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Summary. Consider a semimartingale of the form Yt = Y0+
∫ t

0
asds+

∫ t

0
σs− dWs,

where a is a locally bounded predictable process and σ (the “volatility”) is an
adapted right–continuous process with left limits and W is a Brownian motion. We
consider the realised bipower variation process

V (Y ; r, s)nt = n
r+s
2 −1

[nt]∑
i=1

|Y i
n
− Y i−1

n
|r|Y i+1

n
− Y i

n
|s,

where r and s are nonnegative reals with r + s > 0. We prove that V (Y ; r, s)nt con-
verges locally uniformly in time, in probability, to a limiting process V (Y ; r, s)t (the
”bipower variation process”). If further σ is a possibly discontinuous semimartingale
driven by a Brownian motion which may be correlated with W and by a Poisson
random measure, we prove that

√
n (V (Y ; r, s)n − V (Y ; r, s)) converges in law to a

process which is the stochastic integral with respect to some other Brownian mo-
tion W ′, which is independent of the driving terms of Y and σ. We also provide a
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multivariate version of these results, and a version in which the absolute powers are
replaced by smooth enough functions.
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1 Introduction

For a wide class of real–valued processes Y , including all semimartingales, the
“approximate (or, realised) quadratic variation processes”

V (Y ; 2)nt =
[nt]∑
i=1

(Y i
n
− Y i−1

n
)2, (1.1)

where [x] denotes the integer part of x ∈ R+, converge in probability, as
n → ∞ and for all t ≥ 0, towards the quadratic variation process V (Y ; 2)t,
usually denoted by [Y, Y ]t.

This fact is basic in the ”general theory of processes” and is also used
in a large variety of more concrete problems, and in particular for the sta-
tistical analysis of the process Y when it is observed at the discrete times
i/n : i = 0, 1, . . . (sometimes V (Y ; 2)nt is called the “realised” quadratic
variation, since it is explicitly calculable on the basis of the observations).
In that context, in addition to the convergence in probability one is inter-
ested in the associated CLT (Central Limit Theorem), which says that the√
n (V (Y ; 2)nt − V (Y ; 2)t)’s converge in law, as processes, to a non–trivial lim-

iting process. Of course, for the CLT to hold we need suitable assumptions on
Y . This type of tool has been used very widely in the study of the statistics
of processes in the past twenty years. References include, for example, the
review paper [10] in the statistics of processes and [1], [2], [3], [6] in financial
econometrics. [2] provides a review of the literature in econometrics on this
topic.

Now, when Y describes some stock price, with a stochastic volatility possi-
bly having jumps, a whole new class of processes extending the quadratic vari-
ation has been recently introduced, and named “bipower variation processes”:
let r, s be nonnegative numbers. The realised bipower variation process of order
(r, s) is the increasing processes defined as:

V (Y ; r, s)nt = n
r+s
2 −1

[nt]∑
i=1

|Y i
n
− Y i−1

n
|r |Y i+1

n
− Y i

n
|s, (1.2)

with the convention 00 = 1. Clearly V (Y ; 2)n = V (Y ; 2, 0)n. The bipower
variation process of order (r, s) for Y , denoted by V (Y ; r, s)t, is the limit in
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probability, if it exists for all t ≥ 0, of V (Y ; r, s)nt . It has been introduced
in [4] and [5], where it is shown that the bipower variation processes exist
for all nonnegative indices r, s as soon as Y is a continuous semimartingale
of “Itô type” with smooth enough coefficients. These papers also contain a
version of the associated CLT under somewhat restrictive assumptions and
when r = s = 1.

The aim of this paper is mainly to investigate the CLT, and more precisely
to give weaker conditions on Y which ensure that it holds and which cover
most concrete situations of interest, and also to precisely describe the limiting
process. We prove the existence of the bipower variation process for a wide
class of continuous semimartingales (extending the results of [4] and [5]). We
establish the CLT in a slightly more restricted setting. The restriction is that
the volatility of Y (that is, the coefficient in front of the driving Wiener process
for Y ) is a semimartingale driven by a Lévy process, or more generally by a
Wiener process (possibly correlated with the one driving Y ) and a Poisson
random measure.

We also investigate the multidimensional case, when Y = (Y j)1≤j≤d is d–
dimensional. It is then natural to replace (1.2) by the realised “cross–bipower
variation processes”:

V (Y j , Y k; r, s)nt = n
r+s
2 −1

[nt]∑
i=1

|Y j
i
n

− Y j
i−1
n

|r |Y k
i+1
n

− Y k
i
n
|s. (1.3)

We state the results in Section 2, and the proofs are given in the other
sections. The reader will notice that we replace the powers like |Y i

n
− Y i−1

n
|r

in (1.2) by an expression of the form g(
√
n(Y i

n
−Y i−1

n
)) for a suitable function

g: this can prove useful for some applications, and it is indeed a simplification
rather than a complication for the proof itself. Written in this way, our results
also extend some of the results of Becker in [7], and of the unpublished paper
[8].

It is also worth observing that, apart from the notational complexity, the
proofs when r > 0 and s > 0 are not really more difficult than when r > 0
and s = 0, that is, when we have only one power in (1.2). That means that,
obviously, the same types of results would hold for the ”realised multipower
variation processes” which are defined by

V (Y j1 , . . . , Y jN ; r1, . . . , rN )nt

= n
r1+...+rN

2 −1
[nt]∑
i=1

|Y j1
i
n

− Y j1
i−1
n

|r1 . . . |Y jN
i+N−1

n

− Y jN
i+N−2

n

|rN , (1.4)

for any choice of ri ≥ 0 and any fixed N . We do not prove those more general
results here, but simply state the results.
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2 Statement of results

We start with a filtered space (Ω,F , (F t)t≥0,P), on which are defined various
processes, possibly multidimensional: so we systematically use matrix and
product–matrices notations. The transpose is denoted by ", all norms are
denoted by ‖.‖. We denote by Md,d′ the set of all d × d′–matrices, and by
Md,d′,d′′ the set of all arrays of size d × d′ × d′′, and so on. For any process
X we write ∆n

i X = Xi/n −X(i−1)/n.
Our basic process is a continuous d–dimensional semimartingale Y =

(Y i)1≤i≤d. We are interested in the asymptotic behavior of all finite fami-
lies of processes of type (1.3), that is for all j, k ∈ {1, . . . , d} and all finite
families of pairs (r, s). So in order to simplify notation (which will neverthe-
less remain quite complicated, sorry for that !), we introduce the following
processes:

Xn(g, h)t =
1
n

[nt]∑
i=1

g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ), (2.1)

where g and h are two maps on Rd, taking vakues in Md1,d2 and Md2,d3

respectively. So Xn(g, h)t takes its values in Md1,d3 . Note that, letting

fj,r(x) = |xj |r, (2.2)

we have V (Y j , Y k; r, s)n = Xn(fj,r, fk,s), and any finite family of processes
like in (1.3) is a process of the type (2.1) with the components of g and h
being the various fj,r.

2.1 Convergence in probability

We start with the convergence in probability of the processes Xn(g, h). We
need the following structural assumption on Y :

Hypothesis (H): We have

Yt = Y0 +
∫ t

0

asds+
∫ t

0

σs− dWs, (2.3)

where W is a standard d′–dimensional BM, a is predictable Rd–valued locally
bounded, and σ is Md,d′–valued càdlàg.

Below ρΣ denotes the normal law N (0, ΣΣ
	

), and ρΣ(g) is the integral of
g w.r.t. ρΣ .

Theorem 2.1. Under (H) and when the functions g and h are continuous
with at most polynomial growth, we have

Xn(g, h)t → X(g, h)t :=
∫ t

0

ρσs
(g)ρσs

(h)ds, (2.4)

where the convergence is local uniform in time, and in probability.
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If we apply this with the functions g = fj,r and h = fk,s, we get a result
of existence for the bipower variation processes. We denote by µr the rth
absolute moment of the law N (0, 1).

Theorem 2.2. Under (H), and if r, s ≥ 0, we have

V (Y j , Y k; r, s)nt → V (Y j , Y k; r, s)t := µrµs

∫ t

0

|σjju |r|σkku |s du, (2.5)

where the convergence is local uniform in time, and in probability.

This result is essentially taken from [4]. The assumption (H) could be
weakened, of course, but probably not in any essential way. For instance the
càdlàg hypothesis on σ can be relaxed, but we need at least the functions
u �→ |σjju |r to be Riemann–integrable, for all (or P–almost all) ω. The fact
that the driving terms in (2.3) are t and Wt is closely related to the fact that
the discretization in time has a constant step 1/n. If we replace (2.3) by

Yt = Y0 +
∫ t

0

asdAs +
∫ t

0

σs−dMs,

where A is a continuous increasing process and M a continuous martingale,
then a result like (2.5) can hold only for discretization along increasing se-
quences of stopping times, related in some way to A and to the quadratic
variation of M . If further Y is discontinuous, this type of result cannot pos-
sibly hold (with the normalizing factor n

r+s
2 −1), as is easily seen when Y is

a simple discontinuous process like a Poisson process. As a matter of fact,
this observation was the starting point of the papers [4] and [5] for intro-
ducing bipower variations, in order to discriminate between continuous and
discontinuous processes.

Finally, we state the multipower variation result: the processes of (1.4)
converge (under (H)) towards

V (Y j1 , . . . , Y jN ; r1, . . . , rN )t = µr1 . . . µrN

∫ t

0

|σj1j1u |r1 . . . |σjN jN
u |rN du.

(2.6)

2.2 The central limit theorem

For the CLT we need some additional structure on the volatility σ. A relatively
simple assumption is then:

Hypothesis (H0): We have (H) with

σt = σ0 +
∫ t

0

a′sds+
∫ t

0

σ′s−dWs +
∫ t

0

vs−dZs, (2.7)
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where Z is a d′′–dimensional Lévy process on (Ω,F , (F t)t≥0,P), independent
of W (and possibly with a non–vanishing continuous martingale part). Fur-
thermore the processes σ′ and v, and a of (2.7), are adapted càdlàg, with val-
ues in Md,d′,d′ and Md,d′,d′′ and Md,d′ respectively, and a′ is Md,d′–valued,
predictable and locally bounded.

This assumption is in fact not general enough for applications. Quite often
the natural ingredient in our model is the ”square” c = σσ∗ rather than σ
itself, and it is this c which satisfies an equation like (2.7). In this case the
”square–root” σ of c does not usually satisfy a similar equation. This is why
we may replace (H0) by the following assumption:

Hypothesis (H1): We have (H) with

σt = σ0 +
∫ t

0

a′sds+
∫ t

0

σ′s−dWs +
∫ t

0

vs−dVs +∫ t

0

∫
E

ϕ ◦ w(s−, x)(µ− ν)(ds, dx) +
∫ t

0

∫
E

(w − ϕ ◦ w)(s−, x)µ(ds, dx). (2.8)

Here a′ and σ′ and v are like in (H0); V is a d′′–dimensional Wiener process
independent of W , with an arbitrary covariance structure; µ is a Poisson ran-
dom measure on (0,∞)×E independent of W and V , with intensity measure
ν(dt, dx) = dtF (dx) and F is a σ–finite measure on the Polish space (E, E);
ϕ is a continuous truncation function on Rdd′

(a function with compact sup-
port, which coincides with the identity map on a neigbourhood of 0); finally
w(ω, s, x) is a map Ω × [0,∞) × E → Md,d′ which is Fs ⊗ E–measurable
in (ω, x) for all s and càdlàg in s, and such that for some sequence (Sk) of
stopping times increasing to +∞ we have:

sup
ω∈Ω,s<Sk(ω)

‖w(ω, s, x)‖ ≤ ψk(x), where
∫
E

(1∨ψk(x)2) F (dx) <∞. (2.9)

This hypothesis looks complicated, but it is usually simple to check. The
conditions on the coefficients imply in particular that all integrals in (2.8) are
well defined. It is weaker than (H0): indeed if (H0) holds, we also have (H1)
with E = Rd′′

and V being the Wiener part of Z if it exists, and µ being the
random measure associated with the jumps of Z (so F is the Lévy measure of
Z), and w(ω, t, x) = vt(ω)x (note that v is the same in (2.7) and in (2.8); the
processes a′ in the two formulae are different, depending on the drift of Z).

We also sometimes need an additional assumption:

Hypothesis (H’): The process σσ" is everywhere invertible.

Set once more c = σσ∗. If the processes c and c− are invertible, (H1)
holds if and only if the process c satisfies an equation like (2.8), with the same
assumptions on the coefficients. This is not longer true if we replace (H1) and
(2.8) by (H0) and (2.7).
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As for the functions g and h, we will suppose that their components satisfy
one of the following assumptions, which we write for a real–valued function
f on Rd; if f is differentiable at x, we write ∇f(x) for the row matrix of its
partial derivatives:

Hypothesis (K): The function f is even (that is, f(−x) = f(x) for all
x ∈ Rd) and continuously differentiable, with partial derivatives having at
most polynomial growth.

Hypothesis (K’): The function f is even and continuously differentiable on
the complement Bc of a closed subset B ⊂ Rd and satisfies

‖y‖ ≤ 1 ⇒ |f(x+ y)− f(x)| ≤ C(1 + ‖x‖p) ‖y‖r (2.10)

for some constants C > 0, p ≥ 0 and r ∈ (0, 1]. Moreover:
a) If r = 1 then B has Lebesgue measure 0.
b) If r < 1 then B satisfies

for any positive definite d× d matrix C and any
N (0, C)–random vector U the distance d(U,B)
from U to B has a density ψC on R+, such that
supx∈R+,‖C‖+‖C−1‖≤A ψC(x) <∞ for all A <∞,

 (2.11)

and we have

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2
⇒

‖∇f(x)‖ ≤
C(1+‖x‖p)
d(x,B)1−r ,

‖∇f(x+ y)−∇f(x)‖ ≤ C(1+‖x‖p)‖y‖
d(x,B)2−r .

(2.12)

The additional requirements when r < 1 above are not “optimal”, but
they accomodate the case where f equals fj,r, as defined in (2.2): this function
satisfies (K) when r > 1, and (K’) when r ∈ (0, 1] (with the same r of course).
When B is a finite union of hyperplanes it satisfies (2.11). Also, observe that
(K) implies (K’) with r = 1 and B = ∅. For the concept of “stable convergence
in law”, introduced by Renyi in [11], we refer to [9] for example; it is a kind
of convergence which is a bit stronger than the ordinary convergence in law.

Theorem 2.3. Under (H1) (or (H0)) and either one the following assump-
tions:

(i) all components of g and h satisfy (K),
(ii) (H’) holds, and all components of g and h satisfy (K’),

the processes
√
n (Xn(g, h)−X(g, h)) converge stably in law towards the lim-

iting process U(g, h) given componentwise by

U(g, h)jkt =
d1∑

j′=1

d3∑
k′=1

∫ t

0

α(σs, g, h)jk,j
′k′

dW ′j
′k′

s (2.13)
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where∑d1
l=1

∑d3
m=1 α(Σ, g, h)

jk,lmα(Σ, g, h)j
′k′,lm = A(Σ, g, h)jk,j

′k′

and A(Σ, g, h)jk,j
′k′

=
∑d2

l,l′=1

(
ρΣ(gjlgj

′l′)ρΣ(hlkhl
′k′
)

+ρΣ(gjl)ρΣ(hl
′k′
)ρΣ(gj

′l′hlk) + ρΣ(gj
′l′)ρΣ(hlk)ρΣ(gjlhl

′k′
)

−3ρΣ(gjl)ρΣ(gj
′l′)ρΣ(hlk)ρΣ(hl

′k′
)
)
,


(2.14)

andW ′ is a d1d3–dimensional Wiener process which is defined on an extension
of the space (Ω,F , (F t)t≥0,P) and is independent of the σ–field F .

The first formula in (2.14) means that α is a square–root of the d1d3×d1d3–
matrix A, which is symmetric semi–definite positive. Observe that the right
sides of (2.4) and (2.13) always make sense, due to the fact that t �→ σt is
càdlàg and thus with all powers locally integrable w.r.t. Lebesgue measure.

Under (H) and if both g and h are even and continuous, the processes

Un(f, g)t =
1√
n

[nt]∑
i=1

(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y )

−E(g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y )|F i−1
n
)
)

(2.15)

still converge stably in law to U(g, h) provided a and σ have some integra-
bility properties in connection with the growth rate of g and h (so that the
conditional expectations above are meaningful): see Theorem 5.6 below for a
version of this when a and σ are bounded. But such a CLT is probably of
little practical use.

Remarks: For simplicity we state the remarks when all processes are 1–
dimensional and when h(x) = 1.

1. When g is not even we still have a limiting process which is the process
U(g, 1) plus a process which has a drift and an integral term w.r.t. W :
for example if g(x) = x, then X(g, 1) = 0 and of course

√
n Xn(g, h)t =

Y[nt]/n, so the limit is Y itself (in this case U(g, 1) = 0). For more details,
see [8].

2. In view of the result on (2.15), when h = 1 the CLT is essentially equiva-
lent to the convergence of

1√
n

[nt]∑
i=1

(
E(g(

√
n ∆n

i Y )|F i−1
n
)− n

∫ i
n

i−1
n

ρσu
(g)du

)

to 0 (locally uniform in t). This in turn is implied by the convergence to
0 of the following two processes:
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1√
n

[nt]∑
i=1

(
E(g(

√
n ∆n

i Y )|F i−1
n
)−E(g(

√
n σ i−1

n
∆n

i W )|F i−1
n
)
)
, (2.16)

1√
n

[nt]∑
i=1

(
ρσ i−1

n

(g)− n

∫ i
n

i−1
n

ρσu
(g)du

)
. (2.17)

3. For (2.17) we need some smoothness of σ: e.g. u �→ σu is Hölder with
some index > 1/2. Hypothesis (H1) is of this kind (although σ can have
jumps, (2.8) sort of implies that it is ”Hölder” of order 1/2 and further
some compensation arises).

4. The differentiability of g is in fact used for the convergence of (2.16).
Another natural idea would be to compare the transition densities of Y
and W for small times, provided of course the former ones exist: that
allows to get the results for functions g and h which are only Borel–
measurable, in Theorem 2.3 and in Theorem 2.1 as well, but it necessitates
quite stringent assumptions on Y (like a Markov structure, and non–
degeneracy).

2.3 Applications to bipower variations

Let us now explain how the general CLT above writes for bipower variations.
The most general form is given below, but for simplicity we first consider the
1–dimensional case for Y , with a single bipower process.

Theorem 2.4. Let r, s ≥ 0 and assume that d = d′ = 1. Assume (H1)
and also that either r, s ∈ {0} ∪ (1,∞) or (H’) holds. Then the processes
(
√
n (V (Y ; r, s)n − V (Y ; r, s))) converge stably in law to a process U(r, s) of

the form

U(r, s)t =
√
µ2rµ2s + 2µrµsµr+s − 3µ2rµ2s

∫ t

0

|σu|r+s dW ′u, (2.18)

where W ′ is a Wiener process which is defined on an extension of the space
(Ω,F , (F t)t≥0,P) and is independent of the σ–field F .

For the general case we consider simultaneously all cross–bipower varia-
tions for any finite family of indices. We need some more notation: we de-
note by µ(Σ; r, s; j, k) the expected value of |Uj |r|Uk|s when U = (Uj)1≤j≤d
is an N (0, ΣΣ∗)–distributed random variable, and also by µ(Σ; r; j) the ex-
pected value of |Uj |r (so µ(Σ; r; j) = µ(Σ; r, 0; j, k) for any k, and µ(Σ; r; j) =
|Cjj |r/2µr, where C = ΣΣ∗).

Theorem 2.5. Let (rl, sl) be a family of nonnegative reals. Under (H1) and
either one of the following assumptions:

(i) rl, sl ∈ {0} ∪ (1,∞),
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(ii) (H’) and rl, sl ∈ [0,∞),
the L× d× d–dimensional processes

(
√
n (V (Y j , Y k; rl, sl)n − V (Y j , Y k; rl, sl)) : 1 ≤ l ≤ L, 1 ≤ j, k ≤ d)

converge stably in law to a process (U(rl, sl, j, k) : 1 ≤ l ≤ L, 1 ≤ j, k ≤ d)
having the form

U(rl, sl, j, k)t =
L∑

l′=1

d∑
j′=1

d∑
k′=1

∫ t

0

α(σu)ljk,l
′j′k′

dW ′l
′j′k′

u , (2.19)

where∑L
l′′=1

∑d
j′′=1

∑d
k′′=1 α(Σ)

ljk,l′′j′′k′′
α(Σ)l

′j′k′,l′′j′′k′′
= Aljk,l′j′k

and A(Σ)ljk,l
′j′k′

= µ(Σ; rl, rl′ ; j, j′)µ(Σ; sl, sl′ ; k, k′)

+µ(Σ; rl; j)µ(Σ; sl′ ; k′)µ(Σ; rl′ , sl; j′, k)

+µ(Σ; rl′ ; j′)µ(Σ; sl; k)µ(Σ; rl, sl′ ; j, k′)

−3µ(Σ; rl; j)µ(Σ; rl′ ; j′)µ(Σ; sl; k)µ(Σ; sl′ ; k′)


(2.20)

and where W ′ is an L × d × d–dimensional Wiener process which is defined
on an extension of (Ω,F , (F t)t≥0,P) and is independent of the σ–field F .

This result readily follows from Theorem 2.3, upon taking d1 = Ld, d2 = L,
d3 = d, g(x)lj,l

′
= |xj |rlεll′ (εll′ is the Kronecker symbol) and h(x)l,j = |xj |sl .

Apart from Theorem 2.4, several particular cases are worth being mentioned
(recall that c = σσ∗):

1. If j = k then
√
n (V (Y j ; r, s)n − V (Y j ; r, s)) stably converges to

√
µ2rµ2s + 2µrµsµr+s − 3µ2rµ2s

∫ t

0

|cjju |
r+s
2 dW ′u.

This is also, of course, a consequence of Theorem 2.4.
2. The bivariate processes with components

√
n (V (Y j ; r, 0)n − V (Y j ; r, 0))

and
√
n (V (Y k; 0, s)n−V (Y k; 0, s)) stably converge to a continuous mar-

tingale with (matrix–valued) bracket C given by

C11t = (µ2r − µ2r)
∫ t
0
|cjju |r du

C12t =
∫ t
0
(µ(σu; r, s; j, k)− µrµs|cjju |r/2|ckku |s/2) du

C22t = (µ2s − µ2s)
∫ t
0
|cjju |s du

 . (2.21)

The same is true for the processes with components
√
n (V (Y j ; r, 0)n −

V (Y j ; r, 0)) and
√
n (V (Y k; s, 0)n − V (Y k; s, 0)). When j = k we get

C12t = (µr+s − µrµs)
∫ t
0
|cjju |

r+s
2 du.
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Finally we state the multipower variation result, in the 1–dimensional case
only for simplicity. We consider the processes of (1.4) and (2.6), which are
written V (Y ; r1, . . . , rN )n and V (Y ; r1, . . . , rN ) here. For any choice of rl ≥ 0,
and under (H1) and also under (H’) if any of the rl is in the set (0, 1], the
processes

√
n (V (Y ; r1, . . . , rN )n − V (Y ; r1, . . . , rN )) converge stably towards

a limiting process of the form

U(r1, . . . , rN )t =
√
A

∫ t

0

|σu|r1+...+rN dW ′u,

where W ′ is a Wiener process independent of the σ–field F , and where

A =
N∏
l=1

µ2rl − (2N − 1)
N∏
l=1

µ2rl + 2
N−1∑
k=1

k∏
l=1

µrl

N∏
l=N−k+1

µrl

N−k∏
l=1

µrl+rl+k
.

2.4 Outline of the proof

The remainder of this paper is devoted to proving Theorems 2.1 and 2.3:

1. In Section 3 we replace the ”local” assumptions (H), (H1) and (H’) by
”global” ones called (SH), (SH1) and (SH’): these stronger assumptions
are likely to be satisfied in many practical applications, and the ”local-
ization techniques” using stopping times are standard: so the reader can
very well skip most of that section and read only the assumptions and
(3.6).

2. The idea of the proof is simple enough. First, replace the increments ∆n
i Y

of the process (2.3) by σ(i−1)/n∆
n
i W : then the CLT is a simple conse-

quence of the convergence of triangular arrays of martingale differences,
and the convergence in probability follows from the CLT: this is basi-
cally the content of Section 4. In Section 5 we prove the CLT for the
processes of (2.15): this easily follows from Section 4. Hence proving The-
orems 2.1 and 2.3 amounts to control of the differences Xn(g, h)−Un(g, h)
or
√
n (Xn(g, h)−Un(g, h)): for Theorem 2.1 this is simple, see Section 6.

For Theorem 2.3 it is done in Section 8: we have to split the above differ-
ences into a large number of terms, which are estimated separately. So we
gather the necessary (very cumbersome) notation and technical estimates
in Section 7.

3 Some stronger assumptions

Under (H) we have a sequence Tk of stopping times increasing to +∞ and
constants Ck such that

s ≤ Tk =⇒ |as|+ |σs−| ≤ Ck.
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Set a(k)s = as∧Tk
, and σ

(k)
s = σs if s < Tk and σ

(k)
s = σTk− if s ≥ Tk. We

associate Y (k) with a(k) and σ(k) by (2.3), and Xn,(k)(g, h) with Y (k) by (2.1),
and similarly X(k)(g, h) and U (k)(g, h) with σ(k) by (2.4) and (2.13) (and the
same process W ′ for all k).

Suppose that we have proved Theorem 2.1 for Xn,(k)(g, h), for each k.
Observing that Xn,(k)(g, h)t = Xn(g, h)t and X(k)(g, h)t = X(g, h)t and
U (k)(g, h)t = U(g, h)t for all t < Tk, and since Tk increases to∞ as k →∞, it
is obvious that the result of Theorem 2.1 also holds for Xn(g, h). So, instead
of (H), it is no restriction for proving Theorem 2.1 to assume the following
stronger hypothesis:

Hypothesis (SH): We have (H), and further the processes a and σ are
bounded by a constant.

Now we proceed to strenghten (H1) in a similar manner. Assume (H1) and
recall the sequence (Sk) in (2.9): it is no restriction to assume in addition that
Sk ≤ k. Set for k, l ≥ 1:

Ek,l = {x ∈ E : ψk(x) > l}, Rk,l = inf(t : µ((0, t]× Ek,l) ≥ 1).

Then we have

P(Rk,l ≤ Sk) ≤ E(µ((0, Sk]×Ek,l)) = F (Ek,l) E(Sk) ≤ k F (Ek,l).

In view of (2.9) we have liml→∞ F (Ek,l) = 0. Hence we find lk such that
P(Rk,lk < Sk) ≤ 2−k, and obviously the sequence of stopping times S′k =
Sk ∧Rk,lk has supk S′k =∞ a.s.

Next, just as above, we find a sequence S′′k of stopping times increasing to
+∞ and constants Ck such that

s ≤ S′′k =⇒ ‖as‖+ ‖σs−‖+ ‖a′s‖+ ‖σ′s−‖+ ‖vs−‖ ≤ Ck.

Then if Tk = S′k ∧ S′′k , we still have supk Tk =∞ a.s., and further

s ≤ Tk =⇒ ‖as‖+ ‖σs−‖+ ‖a′s‖+ ‖σ′s−‖+ ‖vs−‖ ≤ Ck,

µ((0, Tk)× Ek,lk) = 0.

}
. (3.1)

Set

a′(k)s =

{
a′s if s ≤ Tk

0 if s > Tk

(a(k)s , σ′(k)s , v(k)s , w(k)(s, x)) =

{
(as, σ′s, vs, w(s, x)) if s < Tk

(0, 0, 0, 0) if s ≥ Tk,

µ(k)(ds, dx) = µ(ds, dx) 1Ec
k,lk

(x),
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ν(k)(ds, dx) = ds⊗ Fk(dx), where Fk(dx) = F (dx) 1Ec
k,lk

(x).

Then µ(k) is a new Poisson measure, still independent of W and V , with
compensator ν(k), and ψk is square–integrable w.r.t. Fk. We then put

σ
(k)
t = σ0 +

∫ t

0

a′(k)s ds+
∫ t

0

σ
′(k)
s− dWs +

∫ t

0

v
(k)
s−dVs

+
∫ t

0

∫
E

ϕ ◦ w(k)(s−, x)(µ(k) − ν(k))(ds, dx)

+
∫ t

0

∫
E

(w(k) − ϕ ◦ w(k))(s−, x)µ(k)(ds, dx) (3.2)

= σ0 +
∫ t

0

(a′(k)s + α(k)s )ds+
∫ t

0

σ
′(k)
s− dWs +

∫ t

0

v
(k)
s−dVs

+
∫ t

0

∫
E

w(k)(s−, x)(µ(k) − ν(k))(ds, dx), (3.3)

provided α(k)s =
∫
E
(w(k)−ϕ◦w(k))(s−, x)Fk(dx). Then σ

(k)
s = σs when s < Tk

and ‖α(k)s ‖ ≤ C ′k for all s, for some constant C ′k.
We associate Y (k) with a(k) and σ(k) by (2.3), and Xn,(k)(g, h) with Y (k)

by (2.1), and similarly X(k)(g, h) and U (k)(g, h) with σ(k) by (2.4) and (2.13)
(and the same processW ′ for all k). We clearly have Xn,(k)(g, h)t = Xn(g, h)t
and X(k)(g, h)t = X(g, h)t and U (k)(g, h)t = U(g, h)t for all t < Tk.

Hence, exactly as for (H), for proving Theorem 2.3 it is no restriction to
replace (H1) by the following stronger assumption (recall (3.3)):

Hypothesis (SH1): We have (SH) with

σt = σ0 +
∫ t

0

a′sds+
∫ t

0

σ′s−dWs +
∫ t

0

vs−dVs +
∫ t

0

∫
E

w(s−, x)(µ− ν)(ds, dx)

(3.4)
with V , µ and ν as in (H1), and a′, σ′, v and a are like in (H0) and uniformly
bounded. Finally w is like in (H1), with further

sup
ω∈Ω,s≥0

‖w(ω, s, x)‖ ≤ ψ(x), where
∫
E

ψ(x)2 F (dx) <∞, ψ(x) ≤ C.

(3.5)

In a similar way, under (H’) we find a sequence Tk of stopping times
satisfying (3.1) and also ‖(σsσ"s )−1‖ ≤ Ck if s < Tk. So the same argument as
above allows to replace (H’) in Theorem 2.3 by

Hypothesis (SH’): We have (H’) and further the process (σσ")−1 is
bounded.

Finally, let us denote by M′ the closure of the set {σu(ω) : ω ∈ Ω, u ≥ 0}
in Md,d′ . Then there is a constant A0 such that:
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under (SH) we have Σ ∈M′ ⇒ ‖Σ‖ ≤ A0

under (SH’) we have Σ ∈M′ ⇒ ‖(ΣΣ")−1‖ ≤ A0.

}
(3.6)

In view of the previous results, we can and will assume in the sequel either
(SH), or (SH1), and sometimes (SH’).

Let us also fix some conventions. We write V n P−→ V for a sequence (V n)
of processes and a continuous process V when sups≤t ‖V n

s − Vs‖ goes to 0
in probability for all t > 0. When V n takes the form V n

t =
∑[nt]

i=1 ζ
n
i for an

array of variables (ζni ), and when V n P−→ 0, we say that this array is AN, for
Asymptotically Negligible.

The constants occuring here and there may depend on the constants in
(SH) or (SH1) and on the functions g and h and are all denoted by C and
change from line to line; if they depend on another external parameter p, we
write them Cp.

4 A first simplified problem

In this section we prove the CLT in a slightly different setting: in some sense,
we pretend that at stage n, σ is constant over the interval [(i − 1)/n, i/n).
More precisely, we introduce the following Rd–valued random variables:

βni =
√
n σ i−1

n
∆n

i W, β′ni =
√
n σ i−1

n
∆n

i+1W, (4.1)

and we write ρni = ρσi/n
. To begin with, we consider an Md1,d2–valued

adapted càdlàg and bounded process δ and an Md2,d3–valued function f on
Rd. Then we introduce the Md1,d3–valued process (recall (4.1)):

Un
t =

1√
n

[nt]∑
i=1

δ i−1
n

(
f(βni )− ρni−1(f)

)
. (4.2)

In a similar way, for g and h like in (2.1), we set

U ′nt =
1√
n

[nt]∑
i=1

(
g(βni )h(β

′n
i )− ρni−1(g)ρ

n
i−1(h)

)
. (4.3)

Our aim in this section is then to prove the following two CLT’s:

Proposition 4.1 Under (SH), if f is at most of polynomial growth, the se-
quence of processes Un in (4.2) is C-tight. If further f is even, then it con-
verges stably in law to the process U defined componentwise by
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U jk
t =

d1∑
j′=1

d3∑
k′=1

∫ t

0

δ′jk,j
′k′

u dW ′j
′k′

u , (4.4)

where

d1∑
l=1

d3∑
m=1

δ′jk,lmu δ′j
′k′,lm

u =
d2∑

l,l′=1

(
ρσu

(f lkf l
′k′
)− ρσu

(f lk)ρσu
(f l

′k′
)
)
δjlu δ

j′l′

u ,

(4.5)
and W ′ is a d1d3–dimensional Wiener process defined on an extension of
(Ω,F , (F t)t≥0,P) and which is independent of the σ–field F .

Proposition 4.2 Under (SH) and if g and h are continuous with at most
polynomial growth, the sequence of processes U ′n is C-tight. If further g and
h are even, then it converges stably in law to the process U(g, h) described in
(2.13).

Before proceeding to the proofs, let us mention the following estimates,
which are obvious under (SH):

E(‖βni ‖q) +E(‖β′ni ‖q) ≤ Cq. (4.6)

Next, saying that f is of at most polynomial growth means that for some
constants C > 0 and p (we can always choose p ≥ 2),

x ∈ Rd ⇒ |f(x)| ≤ C(1 + ‖x‖p). (4.7)

Observe also that Propositions 4.1 and 4.2 imply respectively

1
n

[nt]∑
i=1

δ i−1
n
f(βni )

P−→
∫ t

0

δu ρσu
(f) du, (4.8)

1
n

[nt]∑
i=1

g(βni )h(β
′n
i ) P−→

∫ t

0

ρσu
(g)ρσu

(h) du. (4.9)

Proof of Proposition 4.1. We have Un
t =

∑[nt]
i=1 ζ

n
i , where ζni =

δ i−1
n
(f(βni )− ρni−1(f))/

√
n. Recalling (4.6) and (4.7), we trivially have

E(ζni |F i−1
n
) = 0, E(‖ζni ‖4|F i−1

n
) ≤ C

n2
, (4.10)

E(ζn,jki ζn,j
′k′

i |F i−1
n
) =

1
n
∆jk,j′k′

i−1
n

,

where ∆jk,j′k′

u is the right side of (4.5). Moreover since σ is càdlàg we deduce
from (4.7) that s �→ ρσs

(f) also is càdlàg. Thus by the Riemann integrability
we get
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[nt]∑
i=1

E(ζn,jki ζn,j
′k′

i |F i−1
n
) →

∫ t

0

∆jk,j′k′

u du. (4.11)

Then (4.10) and (4.11) are enough to imply the tightness of the sequence
(Un).

Now, assume further that f is even. Since the variables ∆n
i W and −∆n

i W
have the same law, conditionally on F (i−1)/n, we get

E(ζn,jki ∆n
i W

l|F i−1
n
) =

d2∑
m=1

δjmi−1
n

E(∆n
i W

l f(
√
n σ i−1

n
∆n

i W )mk|F i−1
n
) = 0.

(4.12)
Next, let N be any bounded martingale on (Ω,F , (F t)t≥0,P), which is orthog-
onal toW . For j and k fixed, we consider the martingaleMt = E(g(βni )

jk|F t),
for t ≥ i−1

n . Since W is an (F t)–Brownian motion, and since βni is a function
of σ(i−1)/n and of ∆n

i W , we see that (Mt)t≥(i−1)/n is also, conditionally on
F (i−1)/n, a martingale w.r.t. the filtration which is generated by the process
Wt −W i−1

n
. By the martingale representation theorem the process M is thus

of the formMt =M i−1
n
+
∫ t

i−1
n
ηsdWs for an appropriate predictable process η.

It follows that M is orthogonal to the process N ′t = Nt −N i−1
n

(for t ≥ i−1
n ),

or in other words the product MN ′ is an (F t)t≥ i−1
n
–martingale. Hence

E(∆n
i N g(

√
n σ i−1

n
∆n

i W )jk|F i−1
n
) = E(∆n

i N
′Mi/n|F i−1

n
)

= E(∆n
i N
′∆n

i M |F i−1
n
) = 0,

and thus
E(ζni ∆

n
i N |F i−1

n
) = 0. (4.13)

If we put together (4.10), (4.11), (4.12) and (4.13), we deduce the result
from Theorem IX.7.28 of [9]. ��

Proof of Proposition 4.2. A simple computation shows that U ′nt =∑[nt]+1
i=2 ζni + γn1 − γn[nt]+1, where

ζni =
1√
n

(
g(βni−1)(h(β

′n
i−1)− ρni−2(h)) + (g(βni )− ρni−1(g))ρ

n
i−1(h)

)
,

γni =
1√
n
(g(βni )− ρni−1(g)) ρ

n
i−1(h).

We trivially have (4.10), while (4.12) and (4.13) (for any bounded martin-
gale N orthogonal toW ) are proved exactly as in the previous proposition. We
will write ρni−2,i−1(g, h) =

∫
g(σ i−1

n
x)h(σ i−2

n
x)ρ(dx), where ρ is the N (0, Id′)

law. An easy computation shows that
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E(ζn,jki ζn,j
′k′

i |F i−1
n
)

=
1
n

d2∑
l,l′=1

[
g(βni−1)

jlg(βni−1)
j′l′
(
ρni−2(h

lkhl
′k′
)− ρni−2(h

lk)ρni−2(h
l′k′

)
)

+g(βni−1)
jl ρni−1(h

l′k′
)
(
ρni−2,i−1(g

j′l′ , hlk)− ρni−2(h
lk)ρni−1(g

j′l′)
)

+g(βni−1)
j′l′ ρni−1(h

lk)
(
ρni−2,i−1(g

jl, hl
′k′
)− ρni−2(h

l′k′
)ρni−1(g

jl)
)

+ρni−1(h
l′k′

)ρni−1(h
lk)
(
ρni−1(g

jlgj
′l′)− ρni−1(g

jl)ρni−1(g
j′l′)
) ]
.

and thus by (4.8) and since the components of g and h satisfy (4.7) and are
continuous and σ is càdlàg (hence in particular ρni−2,i−1(g, h)− ρni−2(gh) goes
to 0, uniformly in i ≤ [nt] + 1), we get with the notation (2.14):

[nt]+1∑
i=2

E(ζn,jki ζn,j
′k′

i |F i−1
n
) →

∫ t

0

A(σu, g, h)jk,k
′j′ du.

Then exactly as in the previous proof we deduce that the processes
∑[nt]

i=1 ζ
n
i

are C–tight, and that they converge stably in law to the process U(g, h) of
(2.13) when further g and h are even.

On the other hand γni is the transpose of the jump at time i/n of the
process Un of (4.2) when δu = ρσu

(h∗) and f = g∗, so Proposition 4.1 yields
supi≤[nt] ‖γni ‖

P−→ 0 for any t: hence the results. ��

5 A second simplified problem

So far Y has played no role, but it will come in this section. Recalling (4.1),
we set

ξni =
√
n ∆n

i Y − βni , ξ′ni =
√
n ∆n

i+1Y − β′ni . (5.1)

Observe that

ξni =
√
n

(∫ i
n

i−1
n

audu+
∫ i

n

i−1
n

(σu− − σ i−1
n
)dWu

)
,

and a similar equality for ξ′ni , with the integrals between i/n and (i + 1)/n.
Then under (SH) we have for any q ∈ [2,∞), by Burkholder Inequality:

E(‖
√
n ∆n

i Y ‖q) +E(‖ξni ‖q) +E(‖ξ′ni ‖q) ≤ Cq. (5.2)

We can now consider the processes Un(g, h) of (2.15): in view of (5.2), the
conditional expectations in (2.15) are finite as soon as g and h have polynomial
growth.



50 O. E. Barndorff–Nielsen et al.

Theorem 5.6. Under (SH) and if g and h are continuous with at most poly-
nomial growth, the sequence of processes Un(g, h) of (2.15) is C–tight. If fur-
ther g and h are even, it converges stably in law to the processes U(g, h) of
(2.13).

We first prove three lemmas. The first one is very simple:

Lemma 5.1. Let (ζni ) be an array of random variables satisfying for all t:

[nt]∑
i=1

E(‖ζni ‖2 | F i−1
n
) P−→ 0. (5.3)

If further each ζni is F (i+1)/n–measurable, the array (ζni − E(ζni | F (i−1)/n))
is AN.

Proof. Of course the result is well known when ζni is F i/n–measurable. Oth-
erwise, we set ηni = E(ζni | F i/n). This new array satisfies also (5.3) and now
ηni is F i/n–measurable: so the array (ηni −E(ηni | F (i−1)/n)) is AN.

Next, (5.3) and Lenglart’s inequality (see e.g. I-3.30 in [9]) yield∑[nt]
i=1E(‖ζni ‖2 | F i/n)

P−→ 0, so the afore mentioned well known result also
yields that the array (ζni − ηni ) is AN, and the result follows. ��

Lemma 5.2. Under (SH) we have for all t > 0:

1
n

[nt]∑
i=1

E
(
‖ξni ‖2 + ‖βni+1 − β′ni ‖2

)
→ 0. (5.4)

Proof. First, the boundedness of a yields

E(‖ξni ‖2) ≤ C

(
1
n
+ nE

(∫ i
n

i−1
n

‖σu− − σ i−1
n
‖2du

))
.

We also trivially have

E(‖βni+1 − β′ni ‖2) ≤ CE(‖σ i
n
− σ i−1

n
‖2)

≤ CnE

(∫ i
n

i−1
n

(
‖σu− − σ i−1

n
‖2 + ‖σu− − σ i

n
‖2
)
du

)
.

Hence the left side of (5.4) is smaller than

C

(
t

n
+
∫ t

0

E
(
‖σu− − σ[nu]/n‖2 + ‖σu− − σ([nu]+1)/n‖2

)
du

)
.

Since σ is càdlàg, the expectation above goes to 0 for all u except the fixed
times of discontinuity of the process σ, that is for almost all u, and it stays
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bounded by a constant because of (SH): hence the result by Lebesgue’s theo-
rem. ��

For further reference, the third lemma is stated in a more general setting:

• f and k are functions on Rd satisfying (4.7);

• γni , γ
′n
i , γ′′ni are Rd–valued variables,

• Zn
i = 1 + ‖γni ‖+ ‖γ′ni ‖+ ‖γ′′ni ‖ satisfies E((Zn

i )
p) ≤ Cp.

 (5.5)

Lemma 5.3. Under (5.5) and if further k is continuous and

1
n

[nt]∑
i=1

E(‖γ′ni − γ′′ni ‖2)→ 0, (5.6)

then we have for all t > 0:

1
n

[nt]∑
i=1

E
(
f(γni )

2(k(γ′ni )− k(γ′′ni ))2
)
→ 0. (5.7)

Proof. Set θni = (f(γni )(k(γ
′n
i )− k(γ′′ni )))2 and mA(ε) = sup(|k(x) − k(y)| :

‖x− y‖ ≤ ε, ‖x‖ ≤ A). For all ε ∈ (0, 1] and A > 1 we have

θni ≤ C
(
A2pmA(ε)2 +A4p1{‖γ′n

i
−γ′′n

i
‖>ε}

+(Zn
i )
4p(1{‖γn

i
‖>A} + 1{‖γ′n

i
‖>A} + 1{‖γ′′n

i
‖>A})

)
≤ C

(
A2pmA(ε)2 +

A4p‖γ′ni − γ′′ni ‖2
ε2

+
(Zn

i )
4p+1

A

)
.

Then in view of (5.5) we get

1
n

[nt]∑
i=1

E(θni ) ≤ C

A2pmA(ε)2 +
1
A
+
A4p

nε2

[nt]∑
i=1

E(‖γ′ni − γ′′ni ‖2)

 .

This holds for all ε ∈ (0, 1] and A > 1. Since mA(ε) → 0 as ε → 0, for every
A, (5.7) readily follows from (5.6). ��

Proof of Theorem 5.6. In view of Proposition 4.2, it is clearly enough to
prove that Un(g, h)− U ′n

P−→ 0. Set

ζni =
1√
n

(
g(
√
n∆n

i Y )h(
√
n ∆n

i+1Y )− g(βni )h(β
′n
i )
)

(5.8)

and observe that Un(g, h)t − U ′nt =
∑[nt]

i=1

(
ζni − E(ζni | F (i−1)/n)

)
and that

ζni is F (i+1)/n-measurable. Then by Lemma 5.1 it suffices to prove that
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[nt]∑
i=1

E(‖ζni ‖2)→ 0. (5.9)

For proving (5.9) it is clearly enough to consider the case where both g
and h are 1–dimensional. Recalling

√
n ∆n

i Y = βni + ξni , we then have

‖ζni ‖2 ≤
C

n

(
h(
√
n ∆n

i+1Y )
2 (g(βni + ξni )− g(βni ))

2

+g(βni )
2 (h(βni+1 + ξni+1)− h(βni+1))

2 + g(βni )
2(h(βni+1)− h(β′ni ))2

)
.

Then (5.9) immediately follows from (4.6) and (5.2) and from Lemmas 5.2
and 5.3. ��

6 The proof of Theorem 2.1

As stated in Section 2, we can and will assume (SH). We use the notation ζni
of (5.8), and set

ηni = E
(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ) | F i−1
n

)
, η′ni = ρni−1(g)ρ

n
i−1(h)

and V n
t =

∑[nt]
i=1η

n
i and V ′nt =

∑[nt]
i=1η

′n
i . Theorem 5.6 implies that

1
n (X

n(g, h) − V n) P−→ 0, and Riemann integrability yields 1
n V ′n → X(g, h)

pointwise in ω and locally uniformly in time. So we need to prove that
1
n (V

n − V ′n) P−→ 0. Since ηni − η′ni =
√
n E(ζni | F (i−1)/n), it clearly suf-

fices to prove that

1√
n

[nt]∑
i=1

E(‖ζni ‖)→ 0. (6.1)

By the Cauchy–Schwarz inequality, the left side of (6.1) is smaller than(
t
∑[nt]

i=1E(‖ζni ‖2)
)1/2

and thus (6.1) follows from (5.9). ��

7 Technical preliminaries for Theorem 2.3

As said before, for proving Theorem 2.3 we can and will assume (SH), and also
(SH’) when at least one of the components of g or h satisfies (K’) instead of
(K). In fact, this theorem is deduced from Theorem 5.6, provided we can show
that

√
n (Xn(g, h)t − Un(g, h)t) goes to 0 in probability, locally uniformly in

t. This amounts to proving that the array

ζni =
1√
n
E
(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ) | F i−1
n

)
−
√
n

∫ i
n

i−1
n

ρσu
(g)ρσu

(h)du



CLT for bipower variations 53

is AN. Obviously, we can work componentwise, and so we will assume w.l.o.g.
that both g and h are 1–dimensional (they still are functions on Rd, though).

We have ζni = ζ ′ni + ζ ′′ni , where

ζ ′ni =
1√
n

(
E
(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ) | F i−1
n

)
−E
(
g(βni ) | F i−1

n
) E
(
h(β′ni ) | F i−1

n

))
, (7.1)

ζ ′′ni =
√
n

∫ i
n

i−1
n

(
ρσu

(g)ρσu
(h)− ρni−1(g)ρ

n
i−1(h)

)
du. (7.2)

So we are left to prove that both arrays (ζ ′ni ) and (ζ ′′ni ) are AN. For the second
one this is relatively simple, but for the first one it is quite complicated, and
we need to split the difference in (7.1) into a large number of terms, which are
treated in different ways: this section is devoted to estimates for these various
terms.

7.1 Some notation

First, we fix a sequence of numbers εn ∈ (0, 1] (which will be chosen later in
such a way that ε2nn ≥ 1), and we set En = {x ∈ E : ψ(x) > εn}. Then,
recalling the product–matrix notation, under (SH1) we can introduce a (long)
series of Rd–valued random variables:

ζ(1)ni =
√
n

∫ i
n

i−1
n

(au − a i−1
n
)du+

√
n

∫ i
n

i−1
n

(∫ u

i−1
n

a′sds

+
∫ u

i−1
n

(σ′s− − σ′i−1
n

)dWs +
∫ u

i−1
n

(vs− − v i−1
n
)dVs

)
dWu,

ζ(1)′ni =
√
n

(∫ i
n

i−1
n

a′sds+
∫ i

n

i−1
n

(
σ′s− − σ′i−1

n

)
dWs

+
∫ i

n

i−1
n

(vs− − v i−1
n
)dVs

)
∆n

i+1W,

ζ(2)ni =
√
n

(
1
n
a i−1

n
+ σ′i−1

n

∫ i
n

i−1
n

(Wu −W i−1
n
)dWu

+v i−1
n

∫ i
n

i−1
n

(Vu− − V i−1
n
)dWu

)
,

ζ(2)′ni =
√
n
(
σ′i−1

n

∆n
i W + v i−1

n
∆n

i V
)
∆n

i+1W,

ζ(3)ni =
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
Ec
n

w(s−, x)(µ− ν)(ds, dx)

)
dWu,
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ζ(3)′ni =
√
n

(∫ i
n

i−1
n

∫
Ec
n

w(s−, x)(µ− ν)(ds, dx)

)
∆n

i+1W,

ζ(4)ni = −
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

ν(ds, dx)

)
dWu,

ζ(4)′ni = −
√
n

(∫ i
n

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

ν(ds, dx)

)
∆n

i+1W,

ζ(5)ni = −
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

w
( i− 1

n
, x
)
ν(ds, dx)

)
dWu,

ζ(5)′ni = −
√
n

(∫ i
n

i−1
n

∫
En

w
( i− 1

n
, x
)
ν(ds, dx)

)
∆n

i+1W,

ζ(6)ni =
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

µ(ds, dx)

)
dWu,

ζ(6)′ni =
√
n

(∫ i
n

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

µ(ds, dx)

)
∆n

i+1W,

ζ(7)ni =
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

w
( i− 1

n
, x
)
µ(ds, dx)

)
dWu,

ζ(7)′ni =
√
n

(∫ i
n

i−1
n

∫
En

w
( i− 1

n
,
)
µ(ds, dx)

)
∆n

i+1W.

We also set

ξ̂ni = ζ(1)ni + ζ(3)ni + ζ(4)ni + ζ(6)ni , ξ̃ni = ζ(2)ni + ζ(5)ni + ζ(7)ni

ξ̂′′ni = ζ(1)′ni + ζ(3)′ni + ζ(4)′ni + ζ(6)′ni ,

ξ̃′′ni = ζ(2)′ni + ζ(5)′ni + ζ(7)′ni

ξ̂′ni = ξ̂ni+1 + ξ̂′′ni , ξ̃′ni = ξ̃ni+1 + ξ̃′′ni .


(7.3)

In view of (5.1), a tedious but simple computation shows that

√
n ∆n

i Y − βni = ξni = ξ̂ni + ξ̃ni ,
√
n ∆n

i+1Y − β′ni = ξ′ni = ξ̂′ni + ξ̃′ni . (7.4)

Next, we put ϕ(ε) =
∫
{‖ψ(x)‖≤ε} ψ(x)

2F (dx), so that

ε ↓ 0 ⇒ ϕ(ε)→ 0

θ ∈ [0, 2] ⇒
∫
{ψ(x)>ε} ψ(x)

θF (dx) ≤ C
ε2−θ ,

θ ≥ 2 ⇒
∫
{ψ(x)≤ε} ψ(x)

θF (dx) ≤ ϕ(ε) εθ−2.

 (7.5)
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Finally, set

αn,q
i =

1
nq/2

+E

((
n

∫ i
n

i−1
n

(
‖au − a i−1

n
‖2 + ‖σ′u− − σ′i−1

n

‖2 + ‖vu− − v i−1
n
‖2

+
∫
En

∥∥∥∥w(u−, x)− w
( i− 1

n
, x
)∥∥∥∥2 F (dx)

)
du

)q/2
 , (7.6)

7.2 Estimates for ζ(k)nj and ζ(k)′nj

Here we estimate moments of the variables ζ(k)ni and ζ(k)′ni . A repeated use
of the Hölder and Burkholder inequalities gives us for q ≥ 2, and under (SH1):

E(‖ζ(1)ni ‖q) +E(‖ζ(1)′ni ‖q) ≤ Cq α
n,q
i /nq/2,

E(‖ζ(2)ni ‖q) +E(‖ζ(2)′ni ‖q) ≤ Cq/n
q/2.

}
(7.7)

Lemma 7.4. Under (SH1), and for any even integer q ≥ 2, we have

E(‖ζ(3)ni ‖q) +E(‖ζ(3)′ni ‖q) ≤ Cq ϕ(εn)
εq−2n

n
. (7.8)

Proof. Apply the Hölder and Burkholder inequalities repeatedly to get

E(‖ζ(3)ni ‖q) ≤ CqE


n∫ i

n

i−1
n

∥∥∥∥∥
∫ u

i−1
n

∫
Ec
n

w(s, x)(µ− ν)(ds, dx)

∥∥∥∥∥
2

du

q/2


≤ Cq n

∫ i
n

i−1
n

E

(∥∥∥∥∥
∫ u

i−1
n

∫
Ec
n

w(s, x)(µ− ν)(ds, dx)

∥∥∥∥∥
q

du

)

≤ Cq n

∫ i
n

i−1
n

E

(∫ u

i−1
n

∫
Ec
n

‖w(s, x)‖2µ(ds, dx)
)q/2

 du

≤ Cq E

(∫ i
n

i−1
n

∫
Ec
n

ψ(x)2µ(ds, dx)

)q/2
 :

= E((Zn
i
n
− Zn

i−1
n

)q/2),

where Zn
t =

∫ t
0

∫
Ec
n
ψ(x)2µ(ds, dx) is an increasing pure jump Lévy process,

whose Laplace transform is

λ �→ E(e−λ(Z
n
s+t−Zn

s )) = exp t

∫
Ec
n

(
e−λψ(x)

2 − 1
)
F (dx).
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We compute the q/2–moment of Zn
s+t−Zn

s by differentiating q/2 times the
Laplace transform at 0: this is the sum, over all choices u1, . . . , uk of positive
integers with

∑k
i=1 ui = q/2, of suitable constants times the product for all

i = 1, . . . , k of the terms t
∫
Ec
n
ψ(x)2uiF (dx); moreover this term is smaller

than tε2ui−2
n ϕ(εn). Since further εn ≤ 1 and ϕ(1) <∞, we deduce that

E((Zn
s+t − Zn

s )
q/2) ≤ Cqϕ(εn)

q/2∑
k=1

tkεq−2kn ≤ Cqϕ(εn)(tεq−2n + tq/2).

We deduce (7.8) for ζ(3)ni (recall nε2n ≥ 1), and the same holds for ζ(3)′ni . ��

Lemma 7.5. Under (SH1), for any q > 2 we have

E(‖ζ(4)ni ‖q) +E(‖ζ(4)′ni ‖q) +E(‖ζ(5)ni ‖q) +E(‖ζ(5)′ni ‖q) ≤
Cq

εqn nq
. (7.9)

Proof. Applying the Hölder and Burkholder inequalities and ‖w(s, x)‖ ≤
ψ(x) yields for j = 4, 5:

E(‖ζ(j)ni ‖q + ‖ζ(j)′ni ‖q) ≤

≤ CqE


n∫ i

n

i−1
n

(∫ u

i−1
n

∫
En

ψ(x)ν(ds, dx)

)2
du

q/2


≤ Cq

(∫ i
n

i−1
n

ds

∫
En

ψ(x)F (dx)

)q

≤ Cq

nq

(∫
En

ψ(x)F (dx)
)q

. (7.10)

The result readily follows from (7.5). ��

For ζ(j)ni and ζ(j)′ni with j = 6, 7 the analogous estimates are not quite
enough for our purposes, and we need a bit more. Below, we consider a pair
(r,B), where r ∈ (0, 1] and B is a closed subset of Rd, with Lebesgue measure
0, and such that (2.11) holds when r < 1 and that r = 1 if B = ∅. Let also

r = 1 ⇒ γ̂ni = 1

r < 1 ⇒ γ̂ni = 1 + 1
d(γn

i
,B) , with either γni = βni or γni = β′ni

 (7.11)

Lemma 7.6. Under (SH1) and the previous assumptions, and if further (SH’)
holds whenever r < 1, for any q ∈ (1, 2) and l ∈ [0, 1) we can find u > 1
(depending on q and l) such that

E
(
‖ζ(6)ni ‖q (γ̂ni )

l
)
+E

(
‖ζ(6)′ni ‖q (γ̂ni )

l
)
≤ Cl,q (αn,2

i
)1/u

nq/2 ,

E
(
‖ζ(7)ni ‖q (γ̂ni )

l
)
+E

(
‖ζ(7)′ni ‖q (γ̂ni )

l
)
≤ Cl,q

nq/2 .

 (7.12)
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Proof. We set Mn
i = sups∈[(i−1)/n,i/n] ‖Ws − W(i−1)/n‖ and wn(s, x) =

w(s−, x)− w( i−1n , x) for i−1
n < s ≤ i

n , and

Zn
t =

∫ t

0

∫
En

ψ(x) µ(ds, dx), Z ′nt =
∫ t

0

∫
En

‖wn(s, x)‖ µ(ds, dx).

Observe that Zn and Z ′n are nondecreasing, piecewise constant, and Z ′nt −
Z ′ns ≤ 2(Zn

t − Zn
s ) whenever s < t. Then

‖ζ(6)ni ‖ ≤ C
√
n Mn

i (Z
′n
i
n
− Z ′ni−1

n

).

Set u′ = 1
2

(
1 + 1

l

∧
1

q−1

)
, which satisfies u′ > 1 because l < 1 and q ∈ (1, 2).

With δni = (
√
nMn

i )
u′q (γ̂ni )

u′l we then have (since u′ > 1 and u′q−u′+1 > 0):

‖ζ(6)ni ‖q (γ̂ni )l ≤ Cq

(
δni (Zn

i
n
− Zn

i−1
n

)u
′q−u′+1

) 1
u′

(Z ′ni
n
− Z ′ni−1

n

)
u′−1
u′ ,

and Hölder’s inequality yields

E
(
‖ζ(6)ni ‖q(γ̂ni )l

)
≤ Cq

(
E
(
δni (Zn

i
n
− Zn

i−1
n

)u
′q−u′+1

)) 1
u′
(
E(Z ′ni

n
− Z ′ni−1

n

)
)u′−1

u′
. (7.13)

Now, if we combine (2.11) and (3.6), we see that when r < 1 (so (SH’)
holds) the variable d(γni , B) has a conditional law knowing F (i−1)/n which has
a density which is bounded uniformly in n, i and ω, so E((γ̂ni )

s | F (i−1)/n)
is bounded by a constant Cs for all s ∈ [0, 1), whether r = 1 or r < 1. Also,
E((

√
n Mn

i )
p | F (i−1)/n) ≤ Cq for all p > 0. Then by Hölder’s inequality

we get E
(
δni | F (i−1)/n

)
≤ Cq,l. Since further the variable Zn

i/n − Zn
(i−1)/n is

independent of δni , conditionally on F i−1
n
, we deduce

E
(
δni (Zn

i
n
− Zn

i−1
n

)u
′q−u′+1

)
≤ Cq,l E((Zn

i
n
− Zn

i−1
n

)u
′q−u′+1). (7.14)

Next, we estimate the moments of Zn and Z ′n. Observe that Z ′n = A′n+
N ′n, where

A′nt =
∫ t

0

∫
En

‖wn(s, x)‖ν(ds, dx), N ′n =
∫ t

0

∫
En

‖wn(s, x)‖(µ− ν)(ds, dx).

On the one hand, since F (En) ≤ C/ε2n by (7.5) and nε2n ≥ 1,

(A′ni
n
−A′ni−1

n

)2 ≤ 1
n

∫ i
n

i−1
n

ds

(∫
En

‖wn(s, x)‖ F (dx)
)2

≤ 1
n

∫ i
n

i−1
n

ds F (En)
∫
En

‖wn(s, x)‖2 F (dx)

≤
∫ i

n

i−1
n

ds

∫
En

‖wn(s, x)‖2 F (dx).



58 O. E. Barndorff–Nielsen et al.

On the other hand N ′n is a square–integrable martingale, and thus

E
(
(N ′ni

n
−N ′ni−1

n

)2
)
≤ E

(∫ i
n

i−1
n

ds

∫
En

‖wn(s, x)‖2F (dx)
)
,

and thus

E
(
(Z ′ni

n
− Z ′ni−1

n

)2
)
≤ C αn,2

i

n
. (7.15)

If we replace ‖wn(s, x)‖ by ψ(x), we obtain in a similar fashion

E
(
(Zn

i
n
− Zn

i−1
n

)2
)
≤ C

n
. (7.16)

Then if we combine (7.13), (7.14), (7.15) and (7.16), and since u′q−u′+1 ≤ 2,
we obtain the result for ζ(6)ni , with u =

2u′

u′−1 > 1, and the proof for ζ(6)′ni is
similar. Finally if we replace wn by w (then αn,2

i is replaced by a constant),
we get the result for ζ(7)ni and ζ(7)′ni . ��

7.3 Estimates for the variables of (7.3)

Here we derive estimates on the variables defined in (7.3). Below, the pair
(B, r) and the variable γ̂ni are like in Lemma 7.6. We also consider positive
random variables Zn

i which satisfy

E((Zn
i )

q) ≤ Cq ∀q ≥ 2. (7.17)

Observe that ξni and ξ′ni do not depend on the sequence εn, but ξ̂ni and ξ̂′ni
do. Remember also the variables αn,q

i defined ibn (7.6).

Lemma 7.7. Assume (SH1) and (SH’) and (7.11) and (7.17). Let p ≥ 2 and
l ∈ (0, 1). Then if θ ∈ (1, 2) we have

E
(
(Zn

i )
p ‖ξ̃ni ‖θ (γ̂ni )

l
)
+E
(
(Zn

i )
p ‖ξ̃′ni ‖θ (γ̂ni )

l
)
≤ Cp,θ,l

nθ/2
, (7.18)

Moreover one can find a sequence εn > 0 with nε2n ≥ 1 and a sequence zn > 0
with zn → 0, both sequences depending on l only, and also two numbers q, q′ ≥
1 depending on l only, such that

E((Zn
i )

p‖ξ̂ni ‖(γ̂ni )l) ≤
Cp,l√

n

(
zn + (αn,q

i )1/q + (αn,2
i )1/q

′
)
,

E((Zn
i )

p‖ξ̂′ni ‖(γ̂ni )l)) ≤
Cp,l√

n

(
zn + (αn,q

i )1/q + (αn,q
i+1)

1/q

+(αn,2
i )1/q

′
+ (αn,2

i+1)
1/q′
)
.

 (7.19)
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Proof. We prove (7.18) and (7.19) for ξni and ξ̂ni only, the proofs for ξ′ni and
ξ̂′ni being similar. We have seen in the proof of Lemma 7.6 that, by (7.11),

s ∈ [0, 1) ⇒ E((γ̂ni )
s) ≤ Cs. (7.20)

Although ξni does not depend on the sequence εn, we need to introduce a
suitable sequence εn to prove (7.18): so we prove (7.18) and (7.19) simulta-
neously, with some fixed θ ∈ [1, 2) for the first result, and with θ = 1 for the
second one. If t = 1

2

(
1 + 1

l

∧
2
θ

)
, by (7.17) and Hólder’s inequality we get

E((Zn
i )

p ‖ξni ‖θ (γ̂ni )l) ≤ Cp,θ,l

(
E(‖ξni ‖tθ (γ̂ni )tl)

)1/t
,

E((Zn
i )

p ‖ξ̂ni ‖ (γ̂ni )l) ≤ Cp,l

(
E(‖ξ̂ni ‖t (γ̂ni )tl)

)1/t
.

 (7.21)

Next, let s be the biggest number in (1, 1/tl) such that its conjugate
exponent s′ is of the form s′ = 2m/tθ for some m ∈ N with m ≥ 2,
and put q = s′tθ. Note that s′ and q depend on θ and l only. The set
{y > 0 : yqϕ(y/

√
n) ≤ 1} is an open or semi–open interval whose left end

point is 0, and whose right end point is denoted by a′n, and since ϕ(y) → 0
as y → 0 it is clear that a′n → ∞. At this point, we set an = 1

∨
(a′n − 1/n):

then an → ∞, and for all n big enough an < a′n and thus aqnϕ(an/
√
n) ≤ 1.

Then we choose the sequence εn as εn = an/
√
n, thus nε2n ≥ 1. Observe that

both sequences εn and an only depend on θ and l.
Now we apply (7.8) and (7.9) with q and εn as above, plus (7.20) and

Hölder’s inequality, to get(
E(‖ζ(3)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l ϕ(εn)
1/s′t aθ−2/s′t

n

nθ/2 ≤ Cθ,l

nθ/2a
2/s′t
n

≤ Cθ,l

nθ/2 ,(
E(‖ζ(4)ni ‖tθ (γ̂ni )tl

)1/t + (E(‖ζ(5)ni ‖tθ (γ̂ni )tl)1/t ≤ Cθ,l

nθ/2aθn
≤ Cθ,l

nθ/2 .

 (7.22)

In a similar way, (7.20) and (7.7) and Hólder’s inequality give (with the same
q as above): (

E(‖ζ(1)ni ‖tθ (γ̂ni )tl
)1/t ≤ Cθ,l (α

n,q
i
)θ/q

nθ/2 ,(
E(‖ζ(2)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l

nθ/2 .

 (7.23)

Finally applying (7.12) and tθ < 2 yields(
E(‖ζ(6)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l (α
n,2
i
)1/q

′

nθ/2 ,(
E(‖ζ(7)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l

nθ/2

 (7.24)

for some q′ > 1 depending on tθ and tl, hence on θ and l only.
Then if we put together (7.21), (7.22), (7.23) and (7.24), and in view of

(7.3) and (7.4), we readily get (7.18), and also (7.19) with zn = a
−2/s′t
n + a−1n

(note that for (7.19) we take θ = 1). ��
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7.4 Final estimates

The previous subsection gave us estimates on the variables of (7.3), which in
view of (7.4) are the building blocks for obtaining the difference occuring in
(7.1). Now we procees to give estimates for this difference itself. We start with
a lemma about the variables of (7.6).

Lemma 7.8. Under (SH1) we have for all q ≥ 2 and q′ ≥ 1 and t > 0:

αn,q
i ≤ Cq,

1
n

[nt]∑
i=1

(αn,q
i )1/q

′ → 0. (7.25)

Proof. We can of course forget about the term 1/nq/2 in (7.6), whereas the
first part of (7.25) is obvious. For the second part we set

γn(u) = ‖au − a[nu]/n‖2 + ‖σ′u− − σ′[nu]/n‖2 + ‖vu− − v[nu]/n‖2

+
∫
E

∥∥∥∥w(u−, x)− w
( i− 1

n
, x
)∥∥∥∥2 F (dx).

Then the Hölder inequality yields

1
n

[nt]∑
i=1

(αn,q
i )1/q

′ ≤ [nt]
n

 1
[nt]

[nt]∑
i=1

E

(n∫ i
n

i−1
n

γn(u)du

)q/2
1/q

′

≤ [nt]
n

 1
[nt]

[nt]∑
i=1

E

(
n

∫ i
n

i−1
n

γn(u)q/2du

)1/q
′

≤ t
q′−1
q′

(
E
(∫ t

0

γn(u)q/2du
))1/q′

.

Since γn is uniformly bounded and converges pointwise to 0, we get the result.
��

Let us now introduce a list of growth or smoothness assumptions on a
real–valued function f on Rd, with complement (4.7). Below, C > 0 and
p ≥ 2 are suitable constants, and the pair (B, r) is given, with the properties
stated before (7.11). We list some conditions, for which we assume that f
is differentiable on the complement Bc. Below, each ΨA,ε is an increasing
continuous function on R+ with ΨA,ε(0) = 0.

x ∈ Bc ⇒ |∇f(x)| ≤ C(1 + ‖x‖p)
(
1 +

1
d(x,B)1−r

)
, (7.26)

x, y ∈ Rd ⇒ |f(x+ y)− f(x)| ≤ C(1 + ‖x‖p + ‖y‖p) ‖y‖r, (7.27)
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‖x‖ ≤ A, ‖y‖ ≤ ε′ < ε < d(x,B) ⇒ ‖∇f(x+ y)−∇f(x)‖ ≤ ΨA,ε(ε′) (7.28)

0 < ‖y‖ ≤ d(x,B)
2

=⇒ ‖∇f(x+ y)−∇f(x)‖ ≤ C(1 + ‖x‖p + ‖y‖p) ‖y‖
d(x,B)2−r

.(7.29)

The connections with our assumptions (K) and (K’) are as follows (with B
and r identical in (K’) and above, or B = ∅ and r = 1 in the case of (K)):

(K), or (K’) with r = 1 ⇒ (4.7), (7.26), (7.27) and (7.28), (7.30)

(K’) with r < 1 ⇒ (4.7) , (7.26), (7.27) and (7.29) (7.31)

Next, we consider the setting of (5.5), with k is differentiable on Bc. We
let γ′′ni be either βni or β′ni , and we introduce the following subsets of Ω:

An
i = {‖γ′ni − γ′′ni ‖ > d(γ′′ni , B)/2}, (7.32)

(observe that An
i = ∅ when B = ∅). Let also γni be an auxiliary variable which

for each ω is on the segment joining γ′ni and γ′′ni , and let γ̂ni be 1 when r = 1
and 1 + 1/d(γ′′ni , B) when r < 1. Then we set

Φn
i = f(γni )

(
(k(γ′ni )− k(γ′′ni ))1An

i
−∇k(γ′′ni )(γ′ni − γ′′ni )1An

i

+(∇k(γni )−∇k(γ′′ni ))(γ′ni − γ′′ni )1(An
i
)c

)
, (7.33)

Φ̂n
i = f(γni ) ∇k(γ′′ni )(γ′ni − γ′′ni ) (7.34)

(by the fact that B has Lebesgue measure 0, we see that k is a.s. differentiable
at the point γ′′ni , which is either βni or β′ni , so (7.33) and (7.34) make sense).

Lemma 7.9. Assume the following:
(i) (SH1) and (5.5) and k satisfies (7.26) and (7.27);
(ii) if r = 1 then k satisfies (7.28);
(iii) if B �= ∅ then (SH’) holds;
(iv) if r < 1 then k satisfies (7.29).

(a) If γ′′ni = βni and γ
′n
i − γ′′ni = ξni , or if γ

′′n
i = β′ni and γ′ni − γ′′ni = ξ′ni , we

have for all t > 0:

1√
n

[nt]∑
i=1

E(|Φn
i |) → 0. (7.35)

(b) If γ′′ni = βni and γ
′n
i − γ′′ni = ξ̂ni , or if γ

′′n
i = β′ni and γ′ni − γ′′ni = ξ̂′ni , we

have for all t > 0:

1√
n

[nt]∑
i=1

E(|Φ̂n
i |) → 0. (7.36)
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Proof. 1) We first prove (7.35) when r = 1. We choose εn = 1 for all n and
putting together all estimates in (7.7), (7.8), (7.9) and (7.12) (with l = 0, so
this estimate holds for q = 2 as well) to get

q ≥ 2 ⇒ E(‖γ′ni − γ′′ni ‖q) ≤ Cq

n
. (7.37)

Then (4.7) and (7.26) and An
i ⊂ {d(γ′′ni , B) < ε} ∪ {‖γ′ni − γ′′ni ‖ ≥ ε/2} yield

for all A > 0, ε > 2ε′ > 0:

|Φn
i |+ |Φ̂n

i | ≤ C(Zn
i )
2p

(
ΨA,ε′(ε) +

‖γ′′ni ‖
A

+‖γ′ni − γ′′ni ‖
(
1
ε
+

1
ε′

)
+ 1{d(γ′′n

i
,B)≤ε}

)
‖γ′ni − γ′′ni ‖. (7.38)

If B = ∅ the indicator function above vanishes. Otherwise, the variable γ′′ni
has a conditional law knowing F i−1

n
which has a density (on Rd) that is smaller

than some (non–random) Lebesgue integrable function ϕ (see (3.6)), so it also
has an unconditional density smaller than ϕ. Therefore

P(d(γ′′ni , B) ≤ ε) ≤ αε :=
∫
{x:d(x,B)≤ε}

ϕ(x)dx,

and limε→0 αε = 0. Then (5.5), (7.37), (7.38) and the multivariate Hölder
inequality yield

E(|Φn
i |) +E(|Φ̂n

i |) ≤
C√
n

(
ΨA,ε(ε′) +

1
A
+

1
n1/4

(
1
ε
+

1
ε′

)
+ α1/4ε

)
.

Hence (7.35) readily follows: choose A big, then ε small, then ε′ small.

2) Now we suppose that r < 1, hence B �= ∅. We have

|Φn
i | ≤ (Zn

i )
2p
(
‖γ′ni − γ′′ni ‖r 1An

i
+ ‖γ′ni − γ′′ni ‖ 1An

i

+
‖γ′ni − γ′′ni ‖
d(γ′′ni , B)1−r

1An
i
+
‖γ′ni − γ′′ni ‖2
d(γ′′ni , B)2−r

1(An
i
)c

)
≤ C(Zn

i )
2p ‖γ′ni − γ′′ni ‖1+r/2 (γ̂ni )

1−r/2, (7.39)

where the first inequality follows from (7.26), (7.27) and (7.29) for k, while the
second one is obtained by using the definition of the set An

i . Hence Lemmas
7.7 and 7.8 readily give (7.35).

3) Finally, in all cases we have

|Φ̂n
i | ≤ C(Zn

i )
2p ‖γ′ni − γ′′ni ‖ (γ̂ni )1−r. (7.40)

Therefore (7.36) follows from Lemmas 7.7 (see (7.19)) and 7.8 again. ��
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8 The proof of Theorem 2.3

1) As said at the beginning of the previous Section, we can assume that g
and h are 1–dimensional, and that (SH1), and also (SH’) when either g or h
satisfies (K’) instead of (K), and we need to prove that the arrays defined in
(7.1) and (7.1) are AN.

2) Let us prove first that (ζ ′′ni ) is AN. If f is continuously differentiable, and f
and ∇f have polynomial growth, we readily deduce from Lebesgue’s theorem
that Σ �→ ρΣ(f) = E(f(ΣU)) (where U is an N (0, Id)–random vector) is
bounded, continuously differentiable and with bounded derivatives over the
setM′ defined in connection with formula (3.6). Hence if both g and h satisfy
(K) we have (recall the notation (3.6), and set ϕ(Σ) = ρΣ(g)ρΣ(h)):

Σ, Σ′ ∈M′ ⇒


|ϕ(Σ)|+ ‖∇ϕ(Σ)‖ ≤ C

|ϕ(Σ)− ϕ(Σ′)| ≤ C‖Σ −Σ′‖
|ϕ(Σ)− ϕ(Σ′)−∇ϕ(Σ′)(Σ −Σ′)‖

≤ Ψ(‖Σ −Σ′|)‖Σ −Σ′‖

(8.1)

for some constant C (depending on A0 in (3.6)) and some increasing function
Ψ on R+, continuous and null at 0 (here,∇ϕ isMd,d–valued, and∇ϕ(Σ′)(Σ−
Σ′) is R–valued).

If g or h (or both) satisfy (K’) only we also have (SH’), and since

ρΣ(f) =
∫

1
(2π)d/2det(ΣΣ")1/2

f(x) exp
(
−1
2
x"(ΣΣ")−1x

)
dx

we see that as soon as f has polynomial growth the function Σ �→ ρΣ(f) is
C∞ with bounded derivatives of all orders on the setM′. Hence we also have
(8.1), which thus holds in all cases.

Since we can write (7.2) as ζ ′′ni =
√
n
∫ i/n
(i−1)/n(ϕ(σu) − ϕ(σ(i−1)/n)du, we

have ζ ′′ni = ηni + η′ni where

ηni =
√
n ∇ϕ(σ i−1

n
)
∫ i

n

i−1
n

(σu − σ i−1
n
) du,

η′ni =
√
n

∫ i
n

i−
n

(
ϕ(σu)− ϕ(σ i−1

n
)−∇ϕ(σ i−1

n
)(σu − σ i−1

n
)
)
du.

and we need to prove that the two arrays (ηni ) and (η′ni ) are AN.
We decompose further ηni as ηni = µni + µ′ni , where

µni =
√
n ∇ϕ(σ i−1

n
)
∫ i

n

i−1
n

du

∫ u

i−1
n

a′sds,
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µ′ni =
√
n ∇ϕ(σ i−1

n
)
∫ i

n

i−1
n

(∫ u

i−1
n

σs−dWs +
∫ u

i−1
n

vs−dVs

+
∫ u

i−1
n

∫
E

w(s−, x)(µ− ν)(ds, dx)

)
du.

On the one hand, we have |µni | ≤ C/n3/2 by (8.1) and the boundedness of a′,
so the array (µni ) is AN. On the other hand, we also get by (SH1) and (8.1)
and Cauchy–Schwarz applied twice:

E
(
µ′ni | F i−1

n

)
= 0, E

(
(µ′ni )

2 | F i−1
n

)
≤ C

n3
.

Then the array (µ′ni ) is AN, as well as the array (ηni ).
Finally, using (8.1) once more, we see that for all ε > 0,

|η′ni | ≤
√
n

∫ i
n

i−1
n

Ψ(‖σu − σ i−1
n
‖) ‖σu − σ i−1

n
‖ du

≤
√
n Ψ(ε)

∫ i
n

i−1
n

‖σu − σ i−1
n
‖ du+ C

√
n

ε

∫ i
n

i−1
n

‖σu − σ i−1
n
‖2 du.

Since E(‖σu − σ i−1
n
‖2) ≤ C/n when u ∈ ((i− 1)/n, i/n], we deduce that

[nt]∑
i=1

E(|η′ni |) ≤ Ct

(
Ψ(ε) +

1
ε
√
n

)
.

From this we deduce the AN property of the array (η′ni ) because ε > 0 is
arbitrarily small and limε→0 Ψ(ε) = 0. Hence, finally, the array (ζ ′′ni ) is AN.

3) Now we start proving that the array (ζ ′ni ) also is AN. Since ϕ(σ(i−1)/n) =
E(g(βni )h(β

′n
i ) | F (i−1)/n), we have ζ ′ni = E(δni | F (i−1)/n), where

δni =
1√
n

(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y )− g(βni )h(β
′n
i )
)
.

Let us set
An

i = {‖
√
n ∆n

i Y − βni ‖ > d(βni , B)/2},
A′ni = {‖

√
n ∆n

i+1Y − β′ni ‖ > d(β′ni , B
′)/2},

where B (resp. B′) is either empty or is the set associated with g (resp. h),
according to whether that function satisfies (K) or (K’). We can express the
difference g(

√
n ∆n

i Y ) − g(βni ) using a Taylor expansion if we are on the set
(An

i )
c, and we can thus write
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g(
√
n ∆n

i Y )− g(βni )
= (g(

√
n ∆n

i Y )− g(βni ))1An
i
−∇g(βni )(

√
n ∆n

i Y − βni )1An
i

+(∇g(γni )−∇g(βni ))(
√
n ∆n

i Y − βni ) 1(An
i
)c

+∇g(βni )(
√
n ∆n

i Y − βni ), (8.2)

where γni is some (random) vector lying on the segment between
√
n ∆n

i Y
and βni : recall that ∇g(γni ) is well defined because on (An

i )
c we have γni ∈ Bc,

while ∇g(βni ) is a.s. well defined because either B is empty, or it has Lebesgue
measure 0 and βni has a density. Analogously, h(

√
n ∆n

i+1Y )− h(β′ni ) can be
written likewise, provided we replace ∆n

i Y , β
n
i , A

n
i , γ

n
i by ∆n

i+1Y , β
′n
i , A′ni ,

γ′ni .
Now observe that

δni =
1√
n
g(
√
n ∆n

i Y )
(
h(
√
n ∆n

i+1Y )− h(β′ni )
)

+
1√
n

(
g(
√
n ∆n

i Y )− g(βni )
)
h(β′ni ),

Therefore we deduce from the decomposition (8.2) and the analogous one for
h, and also from (7.3) and (7.4), that δni =

∑6
k=1 δ

n
i (k), where

δni (1) =
1√
n
g(
√
n ∆n

i Y )∇h(β′ni )ξ̃′′ni ,

δni (2) =
1√
n
g(
√
n ∆n

i Y )∇h(β′ni )ξ̃ni+1,

δni (3) =
1√
n
h(β′ni )∇g(βni )ξ̃ni ,

δni (4) =
1√
n

(
g(
√
n ∆n

i Y )∇h(β′ni )ξ̂′ni + h(β′ni )∇g(βni )ξ̂ni
)
,

δni (5) =
1√
n
g(
√
n ∆n

i Y )
(
(h(

√
n ∆n

i+1Y )− h(β′ni ))1A′n
i

−∇h(β′ni )(
√
n ∆n

i+1Y − β′ni )1A′n
i

+(∇h(γ′ni )−∇h(β′ni ))(
√
n ∆n

i+1Y − β′ni ) 1(A′n
i
)c

)
,

δni (6) =
1√
n
h(β′ni )

(
(g(
√
n ∆n

i Y )− g(βni ))1An
i

−∇g(βni )(
√
n ∆n

i Y − βni )1An
i

+(∇g(γni )−∇g(βni ))(
√
n ∆n

i Y − βni ) 1(An
i
)c

)
.
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If we combine (5.2) with Lemma 7.9, we readily get
∑[nt]

i=1E(‖δni (k)‖)→ 0
when k = 4, 5, 6. So we are left to proving that

the array
{
µni (k) = E

(
δni (k) | F i−1

n

)}
is AN. (8.3)

for k = 1, 2, 3.

4) Let us introduce the Md,d′–valued martingales

M(n, i)t =

0 if t ≤ i−1
n

v i−1
n
(Vt − V i−1

n
) +
∫ t

i−1
n

∫
En
w( i−1n , x)(µ− ν)(ds, dx) otherwise.

We see that ξ̃ni = ζ(2)ni + ζ(5)ni + ζ(7)ni =
√
n (ηni + η′ni ), where

ηni =
1
n
a i−1

n
+
∫ i

n

i−1
n

(Wu −W i−1
n
)dWu,

η′ni =
∫ i

n

i−1
n

M(n, i)udWu = ∆n
i M(n, i)∆n

i W −
∫ i

n

i−1
n

dM(n, i)u Wu.

Now we can write

µni (3) = ρni−1(h) E
(
∇g(

√
n σ i−1

n
∆n

i W )(ηni + η′ni ) | F i−1
n

)
.

g is even, so ∇g is odd; hence the variable ∇g(√n σ i−1
n
∆n

i W )ηni is multiplied
by −1 if we change the sign of the process (Ws − W(i−1)/n)s≥(i−1)/n, and
this sign change does not affect the F (i−1)/n–conditional distribution of this
process. Hence we get

E
(
∇g(

√
n σ i−1

n
∆n

i W )ηni | F i−1
n

)
= 0.

On the other hand, the processes M(n, i) and Ws − W(i−1)/n are inde-
pendent, conditionally on F (i−1)/n, when the times goes through ((i −
1)/n, i/n]. So if F0s denotes the σ–field generated by F (i−1)/n and by
(Wu −W(i−1)/n)(i−1)/n≤u≤s, we get that M(n, i) is an (F0s)–martingale for
s ∈ ((i− 1)/n, i/n], and thus E(η′ni |F0i/n) = 0. By successive conditioning, we
immediately deduce that

E
(
∇g(

√
n σ i−1

n
∆n

i W )η′ni | |F i−1
n

)
= 0,

and therefore µni (3) = 0. In a similar way, ∇h is odd and β′ni is the product of
an F (i−1)/n–measurable variable, times ∆n

i+1W . So exactly as above we have

E
(
∇h(β′ni ) ξ̃ni+1 | F i

n

)
= 0,
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and so a fortiori µni (2) = 0.

5) It remains to study µni (1). With the previous notation M(n, i), it is easy
to check that

µni (1)

=
1√
n

d∑
l=1

d′∑
m=1

zn,lmi E
(
g(
√
n ∆n

i Y )(σ
′
i−1
n

∆n
i W +∆n

i M(n, i))lm
)
| F i−1

n

)
,

where zn,lmi =
∫
∂xlh(σ i−1

n
x) xm ρ(dx) and ρ is N (0, Id′) (the law of W1), so

‖zn,lmi ‖ ≤ C. Recalling once more
√
n ∆n

i Y = βni + ξ̂ni + ξ̃ni , we see that

µni (1) =
d∑

l=1

d′∑
m=1

(
E
(
µni (l,m) | F i−1

n

)
+E
(
µ′ni (l,m) | F i−1

n

))
,

where

µni (l,m) =
1√
n
zn,lmi

(
g(βni + ξ̂ni + ξ̃ni )−g(βni )

)(
σ′i−1

n

∆n
i W+∆n

i M(n, i)
)lm

,

µ′ni (l,m) =
1√
n
zn,lmi g(βni )

(
σ′i−1

n

∆n
i W +∆n

i M(n, i)
)lm

.

Use (5.2) and (7.37) and the property E(‖∆n
i W‖q) + E(‖∆n

i M(n, i)‖q) ≤
Cq/n for all q ≥ 2 to get that

∑[nt]
i=1E(|µni (l,m)|) → 0. Finally, since g is

even and ∆n
i W and ∆n

i M(n, i) are independent conditionally on F (i−1)/n and
E(∆n

i M(n, i) | F (i−1)/n) = 0, we find that indeed E(µ′ni (l,m) | F (i−1)/n) = 0.
So we get (8.3) for k = 1, and we are done.
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