
Verifying Multi-agent Systems via Unbounded
Model Checking�

M. Kacprzak1, A. Lomuscio2, T. �Lasica3, W. Penczek3,4, and M. Szreter3,��

1 Bia�lystok University of Technology, Institute of Mathematics and Physics,
15-351 Bia�lystok, ul. Wiejska 45A, Poland

mdkacprzak@wp.pl
2 Department of Computer Science, King’s College London,

London WC2R 2LS, United Kingdom
alessio@dcs.kcl.ac.uk

3 Institute of Computer Science, PAS, 01-237 Warsaw, ul. Ordona 21, Poland
{tlasica, penczek, mszreter}@ipipan.waw.pl

4 Podlasie Academy, Institute of Informatics, Siedlce, Poland

Abstract. We present an approach to the problem of verification of
epistemic properties in multi-agent systems by means of symbolic model
checking. In particular, it is shown how to extend the technique of un-
bounded model checking from a purely temporal setting to a temporal-
epistemic one. In order to achieve this, we base our discussion on in-
terpreted systems semantics, a popular semantics used in multi-agent
systems literature. We give details of the technique and show how it can
be applied to the well known train, gate and controller problem.

Keywords: Model checking, unbounded model checking, multi-agent
systems.

1 Introduction

Verification of reactive systems by means of model-checking techniques [3] is
now a well-established area of research. In this paradigm one typically models
a system S in terms of automata (or by a similar transition-based formalism),
builds an implementation PS of the system by means of a model-checker friendly
language such as the input for SMV or PROMELA, and finally uses a model-
checker such as SMV or SPIN to verify some temporal property φ the system:
MP |= φ, where MP is a temporal model representing the executions of PS .
As it is well known, there are intrinsic difficulties with the naive approach of
performing this operation on an explicit representation of the states, and refine-
ments of symbolic techniques (based on OBDD’s, and SAT [1] translations) are

� The authors acknowledge support from the Polish National Committee for Scientific
Research (grant No 4T11C 01325, a special grant supporting ALFEBIITE), the
Nuffield Foundation (grant NAL/00690/G), and EPSRC (GR/S49353/01).

�� M. Szreter acknowledges support from the US Navy via grant N00014-04-1-4063
issued by the Office of Naval Research International Field Office.

M.G. Hinchey et al. (Eds.): FAABS 2004, 3228, pp. 189–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

mailto:mdkacprzak@wp.pl
mailto:alessio@dcs.kcl.ac.uk

190 M. Kacprzak et al.

being investigated to overcome these hurdles. Formal results and corresponding
applications now allow for the verification of complex systems that generate tens
of thousands of states.

The field of multi-agent systems (MAS) has also recently become interested
in the problem of verifying complex systems. In MAS the emphasis is on the
autonomy, and rationality of the components, or agents [22]. In this area, modal
logics representing concepts such as knowledge, beliefs, intentions, norms, and
the temporal evolution of these are used to specify high level properties of the
agents. Since these modalities are given interpretations that are different from
the ones of the standard temporal operators, it is not straightforward to ap-
ply existing model checking tools developed for standard Linear Temporal Logic
(LTL) (or Computation Tree Logic, CTL) temporal logic to the specification of
MAS. One further problem is the fact that the modalities that are of interest
are often not given a precise interpretation in terms of the computational states
of the system, but simply interpreted on classes of Kripke models that guaran-
tee (via frame-correspondence) that some intuitive properties of the system are
preserved1. This makes it hard to use the semantics to model any actual com-
putation performed by the system [21]. For the case of knowledge, the semantics
of interpreted systems [8], popularized by Halpern and colleagues in the 90’s,
can be used to give an interpretation to the modalities that maintains the tradi-
tional S5 properties, while, at the same time, is appropriate for model checking
[9]. Indeed, a considerable amount of literature now exists on the application
of interpreted systems and epistemic logic to the application areas of security,
modelling of synchronous, asynchronous systems, digital rights, etc. It is fair to
say that this area constitutes the most thoroughly explored, and technically ad-
vanced sub-discipline among the formal studies of multi-agent systems available
at the moment.

1.1 State of the Art and Related Literature

The recent developments in the area of model checking MAS can broadly be
divided into streams: in the first category standard predicates are used to inter-
pret the various intensional notions and these are paired with standard model
checking techniques based on temporal logic. Following this line is for example
[23] and related papers. In the other category we can place techniques that make
a genuine attempt at extending the model checking techniques by adding other
operators. Works along these lines include [19, 20, 12, 17, 16, 15, 14, 10].

In [19] local propositions are used to translate knowledge modalities on LTL
structures. Once this process is done, the result can be fed into a SPIN model
checker. Unfortunately, in this approach local propositions need to be computed
by the user.

1 For example, in epistemic logic it is customary to use equivalence models to interpret
a knowledge modality K so that it inherits the properties of the logical systems S5
[2]; in particular axioms T, 4, and 5 (which are considered to be intuitively correct
for knowledge) result valid.

Verifying Multi-agent Systems via Unbounded Model Checking 191

These works were preceded by [12], where van der Meyden and Shilov pre-
sented theoretical properties of the model checking problems for epistemic lin-
ear temporal logics for interpreted systems with perfect recall. In particular, it
was shown that the problem of checking a language that includes “until” and
“common knowledge” on perfect recall systems is undecidable, and decidable
fragments were identified.

In [17, 16, 15] an extension of standard temporal verification via model check-
ing on obdd’s to epistemic and deontic operators is presented and studied.

In [14, 10] an extension of the method of bounded model checking (one of the
main SAT-based techniques) to CTLK a language comprising both CTL and
knowledge operators, was defined, implemented, and evaluated. While prelimi-
nary results appear largely positive, any bounded model checking algorithm is
mostly of use when the task is either to check whether a universal CTLK for-
mula is actually false on a model, or to check that an existential CTLK formula
is valid. This is a severe limitation in MAS as it turns out that many of the
most interesting properties one is interested in checking actually involve univer-
sal formulas. For example, in a security setting one may want to check whether
it is true that forever in the future a particular secret, perhaps a key, is mutually
known by two participants.

1.2 Aim of This Paper

The aim of this paper is to contribute to the line of SAT-based techniques, by
overcoming the intrinsic limitation of any bounded model checking algorithm,
and provide a method for model checking the full language of CTLK. The SAT-
based method we introduce and discuss here is an extension to knowledge and
time of a technique introduced by McMillan [11] called unbounded model checking
(UMC). A byproduct of the work presented here is the definition of fixed point
semantics for a logic CTLpK, which extends CTLK by past operators.

Like any SAT-based method, UMC consists in translating the model checking
problem of what is in this case a CTLpK formula into the problem of satisfia-
bility of a propositional formula. UMC exploits the characterization of the basic
modalities in terms of Quantified Boolean Formulas (QBF), and the algorithms
that translate QBF and fixed point equations over QBF into propositional for-
mulas. In order to adapt UMC for checking CTLpK, we use three algorithms.
The first one, implemented by the procedure forall [11] (based on the Davis-
Putnam-Logemann-Loveland approach [4]) eliminates the universal quantifier
from a QBF formula representing a CTLpK formula, and returns the result in
conjunctive normal form (CNF). The remaining algorithms, implemented by the
procedures gfp and lfp calculate the greatest and the least fixed points for the
modal formulas in use here. Ultimately, the technique allows for a CTLpK for-
mula α to be translated into a propositional formula [α](w) 2 in CNF, which
characterizes all the states of the model, where α holds.

2 Note that w is a vector of propositional variables used to encode the states of the
model.

192 M. Kacprzak et al.

For the case of CTL it was shown by McMillan [11] that model checking via
UMC can be exponentially more efficient than approaches based on BDD’s in
two situations:

– whenever the resulting fixed points have compact representations in CNF,
but not via BDD’s;

– whenever the SAT-based image computation step proves to be faster than
the BDD-based one.

Although we do not prove it here, we expect a similar increase in efficiency
for model checking of CTLpK over interpreted systems.

The rest of the paper is structured in the following manner. Section 2 in-
troduces interpreted systems semantics, the semantics on which we ground our
investigation. The logic CTLpK is defined in Section 3. Section 4 summarize the
basic definitions that we need for CNF and QBF formulas, and fixes the notation
we use throughout the paper. A fixed point characterization of CTLpK formulas
is presented in Section 5. The main idea of symbolic model checking CTLpK is
described in section 6, where algorithms for computing propositional formulas
equivalent to CTLpK formulas are also given. Two examples on the use of the
algorithms of this paper are given in Section 7. Preliminary experimental results
are shown in Section 8, whereas conclusions are given in Section 9.

2 Interpreted Systems Semantics

Any transition-based semantics allows for the representation of temporal flows
of time by means of the successor relation. For example, UMC for CTL uses
plain Kripke models [11]. To work on a temporal epistemic language, we need to
consider a semantics that allows for an automatic representation of the epistemic
relations between computational states [21]. The mainstream semantics that
allows to do so is the one of interpreted systems [8].

Interpreted systems can be succinctly defined as follows (we refer to [8] for
more details). Assume a set of agents A = {1, . . . , n}, a set of local states Li and
possible actions Acti for each agent i ∈ A, and a set Le and Acte of local states
and actions for the environment. The set of possible global states for the system
is defined as G = L1× . . .×Ln×Le, where each element (l1, . . . , ln, le) of G rep-
resents a computational state for the whole system (note that, as it will be clear
below, some states in G may actually be never reached by any computation of the
system). Further assume a set of protocols Pi : Li → 2Acti , for i = 1, . . . , n, repre-
senting the functioning behaviour of every agent, and a function Pe : Le → 2Acte

for the environment. We can model the computation taking place in the system
by means of a transition function t : G×Act→ G, where Act ⊆ Act1×. . .×Actn×
Acte is the set of joint actions. Intuitively, given an initial state ι, the sets of pro-
tocols, and the transition function, we can build a (possibly infinite) structure
that represents all the possible computations of the system. Many representa-
tions can be given to this structure; since in this paper we are only concerned
with temporal epistemic properties, we shall find the following to be a useful one.

Verifying Multi-agent Systems via Unbounded Model Checking 193

Definition 1 (Models). Given a set of agents A = {1, . . . , n}, a temporal
epistemic model (or simply a model) is a pair M = (K,V) with K = (G,W, T,∼1,
. . . ,∼n, ι), where

– G is the set of the global states for the system (henceforth called simply
states);

– T ⊆ G×G is a total binary (successor) relation on G;
– W is a set of reachable global states from ι, i.e., W = {s ∈ G | (ι, s) ∈ T ∗}3,
– ∼i ⊆ G × G (i ∈ A) is an epistemic accessibility relation for each agent
i ∈ A defined by s ∼i s

′ iff li(s′) = li(s), where the function li : G → Li

returns the local state of agent i from a global state s; obviously ∼i is an
equivalence relation,

– ι ∈W is the initial state;
– V : G −→ 2PVK is a valuation function for a set of propositional variables
PVK such that true ∈ V(s) for all s ∈ G. V assigns to each state a set of
propositional variables that are assumed to be true at that state.

Note that in the definition above we include both all possible states and the
subset of reachable states. The reason for this follows from having past modalities
in the language (see the next section), which are defined over any possible global
state so that a simple fixed point semantics for them can be given. Still, note that,
if required, it is possible to restrict the range of the past modalities to reachable
states only by insisting that the target state is itself reachable from the initial state.

By |M| we denote the number of states of M, by IN = {0, 1, 2, . . .} the set of
natural numbers and by IN+ = {1, 2, . . .} the set of positive natural numbers.

Epistemic Relations. When we consider a group of agents, we are often interested
in situations in which everyone in the group knows a fact α. In addition to this it
is sometimes useful to consider other kinds of group knowledge. One of these is
the one of common knowledge. A group of agents has common knowledge about α
if everyone knows that α, and everyone knows that everyone knows α, and every-
one knows that everyone knows that everyone knows that α, and so on. For exam-
ple common knowledge is achieved following information broadcasting with no
faults. A different notion is the one of distributed knowledge (sometimes referred
to as “implicit knowledge”, or “wise-man” knowledge). A fact α is distributed
knowledge in a group of agents if it could be inferred by pooling together the
information the agents have. We refer to [8] for an introduction to these concepts.

Let Γ ⊆ A. Given the epistemic relations for the agents in Γ , the union
of Γ ’s accessibility relations defines the epistemic relation corresponding to the
modality of everybody knows: ∼E

Γ =
⋃

i∈Γ ∼i. ∼C
Γ denotes the transitive closure

of ∼E
Γ , and corresponds to the relation used to interpret the modality of common

knowledge. Notice that from reflexivity of ∼E
Γ follows that ∼C

Γ is, in fact, the
transitive and reflexive closure of ∼E

Γ . The relation used to interpret the modal-
ity of distributed knowledge is given by taking the intersection of the relations
corresponding to the agents in Γ .

3 T ∗ denotes the reflexive and transitive closure of T .

194 M. Kacprzak et al.

Computations. A computation in M is a possibly infinite sequence of states
π = (s0, s1, . . .) such that (si, si+1) ∈ T for each i ∈ IN. Specifically, we assume
that (si, si+1) ∈ T iff si+1 = t(si, acti), i.e., si+1 is the result of applying the
transition function t to the global state si, and a joint action acti. All the com-
ponents of acti are prescribed by the corresponding protocols Pj for the agents
at si. In the following we abstract from the transition function, the actions, and
the protocols, and simply use T , but it should be clear that this is uniquely de-
termined by the interpreted system under consideration. Indeed, these are given
explicitly in the example in the last section of this paper. In interpreted systems
terminology a computation is a part of a run; note that we do not require s0
to be an initial state. For a computation π = (s0, s1, . . .), let π(k) = sk, and
πk = (s0, . . . , sk), for each k ∈ IN. By Π(s) we denote the set of all the infinite
computations starting at s in M.

3 Computation Tree Logic of Knowledge with Past
(CTLpK)

Interpreted systems are traditionally used to give a semantics to an epistemic
language enriched with temporal connectives based on linear time [8]. Here we
use Computation Tree Logic (CTL) by Emerson and Clarke [7] as our basic
temporal language and add an epistemic and past component to it. We call the
resulting logic Computation Tree Logic of Knowledge with Past (CTLpK).

Definition 2 (Syntax of CTLpK). Let PVK be a set of propositional variables
containing the symbol true. The set of CTLpK formulas FORM is defined
inductively by using the following rules only:

• every member p of PVK is a formula,
• if α and β are formulas, then so are ¬α, α ∧ β and α ∨ β,
• if α and β are formulas, then so are AXα, AGα, and A(αUβ),
• if α is formula, then so are AYα and AHα,
• if α is formula, then so is Kiα, for i ∈ A,
• if α is formula, then so are DΓα, CΓα, and EΓα, for Γ ⊆ A.

The other modalities are defined by duality as follows:

– EFα
def
= ¬AG¬α, EPα

def
= ¬AH¬α, EZα

def
= ¬AZ¬α, for Z ∈ {X,Y },

– Kiα
def
= ¬Ki¬α, DΓα

def
= ¬DΓ¬α, CΓα

def
= ¬CΓ¬α, EΓα

def
= ¬EΓ¬α.

Moreover, α ⇒ β
def
= ¬α ∨ β, α ⇔ β

def
= (α ⇒ β) ∧ (β ⇒ α), and false

def
=

¬true. We omit the subscript Γ for the epistemic modalities if Γ = A, i.e., Γ
is the set of all the agents. As customary X,G stand for respectively “at the
next step”, and “forever in the future”. Y,H are their past counterparts “at the
previous step”, and “forever in the past”. The Until operator U, precisely αUβ,
expresses that β occurs eventually and α holds continuously until then.

Verifying Multi-agent Systems via Unbounded Model Checking 195

Definition 3 (Interpretation of CTLpK). Let M = (K,V) be a model with
K = (G,W, T,∼1, . . . ,∼n, ι), s ∈ G a state, π a computation, and α, β formulas
of CTLpK. M, s |= α denotes that α is true at the state s in the model M. M is
omitted, if it is implicitly understood. The relation |= is defined inductively as
follows:

s |= p iff p ∈ V(s),
s |= ¬α iff s 	|= α,
s |= α ∨ β iff s |= α or s |= β,
s |= α ∧ β iff s |= α and s |= β,
s |= AXα iff ∀π ∈ Π(s) π(1) |= α,
s |= AGα iff ∀π ∈ Π(s) ∀m≥0 π(m) |= α,
s |= A(αUβ) iff ∀π ∈ Π(s) (∃m≥0 [π(m) |= β and ∀j<m π(j) |= α]),
s |= AYα iff ∀s′ ∈ G (if (s′, s) ∈ T, then s′ |= α),
s |= AHα iff ∀s′ ∈ G (if (s′, s) ∈ T ∗, then s′ |= α),
s |= Kiα iff ∀s′ ∈W (if s ∼i s′, then s′ |= α),
s |= DΓα iff ∀s′ ∈W (if s ∼D

Γ s′, then s′ |= α),
s |= EΓα iff ∀s′ ∈W (if s ∼E

Γ s′, then s′ |= α),
s |= CΓα iff ∀s′ ∈W (if s ∼C

Γ s′, then s′ |= α).

Definition 4. (Validity) A CTLpK formula ϕ is valid in M (denoted M |= ϕ)
iff M, ι |= ϕ, i.e., ϕ is true at the initial state of the model M .

Notice that the past component of CTLpK does not contain the modality
Since, which is a past counterpart of the modality Until denoted by U. Extend-
ing the logic by Since is possible, but complicates the semantics, so this is not
discussed in this paper.

4 Formulas in Conjunctive Normal Form and Quantified
Boolean Formulas

In this section, we shortly describe Davis-Putnam-Logemann-Loveland approach
[4] to checking satisfiability of formulas in conjunctive normal form (CNF), and
show how to construct a CNF formula that is unsatisfiable exactly when a propo-
sitional formula α is valid. Having done so, we apply these two methods to com-
pute a propositional formula equivalent to the quantified boolean formula ∀v.α,
where v is a vector of propositions. In order to do this we first give some basic
definitions. The formalism in this section is from [11] and is reported here for
completeness.

Let PV be a finite set of propositional variables. A literal is a propositional
variable p ∈ PV or the negation of one: ¬p, p ∈ PV. A clause is a disjunction
of a set of zero or more literals l[1] ∨ . . . ∨ l[n]. A disjunction of zero literals is
taken to mean the constant false. A formula is in a conjunctive normal form
(CNF) if it is a conjunction of a set of zero or more clauses c[1] ∧ . . . ∧ c[n]. A
conjunction of zero clauses is taken to mean the constant true. An assignment
is a partial function from PV to {true, false}. An assignment is said to be

196 M. Kacprzak et al.

total when its domain is PV. A total assignment A is said to be satisfying for
a formula α when α(A) = true, i.e., the value of α given by A is true (under
the usual interpretation of the boolean connectives). We equate an assignment
A with the conjunction of a set of literals, specifically the set containing ¬p for
all p ∈ dom(A) such that A(p) = false, and p for all p ∈ dom(A) such that
A(p) = true.

For a given CNF formula α and an assignment A, an implication graph
IG(A,α) is a maximal directed acyclic graph (V,E), where V is a set of ver-
tices, and E is a set of edges, such that:

– V is a set of literals,
– every literal in A is a root,
– for every vertex l not in A, the CNF formula α contains the clause
cl(l, A, α)

def
= l ∨∨

m∈{l′∈V :(l′,l)∈E} ¬m,
– for all p ∈ PV, V does not contain both p and ¬p.

Notice that the above conditions do not uniquely define the implication graph.
We denote by Aα the assignment induced by the implication graph IG(A,α), i.e.,
Aα =

∧
v∈V v, where V is a set of vertices of IG(A,α). Observe that Aα is an

extension of A. Furthermore, α ∧A implies Aα.
Given two clauses of the form c[1] = p ∨ C1 and c[2] = ¬p ∨ C2, where C1

and C2 are disjunctions of literals, we say that the resolvent of c[1] and c[2] is
C1 ∨ C2, provided that C1 ∨ C2 contains no contradictory literals, i.e., it does
not contain a variable p and its negation ¬p. If this happens, the resolvent does
not exist. Note that the resolvent of c[1] and c[2] is a clause that is implied by
c[1] ∧ c[2].

CNF formulas satisfy useful properties to check their satisfiability. Indeed,
notice that a CNF formula is satisfied only when each of its clauses is satisfied
individually. Thus, given a CNF formula α and an assignment A, if a clause
in α has all its literals assigned value false, then A cannot be extended to a
satisfying assignment. A clause that has all its literals assigned to value false
is called a conflicting clause. We also say that a clause is in conflict when all
of its literals are assigned the value false under Aα. If there exists a clause in
α such that the all but one of its literals have been assigned the value false,
then the remaining literal must be assigned the value true for this clause to
be satisfied. In particular, in every satisfying assignment which is an extension
of the assignment A, the unassigned literal must be true. Such an unassigned
literal is called unit literal, and the clause it belongs to is called a unit clause.

There are several algorithms for determining satisfiability of CNF formulas.
Here, we use the algorithm proposed by Davis and Putnam and later modified
by Davis, Logemann and Loveland [4]. The algorithm is based on the methods of
Boolean constraint propagation (BCP) and conflict-based learning (CBL) and it
is aimed at building a satisfying assignment for a given formula α in an incremen-
tal manner. The BCP technique is the most important part of the algorithm; it
determines a logical consequence of the current assignment by building an impli-
cation graph and detecting unit clauses, and conflicting clauses. When a conflict
is detected, as we mentioned above, the current assignment cannot be extended

Verifying Multi-agent Systems via Unbounded Model Checking 197

to a satisfying one. In this case, the technique of conflict-based learning is used
to deduce a new clause that prevents similar conflicts from reoccurring. This
new clause is called a conflict clause and is deduced by resolving the existing
clauses using the implication graph as a guide.

The following is a generic conflict-based learning procedure that takes an
assignment A, a CNF formula α, and a conflicting clause c and produces a
conflict clause by repeatedly applying resolution steps until either a termination
condition T is satisfied, or no further steps are possible. We elaborate on the
condition T below when we discuss how the procedure deduce is used by the
procedure forall.

procedure deduce(c, A, α),
while ¬T and exists l ∈ c such that ¬l 	∈ A

let c = resolvent of cl(¬l, A, α) and c
return c

The resulting clause c is implied by α. Thus it can be added to α without
changing its satisfiability.

In the following we show a polynomial-time algorithm that, given a proposi-
tional formula α, constructs a CNF formula which is unsatisfiable exactly when
α is valid. The procedure works as follows. First, for every β subformula of
the formula α (including α itself) we introduce a distinct variable lβ . If β is a
propositional variable, then lβ = β. Next we assign a formula CNF(β) to every
subformula β according to the following rules:

• if β is a variable then CNF(β) = true,
• if β = ¬φ then CNF(β) = CNF(φ) ∧ (lβ ∨ lφ) ∧ (¬lβ ∨ ¬lφ),
• if β = φ ∨ ϕ then CNF(β) = CNF(φ) ∧ CNF(ϕ) ∧ (lβ ∨ ¬lφ) ∧ (lβ ∨ ¬lϕ) ∧

(¬lβ ∨ lφ ∨ lϕ),
• if β = φ ∧ ϕ then CNF(β) = CNF(φ) ∧ CNF(ϕ) ∧ (¬lβ ∨ lφ) ∧ (¬lβ ∨ lϕ) ∧

(lβ ∨ ¬lφ ∨ ¬lϕ),
• if β = φ→ ϕ then CNF(β) = CNF(φ) ∧ CNF(ϕ) ∧ (lβ ∨ lφ) ∧ (lβ ∨ ¬lϕ) ∧

(¬lβ ∨ ¬lφ ∨ lϕ).

It can be shown [11] that the formula α is valid when the CNF formula
CNF(α)∧¬lα is unsatisfiable. This follows from the fact that there is a unique
satisfying assignment A′ of CNF(α) consistent with A such that A′(lα) = α(A).

In our method, in order to have a more succinct notation for complex op-
erations on boolean formulas, we also use Quantified Boolean Formulas (QBF),
an extension of propositional logic by means of quantifiers ranging over proposi-
tions. In BNF: α ::= p | ¬α | α∧α | ∃p.α | ∀p.α. The semantics of the quantifiers
is defined as follows:

• ∃p.α iff α(p← true) ∨ α(p← false),
• ∀p.α iff α(p← true) ∧ α(p← false),

where α ∈ QBF, p ∈ PV and α(p ← ψ) denotes substitution with the formula
ψ of every occurrence of the variable p in formula α.

198 M. Kacprzak et al.

We will use the notation ∀v.α, where v = (v[1], . . . , v[m]) is a vector of
propositional variables, to denote ∀v[1].∀v[2] . . .∀v[m].α. Moreover, let α(w) be a
QBF formula over the propositional variables of the vector w = (w[1], . . . , w[m]).

What is important here, is that for a given QBF formula ∀v.α, we can con-
struct a CNF formula equivalent to it by using the algorithm forall [11].

procedure forall(v, α), where v = (v[1], ..., v[m]) and α is a propositio-
nal formula
let φ = CNF(α) ∧ ¬lα, χ = true, and A = ∅
repeat

if φ contains false, return χ
else if some c in φ is in conflict

add clause deduce(c, A, φ) to φ
remove some literals from A

else if Aφ is total
choose a blocking clause c′

remove literals of form v[i] and ¬v[i] from c′

add c′ to φ and χ
else

choose a literal l such that l 	∈ A and ¬l 	∈ A
add l to A

The procedure works as follows. Initially it assumes an empty assignment
A, a formula χ to be true and φ to be a CNF formula CNF(α) ∧ ¬lα. The
algorithm aims at building a satisfying assignment for the formula φ, i.e., an
assignment that falsifies α. The search for an appropriate assignment is based
on the Davis-Putnam-Logemann-Loveland approach. The following three cases
may happen:

– A conflict is detected, i.e., there exists a clause in φ such that all of its literals
are false in Aφ. So, the assignment A can not be extended to a satisfying
one. Then, the procedure deduce is called to generate a conflict clause, which
is added to φ, and the algorithm backtracks, i.e., it changes the assignment
A by withdrawing one of the previously assigned literals.

– A conflict does not exist and Aφ is total, i.e., the satisfying assignment is
obtained. In this case we generate a new clause which is false in the current
assignment Aφ and whose complement characterizes a set of assignments
falsifying the formula α. This clause is called a blocking clause and it must
have the following properties:
• it contains only input variables, i.e., the variables over which the input

formula α is built,
• it is false in the current assignment,
• it is implied by lα ∧ CNF(α).

A blocking clause could be generated using the conflict-based learning proce-
dure, but we require the blocking clause to contain only input variables. To
do this we use an implication graph, in which all the roots are input literals.
Such a graph can be generated in the following way. Let Aφ be a satisfying

Verifying Multi-agent Systems via Unbounded Model Checking 199

assignment for φ, A′ = Aφ ↓ V , i.e., A′ is the projection of Aφ onto the input
variables and let φ′ = CNF(α)∧χ. It is not difficult to show that A′

φ′ = Aφ,
i.e., both the graphs IG(A′, φ′) and IG(A, φ) induce the same assignments.
Furthermore, the variable lα is in conflict in IG(A′, φ′), since φ contains the
clause ¬lα. Thus, a clause deduce(lα, A′, φ′) is a blocking clause providing
that it contains only input variables, what can be ensured by a termination
condition T .
Next, in order to quantify universally over the variables v[1], . . . , v[m], the
blocking clause is deprived of the variables either of the form v[i] and the
negation of these. This is sufficient as the blocking clause is a formula in CNF.
Then, what remains is added to the formulas φ and χ and the algorithm
continues, i.e., again finds a satisfying assignment for φ.

– The first two cases do not apply. Then, the procedure makes a new assign-
ment A by giving a value to a selected variable.

On termination, when φ becomes unsatisfiable, χ is a conjunction of the
blocking clauses and precisely characterizes ∀v.α.

Theorem 1. Let α be a propositional formula and v = (v[1], . . . , v[m]) be a
vector of propositions, then the QBF formula ∀v.α is logically equivalent to the
CNF formula forall(v, α).

The proof of the above theorem follows from the correctness of the algorithm
forall (see [11]).

Example 1. We illustrate in a quite detailed way (as performed by a solver) some
basic operations of the procedure forall. To make it simple, we explain these
operations for a formula in CNF. So, let φ = (¬v1) ∧ (v1 ∨ v4 ∨ ¬v5) ∧ (¬v2 ∨
v3)∧ (v4 ∨ v5) and assume that φ = CNF(α)∧¬lα for some formula α. The aim
of the procedure forall(v1, α) is to find a formula in CNF equivalent to ∀v1.α.
We will only show how one blocking clause is generated and added to φ and
χ. Notice that at the start of the procedure the assignment of v1 is implied as
this variable is the only literal in a clause of φ and must be followed in order
for the clause to be satisfied. Thus, we have A = {¬v1}. Now, the algorithm
decides the assignment for another unassigned variable, say A(v2) = true. This
implies the assignment of v3, namely A(v3) = true, so that the clause (¬v2∨v3)
is satisfied. Next, an assignment A(v4) = false is decided, but notice that this
implies both v5 (because of the clause (v4 ∨ v5)) and ¬v5 (because of the clause
(v1∨v4∨¬v5)) – a conflict. The implication graph is analysed (several algorithms
can be applied [13]) and a learned clause (v1 ∨ v4) is generated and added to
the working set of clauses (i.e., φ). Notice, that the variables v2 and v3 are not
responsible for this conflict. The learned clause greatly reduces the number of
assignments to be examined as the partial assignment {¬v1,¬v4} is excluded
from the future search irrespectively on valuations of the remaining variables.
Next, the algorithm withdraws from the assignment of v4. Notice that the learned
clause implies A(v4) = true. Thus, a satisfying assignment that is found is
Aϕ = {¬v1, v2, v3, v4, v5}.

200 M. Kacprzak et al.

A blocking clause (v1 ∨ ¬v4) is generated and the literal v1 is removed from
this clause. We obtain the blocking clause c′ = (¬v4) and c′ is added to φ and χ.
The procedure keeps on going until φ does not contain false.

5 Fixed Point Characterization of CTLpK

In this section we show how the set of states satisfying any CTLpK formula
can be characterized by a fixed point of an appropriate function. We follow and
adapt, when necessary, the definitions given in [3].

Let M = ((G,W, T,∼1, . . . ,∼n, ι),V) be a model. Notice that the set 2G of
all subsets of G forms a lattice under the set inclusion ordering. Each element
G′ ⊆ Q of the lattice can also be thought of as a predicate on G, where the
predicate is viewed as being true for exactly the states in G′. The least element
in the lattice is the empty set, which corresponds to the predicate false, and
the greatest element in the lattice is the set G, which corresponds to true. A
function τ mapping 2G to 2G is called a predicate transformer. A set G′ ⊆ G is
a fixed point of a function τ : 2G → 2G if τ(G′) = G′.

Whenever τ is monotonic (i.e., when P ⊆ Q implies τ(P) ⊆ τ(Q)), τ has
a least fixed point denoted by µZ.τ(Z), and a greatest fixed point, denoted
by νZ.τ(Z). When τ is monotonic and

⋃
-continuous (i.e., when P1 ⊆ P2 ⊆

. . . implies τ(
⋃

i Pi) =
⋃

i τ(Pi)), then µZ.τ(Z) =
⋃

i≥0 τ
i(false). When τ is

monotonic and
⋂

-continuous (i.e., when P1 ⊇ P2 ⊇ . . . implies τ(
⋂

i Pi) =⋂
i τ(Pi)), then νZ.τ(Z) =

⋂
i≥0 τ

i(true) (see [18]).
In order to obtain fixed point characterizations of the modal operators, we

identify each CTLpK formula α with the set 〈α〉M of states in M at which this for-
mula is true, formally 〈α〉M = {s ∈ G |M, s |= α}. If M is clear from the context
we omit the subscript M. Furthermore, we define functions AX,AY,Ki,EΓ ,DΓ

from 2G to 2G as follows:
– AX(Z) = {s ∈ G | for every s′ ∈ G if (s, s′) ∈ T, then s′ ∈ Z},
– AY(Z) = {s ∈ G | for every s′ ∈ G if (s′, s) ∈ T, then s′ ∈ Z},
– Ki(Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼ s′, then s′ ∈ Z},
– EΓ (Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼E

Γ s′, then s′ ∈ Z},
– DΓ (Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼D

Γ s′, then s′ ∈ Z}.
Observe that 〈Oα〉 = O(〈α〉), for O ∈ {AX,AY,Ki,EΓ , DΓ }. Then, the

following temporal and epistemic operators may be characterized as the least
or the greatest fixed point of an appropriate monotonic (

⋂
-continuous or

⋃
-

continuous) predicate transformer.

– 〈AGα〉 = νZ.〈α〉 ∩AX(Z),
– 〈A(αUβ)〉 = µZ.〈β〉 ∪ (〈α〉 ∩AX(Z)),
– 〈AHα〉 = νZ.〈α〉 ∩AY(Z),
– 〈CΓα〉 = νZ.EΓ (Z ∩ 〈α〉)

The first three equations are standard (see [6], [3]), whereas the fourth one
is defined analogously taking account that ∼C

Γ is the transitive, and reflexive
closure of ∼E

Γ .

Verifying Multi-agent Systems via Unbounded Model Checking 201

6 Symbolic Model Checking on CTLpK

Let M = (K,V) with K = (G,W, T,∼1, ...,∼n, ι). Recall that the set of global
states G = ×n

i=1Li is the Cartesian product of the set of local states (without
loss of generality we treat the environment as one of the agents).

We assume Li ⊆ {0, 1}ni , where ni = �log2(|Li|)� and let n1 + . . .+ nn = m,
i.e., every local state is represented by a sequence consisting of 0’s and 1’s.
Moreover, let Di be a set of the indexes of the bits of the local states of each
agent i of the global states, i.e., D1 = {1, . . . , n1}, . . . , Dn = {m−nn+1, . . . ,m}.

Let PV be a set of fresh propositional variables such that PV ∩ PVK = ∅,
FPV be a set of propositional formulas over PV, and lit : {0, 1} × PV → FPV
be a function defined as follows: lit(0, p) = ¬p and lit(1, p) = p. Furthermore,
let w = (w[1], . . . , w[m]), where w[i] ∈ PV for each i = 1, . . . ,m, be a global
state variable. We use elements of G as valuations4 of global state variables in
formulas of FPV . For example w[1] ∧ w[2] evaluates to true for the valuation
q = (1, . . . , 1), and it evaluates to false for the valuation q = (0, . . . , 0).

Now, the idea consists in using propositional formulas of FPV to encode sets
of states of G. For example, the formula w[1] ∧ . . . ∧ w[m] encodes the state
represented by (1, . . . , 1), whereas the formula w[1] encodes all the states, the
first bit of which is equal to 1.

Next, the following propositional formulas are defined:

– Is(w) :=
∧m

i=1 lit(si, w[i]).
This formula encodes the state s = (s1, . . . , sm) of the model, i.e., si = 1 is
encoded by w[i], and si = 0 is encoded by ¬w[i].

– H(w, v) :=
∧m

i=1 w[i]⇔ v[i].
This formula represents logical equivalence between global state encodings,
representing the fact that they represent the same state.

– T (w, v) is a formula, which is true for a valuation (s1, . . . , sm) of
(w[1], . . . , w[m]) and a valuation (s′

1, . . . , s
′
m) of (v[1], . . . , v[m]) iff

((s1, . . . , sm), (s′
1, . . . , s

′
m)) ∈ T .

Our aim is to translate CTLpK formulas into propositional formulas. Specif-
ically, for a given CTLpK formula β we compute a corresponding propositional
formula [β](w), which encodes those states of the system that satisfy the for-
mula. Operationally, we work outwards from the most nested subformulas, i.e.,
the atoms. In other words, to compute [Oα](w), where O is a modality, we work
under the assumption of already having computed [α](w). To calculate the ac-
tual translations we use either the fixed point or the QBF characterization of
CTLpK formulas. For example, the formula [AXα](w) is equivalent to the QBF
formula ∀v.(T (w, v) ⇒ [α](v)). We can use similar equivalences for formulas
AYα,Kiα,DΓα,EΓα. More specifically, we use the following three basic algo-
rithms. The first one, implemented by the procedure forall, is used for formulas
Oα such that O ∈ {AX, AY, Ki, DΓ , EΓ }. This procedure eliminates the univer-
sal quantifier from a QBF formula representing a CTLpK formula, and returns

4 We identify 1 with true and 0 with false.

202 M. Kacprzak et al.

the result in a conjunctive normal form. The second algorithm, implemented by
the procedure gfpO, is applied to formulas Oα such that O ∈ {AG,AH, CΓ }.
This procedure computes the greatest fixed point. For the formulas of the form
A(αUβ) we use a third procedure, called lfpAU , which computes the least fixed
point. In so doing, given a formula β we obtain a propositional formula [β](w)
such that β is valid in the model M iff the conjunction [β](w)∧Iι(w) is satisfiable,
i.e., ι ∈ 〈β〉. Below, we formalize the above discussion.

Definition 5 (Translation for UMC). Given a CTLpK formula ϕ, the propo-
sitional translation [ϕ](w) is inductively defined as follows:

• [p](w) :=
∨

s∈〈p〉 Is(w), for p ∈ PVK,
• [¬α](w) := ¬[α](w),
• [α ∧ β](w) := [α](w) ∧ [β](w),
• [α ∨ β](w) := [α](w) ∨ [β](w),
• [AXα](w) := forall

(
v, (T (w, v)⇒ [α](v))

)
,

where [α](v) denotes [α](w)(w ← v)5 ,
• [AYα](w) := forall

(
v, (T (v, w)⇒ [α](v))

)
,

• [Kiα](w) := forall
(
v, ((Hi(w, v) ∧ ¬ gfpAH(¬Iι(v)))⇒ [α](v))

)
,

• [DΓα](w) := forall
(
v, ((

∧
i∈Γ Hi(w, v) ∧ ¬ gfpAH(¬Iι(v)))⇒ [α](v))

)
,

• [EΓα](w) := forall
(
v, ((

∨
i∈Γ Hi(w, v) ∧ ¬ gfpAH(¬Iι(v)))⇒ [α](v))

)
,

• [AGα](w) :=gfpAG([α](w)),
• [A(αUβ)](w) :=lfpAU ([α](w), [β](w)),
• [AHα](w) :=gfpAH([α](w)),
• [CΓα](w) :=gfpCΓ

([α](w)).

The algorithms gfp and lfp are based on the standard procedures computing
fixed points.

procedure gfpAG([α](w)), where α is a CTLpK formula
let Q(w) = [true](w), Z(w) = [α](w)
while ¬(Q(w)⇒ Z(w)) is satisfiable

let Q(w) = Z(w),
let Z(w) =forall(v, (T (w, v)⇒ Z(v))) ∧ [α](w)

return Q(w)

The procedure gfpAH is obtained by replacing in the above forall(v, (T (w, v)⇒
Z(v))) with forall(v, (T (v, w) ⇒ Z(v))).

procedure gfpCΓ
([α](w)), where α is a CTLpK formula

let Q(w) = [true](w),
Z(w) =forall

(
v, ((

∨
i∈Γ Hi(w, v) ∧ ¬gfpAH(¬Iι(v)))⇒ [α](v))

)

while ¬(Q(w)⇒ Z(w)) is satisfiable
let Q(w) = Z(w),

5 Note that by α(w)(w ← v) we formally mean [α](w)(w[1]← v[1]) · · · (w[m]← v[m]),
where v = (v[1], . . . , v[m]) is a vector of propositional variables.

Verifying Multi-agent Systems via Unbounded Model Checking 203

let Z(w) =forall(v, (
∨

i∈Γ Hi(w, v) ∧ ¬gfpAH(¬Iι(v))⇒ (Z(v) ∧ [α](v))))
return Q(w)

procedure lfpAU ([α](w), [β](w)), where α, β are CTLpK formulas
let Q(w) = [false](w), Z(w) = [β](w)
while ¬(Z(w)⇒ Q(w)) is satisfiable

let Q(w) = Q(w) ∨ Z(w),
let Z(w) =forall(v, (T (w, v)⇒ Q(v))) ∧ [α](w)

return Q(w)

We now have all the ingredients in place to state the main result of this
paper: modal satisfaction of a CTLpK formula can be rephrased as propositional
satisfaction of an appropriate conjunction. Note that the translation is sound and
complete (details of the proof are not given here).

Theorem 2 (UMC for CTLpK). Let M be a model and ϕ be a CTLpK formula.
Then, M |= ϕ iff [ϕ](w) ∧ Iι(w) is satisfiable.

Proof. Notice that Iι(w) is satisfied only by the valuation ι = (ι1, . . . , ιm) of
w = (w[1], . . . , w[m]). Thus [ϕ](w) ∧ Iι(w) is satisfiable iff [ϕ](w) is true for the
valuation ι of w. On the other hand for a model M, M |= ϕ iff M, ι |= ϕ, i.e.,
ι ∈ 〈ϕ〉. Hence, we have to prove that ι ∈ 〈ϕ〉 iff [ϕ](w) is true for the valuation
ι of w. The proof is by induction on the complexity of ϕ. The theorem follows
directly for the propositional variables. Next, assume that the hypothesis holds
for all the proper sub-formulas of ϕ. If ϕ is equal to either ¬α, α ∧ β, or α ∨ β,
then it is easy to check that the theorem holds.

For the modal formulas, let P be a set of states and αP (w) a propositional
formula such that αP (w) is true for the valuation s = (s1, . . . , sm) of w =
(w[1], . . . , w[m]) iff s ∈ P . Note that given any P , αP is well defined: since the
set G of all states is finite, and one can take

∨
s∈P Is(w) as αP (w). Consider ϕ

to be of the following forms:

• ϕ = AYα. We will prove that ι ∈ 〈AYα〉 iff the formula [AYα](w) is true for
the valuation ι of w.
First we prove that:
(*) s ∈ AY(P) iff the formula ∀v.(T (v, w)⇒ αP (v)) is true for the valuation
s of w.
s ∈ AY(P) iff s ∈ {s′ ∈ G| for every s′′ ∈ G if (s′′, s′) ∈ T , then s′′ ∈ P}.
On the one hand, (s′′, s′) ∈ T iff T (v, w) is true for the valuation s′ of w and
the valuation s′′ of v. Moreover, s′′ ∈ P iff the formula αP (v) is true for the
valuation s′′ of v. Thus s ∈ AY(P) iff the formula T (v, w) ⇒ αP (v) is true
for the valuation s of w and every valuation s′′ of v. Hence, s ∈ AY(P) iff
the QBF formula ∀v.(T (v, w)⇒ αP (v)) is true for the valuation s of w.
Therefore, ι ∈ 〈AYα〉 iff ι ∈ AY(〈α〉) iff (by the inductive assumption and
(*)) the formula (∀v.(T (v, w) ⇒ [α](v))) is true for the valuation ι of w iff
(by Theorem 1) the propositional formula forall(v, T (v, w)⇒ [α](v)) is true
for the valuation ι of w iff [AYα](w) is true for the valuation ι of w.

204 M. Kacprzak et al.

• ϕ = AXα. The proof is analogous to the former case.
• ϕ = AHα We will show that ι ∈ 〈AHα〉 iff formula [AHα](w) is true for the

valuation ι of w.
First we prove that:
(*) s ∈ νZ.P ∩AY(Z) iff the formula gfpAH(αP (w)) is true for the valuation
s of w.
Let τ(Z) = P ∩ AY(Z), then s ∈ νZ.τ(Z) iff s ∈ ⋂

i≥0 τ
i(G) (as s ∈

⋂
i≥0 τ

i(true)). Thus, s ∈ νZ.τ(Z) iff s ∈ τ i(G) for the least i such that
τ i(G) ⊆ τ i+1(G) since for every i ≥ 0 we have τ i+1(G) ⊆ τ i(G). On the other
hand, s ∈ τ(Z) iff formula αP (w)∧∀v.(T (v, w)⇒ αZ(v)) is true for the val-
uation s of w iff (by Theorem 1) formula αP (w)∧forall(v, T (v, w)⇒ αZ(v))
is true for the valuation s of w.
Let Z0(w) = αP (w) and Zi(w) = αP (w) ∧ forall(v, (T (v, w) ⇒ Zi−1(v)))
for i > 0. Notice that s ∈ τ i(G) iff Zi(w) is true for the valuation s
of w. Moreover, Qi(w) = Zi−1(w) and Zi(w) = Zi(w) are invariants of
the while-loop of the procedure gfpAH(αP (w)). Hence on the termination,
when Qi0(w) ⇒ Zi0(w), where i0 is the least i such that Qi(w) ⇒ Zi(w),
gfpAH(αP (w)) = Qi0(w) is a formula that is true for the valuation s of w iff
s ∈ νZ.τ(Z).
Therefore, ι ∈ 〈AHα〉 iff ι ∈ νZ.〈α〉∩AY(Z) iff (by the inductive assumption
and (*)) the propositional formula gfpAH([α](w)) is true for the valuation ι
of w iff propositional formula [AHα](w) is true for the valuation ι of w.
• ϕ = AGα | CΓα | A(αUβ). The proof is analogous to the former case.
• ϕ = Kiα. In order to show that ι ∈ 〈Kiα〉 iff formula [Kiα](w) is true for

the valuation ι of w, first we prove that:
(*) s ∈ Ki(P) iff the formula ∀v.(¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒ αP (v)) is
true for the valuation s of w.
To this aim we prove the following two facts:
(**) (ι, s′′) ∈ T ∗ iff ¬gfpAH(¬Iι(v)) is true for the valuation s′′ of v.
Observe that s′′ ∈ G\{ι} iff ¬Iι(v) is true for the valuation s′′ of v. On the
other hand (ι, s′′) 	∈ T ∗ iff s′′ ∈ νZ.(G\{ι}) ∩ AY(Z). Hence (ι, s′′) ∈ T ∗ iff
s′′ 	∈ νZ.(G\{ι}) ∩AY(Z) iff gfpAH(¬Iι(v)) is false for the valuation s′′ of v
iff ¬gfpAH(¬Iι(v)) is true for the valuation s′′ of v.
(***) s′ ∼i s

′′ iff Hi(w, v) is true for the valuation s′ of w and the valuation
s′′ of v.
s′ ∼i s

′′ iff li(s′) = li(s′′) iff
∧

j∈Di
s′

j = s′′
j iff formula

∧
j∈Di

w[j] ⇔ v[j] is
true for the valuation s′ of w and the valuation s′′ of v iff Hi(w, v) is true
for the valuation s′ of w and the valuation s′′ of v.
Thus by (**) and (***), s ∈ Ki(P) iff for the valuation s of w and every
valuation s′′ of v formula ¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒ αP (v) is true iff
the QBF formula ∀v.(¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒ αP (v)) is true for the
valuation s of w.
Therefore, ι ∈ 〈Kiα〉 iff ι ∈ Ki(〈α〉) iff (by the inductive assumption and
(*)) the formula ∀v.(¬gfpAH(¬Iι(v)) ∧Hi(w, v) ⇒ [α](v)) is true for the
valuation ι of w iff (by Theorem 1) the propositional formula

Verifying Multi-agent Systems via Unbounded Model Checking 205

forall(v, (¬gfpAH(¬Iι(v))∧Hi(w, v)⇒ [α](v))) is true for the valuation ι of
w iff [Kiα](w) is true for the valuation ι of w.

• ϕ = DΓα | EΓα. The proof is analogous to the former case.

6.1 Optimizations of Algorithms

In our implementation we apply some optimizations to the fixed point computing
algorithms described above. Precisely, we compute [AGα](w) and [AHα](w) by
using the following frontier set simplification method [11]. Define the formula
(∀v.α) ↓ δ, representing some propositional formula such that δ ∧ (∀v.α) ↓ δ is
equivalent to δ ∧ ∀v.α. The formula (∀v.α) ↓ δ is computed using the procedure
forall with a slight modification. Next, we compute [AGα](w) as the conjunction
of the following sequence: Z1(w) = [α](w), Zi+1(w) = (∀v.(T (w, v) ⇒ Zi(v))) ↓
∧i

j=1 Zj(w). The sequence converges when
∧i

j=1 Zj(w) ⇒ forall(v, (T (w, v) ⇒
Zi(v))), in which case Zi+1(w) is the constant true. The procedure fssmAG for
computing [AGα](w) is as follows.

procedure fssmAG([α](w)), where α is a CTLpK formula
let Z(w) = Q(w) = [α](w)
while Z(w) 	= true

let Z(w) = (∀v.(T (w, v)⇒ Z(v))) ↓ Q(w)
let Q(w) = Q(w) ∧ Z(w)

return Q(w)

The procedure fssmAH for computing [AHα](w) is obtained by replacing in
the above (∀v.(T (w, v) ⇒ Z(v))) ↓ Q(w) with (∀v.(T (v, w) ⇒ Z(v))) ↓ Q(w).
Similar procedure can be obtained for computing formulas [CΓα](w).

7 Example of Train, Gate and Controller

In this section we exemplify the procedure above by discussing the scenario of
the train controller system (adapted from [20]). The system consists of three
agents: two trains (agents 1 and 3), and a controller (agent 2). The trains, one
Eastbound, the other Westbound, occupy a circular track. At one point, both
tracks pass through a narrow tunnel. There is no room for both trains to be
in the tunnel at the same time. Therefore the trains must avoid this to hap-
pen. There are traffic lights on both sides of the tunnel, which can be either
red or green. Both trains are equipped with a signaller, that they use to send
a signal when they approach the tunnel. The controller can receive signals from
both trains, and controls the colour of the traffic lights. The task of the con-
troller is to ensure that the trains are never both in the tunnel at the same
time. The trains follow the traffic lights signals diligently, i.e., they stop on
red.

We can model the example above with an interpreted system as follows. The
local states for the agents are:

206 M. Kacprzak et al.

a5

WAIT2

TUNNEL1 TUNNEL2

AWAY1 AWAY2

RED

GREENWAIT1

TRAIN1 TRAIN2CONTROLLER

a1 a4

a2

a3 a6

Fig. 1. The local transition structures for the two trains and the controller

• Ltrain1 = {away1, wait1, tunnel1},
• Lcontroller = {red, green},
• Ltrain2 = {away2, wait2, tunnel2}.

The set of global states is defined as G = Ltrain1 × Lcontroller × Ltrain2 .
Let ι = (away1, green, away2) be the initial state. We assume that the local
states are numbered in the following way: away1 := 1, wait1 := 2, tunnel1 := 3,
red; = 4, green := 5, away2 := 6, wait2 := 7, tunnel2 := 8 and the agents are
numbered as follows: train1 := 1, controller := 2, train2 := 3. Thus we assume
a set of agents A to be the set {1, 2, 3}.

Let Act = {a1, ..., a6} be a set of joint actions. For a ∈ Act we define the
preconditions pre(a), postconditions post(a), and the set agent(a) containing
the numbers of the agents that may change local states by executing a.

• pre(a1) = {1}, post(a1) = {2}, agent(a1) = {1},
• pre(a2) = {2, 5}, post(a2) = {3, 4}, agent(a2) = {1, 2},
• pre(a3) = {3, 4}, post(a3) = {1, 5}, agent(a3) = {1, 2},
• pre(a4) = {6}, post(a4) = {7}, agent(a4) = {3},
• pre(a5) = {5, 7}, post(a5) = {4, 8}, agent(a5) = {2, 3},
• pre(a6) = {4, 8}, post(a6) = {5, 6}, agent(a6) = {2, 3}.

In our formulas we use the following two propositional variables in−tunnel1
and in−tunnel2 such that in−tunnel1 ∈ V(s) iff ltrain1(s) = tunnel1, in−tunnel2
∈ V(s) iff ltrain2(s) = tunnel2, for s ∈ G.

We now encode the local states in binary form in order to use them in the
model checking technique. Given that agent train1 can be in 3 different lo-
cal states we shall need 2 bits to encode its state; in particular we shall take:
(0, 0) = away1, (1, 0) = wait1, (0, 1) = tunnel1. Similarly for the agent train2:
(0, 0) = away2, (1, 0) = wait2, (0, 1) = tunnel2. The modelling of the lo-
cal states of the controller requires only one bit: (0) = green, (1) = red. In
view of this a global state is modelled by 5 bits. For instance the initial state

Verifying Multi-agent Systems via Unbounded Model Checking 207

ι = (away1, green, away2) is represented as a tuple of 5 0’s. Notice that the first
two bits of a global state encode the local state of agent 1, the third bit encodes
the local state of agent 2, and two remaining bits encode the local state of agent
3. We represent this by taking: D1 = {1, 2}, D2 = {3}, D3 = {4, 5}.

Let w = (w[1], ..., w[5]), v = (v[1], ..., v[5]) be two global state variables. We
define the following propositional formulas over w and v:

• Iι(w) :=
∧

j∈D1∪D2∪D3
¬w[j],

this formula encodes the initial state,
• Hi(w, v) :=

∧
j∈Di

w[j]⇔ v[j],
the formula Hi(w, v), where i ∈ A, represents logical equivalence between
local states of agent i at two global states represented by variables w and v,

• p1(w) := ¬w[1] ∧ ¬w[2], p2(w) := w[1] ∧ ¬w[2], p3(w) := ¬w[1] ∧ w[2],
p4(w) := w[3], p5(w) := ¬w[3], p6(w) := ¬w[4]∧¬w[5], p7(w) := w[4]∧¬w[5],
p8(w) := ¬w[4] ∧ w[5],
the formula pj(w), for j = 1, . . . , 8, encodes a particular local state of an
agent.

For a ∈ Act, let Ba :=
⋃

i∈A\agent(a)Di be the set of the labels of the bits
that are not changed by the action a, then

• T (w, v) :=
∨

a∈Act

(∧
j∈pre(a) pj(w)∧∧

j∈post(a) pj(v)∧∧
j∈Ba

(w[j]⇔ v[j])
)∨

(
∧

a∈Act

∨
j∈pre(a) (¬pj(w)) ∧∧

j∈D1∪D2∪D3
(w[j]⇔ v[j])).

Intuitively, T (w, v) encodes the set of all couples of global states s and s′

represented by variables w and v respectively, such that s′ is reachable from
s, i.e., either there exists a joint action which is available at s and s′ is the
result of execution a at s or there is not such an action and s′ equals s. Notice
that the above formula is composed of two parts. The first one encodes the
transition relation of the system whereas the second one adds self-loops to
all the states without successors. This is necessary in order to satisfy the
assumption that T is total.

Consider now the following formulas:

• α0 = ¬AX(¬in−tunnel1),
• α1 = AG(in−tunnel1 ⇒ Ktrain1(¬in−tunnel2)),
• α2 =AG(¬in−tunnel1⇒(¬Ktrain1in−tunnel2 ∧ ¬Ktrain1(¬in−tunnel2))),

where in−tunnel1 (respectively in−tunnel2) is a proposition true whenever the
local state of train1 is equal to tunnel1 (respectively the local state of train2 is
equal to tunnel2).

The first formula states that agent train1 may at the next step be in the
tunnel. The second formula expresses that when the agent train1 is in the tunnel,
it knows that agent train2 is not in the tunnel. The third formula expresses that
when agent train1 is away from the tunnel, it does not know whether or not
agent train2 is in the tunnel.

As discussed above, the translation of propositions in−tunnel1 and
in−tunnel2 is as follows:

208 M. Kacprzak et al.

• [in−tunnel1](w) = ¬w[1] ∧ w[2],
• [in−tunnel2](w) = ¬w[4] ∧ w[5].

Next, we show how to translate the formula α0:

[α0](w) = [¬AX(¬in−tunnel1)](w) = ¬[AX(¬in−tunnel1)](w).

The formula [AX(¬in−tunnel1)](w) is computed as follows:
[AX(¬in−tunnel1)](w) = forall(v, T (w, v)⇒ [¬in−tunnel1](v)) =
forall(v, T (w, v)⇒ (¬(¬v[1] ∧ v[2]))) = forall(v, T (w, v)⇒ (v[1] ∨ ¬v[2])).

Consequently [α0](w) = ¬forall(v, T (w, v)⇒ (v[1]∨¬v[2])) and [α0](w)∧ Iι(w)
= ¬forall(v, T (w, v)⇒ (v[1]∨¬v[2]))∧Iι(w) = ((w[1]∧¬w[2]∧¬w[3])∨(¬w[1]∧
w[2] ∧ ¬w[3] ∧ ¬w[5]) ∨ (¬w[1] ∧ w[2] ∧ w[3] ∧ ¬w[4]) ∨ (¬w[1] ∧ w[2] ∧ ¬w[3] ∧
¬w[4] ∨ w[5])) ∧ Iι(w) = false. Therefore α0 is not valid in the model.

But, both the formulas α1 and α2 are valid in the model since
[α1](w) ∧ Iι(w)=true ∧ Iι(w)= ¬w[1] ∧ ¬w[2] ∧ ¬w[3] ∧ ¬w[4] ∧ ¬w[5] and
[α2](w)∧Iι(w)= (¬w[1]∨¬w[2])∧Iι(w)= ¬w[1]∧¬w[2]∧¬w[3]∧¬w[4]∧¬w[5].

This corresponds to our intuition.

8 Preliminary Experimental Results

In this section we describe an implementation of the UMC algorithm and present
some preliminary experimental results for selected benchmark examples.

Our tool, unbounded model checking for interpreted systems, is a new module
of the verification environment VerICS [5]. The tool takes as input an interpreted
system and a CTLpK formula ϕ and produces a set of states (encoded symbol-
ically), in which the formula holds. The implementation consists of two main
parts: the translation module and the forall module. According to the detailed
description in former sections, each subformula ψ of ϕ is encoded (by the trans-
lation module) by a QBF formula which characterizes all the states at which
ψ holds. In case of checking a modal formula, the corresponding QBF formula
is then evaluated by the forall module, which is implemented on the top of the
SAT solver Zchaff [13]. The whole tool is written in C++ making intensive use
of STL libraries.

The tests presented below have been performed on a workstation equipped
with the AMD Athlon XP+ 2400 MHz processor and 2 GB RAM running under
Linux Redhat. For each of the results we present the time (in seconds) used by
VerICS and Zchaff, and give RAM (in kB) consumed during the computation.

8.1 Train, Gate and Controller - Example Parameterized

The first example we have tested is the train, gate and controller system pre-
sented in Section 7. In order to show how the algorithm copes with the com-
binatorial explosion, this example is parameterized with the number of trains
N . For a given N ∈ {2, 4, 6}, we have generalized the property α2 of Section

Verifying Multi-agent Systems via Unbounded Model Checking 209

Table 1. Experimental results for Train-Gate-Controller

α2(N)
N CNF clauses UMC-mem UMC-time SAT-time
2 557 2260 kB 0.12 s 0.01 s
4 5214 8376 Mb 1.51 s 0.01 s
6 58489 64 MB 46.55 s 0.01 s

7 to N trains: α2(N) = AG(¬in−tunnel1 ⇒ (¬Ktrain1

∧
i=2..N ¬in−tunneli ∧

¬Ktrain1

∨
i=2..N in−tunneli)).

The results (time and memory consumption) are presented in the Table 1.
SAT-time denotes the amount of time necessary to determine by means of un-
modified Zchaff whether the obtained set of states contains an initial state (this
is a SAT problem).

8.2 Attacking Generals

The second analyzed example is a scenario of the coordinated attack problem,
often discussed in the area of MAS, distributed computing as well as epistemic
logic. It concerns coordination of agents in the presence of unreliable communi-
cation. It is also known as the coordinated attack problem [8].

For the purpose of this paper, we choose a particular joint protocol for the
scenario and verify the truth and falsehood of particular formulas that capture
its key characteristics. The variant we analyse is the following (for more detailed
protocol description we refer to [10]) :

After having studied the opportunity of doing so, general A may issue a
request-to-attack order to general B. A will then wait to receive an ac-
knowledgment from B, and will attack immediately after having received
it. General B will not issue request-to-attack orders himself, but if his
assistance is requested, he will acknowledge the request, and will attack
after a suitable time for his messenger to reach A (assuming no delays)
has elapsed. A joint attack guarantees success, and any non-coordinated
attack causes defeat of the army involved (Fig. 2).

Figure 2 presents three scenarios for the agents involved in the coordinated
attack problem. The rounded boxes represent locations (local states), while the
arrows denote transitions between locations. The beginning location for each
agent is in bold. The transitions sharing labels are executed simultaneously (i.e.,
synchronize). The local states for the agents are listed below:

• LGeneralA = {waitA, orderA, ackA, winA},
• LGeneralB = {waitB , orderB , readyB , winB , failB},
• LEnvironment = {waitE , orderE , ackE , ack lostE}.

In our formulas we use the following propositional variables: attackA and
attackB meaning that corresponding General has made the decision of attack-
ing the enemy, successA and successB meaning the victory of each General

210 M. Kacprzak et al.

send−ack

order ack winwait

wait order

win

fail

ready

co−attack

sep−attack

AA A A

B B B

B

B

order−rcv send−ack

ack−rcv co−attacksend−order

ack−lost

order−lost

orderorder−rcv order−lost
E

wait EGeneral A

General B

ack−lostE
ack−lost

ack E
ack−rcv

sep−attack

send−order

co−attack

The Environment

Fig. 2. The attacking generals scenarios

and finally failB which denotes the defeat of General B (and both Gener-
als). For s ∈ G:

• attackA ∈ V(s) iff lGeneralA(s) ∈ {winA, ackA}
• successA ∈ V(s) iff lGeneralA(s) ∈ {winA}
• attackB ∈ V(s) iff lGeneralB (s) ∈ {orderB , winB , readyB , failB}
• successB ∈ V(s) iff lGeneralB (s) ∈ {winB}
• failB ∈ V(s) iff lGeneralB (s) ∈ {failB}

Below we present some properties we test for the coordinated model problem.
Results of the tests are listed for each property in the same way as in the previous
example.

• β1 = AG(attackB ⇒ KAKBattackA)
• β2 = EF(C{AB}(attackA ∧ attackB))

The property β1 states that if the general B decides to attack, then the
general A knows that B knows that A will attack the enemy. The property β2
expresses that there is a possibility of achieving common knowledge about the
decision of attacking the enemy. The experimental results for this example are
given in the Table 2.

9 Conclusions

Verification of multi-agent systems is quickly becoming an active area of research.
In the case of model checking, plain temporal verification is not sufficient because

Table 2. Experimental results for the coordinated attack problem

Property CNF clauses UMC-memory UMC-time SAT-time
β1 917 1488 kB 1.08 s 0.02 s
β2 971 2300 kB 1.54 s 0.01 s

Verifying Multi-agent Systems via Unbounded Model Checking 211

of the variety of modalities that are commonly used to specify multi-agent sys-
tems. In this paper we have extended the state-of-the-art of the area by providing
a model checking theory to perform unbounded model checking on a temporal
epistemic language interpreted on interpreted systems. This surpasses the pos-
sibilities available already with other SAT-based approaches, namely bounded
model checking, in that it is possible to check the full CTLK language, not just
its existential fragment.

It should be noted that our tool provides only a preliminary implementation
of UMC. The major problem we found was that blocking clauses are defined
only over input variables V . This often seemed to be a too finer description
and lead to generating exponentially many clauses (as can be seen in Table 1).
We have found that the Alternative Implication Graph IG(A′, φ′) usually gives
shorter blocking clauses only for simple formulas, while formulas encoding “real”
UMC problems produce clauses over all literals of V . In future work we shall
investigate the conjecture of K. McMillan stating that by allowing in blocking
clauses literals corresponding not only to state vectors, but also to subformulas,
one could obtain a dramatic improvement in performance.

References

1. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of TACAS’99, volume 1579 of LNCS, pages 193–207. Springer-
Verlag, 1999.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

4. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Journal of the ACM, 5(7):394–397, 1962.

5. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pó�lrola, M. Szreter,
B. Woźna, and A. Zbrzezny. VerICS: A tool for verifying Timed Automata and
Estelle specifications. In Proc. of the 9th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’03), volume 2619 of LNCS,
pages 278–283. Springer-Verlag, 2003.

6. E. A. Emerson and E. M. Clarke. Characterizing correctness properties of par-
allel programs using fixpoints. In Proc. of the 7th Int. Colloquium on Automata,
Languages and Programming (ICALP’80), volume 85 of LNCS, pages 169–181.
Springer-Verlag, 1980.

7. E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

8. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

9. J. Halpern and M. Vardi. Model checking vs. theorem proving: a manifesto, pages
151–176. Artificial Intelligence and Mathematical Theory of Computation. Aca-
demic Press, Inc, 1991.

212 M. Kacprzak et al.

10. A. Lomuscio, T. �Lasica, and W. Penczek. Bounded model checking for interpreted
systems: Preliminary experimental results. In Proc. of the 2nd NASA Workshop on
Formal Approaches to Agent-Based Systems (FAABS’02), volume 2699 of LNAI,
pages 115–125. Springer-Verlag, 2003.

11. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02), volume
2404 of LNCS, pages 250–264. Springer-Verlag, 2002.

12. R. van der Meyden and H. Shilov. Model checking knowledge and time in systems
with perfect recall. In Proceedings of Proc. of FST&TCS, volume 1738 of Lecture
Notes in Computer Science, pages 432–445, Hyderabad, India, 1999.

13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc. of the 38th Design Automation Conference (DAC’01),
pages 530–535, June 2001.

14. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae, 55(2):167–185, 2003.

15. F. Raimondi and A. Lomuscio. Symbolic model checking of deontic interpreted
systems via OBDD’s. In Proceedings of DEON04, Seventh International Workshop
on Deontic Logic in Computer Science, volume 3065 of Lecture Notes in Computer
Science. Springer Verlag, May 2004.

16. F. Raimondi and A. Lomuscio. Towards model checking for multiagent systems via
OBDD’s. In Proceedings of the Third NASA Workshop on Formal Approaches to
Agent-Based Systems (FAABS III), Lecture Notes in Computer Science. Springer
Verlag, April 2004. To appear.

17. F. Raimondi and A. Lomuscio. Verification of multiagent systems via ordered
binary decision diagrams: an algorithm and its implementation. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’04), July 2004.

18. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

19. W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
Proc. of the 9th Int. SPIN Workshop (SPIN’02), volume 2318 of LNCS, pages
95–111. Springer-Verlag, 2002.

20. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic
goals. In Proc. of the 1st Int. Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS’02), volume III, pages 1167–1174. ACM, July 2002.

21. M. Wooldridge. Computationally grounded theories of agency. In E. Durfee, editor,
Proceedings of ICMAS, International Conference of Multi-Agent Systems. IEEE
Press, 2000.

22. M. Wooldridge. An introduction to multi-agent systems. John Wiley, England,
2002.

23. M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model checking multia-
gent systems with mable. In Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-02), Bologna, Italy, July
2002.

	Introduction
	State of the Art and Related Literature
	Aim of This Paper

	Interpreted Systems Semantics
	Computation Tree Logic of Knowledge with Past (CTLpK)
	Formulas in Conjunctive Normal Form and Quantified Boolean Formulas
	Fixed Point Characterization of CTLpK
	Symbolic Model Checking on CTLpK
	Optimizations of Algorithms

	Example of Train, Gate and Controller
	Preliminary Experimental Results
	Train, Gate and Controller - Example Parameterized
	Attacking Generals

	Conclusions

