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Summary. We derive an integral representation for the fundamental solution of
the Kolmogorov forward equation

ft = −((1+µx)f)x + (ν x2f)xx

associated with the Shiryaev process X solving the linear SDE

dXt = (1+µXt) dt+ σXt dBt

where µ ∈ IR, ν = σ2/2 > 0 and B is a standard Brownian motion. The method of
proof is based upon deriving and inverting a Laplace transform. Basic properties of
X needed in the proof are reviewed.
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1 Introduction

We consider the Kolmogorov forward equation:

ft = −((1+µx)f)x + (ν x2f)xx (1.1)

associated with the Shiryaev process X = (Xt)t≥0 solving:
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dXt = (1+µXt) dt+ σXt dBt (1.2)

with X0 = x0 in IR where µ ∈ IR, ν = σ2/2 > 0 and B = (Bt)t≥0 is a
standard Brownian motion. The problem of finding the fundamental solution
f = f(t, x) of (1.1) appears naturally in a number of fields (most notably in
sequential analysis and financial mathematics).

The unique (strong) solution of (1.2) is given by:

Xt = Yt

(
x0 +

∫ t

0

1
Ys

ds

)
(1.3)

where Y = (Yt)t≥0 is a geometric Brownian motion solving:

dYt = µYt dt+ σYt dBt (1.4)

with Y0 = 1. The unique (strong) solution of (1.4) is given by:

Yt = exp
(
σBt + (µ−ν)t

)
. (1.5)

Inserting (1.5) into (1.3) one obtains an explicit representation of X in terms
of B.

From this representation and the invariance of B on time reversal one sees
that the following identity in law is satisfied:

Xt
law=
∫ t

0

Ys ds (1.6)

when x0 = 0. This shows that the problem of finding the fundamental solution
of (1.1) when x0 = 0 is equivalent to the problem of finding the distribution of
the random variable

∫ t
0
Ys ds. The latter problem has been intensively studied

in the last 10-15 years (see [20], [4], [15] and the references therein) but none
of these approaches attempts to tackle the forward equation (1.1) directly (see
[14] for numerical results of a related approach).

The purpose of the present paper is to search for the fundamental so-
lution of (1.1) by simple probabilistic and analytic means (cf. [5]). It will
be seen below that this approach readily leads to the Laplace transform of
t �→

∫ x
0
f(t, y) dy expressed in terms of confluent hypergeometric functions

(modified Bessel functions) providing a link to the Hartman-Watson distrib-
ution [9]. The problem thus reduces to inverting the Laplace transform. This
can be done using Hankel’s contour integrals for these functions (cf. [19]) lead-
ing to representations of the solution in terms of single or double integrals.
For simplicity and comparison we only treat a particular case of the equation
(1.1) in complete detail. A treatment of other cases is briefly indicated and it
is hoped that their study will be continued.

A disadvantage of the previous inversion approach is that the analytic
expressions obtained are numerically unstable for small t. This fact was ob-
served independently by several authors (see e.g. [2]). While this may not be
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such a big drawback for applications to Asian options of European type (cf.
[3]), in the case of Asian options of American type such a numerical stability
becomes fundamentally important (see [13]). A similar need for stable analytic
expressions arises in quickest detection problems (sequential analysis) when
the horizon is finite (see [8]). Further research of the Kolmogorov–Shiryaev
equation (1.1) thus appears to be necessary.

The stochastic differential equation (1.2) has been derived by Shiryaev
[16, Eq. (9)] in the context of quickest detection problems (sequential analy-
sis). These problems play a prominent role in diverse applications ranging
from quality control in industry to structural analysis of DNA in medicine.
Applications in financial data analysis (detection of arbitrage) are recently
discussed in [17]. The Kolmogorov backward and forward equation (of which
(1.1) is a particular case) have been derived in [11]. In the physical literature
the forward equation is often referred to as the Fokker–Planck equation (cf.
[7], [12]).

2 The Shiryaev process

In this section we present basic properties of the Shiryaev process X solving
(1.2). Note that the initial point x0 of X belongs to IR and may be negative
as well.

1. The Shiryaev process X is a strong Markov process with continuous
sample paths (a diffusion process). The drift of X is given by µ(x) = 1− µx
and the diffusion coefficient of X is given by σ(x) = σx. Recall that µ ∈ IR
and ν = σ2/2 > 0.

2. Since σ(0) = 0 we see that the state space of X splits into (−∞, 0] and
[0,∞). From the representation (1.3) it is evident that:

The point 0 is an entrance boundary point for [0,∞). (2.1)

Likewise it will be formally verified below that:

The point 0 is an exit boundary point for (−∞, 0]. (2.2)

3. The scale function of X is given by:

s(x) =
∫ x

1

z−µ/ν e1/νz dz for x > 0 (2.3)

s(x) =
∫ 1

−x
z−µ/ν e−1/νz dz for x < 0. (2.4)

Hence s(0+) = −∞ always, and s(∞) = ∞ if and only if µ ≤ ν. This shows
that X is recurrent in [0,∞) if and only if µ ≤ ν. Note also that s(−∞) = −∞
if and only if µ ≤ ν, and s(0−) <∞ always. This shows that X exists (−∞, 0]



538 G. Peskir

almost surely at 0 if and only if µ ≤ ν. We also see that X can never be
recurrent in (−∞, 0].

4. The speed measure of X is given by:

m(dx) = ν−1 x−2+µ/ν e−1/νx dx for x > 0 (2.5)

m(dx) = ν−1 (−x)−2+µ/ν e−1/νx dx for x < 0. (2.6)

Since
∫∞
0
m(dx) = νµ/ν Γ (1−µ/ν) < ∞ if and only if µ < ν, it follows that

X has an invariant density function on [0,∞) given by:

f(x) =
1

ν1−µ/ν Γ (1−µ/ν)
1

x2−µ/ν
e−1/νx for x > 0 (2.7)

if and only if µ < ν. Noting that
∫ 0
−∞m(dx) =∞ we see that X cannot have

an invariant density function on (−∞, 0] as already indicated above.
5. By the law of iterated logarithm for B one easily sees that

∫∞
0
Ys ds <∞

almost surely if and only if µ < ν. Hence when µ < ν we find using (1.3) and
(1.6) that:

Xt
d−→
∫ ∞
0

Ys ds (2.8)

as t→∞ where the density function of
∫∞
0
Ys ds is given by (2.7) above.

Likewise one sees that
∫∞
0
(1/Ys) ds <∞ almost surely if and only if µ > ν.

Hence when µ > ν we find using (1.3) that:

Xt → +∞ if x0 +
∫∞
0
(1/Ys) ds > 0 (2.9)

Xt → −∞ if x0 +
∫∞
0
(1/Ys) ds < 0 (2.10)

as t→∞. The probabilities of the latter two events can readily be computed
upon noting that the density function of

∫∞
0
(1/Ys) ds is given by:

g(x) =
1

νµ/ν−1 Γ (µ/ν−1)
1

xµ/ν
e−1/νx for x > 0 (2.11)

when µ > ν. This follows from the identity in law stated after (2.8) above
with a new drift µ̂ = 2ν − µ and a new Brownian motion B̂ = −B. Another
way to compute these probabilities is to make use of the scale function in
(2.4). This gives that the probability of the event in (2.9) equals one minus
the probability of the event in (2.10) which, in turn, is equal to the ratio
(S(0−)−S(x0))/(S(0−)−S(−∞)).

Finally, when µ = ν thenX is recurrent in [0,∞) no matter if x0 is positive
or negative. Recall that X hits zero almost surely if x0 < 0 never returning
to zero again.

6. A formal verification of (2.1) and (2.2) can be made upon invoking
the standard boundary classification for one-dimensional diffusions (cf. [6]).
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Firstly, since m′ ∈ L1((0,∞)) and sm′ ∈ L1((0,∞)) but s′ /∈ L1((0,∞))
we see that (2.1) follows. Secondly, since m′ /∈ L1((−∞, 0)) and s′m ∈
L1((−∞, 0)) we see that (2.2) follows as claimed.

7. We will conclude this section by deriving boundary conditions which will
be used in the next section. For this, let F denote the transition distribution
function of X, and let f denote the transition density function of X. Since X
is a time-homogeneous Markov process, it is no restriction to assume that the
initial time point equals zero. We thus have:

F (0, x0; t, x) = P(Xt ≤ x | X0 = x0) (2.12)

f(0, x0; t, x) = Fx(0, x0; t, x). (2.13)

In the sequel we will only study the case when x0 ≥ 0. From the facts
exposed above we then know that the state space of X equals [0,∞) and
that X can only start at 0 and never arrive at it (recall (2.1) above). Hence
the following boundary conditions at 0 are in agreement with what we would
expect to hold:

f(0, x0; t, 0+) = 0 (2.14)

fx(0, x0; t, 0+) = 0. (2.15)

In fact, all higher derivatives of f with respect to x satisfy the same zero
condition, but we will only make use of the conditions (2.14) and (2.15) below.

8. A formal proof of (2.14) and (2.15) is simple. Denote Xt from (1.3) by
Xx0

t to indicate its dependence on x0, note that Xx0
t > 0, and set Z = 1/Xx0

t .
Then for any p > 0 given and fixed we find by the Markov inequality that:

F (0, x0; t, h) = P(Xt ≤ h | X0 = x0) = P(Xx0
t ≤ h) (2.16)

= P(Z ≥ 1/h) = P(Zp ≥ 1/hp) ≤ hp E(Zp)

where E(Zp) <∞ by the well-known properties of B. From (2.16) we see that:

F (0, x0; t, h) = O(hp) (2.17)

as h → h0 for h0 ≥ 0 whenever p > 0 is given and fixed. Taking p = 3 and
using (2.17) one finds that (2.14) and (2.15) hold as claimed.

3 The fundamental solution

In this section we study the problem of finding the fundamental solution of
the Kolmogorov–Shiryaev equation (1.1). For simplicity we will only examine
the case when x0 ≥ 0 (cf. Section 2). By the fundamental solution we thus
mean a non-negative solution f = f(t, x) for t > 0 and x > 0, satisfying∫∞
0
f(t, x) dx = 1 for each t > 0, and f(t, x) → δ(x−x0) weakly as t ↓ 0

(where δ denotes the Dirac delta function).



540 G. Peskir

1. Recall that X solving (1.2) is time-homogeneous so that there is no
restriction to assume that the initial time point equals zero. We will moreover
suppress the dependence on 0 and x0 in (2.12) and (2.13) and simply write:

F (t, x) = P(Xt ≤ x | X0 = x0) (3.1)

f(t, x) = Fx(t, x). (3.2)

Standard Markovian arguments (cf. [11]) imply that the transition density
function (3.2) solves the equation (1.1), and thus the initial problem is equiv-
alent to the problem of finding the transition density function (3.2).

2. Let us set:
g = −(1+µx)f + (ν x2f)x. (3.3)

Then (1.1) can be written as:
ft = gx. (3.4)

In view of taking the Laplace transform with respect to t and making use of
the initial condition for t = 0 we shall integrate both sides of (3.4) from 0 to
x upon using that:

F (t, x) =
∫ x

0

f(t, y) dy. (3.5)

Since g(t, 0+) = 0 by (2.14) and (2.15) this gives:

Ft = g(t, x)− g(t, 0+) = g(t, x) = −(1+µx)f + (ν x2f)x (3.6)

= −(1+µx)Fx + (ν x2Fx)x = ((2ν−µ)x−1)Fx + ν x2Fxx.

Setting α = 2ν−µ we see that (3.6) reads:

Ft = (αx−1)Fx + ν x2Fxx. (3.7)

3. To simplify technicalities we will assume that x0 = 0 in the sequel. Then
F satisfies the following initial condition:

F (0, x) = 1 (3.8)

for all x ≥ 0. Moreover, since Xt remains positive almost surely for all t > 0,
we see that F satisfy the following boundary conditions:

F (t, 0+) = 0 (3.9)

F (t,∞) = 1 (3.10)

for all t > 0.
4. Taking the Laplace transform in (3.7) with respect to t upon setting:

F̄ (λ, x) =
∫ ∞
0

e−λtF (t, x) dt (3.11)
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we obtain the following ordinary differential equation:

λF̄ − F (0, x) = (αx−1)F̄x + ν x2F̄xx. (3.12)

(Note that by taking the Laplace transform with respect to x, we would
arrive instead to a new second-order partial differential equation. This is in
sharp contrast with the equation studied in [5] where one has x instead of
x2 in (1.1) which makes such a transform profitable since the new partial
differential equation is of the first order.) Making use of (3.8) we see that the
equation (3.12) reads:

ν x2F̄xx + (αx−1)F̄x − λF̄ = −1. (3.13)

By (3.9) and (3.10) we obtain the following boundary conditions:

F̄ (λ, 0+) = 0 (3.14)

F̄ (λ,∞) = 1/λ. (3.15)

5. Note that a particular solution of the equation (3.13) is given by
F̄ ≡ 1/λ. To find the general solution we need to consider the homogeneous
equation which reads:

x2y′′ + (Ax+B)y′ + C y = 0 (3.16)

where A = α/ν = 2−µ/ν, B = −1/ν and C = −λ/ν. A standard substitution
for this equation (cf. (2.188) in [10, p. 447]) is given by:

y(x) = (1/xp) z(B/x). (3.17)

Inserting (3.17) into (3.16) one finds that z = z(x) solves the Kummer equa-
tion:

xz′′ + (b− x)z′ − ax = 0 (3.18)

where a and b are given by:

a = p (3.19)

b = 2(p+1)−A (3.20)

and p > 0 solves the quadratic equation:

p2 + (1−A)p+ C = 0. (3.21)

Solving (3.21) we find that:

a =
1
2

(
1− µ

ν
+

√(
1− µ

ν

)2
+

4λ
ν

)
(3.22)

b = 1 +

√(
1− µ

ν

)2
+

4λ
ν
. (3.23)
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6. Two linearly independent solutions of the Kummer equation (3.18) are
the confluent hypergeometric function of the first kind :

M(a, b, x) = 1 +
a

b
x+

a(a+1)
b(b+1)

x2

2!
+ · · · (3.24)

and the confluent hypergeometric function of the second kind U(a, b, x). (We
refer to [1, pp. 504-510] for basic properties of these functions.) Summarizing
the preceding facts about (3.16) and (3.17) it follows that the equation (3.13)
has the general solution given by:

F̄ (λ, x) = C1 x
−aM(a, b,−1/νx) + C2 x

−a U(a, b,−1/νx) + 1/λ. (3.25)

7. Letting x→∞ and using that x−aM(a, b,−1/νx)→ 0 it follows from
(3.15) that we may take C2 = 0. Using the known relation (cf. (13.1.5) in [1,
p. 504]):

xaM(a, b,−x) = Γ (b)
Γ (b−a)

(
1 +O(x−1)

)
(3.26)

as x→∞, we find that:

x−aM(a, b,−1/νx)→ νa
Γ (b)

Γ (b−a) (3.27)

as x ↓ 0. Hence by (3.14) we get:

C1 = − Γ (b−a)
λ νaΓ (b)

. (3.28)

Inserting this into (3.25) upon recalling that C2 = 0, we obtain the following
closed-form expression for the Laplace transform (3.11) above:

F̄ (λ, x) =
1
λ

(
1− Γ (b−a)

Γ (b)
(νx)−aM(a, b,−1/νx)

)
(3.29)

where a = a(λ) and b = b(λ) are given by (3.22) and (3.23) respectively.
8. By the inversion formula we have:

F (t, x) =
1
2πi

∫ c+i∞

c−i∞
etzF̄ (z, x) dz (3.30)

for any c > 0 given and fixed. The initial problem is thus reduced to com-
puting the complex integral (3.30). The representation (3.29) possesses a rich
structure which opens various ways to tackle the inversion problem. Some of
these possibilities will now be addressed.

9. By the convolution theorem we see that:

F (t, x) = 1−
∫ t

0

G(s, x) ds (3.31)
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where the Laplace transform of s �→ G(s, x) is given by:

Ḡ(λ, x) =
∫ ∞
0

e−λsG(s, x) ds =
Γ (b−a)
Γ (b)

(νx)−aM(a, b,−1/νx) (3.32)

upon recalling that a = a(λ) and b = b(λ) are given by (3.22) and (3.23)
respectively. The problem thus reduces to inverting the Laplace transform on
the right-hand side of (3.32).

10. Consider the case when µ = 0 and ν = 1/2 i.e. σ = 1. Then from (3.22)
and (3.23) we see that a = (1/2)(1+

√
1+8λ) and b = 2a so that:

Ḡ(λ, x) =
Γ (a)
Γ (2a)

(x/2)−aM(a, 2a,−2/x). (3.33)

Using the well-known relation (cf. (13.6.3) in [1, p. 509]):

M(p+1/2, 2p+1, 2z) = Γ (1+p) ez (z/2)−p Ip(z) (3.34)

where Ip(z) is the modified Bessel function of the first kind (cf. [1, pp. 374-
385]), together with the fact that (−z)−p Ip(−z) = z−p Ip(z) (see (9.6.10) in
[1, p. 375]), and the duplication formula for the gamma function (cf. (6.1.18)
in [1, p. 256]):

Γ (2z) = (2π)−1/2 22z−1/2 Γ (z)Γ (z+1/2) (3.35)

we find that the following identity holds:

Γ (a)
Γ (2a)

(x/2)−aM(a, 2a,−2/x) =
√

2π
x
e−1/x Ia−1/2(1/x). (3.36)

Inserting this expression into (3.32) we find that:

Ḡ(λ, x) =

√
2π
x
e−1/x I√

1/4+2λ
(1/x). (3.37)

This provides a link to the Hartman–Watson distribution (cf. [9]).
Since by (3.37) the Laplace transform of s �→ e−s/4G(s, x) equals

√
2π/x

e−1/x I√2λ (1/x), denoting by L−1λ [ · ] the inverse Laplace transform in the
argument λ, we see that:

G(s, x) =

√
2π
x
es/4−1/x L−1λ

[
I√2λ (1/x)

]
(s). (3.38)

Using the classic Hankel’s contour integral (see [18, Chapter XVII] for more
details):

I√2λ (y) =
1
2πi

∫
C

ey cosh(z)−(
√
2λ)z dz (3.39)
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for y > 0 and the well-known identity L−1λ [e−(
√
2λ)x](t) = (2πt3)−1/2 x e−x

2/2t

it is possible to perform the inversion in (3.38) by expressing the result in
terms of a single integral (cf. [19, pp. 86-87]):

L−1λ

[
I√2λ (y)

]
(s) =

y eπ
2/2s

√
2π3s

∫ ∞
0

e−z
2/2s−y cosh(z) sinh(z) sin

(
πz
s

)
dz. (3.40)

Inserting (3.40) into (3.38) and then (3.38) back into (3.31) we obtain the
following expression for the distribution function (3.1) above:

F (t, x) = 1−
∫ t

0

es/4+π2/2s−1/x

π
√
s x3/2

(3.41)∫ ∞
0

e−z
2/2s−(1/x) cosh(z) sinh(z) sin

(
πz
s

)
dz ds

when µ = 0 and ν = 1/2. Clearly the formula (3.41) extends along the same
lines to the case of general ν > 0 when µ = 0.

11. In the case of general µ ∈ IR and ν > 0 we may proceed differently
from (3.34) and exploit the following integral representation (cf. (13.2.1) in [1,
p. 505]):

Γ (b−a)Γ (a)
Γ (b)

M(a, b, z) =
∫ 1

0

ezr ra−1 (1−r)b−a−1 dr. (3.42)

Hence the right-hand side of (3.32) reads:

Ḡ(λ, x) =
(νx)−a

Γ (a)

∫ 1

0

e−r/νx ra−1 (1−r)b−a−1 dr. (3.43)

To handle the term 1/Γ (a) recall the Hankel’s contour integral (cf. (6.1.4) in
[1, p. 255]):

1
Γ (a)

=
1
2πi

∫
C

ezz−a dz (3.44)

where the path of integration C starts at −∞ on the real axis, circles the origin
in the anticlockwise direction, and returns to the starting point. Inserting
(3.44) into (3.43) and recalling (3.22) and (3.23) we find that:

Ḡ(λ, x) = (νx)µ/2ν−1/2
∫ 1

0

e−r/νx r−µ/2ν−1/2 (1−r)µ/2ν−1/2H(r) dr (3.45)

where the function H(r) = H(λ, x, µ, ν, r) is given by:

H(r) =
1
2πi

∫
C

ezzµ/2ν−1/2 (3.46)

exp
(
− log

(
ν xz

r(1−r)

)√
1
4
(1−µ/ν)2 + λ/ν

)
dz.



The Kolmogorov–Shiryaev Equation 545

Recalling the well-known identity:

L−1λ

[
e−w

√
α+βλ

]
(t) =

√
β w e−αt/β−βw

2/4t

2
√
πt3

(3.47)

that is valid for all complex numbers w = w1+ iw2 such that Re(w) = w1 > 0
and Re(w2) = w21 −w22 > 0, letting z = reiϕ in (3.46) and choosing C not too
close to the origin in the sense that r ≥ R where R > 0 is taken large enough,
we see that it is possible to perform the inversion in (3.45) by expressing the
result in terms of a double integral. A more systematic study of the expressions
obtained appears worthy of further consideration.

References

1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. The Na-
tional Bureau of Standards 1964.

2. Barrieu P., Rouault A., Yor M.: A study of the Hartman–Watson distri-
bution motivated by numerical problems related to Asian options pricing.
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15. Schröder M.: On the integral of geometric Brownian motion. Adv. Appl. Probab.

35, 159–183 (2003).
16. Shiryaev A.N.: The problem of the most rapid detection of a disturbance in a

stationary process. Soviet Math. Dokl. 2, 795–799 (1961).
17. Shiryaev A.N.: Quickest detection problems in the technical analysis of the fi-

nancial data.Math. Finance Bachelier Congress (Paris 2000), 487–521, Springer
2002.



546 G. Peskir

18. Whittaker E.T., Watson G.N.: A Course of Modern Analysis. Cambridge Univ.
Press 1927.

19. Yor M.: Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson.
Z. Wahrsch. Verw. Gebiete 53, 71–95 (1980).

20. Yor M.: On some exponential functionals of Brownian motion. Adv. Appl.
Probab. 24, 509–531 (1992).




