Tail Distributions of Supremum and Quadratic Variation of Local Martingales

Robert LIPTSER¹ and Alexander NOVIKOV²

- ¹ Electrical Engineering-Systems, Tel Aviv University, 69978 Tel Aviv Israel, Institute of Information Transmission, Moscow, Russia. liptser@eng.tau.ac.il
- ² School of Mathematical Sciences, UTS, NSW 2007, Australia.
 prob@maths.uts.edu.au

Summary. We extend some known results concerning the tail distribution of supremum and quadratic variation of a continuous local martingale to the case of locally square integrable martingales with bounded jumps. The predictable and optional quadratic variations are involved in the main result.

Key words: tail distribution, martingale supremum, quadratic variation

Mathematics Subject Classification (2000): 60G44, 60HXX, 40E05

1 Introduction and main result

Let $M = (M_t)_{t \ge 0}$ be a local martingale starting from zero and with paths in the Skorohod space $\mathbb{D}_{[0,\infty)}$. We assume that it is defined on a stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, P)$ with usual conditions. We shall use the standard notation \mathcal{M}_{loc} for the class of local martingales and $\mathcal{M}^2_{\text{loc}} \mathcal{M}^c$, $\mathcal{M}, \mathcal{M}^2$ for its subclasses.

Recall that a adapted process X with paths in $\mathbb{D}_{[0,\infty)}$ defined on this stochastic basis belongs to the class \mathcal{D} if the family $(X_{\tau}, \tau \in \mathcal{T})$, where \mathcal{T} is the set of stopping times τ , is uniformly integrable.

Henceforth $\Delta M_t := M_t - M_{t-}, \langle M \rangle_t$ and $[M, M]_t$ denote the jumps, predictable quadratic variation and optional quadratic variation of M.

It is well-known (see, e.g., [9], [7] and references therein) that for any $M \in \mathcal{M}^2_{loc}$:

$$\langle M \rangle_{\infty} < \infty \text{ a.s.} \Rightarrow \begin{cases} [M, M]_{\infty} < \infty \text{ a.s.} \\ \lim_{t \to \infty} M_t = M_{\infty} \in \mathbb{R} \text{ a.s.} \end{cases}$$
(1.1)

There are many other remarkable relations between M_{∞} and $\langle M \rangle_{\infty}$ (e.g., Burkholder–Gundy–Davis's inequalities, law of large numbers for martingales, etc.). For $M \in \mathcal{M} \cap \mathcal{D}$ we have the Wald equality

$$EM_{\infty} = 0,$$

which plays a fundamental role in many applications of the stochastic calculus.

Recall that the condition $E\langle M \rangle_{\infty} < \infty$ implies that $M \in \mathcal{M}^2$ and notice that $\langle M \rangle_{\infty} < \infty \neq M \in \mathcal{M}$. However, the condition $\langle M \rangle_{\infty} < \infty$, implying the existence of the limit value M_{∞} (see, (1.1)), jointly with $EM_{\infty} = 0$ ensures $M \in \mathcal{M}$. One may ask which condition on $\langle M \rangle_{\infty}$ can provide the equality $EM_{\infty} = 0$? A positive answer for $M \in \mathcal{M}^c_{\text{loc}}$ with $\langle M \rangle_{\infty} < \infty$ is known from Novikov, [10], and Elworthy, Li and Yor, [2], under the additional assumption: $Ee^{\varepsilon M^+_{\infty}} < \infty$ for sufficiently small $\varepsilon > 0$,

$$\lim_{\lambda \to \infty} \lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda) = 0.$$

More precisely, the following statement is valid.

Theorem. ([10]) Let $M \in \mathcal{M}_{loc}^c$ and $\langle M \rangle_{\infty} < \infty$. Assume $\sup_{t>0} Ee^{\varepsilon M_t} < \infty$ for some sufficiently small $\varepsilon > 0$. Then:

$$0 \le EM_{\infty} \le EM_{\infty}^{+} < \infty,$$
$$\lim_{\lambda \to \infty} \lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda) = \sqrt{\frac{2}{\pi}} EM_{\infty}.$$

For related topics see Azéma, Gundy and Yor [1], Gundy [5], Galtchouk and Novikov [6], Takaoka, [14], Peskir and Shiryaev [13], and Vondraček [15]).

The aim of this paper is to extend the statement of this Theorem for local martingales with bounded jumps.

Theorem 1.1. Let $M \in \mathcal{M}^2_{\text{loc}}$, $\langle M \rangle_{\infty} < \infty$ and $M^+ \in \mathcal{D}$. Then (i) $M_{\infty} = \lim_{t \to \infty} M_t$ possesses the following properties:

 $0 \le EM_{\infty} \le EM_{\infty}^+ < \infty;$

(ii) the uniform integrability of $(|\triangle M_t|)_{t>0}$ and (i) imply

$$\lim_{\lambda \to \infty} \lambda P \Big(\sup_{t \ge 0} M_t^- > \lambda \Big) = E M_\infty;$$

(iii) $|\triangle M| \leq K$ and $Ee^{\varepsilon M_{\infty}} < \infty$ for some K > 0 and sufficiently small $\varepsilon > 0$ imply

$$\lim_{\lambda \to \infty} \lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda) = \lim_{\lambda \to \infty} \lambda P([M, M]_{\infty}^{1/2} > \lambda) = \sqrt{\frac{2}{\pi}} E M_{\infty}.$$

For $M^+ \in \mathcal{D}$, Theorem 1.1 gives necessary and sufficient conditions for $M \in \mathcal{M}$ expressed in terms of $\sup_{t\geq 0} M_t^-$, $\langle M \rangle_{\infty}$, and $[M, M]_{\infty}$. Concerning an effectiveness of these conditions see Jacod and Shiryaev [8].

Corollary 1.1. Under the assumptions of Theorem 1.1, the process $M \in \mathcal{M}$ iff any of the following conditions hold:

$$\begin{split} &\lim_{\lambda\to\infty}\lambda P\Big(\sup_{t\geq 0}M_t^->\lambda\Big)=0,\\ &\lim_{\lambda\to\infty}\lambda P\Big(\langle M\rangle_\infty^{1/2}>\lambda\Big)=0,\\ &\lim_{\lambda\to\infty}\lambda P\Big([M,M]_\infty^{1/2}>\lambda\Big)=0. \end{split}$$

The proofs of statements (i) and (ii) of Theorem 1.1 are obvious and might even be known. The proof of (iii) exploits a combination of techniques:

"Stochastic exponential + Tauberian theorem"

used by Novikov in [11] and [12].

The necessary information on the stochastic exponential is gathered in Section 2. The proof of Theorem 1.1 is given in Section 3. We mention also a result, formulating in Theorem 3.1 (Section 3), presenting conditions alternative to $|\Delta M| \leq K$.

2 Stochastic exponential

We start with recalling necessary notions and objects (for details see, e.g., [9] or [7]).

For any $M \in \mathcal{M}^2_{\text{loc}}$ we have the decomposition $M = M^c + M^d$ where $M^c, M^d \in \mathcal{M}^2_{\text{loc}}$ are continuous and purely discontinuous martingales, respectively. Since $\langle M \rangle = \langle M^c \rangle + \langle M^d \rangle$, the assumption $\langle M \rangle_{\infty} < \infty$ implies $\langle M^c \rangle_{\infty} < \infty, \langle M^d \rangle_{\infty} < \infty$. The jump process $\Delta M \equiv \Delta M^d$ generates the integer-valued measure $\mu = \mu(dt, dz)$ with $\mu((0, t] \times A) = \sum_{s \leq t} I(\Delta M_s \in A)$.

We denote by $\nu = \nu(dt, dz)$ the compensator of μ . The condition $|\Delta M| \leq K$ guarantees the existence of a version ν such that $\nu(\mathbb{R}_+ \times \{|z| > K\}) = 0$. This version of ν is used in the sequel.

The purely discontinuous martingale M^d can be represented as the Itô integral with respect to $\mu - \nu$:

$$M_t^d = \int_0^t \int_{|z| \le K} z \big(\mu(ds, dz) - \nu(ds, dz) \big).$$

Recall that $\int_{|z| \leq K} z\nu(\{t\}, dz) = 0$ and, so that,

$$\langle M^d \rangle_t = \int_0^t \int_{|z| \le K} z^2 \nu(ds, dz) < \infty, \ t > 0.$$

Hence, $\langle M \rangle_{\infty} < \infty$ implies $\int_0^{\infty} \int_{|z| \le K} z^2 \nu(ds, dz) < \infty$ and the existence of the cumulant process (for $\lambda \in \mathbb{R}$)

$$G_t(\lambda) = \int_0^t \int_{|z| \le K} \left(e^{\lambda z} - 1 - \lambda z \right) \nu(ds, dz),$$
$$\triangle G_t(\lambda) = \int_{|z| \le K} \left(e^{\lambda z} - 1 - \lambda z \right) \nu(\{t\}, dz).$$

We emphasize that $G_t(\lambda)$ increases in $t \uparrow$ to $G_{\infty}(\lambda) := \lim_{t \to \infty} G_t(\lambda) < \infty$ and $\Delta G_t(\lambda) \ge 0$.

The process

$$\mathcal{E}_t(\lambda) = \exp\left(\frac{\lambda^2}{2} \langle M^c \rangle_t + G_t(\lambda)\right) \prod_{0 < s \le t} \left(1 + \triangle G_s(\lambda)\right) e^{-\triangle G_s(\lambda)}$$

is called "stochastic exponential" for the martingale M. Since $\Delta G(\lambda) \geq 0$, the stochastic exponential is nonnegative. A remarkable property of $\mathcal{E}_t(\lambda)$ is that the process

$$\mathfrak{z}_t(\lambda) = e^{\lambda M_t - \log \mathcal{E}_t(\lambda)} \tag{2.1}$$

is a positive local martingale with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$. This property is readily verified with the help of Itô's formula applied to (2.1):

$$d\mathfrak{z}_t(\lambda) = \lambda \mathfrak{z}_t(\lambda) dM_t^c + \int_{|z| \le K} \mathfrak{z}_{t-}(\lambda) \frac{(e^{\lambda z} - 1)}{1 + \triangle G_t(\lambda)} (\mu - \nu) (dt, dz).$$

As any nonnegative local martingale, $\mathfrak{z}_t(\lambda)$ is also a supermartingale (see, e.g., Problem 1.4.4 in Liptser and Shiryaev [9]) and, therefore, has a finite limit at infinity

$$\mathfrak{z}_{\infty}(\lambda) := \lim_{t \to \infty} \mathfrak{z}_t(\lambda) \in \mathbb{R}_+$$

and $E_{\mathfrak{z}_{\tau}}(\lambda) \leq 1$ for any stopping time τ . In particular, $E_{\mathfrak{z}_{\infty}} \leq 1$.

Proposition 2.1. Under the conditions from statement (iii) of Theorem 1.1 we have:

- 1) $E\mathfrak{z}_{\infty}(\lambda) = 1.$
- 2) $\mathcal{E}_{\infty}(\lambda) = \lim_{t \to \infty} \mathcal{E}_t(\lambda) \in (0, \infty).$

Proof. 1) Let (τ_n) be a sequence of stopping times increasing to infinity and such that $(M_{t\wedge\tau_n})_{t\geq 0}$ and $(\mathfrak{z}_{t\wedge\tau_n}(\lambda))_{t\geq 0}$ are uniformly integrable martingales for any n. Then $E\mathfrak{z}_{\tau_n}(\lambda) \equiv 1$. By Jensen's inequality,

$$E(e^{\lambda M_{\infty}^{+}}|\mathcal{F}_{\tau_{n}}) \geq e^{\lambda E(M_{\infty}^{+}|\mathcal{F}_{\tau_{n}})} \geq e^{\lambda M_{\tau_{n}}^{+}} \geq \mathfrak{z}_{\tau_{n}}(\lambda).$$

In other words, the martingale $(\mathfrak{z}_{\tau_n}(\lambda), \mathfrak{F}_{\tau_n})_{n\geq 1}$ is majorized by the uniformly integrable martingale $(E(e^{\lambda M_{\infty}^+}|\mathfrak{F}_{\tau_n}), \mathfrak{F}_{\tau_n})_{n\geq 1}$, that is, $(\mathfrak{z}_{\tau_n}(\lambda), \mathfrak{F}_{\tau_n})_{n\geq 1}$ is the uniformly martingale itself. Consequently, $1 = \lim_{n\to\infty} E\mathfrak{z}_{\tau_n}(\lambda) = E\mathfrak{z}_{\infty}(\lambda)$.

2) Notice that $|M_{\infty}| < \infty$, $\mathcal{E}_{\infty}(\lambda) < \infty$ and $\mathfrak{z}_{\infty}(\lambda) = e^{\lambda M_{\infty} - \log \mathcal{E}_{\infty}(\lambda)}$ imply that

$$1 \ge EI(\mathcal{E}_{\infty}(\lambda) = 0)\mathfrak{z}_{\infty}(\lambda) \ge NP(\mathcal{E}_{\infty}(\lambda) = 0)$$

for any N > 0.

Hence, $P(\mathcal{E}_{\infty}(\lambda) = 0) = 0.$

3 The proof of Theorem 1.1

3.1 The proof of (i) and (ii)

(i) Let $(\tau_n)_{n\geq 1}$ be an increasing sequence of stopping times with tending to infinity and such that $(M_{\tau_n})_{n\geq 1} \in \mathcal{M}$. Therefore, $EM_{\tau_n}^- - EM_{\tau_n}^+ = 0, n \geq 1$. By $M^+ \in \mathcal{D}$, we have $\lim_{n\to\infty} EM_{\tau_n}^+ = EM_{\infty}^+ < \infty$. Further, by the Fatou lemma $\underline{\lim}_{n\to\infty} EM_{\tau_n}^- \geq EM_{\infty}^-$, so that $EM_{\infty}^+ - EM_{\infty}^- \geq 0$. Hence, $EM_{\infty} = (EM_{\infty}^+ - EM_{\infty}^-) \geq 0$.

(ii) Notice that $\{\sup_{t>0} M_t^- > \lambda\} = \{S_\lambda < \infty\}$, where

$$S_{\lambda} = \inf\{t : M_t^- \ge \lambda\}, \quad \inf\{\emptyset\} = \infty.$$

Since $(|\Delta M_t|)_{t>0}$ is uniformly integrable process and $M^+ \in \mathcal{D}$, we have $(M_{t \wedge S_{\lambda}})_{t\geq 0} \in \mathcal{M}$, that is,

$$0 = EM_{S_{\lambda}} = EM_{\infty}I_{\{S_{\lambda}=\infty\}} + EM_{S_{\lambda}}I_{\{S_{\lambda}<\infty\}}.$$

We derive the desired statement from the relations

$$\lim_{\lambda \to \infty} E M_{\infty} I_{\{S_{\lambda} = \infty\}} = E M_{\infty},$$

$$\lim_{\lambda \to \infty} E M_{S_{\lambda}} I_{\{S_{\lambda} < \infty\}} = -\lambda P \Big(\sup_{t \ge 0} M_t^- > \lambda \Big).$$
(3.1)

By (i), $EM_{\infty}^{-} \leq EM_{\infty}^{+} < \infty$. Consequently, $M_{\infty}^{-} < \infty$ and, therefore, we have $\lim_{\lambda \to \infty} S_{\lambda} = \infty$. The first part of (3.1) is implied by the inequality

$$\left| EM_{\infty}I_{\{S_{\lambda}=\infty\}} - EM_{\infty} \right| \le E|M_{\infty}|I_{\{S_{\lambda}<\infty\}}$$

and the Lebesgue dominated theorem. The second part in (3.1) follows from $M_{S_{\lambda}}I_{\{S_{\lambda}<\infty\}} = -\lambda I_{\{S_{\lambda}<\infty\}} + (M_{S_{\lambda}} + \lambda)I_{\{S_{\lambda}<\infty\}}$ since

$$E|M_{S_{\lambda}} + \lambda|I_{\{S_{\lambda} < \infty\}} \le E|\triangle M_{S_{\lambda}}|I_{\{S_{\lambda} < \infty\}} \le KP(S_{\lambda} < \infty) \xrightarrow[\lambda \to \infty]{} 0.$$

3.2 Proof of (iii)

Auxiliary lemmas

Lemma 3.1. Under assumptions from the statement (iii) of Theorem 1.1,

$$\lim_{\lambda \downarrow 0} E \frac{1}{\lambda} \left(1 - e^{-\log \mathcal{E}_{\infty}(\lambda)} \right) = E M_{\infty}.$$

Proof. With $\lambda \leq \varepsilon$ for ε involved in (iii), by Proposition 2.1 we have the equality $E_{\mathfrak{z}_{\infty}}(\lambda) = 1$. Hence,

$$E\frac{1}{\lambda}\left(1-e^{-\log\mathcal{E}_{\infty}(\lambda)}\right) = E\frac{1}{\lambda}\left(\mathfrak{z}_{\infty}(\lambda)-e^{-\log\mathcal{E}_{\infty}(\lambda)}\right)$$
$$= E\frac{1}{\lambda}\left(e^{\lambda M_{\infty}}-1\right)e^{-\log\mathcal{E}_{\infty}(\lambda)}.$$

The required statement follows from the relations

$$\lim_{\lambda \downarrow 0} \frac{1}{\lambda} e^{-\log \mathcal{E}_{\infty}(\lambda)} (e^{\lambda M_{\infty}} - 1) = M_{\infty},$$
$$\frac{1}{\lambda} e^{-\log \mathcal{E}_{\infty}(\lambda)} |e^{\lambda M_{\infty}} - 1| \le e^{\varepsilon M_{\infty}}$$

and $Ee^{\varepsilon M_{\infty}} < \infty$ by the Lebesgue dominated theorem.

Lemma 3.2. Under assumptions from the statement (iii) of Theorem 1.1,

$$\lim_{\lambda \downarrow 0} E \frac{1}{\lambda} \left(1 - e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \right) = E M_{\infty}.$$

Proof. According to Lemma 3.1, it suffices to show that

$$\lim_{\lambda \downarrow 0} E \frac{1}{\lambda} \left| e^{-\log \mathcal{E}_{\infty}(\lambda)} - e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \right| = 0.$$
(3.2)

The verification of (3.2) uses the following estimates: for some C > 0 and sufficiently small $\lambda > 0$,

$$0 < \left[1 - C\lambda\right] \frac{\lambda^2}{2} \langle M \rangle_{\infty} \le \log \mathcal{E}_{\infty}(\lambda) \le \left[1 + C\lambda\right] \frac{\lambda^2}{2} \langle M \rangle_{\infty}.$$
 (3.3)

The estimate from above is implied by $\log \mathcal{E}_{\infty}(\lambda) \leq \frac{\lambda^2}{2} \langle M^c \rangle_{\infty} + G_{\infty}(\lambda)$ and the property of $\nu(dt, dz)$ to be supported, in z, on [-K, K].

The estimate from below is determined in the following way. Denote by $\Phi(\lambda, K) = 1 - \lambda K e^{\lambda K}$ and

$$G_{\infty}^{c}(\lambda) = \int_{0}^{\infty} \int_{|z| \le K} \left(e^{\lambda z} - 1 - \lambda z \right) \nu^{c}(dt, dz),$$

where $\nu^{c}(dt, dz) := \nu(dt, dz) - \nu(\{t\}, dz)$. Write

$$\log \mathcal{E}_{\infty}(\lambda) = \frac{\lambda^2}{2} \langle M^c \rangle_{\infty} + G^c_{\infty}(\lambda) + \sum_{t>0} \log\left(1 + \Delta G_t(\lambda)\right)$$
$$\geq \frac{\lambda^2}{2} \langle M^c \rangle_{\infty} + \Phi(\lambda, K) \int_0^\infty \int_{|z| \le K} \frac{\lambda^2}{2} z^2 \nu^c(dt, dz) \qquad (3.4)$$
$$+ \sum_{t>0} \log\left(1 + \Phi(\lambda, K) \int_{|z| \le K} \frac{\lambda^2}{2} z^2 \nu(\{t\}, dz)\right).$$

We choose λ so small to keep $1 - \lambda K e^{\lambda K} > 0$ and estimate from below the " $\sum_{t>0} \log$ " in the last line of (3.4) by applying $\log(1+x) \ge x - \frac{1}{2}x^2$, $x \ge 0$. This gives the lower bound

$$\begin{split} \sum_{t>0} \log\left(1+\varPhi(\lambda,K)\int_{|z|\leq K}\frac{\lambda^2}{2}z^2\nu(\{t\},dz)\right) \\ \geq \varPhi(\lambda,K)\int_{|z|\leq K}\frac{\lambda^2}{2}z^2\nu(\{t\},dz) - \frac{1}{2}\varPhi^2(\lambda,K)\left(\int_{|z|\leq K}\frac{\lambda^2}{2}z^2\nu(\{t\},dz)\right)^2. \end{split}$$

Taking into account $\nu(\{t\}, |z| \leq K) \leq 1,$ by the Cauchy–Schwarz inequality we find the upper bound

$$\left(\int_{|z| \le K} \frac{\lambda^2}{2} z^2 \nu(\{t\}, dz)\right)^2 \le \frac{\lambda^4}{4} \int_{|z| \le K} z^4 \nu(\{t\}, dz) \le \frac{\lambda^4 K^2}{4} \int_{|z| \le K} z^2 \nu(\{t\}, dz)$$

providing the inequality

$$\sum_{t>0} \log\left(1 + \Phi(\lambda, K) \int_{|z| \le K} \frac{\lambda^2}{2} z^2 \nu(\{t\}, dz)\right)$$
$$\geq \left(\Phi(\lambda, K) - \frac{\lambda^2}{8} K^2 \Phi^2(\lambda, K)\right) \int_{|z| \le K} \frac{\lambda^2}{2} z^2 \nu(\{t\}, dz).$$

We choose λ so small to keep

$$\Phi(\lambda, K) - \frac{\lambda^2}{8} K^2 \Phi^2(\lambda, K) \ge 1 - \lambda c > 0$$

for some constant c > 0.

Now, we may choose a positive constant C such that (3.3) is valid for both the upper and lower bounds.

From (3.3), we derive that

$$\frac{1}{\lambda} \left| e^{-\log \mathcal{E}_{\infty}(\lambda)} - e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \right| \le C \frac{\lambda^2}{2} \langle M \rangle_{\infty} e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \xrightarrow[\lambda \to 0]{} 0.$$

and, due to $xe^{-x} \leq e^{-1}$, it remains to apply the Lebesgue dominated theorem.

Lemma 3.3. Under assumptions from the statement (iii) of Theorem 1.1,

$$\lim_{\lambda \to \infty} \lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda) = \boldsymbol{\vartheta} \Leftrightarrow \lim_{\lambda \to \infty} \lambda P([M, M]_{\infty}^{1/2} > \lambda) = \boldsymbol{\vartheta}.$$

Proof. Obviously, the desired result holds true if

$$\overline{\lim_{\lambda \to 0}} \frac{P([M, M]_{\infty}^{1/2} > \lambda)}{P(\langle M \rangle_{\infty}^{1/2} > \lambda)} \le 1,$$

$$\underline{\lim_{\lambda \to 0}} \frac{P([M, M]_{\infty}^{1/2} > \lambda)}{P(\langle M \rangle_{\infty}^{1/2} > \lambda)} \ge 1.$$
(3.5)

Denote $L = [M, M] - \langle M \rangle$ and notice that $[M, M]_{\infty} \leq \langle M \rangle_{\infty} + \sup_{t \geq 0} |L_t|$. By an obvious inequality $(c+d)^{1/2} \leq c^{1/2} + d^{1/2}$, we obtain that

$$P([M,M]_{\infty}^{1/2} > \lambda) \leq P([\langle M \rangle_{\infty} + \sup_{t \ge 0} |L_t|]^{1/2} > \lambda)$$

$$\leq P(\langle M \rangle_{\infty}^{1/2} + \sup_{t \ge 0} |L_t|^{1/2} > \lambda)$$

$$\leq P(\langle M \rangle_{\infty}^{1/2} > (1-a)\lambda) + P(\sup_{t \ge 0} |L_t| > a\lambda), \ a \in (0,1).$$

With $\lambda_a = (1 - a)\lambda$, the resulting bound can be rewritten as:

$$\lambda P\left([M,M]_{\infty}^{1/2} > \lambda\right) \le (1-a)^{-1}\lambda_a P\left(\langle M \rangle_{\infty}^{1/2} > \lambda_a\right) + \lambda P\left(\sup_{t \ge 0} |L_t|^{1/2} > a\lambda\right).$$
(3.6)

Now, we evaluate from from above $P(\sup_{t\geq 0} |L_t|^{1/2} > a\lambda)$. A helpful tool here is the inequality: for some C > 0, any stopping time τ and K being a bound for $|\Delta M|$,

$$E \sup_{t \le \tau} |L_t|^2 \le CK^2 E \langle M \rangle_{\tau}.$$
(3.7)

In order to establish (3.7), we use the following facts:

_

- L is the purely discontinuous local martingale with

$$[L,L]_t = \sum_{s \le t} (\triangle L_s)^2 = \sum_{s \le t} \left((\triangle M_s)^2 - \triangle \langle M \rangle_s \right)^2$$
$$= \sum_{s \le t} \left(\int_{|z| \le K} z^2 (\mu(\{s\}, dz) - \nu(\{s\}, dz)) \right)^2,$$
$$\langle L \rangle_t = \int_0^t \int_{|z| \le K} z^4 (\nu(ds, dz) - \sum_{s \le t} \left(\int_{|z| \le K} z^2 \nu(\{s\}, dz) \right)^2,$$

Tail Distributions of Supremum and Quadratic Variation 429

$$- \langle L \rangle_t \leq \int_0^t \int_{|z| \leq K} z^4 \nu(ds, dz) \leq K^2 \int_0^t \int_{|z| \leq K} z^2 \nu(\{ds, dz\}) \leq K^2 \langle M \rangle_t,$$

$$- K^2 \langle M \rangle - \langle L \rangle$$
 is the increasing process.

Now, we refer to the Burkholder–Gundy inequality (see, e.g., Theorem 1.9.7 in [9]): for any stopping time τ ,

$$E \sup_{t \le \tau} |L_t|^2 \le CE[L, L]_{\tau}.$$

Due to the relations $E[L, L]_{\tau} = E \langle L \rangle_{\tau}$ and $K^2 \langle M \rangle_{\tau} \geq \langle L \rangle_{\tau}$ (recall that $K^2 \langle M \rangle \geq \langle L \rangle$), we have $E \langle L \rangle_{\tau} \leq K^2 E \langle M \rangle_{\tau}$, that is, (3.7) is valid.

By (3.7) and the fact that $\langle M \rangle$ is a predictable process, the Lenglart–Rebolledo inequality (see, e.g., Theorem 1.9.3 in [9]) is applicable (notice that $\{\sup_{t\geq 0} |L_t|^{1/2} > a\lambda\} \equiv \{\sup_{t\geq 0} |L_t| > a^2\lambda^2\}$), so that,

$$P\Big(\sup_{t\geq 0}|L_t|^{1/2} > a\lambda\Big) \leq \frac{\lambda^{5/2}}{a^4\lambda^4} + P\big(CK^2\langle M\rangle_{\infty} > \lambda^{5/2}\Big)$$
$$= \frac{\lambda^{5/2}}{a^4\lambda^4} + P\Big(\langle M\rangle_{\infty}^{1/2} > \lambda^{5/4}/(C^{1/2}K)\Big).$$

Hence, with $r = 1/(C^{1/2}K)$ and $\lambda_r = r\lambda^{5/4}$,

$$\lambda P\Big(\sup_{t \le T_x} |L_t|^{1/2} > a\lambda\Big) \le \frac{1}{a^4 \lambda^{1/2}} + \frac{1}{r\lambda^{1/4}} \lambda_r P\Big(\langle M \rangle_{\infty}^{1/2} > \lambda_r\Big).$$
(3.8)

Now, (3.6) and (3.8) imply the inequality

$$\lambda P\Big([M,M]_{\infty}^{1/2} > \lambda\Big)$$

$$\leq (1-a)^{-1}\lambda_a P\big(\langle M \rangle_{\infty}^{1/2} > \lambda_a\Big) + \frac{1}{a^4 \lambda^{1/2}} + \frac{r}{\lambda^{1/4}} \lambda_r P\big(\langle M \rangle_{\infty}^{1/2} > \lambda_r\big).$$

If $\boldsymbol{\vartheta} > 0$, by

$$\frac{P([M,M]_{\infty}^{1/2} > \lambda)}{P(\langle M \rangle_{\infty}^{1/2} > \lambda)} \le \frac{(1-a)^{-1}\lambda_a P(\langle M \rangle_{\infty}^{1/2} > \lambda_a)}{\lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda)} + \frac{\frac{1}{a^4\lambda^{1/2}} + \frac{r}{\lambda^{1/4}}\lambda_r P(\langle M \rangle_{\infty}^{1/2} > \lambda_r)}{\lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda)} \xrightarrow{1}{\lambda \to \infty} \frac{1}{1-a} \xrightarrow{a \to 0} 1$$

and the first part from (3.5) is valid. The second part from (3.5) is established similarly and we give only a sketch of the proof. The use of the bound

$$P(\langle M \rangle^{1/2} > \lambda) \le P([M, M]^{1/2} > (1 - a)\lambda) + P(\sup_{t \ge 0} |L_t| > a\lambda), \ a \in (0, 1),$$

implies that

$$\frac{P([M,M])_{\infty}^{1/2} > (1-a)\lambda)}{P(\langle M \rangle_{\infty}^{1/2} > \lambda)} \ge 1 - \frac{P(\sup_{t \ge 0} |L_t| > a\lambda)}{P(\langle M \rangle_{\infty}^{1/2} > \lambda)}$$

and we get the result.

If $\boldsymbol{\vartheta} = 0$, we replace M by $M + \delta M'$, where $\delta > 0$ and $M' \in \mathcal{M}^c$ with $\langle M' \rangle_{\infty} < \infty$ possessing $\lim_{\lambda \to \infty} \lambda P(\langle M' \rangle_{\infty}^{1/2} > \lambda) = \boldsymbol{\vartheta}' > 0$, is independent of M^c . Therefore, by $\langle M + \delta M' \rangle = \langle M \rangle + \delta^2 \langle M' \rangle$, we have

$$\lim_{\lambda \to \infty} \lambda P(\langle M + \delta M' \rangle_{\infty}^{1/2} > \lambda) = \delta^2 \vartheta' > 0.$$

Hence, by using the result already proved, it holds

$$\lim_{\lambda \to \infty} \lambda P(\langle M + \delta M' \rangle_{\infty}^{1/2} > \lambda) = \delta^{2} \vartheta'$$

$$\Leftrightarrow \lim_{\lambda \to \infty} \lambda P([M + \delta M', M + \delta M']_{\infty}^{1/2} > \lambda) = \delta^{2} \vartheta'$$

and, by the arbitrariness of δ ,

$$\lim_{\lambda \to \infty} \lambda P(\langle M > \lambda) = 0 \Leftrightarrow \lim_{\lambda \to \infty} \lambda P([M, M]_{\infty}^{1/2} > \lambda) = 0.$$

Final part of the proof for (iii)

We refer to the Tauberian theorem.

Theorem. (Feller, [4], XIII.5, Example (c)) Let X be a nonnegative random variable such that $\lim_{\lambda \downarrow 0} \frac{1}{\lambda} \left(1 - Ee^{-\frac{\lambda^2}{2}X} \right) \in \mathbb{R}.$

Then,

$$\sqrt{\frac{2}{\pi}} \lim_{\lambda \downarrow 0} \frac{1}{\lambda} \left(1 - Ee^{-\frac{\lambda^2}{2}X} \right) = \lim_{\lambda \to \infty} \lambda P(X^{1/2} > \lambda).$$

Letting $X = \langle M \rangle_{\infty}$, we find that

$$\sqrt{\frac{2}{\pi}\lim_{\lambda\downarrow 0}\frac{1}{\lambda}\left(1-Ee^{-\frac{\lambda^2}{2}\langle M\rangle_{\infty}}\right)} = \lim_{\lambda\to\infty}\lambda P(\langle M\rangle_{\infty}^{1/2} > \lambda),$$

while, by Lemmas 3.1, 3.2 and 3.3,

$$\lim_{\lambda \downarrow 0} \frac{1}{\lambda} \left(1 - E e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \right) = \sqrt{\frac{2}{\pi}} E M_{\infty},$$
$$\lim_{\lambda \to \infty} \lambda P \left([M, M]_{\infty}^{1/2} > \lambda \right) = \sqrt{\frac{2}{\pi}} E M_{\infty}.$$

3.3 Supplement

The condition $|\Delta M| \leq K$ might be too restrictive to be valid for serving some examples. Following [10], we show that this condition can be replaced by one seems to be more suitable for applications.

Theorem 3.1. Assume conditions for the statement (iii) of Theorem 1.1 are valid except the boundedness $|\Delta M| \leq K$ replaced by the two inequalities

$$\frac{\lambda^2}{2} \langle M \rangle_{\infty} (1 - |\lambda|\zeta_1)^+ \le \log \mathcal{E}_{\infty}(\lambda) \le \frac{\lambda^2}{2} \langle M \rangle_{\infty} (1 + |\lambda|\zeta_2)$$
(3.9)

with sufficiently small $\lambda > 0$ and nonnegative integrable random variables ζ_1, ζ_2 .

Then

$$\lim_{\lambda \to \infty} \lambda P(\langle M \rangle_{\infty}^{1/2} > \lambda) = \sqrt{\frac{2}{\pi}} E M_{\infty}.$$

Proof. Since (3.2) has to be verified only, by (3.9) we have

$$\begin{aligned} \frac{1}{\lambda} \Big| e^{-\log \mathcal{E}_{\infty}(\lambda)} - e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \Big| &\leq \left(\zeta_2 \vee \frac{|1 - (1 - \zeta_1 \lambda)^+|}{\lambda} \right) \frac{\lambda^2}{2} \langle M \rangle_{\infty} e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}} \\ &\leq \left(\zeta_2 \vee \zeta_1 \right) \frac{\lambda^2}{2} \langle M \rangle_{\infty} e^{-\frac{\lambda^2}{2} \langle M \rangle_{\infty}}. \end{aligned}$$

The right-hand side of this inequality converges to zero, as $\lambda \to 0$, and is bounded by $e^{-1}(\zeta_2 \vee \zeta_1)$. So, (3.2) holds by the Lebesgue dominated theorem.

Acknowledgements

The authors gratefully acknowledge their colleagues J. Stoyanov, E. Shinjikashvili and anonymous reviewers for comments improving presentation of the material.

References

- Azema, J., Gundy, R.F., Yor, M.: Sur l'intégrabilité uniforme des martingales continues. Séminaire de Probabilitès. XIV, LNM 784, 249–304, Springer (1980)
- Elworthy, K.D., Li, X.M., Yor, M.: On the tails of the supremum and the quadratic variation of strictly local martingales. Sèminaire de Probabilitès XXXI, Lecture Notes in Math. 1655, 113–125, Springer (1997)
- Ethier, S.N.: A gambling system and a Markov chain. Ann.Appl.Probab. 6, no.4, 1248–1259 (1996)
- Feller, W.: An Introduction to Probability and its Applications. 2, 2nd ed. Wiley (1971)

- 432 R. Liptser and A. Novikov
- Gundy, R. F.: On a theorem of F. and M. Riesz and an equation of A. Wald. Indiana Univ. Math. J. 30, no. 4, 589–605
- Galchouk, L. and Novikov, A.: On Wald's equation. Discrete time case. Séminaire de Probabilités. XXXI, Lecture Notes in Math., 1655, 126–135, Springer, Berlin (1997)
- Jacod J., Shiryaev A.N.: Limit Theorems for Stochastic Processes. 2nd ed. Springer-Verlag, Berlin (2003)
- 8. Jacod J., Shiryaev A.N.: Local martingales and the fundamental asset pricing theorrems in the discrete time case. Finance and Stochastics. 2, 255–273 (1998)
- Liptser, R.Sh., Shiryayev, A.N.: Theory of Martingales. Kluwer Acad. Publ. Dordrecht (1989)
- Novikov, A.: Martingales, Tauberian theorem and gambling. *Theory Prob.*, Appl. 41, no. 4, 716–729 (1996)
- Novikov, A.A.: Martingale appproach to first passage problems of nonlinear boundaries. *Proc. Steklov Inst. Math.*, v. **158**, 130–152 (1981)
- Novikov, A.: On the time of crossing a one-sided nonlinear boundary by sums of independent random variables. Theory Prob., Appl. 27, no. 4, 643–656 (1982)
- Peskir, G., Shiryaev, A.N.: On the Brownian first-passage time over a one-sided stochastic boundary. Theory Probab. Appl. 42 (1998), no. 3, 444–453 (1997)
- Takaoka, K.: Some remark on the uniform integrability of continuous martingales. Séminaire de Probabilités. XXXIII, Lecture Notes in Math., 1709., 327– 333, Springer, Berlin (1999)
- Vondraček, Z.: Asymptotics of first passage time over a one-sided stochastic boundary. J. Theoret. Prob. 13, no.1, 171–173 (1997)