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P and P̃ are distributions of Lévy processes, distributions of Bessel processes, and so-
lutions of stochastic differential equations. The obtained results yield, in particular,
criteria for the (local) absolute continuity and singularity of P and P̃.

Key words: Absolute continuity, Bessel processes, Lévy processes, local absolute
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1 Introduction

The problems of absolute continuity and singularity of probability measures
defined on a filtered space play a significant role both in the pure stochastic
analysis and in its applications (for example, financial mathematics). The con-
tribution of A.N. Shiryaev to this subject is large and well known. This is rep-
resented, in particular, by his papers [13], [14], [22], [23], [24], [25], [28] as well
as his monographs [12], [26], [27], and [37]. The plenary talk of A.N. Shiryaev
at the International Congress of Mathematics (Helsinki, 1978) was entitled
“Absolute continuity and singularity of probability measures in functional
spaces”. We therefore hold it an honor to be able to put our paper in the
Festschrift.

The problems that are typically studied in relation to the subject men-
tioned concern such questions as: whether two measures are (locally) ab-
solutely continuous, whether they are singular, etc. However, a situation may
naturally occur, where the two measures are neither (locally) absolutely con-
tinuous nor singular.

Consider the following example: Ω = C([0,∞)), (Ft) is the canonical
filtration, and P (resp., P̃) is the distribution of a γ-dimensional (resp., γ̃-
dimensional) Bessel process started at a point x0 > 0. If γ ∧ γ̃ < 2, then, for
any t > 0, the measures

Pt = P | Ft and P̃t = P̃ | Ft

are neither equivalent nor singular. To be more precise, the situation is as
follows: for any stopping time τ such that τ < T0 := inf{t ≥ 0 : Xt = 0} (here
X is the coordinate process), the measures

Pτ = P | Fτ and P̃τ = P̃ | Fτ

are equivalent; for any stopping time τ ≥ T0, Pτ and P̃τ are singular. Thus,
the time T0 plays the following important role in this example: informally,
this is the time, at which P and P̃ are separated one from another.

The situation described above admits a clear interpretation in terms of
statistical sequential analysis, which is another big topic of the research activ-
ity of A.N. Shiryaev (this is reflected, in particular, by his monographs [27],



Separating Times 127

[36], and [38]). Suppose that we are observing a process X that is governed
either by the measure P or by the measure P̃ (these are the measures described
above) and are trying to distinguish between these two hypotheses. Then, un-
til the time X hits zero, we cannot say for sure what the true measure is; but
immediately after this time we can say for sure what the true measure is. This
situation is in contrast with the typical setup of statistical sequential analysis,
where the two hypotheses are typically assumed to be locally equivalent.

Let us now consider the general situation: let (Ω,F , (Ft)t∈[0,∞)) be a space
with a right-continuous filtration (here F =

∨
t Ft) and P, P̃ be two probabil-

ity measures on this space. In Section 2, we formalize the concept of the time,
at which the two measures are separated. Namely, we prove that there exists
a P, P̃-a.s. unique stopping time S with the property: for any stopping time τ ,
the measures Pτ and P̃τ are equivalent on the set {τ < S} and are singular on
the set {τ ≥ S} (actually, S is given by inf{t ≥ 0 : Zt = 0 or Zt = 2}, where
Z denotes the density process of P with respect to (P + P̃)/2). Informally, P

and P̃ are equivalent before the time S and are singular after this time. We
call S the separating time for P and P̃. In order to be able to distinguish the
situation, where P and P̃ are locally equivalent and are globally singular (i.e.
singular on F), from the situation, where they are globally equivalent, we add
a point δ >∞ to [0,∞] and allow S to take values in [0,∞]∪{δ} (informally,
the equality S(ω) = δ means that P and P̃ are “globally equivalent on the ele-
mentary outcome ω”). The properties such as (local) absolute continuity and
singularity are easily expressed in terms of a separating time (see Lemma 2.1).

For example, P̃ 0 P iff S = δ P̃-a.s., P̃
loc
0 P iff S ≥ ∞ P̃-a.s. (i.e.

P̃(S ∈ {∞, δ}) = 1); P̃0 ⊥ P0 iff S = 0 P, P̃-a.s., etc.
In order to illustrate the notion of a separating time, we give in Section 3

the explicit form of this time for the case, where P and P̃ are distributions of
Lévy processes. This is just a translation of known results into the language
of separating times.

In Section 4, we consider the case, where P and P̃ are distributions of Bessel
processes of different dimensions started at the same point and prove that in
this case the separating time has the form S = inf{t ≥ 0 : Xt = 0}, where
X denotes the coordinate process. This puts the above discussion related to
Bessel processes on a solid mathematical basis.

The introduction of separating times enables us to give a complete answer
to the problem of (local) absolute continuity and singularity of solutions of
one-dimensional homogeneous stochastic differential equations (abbreviated
below as SDEs), i.e. equations of the form

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0 (1.1)

(the conditions we impose on the coefficients are the Engelbert–Schmidt condi-
tions, i.e. b and σ are measurable, σ �= 0 pointwise, and (1 + |b|)/σ2 ∈ L1loc(R);
this guarantees the existence and the uniqueness of a solution). Namely, in
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Section 5, we find the explicit form of the separating time for the measure P
being the solution of (1.1) and the measure P̃ being the solution of a SDE

dXt = b̃(Xt)dt+ σ̃(Xt)dBt, X0 = x0.

As a corollary, we obtain criteria for (local) absolute continuity and singular-
ity of P and P̃. The problems of (local) absolute continuity and singularity
for diffusion processes were extensively studied earlier. Let us mention the
papers [8], [10], [13], [14], [15], [16], [17], [23], [31] and the monographs [12,
Ch. IV,§ 4b], [27, Ch. 7]. We consider here a more particular case (only homo-
geneous SDEs), but in this case we obtain more complete results. Namely, in
the majority of the sources mentioned above, conditions for (local) absolute
continuity and singularity are given in random terms (typically, in terms of the
Hellinger process). In contrast, here the explicit form of the separating time
and conditions for (local) absolute continuity and singularity are obtained in
non-random terms, i.e. in terms of the coefficients of SDEs. In this respect,
our results are similar to those in [31]. Furthermore, all the sources mentioned
above (including [31]) deal with (local) absolute continuity or singularity of
measures, while our results are applicable to measures that are in a general
position, i.e. they are neither (locally) equivalent nor singular.

Let us illustrate the structure of the results of Section 5 by a simple ex-
ample. Let P and P̃ be solutions of SDEs

dXt = σ(Xt)dBt, X0 = x0,

dXt = b̃(Xt)dt+ σ̃(Xt)dBt, X0 = x0,

respectively. We assume that both equations satisfy the Engelbert–Schmidt
conditions. Let us also assume for the simplicity of presentation that P̃ is non-
exploding (P is non-exploding automatically), although we consider exploding
solutions as well. Our results yield that the separating time for P and P̃ has
the form:

S =

{
δ if b̃ = 0 and σ̃2 = σ2 µL-a.e.,
+ inf{t ≥ 0 : Xt ∈ A} otherwise,

where X denotes the coordinate process, inf ∅ :=∞, µL denotes the Lebesgue
measure, and A denotes the complement to the set{

x ∈ R : b̃2/σ̃4 ∈ L1loc(x) and σ̃2 = σ2 µL-a.e. in a vicinity of x
}
.

As a corollary,

P̃ 0 P ⇐⇒ P 0 P̃ ⇐⇒ P̃ = P ⇐⇒ b̃ = 0 and σ̃2 = σ2 µL-a.e.,

P̃
loc
0 P ⇐⇒ P

loc
0 P̃ ⇐⇒ b̃2/σ̃4 ∈ L1loc(R) and σ̃2 = σ2 µL-a.e.,

P0⊥ P̃0 ⇐⇒ b̃2/σ̃4 /∈L1loc(x0)
or ∀ε>0, µL((x0−ε, x0+ε)∩{σ̃2 �=σ2})>0.
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Some facts concerning the qualitative behaviour of solutions of SDEs (these
are needed in the proofs of results of Section 5) are given in the Appendix.

A shortened version of this paper appeared as [5].

2 Separating Times

2.1. Mutual arrangement of a pair of measures on a measurable
space. Let P and P̃ be probability measures on a measurable space (Ω,F).
The following result is well known.

Proposition 1. There exists a decomposition Ω = E �D � D̃, E,D, D̃ ∈ F
such that P̃ ∼ P on the set E and P(D̃) = P̃(D) = 0 (here “�” denotes the
disjoint union). This decomposition is unique P, P̃-a.s.

Remarks. (i) For the above decomposition, we have P̃ ∼ P on E and
P̃ ⊥ P on Ec (here Ec denotes the complement to E). The decomposition
Ω = E � Ec with these properties is also unique P, P̃-a.s.

(ii) The sets E,D, D̃ from Proposition 1 can be obtained as:

D̃ =

{
dP

dQ
= 0,

dP̃

dQ
> 0

}
, E =

{
dP

dQ
> 0,

dP̃

dQ
> 0

}
,

D =

{
dP

dQ
> 0,

dP̃

dQ
= 0

}
,

where Q = P+P̃
2 .

(iii) Proposition 1 admits the following statistical interpretation. Suppose
that we deal with the problem of distinguishing between two statistical hy-
potheses P and P̃. Unlike the standard setting in statistics, we do not assume
that P and P̃ are equivalent. Suppose that an experiment is performed, and
an elementary outcome ω is obtained. If ω ∈ D, we can definitely say that the
true hypothesis is P; if ω ∈ D̃, we can definitely say that the true hypothesis
is P̃; if ω ∈ E, we cannot say for sure what is the true hypothesis.

The result of Proposition 1 is illustrated by Figure 1.

2.2. Mutual arrangement of a pair of measures on a filtered space.
Let (Ω,F) be a measurable space endowed with a right-continuous filtration
(Ft)t∈[0,∞). Recall that the σ-field Fτ (τ is a stopping time) is defined by

Fτ =
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft for any t ∈ [0,∞)

}
.

(In particular, F∞ = F .)
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︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
D̃ E D

P̃ P

Figure 1. Mutual arrangement of a pair of
measures on a measurable space

Let P and P̃ be probability measures on F . As usually, Pτ (resp., P̃τ )
denotes the restriction of P (resp., P̃) to Fτ .

In what follows, it will be convenient for us to consider the extended posi-
tive half-line [0,∞]∪{δ}, where δ is an additional point. We order [0,∞]∪{δ}
in the following way: we take the usual order on [0,∞] and let δ >∞.

Definition 1. An extended stopping time is a map T : Ω → [0,∞]∪{δ} such
that {T ≤ t} ∈ Ft for any t ∈ [0,∞].

The following theorem is an analog of Proposition 1 for a filtered space. A
similar statement is proved in [20, Lem. 5.2].

Theorem 2.1. (i) There exists an extended stopping time S such that, for
any stopping time τ ,

P̃τ ∼ Pτ on the set {τ < S}, (2.1)

P̃τ ⊥ Pτ on the set {τ ≥ S}. (2.2)

(ii) If S′ is another extended stopping time with these properties, then
S′ = S P, P̃-a.s.

Proof. (i) Set Q = P+P̃
2 . Let (Zt)t∈[0,∞] and (Z̃t)t∈[0,∞] denote the density

processes of P and P̃ with respect to Q (we set Z∞ = dP
dQ , Z̃∞ = dP̃

dQ ). Let (F t)
denote the Q-completion of the filtration (Ft). Then the (F t,Q)-martingales
Z and Z̃ have the modifications whose all trajectories are càdlàg. The time

S = inf{t ∈ [0,∞] : Zt = 0 or Z̃t = 0}

(“inf” is the same as “inf”, except that inf ∅ = δ) is an extended (F t)-stopping
time. According to [12, Ch. I, Lem. 1.19], there exists an extended (Ft)-
stopping time S such that S = S Q-a.s. It follows from [12, Ch. III, Lem. 3.6]
that ZtZ̃t = 0 on the stochastic interval [S,∞] Q-a.s. Consequently, for any
(Ft)-stopping time τ , we have Zτ Z̃τ = 0 Q-a.s. on {τ ≥ S}. The equality

dPτ

dQτ
= EQ

(
dP

dQ

∣∣∣∣Fτ

)
= EQ(Z∞ | Fτ ) = Zτ
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and the analogous equality for dP̃τ

dQτ
complete the proof.

(ii) Proposition 1 implies that, for any stopping time τ , the sets {τ ≥ S}
and {τ ≥ S′} coincide P, P̃-a.s. This yields the desired statement (one needs
to consider only the deterministic τ). ��

Definition 2. A separating time for P and P̃ is an extended stopping time
that satisfies (2.1) and (2.2) for all stopping times τ .

Remarks. (i) It is seen from the proof of Theorem 2.1 (ii) that in defining
the separating time one may use only the deterministic τ .

(ii) Theorem 2.1 admits the following statistical interpretation (compare
with Remark (iii) after Proposition 1). Suppose that we deal with the problem
of the sequential distinguishing between two statistical hypotheses P and P̃.
Assume for example that (Ft) is the natural filtration of an observed process
(Xt)t≥0. Suppose that an experiment is performed, and we are observing a
path of X. Then, until time S occurs, we cannot say definitely what the
true hypothesis is. But after S occurs, we can say definitely what the true
hypothesis is (on the set {Z̃S = 0}, this is P; on the set {ZS = 0}, this is P̃).

Corollary 2.1. (i) There exists an extended stopping time S such that, for
any stopping time τ ,

P̃τ 0 Pτ on the set {τ < S}, (2.3)

P̃τ ⊥ Pτ on the set {τ ≥ S}. (2.4)

(ii) If S′ is another extended stopping time with these properties, then
S′ = S P̃-a.s.

Definition 3. A time separating P̃ from P is an extended stopping time that
satisfies (2.3) and (2.4) for any stopping time τ .

Clearly, a separating time for P and P̃ is also a time separating P̃ from P.
The converse is not true since the former time is unique P, P̃-a.s., while the
latter time is unique only P̃-a.s.

Informally, Theorem 2.1 states that the measures P and P̃ are equivalent
up to a random time S and become singular at a time S. The equality S = δ
means that P and P̃ never become singular, i.e. they are equivalent up to
infinity. Thus, the knowledge of the separating time yields the knowledge of
the mutual arrangement of P and P̃. This is illustrated by the following result.
Its proof is straightforward.

Lemma 2.1. Let S be a separating time for P and P̃. Then
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(i) P̃ ∼ P ⇐⇒ S = δ P, P̃-a.s.;
(ii) P̃ 0 P ⇐⇒ S = δ P̃-a.s.;
(iii) P̃

loc∼ P ⇐⇒ S ≥ ∞ P, P̃-a.s.;

(iv) P̃
loc
0 P ⇐⇒ S ≥ ∞ P̃-a.s.;

(v) P̃ ⊥ P ⇐⇒ S ≤ ∞ P, P̃-a.s. ⇐⇒ S ≤ ∞ P-a.s.
(vi) P̃0⊥P0 ⇐⇒ S = 0 P, P̃-a.s. ⇐⇒ S = 0 P-a.s.

Remark. Other types of the mutual arrangement of P and P̃ are also easily
expressed in terms of the separating time. For example, for any t ∈ [0,∞],

P̃t ⊥ Pt ⇐⇒ S ≤ t P, P̃-a.s. ⇐⇒ S ≤ t P-a.s.

✲

�

�

�

�

{



{








{


1

2

D0

E0

D̃0

Du

Eu

D̃u

D∞

E∞

D̃∞

ω1

ω2

ω3

ω4

0 S(ω2) u ∞ δ t

Figure 2. Mutual arrangement of a pair of
measures on a filtered space (here S(ω1) = 0,
S(ω3) = ∞, S(ω4) = δ)

The mutual arrangement of P and P̃ is illustrated by Figure 2. In this
figure, the measure P̃ “lies above” the curve 1; the measure P “lies below”
the curve 2. The decomposition Ω = Et �Dt � D̃t of Proposition 1 for the
measurable space (Ω,Ft) is obtained by drawing a vertical line corresponding
to the time t. Figure 2 shows three decompositions of this type: for t = 0, for
t = u ∈ (0,∞), and for t =∞.

The separating time for P and P̃ is illustrated as follows. If ω ∈ D0 � D̃0,
then S(ω) = 0 (see ω = ω1 in Figure 2). If ω ∈ E0, then S(ω) is the time,
at which the horizontal line drawn through the point ω crosses curves 1 or 2
(see ω = ω2 in Figure 2). If this line crosses neither curve 1 nor curve 2, then
S =∞ in the case ω ∈ D∞ � D̃∞ (see ω = ω3 in Figure 2), and S = δ in the
case ω ∈ E∞ (see ω = ω4 in Figure 2).



Separating Times 133

3 Separating Times for Lévy Processes

Let D([0,∞),Rd) denote the space of the càdlàg functions [0,∞) → Rd. Let
X denote the canonical process on this space, i.e Xt(ω) = ω(t). Consider the
filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =

∨
t Ft. In what follows,

(· , ·) denotes the scalar product in Rd and ‖ · ‖ denotes the Euclidean norm.
Let P be the distribution of a Lévy process with characteristics (b, c, ν),

where b ∈ Rd, c is a symmetric positively definite d × d matrix, and ν is a
measure on B(Rd) such that ν({0}) = 0 and

∫
Rd(‖x‖2 ∧ 1) ν(dx) <∞. This

means that, for any t ∈ [0,∞) and λ ∈ Rd,

EPEi(λ,Xt)

= exp
{
t
[
i(λ, b)− 1

2
(λ, cλ) +

∫
Rd

(Ei(λ,x) − 1− i(λ, x)I(‖x‖ ≤ 1))ν(dx)
]}
.

(For further information on Lévy processes, see [1], [34], [37, Ch. III, § 1b].)
Let P̃ be the distribution of a Lévy process with characteristics (̃b, c̃, ν̃).

The following theorem yields an explicit form of the separating time for
P and P̃. This is actually a reformulation of known results (see, for example,
the survey paper [35]) into the language of separating times.

Theorem 3.1. The separating time S for P and P̃ has the following form.
(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P �= P̃ and

c = c̃, (3.1)

∫
Rd

(√
dν

d(ν + ν̃)
−
√

dν̃

d(ν + ν̃)

)2
d(ν + ν̃) <∞, (3.2)

b− b̃−
∫
{‖x‖≤1}

xd(ν − ν̃ ) ∈ N(c), (3.3)

where N(c) = {cx : x ∈ Rd}, then

S = inf{t ∈ [0,∞) : 4Xt �= 0,4Xt /∈ E} P, P̃-a.s.

(we set inf ∅ =∞), where E ∈ B(Rd) is a set such that ν̃ ∼ ν on E and ν̃ ⊥ ν
on the complement to E.
(iii) If any of conditions (3.1)–(3.3) is violated, then S = 0 P, P̃-a.s.

Remarks. (i) The expression in (3.2) is the Hellinger distance between ν
and ν̃.

(ii) If (3.2) is true, then
∫
{‖x‖≤1} ‖x‖d‖ν− ν̃‖ <∞, where ‖ν− ν̃‖ denotes

the total variance of the signed measure ν − ν̃ (see [34, Rem. 33.3] or [35,
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Lem. 2.18]). Thus, the integral in (3.3) is well defined if condition (3.2) is
true.

Theorem 3.1, combined with Lemma 2.1, yields the following corollary.
This result is known (see [11], [12, Ch. IV, § 4c], [13], [21], [28], [29], [30], [39],
[40], [41]).

Corollary 3.1. (i) Either P̃ = P or P̃ ⊥ P.

(ii) We have P̃
loc
0 P if and only if conditions (3.1)–(3.3) and the condition

ν̃ 0 ν are satisfied.
(iii) We have P̃0 ⊥ P0 if and only if any of conditions (3.1)–(3.3) is

violated.

4 Separating Times for Bessel Processes

Consider the SDE

dXt = γ dt+ 2
√
|Xt|dBt, X0 = x0

with γ ≥ 0, x0 ≥ 0. It is known that this SDE has a unique solution Q in
the sense of Definition 5. Moreover, the measure Q is concentrated on positive
functions. A process (Zt)t∈[0,∞) with the distribution Q is called a square of
a γ-dimensional Bessel process started at

√
x0. The process

√
Z is called a

γ-dimensional Bessel process started at
√
x0. For more information on Bessel

processes, see [2], [3], [6], [32], [33, Ch. XI].
Let X denote the canonical process on C([0,∞)). Consider the filtration

Ft =
⋂

ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =
∨

t Ft.

Theorem 4.1. Let P (resp., P̃) be the distribution of a γ-dimensional (resp.,
γ̃-dimensional) Bessel process started at x0. Then the separating time S for
P and P̃ has the following form.
(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P �= P̃, then

S = inf{t ∈ [0,∞) : Xt = 0} P, P̃-a.s.

(we set inf ∅ =∞).

Proof. We should prove only (ii). Set T0 = inf{t ∈ [0,∞) : Xt = 0}. It
follows from [2, Th. 4.1] and the strong Markov property of Bessel processes
that S ≤ T0 P, P̃-a.s.

Let us prove that S ≥ T0 P, P̃-a.s. For x0 = 0, this is obvious, so we
assume that x0 > 0. Fix ε ∈ (0, x0/2) and consider the stopping time
Tε = inf{t ∈ [0,∞) : Xt = ε}. Define the map Fε : C([0,∞)) → C([0,∞))
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by Fε(ω)(t) = ω(t ∧ Tε(ω)) and let Pε denote the image of P under this map.
Using Itô’s formula, one can check that Pε is a solution of the SDE

dXt =
γ − 1
2Xt

I(t ≤ Tε) dt+ I(t ≤ Tε) dBt, X0 = x0.

Let (Ω′,F ′,P′) be a probability space with a Brownian motion (Wt)t∈[0,∞).
Consider the space (C([0,∞))×Ω′,F ×F ′,Pε ×P′) and let Qε be the distri-
bution of the process

Zt = Xt +
∫ t

0

I(s > Tε)dWs, t ∈ [0,∞).

Then Qε is a solution of the SDE

dXt =
γ − 1
2Xt

I(t ≤ Tε) dt+ dBt, X0 = x0.

Similarly, using the measure P̃, we define the measure Q̃ε that is a solution of
the SDE

dXt =
γ̃ − 1
2Xt

I(t ≤ Tε) dt+ dBt, X0 = x0.

Since the drift coefficients γ−1
2Xt

I(t ≤ Tε) and γ̃−1
2Xt

I(t ≤ Tε) are bounded, we get

by Girsanov’s theorem that Q̃ε loc∼ Qε. The obvious equalities Pε = Qε ◦ F−1ε

and P̃ε = Q̃ε ◦F−1ε yield that P̃ε loc∼ Pε. One can verify that Pε|FT2ε = P|FT2ε

and P̃ε|FT2ε = P̃|FT2ε . Consequently, P̃|Ft∧T2ε ∼ P|Ft∧T2ε for any t ∈ [0,∞).
Since t ∈ [0,∞) and ε ∈ (0, x0/2) are arbitrary, we get the desired inequality
S ≥ T0 P, P̃-a.s. The proof is completed. ��

It is known that if 0 ≤ γ < 2, then a γ-dimensional Bessel process started
at a strictly positive point hits zero with probability one; if γ ≥ 2, then a γ-
dimensional Bessel process started at a strictly positive point never hits zero
with probability one. Theorem 4.1, combined with Lemma 2.1 and with these
properties, yields

Corollary 4.1. (i) Either P̃ = P or P̃ ⊥ P.
(ii) If P̃ �= P and x0 = 0, then P̃0 ⊥ P0.

(iii) Let P̃ �= P and x0 > 0. Then P̃
loc
0 P ⇐⇒ γ̃ ≥ 2.

This corollary generalizes the result of [2, Th. 4.1].

5 Separating Times for Solutions of SDEs

5.1. Basic definitions. We consider one-dimensional SDEs of the form
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dXt = b(Xt) dt+ σ(Xt) dBt, X0 = x0, (5.1)

where b and σ are Borel functions R→ R and x0 ∈ R.
The standard definition of a solution, which goes back to I.V. Girsanov [9],

is as follows.

Definition 4. A solution of (5.1) is a pair (Y,B) of continuous adapted
processes on a filtered probability space

(
Ω,Γ, (Γt)t∈[0,∞),Q

)
such that

i) B is a (Γt,Q)-Brownian motion;
ii) for any t ∈ [0,∞),∫ t

0

(|b(Ys)|+ σ2(Ys)) ds <∞ Q-a.s.;

iii) for any t ∈ [0,∞),

Yt = x0 +
∫ t

0

b(Ys) ds+
∫ t

0

σ(Ys) dBs Q-a.s.

Remark. A solution in the sense of Definition 4 is sometimes called a weak
solution.

In what follows, it will be convenient for us to treat a solution as a solu-
tion of the corresponding martingale problem, i.e. as a measure on the space
C([0,∞)) of continuous functions. The corresponding definition goes back to
D.W. Stroock and S.R.S. Varadhan [43]. Let X denote the canonical process
on C([0,∞)). Consider the filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t + ε]) and set

F =
∨

t Ft.

Definition 5. A solution of (5.1) is a probability measure P on F such that
i) P(X0 = x0) = 1;
ii) for any t ∈ [0,∞),∫ t

0

(|b(Xs)|+ σ2(Xs)) ds <∞ P-a.s.;

iii) the process

Mt = Xt −
∫ t

0

b(Xs) ds, t ∈ [0,∞)

is an (Ft,P)-local martingale with the quadratic variation

〈M〉t =
∫ t

0

σ2(Xs) ds, t ∈ [0,∞).

The following statement (see, for example, [19, § 5.4.B]) shows the rela-
tionship between Definitions 4 and 5.
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Proposition 2. (i) Let (Y,B) be a solution of (5.1) in the sense of Defini-
tion 4. Set P = Law(Yt; t ∈ [0,∞)). Then P is a solution of (5.1) in the sense
of Definition 5.
(ii) Let P be a solution of (5.1) in the sense of Definition 5. Then there

exist a filtered probability space
(
Ω,Γ, (Γt)t∈[0,∞),Q

)
and a pair of processes

(Y,B) on this space such that (Y,B) is a solution of (5.1) in the sense of
Definition 4 and Law(Yt; t ∈ [0,∞)) = P.

5.2. Exploding solutions. Definitions 4 and 5 do not include exploding
solutions. However, we need to consider them. Let us introduce some nota-
tions.

Let us add a point ∆ to the real line and let C∆([0,∞)) denote the space
of functions f : [0,∞) → R ∪ {∆} with the property: there exists a time
ζ(f) ∈ [0,∞] such that f is continuous on [0, ζ(f)), f = ∆ on [ζ(f),∞)),
and if 0 < ζ(f) < ∞, then limt↑ζ(f) f(t) = ∞ or limt↑ζ(f) f(t) = −∞.
The time ζ(f) is called the explosion time of f . Below in this subsec-
tion, X denotes the canonical process on C∆([0,∞)). Consider the filtration
Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =

∨
t Ft. Let ζ denote the explosion

time of the process X.
The next definition is a generalization of Definition 5 for the case of ex-

ploding solutions.

Definition 6. A solution of (5.1) is a probability measure P on F such that
i) P(X0 = x0) = 1;
ii) for any t ∈ [0,∞) and n ∈ N such that n > |x0|,∫ t∧τn

0

(|b(Xs)|+ σ2(Xs)) ds <∞ P-a.s.,

where τn = inf{t ∈ [0,∞) : |Xt| = n} (we set inf ∅ =∞);
iii) for any n ∈ N such that n > |x0|, the process

Mn
t = Xt∧τn −

∫ t∧τn

0

b(Xs) ds, t ∈ [0,∞)

is an (Ft,P)-local martingale with the quadratic variation

〈Mn〉t =
∫ t∧τn

0

σ2(Xs) ds, t ∈ [0,∞).

Clearly, if P is a solution of (5.1) in the sense of Definition 6 and ζ = ∞
P-a.s., then the restriction of P to C([0,∞)) is a solution of (5.1) in the sense of
Definition 5. Conversely, if P is a solution of (5.1) in the sense of Definition 5,
then there exists a unique extension of the measure P to C∆([0,∞)) that is a
solution of (5.1) in the sense of Definition 6.
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Definition 7. A Borel function f : R→ [0,∞) is locally integrable at a point
a ∈ [−∞,∞] if there exists a neighborhood U of a such that

∫
U
f(x) dx <∞.

(A neighborhood of ∞ is a ray of the form (x,∞); a neighborhood of −∞ is
a ray of the form (−∞, x).) Notation: f ∈ L1loc(a).

A function f is locally integrable on a set A ⊆ [−∞,∞] if f is locally
integrable at each point of this set. Notation: f ∈ L1loc(A).

Below we shall use the following result (see [7]).

Proposition 3 (Engelbert, Schmidt). Suppose that the coefficients b and
σ of (5.1) satisfy the conditions:

σ(x) �= 0 ∀x ∈ R, (5.2)
1 + |b|
σ2

∈ L1loc(R). (5.3)

Then, for any starting point x0 ∈ R, there exists a unique solution of (5.1)
in the sense of Definition 6.

For the information on the qualitative behaviour of the solution of (5.1)
under conditions (5.2) and (5.3), see the Appendix.

5.3. Explicit form of the separating time. Here we use the notations
F , Ft, X, and ζ introduced in Subsection 5.2.

Consider the SDEs

dXt = b(Xt) dt+ σ(Xt) dBt, X0 = x0, (5.4)

dXt = b̃(Xt) dt+ σ̃(Xt) dBt, X0 = x0 (5.5)

with the same starting point x0. Let us assume that conditions (5.2), (5.3)
and the similar conditions for b̃, σ̃ are satisfied.

Set

ρ(x) = exp
{
−
∫ x

0

2b(y)
σ2(y)

dy
}
, x ∈ R, (5.6)

s(x) =
∫ x

0

ρ(y) dy, x ∈ R, (5.7)

s(∞) = lim
x→∞

s(x), (5.8)

s(−∞) = lim
x→−∞

s(x). (5.9)

Similarly, we define ρ̃, s̃, s̃(∞), and s̃(−∞) through b̃ and σ̃. Let µL denote
the Lebesgue measure on B(R).

We say that a point x ∈ R is good if there exists a neighborhood U of x
such that σ2 = σ̃2 µL-a.e. on U and (b − b̃)2/σ4 ∈ L1loc(x). We say that the
point ∞ is good if all the points from [x0,∞) are good and
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s(∞) <∞, (5.10)

(s(∞)− s)
(b− b̃)2

ρσ4
∈ L1loc(∞). (5.11)

We say that the point −∞ is good if all the points from (−∞, x0] are good
and

s(−∞) > −∞, (5.12)

(s− s(−∞))
(b− b̃)2

ρσ4
∈ L1loc(−∞). (5.13)

Let A denote the complement to the set of good points in [−∞,∞]. Clearly,
A is closed in [−∞,∞]. Let us define

Aε = {x ∈ [−∞,∞] : ρ(x,A) < ε},

where ρ(x, y) = | arctg x− arctg y|, x, y ∈ [−∞,∞] (we set ∅ε = ∅).
The main result of this section is the following theorem. Its proof is given

in Subsection 5.5.

Theorem 5.1. Suppose that b, σ, b̃, σ̃ satisfy conditions (5.2) and (5.3). Let
P and P̃ denote the solutions of (5.4) and (5.5) in the sense of Definition 6.
Then the separating time S for P and P̃ has the following form.
(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P �= P̃, then

S = sup
n

inf{t ∈ [0,∞) : Xt ∈ A1/n} P, P̃-a.s.,

where “inf” is the same as “inf”, except that inf ∅ = δ.

Remarks. (i) Let us explain the structure of S in case (ii). Denote by α
the “bad point that is closest to x0 from the left side”, i.e.

α =

{
sup{x : x ∈ [−∞, x0] ∩A} if [−∞, x0] ∩A �= ∅,
∆ if [−∞, x0] ∩A = ∅.

(5.14)

Let us consider the “hitting time of α”:

U =



δ if α = ∆,

δ if α = −∞ and lim
t↑ζ

Xt > −∞,

ζ if α = −∞ and lim
t↑ζ

Xt = −∞,

Tα if α > −∞,
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where Tα = inf{t ∈ [0,∞) : Xt = α}. Similarly, denote by γ the “bad point
that is closest to x0 from the right side” and denote by V the “hitting time
of γ”. Then S = U ∧ V P, P̃-a.s. (This follows from Proposition A.1.)

(ii) Suppose that [x0,∞) ⊆ [−∞,∞] \ A. Combining Theorem 5.1 with
results of Appendix, we get that the pair of conditions (5.10), (5.11) is equiv-
alent to the inequality P({S = δ} ∩ (B+ ∪ C+)) > 0, where B+ and C+ are
defined in the Appendix. By the definition of a separating time, the latter
condition is equivalent to the inequality P̃({S = δ} ∩ (B+ ∪C+)) > 0. Apply-
ing once more Theorem 5.1 (to the measures P̃ and P rather than P and P̃)
and results of Appendix, we get that this condition is, in turn, equivalent to
the pair

s̃(∞) <∞, (5.15)

(s̃(∞)− s̃)
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(∞). (5.16)

Thus, assuming that [x0,∞) ⊆ [−∞,∞] \ A, we get the equivalence between
(5.10)+(5.11) and (5.15)+(5.16). A similar remark is true for (5.12)+(5.13).

Theorem 5.1, combined with Lemma 2.1 and Propositions A.1–A.3, yields
several corollaries concerning the mutual arrangement of P and P̃. In order to
formulate them, let us introduce the conditions:

s̃(∞) =∞, (5.17)

s̃(∞) <∞ and
s̃(∞)− s̃

ρ̃ σ̃2
/∈ L1loc(∞), (5.18)

s̃(∞) <∞ and (s̃(∞)− s̃)
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(∞). (5.19)

Condition (5.17) means that the paths of the canonical process X under the
measure P̃ do not tend to∞ as t→∞ (see Proposition A.2). Condition (5.18)
means that the paths of the canonical process X with a strictly positive P̃-
probability tend to ∞ as t → ∞, but do not explode into ∞, i.e. the ex-
plosion time for them is ∞ (see Proposition A.2). Condition (5.19) is the
pair (5.15), (5.16). Similarly, we introduce the conditions at −∞:

s̃(−∞) = −∞, (5.20)

s̃(−∞) > −∞ and
s̃− s̃(−∞)

ρ̃ σ̃2
/∈ L1loc(−∞), (5.21)

s̃(−∞) > −∞ and (s̃− s̃(−∞))
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(−∞). (5.22)

Corollary 5.1. Under the assumptions of Theorem 5.1, we have P̃ 0 P if
and only if at least one of conditions (a)–(d) below is satisfied:
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(a) P = P̃;
(b) (5.17), (5.22), and (5.23) are satisfied;
(c) (5.19), (5.20), and (5.23) are satisfied;
(d) (5.19), (5.22), and (5.23) are satisfied.

Corollary 5.2. Under the assumptions of Theorem 5.1, we have P̃
loc
0 P if

and only if the condition

σ2 = σ̃2 µL-a.e. and
(b− b̃)2

σ4
∈ L1loc(R), (5.23)

at least one of conditions (5.17)–(5.19), and at least one of conditions (5.20)–
(5.22) are satisfied.

Remark. The result of Corollary 5.2 is closely connected with the result
of Orey [31], where a criterion for the local absolute continuity of regular
continuous strong Markov families is provided.

Corollary 5.3. Under the assumptions of Theorem 5.1, we have P̃ ⊥ P if and
only if P̃ �= P and −∞,∞ ∈ A.

Corollary 5.4. Under the assumptions of Theorem 5.1, we have P̃0 ⊥ P0 if
and only if x0 ∈ A.

5.4. Examples. In this subsection, we give 9 examples, which show var-
ious types of the mutual arrangement of P and P̃ from the point of view of
their (local) absolute continuity, and singularity. The proofs are straightfor-
ward applications of Theorem 5.1 (it is convenient to use also Remark (ii)
following Theorem 5.1). One should also take into account the results on the
qualitative behaviour of solutions of SDEs that are described in Appendix.
In particular, these results imply that a solution P of SDE (5.1) satisfying
condition (5.3) with σ ≡ 1, has the following properties:

• If b is a constant in the neighborhood of +∞, then P({ζ <∞, limt↑ζ Xt =
+∞) = 0.

• If b is a strictly positive constant in the neighborhood of +∞, then
P(limt→∞Xt = +∞) > 0.

• If moreover b is positive in the neighborhood of −∞, then P(limt→∞Xt =
+∞) = 1.

• If b(x) = x2 in the neighborhood of +∞, then P(ζ < ∞, limt↑ζ Xt =
+∞) > 0.

• If moreover b is positive in the neighborhood of −∞, then P(ζ <
∞, limt→∞Xt = +∞) = 1.

In all the examples below, σ = σ̃ ≡ 1, x0 = 0, and we specify only b and b̃.
We use the notation P̃4P to denote that P and P̃ are in a general position,

i.e. P̃ �0 P, P �0 P̃, P̃ �⊥ P.
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Example 1. If
b ≡ 1, b̃(x) = 1 + I(0 < x < 1),

then
P̃ �= P, P̃ ∼ P.

Example 2. If
b(x) = I(x > 0)− I(x < 0), b̃ ≡ 1,

then
P̃ 0 P, P �0 P̃, P

loc
0 P̃.

Example 3. If
b(x) = I(x > 0)− x2I(x < 0), b̃ ≡ 1,

then
P̃ 0 P, P �

loc
0 P̃.

Example 4. If

b(x) = I(x > 0)− I(x < 0), b̃(x) = I(x > 0)− 2I(x < 0),

then
P̃4P, P̃

loc∼ P.

Example 5. If

b(x) = I(x > 0)− x2I(x < 0), b̃(x) = I(x > 0)− I(x < 0),

then
P̃4P, P̃

loc
0 P, P �

loc
0 P̃.

Example 6. If

b ≡ 1, b̃(x) = 1 +
I(−1 < x < 0)√

x+ 1
,

then
P̃4P, P̃ �

loc
0 P, P �

loc
0 P̃.

Example 7. If
b ≡ 0, b̃ ≡ 1,

then
P̃ ⊥ P, P̃

loc∼ P.

Example 8. If
b(x) = x2, b̃ ≡ 0,

then
P̃ ⊥ P, P̃

loc
0 P, P �

loc
0 P̃.
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Type of arrangement Example

P̃ = P trivial

P̃ �= P, P̃ ∼ P Example 1

P̃ � P, P �� P̃, P
loc
� P̃ Example 2

P̃ � P, P �
loc
� P̃ Example 3

P̃�P, P̃
loc∼ P Example 4

P̃�P, P̃
loc
� P, P �

loc
� P̃ Example 5

P̃�P, P̃ �
loc
� P, P �

loc
� P̃ Example 6

P ⊥ P, P̃
loc∼ P Example 7

P̃ ⊥ P, P̃
loc
� P, P �

loc
� P̃ Example 8

P̃ ⊥ P, P̃ �
loc
� P, P �

loc
� P̃ Example 9

Table 1. Various possible types of the mutual arrange-
ment of P and P̃ (up to the symmetry between P and P̃)

Example 9. If

b ≡ 0, b̃(x) =
I(0 < x < 1)√

x
,

then
P̃ ⊥ P, P̃ �

loc
0 P, P �

loc
0 P̃.

Examples 1–9 show that all the possible types of the mutual arrangement
of P and P̃ can be realized. However, the lemma below shows that the types of
the mutual arrangement that appear in Examples 3, 5, and 8 can be realized
only if P explodes. (In Examples 1, 2, 4, 6, 7, and 9, the measures P and P̃ do
not explode.)

Lemma 5.1. Suppose that P does not explode and P̃
loc
0 P. Then P

loc
0 P̃.

Proof. Let S be the separating time for P and P̃. By Lemma 2.1,
P̃(S ≥ ∞) = 1. It follows from Theorem 5.1 and Proposition A.3 (i), that
all the points of (−∞,∞) are good. As P does not explode, P(S ≥ ∞) = 1.

One more application of Lemma 2.1 yields P
loc
0 P̃. ��

Remark. Example 8 reveals an interesting effect. Suppose that we are ob-
serving a path of the process X and are trying to distinguish between the
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hypotheses P and P̃ (given by Example 8). If P is the true hypothesis, we will
find this out within a finite time of observations. However, if P̃ is the true
hypothesis, we will find this out only within the infinite time of observations.

5.5. Proof of Theorem 5.1. In the proof of this theorem, we use the
techniques of random time-changes and local times. These can be found in [33,
Ch. V, § 1; Ch. VI, §§ 1,2]. Below we deal with the following two settings.

Setting 1. Let X denote the canonical process on C([0,∞)). Consider the
filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =

∨
t∈[0,∞) Ft.

Setting 2. LetX denote the canonical process on C∆([0,∞)) and ζ denote
the explosion time of X. Consider the filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ε])

and set F =
∨

t∈[0,∞) Ft.

We begin with a series of auxiliary lemmas.

Lemma 5.2. In Setting 1 or in Setting 2, consider an (Ft)-stopping time τ .
Let ω and ω′ be such that τ(ω) = t0 ∈ [0,∞) and ω′(s) = ω(s) on [0, t0 + ε]
for some ε > 0. Then τ(ω′) = t0 and, for any A ∈ Fτ , ω ∈ A⇐⇒ ω′ ∈ A.

This lemma may be proved by the standard technique. For statements
with similar proofs, see, for example, [12, Ch. III, Lem. 2.43], [33, Ch. I,
Ex. 4.21], [36, Ch. I, § 2, Lem. 13].

Lemma 5.3. Let Y = (Yt)t∈[0,∞) be a continuous process on a probability
space (Ω,G,Q). Introduce the filtration GY

t =
⋂

ε>0 σ(Ys; s ∈ [0, t+ ε]). Let τ
be a (GY

t )-stopping time. Then there exists an (Ft)-stopping time ρ such that
τ = ρ(Y ), where (Ft) denotes the filtration introduced in Setting 1.

This lemma may be proved similarly to [12, Ch. I, Lem. 1.19].

Lemma 5.4. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3). Let P be a solution of (5.1) in the sense of Definition 6
(so, we consider Setting 2). Then F0 is P-trivial.

Proof. This is a consequence of the following result (see [43, Th. 6.2] or [18,
Th. 18.11]): if for any starting point x0 ∈ R, there exists a unique solution Px0

of (5.1), then the family (Xt,Ft,Px; t ∈ [0,∞), x ∈ R) possesses the strong
Markov property. After applying this result one should note that any strong
Markov family satisfies the required zero-one law. ��

Lemma 5.5. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3) and that the solution is non-exploding. Let P be a solution
of (5.1) in the sense of Definition 5 (so, we consider Setting 1). Then, for
any (Ft)-stopping time ξ such that ξ > 0 P-a.s., there exists an (Ft)-stopping
time ξ′ such that 0 < ξ′ < ξ P-a.s.
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Proof. 1) Define the functions ρ and s by formulas (5.6) and (5.7). Con-
sider the process Y = s(X). Due to the Ito-Tanaka formula (see [33, Ch. VI,
Th. 1.5]), Y is a continuous (Ft,P)-local martingale with the quadratic varia-
tion 〈Y 〉t =

∫ t
0
κ2(Yu) du, where κ(x) = ρ(s−1(x))σ(s−1(x)), x ∈ s(R). Since

σ(x) �= 0 for any x ∈ R, then P-a.s. the trajectories of 〈Y 〉 are continuous
and strictly increasing. Denote by F the P-completion of the σ-field F and
by (F t) the P-completion of the filtration (Ft). Define an (F t)-time-change

τt = inf{s ∈ [0,∞) : 〈Y 〉s > t}, t ∈ [0,∞). (5.24)

Consider an (F ′t,P′)-Brownian motion W ′ on some stochastic basis
(Ω′,F ′, (F ′t),P′) and set

Ω = C([0,∞))×Ω′, G = F × F ′, Gt =
⋂
ε>0

Fτt+ε
×F ′t+ε, Q = P× P′.

Denote by G the Q-completion of the σ-field G and by (Gt) the Q-completion
of the filtration (Gt). Consider the stochastic basis (Ω,G, (Gt),Q). All the
random variables and the processes defined on C([0,∞)) or on Ω′ can be
viewed as random variables and processes on Ω. In what follows, we do not
explain on which space we consider a random variable or a process if this is
clear from the context.

Set
Wt = Yτt +W ′t −W ′t∧〈Y 〉∞ , t ∈ [0,∞). (5.25)

By the Dambis-Dubins-Schwartz theorem (see [33, Ch. V, Th. 1.6]), the
process W = (Wt)t∈[0,∞) is a (Gt,Q)-Brownian motion with the starting
point s(x0).

As P-a.s. the trajectories of 〈Y 〉 are continuous, we have 〈Y 〉τt = t P-a.s.
on {t < 〈Y 〉∞}, i.e.∫ τt

0

κ2(Yu) du = t P-a.s. on {t < 〈Y 〉∞}.

As P-a.s. the trajectories of 〈Y 〉 are strictly increasing, then P-a.s. the tra-
jectories of τ are continuous (however, they may explode). By the change of
variables in the Stieltjes integral, we get∫ t

0

κ2(Yτu) dτu = t P-a.s. on {t < 〈Y 〉∞},

and therefore,

τt =
∫ t

0

κ−2(Yτu) du P-a.s. on {t < 〈Y 〉∞}.

Since τt →∞ P-a.s. as t ↑ 〈Y 〉∞ and Yτt =Wt for t < 〈Y 〉∞, we have
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τt =
∫ t

0

κ−2(Wu) du Q-a.s., t ∈ [0,∞) (5.26)

(here we set κ(x) = 1 for x /∈ s(R)).
Consider the filtration HW

t =
⋂

ε>0 σ(Ws; s ∈ [0, t + ε]) and let (HW

t )
denote its Q-completion. By (5.26), the process τ viewed as a process on Ω is
(HW

t )-adapted. Due to (5.24),

〈Y 〉t = inf{s ∈ [0,∞) : τs > t} P-a.s., t ∈ [0,∞).

Therefore, the process 〈Y 〉 viewed as a process on Ω is an (HW

t )-time-change.
Furthermore, (5.25) implies that Yt =W〈Y 〉t Q-a.s. Since the right-continuous
and Q-complete filtration generated by Y viewed as a process on Ω contains
the filtration (F t × {∅, Ω′}), we have

F t × {∅, Ω′} ⊆ HW

〈Y 〉t . (5.27)

The process τ is an (F t × {∅, Ω′})-time-change. It follows from (5.27) (see
also [33, Ch. V, Ex. 1.12]) that

Fτt × {∅, Ω′} ⊆ HW

t∧〈Y 〉∞ ⊆ HW

t . (5.28)

2) It is easy to verify that 〈Y 〉ξ viewed as a random variable on Ω is
an (Fτt × {∅, Ω′})-stopping time. By (5.28), 〈Y 〉ξ is an (HW

t )-stopping time.
Since ξ > 0 P-a.s., then 〈Y 〉ξ > 0 Q-a.s. Furthermore, the σ-field HW

0 is
Q-trivial; it is also well known that every stopping time on a complete Brown-
ian filtration is predictable. Hence, there exists an (HW

t )-stopping time η such
that

0 < η < 〈Y 〉ξ Q-a.s. (5.29)

It is known (see [12, Ch. I, Lem. 1.19]) that every stopping time with respect
to a completion of a right-continuous filtration (Kt) a.s. coincides with a (Kt)-
stopping time. Therefore, we can choose η in such a way that it is an (HW

t )-
stopping time. Due to Lemma 5.3, there exists an (Ft)-stopping time ρ such
that

η = ρ(W ) Q-a.s. (5.30)

Now, define the process Vt = Yτt , t ∈ [0,∞). (Note that {τt =∞} = {〈Y 〉∞ ≤
t} P-a.s. and on the set {〈Y 〉∞ < ∞} the process Yt tends P-a.s. to a finite
random variable Y∞. Hence, the process V is well defined.) Equations (5.29)
and (5.30) imply that ρ(W ) < 〈Y 〉∞ Q-a.s. Since V = W 〈Y 〉∞ Q-a.s., then,
by Lemma 5.2, ρ(W ) = ρ(V ) Q-a.s. The random variables ρ(V ) and 〈Y 〉ξ are
defined on C([0,∞)). Hence, we can write

0 < ρ(V ) < 〈Y 〉ξ P-a.s. (5.31)
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Consider the filtration FV
t on C([0,∞)) defined by the formula

FV
t =

⋂
ε>0

σ(Vs; s ∈ [0, t+ ε]).

Since the process V is Fτt -adapted and the filtration Fτt is right-continuous,
we have FV

t ⊆ Fτt . Consequently, ρ(V ) is an (Fτt)-stopping time. By [33,
Ch. V, Ex. 1.12], τρ(V ) is an (F t)-stopping time. Due to [12, Ch. I, Lem. 1.19],
there exists an (Ft)-stopping time ξ′ such that ξ′ = τρ(V ) P-a.s. Finally,
(5.31) implies that 0 < ξ′ < ξ P-a.s. ��

Now, let us introduce some notations. Suppose that a, c ∈ [−∞,∞]. In
Setting 1 or in Setting 2, define

Ta = inf{t ∈ [0,∞) : Xt = a}, (5.32)
Ta,c = Ta ∧ Tc. (5.33)

Note that if a = −∞ or a =∞, then Ta =∞. Similarly, for a process Y , we
use the notations

Ta(Y ) = inf{t ∈ [0,∞) : Yt = a}, (5.34)
Ta,c(Y ) = Ta(Y ) ∧ Tc(Y ). (5.35)

Below in this section, we use the notations ρ, s, s(∞), s(−∞) introduced
in (5.6)–(5.9). Let us define the function κ by the formula

κ(x) = ρ(s−1(x))σ(s−1(x)), x ∈ s(R). (5.36)

We need a more detailed version of the Engelbert-Schmidt theorem than
Proposition 3 (see [7]).

Proposition 4 (Engelbert, Schmidt). Suppose that the coefficients b and
σ of (5.1) satisfy conditions (5.2) and (5.3).
(i) Then, for any starting point x0 ∈ R, there exists a unique solution

of (5.1) in the sense of Definition 6.
(ii) Let Px0 denote this solution. Consider a stochastic basis

(Ω,G, (Gt)t∈[0,∞),Q) with a right-continuous and complete filtration. Let B
be a (Gt,Q)-Brownian motion with the starting point s(x0). Define the process
(At)t∈[0,∞) and the (Gt)-time-change (τt)t∈[0,∞) by the formulas

At =

{∫ t
0
κ−2(Bs) ds if t < Ts(−∞),s(∞)(B),

∞ if t ≥ Ts(−∞),s(∞)(B),
(5.37)

τt = inf{s ∈ [0,∞) : As > t}. (5.38)

Then
Px0 = Law

(
s−1(Bτt); t ∈ [0,∞)

∣∣Q),
where we set s−1(s(∞)) = s−1(s(−∞)) = ∆.
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Remark. Propositions A.1 and A.3 may easily be derived from the second
part of Proposition 4.

Lemma 5.6. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3). Additionally assume that s(∞) < ∞. Denote by P the
solution of (5.1) in the sense of Definition 6 (so, we consider Setting 2). Let
a < x0 and f be a positive Borel function such that f/σ2 ∈ L1loc([a,∞)).
(i) If (s(∞)− s)f/(ρσ2) ∈ L1loc(∞), then∫ ζ

0

f(Xt) dt <∞ P-a.s. on the set {Ta =∞}

(recall that ζ denotes the explosion time of X).
(ii) If (s(∞)− s)f/(ρσ2) /∈ L1loc(∞), then∫ ζ

0

f(Xt) dt =∞ P-a.s. on the set {Ta =∞}.

Remark. Due to Proposition A.1, limt↑ζ Xt = ∞ P-a.s. on the set {Ta =
∞}. Therefore, Lemma 5.6 deals, in fact, with the convergence of some inte-
grals on the trajectories that tend to ∞ or explode to ∞. Clearly, this lemma
has its analog for the trajectories that tend to −∞ or explode to −∞.

Proof of Lemma 5.6. We prove only the first part. The proof of the second
one is analogous.

Consider a stochastic basis (Ω,G, (Gt)t∈[0,∞),Q) with a right-continuous
and complete filtration and let B be a (Gt,Q)-Brownian motion with the
starting point s(x0). Define the process (At)t∈[0,∞) and the (Gt)-time-change
(τt)t∈[0,∞) by formulas (5.37) and (5.38). Set ξ = ATs(−∞),s(∞)(B)−.

Proposition 4 yields that the convergence of the integral
∫ ζ
0
f(Xt) dt

P-a.s. on the set {Ta = ∞} is equivalent to the convergence of the integral∫ ξ
0
f(s−1(Bτt)) dt Q-a.s. on the set {Ts(∞)(B) < Ts(a)(B)}. By the change of

variables in the Stieltjes integral, we get∫ ξ

0

f(s−1(Bτt)) dt =
∫ ξ

0

f(s−1(Bτt)) dAτt =
∫ τξ

0

f(s−1(Bt)) dAt

=
∫ Ts(−∞),s(∞)(B)

0

f

ρ2σ2
(s−1(Bt)) dt.

Set
g(x) =

f

ρ2σ2
(s−1(x)), x ∈ s(R).

Since Ts(−∞),s(∞)(B) = Ts(∞)(B) on the set {Ts(∞)(B) < Ts(a)(B)},
then the problem reduces to investigating the convergence of the integral∫ Ts(∞)(B)

0
g(Bt) dt Q-a.s. on the set {Ts(∞)(B) < Ts(a)(B)}.
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Since (s(∞)− s)f/(ρσ2) ∈ L1loc(∞), then

∃ ε > 0:
∫ s(∞)

s(∞)−ε
(s(∞)− x)g(x) dx <∞.

As f/σ2 ∈ L1loc([a,∞)), we have g ∈ L1loc([s(a), s(∞))). Now, we need to use
the results of the paper [2], where the convergence of some integrals associated
with Bessel processes is investigated. By [2, Th. 2.2],∫ Ts(a)(s(∞)−Y )

0

g(s(∞)− Y ) dt <∞ R2+-a.s.,

where Y is a three-dimensional Bessel process started at zero and defined on
a probability space with a measure R2+. Set Zt = s(∞)− Yt, t ∈ [0,∞). Then∫ Us(x0)(Z)

0

g(Zt) dt <∞ R2+-a.s. on the set {Us(x0)(Z) < Ts(a)(Z)},

where we use the notation Uc(Z) = sup{t ∈ [0,∞) : Zt = c}. Now, the
Williams theorem (see [33, Ch. VII, Cor. 4.6]), combined with the last formula,
yields∫ Ts(∞)(B)

0

g(Bt) dt <∞ Q-a.s. on the set {Ts(∞)(B) < Ts(a)(B)}.

This completes the proof. ��
In what follows, µL denotes the Lebesgue measure on B(R).

Lemma 5.7. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3). Additionally assume that s(−∞) = −∞ and s(∞) =∞.
Denote by P the solution of (5.1) in the sense of Definition 6 (so, we consider
Setting 2). Let f be a positive Borel function such that µL(f > 0) > 0. Then∫ ∞

0

f(Xt) dt =∞ P-a.s.

(Let us recall that, by Propositions A.1 and A.2, ζ = ∞ P-a.s. whenever
s(∞) =∞ and s(−∞) = −∞.)

Remark. Lemmas 5.6 and 5.7 complement each other. Indeed, Lemma 5.6
deals with the convergence of some integrals on the trajectories that tend to
∞ (or to −∞), while Lemma 5.7 deals with the convergence of some integrals
on the trajectories that are recurrent.

Proof of Lemma 5.7. Using a reasoning similar to that of the previous lemma,
we see that we need to prove the equality

∫∞
0
g(Bt) dt = ∞ Q-a.s., where

g(x) = f
ρ2σ2 (s−1(x)), x ∈ R, and B is a Q-Brownian motion defined on some
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probability space. It is known that local times of a Brownian motion satisfy
Lx
∞(B) = ∞ for all x ∈ R (see [33, Ch. VI, Cor. 2.4]). By the occupation

times formula (see [33, Ch. VI, Cor. 1.6]),∫ ∞
0

g(Bt) dt =
∫

R

g(x)Lx
∞(B) dx =∞ Q-a.s.

The proof is completed. ��
Let Y be a continuous semimartingale on some stochastic basis. Below in

this section, we use the notation Lx
t (Y ) (t ∈ [0,∞), x ∈ R) for the local time

of a process Y spent at a point a by a time t. We take versions of local times
that are càdlàg in x and use the notation Lx−

t (Y ) := limε↓0 L
x−ε
t (Y ).

Lemma 5.8. Assume that the coefficients b, σ and b̃, σ̃ of (5.4) and (5.5)
satisfy conditions (5.2) and (5.3) and that the solutions are non-exploding.
Let P and P̃ be the solutions of (5.4) and (5.5) in the sense of Definition 5
(so, we consider Setting 1). Suppose that the condition

∀ ε > 0, µL((x0 − ε, x0 + ε) ∩ {σ2 �= σ̃2}) > 0 (5.39)

or the condition
(̃b− b)2

σ4
/∈ L1loc(x0) (5.40)

is satisfied. Then P̃0 ⊥ P0 (let us recall that P0 and P̃0 denote the restrictions
of P and P̃ to the σ-field F0).

Proof. 1) Let us first assume that condition (5.39) holds. By the occupation
times formula (see [33, Ch. VI, Cor. 1.6]),∫ t

0

I{σ2 �=σ̃2}(Xu)σ2(Xu) du =
∫ t

0

I{σ2 �=σ̃2}(Xu) d〈X〉u

=
∫

R

I{σ2 �=σ̃2}(x)L
x
t (X) dx P-a.s.

It follows from [4, Th. 2.7] that Lx0
t (X) > 0 and Lx0−

t (X) > 0 P-a.s. for any
t > 0. Therefore, for any t > 0,∫ t

0

I{σ2 �=σ̃2}(Xu)σ2(Xu) du > 0 P-a.s.

Hence, for any t > 0,

P

(
∃ 0 < s ≤ t :

∫ s

0

σ2(Xu) du �=
∫ s

0

σ̃2(Xu) du
)
= 1,

and consequently,
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P

(
∀ t > 0 ∃ 0 < s ≤ t :

∫ s

0

σ2(Xu) du �=
∫ s

0

σ̃2(Xu) du
)
= 1. (5.41)

Let us recall that P-quadratic variation (resp., P̃-quadratic variation) of X
at time s equals

∫ s
0
σ2(Xu) du P-a.s. (resp.,

∫ s
0
σ̃2(Xu) du P̃-a.s.). Therefore,

for any sequence (∆n) of subdivisions of the interval [0, s] whose diameters
tend to 0, we have∫ s

0

σ2(Xu) du = P- lim
n→∞

∑
ti∈∆n

(Xti −Xti−1)
2

and ∫ s

0

σ̃2(Xu) du = P̃- lim
n→∞

∑
ti∈∆n

(Xti −Xti−1)
2.

Now, consider all rational times s. By extracting a.s. converging subse-
quences and using Cantor’s diagonal method, we see that (5.41) implies the
desired result P̃0 ⊥ P0.
2) Assume now that condition (5.40) holds. Denote by S the separating

time for P and P̃. Due to Lemma 5.4, the σ-field F0 is trivial with respect to
each of the measures P and P̃. Combining this with Lemma 2.1, we obtain
that either S = 0 P, P̃-a.s. or S > 0 P, P̃-a.s. Let us prove that the second
variant is not possible.

Suppose, on the contrary, that S > 0 P, P̃-a.s. (or, equivalently, P̃0 �⊥ P0).
By Lemma 5.5, there exist stopping times τ ′ and τ ′′ such that 0 < τ ′ < S P-a.s.
and 0 < τ ′′ < S P̃-a.s. Set τ = τ ′ ∧ τ ′′. Then it follows from our assumption
P̃0 �⊥ P0 and from the fact that F0 is both P- and P̃-trivial that 0 < τ <
S P, P̃-a.s. Hence, P̃τ ∼ Pτ .

Consider the càdlàg (Ft,P)-martingale

Zt = EP

(
dP̃τ

dPτ

∣∣∣∣Ft

)
, t ∈ [0,∞).

Notice that Z is a uniformly integrable martingale with a limit Z∞ = dP̃τ

dPτ
.

Since Z∞ > 0 P-a.s., the processes Z and Z− are strictly positive P-a.s.
(see [12, Ch. III, Lem. 3.6]). Set

Lt =
∫ t

0

1
Zu−

dZu, t ∈ [0,∞).

The (Ft,P)-local martingale L is well defined. Clearly, we have Z = Z0 E(L)
(i.e. Z is a stochastic exponent of L). Since P is a unique solution of (5.4), any
(Ft,P)-local martingale is a stochastic integral with respect to the local mar-
tingale Y (see [12, Ch. III, Th. 4.29]), where Y is the continuous martingale
part of the (Ft,P)-semimartingale X, i.e.
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Yt = Xt −
∫ t

0

b(Xu) du, t ∈ [0,∞).

In particular, there exists a predictable process β such that∫ t

0

β2u d〈Y 〉u <∞ P-a.s., t ∈ [0,∞)

and

Lt =
∫ t

0

βu dYu P-a.s., t ∈ [0,∞).

This yields that the process L is continuous.
Consider the measure Q = Z∞ · P. Then Qτ = P̃τ . It follows from Gir-

sanov’s theorem for local martingales (see [12, Ch. III, Th. 3.11]) that the
process Y − 〈Y,L〉 is an (Ft,Q)-local martingale. We have

〈Y,L〉t =
∫ t

0

βu d〈Y 〉u =
∫ t

0

βuσ
2(Xu) du P-a.s., t ∈ [0,∞).

For any t ∈ [0,∞), set

Mt =


Xt∧τ −

∫ t∧τ

0

(b(Xu) + βuσ
2(Xu)) du if

∫ t∧τ

0

(|b(Xu)|

+|βu|σ2(Xu)) du <∞,

∞ otherwise.

The process M is finite and continuous with respect to P. Hence, it is finite
and continuous with respect to Q. Since Qτ = P̃τ and Mt is Fτ -measurable
for any t ∈ [0,∞), the process M is finite and continuous also with respect to
the measure P̃. Furthermore, as M = (Y − 〈Y,L〉)τ Q-a.s., M is an (Ft,Q)-
martingale. Consider the stopping times

ηn = inf{t ∈ [0,∞) : |Mt| > n}, n ∈ N.

Clearly, ηn ↑ ∞ P, P̃-a.s. and Mηn is an (Ft,Q)-martingale for any n ∈ N.
Since Qτ = P̃τ , then, for any s < t and B ∈ Fs, we have

E
P̃
[IB(M

ηn
t −Mηn

s )] = E
P̃
[IB∩{s<τ}(M

ηn
t −Mηn

s )]

= EQ[IB∩{s<τ}(M
ηn
t −Mηn

s )]
= EQ[IB(M

ηn
t −Mηn

s )] = 0.

Hence, M is an (Ft, P̃)-local martingale. Consequently, as P̃ is a solution
of (5.5), the process

Nt =
∫ t∧τ

0

b(Xu) du+
∫ t∧τ

0

βuσ
2(Xu) du−

∫ t∧τ

0

b̃(Xu) du, t ∈ [0,∞)
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is well defined with respect to P̃ and is a continuous (Ft, P̃)-local martingale
of locally bounded variation. This means that N = 0 P̃-a.s. Thus, we have

P̃

(
∀ t ∈ [0,∞) :

∫ t∧τ

0

(b(Xu) + βuσ
2(Xu)) du =

∫ t∧τ

0

b̃(Xu) du
)
= 1.

As P̃τ ∼ Pτ , we get

P

(
∀ t ∈ [0,∞),

∫ t∧τ

0

(b(Xu) + βuσ
2(Xu)) du =

∫ t∧τ

0

b̃(Xu) du
)
= 1. (5.42)

Now, let us recall that Lx0
t (X) > 0 and Lx0−

t (X) > 0 P-a.s. for any t > 0
(see [4, Th. 2.7]). Then it follows from the occupation times formula and (5.40)
that, for any t > 0,∫ t

0

(̃b− b)2

σ2
(Xu) du =

∫ t

0

(̃b− b)2

σ4
(Xu) d〈X〉u

=
∫

R

(̃b− b)2

σ4
(x)Lx

t (X) dx =∞ P-a.s.

Thus,

P

(
∀ t ∈ (0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du =∞

)
= 1. (5.43)

Let us recall that τ > 0 P-a.s. and
∫ t
0
β2uσ

2(Xu) du < ∞ P-a.s., t ∈ [0,∞).
Therefore, conditions (5.42) and (5.43) contradict each other. As a result,
S = 0, which means that P̃0 ⊥ P0. ��

Lemma 5.9. Assume that the coefficients b, σ and b̃, σ̃ satisfy condi-
tions (5.2) and (5.3). Let P and P̃ be the solutions of (5.4) and (5.5) in
the sense of Definition 6 (so, we consider Setting 2). Let a and c be real num-
bers such that −∞ < a < x0 < c <∞ and [a, c] ⊆ [−∞,∞] \A (recall that A
denotes the complement to the set of good points). Then P̃Ta,c

∼ PTa,c
and

dP̃Ta,c

dPTa,c

= exp

{∫ Ta,c

0

b̃− b

σ2
(Xu) dYu −

1
2

∫ Ta,c

0

(̃b− b)2

σ2
(Xu) du

}
, (5.44)

where the integrals are taken with respect to the measure P and Y is a contin-
uous (Ft,P)-local martingale defined by the formula

Yt = Xt∧Ta,c
−
∫ t∧Ta,c

0

b(Xu) du, t ∈ [0,∞).

Remark. Since P is a solution of (5.4), then Y is an (Ft,P)-local martingale
with the quadratic variation
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〈Y 〉t =
∫ t∧Ta,c

0

σ2(Xu) du, t ∈ [0,∞).

Hence,∫ Ta,c

0

(̃b− b)2

σ2
(Xu) du =

∫ Ta,c

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u P-a.s. (5.45)

Let us show that this integral is finite P-a.s. By the occupation times formula
(see [33, Ch. VI, Cor. 1.6]),∫ Ta,c

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u =

∫ Ta,c

0

(̃b− b)2

σ4
(XTa,c

u ) d〈XTa,c〉u

=
∫

R

(̃b− b)2

σ4
(x)Lx

Ta,c
(XTa,c) dx P-a.s.

(We consider the local time of the process XTa,c rather than of X because X
may explode.) Since [a, c] ⊆ [−∞,∞] \ A, then (̃b − b)2/σ4 ∈ L1loc([a, c]). As
P-a.s. the process (Lx

Ta,c
(XTa,c))x∈R is equal to zero outside [a, c], we have∫ Ta,c

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u <∞ P-a.s. (5.46)

Proof of Lemma 5.9. 1) Since A is a closed subset of [−∞,∞], there exist a′

and c′ such that −∞ < a′ < a, c < c′ <∞, and [a′, c′] ⊆ [−∞,∞] \A. Let us
define a continuous (Ft,P)-local martingale Y ′ by the formula

Y ′t = Xt∧Ta′,c′ −
∫ t∧Ta′,c′

0

b(Xu) du, t ∈ [0,∞).

Note that ∫ Ta′,c′

0

(̃b− b)2

σ2
(Xu) du <∞ P, P̃-a.s. (5.47)

(This follows from the analogs of (5.45) and (5.46) for the process Y ′ instead
of Y .) Fix an arbitrary n ∈ N, n > 1. Consider the stopping time

τ = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du ≥ n

}
(5.48)

(we set (̃b−b)2
σ2 (∆) = 0). Consider a continuous (Ft,P)-local martingale

Lt =
∫ t∧Ta′,c′∧τ

0

b̃− b

σ2
(Xu) dY ′u, t ∈ [0,∞) (5.49)

(L is well defined due to (5.47)). We have
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EP exp
{
1
2
〈L〉∞

}
= EP exp

{
1
2

∫ Ta′,c′∧τ

0

(̃b− b)2

σ2
(Xu) du

}
≤ En/2 <∞.

By Novikov’s criterion, the process Z = E(L) (i.e. Z is the stochastic exponent
of L) is a uniformly integrable (Ft,P)-martingale. Due to Girsanov’s theorem
for local martingales (see [12, Ch. III, Th. 3.11]), the process Y ′ − 〈Y ′, L〉
is a continuous (Ft,Q)-local martingale, where the probability measure Q is
defined by the formula Q = Z∞ · P. Note that for any t ∈ [0,∞),

Y ′t − 〈Y ′, L〉t

= Xt∧Ta′,c′ −
∫ t∧Ta′,c′

0

b(Xu) du−
∫ t∧Ta′,c′∧τ

0

(̃b− b)(Xu) du Q-a.s.

Consider the process

Mt = Xt∧Ta′,c′∧τ −
∫ t∧Ta′,c′∧τ

0

b̃(Xu) du, t ∈ [0,∞). (5.50)

It is well defined with respect to Q and M = (Y ′−〈Y ′, L〉)τ Q-a.s. Therefore,
M is a continuous (Ft,Q)-local martingale with the quadratic variation

〈M〉t =
∫ t∧Ta′,c′∧τ

0

σ2(Xu) du, t ∈ [0,∞).

Using the occupation times formula and the fact that σ2 = σ̃2 µL-a.e. on
[a′, c′], we get

〈M〉t =
∫ t∧Ta′,c′∧τ

0

σ̃2(Xu) du, t ∈ [0,∞). (5.51)

2) Let us define the functions ρ̃, s̃, and κ̃ through b̃ and σ̃ similarly to (5.6),
(5.7), and (5.36). Consider the process N = s̃(XTa′,c′∧τ ). By the Ito-Tanaka
formula (see [33, Ch. VI, Th. 1.5]) applied under the measure Q,

Nt = s̃(x0) +
∫ t

0

ρ̃
(
X

Ta′,c′∧τ
u

)
dMu, t ∈ [0,∞).

Hence, N is a continuous (Ft,Q)-local martingale with the quadratic variation

〈N〉t =
∫ t∧Ta′,c′∧τ

0

κ̃2(Nu) du, t ∈ [0,∞).

Since σ̃(x) �= 0 for any x ∈ R, we have that Q-a.s. the trajectories of 〈N〉 are
continuous and strictly increasing up to the time Ta′,c′ ∧ τ and they are con-
stant after Ta′,c′ ∧ τ . Let F denote the Q-completion of the σ-field F and (F t)
denote the Q-completion of the filtration (Ft). Define an (F t)-time-change by
the formula
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ξt = inf{s ∈ [0,∞) : 〈N〉s > t}, t ∈ [0,∞).

Consider an (F ′t,P′)-Brownian motion W ′ on a stochastic basis
(Ω′,F ′, (F ′t),P′) and set

Ω = C∆([0,∞))×Ω′, G = F ×F ′, Gt =
⋂
ε>0

Fξt+ε
×F ′t+ε, R2+ = Q×P′.

Denote by G the R2+-completion of the σ-field G and by (Gt) the R2+-
completion of the filtration (Gt). Consider the stochastic basis (Ω,G, (Gt), R2+).
All the random variables and the processes defined on C∆([0,∞)) or on Ω′

can be viewed as random variables and processes on Ω. In what follows, we
do not explain on which space we consider a random variable or a process if
this is clear from the context.

Set
Wt = Nξt +W ′t −W ′t∧〈N〉∞ , t ∈ [0,∞).

By the Dambis-Dubins-Schwartz theorem (see [33, Ch. V, Th. 1.6]), the
process W = (Wt)t∈[0,∞) is a (Gt, R

2
+)-Brownian motion with the starting

point s̃(x0).
As Q-a.s. the trajectories of 〈N〉 are continuous, we have

〈N〉ξt = t Q-a.s. on the set {t < 〈N〉∞},

i.e. ∫ ξt

0

κ̃2(Nu) du = t Q-a.s. on the set {t < 〈N〉∞}.

As Q-a.s. the trajectories of 〈N〉 are strictly increasing up to the time
Ta′,c′ ∧ τ , we have that Q-a.s. the trajectories of ξ are continuous up to the
time 〈N〉∞. By the change of variables in the Stieltjes integral, we get∫ t

0

κ̃2(Nξu) dξu = t Q-a.s. on the set {t < 〈N〉∞},

and hence,

ξt =
∫ t

0

κ̃−2(Nξu) du Q-a.s. on the set {t < 〈N〉∞}.

Clearly, ξt =∞ whenever t ≥ 〈N〉∞. Therefore, R2+-a.s. for any t ∈ [0,∞),

ξt =

{∫ t
0
κ̃−2(Wu) du if t < 〈N〉∞,

∞ if t ≥ 〈N〉∞.

Using the occupation times formula, it is easy to verify that P-a.s. we have

∀ t < 〈N〉∞,
∫ ξt

0

(̃b− b)2

σ2
(Xu) du =

∫ ξt

0

(̃b− b)2

σ̃2
(Xu) du.
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By the change of variables in the Stieltjes integral, R2+-a.s. we get

∀ t < 〈N〉∞,
∫ ξt

0

(̃b− b)2

σ̃2
(Xu) du =

∫ ξt

0

(̃b− b)2

σ̃2
(s̃−1(Nu)) du

=
∫ t

0

(̃b− b)2

σ̃2
(s̃−1(Nξu)) dξu

=
∫ t

0

(̃b− b)2

ρ̃ 2σ̃4
(s̃−1(Wu)) du.

(5.52)

Letting t ↑ 〈N〉∞ in (5.52), we get∫ Ta′,c′∧τ

0

(̃b− b)2

σ2
(Xu) du =

∫ 〈N〉∞
0

(̃b− b)2

ρ̃ 2σ̃4
(s̃−1(Wu)) du R2+-a.s. (5.53)

Set

η(W ) = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

ρ̃ 2σ̃4
(s̃−1(Wu)) du ≥ n

}

(we set (̃b−b)2

ρ̃ 2σ̃4
(s̃−1(x)) = 0 if x /∈ s̃(R)), where n is the number that appears

in (5.48). Let us now prove the equality

〈N〉∞ = T
s̃(a′),̃s(c′)

(W ) ∧ η(W ) R2+-a.s. (5.54)

For this, note that∫ Ta′,c′∧τ

0

(̃b− b)2

σ2
(Xu) du = n P-a.s. on the set {τ < Ta′,c′}. (5.55)

Indeed, condition (5.55) may be violated only if the integral is less than n

and the process
(∫ t
0
(̃b−b)2
σ2 (Xu) du

)
t∈[0,∞) jumps to infinity at time τ . But

P-a.s. this cannot happen on the set {τ < Ta′,c′} since (5.47) holds. More-
over, as ξ〈N〉∞− = Ta′,c′ ∧ τ , we have 〈N〉∞ ≥ T

s̃(a′),̃s(c′)
(W ) R2+-a.s. on the

set {Ta′,c′ ≤ τ}. By (5.53) and (5.55), 〈N〉∞ ≥ η(W ) R2+-a.s. on the set
{τ < Ta′,c′}. Thus, 〈N〉∞ ≥ T

s̃(a′),̃s(c′)
(W ) ∧ η(W ) R2+-a.s. Finally, the re-

verse inequality easily follows from (5.52). So, statement (5.54) is proved.
It follows from the reasoning above that R2+-a.s. for any t ∈ [0,∞),

ξt =


∫ t

0

κ̃−2(Wu) du if t < T
s̃(a′),̃s(c′)

(W ) ∧ η(W ),

∞ if t ≥ T
s̃(a′),̃s(c′)

(W ) ∧ η(W ).

Let us recall that

〈N〉t = inf{s ∈ [0,∞) : ξs > t} Q-a.s., t ∈ [0,∞),

Nt =W〈N〉t R2+-a.s., t ∈ [0,∞),

XTa′,c′∧τ = s̃−1(N).
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So, we obtain an explicit construction of the measure Law
(
XTa′,c′∧τ

∣∣Q)
through the Wiener measure. Furthermore, as P̃ is a solution of (5.5), the
process M introduced in (5.50) is a continuous (Ft, P̃)-local martingale with
the same quadratic variation as in formula (5.51). Therefore, repeating the
reasoning of part 2) with the measure P̃ instead of Q, we obtain that the
measure Law

(
XTa′,c′∧τ

∣∣P̃) can be constructed from the Wiener measure in
the same way as Law

(
XTa′,c′∧τ

∣∣Q). Thus,
Law

(
XTa′,c′∧τ

∣∣P̃) = Law
(
XTa′,c′∧τ

∣∣Q). (5.56)

3) Consider the stopping time

ρ = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du ≥ n− 1

}
,

where n appears in (5.48). Using (5.55) and the analogous condition for the
measure P̃, we get Ta,c ∧ ρ < Ta′,c′ ∧ τ P, P̃-a.s. Applying Lemma 5.2, we
obtain that P, P̃-a.s. for any event B ∈ FTa,c∧ρ,

X ∈ B ⇐⇒ XTa′,c′∧τ ∈ B.

Then, due to (5.56), for any B ∈ FTa,c∧ρ, we have

P̃(B) = P̃(X∈B) = P̃(XTa′,c′∧τ ∈B)
= Q(XTa′,c′∧τ ∈B) = Q(X∈B) = Q(B).

Consequently, the measures Q and P̃ coincide on the σ-field FTa,c∧ρ. Let us
now recall that Q = Z∞ ·P, where the uniformly integrable (Ft,P)-martingale
Z is defined by the formula Z = E(L) and L is defined in (5.49). Hence,
P̃Ta,c∧ρ ∼ PTa,c∧ρ and

dP̃Ta,c∧ρ
dPTa,c∧ρ

= EP(Z∞|FTa,c∧ρ) = ZTa,c∧ρ. (5.57)

4) Now, let us use the notation

τn = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du ≥ n

}
, n ∈ N.

(We fixed some n ∈ N above and considered stopping times τn and τn−1,
which were denoted by τ and ρ for the simplicity of notation. Below we need
to use all τn. That is why we now change the notation.) By (5.57),
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dP̃Ta,c∧τn
dPTa,c∧τn

= exp

{∫ Ta,c∧τn

0

b̃− b

σ2
(Xu)dY ′u −

1
2

∫ Ta,c∧τn

0

(̃b− b)2

σ2
(Xu)du

}
. (5.58)

It follows from (5.47) that

lim
n→∞

τn ≥ Ta′,c′ > Ta,c P, P̃-a.s. (5.59)

As a consequence, we get

FTa,c
=
∞∨
n=1

FTa,c∧τn (5.60)

up to events of P, P̃-zero measure. (Indeed, the inclusion FTa,c
⊆
∨∞

n=1 FTa,c∧τn
follows from the formula

B =
∞⋃
n=1

(B ∩ {Ta,c = Ta,c ∧ τn}) P, P̃-a.s.,

and the reverse inclusion is obvious.) Formulas (5.58), (5.59), and (5.60) imply
that

dP̃Ta,c

dPTa,c

= exp

{∫ Ta,c

0

b̃− b

σ2
(Xu) dY ′u −

1
2

∫ Ta,c

0

(̃b− b)2

σ2
(Xu) du

}
, (5.61)

where by dP̃Ta,c

dPTa,c
we denote the density of the absolutely continuous part of

the measure P̃Ta,c
with respect to the measure PTa,c

. Since dP̃Ta,c

dPTa,c
> 0 P-a.s.,

we get PTa,c
0 P̃Ta,c

. Due to the symmetry between P and P̃, P̃Ta,c
0 PTa,c

.
Thus, P̃Ta,c

∼ PTa,c
and the density of P̃Ta,c

with respect to PTa,c
is given

by formula (5.61). Finally, it is clear that the process Y ′ in (5.61) may be
replaced by Y . ��

Before passing on to the proof of Theorem 5.1, we need one more technical
lemma.

Lemma 5.10. In Setting 2, consider a ∈ R and a sequence (cn) such that
c1 > a, cn+1 > cn, and cn ↑ ∞. Then FTa

=
∨∞

n=1 FTa,cn
.

Proof. Consider the collection D of sets B ∈ F such that

B ∩ {Ta =∞, lim
t↑ζ

Xt =∞} ∈
∞∨
n=1

FTa,cn
.
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Notice that

{Ta =∞, lim
t↑ζ

Xt =∞} =
∞⋂
n=1

{XTa,cn
I(Ta,cn <∞) = cn} ∈

∞∨
n=1

FTa,cn
.

(5.62)
Now, one can easily check that D is a σ-field. Since for any t ∈ [0,∞) and
d ∈ R,

{Xt < d} ∩ {Ta =∞, lim
t↑ζ

Xt =∞}

=

[ ∞⋃
n=1

(
{Ta,cn > t} ∩ {Xt∧Ta,cn

< d}
)]
∩ {Ta =∞, lim

t↑ζ
Xt =∞},

then by applying (5.62), we obtain D = σ(Xt; t ∈ [0,∞)) = F .
Now, the inclusion FTa

⊆
∨∞

n=1 FTa,cn
follows from the formula

B =

[ ∞⋃
n=1

(
B ∩ {Ta = Ta,cn}

)]
∪
(
B ∩ {Ta =∞, lim

t↑ζ
Xt =∞}

)
,

and the reverse inclusion is obvious. ��
Proof of Theorem 5.1. We should prove only (ii). Therefore, below we assume
that P �= P̃. Set

τ = sup
n

inf{t ∈ [0,∞) : Xt ∈ A1/n}.

Let us prove that the separating time S equals τ . Denote by α the “bad point
that is closest to x0 from the left side” (see (5.14)). Similarly, denote by γ the
“bad point that is closest to x0 from the right side”. It is convenient for us to
set

α′ =

{
−∞ if α = ∆,

α if α �= ∆

and

γ′ =

{
∞ if γ = ∆,

γ if γ �= ∆.

If x0 /∈ A (or, equivalently, α′ < x0 < γ′), then we consider sequences (an)
and (cn) such that a1 < x0 < c1, an+1 < an, an ↓ α′, cn+1 > cn, and cn ↑ γ′.

The proof consists of two parts.
I. Let us first prove that S ≥ τ P, P̃-a.s. If x0 ∈ A, then τ = 0 and this

inequality is obvious. Therefore, we consider the case x0 /∈ A. By Lemma 5.9,
P̃Tan,cn

∼ PTan,cn
for any n ∈ N, and hence, S > Tan,cn P, P̃-a.s.

Suppose that α �= ∆ and γ �= ∆. Clearly, in this case Tan,cn ↑ τ P, P̃-a.s..
Thus, we obtain the desired inequality S ≥ τ P, P̃-a.s.

Suppose now that α = ∆ or γ = ∆. In this case Tan,cn ↑ τ ∧ ζ P, P̃-a.s.,
and hence,
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S ≥ τ ∧ ζ P, P̃-a.s. (5.63)

It is easy to establish that

{τ > ζ} = B−∞ ∪B∞ P, P̃-a.s., (5.64)

where

B−∞ =

{
{limt↑ζ Xt = −∞} ∩ {∀ t < ζ : Xt < γ′} if α = ∆,

∅ if α �= ∆,

B∞ =

{
{limt↑ζ Xt =∞} ∩ {∀ t < ζ : Xt > α′} if γ = ∆,

∅ if γ �= ∆.

Let us prove that P̃ ∼ P on the set B∞. If γ �= ∆, then this is obvious.
Therefore, we consider the case γ = ∆. Fix a ∈ (α′, x0) and define continuous
(Ft,P)-local martingales Y n, Ln, and Zn by the formulas

Y n
t = Xt∧Ta,cn

−
∫ t∧Ta,cn

0

b(Xu) du, t ∈ [0,∞),

Ln
t =

∫ t∧Ta,cn

0

b̃− b

σ2
(Xu) dY n

u , t ∈ [0,∞),

Zn
t = exp

{
Ln
t −

1
2
〈Ln〉t

}
, t ∈ [0,∞).

Note that the process Ln is well defined with respect to the measure P (see the
Remark following Lemma 5.9). Clearly, Zn = E(Ln) (i.e. Zn is the stochastic
exponent of Ln). Set T = Ta ∧ ζ. Since Ta,cn ↑ T P-a.s. and

Ln+1
t = Ln

t P-a.s. on the set {t < Ta,cn},
Zn+1
t = Zn

t P-a.s. on the set {t < Ta,cn},

we can define continuous (Ft,P)-local martingales L and Z on the stochastic
interval [0, T ) (for the definition of a process on a stochastic interval, see [33,
Ch. IV, Ex. 1.48]) such that

Lt = Ln
t P-a.s. on the set {t < Ta,cn},

Zt = Zn
t P-a.s. on the set {t < Ta,cn}.

Notice that

Zt = exp
{
Lt −

1
2
〈L〉t

}
, t ∈ [0, T )

and

〈L〉t =
∫ t

0

(̃b− b)2

σ2
(Xu) du, t ∈ [0, T ).
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Since Z is positive, it converges P-a.s. as t ↑ T to a finite random variable
ZT (this follows from the Dambis-Dubins-Schwartz theorem for continuous
local martingales on a stochastic interval; see [33, Ch. V, Ex. 1.18]). Hence,

ZTa,cn
→ ZT P-a.s. Furthermore, due to Lemma 5.9, ZTa,cn

=
dP̃Ta,cn

dPTa,cn

, and

due to Lemma 5.10, FTa
=
∨∞

n=1 FTa,cn
. By the Jessen theorem (see [42,

Th. 5.2.26]), ZT is the density of the absolutely continuous part of the measure
P̃Ta

with respect to the measure PTa
.

Applying Lemma 5.6 to the function f = (̃b − b)2/σ2, we get 〈L〉T < ∞
P-a.s. on the set {Ta = ∞} (recall that we consider the case γ = ∆, i.e.
∞ is a good point). Clearly, 〈L〉T < ∞ P-a.s. on the set {Ta < ∞}. Hence,
〈L〉T < ∞ P-a.s. It follows now from the Dambis-Dubins-Schwartz theorem
for continuous local martingales on a stochastic interval that ZT > 0 P-a.s.
Consequently, PTa

0 P̃Ta
.

Since ∞ is a good point, s(∞) <∞. By Proposition A.3, P(Ta =∞) > 0.
As PTa

0 P̃Ta
, we get P̃(Ta =∞) > 0. Hence, s̃(∞) <∞. Now, let us prove

that the condition

(s̃(∞)− s̃ )
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(∞). (5.65)

holds. For this, apply the above reasoning to P instead of P̃. Define continuous
(Ft, P̃)-local martingales L̃ and Z̃ on the stochastic interval [0, T ) similarly to
the processes L and Z. Then Z̃T is the density of the absolutely continuous
part of the measure PTa

with respect to the measure P̃Ta
. If condition (5.65)

does not hold, then, by Lemma 5.6, 〈L̃〉T = ∞ P̃-a.s. on the set {Ta = ∞}.
Due to the Dambis-Dubins-Schwartz theorem for continuous local martingales
on a stochastic interval, we have lim t↑T L̃t = −∞ P̃-a.s. on the set {Ta =∞}.
Hence, P̃-a.s. on the set {Ta =∞} we get

Z̃T = lim
t↑T

Z̃t = exp

{
lim
t↑T

L̃t −
1
2
〈L̃〉T

}
= 0.

As a consequence, P̃Ta
⊥ PTa

on the set {Ta = ∞}, which contradicts the
conditions PTa

0 P̃Ta
and P(Ta =∞) > 0. Hence, condition (5.65) holds.

Since s̃(∞) < ∞ and condition (5.65) holds, we can repeat the above
reasoning using the processes L̃ and Z̃ instead of L and Z. As a result, we get
Z̃T > 0 P̃-a.s., and therefore, P̃Ta

0 PTa
.

Thus, P̃Ta
∼ PTa

. Hence, P̃ ∼ P on the set {Ta =∞}. Since a ∈ (α′, x0) is
arbitrary, and in view of the fact that the sets {Ta =∞} tend to B∞ P, P̃-a.s.
as a ↓ α′, we get that P̃ ∼ P on the set B∞. Similarly, P̃ ∼ P on the set
B−∞. Consequently, S = δ P, P̃-a.s. on the set B−∞ ∪ B∞. Combining this
with (5.63) and (5.64), we obtain the desired inequality S ≥ τ P, P̃-a.s.

II. Let us now prove that S ≤ τ P, P̃-a.s. Consider several cases.
1) Suppose that x0 ∈ A. Set
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b′(x) = b(x)I[x0−2,x0+2](x), x ∈ R,
b′′(x) = b̃(x)I[x0−2,x0+2](x), x ∈ R,
σ′(x) = σ(x), x ∈ R,
σ′′(x) = σ̃(x), x ∈ R

and consider the SDEs

dXt = b′(Xt) dt+ σ′(Xt) dBt, X0 = x0, (5.66)
dXt = b′′(Xt) dt+ σ′′(Xt) dBt, X0 = x0. (5.67)

The coefficients b′, σ′ and b′′, σ′′ satisfy conditions (5.2) and (5.3). Let P′

and P′′ denote the solutions of (5.66) and (5.67) in the sense of Definition 6.
By [4, Th. 2.11], PTx0−1,x0+1 = P′Tx0−1,x0+1

and P̃Tx0−1,x0+1 = P′′Tx0−1,x0+1
. It

follows from Propositions A.1 and A.2 that P′ and P′′ do not explode. Due to
Lemma 5.8, P′0 ⊥ P′′0 . Therefore, P̃0 ⊥ P0, and hence S = 0 P, P̃-a.s.

2) Suppose that −∞ < α < x0 < γ < ∞. Then τ = Tα,γ P, P̃-a.s. Since
Tα,γ <∞ P, P̃-a.s., then, using the strong Markov property of solutions of
SDEs (see [43, Th. 6.2] or [18, Th. 18.11]) and the result of 1), we obtain that
P̃Tα,γ

⊥ PTα,γ
. Hence, S ≤ Tα,γ = τ P, P̃-a.s.

3) Suppose that −∞ < α < x0, γ = ∞. Then τ = Tα ∧ ζ P, P̃-a.s.
Therefore, we need to prove that

S ≤ Tα P, P̃-a.s. on the set {Tα <∞} (5.68)

and
S ≤ ζ P, P̃-a.s. on the set {Tα =∞}. (5.69)

Condition (5.68) holds due to the strong Markov property of solutions
of SDEs. Prior to proving (5.69), let us notice that Fζ = F . Hence,
FTα∧ζ = FTα

∩ Fζ = FTα
.

If s(∞) =∞, then P(Tα =∞) = 0. Therefore, P̃Tα∧ζ ⊥ PTα∧ζ on the set
{Tα = ∞}. Consequently, S ≤ Tα ∧ ζ P, P̃-a.s. on the set {Tα = ∞} and it
follows that (5.69) holds.

Finally, let us prove (5.69) in the case, where s(∞) < ∞. For this, fix
a ∈ (α, x0), set T = Ta ∧ ζ, and consider the continuous (Ft,P)-local mar-
tingales L and Z on the stochastic interval [0, T ) introduced in part I of the
proof. By Lemma 5.6, 〈L〉T =∞ P-a.s. on the set {Ta =∞} (recall that here
∞ is a bad point). Due to the Dambis-Dubins-Schwartz theorem for continu-
ous local martingales on a stochastic interval, we have lim t↑T Lt = −∞ P-a.s.
on the set {Ta =∞}. Hence, P-a.s. on the set {Ta =∞} we get

ZT = lim
t↑T

Zt = exp

{
lim
t↑T

Lt −
1
2
〈L〉T

}
= 0.
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Since ZT is the density of the absolutely continuous part of the measure
P̃Ta

with respect to the measure PTa
, we have P̃Ta

⊥ PTa
on the set {Ta =

∞}. As FTa∧ζ = FTa
, we get P̃Ta∧ζ ⊥ PTa∧ζ on the set {Ta = ∞}. Hence,

S ≤ Ta ∧ ζ P, P̃-a.s. on the set {Ta = ∞}. Since a ∈ (α, x0) is arbitrary,
condition (5.69) is satisfied.

In a similar way, we consider the case, where α = −∞, x0 < γ <∞.
4) Suppose that −∞ < α < x0, γ = ∆. Then τ = inf{t ∈ [0,∞) : Xt = α}

P, P̃-a.s. Therefore, we need to prove only condition (5.68), and this follows
from the strong Markov property of solutions of SDEs.

In a similar way, we consider the case, where α = ∆, x0 < γ <∞.
5) Suppose that α = −∞, γ =∞. Then τ = ζ P, P̃-a.s. Let us first assume

that s(−∞) > −∞ or s(∞) < ∞. It follows from Propositions A.2 and A.3
that in this case

P({limt↑ζ Xt =∞} ∪ {limt↑ζ Xt = −∞}) = 1. (5.70)

Similarly to the proof of (5.69), we establish that S ≤ ζ P, P̃-a.s. on the set
{limt↑ζ Xt = ∞} and S ≤ ζ P, P̃-a.s. on the set {limt↑ζ Xt = −∞}. Hence,
by (5.70), P̃ ⊥ P. Since Fζ = F , we have P̃ζ ⊥ Pζ . Thus, S ≤ ζ = τ P, P̃-a.s.

Let us now assume that s(−∞) = −∞ and s(∞) =∞. Then the measure
P does not explode. Consider the continuous (Ft,P)-local martingale

Yt = Xt −
∫ t

0

b(Xu) du, t ∈ [0,∞).

By the occupation times formula (see [33, Ch. VI, Cor. 1.6]),∫ t

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u =

∫ t

0

(̃b− b)2

σ4
(Xu) d〈X〉u

=
∫

R

(̃b− b)2

σ4
(x)Lx

t (X) dx <∞ P-a.s.,

since P-a.s. the process (Lx
t (X))x∈R is equal to zero outside a finite interval

(let us recall that in the case under consideration, (̃b − b)2/σ4 ∈ L1loc(R)).
Hence, the continuous (Ft,P)-local martingales

Lt =
∫ t

0

b̃− b

σ2
(Xu) dYu, t ∈ [0,∞)

and

Zt = exp
{
Lt −

1
2
〈L〉t

}
, t ∈ [0,∞)

are well defined with respect to the measure P (note that Z = E(L)). Since
Z is a positive (Ft,P)-local martingale, it converges P-a.s. as t → ∞ to a
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finite random variable Z∞. Consider sequences (an) and (cn) such that a1 <
x0 < c1, an+1 < an, an ↓ −∞, cn+1 > cn, and cn ↑ ∞. Then ZTan,cn

→

Z∞ P-a.s. By Lemma 5.9, ZTan,cn
=

dP̃Tan,cn

dPTan,cn

. By the Jessen theorem (see [42,
Th. 5.2.26]), Z∞ is the density of the absolutely continuous part of the measure
Q̃ with respect to the measure Q, where Q and Q̃ are the restrictions of P and
P̃ to the σ-field

∨∞
n=1 FTan,cn

.
Due to Lemma 5.7,

〈L〉∞ =
∫ ∞
0

(̃b− b)2

σ2
(Xu) du =∞ P-a.s.

Consequently,

Z∞ = lim
t→∞

Zt = exp
{
lim
t→∞

Lt −
1
2
〈L〉∞

}
= 0 P-a.s.

Hence, Q̃ ⊥ Q, i.e. P̃ ⊥ P. Since Fζ = F , we have P̃ζ ⊥ Pζ . Thus, S ≤ ζ = τ

P, P̃-a.s.
6) Suppose that α = ∆, γ =∞. Consider the sets

D =
{
ζ =∞, lim

t→∞
Xt =∞, lim

t→∞
Xt = −∞

}
,

D+ =
{
lim
t↑ζ

Xt =∞
}
, D− =

{
lim
t↑ζ

Xt = −∞
}
.

By Proposition A.1,

P(D ∪D+ ∪D−) = P̃(D ∪D+ ∪D−) = 1.

In the case under consideration, τ = δ on D− τ =∞ on the set D, τ = ζ on
the set D+. Since s(−∞) > −∞ (−∞ is a good point), we have P(D) = 0.
Consequently, P̃ ⊥ P on the set D, and therefore, S ≤ ∞ P, P̃-a.s. on the
set D. Similarly to the proof of (5.69), we establish that S ≤ ζ P, P̃-a.s on the
set D+. Thus, S ≤ τ P, P̃-a.s.

In a similar way, we consider the case, where α = −∞, γ = ∆.
7) Finally, suppose that α = γ = ∆. In this case τ = δ and the desired

inequality S ≤ τ is obvious. The proof is completed. ��

Appendix

Here we describe the behaviour of solutions of SDEs. We use the notations F ,
Ft, X, and ζ introduced in Subsection 5.2.

Let us consider SDE (5.1) and assume that conditions (5.2) and (5.3) are
satisfied. According to Proposition 3, this equation has a unique solution P in
the sense of Definition 6. Consider the sets
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D =
{
ζ =∞, lim

t→∞
Xt =∞, lim

t→∞
Xt = −∞

}
,

B+ =
{
ζ =∞, lim

t→∞
Xt =∞

}
,

C+ =
{
ζ <∞, lim

t↑ζ
Xt =∞

}
,

B− =
{
ζ =∞, lim

t→∞
Xt = −∞

}
,

C− =
{
ζ <∞, lim

t↑ζ
Xt = −∞

}
.

Define ρ, s, s(∞), s(−∞) by formulas (5.6)–(5.9).
The statements below follow from [4, Ch. 4].

Proposition A.1. Either P(D) = 1 or P(B+ ∪B− ∪ C+ ∪ C−) = 1.

Proposition A.2. (i) If s(∞) =∞, then P(B+) = P(C+) = 0.
(ii) If s(∞) < ∞ and (s(∞) − s)/ρσ2 /∈ L1loc(∞), then P(B+) > 0,

P(C+) = 0.
(iii) If s(∞) < ∞ and (s(∞) − s)/ρσ2 ∈ L1loc(∞), then P(B+) = 0,

P(C+) > 0.

Clearly, Proposition A.2 has its analog for the behaviour at −∞.

For any a, c ∈ R, set Ta = inf{t ∈ [0,∞) : Xt = a} (here inf ∅ = ∞) and
set Ta,c = Ta ∧ Tc.
Proposition A.3. (i) For any a ∈ R, P(Ta <∞) > 0.
(ii) Let a ∈ (−∞, x0). Then Ta <∞ P-a.s.⇐⇒ s(∞) =∞.
(iii) Let a ∈ (x0,∞). Then Ta <∞ P-a.s.⇐⇒ s(−∞) = −∞.
(iv) Let a ∈ (−∞, x0), c ∈ (x0,∞). Then Ta,c < ∞ P-a.s. Moreover,

P(Ta < Tc) > 0 and P(Tc < Ta) > 0.
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