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1 Introduction and main result

Let M = (Mt)t≥0 be a local martingale starting from zero and with paths in
the Skorohod space D[0,∞). We assume that it is defined on a stochastic basis
(Ω,F, (Ft)t≥0, P ) with usual conditions. We shall use the standard notation
Mloc for the class of local martingales and M2

loc Mc, M, M2 for its subclasses.
Recall that a adapted process X with paths in D[0,∞) defined on this

stochastic basis belongs to the class D if the family (Xτ , τ ∈ T ), where T is
the set of stopping times τ , is uniformly integrable.

Henceforth 4Mt := Mt − Mt−, 〈M〉t and [M,M ]t denote the jumps,
predictable quadratic variation and optional quadratic variation of M .

It is well-known (see, e.g., [9], [7] and references therein) that for any
M ∈ M2

loc:

〈M〉∞ <∞ a.s.⇒
{
[M,M ]∞ <∞ a.s.
lim
t→∞

Mt =M∞ ∈ R a.s.
(1.1)
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There are many other remarkable relations between M∞ and 〈M〉∞ (e.g.,
Burkholder–Gundy–Davis’s inequalities, law of large numbers for martingales,
etc.). For M ∈ M ∩D we have the Wald equality

EM∞ = 0,

which plays a fundamental role in many applications of the stochastic calculus.
Recall that the condition E〈M〉∞ < ∞ implies that M ∈ M2 and notice

that 〈M〉∞ <∞ �⇒M ∈ M. However, the condition 〈M〉∞ <∞, implying the
existence of the limit value M∞ (see, (1.1)), jointly with EM∞ = 0 ensures
M ∈ M. One may ask which condition on 〈M〉∞ can provide the equality
EM∞ = 0? A positive answer for M ∈ Mc

loc with 〈M〉∞ <∞ is known from
Novikov, [10], and Elworthy, Li and Yor, [2], under the additional assumption:
EeεM

+
∞ <∞ for sufficiently small ε > 0,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= 0.

More precisely, the following statement is valid.

Theorem. ([10]) Let M ∈ Mc
loc and 〈M〉∞ <∞. Assume supt>0EeεMt <∞

for some sufficiently small ε > 0. Then:

0 ≤ EM∞ ≤ EM+
∞ <∞,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
=

√
2
π
EM∞.

For related topics see Azéma, Gundy and Yor [1], Gundy [5], Galtchouk
and Novikov [6], Takaoka, [14], Peskir and Shiryaev [13], and Vondrac̆ek [15]).

The aim of this paper is to extend the statement of this Theorem for local
martingales with bounded jumps.

Theorem 1.1. Let M ∈ M2
loc, 〈M〉∞ <∞ and M+ ∈ D. Then

(i) M∞ = limt→∞Mt possesses the following properties:

0 ≤ EM∞ ≤ EM+
∞ <∞;

(ii) the uniform integrability of (|4Mt|)t>0 and (i) imply

lim
λ→∞

λP
(
sup
t≥0

M−t > λ
)
= EM∞;

(iii) |4M | ≤ K and EeεM∞ < ∞ for some K > 0 and sufficiently small
ε > 0 imply

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= lim

λ→∞
λP
(
[M,M ]1/2∞ > λ

)
=

√
2
π
EM∞.



Tail Distributions of Supremum and Quadratic Variation 423

For M+ ∈ D, Theorem 1.1 gives necessary and sufficient conditions for
M ∈ M expressed in terms of supt≥0M

−
t , 〈M〉∞, and [M,M ]∞. Concerning

an effectiveness of these conditions see Jacod and Shiryaev [8].

Corollary 1.1. Under the assumptions of Theorem 1.1, the process M ∈ M

iff any of the following conditions hold:

lim
λ→∞

λP
(
sup
t≥0

M−t > λ
)
= 0,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= 0,

lim
λ→∞

λP
(
[M,M ]1/2∞ > λ

)
= 0.

The proofs of statements (i) and (ii) of Theorem 1.1 are obvious and
might even be known. The proof of (iii) exploits a combination of techniques:

“Stochastic exponential + Tauberian theorem”

used by Novikov in [11] and [12].
The necessary information on the stochastic exponential is gathered in

Section 2. The proof of Theorem 1.1 is given in Section 3. We mention also a
result, formulating in Theorem 3.1 (Section 3), presenting conditions alterna-
tive to |4M | ≤ K.

2 Stochastic exponential

We start with recalling necessary notions and objects (for details see, e.g., [9]
or [7]).

For any M ∈ M2
loc we have the decomposition M = M c + Md where

M c,Md ∈ M2
loc are continuous and purely discontinuous martingales, re-

spectively. Since 〈M〉 = 〈M c〉 + 〈Md〉, the assumption 〈M〉∞ < ∞ implies
〈M c〉∞ < ∞, 〈Md〉∞ < ∞. The jump process 4M ≡ 4Md generates the
integer-valued measure µ = µ(dt, dz) with µ((0, t] × A) =

∑
s≤t

I(4Ms ∈ A).

We denote by ν = ν(dt, dz) the compensator of µ. The condition |4M | ≤ K
guarantees the existence of a version ν such that ν(R+×{|z| > K}) = 0. This
version of ν is used in the sequel.

The purely discontinuous martingale Md can be represented as the Itô
integral with respect to µ− ν:

Md
t =

∫ t

0

∫
|z|≤K

z
(
µ(ds, dz)− ν(ds, dz)

)
.

Recall that
∫
|z|≤K zν({t}, dz) = 0 and, so that,
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〈Md〉t =
∫ t

0

∫
|z|≤K

z2ν(ds, dz) <∞, t > 0.

Hence, 〈M〉∞ < ∞ implies
∫∞
0

∫
|z|≤K z2ν(ds, dz) < ∞ and the existence of

the cumulant process (for λ ∈ R)

Gt(λ) =
∫ t

0

∫
|z|≤K

(
eλz − 1− λz

)
ν(ds, dz),

4Gt(λ) =
∫
|z|≤K

(
eλz − 1− λz

)
ν({t}, dz).

We emphasize that Gt(λ) increases in t ↑ to G∞(λ) := limt→∞Gt(λ) < ∞
and 4Gt(λ) ≥ 0.

The process

Et(λ) = exp
(λ2
2
〈M c〉t +Gt(λ)

) ∏
0<s≤t

(
1 +4Gs(λ)

)
e−*Gs(λ)

is called “stochastic exponential” for the martingale M . Since 4G(λ) ≥ 0,
the stochastic exponential is nonnegative. A remarkable property of Et(λ) is
that the process

zt(λ) = eλMt−logEt(λ) (2.1)

is a positive local martingale with respect to the filtration (Ft)t≥0. This prop-
erty is readily verified with the help of Itô’s formula applied to (2.1):

dzt(λ) = λzt(λ)dM c
t +
∫
|z|≤K

zt−(λ)

(
eλz − 1

)
1 +4Gt(λ)

(µ− ν)(dt, dz).

As any nonnegative local martingale, zt(λ) is also a supermartingale (see, e.g.,
Problem 1.4.4 in Liptser and Shiryaev [9]) and, therefore, has a finite limit at
infinity

z∞(λ) := lim
t→∞

zt(λ) ∈ R+

and Ezτ (λ) ≤ 1 for any stopping time τ . In particular, Ez∞ ≤ 1.

Proposition 2.1. Under the conditions from statement (iii) of Theorem 1.1
we have:

1) Ez∞(λ) = 1.
2) E∞(λ) = lim

t→∞
Et(λ) ∈ (0,∞).

Proof. 1) Let (τn) be a sequence of stopping times increasing to infinity and
such that (Mt∧τn)t≥0 and (zt∧τn(λ))t≥0 are uniformly integrable martingales
for any n. Then Ezτn(λ) ≡ 1. By Jensen’s inequality,

E
(
eλM

+
∞ |Fτn

)
≥ eλE(M

+
∞|Fτn ) ≥ eλM

+
τn ≥ zτn(λ).
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In other words, the martingale
(
zτn(λ),Fτn

)
n≥1 is majorized by the uniformly

integrable martingale
(
E
(
eλM

+
∞ |Fτn

)
,Fτn

)
n≥1, that is,

(
zτn(λ),Fτn

)
n≥1 is the

uniformly martingale itself. Consequently, 1 = limn→∞Ezτn(λ) = Ez∞(λ).

2) Notice that |M∞| <∞, E∞(λ) <∞ and z∞(λ) = eλM∞−logE∞(λ) imply
that

1 ≥ EI(E∞(λ) = 0)z∞(λ) ≥ NP (E∞(λ) = 0)

for any N > 0.
Hence, P (E∞(λ) = 0) = 0.

3 The proof of Theorem 1.1

3.1 The proof of (i) and (ii)

(i) Let (τn)n≥1 be an increasing sequence of stopping times with tending
to infinity and such that (Mτn)n≥1 ∈ M. Therefore, EM−τn−EM+

τn = 0, n ≥ 1.
ByM+ ∈ D, we have lim

n→∞
EM+

τn = EM+
∞ <∞. Further, by the Fatou lemma

limn→∞EM
−
τn ≥ EM−∞, so that EM

+
∞ − EM−∞ ≥ 0.

Hence, EM∞ = (EM+
∞ − EM−∞) ≥ 0.

(ii) Notice that {supt≥0M−t > λ} = {Sλ <∞}, where

Sλ = inf{t :M−t ≥ λ}, inf{∅} =∞.

Since (|4Mt|)t>0 is uniformly integrable process and M+ ∈ D, we have
(Mt∧Sλ

)t≥0 ∈ M, that is,

0 = EMSλ
= EM∞I{Sλ=∞} + EMSλ

I{Sλ<∞}.

We derive the desired statement from the relations

lim
λ→∞

EM∞I{Sλ=∞} = EM∞,

lim
λ→∞

EMSλ
I{Sλ<∞} = −λP

(
sup
t≥0

M−t > λ
)
.

(3.1)

By (i), EM−∞ ≤ EM+
∞ <∞. Consequently, M−∞ <∞ and, therefore, we have

limλ→∞ Sλ =∞. The first part of (3.1) is implied by the inequality∣∣EM∞I{Sλ=∞} − EM∞
∣∣ ≤ E|M∞|I{Sλ<∞}

and the Lebesgue dominated theorem. The second part in (3.1) follows from
MSλ

I{Sλ<∞} = −λI{Sλ<∞} + (MSλ
+ λ)I{Sλ<∞} since

E|MSλ
+ λ|I{Sλ<∞} ≤ E|4MSλ

|I{Sλ<∞} ≤ KP (Sλ <∞) −−−−→
λ→∞

0.
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3.2 Proof of (iii)

Auxiliary lemmas

Lemma 3.1. Under assumptions from the statement (iii) of Theorem 1.1,

lim
λ↓0

E
1
λ

(
1− e− logE∞(λ)

)
= EM∞.

Proof. With λ ≤ ε for ε involved in (iii), by Proposition 2.1 we have the
equality Ez∞(λ) = 1. Hence,

E
1
λ

(
1− e− logE∞(λ)

)
= E

1
λ

(
z∞(λ)− e− logE∞(λ)

)
= E

1
λ

(
eλM∞ − 1

)
e− logE∞(λ).

The required statement follows from the relations

lim
λ↓0

1
λ
e− logE∞(λ)

(
eλM∞ − 1

)
=M∞,

1
λ
e− logE∞(λ)

∣∣eλM∞ − 1
∣∣ ≤ eεM∞

and EeεM∞ <∞ by the Lebesgue dominated theorem.

Lemma 3.2. Under assumptions from the statement (iii) of Theorem 1.1,

lim
λ↓0

E
1
λ

(
1− e−

λ2
2 〈M〉∞

)
= EM∞.

Proof. According to Lemma 3.1, it suffices to show that

lim
λ↓0

E
1
λ

∣∣∣e− logE∞(λ) − e−
λ2
2 〈M〉∞

∣∣∣ = 0. (3.2)

The verification of (3.2) uses the following estimates: for some C > 0 and
sufficiently small λ > 0,

0 <
[
1− Cλ

]λ2
2
〈M〉∞ ≤ logE∞(λ) ≤

[
1 + Cλ

]λ2
2
〈M〉∞. (3.3)

The estimate from above is implied by log E∞(λ) ≤ λ2

2 〈M c〉∞ + G∞(λ)
and the property of ν(dt, dz) to be supported, in z, on [−K,K].

The estimate from below is determined in the following way. Denote by
Φ(λ,K) = 1− λKeλK and

Gc
∞(λ) =

∫ ∞
0

∫
|z|≤K

(
eλz − 1− λz

)
νc(dt, dz),
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where νc(dt, dz) := ν(dt, dz)− ν({t}, dz). Write

logE∞(λ) =
λ2

2
〈M c〉∞ +Gc

∞(λ) +
∑
t>0

log
(
1 +4Gt(λ)

)
≥ λ2

2
〈M c〉∞ + Φ(λ,K)

∫ ∞
0

∫
|z|≤K

λ2

2
z2νc(dt, dz)

+
∑
t>0

log

(
1 + Φ(λ,K)

∫
|z|≤K

λ2

2
z2ν({t}, dz)

)
.

(3.4)

We choose λ so small to keep 1 − λKeλK > 0 and estimate from below the
“
∑

t>0 log” in the last line of (3.4) by applying log(1 + x) ≥ x− 1
2x

2, x ≥ 0.
This gives the lower bound

∑
t>0

log

(
1 + Φ(λ,K)

∫
|z|≤K

λ2

2
z2ν({t}, dz)

)

≥ Φ(λ,K)
∫
|z|≤K

λ2

2
z2ν({t}, dz)− 1

2
Φ2(λ,K)

(∫
|z|≤K

λ2

2
z2ν({t}, dz)

)2
.

Taking into account ν({t}, |z| ≤ K) ≤ 1, by the Cauchy–Schwarz inequality
we find the upper bound (∫

|z|≤K

λ2

2
z2ν({t}, dz)

)2

≤ λ4

4

∫
|z|≤K

z4ν({t}, dz) ≤ λ4K2

4

∫
|z|≤K

z2ν({t}, dz)

providing the inequality

∑
t>0

log

(
1 + Φ(λ,K)

∫
|z|≤K

λ2

2
z2ν({t}, dz)

)

≥
(
Φ(λ,K)− λ2

8
K2Φ2(λ,K)

)∫
|z|≤K

λ2

2
z2ν({t}, dz).

We choose λ so small to keep

Φ(λ,K)− λ2

8
K2Φ2(λ,K) ≥ 1− λc > 0

for some constant c > 0.
Now, we may choose a positive constant C such that (3.3) is valid for both

the upper and lower bounds.
From (3.3), we derive that
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1
λ

∣∣∣e− logE∞(λ) − e−
λ2
2 〈M〉∞

∣∣∣ ≤ C
λ2

2
〈M〉∞e−

λ2
2 〈M〉∞ −−−→

λ→0
0.

and, due to xe−x ≤ e−1, it remains to apply the Lebesgue dominated theorem.

Lemma 3.3. Under assumptions from the statement (iii) of Theorem 1.1,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= ϑϑϑ⇔ lim

λ→∞
λP
(
[M,M ]1/2∞ > λ

)
= ϑϑϑ.

Proof. Obviously, the desired result holds true if

lim
λ→0

P
(
[M,M ]1/2∞ > λ

)
P
(
〈M〉1/2∞ > λ

) ≤ 1,

lim
λ→0

P
(
[M,M ]1/2∞ > λ

)
P
(
〈M〉1/2∞ > λ

) ≥ 1.

(3.5)

Denote L = [M,M ] − 〈M〉 and notice that [M,M ]∞ ≤ 〈M〉∞ + supt≥0 |Lt|.
By an obvious inequality (c+ d)1/2 ≤ c1/2 + d1/2, we obtain that

P
(
[M,M ]1/2∞ > λ

)
≤ P

(
[〈M〉∞ + sup

t≥0
|Lt|]1/2 > λ

)
≤ P

(
〈M〉1/2∞ + sup

t≥0
|Lt|1/2 > λ

)
≤ P

(
〈M〉1/2∞ > (1− a)λ

)
+ P

(
sup
t≥0

|Lt| > aλ
)
, a ∈ (0, 1).

With λa = (1− a)λ, the resulting bound can be rewritten as:

λP
(
[M,M ]1/2∞ > λ

)
≤ (1− a)−1λaP

(
〈M〉1/2∞ > λa

)
+ λP

(
sup
t≥0

|Lt|1/2 > aλ
)
.

(3.6)
Now, we evaluate from from above P

(
supt≥0 |Lt|1/2 > aλ

)
. A helpful tool

here is the inequality: for some C > 0, any stopping time τ and K being a
bound for |4M |,

E sup
t≤τ

|Lt|2 ≤ CK2E〈M〉τ . (3.7)

In order to establish (3.7), we use the following facts:
- L is the purely discontinuous local martingale with

[L,L]t =
∑
s≤t

(4Ls)2 =
∑
s≤t

(
(4Ms)2 −4〈M〉s

)2
=
∑
s≤t

(∫
|z|≤K

z2(µ({s}, dz)− ν({s}, dz)
)2

,

- 〈L〉t =
∫ t
0

∫
|z|≤K z4(ν(ds, dz)−

∑
s≤t

( ∫
|z|≤K z2ν({s}, dz)

)2
,
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- 〈L〉t ≤
∫ t

0

∫
|z|≤K

z4ν(ds, dz) ≤ K2

∫ t

0

∫
|z|≤K

z2ν({ds, dz) ≤ K2〈M〉t,

- K2〈M〉 − 〈L〉 is the increasing process.
Now, we refer to the Burkholder–Gundy inequality (see, e.g., Theorem 1.9.7
in [9]): for any stopping time τ ,

E sup
t≤τ

|Lt|2 ≤ CE[L,L]τ .

Due to the relations E[L,L]τ = E〈L〉τ and K2〈M〉τ ≥ 〈L〉τ (recall that
K2〈M〉 ≥ 〈L〉), we have E〈L〉τ ≤ K2E〈M〉τ , that is, (3.7) is valid.

By (3.7) and the fact that 〈M〉 is a predictable process, the Lenglart–
Rebolledo inequality (see, e.g., Theorem 1.9.3 in [9]) is applicable (notice that
{supt≥0 |Lt|1/2 > aλ} ≡ {supt≥0 |Lt| > a2λ2}), so that,

P
(
sup
t≥0

|Lt|1/2 > aλ
)
≤ λ5/2

a4λ4
+ P

(
CK2〈M〉∞ > λ5/2

)
=
λ5/2

a4λ4
+ P

(
〈M〉1/2∞ > λ5/4/(C1/2K)

)
.

Hence, with r = 1/(C1/2K) and λr = rλ5/4,

λP
(
sup
t≤Tx

|Lt|1/2 > aλ
)
≤ 1
a4λ1/2

+
1

rλ1/4
λrP

(
〈M〉1/2∞ > λr

)
. (3.8)

Now, (3.6) and (3.8) imply the inequality

λP
(
[M,M ]1/2∞ > λ

)
≤ (1− a)−1λaP

(
〈M〉1/2∞ > λa

)
+

1
a4λ1/2

+
r

λ1/4
λrP

(
〈M〉1/2∞ > λr

)
.

If ϑϑϑ > 0, by

P
(
[M,M ]1/2∞ > λ

)
P
(
〈M〉1/2∞ > λ

) ≤
(1− a)−1λaP

(
〈M〉1/2∞ > λa

)
λP
(
〈M〉1/2∞ > λ

)
+

1
a4λ1/2 + r

λ1/4λrP
(
〈M〉1/2∞ > λr

)
λP
(
〈M〉1/2∞ > λ

) −−−−→
λ→∞

1
1− a

−−−→
a→0

1

and the first part from (3.5) is valid. The second part from (3.5) is established
similarly and we give only a sketch of the proof. The use of the bound

P
(
〈M〉1/2 > λ

)
≤ P

(
[M,M ]1/2 > (1− a)λ

)
+ P

(
sup
t≥0

|Lt| > aλ
)
, a ∈ (0, 1),
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implies that

P
(
[M,M ]〉1/2∞ > (1− a)λ

)
P
(
〈M〉1/2∞ > λ

) ≥ 1−
P
(
supt≥0 |Lt| > aλ

)
P
(
〈M〉1/2∞ > λ

)
and we get the result.

If ϑϑϑ = 0, we replace M by M + δM ′, where δ > 0 and M ′ ∈ Mc with
〈M ′〉∞ < ∞ possessing limλ→∞ λP

(
〈M ′〉1/2∞ > λ

)
= ϑ′ϑ′ϑ′ > 0, is independent

of M c. Therefore, by 〈M + δM ′〉 = 〈M〉+ δ2〈M ′〉, we have

lim
λ→∞

λP
(
〈M + δM ′〉1/2∞ > λ

)
= δ2ϑ′ϑ′ϑ′ > 0.

Hence, by using the result already proved, it holds

lim
λ→∞

λP
(
〈M + δM ′〉1/2∞ > λ

)
= δ2ϑ′ϑ′ϑ′

⇔ lim
λ→∞

λP
(
[M + δM ′,M + δM ′]1/2∞ > λ

)
= δ2ϑ′ϑ′ϑ′

and, by the arbitrariness of δ,

lim
λ→∞

λP
(
〈M > λ

)
= 0⇔ lim

λ→∞
λP
(
[M,M ]1/2∞ > λ

)
= 0.

Final part of the proof for (iii)

We refer to the Tauberian theorem.

Theorem. (Feller, [4], XIII.5, Example (c)) Let X be a nonnegative random
variable such that lim

λ↓0
1
λ

(
1− Ee−

λ2
2 X
)
∈ R.

Then, √
2
π
lim
λ↓0

1
λ

(
1− Ee−

λ2
2 X
)
= lim

λ→∞
λP (X1/2 > λ).

Letting X = 〈M〉∞, we find that√
2
π
lim
λ↓0

1
λ

(
1− Ee−

λ2
2 〈M〉∞

)
= lim

λ→∞
λP (〈M〉1/2∞ > λ),

while, by Lemmas 3.1, 3.2 and 3.3,

lim
λ↓0

1
λ

(
1− Ee−

λ2
2 〈M〉∞

)
=

√
2
π
EM∞,

lim
λ→∞

λP
(
[M,M ]1/2∞ > λ

)
=

√
2
π
EM∞.
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3.3 Supplement

The condition |4M | ≤ K might be too restrictive to be valid for serving some
examples. Following [10], we show that this condition can be replaced by one
seems to be more suitable for applications.

Theorem 3.1. Assume conditions for the statement (iii) of Theorem 1.1 are
valid except the boundedness |4M | ≤ K replaced by the two inequalities

λ2

2
〈M〉∞(1− |λ|ζ1)+ ≤ logE∞(λ) ≤

λ2

2
〈M〉∞(1 + |λ|ζ2) (3.9)

with sufficiently small λ > 0 and nonnegative integrable random variables
ζ1, ζ2.

Then

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
=

√
2
π
EM∞.

Proof. Since (3.2) has to be verified only, by (3.9) we have

1
λ

∣∣∣e− logE∞(λ) − e−
λ2
2 〈M〉∞

∣∣∣ ≤ (ζ2 ∨ |1− (1− ζ1λ)+|
λ

)λ2
2
〈M〉∞e−

λ2
2 〈M〉∞

≤
(
ζ2 ∨ ζ1

)λ2
2
〈M〉∞e−

λ2
2 〈M〉∞ .

The right-hand side of this inequality converges to zero, as λ → 0, and is
bounded by e−1(ζ2∨ ζ1). So, (3.2) holds by the Lebesgue dominated theorem.
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