evaluation tables small and the decisions easy. 

We have seen that RRBs give most of their input early in decision proc-

esses. They give the decision process a “quick start” by providing crude 

versions of the options and their effects for typical design problems. The

current body of RRBs is not so useful later on in the decision process, 

when more detailed problem-specific knowledge is needed that is not yet 

codified in the RRBs. As indicated earlier, this is intentional, because the

high-risk decisions are all made early in the design process. 

It is more efficient to evaluate all the options to one decision at once 

than it is to add options after property prediction. In case 1, when we 

added a new option after the other options had been evaluated, we needed 

to re-evaluate all the options because in evaluation, all options are com-

pared to each other.

Reusable Rationale Blocks

Using the RRB process itself seems like nothing more than good design 

did in our examples may incur high extra costs. In our cases, the use of the 

RRB process didn’t incur extra costs, because explicit rationale was 

needed for the decision process anyway. In projects where there is no natu-

ral inclination to record rationale, our approach may be too intrusive tor

work.

Making use of the knowledge inside the RRBs certainly saves effort. In-

vesting time to make this knowledge reusable for other projects in the

same company is subject to the same sort of economical considerations as

reusing software. For generating, harvesting and validating design knowl-

edge beyond the scope of organizations, we see a role for the academia, 

and our future research will take part in it.

17.5.2  Advantages and Disadvantages

practice. However, recording all the decision rationale so explicitly as we 
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T. Bozheva, M.E. Gallo

Abstract: The variety of agile methods and their similarity could be a prob-

lem for software engineers to select a single or a number of methods and to

properly utilize them in a project. An approach to resolving it is to provide 

concise and adjustable solutions of problems, recurring under certain cir-

cumstances, with justification of why and how to apply them. 

In this chapter we present an approach to acquiring and defining knowledge 

about agile software development in terms of patterns. We emphasize the 

rationale in the pattern structure. We discuss how the usage of the agile pat-

terns contributes to organizing and delivering organizational knowledge and 

to improving the software processes in an organization. Early results from 

industrial trials are presented to demonstrate additional benefits, which an

organizations gains from adopting the agile patterns.  In the concluding part 

we define the directions for further research on the topic. 

Keywords: agile methods; pattern; rationale representation; knowledge or-

ganization and delivery; software process improvement 

Software systems evolve from a large number of decisions taken over an 

extended period of time. Nowadays, there are plenty of methods, maturity 

models, and body-of-knowledge books explaining or providing guidelines

on how to organize and perform software engineering and management  

activities. However, due to the continuous rush for improving business re-

sults, companies are usually interested in adopting methods which provide 

flexibility with respect to practice implementation and improvement.  

Agile methods recognize that any project, team and organization have

their unique peculiarities. Therefore, instead of trying to unify the ap-

proaches to developing software, these methods respond to the specific

needs via business value-based prioritization, short feedback cycles, and 

quality-focused development. When appropriately applied, the agile prac-

tices bring a number of business benefits such as better project adaptability 

and reaction to changes, reduced production costs, improved product 

quality, and increased user satisfaction with the final solution. A good 

overview of the agile methods is provided in [10].

Different factors, however, determine the need and the success of im-

plementing agile practices in an organization: team size, product criticality,aa

project dynamism, personnel, and skills. In [3] Boehm and Turner define 

18.1 Introduction 

18 Defining Agile Patterns 
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them as agile method home grounds. Although there are plenty of publica-

tions on the agile methods, the question how to combine single practices

from different methods to define an organization’s specific process and 

when such combinations are reasonable, still remains unclear. This might 

be the reason, for which lots of people find the agile methods rather un-

convincing.

A pattern describes a solution to a recurring problem in such a way that 

the solution can be used multiple times without being done the same way

twice. In general, a pattern has three essential elements: (1) problem – 

situations, in which the pattern is appropriate to be applied; (2) solution – 

activities which the pattern consists of; (3) consequences – results and 

trade-offs of applying the pattern. The solution is abstract enough to make

it possible to apply it in different situations.

The usage of patterns for organizing reusable knowledge is not new in 

the software engineering field. Two widely known applications of it are 

described in [4] and [8]. Patterns provide a means for the organizations to

build processes, which fully correspond to their project and organizational 

contexts; like building a house of Lego parts. From process improvement 

point of view, since each pattern addresses a specific problem, it can be 

easily tried out and adapted appropriately before being put in place in a 

project or in the whole organization. 

Emphasizing rationale in a pattern that defines a software engineering

activity facilitates the understanding of when and how to implement the f

pattern, and contributes to consistent rationale documentation and usage in

an organization.  

An agile pattern is a pattern, which is based on agile methods. This

means that the solution to a problem uses practice(s) from one or several

agile methods for software development. In addition an agile pattern in-

cludes rationale for applying the solution in a specific context. That is an 

agile pattern extends the classic pattern definition with providing guide-

lines on how to implement the pattern activities in different situations. 

The agile patterns discussed herein are derived from the following agile 

methodologies eXtreme Programming (XP) [1,2], Scrum [14], Feature 

Driven Development (FDD) [12], Lean Development (LD) [13], Adaptive 

Software Development (ASD) [9], and Agile Modeling [1]. The work on

the patterns definition has been initiated within the Framework of Agile

Patterns project (S-OD03ES07), partially funded by the Basque Govern-

ment. The main goal for the project was to contribute to the adoption of the

agile methods by software intensive organizations by defining a frame-

work of agile patterns, which can be easily deployed and adapted to the

specific needs of an organization.   
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The results, which we present in this chapter, address two main issues:  

− Defining agile patterns: derive and recover best practices from agile 

methods and emphasizing the rationale in the pattern structure;

− Using agile patterns for spreading knowledge through an organization 

and for software process improvement.

We present our motivation for defining the framework of agile patterns 

in Sect. 18.2. In Sect. 18.3 we discuss how we derive knowledge from the

lightweight methods and how we structure it in the pattern template. Thentt

we discuss the potential benefits from using the agile patterns from ration-

ale management point of view (Sect. 18.4). In the final section we present

open issues for further research.

Motivation for Defining Agile Patterns  

There are a number of agile methods, which propose different approaches

to software development and management. Although the individual prac-

tices can vary, all the methods propose maintaining good understanding of 

the project objectives, scope, and constraints among the team members,

developing software in short, feature-driven, customer-relevant iterations,

receiving constant feedback from the customer and the developers, and fo-

cusing on the delivery of business value.   

Some agile approaches focus more heavily on project management and 

collaboration practices, e.g., LD, ASD, and Scrum. Others such as XP,

FDD, and AM focus on software implementation practices (see Fig. 18.1). 

Two main principles guided us when defining the Agile Patterns: 

− From software engineering point of view. Provide benefits to the peo-

ple involved in software development by defining a set of appropriate 

activities and alternatives of them in an agile manner, i.e., easy to  

understand and apply and flexible with respect to combining several 

patterns.

− From knowledge management perspective. Support the use of agile

methods by providing rationale for implementing a pattern in terms of 

guidelines for selecting and executing appropriate activities, which 

address a specific problem. In this way, the rationale will be immedi-

ately available to the roles who execute the pattern at the time they 

need it. 

18.2
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Fig. 18.1. Number of agile practices related to a software development process 

We have focused on defining patterns related to: 

− Software engineering practices 

− Project management practices, and 

− Practices related to customer involvement and collaboration  

Software engineering and project management practices are the basic

ones to be put in place to ensure effective, adaptive, and easy to implementff

software development process. Customer involvement and collaboration is 

one of the key factors for success of a software development project. 

Therefore, we have decided to start working on these three pattern catego-

ries first.

Each agile pattern addresses a very concrete issue, e.g., Increase the 

feedback from the development team to the management (Development-

FeedbackIncreaser). It describes activities to be performed to accomplish 

the issue, roles involved in executing the activities, and resulting products. 

Wherever possible, alternative activities are considered. The pattern also 

includes a piece of process rationale related to selecting an alternative so-

lution to the addressed problem. The pattern structure is explained in the

next section. The idea is to select patterns taking into account the charac-

teristics of the work to be done and the context, in which it is going to be

carried out, and to use them to organize and develop a project. 

Several reasons made us decide to integrate rationale in the pattern 

structure:

− The patterns describe activities that are typically performed by 

software engineers and project managers who are accustomed to 

using well-structured information like pattern definitions.

− Using an already known and easy to read structure for rationale

representation motivates rationale capturing and usage. 

− As long as the rationale related to a specific problem is represented 

together with the approach to resolving the problem and the con-
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text, in which the solution works, it is easier for the implementers 

to decide upon the activities they have to perform to address the 

problem. 

− If several patterns are put together to form a process, the combina-

tion of the rationale related to each pattern will provide to a great 

extent the rationale for the whole process. 

− The pattern descriptions are general enough to be used in different 

projects. Rationale captured in real-life projects carried out in an 

organization can be added into the pattern definitions. That is the 

patterns support sharing organizational knowledge across multiple

projects.

In addition patterns could be used for representing rationale related to

other types of activities, different from software engineering, e.g., contract 

management activities. In general, keeping organizational information 

consistent and in a common format supports its usage and maintenance. 

Agile Pattern Definition Approach 

A pattern describes a problem, which typically occurs under certain cir-

cumstances. It describes a basic approach to solve a problem providing 

opportunities to adapt the solution to the particular problem context. The

three essential elements of a pattern are problem, solution and conse-

quences.

Three key terms take part in the agile methods descriptions: practices,

concepts, and principles. Practices describe specific actions that are per-

formed in the whole process of software development, e.g. create product 

backlog (SCRUM). Concepts describe the attributes of an item, e.g., a  

project plan. Principles are fundamental guidelines concerning software

development activities, e.g., empower the team (LD).  

Each practice can be described by pattern with the following attributes:

− Intent. A short description of what the objective is;  

− Origin. Methodologies, from which the pattern originates;  

− Category to which the pattern belongs. With respect to the type of 

issues addressed, the patterns are grouped in the following catego-

ries: Project and Requirements Management, Design, Implementa-

18.3.1  Pattern Types 

18.3
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tion and Testing, Resource Management, Contract Management,MM
and Software Process Improvement.

− Application scenario. Context, in which the pattern is appropriately 

applied

− Roles. People involved in carrying out the pattern and their respon-

sibilities

− Main and alternative Activities that constitute the pattern. Activities

can invoke other patterns 

− Tools that support the pattern execution 

− Guidelines for performing the activities including suggestions for 

making a decision about which alternative solution to choose and 

when

This structure is closest to the one used in [8]. Section 18.3.3 discusses

in details the definition of practice patterns. 

In the attempt to formalize the definitions of the concepts and the prin-

ciples, we found out that the only difference from the practice definition 

by means of patterns is that the concepts and the principles do not include

the Activities attribute. Therefore, we decided to handle concepts and 

principles as practice patterns, i.e., with nearly the same structure, but with 

different content. 

ProjectPlan and CollectiveCodeOwnership are examples of a concept 

and a principle pattern, respectively. We include them here to illustrate the 

commonalities and the differences between the structures of the definitions 

of the three terms. 

Concept Pattern: ProjectPlan

Origin: ASD: Project Data Sheet 

XP: Release plan 

FDD: Development plan 

Application
scenario: Project planning

Project Leader: makes the planning 

Definition:  The Project Plan is one-page summary of the key in-

formation about the project. The Project Plan includes

important elements about the project. 

Intent: Serves as a focal point and quick reminder of the most 

release planning)

Roles :  Customer: makes business decision (scope, priorities,

Developers: make technical decisions (effort estima-

the following details: 

tions, risks) 
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− Overall Architecture  

− Major project milestones

− Core team members

The project objectives statement should be specific and 

short (25 words or less), and it should include important 

scope, schedule, and resource information. 

Guidelines: In FDD the development plan consists of: 

− Feature sets with completion dates  

− Major feature sets with completion dates derived 

from the last completion date of their respective 

feature sets  

− Chief Programmers assigned to feature sets   

− The list of classes and the developers that own them  

Principle pattern: CollectiveCodeOwnership

Intent: The code is collectively owned by the developers. Anyone 

standard to enforce a common style.

Origin: XP: Collective Code Ownership 

Guidelines: Collective code ownership is more reliable than 

putting a single person in charge of watching specific pieces of 

code, especially because, if a person leaves a project at some time, 

the other project team members will know the code he has imple-

mented and will be ready to continue his work. 

Let us consider the practice pattern definition structure as the most com-

plete one. 

Compared to the classic pattern definition (problem—solution–

consequences), Intent and Application scenario correspond to the problem

attribute. Activities match to solution. Some patterns provide alternative

solutions to the same problem. This typically happens when the problem is 

addressed by more than one agile method and different solutions to it are 

proposed. Guidelines include hints for performing the activities and the 

consequences from them. The Guideline in the CollectiveCodeOwnership

principle is an example of a consequence from applying a pattern. 

A complete definition of an effective process for resolving a particular 

issue includes activities that address the problem, people with relevant 

skills and knowledge, and tools supporting the process implementation. rr

18.3.2  Agile Patterns from Design Rationale Perspective

can do changes to the code. The programmers use a coding standard 

− Project objectives statement  



380      T. Bozheva, M.E. Gallo

Therefore, to provide complete information about resolving a problem, we

have added the Roles and Tools attributes.  

To show how the rationale related to making a solution to a problem is

included in the pattern itself, let us compare the agile pattern scheme with

the Question–Option–Criteria (QOC) [6] [Chap. 1, Sect. 1.3 in this book]

one for argumentative design rationale. Intent and Application scenario 

correspond to the QOC Question element. Activities match to the Options

element. The Guidelines attribute of the agile pattern includes Criteria and 

Arguments for choosing an option. Wherever relevant, Guidelines also 

provide explanations about the relationship between Options and Criteria

that is it includes the QOC Assessment element. 

For instance, the CodeImplementer pattern, discussed in more detailsr

bellow, has intent “Implement code,” which corresponds to the question 

“How do I implement code?” Two possible activities are defined for ad-

dressing the intent, namely apply the FDDCoder pattern or ther XPCoder

one. FDDCoder describes how to implement code following Featurer

Driven Development, while XPCoder explains how to do coding applyingr

eXtreme Programming. These alternative activities match to the Options 

element of the QOC scheme.  

Applying XPCoder requires a tool supporting test-driven-development r

to be used by the developers. That is the QOC assessment element “To use 

XPCoder you need a tool supporting test-driven development” is part of r

the Guidelines attribute of CodeImplementer.

Following the classification of design rationale approaches, made in [6]

[Chap. 1, Sect. 1.2 in this book], the method we present herein can be 

characterized as prescriptive and less-intrusive. Although a predefined 

scheme for rationale representation is used, we categorize it as less-

intrusive, because the scheme can be easily adapted to an organization’s

specific needs. Besides it is not required that all the pattern elements be de-d

fined at once. This scheme can be used for defining rationale from earlier 

to most elaborated stages.

The patters, at the time of writing this book chapter, address software en-

gineering activities from the Engineering, Management, and Reuse process 

areas from the SPICE process standard [15]. The patterns have been  

derived from the agile methods mentioned earlier. 

Apart from the natural language description of the patterns, every cate-

gory is graphically illustrated showing which patterns, concepts and prin-

ciples it includes, and the relationships between them. 

18.3.3  Defining Agile Patterns: An Example 
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On the graphics the following symbols are used:

symbol meaning 

principle

pattern

concept

“invokes”

pattern A supports B, but it is optional 

to use A when implementing B

Fig. 18.2. Symbols used in the pattern diagrams 

As an example, Fig. 18.2 shows the diagram for the Implementation and 

Testing category.   

We have studied the agile methods to determine to which phases of the 

software development process they are applicable. Since some methods 

consider the same issues (see Fig. 18.1), but provide different approaches

to resolving them, the main difficulty was to identify the similarities andtt

differences between the solutions and to decide when to use the activities

proposed by each one of the methods. The granularity of the patterns was

another debatable issue. We used our experience with the agile method-

ologies in defining the patterns content. However, we have realized that 

the decision-making criteria have to be explicitly specified and this is one 

direction of our future activities.

To define a pattern we grouped activities from different agile methods

that had similar objectives and then we defined the pattern structure. Af-

terwards, we established the relationships among all the activities proposed 

in the different agile methods together with the reasons for selecting one 

over another activity, wherever alternatives were available. Then we iden-

tified which atomic practices formed a pattern, what alternatives were pos-

sible and for each alternative what made it feasible. We added the intent, 

the roles, the tools and the guidelines to the pattern structure as well. 

A B
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Fig. 18.3. Implementation and Testing category

The result was a group of patterns strongly related to each other. In this

group there are patterns that invoke other patterns. This happens when a

pattern contains a group of activities that can be used in other patterns as 

well. Therefore, one pattern can be shared across several other patterns. In 

the following example, we can see such relationships between patterns in 

the Implementation and Testing category.

Let us have a look at the FDDCoder and ther XPCoder patterns. r

Pattern: FDD Coder 

Intent: Implement defect-free code 

Origin: FDD: Build by feature 

Category: Implementation & Testing

Application scenario: A developer implements a piece of code.

Roles: Developers: write Unit Tests, implement and integrate the

code;  

Customers write acceptance tests.

Activities  

1. Implement code for a feature.

AcceptanceTester
XPCoder

UnitTester

CodeIntegrator

CodeRefactorer

FDDCoder

SoftwareInspector

CodeImplementer

Synchronizer

Spanning MatrixImplementer

CollectiveCode
Ownership
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2. Apply Unit Tester.

3. Apply Code Integrator.

4. Run test cases and improve the code until all test cases 

pass. The cycle finishes when everything that could possibly 

break is tested. At the end of a feature implementation apply 

Software Inspector.

Tools: Reference to Testing supporting tools is provided in the 

original document. 

Guidelines: No specific guidelines to the implementation of this 

pattern are defined yet.

Pattern: XP Coder 

Intent: Implement defect-free software 

Origin: XP: Coding

Category: Implementation & Testing

Application scenario: A developer implements a piece of a software 

product (a feature)

Roles: Developers: write Unit Tests, implement and integrate code;mm

Customers write acceptance tests. 

Activities

1. Apply Unit Tester and implement code consecutively until r

a feature is implemented 

2. Apply Code Integrator.

3. Apply Unit Tester.

4. At the end of the day (or at the end of an iteration) apply

Acceptance Tester.

5. Apply CodeRefactorer.
Tools: Reference to tools supporting test-driven development is

provided in the original document.

Guidelines:

1. Apply Pair Programming (Two developers, one keyboard) for 

higher quality, faster development, less defects and more fun 

during the implementation process

2. Apply CollectiveCodeOwnership to the code, i.e., all the team

members may modify the whole code of the product. 

3. Use a coding standard to ensure a common style of implemen-

tation and that everyone can read and understand any code in 

the system 

4. Good names substitute comments 

5. Express intention, not implementation 

6. Use a coding standard to facilitate the modification of the code 

by any team member (XP: collective code ownership).
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The underlined activities are patterns that are invoked by the FDDCoder

and the XPCoder patterns. This means that to perform r XPCoder, for in-

stance, we need to perform the patterns UnitTester, CodeIntegrator, Ac-

ceptanceTester, and CodeRefactorer.d

FDDCoder andr XPCoder have two patterns in common:r UnitTester and r

CodeIntegrator. However, in FDDCoder UnitTester and r CodeIntegrator

are performed after the implementation of the code, while in XPCoder

UnitTester is the first practice to perform. In XP the developers first have r

to create a unit test framework to be able to define automated unit tests

suites. All the tests must be created before the actual code that implements 

the test. The main reason for this is to keep writing code, which surely

meets the software requirements and is always test-proven.  

Figure 18.3 shows the relationships among the patterns that take part in 

the definitions of FDDCoder, the ones that take part in the XPCoder and r

the links between all the patterns and principles involved in the Implemen-

tation and Testing category. There are no concepts in this category.  

The main pattern, CodeImplementer, defines the alternatives to develop 

the code: FDDCoder and r XPCoder. 

If FDDCoder is selected, then it invokes other patterns that include the r

activities needed to develop the code in the way FDD proposes. These pat-

terns are SoftwareInspector, UnitTester, and CodeIntegrator.  The com-

plete group of activities included in these patterns tells us how to perform

the Code following the FDD method.  

If X Coder is selected, the patterns invoked arer UnitTester, CodeInte-

grator, AcceptanceTester, and CodeRefactorer. 

CodeImplementer also invokes the r CollectiveCodeOwnership principle.

This means that for the development of the code, one important considera-

tion to take into account is the ownership of the code. 

There are other “invoke” relationships between patterns in this category: 

Uni Tester and AcceptanceTesterd invoker CodeRefactorer. This denotes 

that when implementing these patterns it is necessary to perform the activi-

ties included in CodeRefactorer.

Another pattern, Synchronizer, takes part in this category. It invokes

Spanning, Matrix Implementer, and CodeIntegrator as different alterna-

tives to perform the synchronization between codes, generated by several 

people. This means that CodeIntegrator is a pattern shared by several  r

patterns in this category. The dotted arrow from Synchronizer to CodeIm-

plementer shows that they are related, more precisely, CodeImplementer 

supports the implementation of Synchronizer,f but Synchronizer does not 

explicitly invoke CodeImplementer. 

A drawback of the diagrams, which we currently use, is that they do not 

explicitly show if some activities are alternative to each other or have to be 
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executed collectively. In particular, in the Implementation and Testing

category FDDCoder and r XPCoder are alternative approaches (options) for r

implementing CodeImplementer. The same is true for Spanning and g Ma-

trixImplementer invoked by ther Synchronizer pattern. However, this isr

clearly stated in the textual patterns definitions. For instance the CodeIm-

plementer definition looks like this:r

Pattern: CodeImplementer 

Intent: Implement code 

Origin: FDD: Build by feature 

XP: Coding

Category: Implementation & Testing

Application scenario: Developer implements a piece of code

Roles: Developers

Activities

Alternatives are: 

o FDDCoder

o XPCoder
Tools: see Guidelines. 

Guidelines:

o Applying XPCoder requires using a tool supporting test-drivenr

development

o Automated tests can save hundred times the cost to create the 

tests themselves by finding and guarding against bugs. The 

practice of using automated tests shows that the harder it is to

write a test, the more it is needed and the greater the savings 

will be.

o Consider applying the CollectiveCodeOwnership principle.  

o Any place where several individuals are working on the same

thing, a need for synchronization occurs. Refer to Synchro-

nizer for putting together and maintaining code implemented r

by different developers.

Using the Agile Patterns

Nowadays lots of organizations face the need to adapt quickly to modifica-

tions requested by their customers, changes on the market or challenges 

from competitors. This happens in small as well as in large organizations, 

18.4
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in disciplined certified (ISO 9001:2000, CMMI®19) companies as well as 

in ones that follow their internal development processes. Organizations 

that address these problems need to acquire, apply and extend the knowl-

edge related to some or to all the aspects of software engineering and man-

agement.  

The knowledge represented by means of the agile patterns addresses thef

key software development and process improvement activities. The pat-

terns are easy to understand, neither require tool support for modifications,

nor a special methodology to maintain them. They can be adjusted to the 

needs of each organization. 

From design rationale point of view the main usage of the patterns is to

facilitate the knowledge transfer, in particular the organization and deliv-

ery of reusable knowledge within an organization, as well as to support 

learning from the past and on-the-job training. 

From software engineering perspective the activities that get most bene-

fits from capturing rationale in terms of agile patterns are the engineering 

(from requirements elicitation to system testing) and the process improve-

ment ones. Since the convenience of using patterns to define software 

engineering activities is obvious, later we are going to discuss only how

the patterns support software process improvement. 

These two viewpoints are completely aligned with the design rationale 

uses described in [6] [Chap. 1, Sect. 1.4 in this book] and are briefly dis-

cussed later. 

At the time being a web repository of the agile patterns is being devel-

oped. It will provide possibilities for finding patterns and seeing their rela-

tionships with other patterns in the framework.

The agile patterns, at their current stage, are primarily focused on organiz-

ing knowledge about performing specific software engineering activities.

The patterns are described in natural language and use a simple format. 

Therefore, it is very easy to maintain them and to add newly acquired

knowledge.

The benefits for a company using the present state of the framework of 

agile patterns are that

19  Capability Maturity Model Integrated, developed by Software Engineering In-

stitute, Carnegie Mellon University, http://www.sei.cmu.edu.

18.4.1  Supporting Knowledge Transfer 
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− The framework structure can be easily adapted to reflect the 

way the software engineering activities are performed in the 

organization;

− The patterns can be enhanced with knowledge acquired by the

software engineers in the company. 

This increases the value of the framework for the organization since the

knowledge presented in the patterns reflects the experience and the culture

of the same organization. Moreover, the pieces of rationale, which the  

patterns include, typically address concerns how to approach a specific

problem and what alternative solution to select when. That is, knowledge

acquired by software engineers in the past is captured and available for 

delivery through the organization.  

Improving the pattern scheme as to more explicitly define rationale re-

lated to a pattern problem, would additionally boost the know-how transfer 

within an organization.

Since the patterns focus on particular activities, it is easy to explain, 

understand and apply single ones of them. This significantly supports the

on-the-job training of people. Besides, the application of the agile patterns

implies lots of team work and collaboration that additionally facilitates the 

spreading of the available knowledge. 

People having experience with adoption of new approaches to software

development know that the Big Bang style of implementation of new proc-

esses hides a number of potential drawbacks. Some of them are related to

the risk that the new processes as a whole are only partially understood by

the people who have to apply them due to the inherent complexity of the

process architecture. At the same time difficulties are often faced when

trying to split a process to smaller elements (steps) in order to focus on

improving the performance of a particular element only. The agile patterns

support the process improvement activities exactly by providing a means

to pilot single process elements (patterns) before integrating them into an 

entire process. 

Since the agile methods are all oriented towards rapid achievement of 

business goals, the successful implementation of the agile practices re-

quires considering additional factors like personnel experience, organiza-

tional culture, and size and criticality of the projects, in which the practices

are applied. That is, apart from the pure engineering activities to be 

performed, additional issues determine the successful application of the 

pattern in a specific context. The agile patterns include a wide spectrum of 

18.4.2  Supporting Process Improvement
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rationale issues related to the integration of a specific pattern in a process

built of other patterns. For instance, the CollectiveCodeOwnership pattern 

implies that all the team members have access to and are allowed to mod-

ify the code of the product implemented by the team (organizational cul-

ture issue).

The definition of the agile patterns has been done on two steps: (1) define 

their structure and content based on study of the literature about the agilett

methodologies and (2) enrich them with practical experience gathered in

trials of the agile methods and/or the agile patterns themselves. The second 

step can be considered as both piloting and continuous refinement of the 

patterns. It is not mandatory that the second step begins only when the first 

one is finished, because presenting an agile practice, known from the lit-

erature, by means of a pattern does not make much sense for the software

engineers. However, when the description of the practice is complemented 

with rationale related to its implementation, it brings much more value. 

We started piloting the patterns in parallel to defining them. Valuable

input came from seven projects, which were focused on experimenting XP

and Personal Software Process (PSP) practices in e-commerce and e-

business application development. The trials were carried out within the 

eXpert project (IST-2001-34488) [7], partially funded by the European

Commission. They were performed by teams in different organizations, lo-

cated in Spain, Germany, and Bulgaria. The main objectives for the trials 

were to study how the agile practices contribute to increasing the produc-

tivity and the efficiency of the software engineers, and to improving the 

quality of the products they develop20.

From design rationale perspective, our main goal was to find out 

underlying principles that would help organizations to implement the agile 

patterns. The observations and the findings of the trials were used to refine 

the agile pattern definitions.

With respect to the patterns adoption the pilot projects in two of the 

companies showed that introduction of agile practices has to be made 

gradually. First, organizations have to select the process, whose agility

they aim to increase. Then the patterns that could be used to improve 

20 For the sake of completeness, the results from the experiments are as follows:

Productivity increased up to 73%. One company decreased its productivity; 

Schedule deviation reduced between 7% and 38%; Cost deviation decreased up 

to 31%. Only one company increased its cost deviation; Defect rates reduced 

between 10% and 83%.

18.4.3  Industrial Usage 
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activities from these processes have to be identified and piloted in order to

be adjusted to the practices, which are currently in place in the organiza-

tion. That is, the focus should be on a small set of activities and the pat-

terns that affect them. 

Three teams studied the communication between the development team

and the customer (FeedbackIncreaser(( ). In none of the teams the customer 

was on-site as recommended by XP. However, agreements were made that

the customer would clarify developers’ doubts and questions by means of 

regularly reviewing the current product status and providing feedback 

by email, phone or direct conversations. One of the teams tried the  

“developer-on-site” alternative, which consists of periodically sending a 

developer to the customer’s office to demonstrate the product and collect 

feedback. All the developers recon that the improved communication with

the customer had a positive feedback on the decisions made in the project 

with respect to what features to be implemented, how and when. 

The rationale, acquired during the experiments, with respect to how to 

resolve specific problems, is documented in the patterns themselves. How-

ever, we realized that the approach of representing software engineering

knowledge in terms of patterns will benefit significantly from improving 

the pattern structure as to better represent the design rationale related to the

resolution of a particular problem. Yet, an important condition is that the

patterns remain easy to maintain, use and adapt to organizational needs. 

Formalizing knowledge is a costly process. Aiming at achieving a perfect

formalization is perhaps not worth, because software development, as any 

other intensive human activity, is evolving. Therefore the focus should be

on providing an easy to customize and simple to apply solutions like the

framework of patterns. Then define criteria for making decisions on how 

to adapt a pattern to a particular context, why to choose a practice over an-

other one, an option over another possibility, and so on. Enriching the 

framework with worst apart from best practices is also considered useful. 

However, it is most probable to be performed only for the internal needs of 

the organization.

The main directions of future work on the subject include improving the

structure of the patterns to better organize different types of rationale 

associated with the problem, which a pattern addresses; investigating  

approaches for adopting the framework of agile patterns; studying the 

18.5 Conclusions  
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benefits an organization gains due to capturing rationale in terms of pat-

terns and exploiting it. 
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with Requirements Engineering Process 

Improvement: A Case Study 

B. Palyagar, D. Richards

Abstract: Requirements Engineering is a process for determining stake-

holder needs during the development of a software system. Requirementsf

Engineering process quality influences the quality of the software produced 

due to its critical role in the Software Development Life Cycle. To ensure

that software quality is continually being improved, it is thus important to 

ensure continuous Requirements Engineering process improvement. This

involves identifying the poor quality requirements and the process problems 

that cause them, prioritizing the process problems for elimination and im-

proving the process by eliminating the causes. All of these activities are 

driven by rationale based on numerous organizational factors such as 

business goals. We attempt to standardize a method for Requirements Engi-

neering process improvement rationale capture and reuse through a strategy 

as demonstrated in our case study. The methodology presented here is a 

product of testing our metrics-driven process improvement framework in 

large software organizations.

Improving the Software Development Life Cycle (SDLC) process is  

becoming an increasingly accountable (defined as explanation of benefits

of improvement against improvement costs) exercise in organizations [1, 

6, 12]. Requirements Engineering (RE) is the initial phase of the SDLC

that provides inputs to subsequent phases like design, development, testing 

and maintenance, and hence is the most frequently visited phase of the

SDLC [31]. Since all SDLC staff will be affected by the quality of what is

produced in the RE phase, it is important to establish a common under-

standing of any problems in the existing RE process, the impact of such 

problems, the plans to overcome the problems, and the costs and risks  

involved in the transition to an improved process.  

19.1 Introduction 

19 Capturing and Reusing Rationale Associated 

Keywords: rationale capture; rationale reuse; requirements engineering;

process improvement; quality measures

An RE process in an organization can change over a period of time.

The changes usually are RE Process Improvements (REPI) that are

applied to circumvent the existing problems. Two noticeable problems of
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ity requirements (defined as those requirements that reflect the exact needs 

of the stakeholder, and are complete, consistent and unambiguous [5]) per 

unit cost [18]; and RE processes of large software organizations are too 

complex and effort intensive to comply with [17]. Poor quality require-

REPI involves a number of decisions that can affect a role, a person or a 

task in the SDLC. In a metrics-based REPI, decisions involve balancing

costs against proposed benefits. RE process changes can affect various 

SDLC issues such as estimation methods, activities, roles and responsibili-

ties, automation, and various artifacts of the SDLC [19]. Further, REPI is a 

Process and Quality (P&Q) exercise that is usually the responsibility of a 

vertical group outside of the project group, whose perception of the RE 

problems may differ to those of the project team and customers. Thus, it is 

important to capture rationale associated with REPI decisions so that all

involved can appreciate what is wrong with the RE process and how it can 

be made more effective and efficient. Capture also facilitates reuse.

RE in large organizations is usually identified as a continuous exercise

within a Key Process Area (KPA). Continuous REPI is facilitated by using 

the rationale associated with historical REPI for comparison of the current 

process with its predecessors, and sometimes to rollback REPI decisions to

one or more previous states. Further, REPI rationale can be reused for 

other SDLC process improvement such as improving the effectiveness of 

testing.

Despite these potential benefits, we observed in our case study that 

REPI recording of rationale is not very common in industry. When REPI

occurs, instead of well-structured rationale, unstructured partial informa-

tion at best is presented as the justification. Such justifications can be 

common even in quality certified companies. For instance, in Six Sigma 

companies that follow Define, Measure, Analyze, Improve, and Control 

(DMAIC) [20], unstructured justifications for actions can be made explicit 

in every phase. Because of their specificity and incompleteness, such justi-

fications are not reusable. Further, unstructured justifications are used 

more as tools for selling the REPI ideas rather than reusing them as fun-

damental reasons behind decisions. They can be classified as “descriptive

rationale” in nature, thus limiting their use for training as described in [7]

[Chap. 1, Sect. 1.2 in this book]. Descriptive rationale does not alter the 

way process users think about what the process should really do. Similarly, 

quality standards such as Capability Maturity Model (CMM) [21] and 

Software Process Improvement and Capability dEtermination (SPICE) [9] 

do not prescribe or enforce rationale recording. Although, these standards 

RE processes are that they fail to produce an increased number of high qual-

ments that invariably do not reflect the exact needs of the stakeholder, 

when designed and developed, cause requirement defects in software.  
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act as important references for continuous REPI, unstructured justifications 

for REPI or mere adherence to quality standards may not provide solid 

grounding for future improvement decisions. REPI needs a “prescriptive 

approach” of rationale recording so that improvement reasoning evolves 

with time thus influencing significant and continuous REPI as described in

[7] [Chap. 1, Sect. 1.2 in this book]. The reuse of rationale recorded using 

a prescriptive approach influences the way process users think in every

REPI cycle. This method can radically influence REPI decisions, thus 

promoting the capture of rationale behind such radical decisions. 

The objective of this chapter is to establish the significance of capturing

the rationale associated with REPI decisions using a structured approach,

starting with strategic outcomes and developing into detailed process re-

lated issues. This approach facilitates simple and easy capture of rationale,

and provides selective and access-easy reuse of rationale for continuous 

REPI.

Section 19.2 introduces the notion of rationale related to REPI. Section 

19.3 considers the challenges associated with REPI rationale. Our method-

ology to REPI rationale capture and a case study snapshot following the 

methodology are given in Sects. 19.4 and 19.5, respectively. Section 19.6 

closes this chapter with our conclusions.  

REPI Rationale

REPI rationale is defined as the fundamental reasons behind REPI deci-ff

sions [25]. Research suggests that rationale usually is not a decision mak-

ing mechanism, but is a mechanism by which decisions are influenced by

improving the grounding of decisions [22]. Well-structured rationale as-

sists RE process users to better comprehend the needs and benefits related 

to REPI and provide feedback such that eventually REPI rationale is trans-t

formed into reusable knowledge [29]. Our study indicated that rationale

persistence among the SDLC staff increases conformance to the process,

and feedback provided by rationale users will assist continuous REPI.

REPI rationale management is a mechanism by which RE process 

owners (usually P&Q staff or Project Management (PM) staff who take

ownership of the process and improve it or retire it) capture the decisions 

involved in an RE process transition from the current state to the new state.

An RE process transition usually involves [1, 3, 6, 12, 23, 24]:

− Defining precisely the problem with the current RE process

− Understanding the root cause(s) of the problem 

19.2
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− Establishing key metrics to monitor process performance 

− Describing the solution with clarity against the defined problem 

− Setting process transition goals 

− Defining a strategy to achieve process transition goals

− Defining various process stakeholders and their privileges in RE 

− Assigning clear roles and responsibilities 

− Describing the interaction amongst the stakeholders 

− Evaluating new technology, if any, associated with the transition

− Managing risks with respect to the process transition 

− Transitioning to the new improved process 

− Monitoring, and perhaps correcting, the improved process rollout 

− User training of the new process 

− Well established feedback mechanisms for further improvements

Most of the above steps need explicit rationale to justify the actions. 

While some may argue that recording rationale requires too much effort to

learn and to do, we argue that: 

1. REPI rationale has potential value as it is part of the Intellectual Prop-

erty (IP) of an organization. Persistence of rationale facilitates transfer ff

of an individual’s process improvement knowledge into the organiza-

tion’s IP [29]. This allows avoidance of past expensive mistakes in

REPI as described in [7] [Chap. 1, Sect. 1.4 in this book]. 

2. Rationale management supports collaboration by promoting coordina-a

tion amongst RE staff, customer, and other SDLC staff by exposing dif-

fering points of view. Such differences, can become a knowledge source 

of various options useful for continuous REPI as described in [7]

[Chap. 1, Sect. 1.4 in this book].

3. Currently, rationale recording is considered useful only until the  

decision has been made, which leads to the present state of affairs where 

there is no formal or semi-formal representation of argumentation. Our 

strategy supports feedback on the rationale after the decision is made 

and effective use of feedback for the next REPI cycle supporting the

changes. Maximizing rationale reuse can maximize benefits of rationale. 

4. Rationale management can support consistency of decisions leading to

improved quality of REPI decisions. Consistency can be achieved only

with explicitness of rationale as described in [7] [Chap. 1, Sect. 1.4 in 

this book]. Further, rationale management can influence correctness of 

the decisions positively.

5. Effort and complexity can be minimized and reuse maximized by using 

the practitioner’s terminology and structuring rationale according to

common industry dimensions and parameters. 
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Rationale management in requirements and system design is common in

the SDLC [2, 15, 32]. With design rationale the emphasis is on simplicity,

resting largely on the three node types Question, Option, and Criterion 

(QOC) [15, 25]. Another rationale recording method is Issues-Based In-

formation Systems (IBIS) and is used to record ideas and relationships dur-

ing design discussion as it unfolds. Existing rationale mechanisms are 

more suitable to system design that are focused on raising a number of 

questions or issues and providing answers to those questions using a refer-

ence for justification [2, 8, 15, 25]. 

REPI rationale management is relatively new compared to the role of ra-

tionale in requirements and system design. In contrast with requirements

and design rationale, REPI rationale is not directly linked with the product 

or tangible artifacts such as a System/Software Requirements Specification

(SRS) or Design Document. Instead, REPI is concerned with the process 

by which the requirements were developed and trapping failures early in

the SDLC where the greatest benefit can be achieved [26]. Therefore, ra-

tionale management based on Failure Mode Effects Analysis (FMEA) 

[14], and applying improvements based on measured deficiency is more

appropriate for REPI. Thus, we are using QOC largely based on FMEA. 

Absence of REPI rationale can prevent an improvement decision from

taking effect as intended. Complementing the uses of rationale described in 

[7] [Chap. 1, Sect. 1.4 in this book], our study indicated that poor rationale

management contributed to the following situations: 

1. Incorrect decisions. The SDLC staff attributed the poor quality require-

2. Resistance to change. Lack of knowledge of the objectives and potential 

4. Using inconsistent versions of the RE process. The SDLC staff could 

not differentiate between the improved RE process and the previous ver-

sion of it, because the improvement had not been made explicit. 

5. Poor perceptions of accountability of RE. Without rationale and sup-

porting metrics, senior managers could not see how REPI would pro-

duce high quality requirements. 

6. Poor planning of improvement beyond the current rollout. P&Q staff 

could not plan for future rollouts, even though there was an opportunity.

This further affected organizational learning. 

7. Poor knowledge reuse. Process users did not reuse the knowledge of 

Capturing and Reusing Rationale

3. Poor conformance to the improved process. Lack of knowledge amongst

users resulted in poor process conformance.  

ments to perceived process problems rather than actual reasons. 

benefits of the improved RE process, led to resistance to change.mm

why behind the decisions and how such decisions were translated into 
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practice. This forced every process improvement cycle to be a “new” 

exercise that reinvented the wheel.

The above observations clearly suggested the need for RE process users

to actively participate in REPI by understanding the rationale, providing

feedback and participating in pilot REPI exercises and actual new process 

rollout.

Capture and Reuse 

In large projects, rationale plays a significant role in providing a justifica-

tion for the involved costs [17]. Two major issues in REPI rationale 

management are: how to represent the rationale? and how to retrieve the 

rationale (for instance, browse, view, filter)? These two REPI rationale

management issues raise the following challenges similar to those 

described in [7] [Chap. 1, Sects. 1.1 and 1.5 in this book]:

1. A group of people may be involved in an REPI exercise; but the decided

REPI may not represent the consensus.

2. Some issues related to REPI may be tacitly, rather than explicitly, de-

fined. Capture of tacit rationale is costly and its reuse is difficult espe-

cially in the absence of the staff that participated in earlier REPI.

3. Rationale involved in REPI can be voluminous and it may be difficult to

record all of it. Further, effective reuse of voluminous rationale requires

selective access.

4. Rationale to be categorized into two forms – one justifying the REPI

costs against organizational benefits, and the other justifying REPI 

against day-to-day problems faced by the SDLC staff.  

5. Finally, [6, 17, 18] have found that it is difficult to identify whether the 

organization’s REPI mandate is synchronized against the business goals. 

REPI rationale management should align with the activities of RE prac-

titioners that involve customers, teams, schedules, costs, and budgets [28]. 

Inappropriate terminology and overly complex notations will result in an

impractical, costly and untenable approach. REPI can be made less com-

plex by employing a structured step-by-step approach of rationale captur-

ing.

19.3  Challenges Associated with REPI Rationale 
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This section presents a methodology that is used to capture rationale for 

REPI. The method presented here has been tested in a large multinational

software organization described in the Sect. 19.5. The rationale manage-

ment method we define is based on the REPI framework that we have de-

veloped [17]. The framework uses a cause–effect decision matrix to exam-

ine and measure an RE process. If the process is found to be deficient, it is 

improved by identifying the needed improvement on the measured defi-

ciency [17, 18]. The components of the REPI framework are RE process

measurement, determining the strategic outcomes, identifying RE process

RE process. Identifying rationale capture points in the context of REPI’s 

components forms a first step towards rationale capture and reuse. By 

making the rationale capture explicit in the framework, we can explore the 

possibility of applying this methodology to other REPI research frame-

works such as good practice and risk-based REPI approaches [23, 27]. 

To provide a manageable structure to facilitate rationale reuse, it is impor-

tant to position the rationale capture points. Figure 19.1 indicates the rela-

tionship between REPI and rationale. 

Fig. 19.1. REPI framework with horizontal lines representing its components.

Dotted lines with arrows indicate the rationale capture points and reuse  

Strategic outcomes shown in Fig. 19.1 are usually related to the way

projects are managed, and include goals such as reduced software devel-

opment cycle time due to reduced requirements defects and early detection

of them, reduced rework due to removal of duplicate and erroneous 

requirements and enhanced customer satisfaction as errors are removed  

Capturing and Reusing Rationale

19.4.1  Positioning Rationale in REPI Framework 

19.4 Capturing Rationale: A Tested Method 

gaps (defined as the difference between desired and actual processes), 

prioritizing and eliminating them, and rolling out a new and improved 
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before reaching the customer [23]. Failures in one or more strategic  

outcomes will provide the justification for initiating REPI. For example, 

the strategic outcomes may identify the need to determine and record the

percentage of severe requirement defects delivered to customer, schedule 

and cost overruns, and the amount of rework. This set of (annotated) fail-

ure data can be seen to provide a rationale to identify RE as a KPA for 

improvement. This rationale also helps to determine the urgency and im-

portance of a particular REPI activity against the rest. Rationale behind RE

process measurement scales are RE process effectiveness and efficiency 

applied against various process dimensions commonly employed by practi-

tioners [18]. The REPI framework described here identifies the process 

gaps against the process dimensions, and prioritizes the process gaps based 

on urgency, importance and costs associated with process gap elimination

in order to improve the RE process. The REPI framework will reuse the  

rationale captured for continuous REPI. 

The rationale capture points shown in Fig. 19.1 provide the following 

information:

1. Strategic outcomes and how they are determined 

2. Process metrics for measurement and how they are determined 

3. Reasons behind identifying a process gap

4. Reasons behind prioritizing a process gap for elimination

5. How various recommendations, when implemented, will eliminate one

or more RE process gaps 

The general guidelines for rationale capture in the following sections

can be modified to suit the organizations specific requirements.

This section describes the methodology to capture rationale at various cap-

ture points. Often, organizations are focused on achieving reduced costs,

optimized schedules, and enhanced customer satisfaction while improving 

their RE processes [12, 24, 28]. In the following section, we describe the ra-

tionale associated with determining the strategic outcomes and what bene-

fit they bring to the organization. This forms a body of knowledge that can

be reused across all projects in the organization as described in [7] 

[Chap. 1, Sect. 1.4 in this book]. Following this, we describe the need for 

measurement based on process dimensions and parameters, and the associ-

ated rationale. We then describe the rationale associated in identifying and 

classifying RE process gaps that influence poor quality requirements and 

provide recommendations and associated rationale for closing the RE 

19.4.2  Capturing Rationale 
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process gaps. Examples of each of these capture points are provided in the 

Rationale Associated with Strategic Outcomes 

Since REPI is an accountable exercise, organizations usually set a list of 

strategic outcomes expected of REPI. The example provided in the case 

study snapshot (see Table 19.1) groups outcomes under RE, SDLC, and 

Customer. We observed in our study that the rationale options for strategic 

outcomes are: reduced defects leakage to customers; reduced rework in

SDLC; and reduced SDLC time leading to cost savings. We have devel-

oped a formula that shows the relationships between these rationale  

options and how they can be used to determine strategic outcomes, how-

ever, we are bound to keep this formula confidential. 

Rationale Associated with Process Dimensions

Irrespective of the strategy adopted by an organization, process dimensions

are required to allow measurement of RE processes. Dimensions are re-

quired to assess an RE process while RE is active. Dimensions can prevent 

wrong decisions being made in a hurry towards the end of the SDLC (such

as, cancellation of defects during release, in an effort to close them rather 

than fix them). Usually RE is examined and improved based on its  

subphases such as elicitation, analysis, validation, documentation, and 

management [11, 13, 31]. Each of the subphases are examined to see the 

input is transformed to the expected output [11, 13]. This approach de-

prives us of examining all options available for improvement. Further, we

argue that these relate more closely to RE tasks and not to other dimen-

sions such as estimations, artifacts produced by RE, automation, and roles 

[19]. Process dimensions provide two advantages. First, practitioners usu-

ally work in terms of schedules, tasks, artifacts that are created at the end

of some milestones, disciplines, and roles. Second, categorizing process

gaps under dimensions makes examination, prioritization, and elimination 

more manageable thus providing a structure for recording and reusing ra-

tionale. However, all of the process dimensions mentioned above may not 

be applicable to one organization. Therefore, we suggest that organizations

tailor their process dimensions with rationale such that reuse of rationale

Capturing and Reusing Rationale

will assist REPI. The example given in the case study snapshot (see Table

19.2) provides some suggested dimensions.

case study snapshot in Sect. 19.5. 
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Rationale Associated with Process Parameters

Process dimensions are broad in nature and a further classification within 

the process dimensions is required irrespective of the strategic outcome 

used. Some examples of parameters against each of the dimensions are

represented in Table 19.3. By doing this, various options of parameters are

considered and argued as to why a parameter is an important subject. Fur-

ther, parameters are required to attribute requirement defects to RE process 

problems. In the absence of this, a requirement defect can be mistaken for 

a coding problem that may be resolved using expensive methods such as 

iterative code review.

Rationale Associated with Identifying a Process Gap 

We observe the RE process against the dimensions and parameters and de-

termine various process gaps that cause poor quality requirements. Such

observations without rationale do not convey a purpose. We can determine 

the process gaps by examining the intermediate causes that effect RE, Risk 

Management (RM) (because poor RM affects RE process effectiveness),

and Change Management (CM) (because poor CM affects RE process effi-

ciency) problems, and basic causes that influence the intermediate causes 

[17, 18]. When justifications of observations are recorded in the form of rr

rationale, it is possible to answer the first question in REPI: “What is 

wrong with our RE processes?”  

Rationale Associated with Prioritizing Process Gaps 

Process gaps can be prioritized for elimination based on a quantitative  

approach that is common to cause–effect matrices wherein the priority is 

determined based on how many problems a cause is influencing [10]. 

However, this does not guarantee the best results always, since elimination 

of numbers of insignificant process problems may not lead to noticeable 

improvements. We argue that a qualitative approach will maximize returns 

on REPI. Therefore, we use strategic outcomes to prioritize the process 

gaps for elimination to guide REPI. 

Rationale Associated with Process Improvement 
Recommendations 

A list of recommendations in the form of direct negatives pinpointed 

against the prioritized process gaps is drawn up against the process gaps 

identified to improve the process. Section 19.5 provides examples of  

some recommendations. The recommendations, together with associated 
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rationale will constitute answers to the second question in REPI: “How can

we make RE processes more effective and efficient?”

In the following section, we present a case study snapshot that uses this 

rationale capture method.  

A Snapshot of a Case Study 

This section provides examples of the methodology in the previous section 

in the context of a case study we have conducted. Interested readers may 

contact the authors for a copy of the complete case study. The case study

comprises a body of knowledge as to why REPI is needed and project and 

product rationale as to how REPI was captured. Both integrate to form 

reusable rationale for REPI. 

Z121 is a quality certified organization, wherein RE was a part of the qual-

ity program. Z1’s RE process is well defined. The purpose of Z1’s RE 

process is to establish complete and consistent requirements. The work-

products and various activities of the RE process are already established. 

Z1’s RE process focuses on the requirements review process for validating 

and verifying requirements. Various documentation templates assist proc-

ess users to comply with the RE process.  

This study was initiated to establish industry-based evidence for the

REPI framework we proposed [17]. The agreed goal of this study was in 

three phases: Assessment, Piloting REPI, and Continuous REPI.

The initial phase of the case study investigated whether senior manage-

ment were aware of a problem with the RE process. Based on analysis of 

the data obtained through questionnaires, we concluded that an RE prob-

lem existed. Once this was established, we examined the RE process 

against the process dimensions and parameters. This examination involved 

participating in specification reviews, one-to-one interviews with SDLC 

and P&Q staff and various SDLC documentation that directly or indirectly 

related to RE and various metrics related to RE. To establish the correct-

ness of the observations, we administered a very detailed questionnaire to

the SDLC staff. There was consensus from the survey participants that  

inclusion of REPI rationale was important. Some respondents indicated mm

a willingness to participate in future REPI, but only if the rationale 

21 De-identified for reasons of confidentiality 

Capturing and Reusing Rationale

19.5.1  Description of the Case Study 

19.5



402      B. Palyagar, D. Richards 

associated with the proposed changes were provided. In general, analysis

of the questionnaire data confirmed what we had observed as part of the

RE team.

The main sources of information used in this case study are Z1’s busi-

ness plans, process, and project specific SDLC information. The results

presented are a subset of the data collected but serve to demonstrate the 

practical application of the steps given in Sect. 19.4.

Outcomes for Z1

Applying the description in “Rationale Associated with Identifying a Proc-

ess Gap,” the strategic outcomes for Z1 are shown in Table 19.1. These

were calculated using the cost savings formula mentioned before to allow

finding and fixing of requirement defects during RE rather than later.

Table 19.1. Strategic outcome with rationale for Z1 with Benefit index of 

1 = Reduced Costs, 2 = Optimized schedules and 3 = Enhanced customer satisfac-

tion

 strategy arguments to establish the strategy benefits 

RE increased number of good quality re-

quirements [18] 

cost and schedule overruns are noticed by

and urgent to reduce costs and schedule 

overruns

1, 2, 3 

SDLC

mitment to changes [17, 18] 

customers are introducing changes that in 

effect are additional features and func-

tionality that were not initially agreed to,

without committing to additional costs,

time and material; this is important and 

urgent to the success of the project 

1, 2

Customer

fore they leak through to the customer 

[16, 30, 32] 

defects found by customers are expensive

to fix; this can create unpaid work, there-

fore losses to Z1 

1, 2, 3

The various process dimensions we established to ensure that the RE 

process is assessed during RE rather than later are shown in Table 19.2. 

Process parameters established against the above process dimensions are 

19.5.3  Rationale Associated with Process Dimensions and 

19.5.2  Rationale Associated with Determining Strategic 

improved CM, with customers com-

severe defects should be resolved be-

Z1’s customers; therefore, it is important 
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indicated in Table 19.3. Process parameters help prevent requirement 

defects being mistaken for other defects.

Table 19.2. Some proposed RE process dimensions and associated rationale

dimension arguments to establish dimensions 

this is an important dimension that determines how RE is arranged 

over time and staffed 

(B) RE artifacts various deliverables like observations, data, information, effects, or 

results, in the form of documents or otherwise resulting from the 

process usage are important to determine during REPI 

(C) RE activities this is an important dimension to determine what activities produce

(D) disciplines automation is an important dimension for REPI as technology and 

tools are needed to support RE

(E) roles identification of various roles and the differences between them is 

an important dimension in REPI 

Table 19.3. Some process parameters for Z1 and associated rationale for the di-

mensions (#) in Table 19.2 

# parameter arguments to establish parameters

appropriateness of allocated 

RE budget 

this is required to determine if RE budget is explicit 

and sufficient 

A

consumption of RE budget  under-consumption of RE budget can result in the 

indicates RE effort as 13%-15% of the total SDLC

establishing a set of artifacts this will make sure that RE is not prematurely 

exited

establishing change control

on artifacts templates 

change control is important to make sure that 

unpaid rework does not get into SDLC 

B

modeling information in

SRS

models visually represent the customers needs, and 

the SDLC staff’s understanding of those needs 

formal identification of RE

milestones 

milestones are required to identify that a particular 

activity is due to complete

C

identification of dependen-

cies between activities

unidentified dependencies results in deadlock situa-

deliverables, and go into indefinite wait state 

D identification of automation 

needs

automation is essential for RE where methods, such

as manual traceability establishment and change

management become too tedious

identification of roles in RE it is important to identify roles of the SDLC staff in 

RE, particularly the role of the customers

E

setting up privileges this is an important parameter since certain 

activities should be limited only to certain roles

Capturing and Reusing Rationale

effort

(A) time and

& automation 

overall SDLC cost overruns; public domain datarr

effort [4]  

which artifarr cts, or at the very least effect significant changes to an

artifact

tions while two or more parties wait for each others
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Even though the RE process in Z1 is well-defined, some observations

pointed to RE process gaps that influence poor quality requirements. An

exhaustive list of low-level process gaps mapped against process dimen-

sions and parameters were identified which converged to some high-level

process gaps in our decision matrix [17, 18]. See Table 19.4 for examples. 

Table 19.4. Low-level process gaps mapped against dimensions and parameters

# parameter low-level process gap identified 

A appropriateness of allocated 

RE budget 

RE budget was not explicitly established in Z1,
posing various risks associated with cost and ef-

fort

B establishing change control 

on artifacts templates 

template users edited templates to suit their 

projects without formalizing them. Inconsistencies 

in templates confused some SDLC staff forcing

them to reinvent existing templates 

C identification of dependen-

cies between activities

critical paths were not established in WBSt

D identification of automation 

needs

no automatic tools were used to track require-

ments

E setting up privileges most staff established their own definitions of 

“good quality requirement” even though their role

was just to use the definition established by P&Q 

Using a cause–effect matrix, the low level gaps in Z1 converged to a

smaller number of high level process gaps (PG)s. Direct negatives of proc-a

ess gaps form the recommendations to represent the criteria and options. 

The priority is established based on the organization’s strategic outcomes. 

Process Gap (PG)1 with associated rationale. RE’s relationship to CM 

was not well-defined. Criteria: this increased the risks of penalty of ac-

cepting changes without the customer’s commitment to those changes in 

terms of increased costs and enhanced schedules. Further, it was difficult 

to differentiate changes that influenced schedules from those that did not. 

Options: have a common CM for entire SDLC and take all changes 

through CM, or have a separate CM within RE to handle all requirementsr

changes. Priority: low.

Process Gap (PG)2 with associated rationale. Various sub-phases of 

RE were not distinctive giving an impression that RE was an ad hoc col-

lection of activities. Criteria: this led to inaccuracies in judgment related to 

19.5.4  Rationale Associated with Identifying Process Gaps 

19.5.5  Process Gap Prioritization and Recommendations 
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an issue raised out of a review that demanded one or more iterations.  

Options: to require each RE subphase to output an identified PM artifact, 

produced an artifact, but marked the successful completion of an activity.

Priority: medium. 

Process Gap (PG)3 with associated rationale. Clearly, the definition of 

“Good quality requirements” was not tied to the process. Criteria: the

checklist that was made available on Z1’s intranet characterized a good 

quality requirement, but was not in consistent use as part of the RE proc-

ess. Further, the level of attention to detail in the specification was not 

consistent. Options: peer reviews should focus on checking if requirements

quality is high and consistent, or checklist entry to demonstrate require-r

ments quality to be made compulsory. Priority: low. 

Process Gap (PG)4 with associated rationale. Poor automation of RE

and the subsequent phases of the SDLC which affect RE were creating 

significant time-bound communication problems with respect to require-

ments. Criteria: the tools used for SDLC management were estimation

tools, defects trackers (database where defects are stored, and tracked for 

their status until they are fixed or cancelled) and general information  

management tools like spreadsheets. RE tools were not used to automate 

requirements management, CM and RM. Options: requirements manage-

separately thereby automating part of RE. Priority: medium. 

Process Gap (PG)5 with associated rationale. No clear distinction be-

tween requirements risks and issues. Criteria: risks were also logged as is-

sues, which were usually the conclusions about requirement specification 

in a review. Options: when to log an issue as against a defect or a risk to be 

made consistent, or specificity of issues to be established and classified r

based on its significance. Priority: high.

While we have made the case for REPI rationale capture, we faced the fol-

lowing challenges in organization Z1: the benefit of rationale capture was

initially perceived as a mechanism to certify REPI as a KPA; the use of 

natural language in the RE phase did not encourage structured and more

formal notations for rationale; some people in Z1 thought that the level of 

detail expected in the rationale was too fine grained; the Cost Benefit 

Analysis (CBA) of recording rationale in addition to REPI was not calcu-

lated since metrics collection needed for CBA was a difficult exercise.d

Capturing and Reusing Rationale

19.6 Conclusion 

or have a milestone-based approach wherein a milestone not necessarily

ment to be automated using tools, or CM and RM to be automated  
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Rationale in process improvement provides reasoning behind an 

activity. If an organization is building systems integrated into repeatable,

well-understood and controllable development processes, then continuous

improvement of processes is inevitable, and rationale associated with 

improvement forms an important IP. Such claims are consistent with the 

experience of Z1, which is currently improving its RE process with

extensive use of rationale generated through this research project. By

describing the process improvement rationale, we can eliminate unclear 

ideas, and tentative ideas that are used to form further ideas that influence 

poor decision-making. Further, rationale helps to eliminate misconceptions 

that are common to any process improvement exercise. Well-structured 

rationale will provide satisfactory answers to the common questions in 

practitioners’ minds “what is wrong with our RE process, and should we 

consider improving the RE process and roll out the new process now?”

The approach we have offered guides an organization step by step to 

eliminate process gaps. By recording the rationale associated with each of 

the steps, and persistence of it, all parties involved in the process know not 

only what and t how but also why. Knowing why is a critical part of process 

improvement that also allows for the inevitable changes associated with 

any living system or organization. 
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Engineering Process Rationales 

L. Hagge, F. Houdek, K. Lappe, B. Paech

Abstract: This chapter introduces patterns as a means of supporting knowl-

edge transfer in the requirements engineering (RE) domain. RE patterns 

capture and consolidate rationale for RE decisions which have been suc-

cessfully taken in several comparable projects. Their main goal is to make 

these successful RE practices available to project teams on the job. The

chapter describes a procedure for collecting patterns, presents three exam-

ples of RE patterns and discusses several applications of patterns, including

process improvement.

Keywords: requirements engineering; rationale; patterns; process im-

provement

Requirements engineering (RE) has been recognized as a critical success 

factor for nearly every systems or software engineering project [17], but no

canonical approach to engineering requirements has been established  

in practice. Best-practice collections or software engineering methods 

captured in textbooks provide a framework of standard RE products and 

activities, yet it is often not possible to apply them directly because of con-

flicting project constraints. Also, the RE process depends on many indi-

vidual project characteristics such as the project type and size or stake-

holder groups [2,18]. 

For successful RE process implementation, practitioners need methodo-

logical and situational knowledge that has to be reliable and accessible ont

demand for the project teams [19]. The RE patterns presented in this chap-

ter address this need for consolidated and structured knowledge. They are 

captured by reflecting and analyzing comparable situations (observations) 

of independent projects (case studies) with particular emphasis on the solu-

tion of conflicts underlying the situations. Those decisions or actions that 

were observed to be successful in at least two projects are recorded as  

patterns (Fig. 20.1). 

20  Using Patterns for Sharing Requirements 

20.1 Introduction 



410  L. Hagge, F. Houdek, K. Lappe, B. Paech 

Fig. 20.1. RE Patterns comprise recurring observations of successful practices

from different projects in an instructive format 

RE patterns are described in an instructive format that makes the pattern 

content easily accessible. The patterns contain pairs of problems and solu-

tions, enabling the selection of patterns for specific situations. They are  

reliable as they are obtained solely from proven real-life experience. 

By definition, RE patterns support reuse of process knowledge. Fur-

thermore, they can be employed for a variety of purposes in RE process 

how they were used to build consensus, to validate decisions, to support 

training, and to facilitate process assessment. 

RE pattern format and describes the procedure for obtaining RE patterns.

fied using the described procedure with industrial project managers. They 

provide nonobvious advice from practical experience that is usually not

Capturing Engineering Experience in Patterns 

This section discusses patterns as a general way of collecting and sharing 

successful engineering practices and process rationale. 

20.2

as reusable rationale. 

improvement [10] [Chap. 1, Section 1.4 in this book]. Section 20.4. sets out 

The rest of this chapter is structured as follows: Section 20.2 introduces the 

Section 20.3 presents three examples for RE patterns that have been identi-

covered by textbooks. Section 20.4 summarizes experience gained in work-

ing with RE patterns, including process improvement, teaching, and RE

maturity assessment. Section 20.5 concludes with a discussion of RE patterns 
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Originally developed in civil engineering [1], patterns have been adopted 

by software engineers to be a means of providing well-formatted and in-

structive descriptions of good engineering practices. First their application

focussed on design (e.g., [8,11]). Today, also process patterns are a well-

known and established format for knowledge transfer commonly used in a 

variety of fields. Known examples are quality patterns [7,13], technology

experience packages [5], process patterns [3], and anti-(process) patterns 

[6].

Pattern descriptions typically contain an objective to be achieved,  

the problem statement or context to which the pattern applies, and a rec-

ommended action for resolving the situation. Further elements include in-

structions for and experience from implementing the patterns and exam-

ples of known uses. Specifying problem statements explicitly in terms of 

underlying conflicting forces makes patterns more practicable as they  

directly address the situations encountered by project team managers. 

Quality patterns (as RE patterns) employ the concept of providing pre-

scriptive descriptions based on explicitly described empirical observations. 

The experience factory paradigm [4] is an example for a process improve-

ment framework built on the same concept. It uses so-called “experience 

packages”, which are comparable to patterns, to provide empirically estab-

lished and thus trustworthy experience.

The pattern vector is a compact pattern notation that combines an instruc-

tion for solving a problem with the conditions under which it should be 

used. It is best introduced using “a window place”, a frequently quoted 

pattern from Christopher Alexander’s “The Timeless Way of Building”

[1], as an example: 
In living rooms where people want to be comfortable, a sitting area should be

located close to the windows. In rooms where the sitting area is not placed near 

the windows, people would be caught in a conflict: they would be drawn to the 
chairs to sit down and relax, but at the same time they would also be drawn to-

wards the windows where the light is. 
Using the window place pattern would resolve and prevent the stress situation.

20.2.1  Background  

20.2.2  The Pattern Vector: Task, Forces and Action 
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Fig. 20.2. Alexander’s “A Window Place” pattern in the proposed pattern format 

The underlying notion is that patterns help in resolving conflicts or 

stress situations – which are frequently perceived as “being torn apart by 

two forces”. Figure 20.2 uses this metaphor to illustrate the window place

pattern: people experience two opposing forces pulling them to the chairs 

and to the window.

Taking this picture as general reasoning, it has been proposed that pat-

terns should be written as vectors [12] 

P = (T, F , F , A), 

where T is a task, FF and FF are the opposing forces generating the stress

situation, and A is an action compensating the difference of FF  and FF ,

i.e., the stress. This pattern vector covers the pattern essence. The pattern 

statement can be created from the pattern vector using 

IF FF BUT FF THEN A TO T.TT

It provides a short description of the pattern that helps readers to decide on

the pattern’s relevance and applicability for their purposes at a glance. For 

the “Window Place”, the description reads as follows: 

IF   people are drawn towards the chairs to sit down and relax 

BUT  people are drawn towards the windows where the light is 

THEN move seats to the window 

TO  design a comfortable living room 

Using the same format for expressing RE experience underlines the gen-

eral nature of the pattern vector, as is shown by the following example:

IF   a project has to step back to clarify the requirements

BUT  a project has to advance to meet the milestones 

THEN detail the specification documents by writing test cases 

TO elicit requirements optimizing completeness and the level of 
detail 

For practical purposes, patterns have to be explained in a more elaborate

format like in the established pattern collections, for example [11]. The

task is split into an objective and a context, the forces are embedded into a
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problem description, and the action is called the solution. The solution can 

be illustrated by showing a model of its underlying structure and adding 

detailed instructions on how to implement the proposed solution. The us-

ability of the solution can be supported by listing application areas and 

constraints for its successful implementation. Additionally, experience, 

known uses, and related patterns should be described. Section 20.3 sets out 

the full version of an RE pattern as an example.

Patterns are related to process rationale in the sense that they intend to cap-

ture reusable rationale for taking particular actions within processes. Fig-

ure 20.3 depicts the relation by mapping the pattern elements to the QOC 

notation (questions, options, and criteria [9,15]):

Fig. 20.3. Mapping RE patterns (left) to the QOC schema (t right)t

The problem description captures the decision to be taken, while the

proposed solution offers one possible option for this decision. The objec-

tive, context description, and forces provide the qualities that help to 

evaluate the applicability of the proposed solution. Experience gained by

using the pattern provides additional arguments in favor of the proposed 

solution.

While in QOC the entire set of options would be contained in one

schema, each pattern proposes only a single option. The full set of options 

is given by a family of patterns addressing the same problem. 

Patterns are best captured nonintrusively, long after their proposed actions

have been taken and their consequences have been observed [10] [Chap. 1, 

20.2.3  Patterns and Rationale 

20.2.4  Obtaining Patterns from Analyzing Case Studies 

Sect. 1.2 in this book]. The procedure for discovering and documenting RE

patterns consists of four major activities [14] (Fig. 20.4):
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1. Case studies are collected from real-world projects. They contain  

accounts of important events and experience from projects. 

2. The case studies are analyzed and reorganized into a set of observations,

which describe events in the format of the pattern vector. 

3. To identify patterns, the entire set of case studies is searched for identi-f

cal observations from different projects. These observations are marked 

as pattern candidates.

4. The pattern candidates are elaborated into pattern descriptions, which

are then published in a central pattern repository.

Fig. 20.4. Overview of the pattern mining procedure 

A good way of capturing patterns is to organize a pattern workshop that 

follows the procedure above. Pattern workshops typically last around two 

to three hours and need a convenor, who should aim at bringing together 

six to twelve active participants.

To discover RE patterns, workshops have been successfully held on sev-

eral occasions, ranging from working group meetings to international con-

ferences [16,20]. Experience shows that such pattern workshops should be 

called for a previously agreed major topic, which should be specific

enough to ensure that the attendees will be reporting comparable case stud-

ies but which, at the same time, should be general enough to allow for in-

dividual and diversified reports. Good examples for such topics were “RE

in relations with subcontractors” or “tracing requirements in projects”. 

In most cases, the major challenge has been to identify adequate forces

for describing the conflicts. Often, observers initially addressed the symp-

toms of a conflict, while the underlying conflict became clear only after 

discussion in the group. Also, frequently more than two forces seemed to

20.2.5  Experience
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apply to an observation, which often resolved into more than one conflict 

being addressed in an observation [14].

Examples for RE Patterns 

This section introduces three RE patterns that have been identified in 

several workshops with participants from industry. They illustrate the pat-

tern format and the variety of topics that are covered by a pattern collec-

tion. The first pattern is presented in the full RE pattern format, while the 

second and third are presented as extended abstracts only: 

− “Detail the Specification by Writing Test Cases” addresses the RE proc-

ess. It is applied when the specification turns out to be ambiguous or in-

complete while a project is ongoing.

− “Organize Specification Along Project Structure” proposes an organiza-

tional measure. It recommends using the same structures for project 

management and requirements elicitation to minimize coordination ef-

forts.

− “Provide Statements of Objective” improves the specification quality.

The pattern recommends including requirements rationale into the speci-

fication to enable creativity and efficiency in the subsequent design.

The three patterns are examples taken from the Requirements Engineer-

ing Patterns Repository, REPARE, a constantly growing collection of RE 

patterns that is made available on the Web at http://repare.desy.de. The

patterns are named and referred to by the action they propose. This taxon-

omy has been found to be efficient for communication and is also under-

standable for anyone without further knowledge of the RE pattern. 

If a specification turns out to be ambiguous or incomplete during the run 

of a project, this pattern describes a way of clarifying the specification 

without halting the implementation work (see also Fig. 20.5).

IF   the project has to step back to clarify the requirements 

BUT  the project has to advance to meet the milestones 

THEN detail the specification documents by writing test cases 

TO elicit requirements optimizing completeness and level of detail 

Objective. Usefulness (e.g., clarity, testability, coverage) of a specification

is to be improved after it has already been frozen. 

20.3

20.3.1  Detail the Specification by Writing Test Cases  
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Context. Client and supplier have agreed on a specification that has been

frozen, e.g., it is part of a contract, or because the project has progressed to 

the next phase. When using the specification for design, implementation,

and test, the parties find that it is incomplete and ambiguous.

Fig. 20.5. Test cases offer a more detailed picture of the intended solution

Problem. The specification is in a state that endangers the project success, 

yet the necessary time and resources are not available for improving the 

specification. 

Forces. The pattern is related to pushing the progress in the project: 

− The project has to step back to improve the specification.

− The project has to move ahead to meet the milestones.

Solution. Leave the specification as it is and create test cases instead. The 

test cases should describe the usage and the expected output from an end 

user perspective. Provide the test cases to the implementation team, and 

agree that the test cases will become the criteria for approval and in this 

sense an appendix to the specification (see Fig. 20.6).

Fig. 20.6. Test cases contribute to the specification by detailing requirements 
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Structure. Test cases explain the context of requirements and provide  

examples for scenarios that rely on a requirement. They should contain an 

objective, preconditions, a course of events including exceptions and alter-

natives, and expected results for specific inputs. They can hence improve 

the level of detail, the clarity, the coverage, and the testability of require-

ments, for instance.

Instructions. The key to good test cases is the end user perspective. Test 

cases can be collected in different ways: 

− Let key users describe use cases and concrete usage scenarios of the sys-

tem and employ them as test cases. 

− Let key users conduct tests and record their activities and their expecta-

tions.

− Let key users explain for each requirement in which situations the  

requirement is relevant to them, then create scenarios for each such 

situation.

Application Areas. This pattern has so far been observed in small and 

medium projects conducted by teams working to a great extent on a basis

of understanding. 

Constraints.

− Usually contracting is based on the initial specification, and the 

introduction of test cases later on can be seen as an attempt to extend or 

modify the project scope. This will therefore only work if both the client 

and supplier follow the same intention of improving the project quality. 

− Ideally, the approach has to be established without affecting the project 

resources, implying that it should be applied to only a few requirements 

at a time.

Consequences.

The test cases are used as a new basis for implementation. 

Hidden assumptions and wishes are revealed and made explicit before

tests and approvals. 

Test cases can lead to unsolicited updates of the requirements specifi-

cation from the client side. 

Experience.

− Writing test cases cannot replace the requirements specification: gener-

ally both are needed to completely capture the different views of a  

project.
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− It is easier to acquire resources for tests and test case specification than 

for requirements analysis, as the necessity of tests is generally acknowl-

edged.

− Writing test cases helps to discover weak points in the specification. 

− Test cases are best written by domain experts or end users who ideally

act as multipliers in the project team. 

− Test cases can be written in parallel by several independent persons. 

− “Better late than never” – the availability of test cases for requirements

always pays off in reduced development cycles. 

Known Uses22. The pattern has been observed in the introduction of infor-

mation systems. 

liability management application was to be replaced by a newly devel-

oped application. Management replaced the project leader after the 

specification was written. The new project leader found that the specifi-

cation described the new system’s functionality understandably and 

completely. He found a common understanding of what the new system

should do had been established among all stakeholders. But he also 

found the specification unsuitable as a contractual basis due to the fact 

that the wording was ambiguous in too many places. The specification’s

authors resisted doing substantial rework because, if they did rework,

they had to admit to mistakes in their prior work. For this reason, the 

new project leader convinced end users to specify and conduct tests. 

Clarifications took place when end users and developers discussed the 

test cases. This enabled the system to be introduced with the desired 

functionality.

− Introduction of a Facility Management System To suit the purchasing of 

COTS components for a Facility Management System (FMS), user re-

quirements were specified in an abstract, product-neutral style that was 

suitable for software selection and contracting. When customization

started, more detailed issues arose and holes in the specification became 

apparent. Although the external developers provided features as speci-

fied, they were unable to envision the way the users intended to work 

with the FMS. The resulting system was functionally acceptable, but us-

ability was low and user bias was high. As the specification could not be 

modified after contracting, both parties agreed to add test cases in order 

to better explain how the clients expected to work with the system. The

22 Known uses refer to case studies from industry that have been reported in 

pattern workshops. Most of the material is unpublished.

− Migration ofMM  an Informatif on System (Logistics) A.  logistics company’s 

. 
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developers employed the test cases as early as the module tests, thus 

being implicitly guided by the test cases. The result was an overall im-

provement of the system’s ergonomics and user acceptance.

Related Patterns.

− “Bundle Requirements to Features” targets recording the relation of  

requirements and test cases. 

− “Generate Approval Checklists” is used to record the test results. 

This pattern recommends using the same structures for project manage-

ment and requirements elicitation to minimize coordination efforts (see

Fig. 20.7). 

IF 

agreement has been reached 

BUT
thus are difficult to access for negotiation 

THEN organize the specification along the project structure

TO

agreement 

domain experts have to negotiate requirements until mutual

domain experts have to concentrate on technical work and  

negotiate requirements optimizing stakeholder involvement and 

Fig. 20.7. Specification structure is in line with project structure

20.3.2  Organize Specification Along Project Structure
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Summary. A project is organized according to a work breakdown structure

(WBS). It should provide a single specification that covers the whole

product and is agreed upon by the teams involved. Thus a collaborative 

working style is mandatory. However, groups of specialists tend to con-

centrate on the topics of their own immediate concern and may thus be-

come too self-sufficient and difficult to access for negotiations.

Organizing the specification procedure in line with the project organiza-

tion reduces communication overhead to a minimum. Each WBS team  

appoints an author that writes a specification from this team’s view of the

product. An “independent” requirements engineer creates an overall prod-

uct specification from the partial ones. The requirements engineer takes re-

sponsibility for the specification progress and for ensuring requirements

conflict resolution.

Known Uses. The pattern has been observed in an interdisciplinary plant 

construction project and in the introduction of COTS-based information 

systems.

Sometimes customers require technical features that seem convincing at 

first glance but turn out to be expensive or even impossible to realize later 

on. This pattern provides the ground for finding reasonable alternatives

(see Fig. 20.8). 

Fig. 20.8. The statement of objective opens design and implementation alterna-

tives: wings are not required if bridges satisfy the same need

20.3.3  Provide Statements of Objective With Each Requirement
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IF  the project should exploit existing solutions to benefit from their 

acceptance

BUT the project has to use leading-edge technology for optimum results

THEN provide statements of objective with each requirement 

TO

Summary. A customer orders the development of a new, innovative prod-

uct, at the same time defining a vision that contains unacceptable technical 

details. Such statements frequently derive from transferring personal ex-

perience from other systems or domains to the problem at hand. Although

perfectly justified, they often contain features that are unnecessary, expen-

sive, or even detrimental. 

By providing a statement of objective for each feature, a general specifi-

cation of the user requirements and intentions can be obtained. For those 

features that correspond to impossible solutions, the statement of objective 

can be utilized to initiate alternative design activities. 

Known Uses. The pattern has been reported from a defence project and 

from the introduction of an IT system for spare parts management.

Working With RE Patterns 

This section cites examples for actively working with RE patterns in pro-

jects. It describes not only how patterns are made accessible on the Web 

but also how they have been used for process improvement, teaching stu-

dents, and assessing requirements process maturity. 

Accessibility of RE patterns is a prerequisite to any pattern application. In 

most situations, readers are searching for suggestions that best fit their cur-

rent circumstances. It is therefore important to make patterns searchable 

for the features that determine the situation’s characteristics. 

The pattern vector components provide an initial classification that can

be used for filtering the pattern collection. Further analysis reveals addi-

tional dimensions: for example, the actors addressed by a pattern or the 

quality goals to be reached using a pattern. A pattern repository that im-

plements these – and more structures – is available on the Web under the 

name REPARE: the Requirements Engineering Pattern Repository 

(repare.desy.de). It enables combinatorial queries and full text searches of 

patterns as well as navigation from case studies to their observed patterns 

and back.

In the following sections, it is assumed that patterns are available to pro-

ject teams through a pattern repository.

20.4.1  Making RE Patterns Accessible

20.4

analyze requirements optimizing the available design space
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RE patterns are intended to guide project teams by helping them to make

decisions concerning the RE process and by proposing adequate methods 

for the tasks they are facing. Ideally the teams simply read and use the pat-

terns as they need them: The patterns provide coaching on the job; sym-

bolically they replace an RE instructor (see also [10] [Chap. 1, Sect. 1.4 in

this book]).

Practitioners involved in specification activities mainly refer to patterns 

describing RE methods and tools at a technical level such as “use require-

ments index cards” or “bundle requirements to features.” These patterns

also improve the accessibility of textbooks, which contain more exhaustive 

educational material, by acting as an index and thus delivering context-

specific summaries and instructions. 

Project leaders have been observed to first identify which of the forces 

from the pattern database reflect their current conditions and to then study

the related patterns in order to understand how they would improve the 

20.4.2  RE Process Improvement: Guiding Project Teams 

situation. This approach yields patterns such as “organize specification 

along project structure” or “synchronize change requests” for setting up 

and managing a project.

Another important application is usage of patterns as rationales in deci-

sion-making and reporting (see also [10] [Chap. 1, Sect. 1.4 in this book]): 

Explaining the patterns – especially the consequences and experience, 

supplemented with the known uses as proof – can convince clients and 

project managers of the necessity of certain RE activities and, in turn,

make them provide the required resources. Also, letting the project  

manager then introduce the RE activities to the team (rather than an RE 

consultant, for instance) cuts bias against both the manager and the RE ac-

tivities. The approach works for any type of patterns and has, for example, 

been employed to “organize the specification along the project structure” 

or to “generate approval checklists”.

20.4.3  RE Process Improvement: Decision Support

RE patterns are also valuable instruments for reflecting the RE skills of 

project teams and for challenging decisions taken by instinct. This applica-

tion of patterns starts with a recent case study reported in terms of patterns:

every RE activity performed is explained as the conflict it had to solve and 

the action taken. The conflict–action vectors can then be compared with 

20.4.4  RE Process Improvement: Reflecting RE Skills



Using Patterns for Sharing Requirements Engineering Process Rationales      423

the pattern collection: how far do they follow the patterns? Have all the 

recommendations of the pattern been implemented? Have the positive con-

sequences, i.e., the pattern’s potential been reached? This approach can be 

employed for self-reflection as well as for team discussion. It has led to

very fruitful discussions in a variety of pattern analysis workshops. 

RE patterns offer a meaningful basis for supporting training through ra-

tionale as they combine technical and methodological instructions with in-

formation about specific application scenarios (see also [10] [Chap. 1,

Sect. 1.4 in this book]). 

20.4.5  Teaching Students

Fig. 20.9. Teaching students using the RE pattern “detail the specification by writ-aa

ing test cases” 

Instructors should start by explaining a pattern’s structure together with 

its relevance to practice. This should be followed by practical exercises

based on material specifically created to simulate the pattern’s conflict.

The attendees are asked to resolve the situation by following the pattern’s

instructions. Examples for patterns that have been efficiently incorporated 

into such trainings include “use requirement index cards” and “detail the

specification by writing test cases” (Fig. 20.9). 

The adequacy of patterns for teaching purposes, however, depends on

the pattern. Technical and methodological patterns are well suited as

course teaching material, while organizational patterns such as “organize 

the specification along the project structure” tend to be more difficult to

simulate. 
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Patterns can be employed as an efficient foundation for assessing the re-

quirements process maturity in an organization. First, it is determined 

whether the conflicts addressed by the patterns are present in the organiza-

tion and if they are controlled. Then it is examined whether the conflicts

are specifically controlled because of the patterns. The number of present 

and controlled conflicts serve as an indicator of the RE process quality, 

while conflicts purposefully controlled by patterns would indicate process

reproducibility. 

Figure 20.10 depicts the results of a pattern-based RE process evalua-

tion. An initial survey covering eight projects in Germany from differentt

sectors, including the automotive industries, transportation, and research, 

based on 15 RE patterns yielded that most of the conflicts addressed by the

20.4.6  Assessing Process Maturity

patterns were present in the projects (upper graph). Taking closer looks at 

individual projects underlines the potential of using patterns for process

evaluations: a criticality can be computed for projects as the percentage of 

known conflicts relevant for the project. The awareness describes how 

many of the conflicts are purposefully addressed by actions with the ma-

turity denoting the percentage of successfully controlled conflicts. By con-

sidering which RE activities the patterns refer to, the criticality, awareness,

and maturity can be computed and visualized for the different phases of 

the RE process (bottom charts).

So far, the RE pattern applications have been experienced and observed in

a limited number of industrial projects. Accessibility and the ability to of-

fer applicable patterns were the critical success factors for any application. 

The pattern repository with its ability to search for patterns by the dimen-

sions of the pattern vector was felt as an important improvement compared

to pattern catalogues. But as the quality of the process improvement activi-

ties increases with the number of available options, and maturity assess-

ment improves with better method coverage of the underlying patterns, ex-

tending the RE pattern collection remains the major challenge. 

20.4.7  Experience 
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Fig. 20.10. Relevance of patterns to projects (top) and RE process maturity as-

sessment based on patterns for two different projects (bottom)

RE patterns make reliable, successful RE practices available and accessi-

ble to project teams. In terms of rationale, patterns organize and deliver re-

usable knowledge in a generalized form that goes beyond individual cases. 

RE patterns have been employed successfully for process improvement 

coaching of project teams on the job, providing arguments for justifying 

RE decisions teaching and training as well as evaluating RE processes.

The RE pattern format and procedure for pattern search have shown to be

highly useful and easy to teach Working with RE patterns is hence evolv-

ing into a powerful method for building, discussing, and transferring reus-

able RE process rationale.

20.5 Conclusion 

and other applications, as discussed in Section 20.4. Examples include the
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