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Summary. We develop a model of the behavior of an agent acting under uncer-
tainty and in a fiscal environment who wants to invest into a creation of new firm
and faces a timing problem. The presence of tax exemptions for newly created firms
reduces the investor planning to the optimal stopping problem for bivariate diffu-
sion process with a non-linear homogeneous reward function. We find a closed-form
formula for optimal stopping time and prove that under certain conditions it gives
indeed the optimal solution to the investment timing problem.
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1 Introduction

Uncertainty and irreversibility have long been recognized as main determi-
nants of investment. As argued in [6], most investment decisions feature three
important characteristics: investment irreversibility, uncertainty, and the abil-
ity to choose the optimal timing of investment. In contrast with the traditional
investment theory based on the Net Present Value Criterion and Now-or-Never
Principle, the real option literature has been focused around the delay in in-
vestment decisions (see, e.g., [6], [17] as well as the seminal paper [11]). This
flexibility in the investment timing gives the option to wait for new informa-
tion.

In the real option framework the optimal investment policy can be obtained
as the solution to an optimal stopping problem. In the simple case of a project
with constant (over time) investments the underlying problem is an optimal
stopping for one-dimensional process of the present value of the project, which
is usually assumed to be a geometric Brownian motion without/with jumps
(see [6], [11], [12]). In a more symmetric case, when both the present value
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and the investment required for launching the project evolve as stochastic
processes, the underlying problem will be an optimal stopping for bivariate
stochastic process (usually, of a geometric Brownian type) and reward function
which is the expected discounted difference between the present value and
the investment cost. One of the first results in this direction was obtained
by McDonald and Siegel [11] who gave a closed-form solution for the case of
bivariate correlated geometric Brownian motion. However, they did not set the
precise conditions needed for the validity of their result. The rigorous proof of
optimality in the McDonald–Siegel formula for optimal stopping time as well
as the relevant conditions was given only a decade later by Hu and Øksendal
[8]. Moreover, they treated a multi-dimensional case where the investment
cost is a sum of correlated geometric Brownian motions.

Another source of multi-dimensional optimal stopping problems is a valu-
ation of American options on multiple assets — see, e.g. [5], [7]. The Russian
option introduced by Shepp and Shiryaev [14], also can be viewed as an opti-
mal stopping problem for a bivariate Markov process whose components are
processes of stock prices and maximal historical (up to the current time) stock
prices.

Although the theory provides general rules for finding an optimal stopping
time (see, e.g., Shiryaev’s monographs [15], [16]), the obtaining of closed form
formulas is a hard problem for multi-dimensional processes. Most of results in
this direction (for multivariate case) are related to geometric Brownian motion
and linear reward function. A rare exception is the paper by Gerber and
Shiu [7], who derived a closed-form formula for bivariate correlated geometric
Brownian motion and homogeneous reward function. Their case covers such
perpetual (without the expiration date) American options on two stocks as
Margrabe exchange option, maximum option and some others. They used
first-order conditions to determine the optimal stopping boundaries, but did
not verify whether the relevant solution is indeed the optimal one to the
underlying problem.

In the present paper we demonstrate that multivariate optimal stopping
problem with non-linear reward function arises in a natural way for the mod-
els of creation of new firms in a fiscal environment (including both taxes
and tax exemptions for new firms). Namely, some not restrictive assumptions
about the structure of investor’s cash flow and tax holidays for newly created
enterprizes lead to an optimal investment timing problem with non-linear (rel-
atively to the underlying processes) reward function. We derive a closed-form
formula for optimal investment time and prove that under certain conditions
it gives indeed the optimal solution to the investment timing problem.

The paper is organized as follows. Section 2 describes the behavior of an
investor (under uncertainty and in a fiscal environment) who is interested in
investing into the project aimed at creating a new firm and faces the invest-
ment timing problem. A solution to this problem, an optimal investment rule,
is described in Section 3. As we show in 3.3, the problem under considera-
tion is reduced to an optimal stopping problem for bivariate diffusion process
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and homogeneous (of degree 1) reward function. The closed-form formula for
optimal investment time described in Theorem 1 is proved in Section 4.

2 The basic model

Before to proceed with the model description, we compare our model with
some closely related contributions.

The model is connected with an investment project directed to the creation
of a new industrial firm (enterprize). An important feature of the considered
model is the assumption that, at any moment, a decision-maker (investor)
may either accept the project and proceed with the investment or delay the
decision until he obtains a new information on the environment (prices of the
product and resources, the demand etc.). Thus, the main goal of the decision-
maker in this situation is to find, using the available information, a “good”
time for investing the project (investment timing problem).

The real options theory is a convenient and adequate tool for modelling the
process of firm creation since it allows us to study the effects connected with a
delay in the investment (investment waiting). As in the real options literature,
we model investment timing problem as an optimal stopping problem for
present values of the created firm (see, e.g. [6], [11]).

A creation of an industrial enterprize is usually accompanied by certain
tax benefits (in particular, the new firm can be exempted from the profit
taxes during a certain period). The distinguishing feature of our settings is
the representation of the firm present value as an integral of the profit flow.
Considerations of this type allows us to take into account in an explicit form
some peculiarities of a corporate profit taxation system, including the tax ex-
emption. Such an approach was applied by the authors in a detailed modelling
of investment project under taxation (but without tax exemptions) in [3], and
for finding the optimal depreciation policy in [1].

Uncertainty in an economic system is modelled by a probability space
(Ω,F ,P) with a filtration F = (Ft, t ≥ 0). The σ-algebra Ft can be inter-
preted as the observable information about the system up to the time t.

An infinitely-lived investor faces a problem to choose when to invest in a
project aimed to launch a new firm.

The cost of investment required to create firm at time t is It. Investment
are considered to be instantaneous and irreversible so that they cannot be
withdrawn from the project any more and used for other purposes (sunk
cost). We assume that (It, t ≥ 0) is an adapted random process.

Let us suppose that investment into creating a firm is made at time τ ≥ 0.
Let πττ+t be the flow of profit from the firm at time t+ τ , i.e. gross income

minus production cost except depreciation charges, and Dτ
t+τ denotes the

flow of depreciation at the same time. πττ+t and Dτ
t+τ are assumed to be

Ft+τ -measurable random variables (t, τ ≥ 0).
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If γ is the corporate profit tax rate, then after-tax cash flow of the firm at
time t+ τ is equal to

πττ+t − γ(πττ+t −Dτ
t+τ ) = (1− γ)πττ+t + γDτ

t+τ . (2.1)

Creating a new firm in the real economy is usually accompanied by certain
tax benefits. One of the popular incentives tools is tax holidays, when the
new firm is exempted from the profit tax during a payback period. According
to the accepted definitions, the payback period is specified as the minimal
interval (following the time of firm’s creation) during which the accumulated
discounted expected profits exceed the initial investment required for creating
the firm.

For the firm created at time τ , we define the payback period ντ as follows:

ντ = inf

{
ν ≥ 0 : E

( ν∫
0

πττ+te
−ρtdt

∣∣∣Fτ

)
≥ Iτ

}
(2.2)

where ρ is discount rate.
Note that ντ is an Fτ -measurable random variable not necessarily finite

a.s. Further we will often refer to the set of finite payback periods:

Ωτ = {ω ∈ Ω : ντ <∞}. (2.3)

For simplicity we assume that the firm begins to generate profits right
after the investment is made. Then, accordingly to the cash flow (2.1) and tax
holidays (2.2), the present value of the firm Vτ (discounted to the investment
time τ) can be expressed by the following formula:

Vτ = E

 ντ∫
0

πττ+te
−ρtdt+ χΩτ

∞∫
ντ

[(1− γ)πττ+t + γDτ
t+τ ]e

−ρt dt

∣∣∣∣∣∣Fτ

 , (2.4)

where χΩτ
(ω) is the indicator function of the event Ωτ defined in (2.3).

The behavior of the agent is assumed to be rational. This means that he
solves the investment timing problem: at any time τ prior to the investment
he chooses whether to pay Iτ and earn the present value Vτ , or to delay
further his investment. So, the investor’s decision problem is to find such a
stopping time τ (investment rule), that maximizes the expected net present
value (NPV) from the future activity:

E (Vτ − Iτ ) e−ρτ → max
τ
, (2.5)

where the maximum is taken over all Markov times τ and Vτ is defined in
(2.4).
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3 Solution of the investment timing problem

3.1 Main assumptions

Let (w1t ), (w
2
t ) be two independent standard Wiener processes on the given

stochastic basis. They are thought as underlying processes modelling Eco-
nomic Stochastics. We assume that σ-algebra Ft is generated by these
processes up to t, i.e. Ft = σ{(w1s , w2s), s ≤ t}.

The process of profits πττ+t is represented as follows:

πττ+t = πτ+tξ
τ
τ+t, t, τ ≥ 0, (3.6)

where (πt) is geometric Brownian motion, specified by the stochastic equation

πt = π0 + α1

t∫
0

πs ds+ σ1

t∫
0

πs dw
1
s (π0 > 0, σ1 ≥ 0), t ≥ 0, (3.7)

and (ξττ+t, t ≥ 0) is a family of non-negative diffusion processes, homogeneous
in τ ≥ 0, defined by the stochastic equations

ξττ+t = 1 +

t+τ∫
τ

a(s− τ, ξτs ) ds+

t+τ∫
τ

b(s− τ, ξτs ) dw
1
s , t, τ ≥ 0, (3.8)

with given functions a(t, x), b(t, x) (satisfying the standard conditions for the
existence of the unique strong solution in (3.8) – see, e.g. [13, Ch.5]).

The process πt in representation (3.6) can be related to the exogeneous
prices of produced goods and consumed resources (external uncertainty),
whereas fluctuations ξττ+t can be generated by the firm created at time τ
(firm’s uncertainty). Obviously, πττ = πτ for any τ ≥ 0.

The cost of the required investment It is also described by the geometric
Brownian motion as

It = I0 + α2

t∫
0

Is ds+

t∫
0

Is(σ21 dw1s + σ22 dw
2
s), (I0 > 0) t ≥ 0, (3.9)

where σ21, σ22 ≥ 0. To avoid a degenerate case we assume that σ22 > 0.
Then the linear combination σ21w

1
t + σ22w

2
t has the same distribution as

(σ221 + σ222)
1/2w̃t, where w̃t is a Wiener process correlated with w1t and the

correlation coefficient is equal to σ21(σ221 + σ222)
−1/2.

Depreciation charges at the time t+ τ (for the firm created at the time τ)
will be represented as:

Dτ
τ+t = Iτat, t ≥ 0, (3.10)

where (at) is the “depreciation density” (per unit of investment), character-
izing a depreciation policy, i.e. a non-negative function a : R1+ → R1+ such
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that
∫
at dt = 1. Such a scheme covers various depreciation models, accepted

by the modern tax laws (more exactly, their variants in continuous time).
For example, the well-known Declining Balance Depreciation Method can be
described by the exponential density at = ηe−ηt, where η > 0 is the DB-
depreciation rate.

3.2 Derivation of the present value

The above assumptions allow us to obtain formulas for the present value of
the future firm.

In order all values in the model were well-defined, we suppose that the
profits πττ+t have finite expectations for all t, τ ≥ 0.

We need the following assertion.

Lemma 3.1. Let τ be a finite (a.s.) Markov time. Then for all t ≥ 0

E(πττ+t|Fτ ) = πτBt, where Bt = E(πtξ0t )/π0.

Proof. Recall that the process ŵt = w1t+τ − w1τ , t ≥ 0 is a Wiener process
independent on Fτ . Using the explicit formula for the geometric Brownian
motion one can rewrite relation (3.6) as follows:

πττ+t = πτΠ
τ
t+τ , where Πτ

t+τ = exp{(α1 − 1
2σ

2
1)t+ σ1ŵt}ξττ+t.

Homogeneity of the family (3.8) in τ implies that the process ξττ+t coincides
(a.s.) with the unique (in the strong sense) solution of the stochastic equation

ξt = 1 +

t∫
0

a(s, ξs) ds+

t∫
0

b(s, ξs) dŵs.

Since (ξt, t ≥ 0) is independent on Fτ , the process Πτ
t+τ is independent also.

Moreover, Πτ
t+τ has the same distribution as exp{(α1 − 1

2σ
2
1)t + σ1ŵt}ξt, or

as (πt/π0)ξ0t . Therefore, E(π
τ
τ+t|Fτ ) = πτEΠτ

t+τ = πτE(πtξ0t )/π0. ��

Let us assume that the following condition holds:

B =

∞∫
0

Bte
−ρt dt <∞,

where the function Bt is defined in Lemma 1.
We will denote the conditional expectation with respect to Fτ as Eτ .
The above relations and Lemma 1 give the following formulas for the

present value (2.4).
Let τ be a finite (a.s.) Markov time.
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If payback period ντ <∞ (i.e. ω ∈ Ωτ , see (2.3)), then

Vτ = Iτ + (1− γ)

Eτ

∞∫
0

πττ+te
−ρtdt−Eτ

ντ∫
0

πττ+te
−ρtdt

+ γIτA(ντ )

= Iτ (1 + γA(ντ ))− (1− γ)

Iτ − πτ

∞∫
0

Bte
−ρtdt


= γIτ (1 +A(ντ )) + (1− γ)πτB, (3.11)

where the function A(·) is defined as

A(ν) =

∞∫
ν

ate
−ρtdt, ν ≥ 0. (3.12)

According to (2.2) on the set Ωτ we have:

Iτ = Eτ

ντ∫
0

πττ+te
−ρtdt = πτ

ντ∫
0

Bte
−ρtdt. (3.13)

Let us define the function

ν(p) = min{ν > 0 :

ν∫
0

Bte
−ρtdt ≥ p−1}, p > 0 (3.14)

(we put ν(p) =∞ if min in (3.14) is not attained).
Then (3.13) implies that ντ = ν(πτ/Iτ ) for ω ∈ Ωτ . It is easy to see that

Ωτ = {ντ <∞} = {ν(πτ/Iτ ) <∞}.
If ντ =∞ (i.e. ω /∈ Ωτ ), then

Vτ = Eτ

∞∫
0

πττ+te
−ρtdt = πτB. (3.15)

Combining (3.11) and (3.15) we can write the following formula for the
present value of the created firm:

Vτ =

{
γIτ (1 +A(ν(πτ/Iτ ))) + (1− γ)πτB, if ν(πτ/Iτ ) <∞
πτB, if ν(πτ/Iτ ) =∞,

(3.16)

where the function ν(·) is defined in (3.14).
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3.3 Optimal investment timing

As it was pointed out at previous section the problem faced by the investor
(2.5) can be considered as an optimal stopping problem:

E(Vτ − Iτ )e−ρτ → max
τ∈M

, (3.17)

where M is the class of all Markov times with values in R+ ∪ {∞}.
Let us define the following function: for p ≥ 0

Â(p) =

{
A(ν(p)), if ν(p) <∞,

0, if ν(p) =∞,

where ν(p) is specified in (3.14), and put

g(π, I) = (1− γ)(πB − I) + γIÂ(π/I). (3.18)

Obviously, g(π, I) is a homogeneous, i.e. g(λπ, λI) = λg(π, I) for all λ ≥ 0,
but non-linear, function. It follows from (3.16) that Vτ − Iτ ≤ g(πτ , Iτ ). More
precisely, Vτ − Iτ = g(πτ , Iτ ) if ν(πτ/Iτ ) < ∞, and Vτ − Iτ < g(πτ , Iτ ) if
ν(πτ/Iτ ) =∞.

Consider the optimal stopping problem for the bivariate process (πτ , Iτ ):

Eg(πτ , Iτ )e−ρτ → max
τ∈M

. (3.19)

A relation between the solutions to the problems (3.17) and (3.19) is de-
scribed by the lemma below.

Lemma 3.2. Let τ∗ be a finite (a.s.) stopping time solving the problem (3.19).
If ν(πτ∗/Iτ∗) < ∞ (a.s.), then τ∗ is the optimal investment time for the
investor problem (3.17).

Proof. Obviously,

max
τ
E(Vτ − Iτ )e−ρτ ≤ max

τ
Eg(πτ , Iτ )e−ρτ = Eg(πτ∗ , Iτ∗)e−ρτ

∗
.

On the other hand, since ν(πτ∗/Iτ∗) <∞ a.s., then

max
τ
E(Vτ − Iτ )e−ρτ ≥ E(Vτ∗ − Iτ∗)e−ρτ

∗
= Eg(πτ∗ , Iτ∗)e−ρτ

∗
.

Therefore,

max
τ
E(Vτ − Iτ )e−ρτ = Eg(πτ∗ , Iτ∗)e−ρτ

∗
= E(Vτ∗ − Iτ∗)e−ρτ

∗
,

i.e. τ∗ is an optimal stopping time for the problem (3.17). ��
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So, the investment timing problem is reduced to an optimal stopping prob-
lem for bivariate geometric Brownian motion and homogeneous reward func-
tion. Similar problem was considered by Gerber and Shiu [7] in the framework
of perpetual American options on two assets. Their study was focused on the
derivation of optimal continuation regions by the smooth pasting method, but
they did not state precise conditions for the validity of their results.

We set below the formula for optimal stopping time for such a problem,
and prove rigorously that under some additional conditions it gives indeed an
optimal solution to the investment timing problem.

Let β be a positive root of the quadratic equation

1
2 σ̃

2β(β − 1) + (α1 − α2)β − (ρ− α2) = 0, (3.20)

where σ̃2 = (σ1−σ21)2+σ222 > 0 (since σ22 > 0) is the “total” volatility of
investment project. It is easy to see that β > 1 whenever ρ > max(α1, α2).

Let us denote f(p) = g(p, 1), where function g is defined in (3.18), and

h(p) = f(p)p−β , p > 0. (3.21)

As one can see, h(p) < 0 if p < B−1 (and ν(p) =∞), h(p) > 0 if p > B−1,
and h(p) → 0 when p → ∞. Since g is continuous function, h(p) attains
maximum at some point p∗ > B−1. Remind that p∗ is called a strict maximum
point for the function h(p) if h(p∗) > h(p) for any p �= p∗.

The next theorem characterizes completely the optimal investment time.

Theorem 3.1. Let the processes of profits and required investments be de-
scribed by relations (3.6)–(3.9). Assume that ρ > max(α1, α2) and the follow-
ing condition is satisfied:

α1 −
1
2
σ21 ≥ α2 −

1
2
(σ221 + σ222). (3.22)

Let at, Bt ∈ C1(R+), p∗ be the strict maximum point for the function h(p),
and

f ′(p)p−β+1 decrease for p > p∗. (3.23)

Then the optimal investment time for the problem (3.17) is

τ∗ = min{t ≥ 0 : πt ≥ p∗It}.

The proof of this theorem one can find in the next section.

4 The proof

As we have seen above the investor’s problem (3.17) is reduced to the optimal
stopping problem (3.19) for bivariate process (πt, It) specified by formulas
(3.7) and (3.9).
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For proving the Theorem 3.3 we will use the variational approach to opti-
mal stopping problems for multi-dimensional diffusion processes described in
[2], [3]. Besides the formal proof we demonstrate also an approach to obtain
a formula for the optimal stopping time different from the smooth pasting
method.

It is convenient to introduce the “homogeneous” notations X1
t = πt, X

2
t =

It. The process Xt = (X1
t ,X

2
t ), is a bivariate geometric Brownian motion with

correlated components:

dX1
t = X1

t (α1dt+ σ1dw
1
t ),

dX2
t = X2

t [α2dt+ (σ21 dw1t + σ22 dw
2
t )],

(4.24)

and initial state (X1
0 ,X

2
0 ) = (x1, x2).

Let us consider a family of regions in R2++ = {(x1, x2) : x1, x2 > 0} of the
following type

Gp = {(x1, x2) ∈ R2++ : x1 < px2}, p > 0.

For the process Xt = (X1
t ,X

2
t ), described by the system (4.24) with initial

state x = (x1, x2) ∈ R2++, we denote τp(x) the exit time from the region Gp:

τp(x) = min{t ≥ 0 : Xt /∈ Gp} = min{t ≥ 0 : X1
t ≥ pX2

t }.

For x ∈ R2++ and homogeneous function g(x) (see (3.18)) define

Fp(x) = Exe−ρτp(x)g(Xτp(x))

(here and below the upper index at the expectation Ex denotes the initial
state x of the process Xt).

If x /∈ Gp, then τp(x) = 0 and, hence, Fp(x) = g(x) for x ∈ R2++\Gp. If
x ∈ Gp, then τp(x) > 0 a.s. due to continuity of diffusion process.

Lemma 4.3. If (3.22) holds, then τp(x) <∞ a.s. for any x∈R2++ and p > 0.

Proof. It follows the explicit formulas for X1
t and X2

t that

X1
t

X2
t

=
x1
x2

exp
{(

α1−α2 +
σ221+σ

2
22−σ21
2

)
t+ (σ1−σ21)w1t − σ22w

2

}
=
x1
x2

exp
{(

α1−α2 +
σ221+σ

2
22−σ21
2

)
t+ σ̃w̃t

}
, (4.25)

where w̃t =
σ1−σ21
σ̃

w1t −
σ22
σ̃
w2 is a standard Wiener process. According to

the law of iterated logarithm for Wiener process

lim sup
t→∞

|w̃t|/
√
2t log log t = 1 a.s.
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and (4.25) implies lim sup
t→∞

X1
t /X

2
t = ∞ a.s. if α1−α2+ 1

2 (σ
2
21+σ

2
22−σ21) ≥ 0

(condition (3.22)). Therefore, τp(x) = min{t ≥ 0 : X1
t /X

2
t ≥ p} <∞ a.s. for

any x ∈ R2++ and p > 0. ��

Now we can derive the functional Fp(x).

Lemma 4.4. If ρ > max(α1, α2) and (3.22) holds, then

Fp(x1, x2) =
{
h(p)xβ1x

1−β
2 , if x1 < px2

g(x1, x2), if x1 ≥ px2
,

where h(p) is defined in (3.21).

Proof. At first, show that Fp(x) is a homogeneous (of degree 1) function.
Since τp(x) is the first exit time over the level p for the process X1

t /X
2
t ,

formula (4.25) implies that the function τp(x) is homogeneous of degree 0 in
x = (x1, x2), i.e. τp(λx) = τp(x) for all λ > 0. The homogeneity properties of
the process Xt (in initial state) and the function g imply:

Fp(λx) = Eλxe−ρτp(λx)g(Xτp(λx)) = E
λxe−ρτp(x)g(Xτp(x))

= Exe−ρτp(x)g(λXτp(x)) = λFp(x).

It is known that Fp(x) is the solution of Dirichlet boundary problem:

LF (x) = ρF (x), x ∈ Gp, (4.26)
F (x)→ g(a), when x→ a, x ∈ Gp, a ∈ ∂Gp, (4.27)

where L is the generator of the process Xt (variants of a more general state-
ment usually referred to as the Feynman–Kac formula one can find in [9], [10],
[13]).

As one can see, the generator of the process (4.24) is

LF (x1, x2) = α1x1
∂F

∂x1
+ α2x2

∂F

∂x2
+

1
2
σ21x

2
1

∂2F

∂x21
+ σ1σ21x1x2

∂2F

∂x1∂x2

+
1
2
(σ221 + σ222)x

2
2

∂2F

∂x22
. (4.28)

The homogeneous function Fp(x) can be represented as Fp(x1, x2) =
x2Q(y) where y = x1/x2, Q(y) = Fp(y, 1). This and formula (4.28) for the
elliptic operator L transforms PDE (4.26) to the ordinary differential equation

1
2
y2Q′′(y)σ̃2 + yQ′(y)(α1 − α2)−Q(y)(ρ− α2) = 0. (4.29)

The general solution of equation (4.29) for 0 < y < p is of the form
Q(y) = C1y

β1 + C2y
β2 , where β1 > 0, β2 < 0 are the roots of quadratic

equation (3.22). Returning to initial function we have
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Fp(x1, x2)=C1x
β1
1 x

1−β1
2 +C2x

β2
1 x

1−β2
2 , 0 < x1 < px2. (4.30)

Since the homogeneous function g, defined in (3.18), is bounded by some linear
function, i.e. g(x1, x2) ≤ C(x1 + x2), were C = max

0≤y≤1
g(y, 1− y),

Fp(x1, x2) ≤ Cmax
τ
E(X1

τ +X2
τ )e
−ρτ

where max is taken over all Markov times τ . Standard martingale arguments
and the condition ρ > max(α1, α2) imply that

EX1
τ e
−ρτ = x1Ee−(ρ−α1)τeσ1w

1
τ−σ2

1τ/2 ≤ x1Eeσ1w
1
τ−σ2

1τ/2 = x1.

Similarly, EX2
τ e
−ρτ ≤ x2. Therefore, Fp(x1, x2) is also bounded by the linear

function C(x1 + x2).
This fact implies that C2 = 0 in representation (4.30) (otherwise Fp(x1, x2)

would be unbounded when x1 → 0, x1 < px2). The constant C1 can be
found from the boundary condition (4.27) at the line {x1 = px2}, namely,
Fp(px2, x2) = C1x2p

β1 = g(px2, x2) = x2f(p), i.e. C1 = f(p)p−β1 = h(p), see
(3.21). ��

Let M1(x) = {τp(x), p > 0} ⊂ M be the class of first exit times from the
sets Gp for the process Xt (starting from the state x = (x1, x2)). Consider the
restriction of the optimal stopping problem (3.19) to the class M1(x):

Exg(Xτ )e−ρτ → max
τ∈M1(x)

. (4.31)

Obviously, this problem is equivalent to the following extremal problem

Fp(x1, x2)→ max
p>0

. (4.32)

The explicit form of the functional Fp from Lemma 4.2 allows us to find
the solution to the problem (4.32) and, therefore, the solution to the optimal
stopping problem (4.31).

Lemma 4.5. Let the conditions of Lemma 4.2 hold, p∗ be a strict maximum
point of the function h(p) (defined in (3.21)), and h(p) decrease for p > p∗.
Then the following statements hold:

1) τ∗ = min{t ≥ 0 : X1
t ≥ p∗X2

t } is the optimal stopping time for the
problem (4.31) for all x ∈ R2++;

2) If, in addition, τ
p̂
(x) > 0 a.s. for some x ∈ R2++, p̂ > 0, and h(p)

strictly decreases for p > p∗, then τ
p̂
(x) is the optimal stopping time for the

problem (4.31) if and only if p̂ = p∗;
3) The optimal value of the functional in the problem (4.31) is

Φ(x1, x2) =
{
h(p∗)xβ1x

1−β
2 , if x1 < p∗x2

g(x1, x2), if x1 ≥ p∗x2
. (4.33)
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Proof. 1) Let us check that Fp(x) ≤ Fp∗(x) for all p > 0 and x ∈ R2++.
By the definition of p∗ we have for the homogeneous function g:

g(x) = x2f(x1/x2) = h(x1/x2)x
β
1x

1−β
2 ≤ h(p∗)xβ1x

1−β
2 .

Let p<p∗. Then Lemma 4.2 gives: if x1≥p∗x2 then Fp(x)=g(x)=Fp∗(x);
if px2≤x1<p∗x2 then Fp(x)=g(x)≤h(p∗)xβ1x

1−β
2 =Fp∗(x); and if x1<px2 then

Fp(x) = h(p)xβ1x
1−β
2 < h(p∗)xβ1x

1−β
2 = Fp∗(x). (4.34)

For p > p∗ we have: if x1≥px2 then Fp(x)=g(x)=Fp∗(x); if p∗x2≤x1<px2
then Fp(x)=h(p)x

β
1x

1−β
2 ≤h(x1/x2)xβ1x

1−β
2 =g(x)=Fp∗(x) due to monotonicity

of h(p) for p > p∗; and if x1 < p∗x2 then

Fp(x) = h(p)xβ1x
1−β
2 < h(p∗)xβ1x

1−β
2 = Fp∗(x). (4.35)

Thus, Fp(x) ≤ Fp∗(x) for all x ∈ R2++ and p > 0. Hence, maximum at
the problem (4.32) is attained at p = p∗. From this and the definition of class
M1(x) follows statement 1).

2) Since τ
p̂
(x) > 0 a.s., x1 < p̂x2. Let us show that the optimality of τ

p̂
(x)

implies that p̂ = p∗.
Assume that p̂ < p∗. Then we have inequality (4.34) with p = p̂, that

contradicts to the optimality of τ
p̂
(x). Assume now that p̂ > p∗. For x1 < p∗x2

we have (4.35) with p = p̂, i.e. the contradiction with the optimality. And if
p∗x2≤x1<p̂x2, then Fp̂

(x)=h(p̂)xβ1x
1−β
2 <h(x1/x2)x

β
1x

1−β
2 =g(x)=Fp∗(x) due

to strict decreasing of h(p) for p > p∗. So, p̂ = p∗ that proves (together with
the optimality of p∗) statement 2) of the lemma.

Statement 3) follows directly from Lemma 4 for p = p∗. ��

Let us emphasize that the region of optimal stopping

Gp∗ = {(x1, x2)∈R2++ : x1 ≥ p∗x2}

does not depend on the initial state of the process Xt.

Proof of Theorem 3.3. In order to prove that the stopping time τ∗, defined in
Lemma 4.3, will be optimal for the initial problem

Exg(Xτ )e−ρτ → max
τ∈M

(4.36)

(over all Markov timesM) we use the following “verification theorem”, based
on variational inequalities method (see, e.g. [4], [13]). Below we formulated it
for our case.

Theorem 4.2 (Øksendal [13], Hu, Øksendal [8]). Suppose, there exists
a function Φ : R2++ → R, satisfying the following conditions:
1) Φ ∈ C1(R2++) ∩ C2(R2++ \ ∂G) where G = {x∈R2++ : Φ(x)>g(x)};
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2) ∂G is locally the graph of Lipschitz function and Ex

∫ ∞
0

χ∂G(Xt) dt = 0
for all x ∈ R2++;

3) Φ(x) ≥ g(x) for all x ∈ R2++;
4) LΦ(x) = ρΦ(x) for all x ∈ G;
5) LΦ(x) ≤ ρΦ(x) for all x ∈ R2++ \ Ḡ (Ḡ is a closure of the set G);
6) τ̄ = inf{t ≥ 0 : Xt /∈ G} <∞ a.s. for all x ∈ R2++;
7) the family {g(Xτ )e−ρτ , M� τ ≤ τ̄} is uniformly integrable for all x ∈ G.

Then τ̄ is the optimal stopping time for the problem (4.36), and Φ(x) is
the correspondent optimal value of the functional in (4.36).

As a candidate we try the function Φ(x1, x2), defined in (4.33). It is easy
to see that Φ∈C1(R2++) due to first-order condition for the maximum point
p∗: βh(p∗)(p∗)β−1 = f ′(p∗).

For x = (x1, x2) ∈ R2++ let us denote p(x) = x1/x2.
Since h(p∗)>h(p) for all p �= p∗, then on the set {(x1, x2)∈R2++ : x1<p∗x2}

we have

Φ(x1, x2) = h(p∗)xβ1x
1−β
2 > h(p(x))x2 (x1/x2)

β

= x2f (x1/x2) (x1/x2)
−β (x1/x2)

β = g(x1, x2)

(the latter equality follows from the homogeneity of the function g).
Therefore, Φ(x) ≥ g(x) for all x ∈ R2++, and the domain G = {x ∈ R2++ :

Φ(x) > g(x)} coincides with {x1 < p∗x2} = {(x1, x2) : 0 ≤ p(x) < p∗}. So,
∂G = {(x1, x2) : x1 = p∗x2}.

The property Φ∈C2(R2++\∂G) follows from the twice differentiability
of g(x1, x2) on the set {(x1, x2)∈R2++ : Bx1>x2}, due to the conditions
at, Bt∈C1(R+).

Condition 2) of Theorem 4.4 follows from local properties of geometric
Brownian motion. Condition 4) follows immediately from the construction of
the function Φ = Fp∗ (see (4.26) in the proof of Lemma 4.2).

Furthermore, τ̄ = inf{t ≥ 0 : Xt /∈ G} = inf{t ≥ 0 : X1
t ≥ p∗X2

t } < ∞
a.s. for all x ∈ R2++ due to Lemma 4.1, i.e. 6) holds.

Let us show that condition 7) of Theorem 4.4 holds if ρ > α2. Indeed, if
τ ≤ τ̄ then X1

τ ≤ p∗X2
τ and, therefore,

Φ(Xτ )e−ρτ=h(p∗)X2
τ

(
X1

τ

X2
τ

)β

e−ρτ≤h(p∗)(p∗)βX2
τ e
−ρτ=CX2

τ e
−ρτ ,

where C = h(p∗)(p∗)β .
Let us denote σ22 = σ221 + σ222. Then w̄t = (σ221w

1
t + σ222w

2
t )/σ2 is the stan-

dard Wiener process. Hence, from the explicit formula for geometric Brownian
motion using martingale arguments we have:
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Ex[Φ(Xτ )e−ρτ ]k ≤ Ckxk2E
x exp{[−ρτ + (α2 −

1
2
σ22)τ + σ2w̄τ ]k}

= Ckxk2E
x exp{−[ρ−α2−

1
2
σ22(k−1)]kτ+kσ2w̄τ−

1
2
k2σ22τ}

≤ Ckxk2E
x exp{kσ2w̄τ −

1
2
k2σ22τ} = Ckxk2 ,

if k > 1 is chosen such that ρ − α2 − 1
2σ

2
2(k − 1) ≥ 0. Thus, the uniform

integrability of the family {g(Xτ )e−ρτ , τ ≤ τ̄} holds (since g(x) ≤ Φ(x)) .
It is remained to check the condition 5) of Theorem 4.4. Let us

take x=(x1, x2)/∈Ḡ, i.e. x1>p∗x2. For this case p(x)>p∗ and Φ(x1, x2) =
g(x1, x2) = x2f(p(x)). Repeating arguments, similar to those in the proof
of Lemma 4.2, we have:

Lg(x)− ρg(x) = x2

[
1
2
p2(x)f ′′(p(x))σ̃2 + p(x)f ′(p(x))(α1 − α2)

−f(p(x))(ρ− α2)
]
.

The condition (3.23) is equivalent to the inequality pf ′′(p) ≤ (β − 1)f ′(p)
for p > p∗. Integrating both sides of the latter relation from p∗ to p one can
obtain that pf ′(p) ≤ p∗f ′(p∗) − βf(p∗) + βf(p) = βf(p), since h′(p∗) = 0.
These inequalities imply:

Lg(x)− ρg(x)
x2

=
1
2
p2f ′′(p)σ̃2 + pf ′(p)(α1 − α2)− f(p)(ρ− α2)

≤ 1
2
p2f ′′(p)σ̃2 + pf ′(p)

[
α1 − α2 −

1
β
(ρ− α2)

]
=

1
2
p2f ′′(p)σ̃2 − pf ′(p)

1
2
σ̃2(β − 1) ≤ 0, where p = p(x)

(here we use the fact that β is a root of equation (3.22)). Thus, all the condi-
tions of Theorem 4.4 hold and, therefore, τ̄ = inf{t ≥ 0 : X1

t ≥ p∗X2
t } = τ∗

is the finite (a.s.) optimal stopping time for the problem (4.34).
As it is shown before the formulation of Theorem 3.3, p∗ > 1/B. Hence

ν(p∗) = ν(X1
τ∗/X2

τ∗) <∞, and, due to Lemma 3.2, τ∗ is the optimal stopping
time for the investor’s problem (3.17). ��
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