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Dedication. The first time I met Prof. A. Shiryaev was in January 1977,
during a meeting dedicated to Control and Filtering theories, in Bonn. This
was a time when meeting a Soviet mathematician was some event! Among the
participants to that meeting, were, apart from A. Shiryaev, Prof. B. Grige-
lionis, and M. Yershov, who was by then just leaving Soviet Union in hard
circumstances. To this day, I vividly remember that A.S, M.Y. and myself
spent a full Sunday together, trying to solve a succession of problems raised
by A.S., who among other things, explained at length about Tsirel’son’s ex-
ample of a one-dimensional SDE, with path dependent drift, and no strong
solution ([32]; this motivated me to give - in [37] - a more direct proof than
the original one by Tsirel’son, see also [38], and Revuz and Yor [24] p. 392).
Each of my encounters with A.S. has had, roughly, the same flavor: A.S. would
present, with great enthusiasm, some recent or not so recent result, and ask
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me for some simple proof, extension, etc... I have often been hooked into that
game, which kept reminding me of one of my favorite pedagogical sentences
by J. Dixmier: When looking for the 50th time at a well-known proof of some
theorem, I would discover a new twist I had never thought of, which would cast
a new light on the matter. I hope that the following notes, which discuss some
facts about local martingales and their supremum processes, and are closely
related to the thesis subject of the first author, may also have some this “new
twist” character for some readers, and be enjoyed by Albert Shiryaev, on the
occasion of his 70th birthday.

Marc Yor

1 Introduction

In this article we focus on local martingales, functions of two-dimensional
processes, whose components are a continuous local martingale (Nt : t ≥ 0)
and its supremum N t = supu≤tNu, i.e. on local martingales of the form
(H(Nt, N t) : t ≥ 0), where H : R × R+ → R. We call functions H such that
(H(Nt, N t) : t ≥ 0) is a local martingale, (N,N)-harmonic functions. Some
examples of such local martingales are

F (N t)− f(N t)(N t −Nt), t ≥ 0, (1.1)

where F ∈ C1 and F ′ = f , introduced by Azéma and Yor [3]. We show that
(1.1) defines a local martingale for any Borel, locally integrable function f .
We conjecture that these are the only local martingales, that is that the only
(N,N)-harmonic functions are of the form H(x, y) = F (y)− f(y)(y−x)+C,
with f a locally integrable function, F (y) =

∫ y
0
f(u)du, and C a constant.

We explain, in an intuitive manner, how these local martingales, which we
call max-martingales, may be used to find the Azéma–Yor solution to the
Skorohod embedding problem. We then go on and develop, with the help of
these martingales, the well-known bounds on the law of the supremum of a
uniformly integrable martingale with a fixed terminal distribution. Using the
Lévy and Dambis–Dubins–Schwarz theorems, we reformulate the results in
terms of the absolute value |N | and the local time LN at 0, of the local mar-
tingale N . This leads to some new bounds on the law of the local time of a
uniformly integrable martingale with fixed terminal distribution. A recently
introduced and studied stochastic order, called the excess wealth order (see
Shaked and Shanthikumar [28]), plays a crucial role. We also point out that the
max-martingales appear naturally in some Brownian penalization problems.
Finally, we try to sketch a somewhat more general viewpoint linked with the
balayage formula. The organization of this paper is as follows. We start in Sec-
tion 3 with a discrete version of the balayage formula and show how to deduce
from it Doob’s maximal and Lp inequalities. In the subsequent Section 4, in
Theorem 4.1, we formulate the result about the harmonic functions of (N,N)
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and prove it in a regular case. Section 5 is devoted to some applications: it
contains three subsections concentrating respectively on the Skorohod embed-
ding problem, bounds on the laws of N and LN , and Brownian penalizations.
The last section contains a discussion of the balayage formula.

2 Notation

Throughout this paper (Nt : t ≥ 0) denotes a continuous local martingale
with N0 = 0 and 〈N〉∞ =∞ a.s., and N t = sups≤tNs denotes its maximum
process. We have adopted this notation so that there is no confusion with
stock-price processes, which are often denoted St. The local time at 0 of N is
denoted (LN

t : t ≥ 0). For processes either in discrete or in continuous time,
when we say that a process is a (sub/super) martingale without specifying
the filtration, we mean the natural filtration of the process.
B = (Bt : t ≥ 0) shall denote a one-dimensional Brownian motion, starting
from 0, and Bt = sups≤tBs. The natural filtration of B is denoted (Ft) and
is taken completed.
The indicator function is denoted 1. We use the notations a ∨ b = max{a, b}
and a ∧ b = min{a, b}. The positive part is given by x+ = x ∨ 0. For µ a
probability measure on R, µ(x) := µ([x,∞)) is its tail distribution function;
X ∼ µ means X has distribution µ.

3 Balayage in discrete time and some applications

We start with the discrete time setting, and present a simple idea, which
corresponds to balayage in continuous time, and which proves an efficient tool,
as it allows, for example, to obtain easily Doob’s maximal and Lp inequalities.
Let (Ω,F , (Fn)n∈N, P ) be a filtered probability space and (Yn : n ≥ 0) be some
real-valued adapted discrete stochastic process. Let (ϕn : n ≥ 0) be also an
adapted process, which further satisfies ϕn1Yn �=0 = ϕn−11Yn �=0, for all n ∈ N.
The last condition can be also formulated as “the process (ϕn) is constant on
excursions of (Yn) away from 0”.

Lemma 3.1. Let (Yn, ϕn) be as above, Y0 = 0. The following identities hold:

ϕnYn = ϕn−1Yn =
n∑

k=1

ϕk−1(Yk − Yk−1), n ≥ 1. (3.1)

Proof. The first equality is obvious as ϕnYn = ϕnYn1Yn �=0 = ϕn−1Yn, and the
second one is obtained by telescoping. ✷

To see how the above can be used, let us give some examples of pairs
(Yn, ϕn) involving in particular an adapted process Xn and its maximum Xn:

• Yn = Xn −Xn and ϕn = f(Xn), for some Borel function f ;
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• Yn = Xn, ϕn =
∑n

k=0 1Xk=0 (note that Yn = |Xn| works as well);
• Yn = X∗n−|Xn|, ϕn = f(X∗n), for some Borel function f , where the process

X∗n = maxk≤n |Xk|;
• Yn = Xn − Xn, ϕn = f

(∑n
k=1 1(Xk=X

k
)

)
, for some Borel function f ,

where Xn = |mink≤nXk|.
We now use the discrete balayage formula with the first of the above examples
to establish a useful supermartingale property.

Proposition 3.1. Let (Xn : n ∈ N) be a submartingale in its natural filtra-
tion (Fn), X0 = 0, and let f be some increasing, locally integrable, positive
function. Assume that Ef(Xn) < ∞ and EF (Xn) < ∞ for all n ∈ N, where
F (x) =

∫ x
0
f(s)ds. Then the process Sf

n = f(Xn)(Xn − Xn) − F (Xn) is a
(Fn)-supermartingale.

Proof. Since the pair (Xn −Xn, f(Xn)) satisfies the assumptions of Lemma
3.1, we have:

Sf
n =

n∑
k=1

f(Xk−1)(Xk −Xk −Xk−1 +Xk−1)− F (Xn)

=
n∑

k=1

f(Xk−1)(Xk −Xk−1)−
n∑

k=1

f(Xk−1)(Xk −Xk−1)−
∫ Xn

0

f(x)dx

=
n∑

k=1

∫ Xk

Xk−1

(
f(Xk−1)− f(x)

)
dx−

n∑
k=1

f(Xk−1)(Xk −Xk−1). (3.2)

Using (3.2), the fact that f is increasing, and (Xn) is a submartingale, we
obtain the supermartingale property for Sf

n. ✷

The above Proposition allows to recover Doob’s maximal and Lp inequal-
ities in a very easy way. Indeed, consider the function f(x) = 1x≥λ for some
λ > 0. Then the process Sf

n = S
(λ)
n = 1Xn≥λ(λ −Xn) is a supermartingale,

which yields Doob’s maximal inequality

λP
(
Xn ≥ λ

)
≤ E
[
1(Xn≥λ)Xn

]
. (3.3)

To obtain the Lp inequalities we consider the function f(x) = pxp−1 for
some p > 1, and we suppose that (Xn : n ≥ 0) is a positive submartingale
with EXp

n <∞. This implies, asX
p

n ≤
∑n

k=1X
p
k , that EX

p

n <∞. The process
Sf
n = S

(p)
n = (p − 1)(Xn)p − p(Xn)p−1Xn is then a supermartingale, which

yields

(p− 1)E
[
(Xn)p

]
≤ pE

[
(Xn)p−1Xn

]
and hence, applying Hölder’s ineq.,

E
[
(Xn)p

]
≤
( p

p− 1

)p
E
[
Xp

n

]
, which is Doob’s Lp ineq. (3.4)
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To our best knowledge, this small wrinkle about Doob’s inequalities for
positive submartingales involving supermartingales does not appear in any of
the books on discrete martingales, such as Neveu [17], Garsia [12] or Williams
[36]. We point out also, that our method allows to obtain other variants of
Doob’s inequalities, such as L logL inequalities, etc.

4 The Markov process ((Bt, Bt) : t ≥ 0) and its
harmonic functions

In the rest of the paper we will focus on the continuous-time setup. It follows
immediately from the strong Markov property of B, or rather the indepen-
dence of its increments, that for s < t, and f : R×R+ → R+ a Borel function,
one has:

E
[
f(Bt, Bt)

∣∣∣Fs

]
= Ẽ
[
f
(
Bs + B̃t−s, Bs ∨ sup

u≤t−s
(Bs + B̃u)

)]
, (4.1)

where on the RHS, the notation Ẽ indicates integration with respect to func-
tionals of the Brownian motion (B̃u : u ≥ 0), which is assumed to be inde-
pendent of (Bt : t ≥ 0).

In particular, the two-dimensional process ((Bt, Bt) : t ≥ 0) is a nice
Markov process, hence a strong Markov process, and its semigroup can be
computed explicitly thanks to the well-known, and classical formula:

P
(
Bt ∈ dx,Bt ∈ dy

)
=
( 2
πt3

)1/2
(2y − x) exp

(
− (2y − x)2

2t

)
1(y≥x+)dxdy.

We are now interested in a description of the harmonic functions H of
(B,B) that is of Borel functions such that (H(Bt, Bt) : t ≥ 0) is a local
martingale. Note that this question is rather natural and interesting since
H is (B,B)-harmonic if and only if, thanks to the Dambis–Dubins–Schwarz
theorem, for any continuous local martingale (Nt : t ≥ 0), H is also (N,N)-
harmonic. The following proposition is an extension of Proposition 4.7 in
Revuz and Yor [24].

Theorem 4.1. Let N = (Nt : t ≥ 0) be a continuous local martingale with
〈N〉∞ =∞ a.s., f a Borel, locally integrable function, and H defined through

H(x, y) = F (y)− f(y)(y − x) + C, (4.2)

where C is a constant and F (y) =
∫ y
0
f(s)ds. Then, the following holds:

H(Nt, N t) = F (N t)− f(N t)(N t−Nt)+C
∫ t

0

f(Ns)dNs+C, t ≥ 0, (4.3)

and (H(Nt, N t) : t ≥ 0) is a local martingale.
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Remarks. Local martingales of the form (4.3) were first introduced by Azéma
and Yor [3] and used to solve the Skorohod embedding problem (cf. Sec-
tion 5.1 below). In the light of the above theorem, we will call them max-
martingales and the functions given in (4.2) will be called MM-harmonic
functions (max-martingale harmonic) or (N,N)-harmonic. Note the resem-
blance of (4.3) with the discrete time process Sf

n given in Proposition 3.1.
It is known (see Revuz and Yor [24, Prop. VI.4.7]) that if H ∈ C2,1 then the
reverse statement holds. That is, if H is (N,N)-harmonic then there exists
a continuous function f such that (4.2) holds. We present below a proof of
this fact. We conjecture that the same holds true if we only suppose that H
finely-continuous3.
Proof. As mentioned above, thanks to the Dambis–Dubins–Schwarz theorem,
it suffices to prove the theorem for N = B. We first recall how to prove the
converse of the theorem for the regular case. We assume that H ∈ C2,1, with
obvious notation, and that H is (B,B)-harmonic. We denote by H ′x and H ′y
the partial derivatives of H in the first and the second argument respectively,
and H ′′x2 the second derivative of H in the first argument. Without loss of
generality, we assume that H(0, 0) = 0. Under the present assumptions we
can apply Itô’s formula to obtain:

H(Bt, Bt) =
∫ t

0

H ′x(Bs, Bs)dBs +
∫ t

0

H ′y(Bs, Bs)dBs +
1
2

∫ t

0

H ′′x2(Bs, Bs)ds,

where we used the fact that Bs = Bs, dBs-a.s. Now, since H(Bt, Bt) is a local
martingale, the above identity holds if and only if:

H ′y(Bs, Bs)dBs +
1
2
H ′′x2(Bs, Bs)ds = 0, s ≥ 0. (4.4)

The random measures dBs and ds are mutually singular since we have dBs =
1(Bs−Bs=0)

dBs and ds = d〈B〉s = 1(Bs−Bs �=0)d〈B〉s. Equation (4.4) holds
therefore if and only if

H ′y(y, y) = 0 and H ′′x2(x, y) = 0. (4.5)

The second condition implies that H(x, y) = f(y)x + g(y) and the first one
then gives f ′(y)y+g′(y) = 0. Thus, g(y) = −

∫ y
0
uf ′(u)du =

∫ y
0
f(u)du−f(y)y.

This yields formula (4.2).
Furthermore, the above reasoning grants us that the formula (4.3) holds

for f of class C1. As C1 is dense in the class of locally integrable functions (in
an appropriate norm), if we can show that the quantities given in (4.3) are
well defined and finite for any locally integrable f on [0,∞), then the formula
(4.3) extends to such functions through monotone class theorems. For f a
locally integrable function, F (x) is well defined and finite, so all we need to

3This conjecture is proved in Obl̂ój [19].
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show is that
∫ t
0
f(Bs)dBs is well defined and finite a.s. This is equivalent to∫ t

0

(
f(Bs)

)2
ds <∞ a.s., which we now show.

Write Tx = inf{t ≥ 0 : Bt = x} for the first hitting time of x, which is a

well defined, a.s. finite, stopping time. Thus
∫ t
0

(
f(Bs)

)2
ds < ∞ a.s., if and

only if, for all x > 0,
∫ Tx

0

(
f(Bs)

)2
ds <∞. However, the last integral can be

rewritten as∫ Tx

0

ds
(
f(Bs)

)2
=
∑

0≤u≤x

∫ Tu

Tu−

ds
(
f(Bs)

)2
=
∑

0≤u≤x
f2(u)

(
Tu − Tu−

)
=
∫ x

0

f2(u)dTu. (4.6)

Now it suffices to note that (see Ex. III.4.5 in Revuz and Yor [24])

E
[
exp
(
− 1

2

∫ x

0

f2(u)dTu
)]

= exp
(
−
∫ x

0

|f(u)|du
)
, (4.7)

to see that the last integral in (4.6) is finite if and only if
∫ x
0
|f(u)|du < ∞,

which is precisely our hypothesis on f .
Note that the function H given by (4.2) is locally integrable as both func-

tions x→ f(x) and x→ xf(x) are locally integrable. ✷

Lévy’s theorem guarantees that the processes ((Bt, Bt) : t ≥ 0) and
((Lt − |Bt|, Lt) : t ≥ 0) have the same distribution, where Lt denotes local
time at 0 of B. Theorem 4.1 yields therefore also a complete description of
(L, |B|)-harmonic functions, which again through Dambis–Dubins–Schwarz
theorem, extends to any local continuous martingale. We have the following

Corollary 4.1. Let N = (Nt : t ≥ 0) be a continuous local martingale with
〈N〉∞ = ∞ a.s., and LN = (LN

t : t ≥ 0) its local time at 0. Let g a Borel,
locally integrable function, and H be defined through

H(x, y) = G(y)− g(y)x+ C, (4.8)

where C is a constant and G(y) =
∫ y
0
g(s)ds. Then, the following holds:

H(|Nt|, LN
t ) = G(LN

t )−g(LN
t )|Nt|+C = −

∫ t

0

g(LN
s )sgn (Ns) dNs+C, t ≥ 0,

(4.9)
and (H(|Nt|, LN

t ) : t ≥ 0) is a local martingale.

5 Some appearances of the MM-harmonic functions

We now present some easy applications of the martingales described in the
previous section. (Nt : t ≥ 0) denotes always a continuous local martingale
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with 〈N〉∞ = ∞ a.s. We will show an intuitive way to obtain a solution to
the Skorohod embedding problem, as given by Azéma and Yor [3]. We will
also discuss relations between the law of NT and the conditional law of NT

knowingNT , for some stopping time T . In the second subsection we will derive
well-known bounds on the law of NT , when the law of NT is fixed. We will
then continue in the same vein and describe the law of LN

T , when the law of
|NT | is fixed. We will end with a discussion of penalization of Brownian motion
with a function of its supremum and some absolute continuity relations.

5.1 On the Skorohod embedding problem

The classical Skorohod embedding problem can be formulated as follows: for
a given centered probability measure µ, find a stopping time T such that
NT ∼ µ and (Nt∧T : t ≥ 0) is a uniformly integrable martingale. Numerous
solutions to this problem are known; for an extensive survey see Obl̀ój [18].
Here we make a remark about the solution given by Azéma and Yor in [3].
Namely we point out how one can arrive intuitively to this solution using the
max-martingales (4.3). Naturally, this might be extracted from the original
paper, but it may not be so obvious to do so.

The basic observation is that the max-martingales allow to express the law
of the terminal value of N , that is NT , in terms of the conditional distribution
of NT given NT . One then constructs a stopping time which actually binds
both terminal values through a function and sees that the function can be
obtained in terms of the target measure µ.

Proposition 5.1 (Vallois [35]). Let T be a stopping time, such that the
stopped process (Nt∧T : t ≥ 0) is a uniformly integrable martingale. Write ν
for the law of NT and suppose that ν is equivalent to the Lebesgue measure
on its interval support [0, b], b ≤ ∞. Then the law of NT is given by:

P
(
NT ≥ y

)
= exp

(
−
∫ y

0

ds

s− ϕ(s)

)
, 0 ≤ y ≤ b, (5.1)

where ϕ(x) = E[NT |NT = x], i.e. E[NTh(NT )] = E[ϕ(NT )h(NT )], for any
positive Borel function h.

Remark. Note that the above formula in the special case when NT = ϕ(NT )
a.s., and actually in the more general context of time-homogeneous diffusions,
was obtained already by Lehoczky [16]. Vallois [35] studied this issues in detail
and has some more general formulae.
Proof. Suppose first that ENT < ∞. With the help of the max-martingales
for any f : R+ → R, bounded with compact support, we get that

E
[
F (NT )− f(NT )(NT −NT )

]
= 0.

Upon conditioning with respect to NT we obtain:
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E
[
F (NT )− f(NT )(NT − ϕ(NT ))

]
= 0. (5.2)

We can rewrite the above as a differential equation involving ν ∼ NT , which
yields (5.1).
When ENT is possibly infinite we can stop conveniently and pass to the limit.
More precisely, let Rn = inf{t : N t = n} and ϕn(x) = E[NT∧Rn

|NT∧Rn
= x],

x ≤ n. A refinement of the argumentation above shows that for any x < n,
P (NT∧Rn

≥ x) = exp{−
∫ x
0
ds/(s − ϕn(s))}. Observe however that for any

0 ≤ x < n, P(NT∧Rn
≥ x) = P(NT ≥ x) and ϕn(x) = ϕ(x). In consequence,

letting n→∞, we see that (5.1) holds for all x > 0. ✷

Let us define the Azéma–Yor stopping time, as suggested above, through
Tϕ = inf{t ≥ 0 : Nt = ϕ(N t)}, for some strictly increasing, continuous
function ϕ : R+ → R. Obviously NTϕ

= ϕ(NTϕ
). We look for a function

ϕ = ϕµ such that NTϕµ
∼ µ. To this end, we take x in the support of µ and

write

µ(x) = P(NTϕµ
≥ x) = ν(ϕ−1µ (x)) = exp

(
−
∫ ϕ−1

µ (x)

0

ds

s− ϕµ(s)

)
,

which may be considered as an equation on ϕµ in terms of µ. Solving this
equation, one obtains

ϕ−1µ (x) = Ψµ(x) =
1

µ(x)

∫
[x,∞)

s dµ(s), (5.3)

the Hardy–Littlewood maximal function, or barycentre function, of µ.

Proposition 5.2 (Azéma–Yor [3]). Let µ be a centered probability measure.
Define the function Ψµ through (5.3) for x such that µ(x) ∈ (0, 1) and put
Ψµ(x) = 0 for x such that µ(x) = 1, Ψµ(x) = x for x such that µ(x) = 0.
Then the stopping time Tµ := inf{t ≥ 0 : N t ≥ Ψµ(Nt)} satisfies NTµ

∼ µ
and (Nt∧Tµ

: t ≥ 0) is a uniformly integrable martingale.

The arguments presented above contain the principal ideas behind the Azéma–
Yor solution to the Skorohod embedding problem. Naturally, they work well
for measures with positive density on R. A complete proof of Proposition 5.2
requires some rigorous arguments involving, for example, a limit procedure,
but this can be done, as shown by Michel Pierre [23].

We now develop a link between formula (5.1) and work of Rogers [25].
Let us carry out some formal computations. Write ρ for the law of the couple
(NT , NT −NT ) ∈ R+ ×R+, and ν for its first marginal (as above). Differen-
tiating (5.1) we find

dν(y) = − ν(y)dy
y − ϕ(y)

, hence

ν(y)dy = (y − ϕ(y))dν(y), which we rewrite in terms of ρ(∫∫
(y,∞)×R+

ρ(ds, dx)
)
dz =

∫
(0,∞)

zρ(ds, dz). (5.4)
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The last condition appears in Rogers [25] and is shown to be equivalent to the
existence of a continuous, uniformly integrable martingale (Nt∧T : t ≥ 0) such
that (NT , NT −NT ) ∼ ρ. Our formulation in (5.1) is less general, as it is not
valid when the law of BT has atoms. However, when it is valid, it provides an
intuitive reading of (5.4).

To close this section, we point out that arguments similar to the ones
presented above, can be developed to obtain a solution to the Skorohod em-
bedding problem for |N | based on LN : it suffices to use the martingales given
by (4.9) instead of those given by (4.3). For a probability measure m on R+,
define the dual Hardy–Littlewood function (see Obl̀ój and Yor [20]) through

ψm(x) =
∫
[0,x]

y

m(y)
dm(y), for x such that m(x) ∈ (0, 1), (5.5)

and put ψm(x) = 0 for x such that m(x−) = 1 and ψm(x) = ∞ for x such
that m(x+) = 0.

Proposition 5.3 (Vallois [33], ObPlój and Yor [20]). Let m be a non-
atomic probability measure on R+ and define the function ψm through (5.5).
Let ϕm(y) = inf{x ≥ 0 : ψm > y} be the right inverse of ψm. Then the
stopping time Tm := inf{t > 0 : |N |t = ϕm(LN

t )} satisfies |N |Tm ∼ m.
Furthermore, (Nt∧Tm : t ≥ 0) is a uniformly integrable martingale if and only
if
∫∞
0
xdm(x) <∞.

The theorem is valid for probability measures with atoms upon proper exten-
sion of the definition of ψµ. We note that the law of LN

Tm is given through

P(LN
Tm ≥ x) = exp

(
−
∫ x
0

ds
ϕm(s)

)
(cf. (5.4) in [20]). An easy analogue of

Proposition 5.1, is that this formula is also true for general stopping time
T , such that the law of LT has a density, with the function ϕm replaced by
ϕ(x) = E

[
|NT |

∣∣LN
T = x

]
.

5.2 Bounds on the laws of NT and LN
T

We present a classical bound on the law of NT , which was first obtained by
Blackwell and Dubins [4] and Dubins and Gilat [7] (see also Azéma and Yor
[2], Kertz and Rösler [14] and Hobson [13]).

Proposition 5.4. Let µ be a centered probability measure and T a stopping
time, such that NT ∼ µ and (Nt∧T : t ≥ 0) is a uniformly integrable martin-
gale. Then the following bound is true:

P(NT ≥ λ) ≤ P(NTµ
≥ λ) = µ(Ψ−1µ (λ)), λ ≥ 0, (5.6)

where Tµ is given in Proposition 5.2, Ψµ is displayed in (5.3) and its inverse
is taken right-continuous.
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In other words, for the partial order given by tails domination, the law of
NT is bounded by the image of µ through the Hardy–Littlewood maximal
function (5.3).
Proof. Suppose for simplicity that µ has a positive density, which is equiv-
alent to Ψµ being continuous and strictly increasing. We consider the max-
martingale (4.3) for f(x) = 1(x≥λ), for some fixed λ > 0, and apply the
optional stopping theorem. We obtain:

λP (NT ≥ λ) = E
[
NT1(NT≥λ)

]
, (5.7)

that is Doob’s maximal equality for continuous-time martingales. Let p :=
P(NT ≥ λ). As NT ∼ µ, then the RHS is smaller than E[NT1(NT≥µ−1(p))]
which, by definition in (5.3), is equal to pΨµ(µ−1(p)). We obtain therefore:

λP(NT ≥ λ) = λp ≤ E
[
NT1(NT≥µ−1(p))

]
= pΨµ

(
µ−1(p)

)
, hence

λ ≤ Ψµ

(
µ−1(p)

)
, thus

p ≤ µ
(
Ψ−1µ (λ)

)
since µ is decreasing. (5.8)

To end the proof is suffice to note that P(BTµ
≥ λ) = µ(Ψ−1µ (λ)), which is

obvious from the definition of Tµ. ✷

Investigation of similar quantities with NT replaced by T is also possible.
Numerous authors studied the limit

√
λP(T ≥ λ). It goes back to Azéma,

Gundy and Yor [1] with more recent works by Elworthy, Li and Yor [10] and
Peskir and Shiryaev [21]4.

Integrating (5.6) one obtains bounds on the expectation of NT . Another
bound on ENT can be obtained using the max-martingales. Take f(x) = 2x,
then by (4.3) the process N2

t −2N tNt = (N t−Nt)2−N2
t is a local martingale.

For a stopping time T with E〈N〉T <∞, we have then E(NT −NT )2 = EN2
T ,

which yields:

ENT = E(NT −NT ) ≤
√
E(NT −NT )2 =

√
EN2

T

√
E〈N〉T . (5.9)

The inequality ENT ≤
√
E〈N〉T extends to any stopping time, through the

monotone convergence theorem. This inequality was generalized for Bessel
processes by Dubins, Shepp and Shiryaev [9] and for Brownian motion with
drift by Peskir and Shiryaev [22]. These problems are also in close relation with
the so-called Russian options developed mainly by L. Shepp and A. Shiryaev
[29, 30, 31].

More elaborate arguments, using optimal stopping, yield:

E
[
sup
s≤T

|Ns|
]
≤
√
2E〈N〉T , (5.10)

4See also the note by Liptser and Novikov in this volume.
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as shown in Dubins and Schwarz [8]. We also learned from L. Dubins [6] that

E
[
sup
s≤T

Ns − inf
s≤T

Ns

]
≤
√
3E〈N〉T , (5.11)

and in (5.9), (5.10) and (5.11) the constants are optimal.
Bounds on the law of the local time similar to (5.6) were studied in detail

by Vallois [34]. He showed that the law of the local time of a uniformly in-
tegrable continuous martingale with a fixed terminal distribution is bounded
from above and below in the convex order. Vallois [34] also gave explicit con-
structions which realize the upper and lower bounds.
We derive now a complement to the study of Vallois [34]. Namely, we examine
the possible laws of the local time, when the distribution of the absolute value
of the terminal value of a martingale is fixed. We follow the same approach
as above, only starting with the martingales given in Corollary 4.1.

Proposition 5.5. Let m be a probability on R+ with
∫∞
0
xdm(x) < ∞, and

let T be a stopping time, such that |NT | ∼ m and (Nt∧T : t ≥ 0) is a uniformly
integrable martingale. Denote ρT the law of LN

T . Then the following bound is
true

E
[(
LN
T − ρ−1T (p)

)+]
≤ E
[(
LN
Tm − ρ−1Tm(p∗)

)+]
, p ∈ [0, 1], (5.12)

where Tm is given in Proposition 5.3, the inverses ρ−1· are taken left-
continuous and p∗ = m

(
m−1(p)

)
≥ p.

Remarks. It follows from (5.14) in our proof that the RHS of (5.12) is inde-
pendent of N and equal to

∫∞
m−1(p)

xdm(x).
For m with no atoms, p∗ ≡ p. In other words, for m with no atoms, we have
ρT N ρT

m

, where ρT
m

is the image of m through the dual Hardy–Littlewood
function ψm, and “N” indicates the excess wealth order, defined through

ρ1 N ρ2 ⇔ ∀p ∈ [0, 1]
∫
[ρ1

−1(p),∞)
xdρ1(x) ≤

∫
[ρ2

−1(p),∞)
xdρ2(x). (5.13)

We point out that the excess wealth order, was introduced recently by
Shaked and Shanthikumar in [28] (it is also called the right-spread or-
der, cf. Fernandez-Ponce et al. [11]) and studied in Kochar et al. [15], and
the above justifies some further investigation. Since in our case we have
ELT = ELTm =

∫∞
0
xdm(x), the excess wealth order is equivalent to the

TTT and NBUE orders and implies the convex order (see Kochar et al. [15]).

We recall that Vallois [34] showed that when the law of NT is fixed,
NT ∼ µ, then the law of LT is bounded in the convex ordering of proba-
bility measures and he gave an explicit construction of the stopping time Tµ

V

which realizes the upper bound. If we associate with m its symmetric exten-
sion on R defined via µm(x) = m(x)/2, x ≥ 0, then we have NTm ∼ µm and
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our stopping time Tm coincides with the stopping time of Vallois, Tm = Tµm

V .
However, typically, there exist many measures µ on R such that if X ∼ µ then
|X| ∼ m. In consequence, our result which states that under |NT | ∼ m, Tm

maximizes the law of LT in the excess wealth order and hence in the convex
order, complements the result of Vallois [34].
Proof. Our proof relies on the martingales given in (4.9). Assertion (5.12) is
trivial for p = 1. It holds also for p = 0, as it just means that ELN

T = ELN
Tm ,

which is true, as both quantities are equal to
∫∞
0
xdm(x). This follows from

the fact that (LN
t − |Nt| : t ≥ 0) is a local martingale and ELN

T∧Rn
↗ ELT

by monotone convergence, and E|NT∧Rn
| → E|NT | by uniform integrability

of (NT∧t : t ≥ 0), where Rn is a localizing sequence for LN − |N |.
Take p ∈ (0, 1), z = ρ−1T (p) and put g(x) = 1(x>z). Using the optional

stopping theorem for the martingale in (4.9), we obtain:

E
[(
LN
T − z

)+]
= E
[
|NT |1(LN

T
>z)

]
, hence (5.14)

E
[(
LN
T − z

)+]
≤ E
[
|NT |1(|NT |≥m−1(p))

]
= E
[
|NTm |1(ϕm(LN

Tm )≥m−1(p))

]
= E
[
|NTm |1(LN

Tm≥ρ−1
Tm (p∗))

]
= E
[(
LN
Tm − ρ−1Tm(p∗)

)+]
,

which ends the proof. ✷

5.3 Penalizations of Brownian motion with a function of its
supremum

We sketch here yet another instance, where the MM-harmonic functions play
a natural role.

Let f : R+ → R+ denote a probability density on R+, and consider the
family of probabilities (Wf

t : t ≥ 0) on Ω = C(R+,R), where Xt(ω) = ω(t),
and Fs = σ(Xu : u ≤ s), F∞ =

∨
s≥0 Fs, which are defined by:

Wf
t =

f(Xt)

EW

[
f(Xt)

] ·W, (5.15)

where W denotes the Wiener measure. Roynette, Vallois and Yor [27, 26]
show that

Wf
t

(w)−−−→
t→∞

Wf
∞, i.e.: ∀s > 0, ∀Γs ∈ Fs, W

f
t (Γs) −−−→

t→∞
Wf
∞(Γs), (5.16)

where the probabilityWf
∞ may be described as follows: for s > 0 and Γs ∈ Fs,

Wf
∞(Γs) = EW

(
1Γs

Sf
s ), where

Sf
s = 1− F (Xs) + f(Xs)(Xs −Xs) = 1−

∫ s

0

f(Xu)dXu. (5.17)
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We recognize instantly in the process Sf the max-martingale given by
(4.3). Another description ofWf

∞ is that, under this measure the process Xt

satisfies:

Xt = Xf
t −

∫ t

0

f(Xu)du
1− F (Xu) + f(Xu)(Xu −Xu)

, (5.18)

where Xf is a Wf
∞-Brownian motion, and F (x) =

∫ x
0
f(u)du. Naturally, we

see the max-martingales (4.3) intervene again. Further descriptions of Wf
∞

are given in Roynette, Vallois and Yor [26].

6 A more general viewpoint: the balayage formula

To end this paper, we propose a slightly more general viewpoint on results
mentioned sofar. In order to present the (B,B)-harmonic functions (4.2), we
relied on Itô’s formula. However, it is possible to obtain these functions (and
the corresponding martingales) as a consequence of the so-called balayage
formula (see, e.g. Revuz and Yor [24] pp. 260-264 and a series of papers in
[5]).

Let (Σt : t ≥ 0) denote a continuous semimartingale, with Σ0 = 0, and
define gt = sup{s ≤ t : Σs = 0}, dt = inf{s > t : Σs = 0}. Then, the
balayage formula is: for any locally bounded predictable process (ku : u ≥ 0),
one has:

kgtΣt =
∫ t

0

kgsdΣs, t ≥ 0. (6.1)

The intuitive meaning of this formula is that a “global multiplication” of Σ
over its excursions away from 0 coincides with the stochastic integral of the
multiplicator with respect to (dΣs). As applications, we give some examples:

• for Σt = N t − Nt and ku = f(Nu), f a locally integrable function, (6.1)
reads f(N t)(N t −Nt) =

∫ t
0
f(Ns)d(Ns −Ns), which yields (4.3);

• for Σt = Nt and ku = f(LN
u ), f a locally integrable function, we obtain

f(LN
t )Nt =

∫ t
0
f(LN

s )dNs;
• for Σt = |N |t and ku = f(LN

u ), f a locally integrable function,
we obtain f(LN

t )|Nt| =
∫ t
0
f(LN

s )d|Ns|. This in turn is equal to∫ t
0
f(LN

s )sgn(Ns)dNs − F (LN
t ) by Itô–Tanaka’s formula, and so we ob-

tain (4.9).

7 Closing remarks

Max-martingales, or max-harmonic functions, described in (4.2) and (4.3),
occur in a number of studies of either Brownian motion, or martingales. They
often lead to simple calculations, and/or formulae, mainly due to the (obvious,
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but crucial) fact that dN t is carried by {t : Nt = N t}. This has been used
again and again by a number of researchers, e.g: Hobson and co-workers, and,
of course, Albert Shiryaev and co-workers. We tried to present in this article
several such instances. More generally, this leads to a “first order stochastic
calculus”, as in Section 6, which is quite elementary in comparison with Itô’s
second order calculus.
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