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1 Introduction

The initial enlargement of filtrations is an important topic in the theory of
stochastic processes, and it was studied in the fundamental works of Jeulin
[20], Jacod [18], Stricker and Yor [23] and Yor [24, 25] and others.

Recent interest to this question comes from pricing models in stochastic
finance, where the enlargement of filtrations theory is an important tool in
modelling of asymmetric information between different agents and the possible
additional gain due to this information (see Amendinger et al. [1], Imkeller et
al. [16] Baudoin [3, 4], Elliot and Jeanblanc [13] and others). For an approach
based on anticipating calculus, see, e.g., [21].



258 D. Gasbarra, E. Valkeila and L. Vostrikova

The initial enlargement of filtration consists in the following.
Let (Ω,F , P ) be a probability space with the filtration F = (Ft)t≥0 satisfy-

ing the usual conditions and let X be a semimartingale with the (P,F)-triplet
T = (B,C, ν) of predictable characteristics of (we refer to [19] and Section
2 for more details on semimartingales). Suppose that we are given a random
variable ϑ on (Ω,F) such that σ(ϑ) � F0. Define now Gt := Ft ∨ σ(ϑ); then
Γ = (Gt)t≥0 is the initially enlarged filtration. The main problems studied are:
is the F-semimartingale X still a semimartingale with respect to the filtration
Γ and if this is true, what is the new triplet Tϑ = (Bϑ, Cϑ, νϑ) with respect
to (P, Γ )?

Surprising at the first glance [and very natural, in fact] the Bayesian ap-
proach proposed in the papers by Dzhaparidze et al. [9, 10] is closely related
to the problem of enlargement of filtrations. In the Bayesian approach one of
the basic concepts is the arithmetic mean measure. This means the follow-
ing. Suppose that on a filtered probability space (Ω,F ,F, P ) we observe a
semimartingale X = (Xt)t≥0, and the law P θ of X depends of a parameter
θ ∈ Θ. Assume that θ is a value of some random variable ϑ, taking values
in a measurable Polish space (Θ,A) where A is the Borel σ-algebra. Denote
the law of the random variable ϑ by α. We suppose that for each θ ∈ Θ the
measure P θ is absolutely continuous with respect to P and that the density
process zθ is measurable with respect to F ⊗ A. Then we can introduce on
the original space (Ω,F ,F, P ) the arithmetic mean measure P̄α: for B ∈ F

P̄α(B) :=
∫
Θ

P θ(B)α(dθ) =
∫
Θ

∫
B

zθdPα(dθ).

One can interpret the measure P̄α also as a ’randomised experiment’. In [9, 10]
it is shown how to compute the predictable characteristics of X with respect
to the arithmetic mean measure P̄α given the characteristics T θ of X with
respect to P θ.

The Bayesian approach to the initial enlargement of filtration goes as
follows. Suppose for simplicity that the initial σ-algebra is trivial. Let X be
a semimartingale with the (P,F)-triplet T = (B,C, ν). We suppose that we
have, in addition, a random variable ϑ : (Ω,F) → (Θ,A) with values in a
Polish space and the prior law α.

We consider next the product space (Ω×Θ,F⊗A, IG, IP) with the filtration
IG = (IGt)t≥0 defined by IGt = Ft ⊗ A and IP is the joint law of (X(ω), ϑ(ω)).
Let t ∈ R+ and αt be the regular a posteriori distribution of the random
variable ϑ given the information Ft:

αt(ω, θ) := P (ϑ ∈ dθ|Ft)(ω).

Assume now that αt 0 α. Then, according to the results of Jacod [18] the
process zθ = (zθt )t≥0 where

zθt (ω) :=
dαt(ω, θ)
dα(θ)

,
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is a (P,F)-martingale with zθ0 = 1. Define now a measure P θ by

dP θ
t := zθt dPt,

where the subscript means the restriction of the measure to the sub-σ-algebra
Ft. Then the process X is also a (P θ,F)-semimartingale. If we know the struc-
ture of the density martingale zθ, then, using the Itô formula, we can write a
semimartingale decomposition of it and the (P θ,F)-triplet T θ = (Bθ, C, νθ).
Finally, if T θ is P(F) ⊗ A-measurable, one obtains the (P, Γ )-triplet of the
semimartingale X by replacing in T θ the fixed parameter θ by the random
variable ϑ. This method is relatively simple and gives a unifying approach
to various concrete models like diffusion processes, counting processes and
Lévy processes. It can also be used outside the semimartingale world. Some
applications will be given in the paper [12].

The paper contains two parts. The first one is devoted to the initial enlarge-
ment of filtration. We begin with reminding some basic facts on semimartin-
gale characteristics and the Girsanov theorem. Then we apply the Bayesian
approach to the initial enlargement. For somewhat related studies see [6, 14].
We continue by giving some examples of the initial enlargement with the final
value. The Bayesian approach can be developed for the progressive enlarge-
ment of filtration as well. This will be done in a later work.

The second part is devoted to so-called weak information introduced in
Baudoin [3, 4]. We show that the notion of weak information can be inter-
preted as changing the “true” prior α, the law of the random variable ϑ, to
another prior distribution γ for the random variable ϑ. After this the whole
analysis can be reduced to the computation of the P̄ γ-characteristics of the
semimartingale X.

Some preliminary results of the Bayesian approach were already obtained
in [11]. We extend and generalize the results in various directions: in addition
to several examples and new applications, we give a Bayesian interpretation of
the so-called additional utility of an insider, or of a weak insider and, finally,
the gain on false information.

2 Characteristics of a semimartingale

We shall work with a semimartingale X defined on a filtered space
(Ω,F ,F, P ). Recall some facts concerning the triplet T of a semimartingale
X. Since the triplet T depends on the probability measure P and on the fil-
tration, we keep track of the measures and filtrations in what follows. We
assume that F := FX is the right-continuous version of the natural filtration
of X (completed by P -null sets and that F = FX

∞.
Let µ be the jump measure of X, i.e.∫ t

0

∫
|x|>ε

xµ(ds, dx) :=
∑
s≤t

∆Xs1{|∆Xs|>ε}.
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We use the standard notation from [19] and [15]: if µ := µX is the jump
measure of the semimartingale X, then g ∗ µ means the integral with respect
to the jump measure, g ∗ ν denotes the integral with respect to the (P,F)-
compensator ν of µ; later g · U is the stochastic integral with respect to a
local martingale U or Riemann–Stieltjes integral with respect to a bounded
variation process U .

Suppose that the semimartingale X has characteristics T = (B,C, ν) with
respect to (P,F). Recall that this means the following (see [19] for more
details and unexplained terminology). Let l : R→ R be a truncation function:
l(x) = x in the neighborhood of zero and l has a compact support. Then one
can write the semimartingale X as

X = (X −X(l)) +X(l),

where X(l) is a purely jump process, namely, the process with ’big’ jumps
defined as

X(l)t :=
∑
s≤t

(∆Xs − l(∆Xs))

with ∆Xs = Xs −Xs−.
Having bounded jumps, the process X̃ = (X − X(l)) is a special semi-

martingale and allows the representation

X̃t = X0 +Xc
t +
∫ t

0

∫
R\{0}

l(x)(µ(ds, dx)− ν(ds, dx)) +Bt(l),

where Xc is the continuous local martingale part of X, ν is the (P,F) com-
pensator of µ, Bt(l) is the unique (P,F)-predictable locally integrable process
such that the process X̃−B(l) is a (P,F)-local martingale. Let C be the con-
tinuous process such that the process (Xc)2 − C is a (P,F)-local martingale.
Having all this we have defined the triplet of predictable characteristics of a
semimartingale X as T = (B(l), C, ν). Later we write B instead of B(l).

Consider the class G of real bounded Borel functions on R vanishing in a
neighborhood of 0. If η and η̃ are measures on R such that η(|x| > ε) < ∞
and η̃(|x| > ε) <∞, and if for all g ∈ G∫

R

g(x)η(dx) =
∫

R

g(x)η̃(dx)

then η = η̃.
Recall Theorem II.2.21 from [19, p.80]

Theorem 2.1. A semimartingale X has the (P,F)-triplet T = (B,C, ν) if
and only if

• The process M(l) := X −X(l)−B −X0 is a local martingale.
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• The process

N(l) :=M(l)2 − C2 − l2 ∗ ν −
∑
s≤·

(∆Bs)2

is a local martingale.
• The process U(l) := g ∗ (µ− ν) is a local martingale whatever is g ∈ G.

Assume moreover that we have on (Ω,F ,F, P ) a family of probability
measures P θ with θ ∈ Θ such that P θ

t 0 Pt for all t ∈ R+.
Let θ ∈ Θ be fixed. Then X is a (P θ,F)-semimartingale with a triplet

T θ = (Bθ, Cθ, νθ) where

Bθ = B + βθ · C + (Y θ − 1)l ∗ ν,
Cθ = C, (2.1)
νθ = Y θ · ν,

with certain (P θ,F)-predictable processes βθ = (βθt )t≥0 and Y θ = (Y θ
t )t≥0

such that for all t ∈ R+

((βθ)2 · C)t + (|(Y θ − 1)l| ∗ ν)t <∞. (2.2)

For more details see [19].
We denote by P θ

t and Pt the restrictions of the corresponding measures
on Ft and we define the density process zθ = (zθt )t≥0 with

zθt =
dP θ

t

dPt
.

We note that the density process is (P,F)-martingale with the property
inft∈[0,T ] zθt > 0 P -a.s. for each T > 0, and we define the stochastic logarithm
mθ of zθ by

dmθ := dzθ/zθ−. (2.3)

Then mθ is a (P,F)-local martingale and zθ is the stochastic exponential of
mθ:

zθt = E(mθ)t.

Assume now that X is a (P,F)-semimartingale with a triplet T = (B,C, ν)
and that the natural filtration F of X has the predictable representation prop-
erty : a local martingale M with respect to this filtration has the representa-
tion:

M =M0 +H ·Xc +W ∗ (µ− ν). (2.4)

Here the predictable process H belongs to the space L2loc of locally square-
integrable processes with respect to C and the functionW =Wt(ω;x) belongs
to Gloc(µ). For information on the space Gloc(µ) see [19, II.1.1,pp. 72-74]. On
the predictable representation property one can consult [19, p.185].
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By the predictable representation property we have that the local martin-
gale mθ from (2.3) has the following semimartingale representation

mθ = βθ ·Xc +

(
Y θ − 1 +

Ŷ θ − 1̂
1− 1̂

)
∗ (µ− ν), (2.5)

where the processes βθ and Y θ are the same as in (2.1) and the ”hat” processes
are related to the jumps of the compensator ν, namely

1̂t(ω) := ν(ω; {t} × R0)

and
Ŷ θ
t (ω) :=

∫
R0

Y θ
t (ω, x)ν(ω, {t}, dx).

So, to find the triplet T θ we can read βθ and Y θ from (2.5) and use (2.1) .

3 Arithmetic mean measure

We consider a filtered probability space (Ω,F ,F, P ) with F = F∞. Suppose
that we are given a parametric family of probability measures (P θ)θ∈Θ where
θ belongs to a measurable Polish space (Θ,A).

We make the following assumption.

Assumption 3.1 For each θ ∈ Θ the probability P θ is locally absolute con-
tinuous with respect to P .

Then we can define density process: for each θ ∈ Θ and t ∈ R+

zθt =
dP θ

t

dPt

where P θ
t and Pt are the restrictions of P θ and P on Ft. We consider measur-

able with respect to θ versions of the density processes. Given a probability
measure α on (Θ,A) and t ∈ R+ and B ∈ Ft, we define the arithmetic mean
measure:

P̄α
t (B) :=

∫
Θ

P θ
t (B)α(dθ) =

∫
Θ×B

zθt P (dω)α(dθ), P̄α
t .

Remark 1. In the case of the initial enlargement by a random variable ϑ such
that α = L(ϑ|P ), considered in Section 4, we have P̄α = P . This follows from
the fact that in this case P θ is the regular conditional law of X given ϑ = θ.

We see that P̄α
t is absolutely continuous with respect to Pt but, in general,

P θ
t is not absolutely continuous with respect to P̄α

t . For this reason we add
another assumption.
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Assumption 3.2 For each θ ∈ Θ the probability P θ is locally absolute con-
tinuous with respect to P̄α .

Assume again that X is a (P,F)-semimartingale with triplet T = (B,C, ν)
and having the representation property. Then X is a (P θ,F)-semimartingale
with a triplet T θ = (Bθ, Cθ, νθ) where Bθ , Cθ , νθ are given in (2.1).

The next theorem is a generalization of a result by Kolomiets.

Theorem 3.1. Suppose that the assumptions 3.1 and 3.2 hold and X is a
(P,F)-semimartingale with triplet T = (B,C, ν). Then X is also a (P̄α,F)-
semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by

B̄ = Eαz̄
θ
− ·Bθ = B + Eαz̄

θ
−β

θ · C + Eαz̄
θ
−(Y

θ − 1)l ∗ ν,
C̄ = C, (3.1)
ν̄ = Eαz̄

θ
−Y

θ · ν,

where z̄θ is the density of P θ with respect to the arithmetic mean measure P̄α.

For the proof see [8, Theorem 3.3].

To interchange the order of integration in (3.1) by using the Fubini theorem
we introduce the following notation. For each t ∈ R+ we define a posteriori
measure αt. To do it for B ∈ A we put

αt(B) :=

∫
B
zθt α(dθ)∫

Θ
zθt α(dθ)

.

Let us define αt−(dθ) in the following natural way: for B ∈ A

αt−(B) :=

∫
B
zθt−α(dθ)∫

Θ
zθt−α(dθ)

.

Assuming that βθt and Y θ
t are integrable with respect to αt−, we put

β̄t = Eαt−βθt , Ȳt = Eαt−Y θ
t . (3.2)

Theorem 3.2. Suppose that the assumptions 3.1 and 3.2 hold and for t > 0

Eαt− |βθt | · Ct + Eαt− |Y θ − 1|l ∗ νt <∞. (3.3)

Then X is a (P̄α,F)-semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by

B̄ = B + β̄ · C + (Ȳ − 1)l ∗ ν
C̄ = C, (3.4)
ν̄ = Ȳ · ν

where β̄ and Ȳ are given in (3.2).
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Proof To prove our result we use the classical Fubini theorem. In order
to do it, we show that B̄ is the process of locally P -integrable variation. In
fact, for all t > 0

Var(B̄)t ≤ Var(B)t + Eαz̄
θ
−|βθ| · Ct + Eαz̄

θ
−|Y θ − 1|l ∗ νt.

Using classical Fubini theorem for positive functions in last two integrals and
integration with respect the measure αt− we have: for all t > 0

Var(B̄)t ≤ Var(B)t + Eα− |βθ| · Ct + Eα− |Y θ − 1|l ∗ νt.

We define a localizing sequence as follows. Put

τn = inf{t ≥ 0 : Eαt− |βθ| · Ct +Eαt− |Y θ − 1|l ∗ νt +Var(B)t > n}. (3.5)

and notice that τn is F-stopping time. Moreover, since the jumps of considered
processes are bounded by a constant, we can easily verify that

EP̄α [Eαt− |βθ| · Cτn + Eαt− |Y θ − 1|l ∗ ντn +Var(B)τn ] < n+ 3max
x∈R

l(x),

where l is the truncation function. Now, we notice that the sequence of F-
stopping times τn increases to infinity due to the condition (3.3). Then, we
localize with τn and apply the classical Fubini theorem to (3.1) and we have
(3.4). �
Remark 2. Theorem 3.2 is a special case of the stochastic Fubini theorem.
Namely, we know that

zθt = E(mθ)t,

where

mθ = βθ ·Xc +

(
Y θ − 1 +

Ŷ θ − 1̂
1− 1̂

)
Then by Theorem 3.2 we have the following variant of stochastic Fubini the-
orem

z̄t =
∫
Θ

zθt α(dθ) = E(m̄)t

with

m̄ = β̄ ·Xc +

(
Ȳ − 1 +

ˆ̄Y − 1̂
1− 1̂

)
.

Sometimes the verification of the condition (3.3) can be difficult and we
can be interested to replace it by another condition expressed in terms of the
density process. For instance, we can use the following assumption.

Assumption 3.3 There exists a localizing sequence of F- stopping times τn
such that for every n ≥ 1

E

∫
Θ

[zθ, zθ]1/2τn α(dθ) <∞

where E is the expectation with respect to the initial measure P .



Bayesian Approach to Additional Information 265

Theorem 3.3. Suppose that the assumptions 3.1, 3.2, 3.3 hold. Then X is a
(P̄α,F)-semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by (3.4).

Proof In fact, we have only to show that the assumption 3.3 implies
the local integrability of the variation of B̄. Since B is locally integrable with
respect to the arithmetic mean measure, which follows from the fact that the
jumps of B are bounded by a constant, we have only to show that there exists
a localizing sequence of stopping times sn such that for each n

EP̄α

(
Eα− |βθ| · Cτn + Eα− |Y θ − 1|l ∗ ντn

)
<∞. (3.6)

Let

Z̄t =
dP̄t

dPt
.

We remark that
Z̄t =

∫
Θ

zθt α(dθ).

Using the fact that Z̄ is a positive (P,F)-martingale and the observation that
we are dealing with the predictable positive processes, we obtain:

EP̄α

(
Eα− |βθ| · Cτn + Eα− |Y θ − 1|l ∗ ντn

)
= EP Z̄τn

(
Eα− |βθ| · Cτn + Eα− |Y θ − 1|l ∗ ντn

)
=
∫
Θ

EP {zθ−|βθ| · Cτn + zθ−|Y θ − 1|l ∗ ντn}α(dθ)

=
∫
Θ

EP {zθ−|βθ| · Cτn + zϑ−|Y θ − 1|l ∗ µXτn}α(dθ)

=
∫
Θ

EP {Var([zθ,X(l)−B])τn}α(dθ)

Let
τ ′n = inf{t ≥ 0 : sup

0≤s≤t
|Xs(l)−Bs| > n}

and sn = τ ′n ∧ τn. By the Fefferman inequality, (see [15, Theorem 10.17]) and
the fact that X(l)−B is (P,F)-local martingale we deduce that

EPVar([zθ,X(l)−B])sn ≤‖ (X(l)−B)sn ‖BMO EP [zθ, zθ]1/2sn .

We remark that

‖ (X(l)−B)sn ‖BMO≤ 2(n+ 2max
x

l(x))

where l is truncation function. So, after integration with respect to α, we ob-
tain from assumption 3.3 that (3.6) holds, and, hence, B̄ has locally integrable
variation with respect to P̄α. �
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4 Initial enlargement

4.1 Triplet and initial enlargement

Let X be a semimartingale on a filtered space (Ω,F ,F, P ) with the (right-
continuous completed) natural filtration ofX. Let T = (B,C, ν) be the (P,F)-
triplet of X.

Suppose that we have also a random variable ϑ with values in measurable
Polish space (Θ,A). Define the initially enlarged filtration Γ = (Gt)t≥0 by

Gt :=
⋂
s>t

(Fs ∨ σ(ϑ)).

Our problem is to find the semimartingale decomposition of X with respect
to the enlarged filtration Γ .

Let α be the distribution of the random variable ϑ, i.e. P (ϑ ∈ dθ) = α(dθ).
Let for αt be its regular conditional distribution with respect to the σ-algebra
Ft. Following Bayesian terminology we say that α is the a priori distribution
and αt is the a posteriori distribution of the random variable ϑ with respect
to the information Ft.

We make the following standing assumption.

Assumption 4.1 The posterior distributions αt and the prior distribution α
satisfy: for each t ∈ [0, T ] we have P -a.s.

αt 0 α. (4.1)

We make a stop to discuss the right-continuity of the filtration Γ : in
Amendinger [2, Proposition 3.3] it is shown that under the assumption αt ∼ α
we have that Gt = Ft ∨ σ(ϑ). Inspecting the proof of this result in [2], one
can see that, in fact, it is sufficient to assume only assumption 4.1. So, under
assumption 4.1 we have Gt = Ft ∨ σ(ϑ).

We consider next the product space (Ω×Θ,F ⊗A, IG, IP) where the filtra-
tion IG = (IGt)t≥0 is defined by

IGt =
⋂
s>t

(Fs ⊗A) (4.2)

and IP is the joint law of (ω, ϑ(ω)). Again, under assumption 4.1 we can take
IGt = Ft ⊗A.

Denote the optional and predictable σ-algebras on (Ω ×R+) with respect
to F by O(F) and P(F). With the filtration IG we have that

P(IG) = P(F)⊗A

and
O(F)⊗A ⊂ O(IG).

The following result is due to Jacod [18, Lemme 1.8., p.18-19].
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Lemma 4.1. Under assumption 4.1 there exists a strictly positive O(IG)-
measurable function (ω, t, θ) �→ zθt (ω) such that:

1. For each θ ∈ Θ, zθ is a (P,F)-martingale.
2. For each t ∈ R+, the measure zθt α(dθ) is a version of the regular condi-
tional distribution αt(dθ) so that Pt × α-a.s.

dαt

dα
(θ) = zθt . (4.3)

For each θ ∈ Θ define also a measure P θ:

dP θ
t := zθt dPt. (4.4)

The measure P θ is absolutely continuous with respect to the P , and so X
is a (P θ,F)-semimartingale with the (P θ,F)-triplet T θ = (Bθ, C, νθ).

Next we indicate how one can use the prior and posterior distributions
to obtain the semimartingale decomposition of a (P,F)-semimartingale with
respect to the filtration Γ .

1. We are given a semimartingale X with (P,F)-triplet T = (B,C, ν), where
the natural filtration F has the representation property, random variable
ϑ, prior α(dθ) = P (ϑ ∈ dθ) and posterior αt(dθ) = P (ϑ ∈ dθ|Ft).

2. Compute
dαt

dα
(θ) with the Itô formula as E(mθ) and read βθ and Y θ from

the representation (2.5), use (2.1) to obtain T θ .
3. If T θ is P(F) ⊗A-measurable, replace θ by ϑ in T θ to obtain the triplet

of X with respect to (P, Γ ).

In the following theorem we give the link between the Girsanov theorem
and enlargement of filtrations.

Theorem 4.1. Assume that the process X is a (P,F)-semimartingale with
triplet T = (B,C, ν) and we have the martingale representation property with
respect to natural filtration F. Let ϑ be a random variable such that the as-
sumption (4.1) is satisfied. Suppose also that L1(Ω,F , P ) is separable and the
condition (3.3) holds.

Then the following conditions are equivalent:

(a)X is a (P θ,F)-semimartingale with triplet T θ = (Bθ, C, νθ) on the space
(Ω,F ,F, P ) for α-almost all θ and the application T ′ : (ω, t, θ) → T θ

t (ω)
is P(F)⊗A-measurable.

(b)X is a (IP, IG)-semimartingale with triplet T
′
: (ω, t, θ) → T θ

t (ω) on the
product space (Ω ×Θ,F ⊗A, IG, IP) where IP is the joint law of (ω, ϑ(ω).

(c)X is a (P, Γ )-semimartingale on (Ω,F , P ) with triplet Tϑ = (Bϑ, C, νϑ).

Remark 1. It should be noticed that separability condition will be used only
in the direction: c)⇒ b)⇒ a).
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To prove the theorem we need some lemmas concerning the transformation
of triplets, stopping times and martingales.

Lemma 4.2. The function X : (ω, t, θ)→ (R,B(R)) is P(F)⊗A-measurable
if and only if Xϑ : (ω, t, ϑ(ω))→ (R,B(R)) is P(Γ )-measurable.

Proof It is sufficient to establish the property on semi-algebras generating
the corresponding σ-algebras. Let now a, b, c ∈ R, a < b,A ∈ Fa, B ∈ A and

X(ω, t, θ) = c1(a,b](t)1A(ω)1B(θ). (4.5)

Then X is an element of semi-algebra generating P(F)⊗A and

Xϑ(ω, t, ϑ(ω)) = c1(a,b](t)1A(ω)1B(ϑ(ω)) = c1(a,b](t)1A∩ϑ−1(B)(ω). (4.6)

Since the set A∩ ϑ−1(B) belongs to Fa ∨ σ(ϑ), it belongs also to Ga, and the
function Xϑ defined by (4.6) is an element of P(Γ ).

Inversely, let a, b, c ∈ R, a < b,C ∈ Ga−, then

Xϑ(ω, t, ϑ(ω)) = c1(a,b](t)1C(ω) (4.7)

is an element of semi-algebra generating P(Γ ). Since Ga− =
∨

s<a(Fs ∨ σ(ϑ))
it suffices to consider elements of the generating algebra

⋃
s<a(Fs ∨ σ(ϑ)). In

turn, if C ∈
⋃

s<a(Fs∨σ(ϑ)), then there exists s < a such that C ∈ Fs∨σ(ϑ).
Next, the σ-algebra Fs∨σ(ϑ) is generated by the sets A∩ϑ−1(B) with A ∈ Fs

and B ∈ A. So, we have to consider only the elements Xϑ of the form (4.7)
with C = A ∩ ϑ−1(B). But the corresponding application X is (4.5) and it is
P(F)⊗A-measurable. �

Lemma 4.3. Let for each θ ∈ Θ the process (Xθ
t )t≥0 be an F-adapted càdlàg

process. Let L > 0 and

τθL = inf{s ≥ 0 : Xθ
s (ω) > L}. (4.8)

If the application X : (ω, t, θ)→ Xθ
t is O(IG)-measurable, then

τϑL = inf{s ≥ 0 : Xϑ(ω)
s (ω) > L}

is a Γ -stopping time.

Proof Let t ∈ R+. Then

{(ω, θ) : τθL > t} = {(ω, θ) : sup
s≤t

Xθ
s ≤ L} ∈ IGt

where IGt is defined by (4.2). It means that for all u > t

{(ω, θ) : τθL > t} ∈ Fu ⊗A.
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Since Fu⊗A is generated by the semi-algebra of the sets A×B with A ∈ Fu

and B ∈ A, we can restrict ourselves to this special type of sets. But

{ω : (ω, ϑ(ω)) ∈ A×B} ∈ Fu ∨ σ(ϑ)

and, hence, for u > t
{ω : τϑL > t} ∈ Fu ∨ σ(ϑ).

Then, τϑL is a Γ -stopping time. �

Lemma 4.4. Let θ ∈ Θ and (Mθ
t )t≥0 be an F-adapted càdlàg process. Let M

be the application (t, ω, θ) → Mθ
t (ω). Suppose that L

1(Ω,F , P ) is separable.
Then the following conditions are equivalent:

a) Mθ is (P θ,F)-martingale for α-almost all θ and M is O(IG)-measurable
process,

b) M is a (IP, IG)-martingale,
c) Mϑ is a (P, Γ )-martingale.

Proof We show that

a)
(i)⇒ c)

(ii)⇒ b)
(iii)⇒ a).

(i): Let E be the expectation with respect to P and E be the expectation
with respect to IP, the joint law of (ω, ϑ(ω)). For each s < t,A ∈ Fs, B ∈ A

E(1A(ω)1B(ϑ(ω))(Mϑ
t −Mϑ

s )) = E(1A(ω)1B(θ)(M
θ
t −Mθ

s )).

Let Eα be the expectation with respect to α and Eθ is the expectation with
respect to P θ. Then by the Fubini theorem and conditioning we obtain:

E(1A(ω)1B(θ)(Mθ
t −Mθ

s )) = Eα[1B(θ)Eθ(1A(ω)Eθ(Mθ
t −Mθ

s |Fs))] = 0

since Mθ is a martingale α-a.s. with respect to (P θ,F). Hence, P -a.s.

E(Mϑ
t −Mϑ

s |Fs ∨ σ(ϑ)) = 0.

Since Mϑ is càdlàg, using corollary 2.4 of [22], p.59, we have:

E(Mϑ
t −Mϑ

s |Gs) = lim
u↓s

E(Mϑ
t −Mϑ

s |Fu ∨ σ(ϑ)) = 0

which gives c).
(ii): IfMϑ is (P, Γ )-martingale, then for each t ∈ IQ+ the random variable

Mϑ
t is Gt =

⋂
s>t(Fs ∨ σ(ϑ))-measurable and it can be written in the form

Mϑ
t (ω) = M(ω, t, ϑ(ω)) (P -a.s.) where M is measurable with respect to the

filtration IGt =
⋂

s>t(Ft ⊗ A). Taking a right-continuous version having left-
hand limits we obtain the application M : (ω, t, θ) → (R,B(R)) which is
O(IG)-measurable. For all s < t and A ∈ Fs, B ∈ A we have:
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E(1A(ω)1B(θ)(M(ω, t, θ)−M(ω, s, θ)) = E(1A(ω)1B(ϑ(ω))(Mϑ
t −Mϑ

s )) = 0

which means that IP-a.s.

E(M(ω, t, θ)−M(ω, s, θ)|Fs ⊗A) = 0

and we have b) in the same way as c) before, since M is càdlàg.
(iii): If we have b), then for each (ω, t, θ) we have Mθ

t = M(ω, t, θ). For
A ∈ Fs and B ∈ A we obtain by the Fubini theorem

0 = E(1A(ω)1B(θ)(M(ω, t, θ)−M(ω, s, θ)))

= Eα(1B(θ)Eθ(1A(ω)(Mθ
t −Mθ

s ))).

Hence, for each s < t and α-a.s.

Eθ(1A(Mθ
t −Mθ

s )) = 0.

The measurability problem which may occur here is that α-a.s. set can depend
on A and s. Since L1(Ω,F , P ) is separable, we obtain that α-a.s. for all s and
all Fs-measurable bounded functions gs

Eθ(gs(Mθ
t −Mθ

s )) = 0

and, hence,
Eθ(Mθ

t −Mθ
s |Fs) = 0

which gives a).
�

Proof We show that a), b), c) are equivalent. With the notation of The-
orem 2.1, the processes Mθ(l), Nθ(l) and Uθ(l) are (P,F)-local martingales.
Since the semimartingale X̃ has bounded jumps, all these local martingales
are also locally bounded, i.e. for each θ there exists a localizing sequence τθL
such that the stopped processes are bounded. By Lemma 4.3 the replacing θ
by ϑ in stopping times gives τϑL(ω) which is a (P, Γ )-stopping time. Moreover,
the application τL : (ω, t, θ)→ τθL is a (IP, IG)-stopping time.

Next, by Lemma 4.2 the replacing of θ by ϑ in T θ which supposed to
be P(F)⊗A-measurable, gives Tϑ which is P(Γ )-measurable. Moreover, the
application T ′ : (ω, t, θ)→ T θ is P(IG)-measurable.

Finally, the claim follows from Lemma 4.4 which guaranties the conserva-
tion of martingale properties in the case of replacing θ by the variable ϑ and
in the case of replacing of the initial space by the product space. �

In the considered case where P θ is the conditional law of semimartingale
X given ϑ = θ, one can rewrite the assumption 3.3 in terms of the so-called
decoupling measure Q as in [14]. Let us suppose that the density process
z = (zθ)θ∈Θ is O(F) ⊗ A-measurable. Then we can replace θ by ϑ to obtain
zϑ. We denote by Pt and Qt the restrictions of the measures P and Q to Gt
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where Γ = (Gt)t≥0 is the filtration enlarged by the initial value ϑ. If zϑt > 0
P -a.s. for all t > 0, we can define Q by

dQt = (zϑt )
−1dPt.

The decoupling measure has the following property: (Q,Γ )- triplet of X is the
same as the (P,F)- triplet of X and L(ϑ|Q) = L(ϑ|P ). We can also use an
another definition of a decoupling measure Q, namely, as the solution of the
following martingale problem, if it exists and unique: the (Q,Γ )-triplet of X
is the same as the (P,F)-triplet of X and L(ϑ|Q) = L(ϑ|P ).

Remark 2. If zϑt > 0 P -a.s. for all t > 0, the assumption 3.3 is equivalent to
the assumption:

EQ[zϑ, zϑ]1/2τn <∞ (4.9)

for some localizing sequence of F-stopping times τn. We note that [zϑ, zϑ]1/2

is (Q,Γ )-locally integrable (see [19, Corollary I.4.55]). Here we require the
existence of a localizing sequence of F-stopping times.

Theorem 4.2. Under the settings of Theorem 4.1, assume that a) and (4.9)
hold. Then X is a (P, Γ )-semimartingale with the triplet Tϑ = (Bϑ, C, νϑ).

Proof Using the proof of Theorem 4.1 we note that it remains to prove that
Bϑ is of locally integrable variation with respect to P . Since Bϑ is obtained
from Bθ by replacing θ by ϑ, we have:

Var(Bϑ)t ≤ Var(B)t + |βϑ| · Ct + |Y ϑ − 1|l ∗ νt.

Since B is locally integrable with respect to P , the question of local integra-
bility of Bϑ is reduced to the existence of a localizing sequence of F-stopping
times τn such that for each n

EP

(
|βϑ| · Cτ + |Y ϑ − 1|l ∗ ντn

)
<∞. (4.10)

We have:

EP

(
|βϑ| · Cτn + |Y ϑ − 1|l ∗ ντn

)
= EQ{zϑτ

(
|βϑ| · Cτn + |Y ϑ − 1|l ∗ ντn

)
}

= EQ{zϑ−|βϑ| · Cτn + zϑ−|Y ϑ − 1|l ∗ ντn}
= EQ{zϑ−|βϑ| · Cτn + zϑ−|Y ϑ − 1|l ∗ µXτn}
= EQVar([zϑ,X(l)−B])τn .

By the Fefferman inequality, (see [15, Theorem 10.17]) and the fact that
X(l)−B is both (Q,Γ )- and (P,F)-local martingale we deduce that

EQVar([zϑ,X(l)−B])τn ≤ ‖ (X(l)−B)τn ‖BMO EQ[zϑ, zϑ]1/2τn .
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From Proposition 2.38 in [17] it follows easily that the (P,F)-local martin-
gale (X(l)−B) is (P,F)-locally in BMO since it has bounded jumps, and by
assumption (4.9) there is a localizing sequence of F-stopping times τn tending
to infinity which makes the last expression finite. Hence, the inequality (4.10)
holds and Bϑ has locally integrable variation with respect to P . �

Remark 3. Assumption (4.9) can be expressed in term of information. More
precisely,

EQ[zϑ, zϑ]1/2τ ≤ C(1 + EQz
ϑ
τ log z

ϑ
τ ).

The boundedness of this information was used in [10] to verify the stochastic
Fubini theorem.

4.2 Initial enlargement and Gaussian martingales

Let us first consider a classical example of the initial enlargement of filtration.
Here X is a continuous Gaussian martingale with respect to the measure P
starting from zero and such that there exists lim

t→∞
Xt = X∞.

Let ϑ = X∞. We denote by 〈X〉 the predictable quadratic variation of X
and we put 〈X〉t,∞ := 〈X〉∞ − 〈X〉t.

The prior distribution α(dθ) := P (ϑ ∈ dθ) is a N (0, 〈X〉∞) and the pos-
terior distribution αt of ϑ given Ft is N (Xt, 〈X〉t,∞).

Assume 〈X〉t,∞ > 0 for all t ∈ R+, then αt is equivalent to α, so the
assumption (4.1) is valid.

From the Itô formula with the function f(x, y) = x2/y applied to the first
term in exponential we have:

dαt

dα
(θ) =

√
〈X〉∞√
〈X〉t,∞

exp
{
− (θ −Xt)2

2〈X〉t,∞
+

θ2

2〈X〉∞

}
= exp

{∫ t

0

βθsdXs −
1
2

∫ t

0

(
βθs
)2
d〈X〉s

}
,

where
βθs :=

θ −Xs

〈X〉s,∞
.

Since βθ is a predictable process for each θ ∈ Θ, continuous in θ uniformly
in t ∈ [0, T ] for each T > 0, the application (ω, t, θ) → βθt is P(F) ⊗ A-
measurable. By Theorem 4.1 we can now conclude that the process

Xt −
∫ t

0

X∞ −Xs

〈X〉s,∞
d〈X〉s

is a (P, Γ )-Gaussian martingale with the bracket 〈X〉.
We give some special cases of the above results.
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• Let Y be a Brownian motion and put Xt =
∫ t
0
asdYs, where a is deter-

ministic square-integrable function on R+. If as := I(0,T ](s), then we have:

ϑ = YT , 〈X〉t,∞ = T − t for t ≤ T and βθs =
θ − Ys
T − s

; this implies the

classical representation of the Brownian bridge

Yt =
∫ t

0

YT − Ys
T − s

ds+ Y Γ
t ,

where Y Γ is a Brownian motion with respect to Γ .
• In the previous case take a = I(0,T+η]. We obtain the case of final value

distorted by a small noise example from [1].
• Assume that Y is a fractional Brownian motion and let Xt := E[YT |FY

t ]
be the prediction martingale. This example and related will be studied in
detail in [12].

4.3 Initial enlargement in the Poisson filtration

Assume that X is a Poisson process with intensity 1 on (Ω,F ,F, P ) stopped
in time T and let ϑ = XT . Here the prior distribution α is Poisson(T ) and
the posterior distribution

αt(θ) =

{
eT−t (T−t)

θ−Xt

(θ−Xt)!
if θ ≥ Xt,

0 if θ < Xt.
(4.11)

Next, for all t ∈ [0, T [ we have αt 0 α and

dαt

dα
(θ) = e−t

(T − t)θ−Xt

T θ
I{θ≥Xt}

θ!
(θ −Xt)!

.

We put Y θ
s :=

θ −Xs−
T − s

and note that Y θ is a predictable process such that

0 ≤ Y θ
s <∞ for all s ∈ [0, T ] – this follows from the fact that ∆XT = 0 IP-a.s.

Since
dαt

dα
(θ) = exp

{∫ t

0

(Y θ
s − 1)ds

}∏
s≤t

(
Y θ
s

)∆Xs
,

we obtain that with respect to the filtration Γ the standard Poisson process
has the semimartingale representation:

Xt = nt +
∫ t

0

XT −Xs−
T − s

ds, t < T

where n = (nt)t≥0 is a (P, Γ )-martingale.
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4.4 Lévy processes: initial enlargement with the final value

Let X be a Lévy process. Then for each λ ∈ R the characteristic function of
Xt is

EeiλXt = e−tψ(λ)

where ψ is characteristic exponent given by

ψ(λ) = iaλ+
1
2
σ2λ2 +

∫
R

(
1− eiλx + iλxI{|x|<1}

)
π(dx)

with π a measure on R verifying
∫

R
(1 ∧ x2)π(dx) < ∞. The (P,F)-triplet of

X is T = (aI, σ2I, Leb⊗ π), where It = t.
We consider again stopped in T process and we take ϑ := XT . The process

X is a time-homogeneous Markov process with independent increments and
hence

αt(dθ) = P (XT ∈ dθ|Xt) = P (XT−t + x ∈ dθ)|x=Xt
.

To be able to continue we assume that the law of the random variable Xs has
a density f(s, y) with respect to fixed dominating measure η, i.e. for B ∈ B(R)

P (Xs ∈ B) =
∫
B

f(s, y)η(dy).

Moreover, we assume that f ∈ C1,2b (R+×U) where U is an open set belonging
to R.

Since αt ≺≺ α for t ∈ [0, T [, we can write that η-a.s.

dαt

dα
(θ) =

f(T − t, θ −Xt)
f(T, θ)

. (4.12)

Use the Itô formula to obtain that

f(T − t, θ −Xt) = f(T, θ)−
∫ t

0

∂f

∂s
(T − s, θ −Xs−)ds

−
∫ t

0

∂f

∂x
(T − s, θ −Xs−)dXs (4.13)

+
1
2
σ2
∫ t

0

∂2f

∂x2
(T − s, θ −Xs−)ds

+
∑
s≤t

(
∆f(T − s, θ −Xs) +

∂f

∂x
(T − s, θ −Xs−)∆Xs

)
.

We know that the expression in (4.12) is a (P,F)-martingale for each θ. So, we
can identify the continuous martingale part on the right-hand side of (4.13)
and then the continuous martingale part of (4.12) as

−
∫ t

0

∂f
∂x (T − s, θ −Xs−)

f(T, θ)
dXc

s . (4.14)
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Recall that zθt =
dαt

dα
(θ). According to the Girsanov theorem the term βθ in

the equation (2.1) is obtained as (for more details on this kind of computations
see [19, Lemma III.3.31])

βθt =
d〈zθ,Xc〉t

zθt−d〈Xc,Xc〉t
=
−∂f
∂x

(T − t, θ −Xt−)

f(T − t, θ −Xt−)

= − ∂

∂x
log f(T − t, x)|x=θ−Xt− . (4.15)

Consider next the pure jump martingale in (4.12): we have that

∆f(T − t, θ −Xt) = f(T − t, θ −Xt)− f(T − t, θ −Xt−)

and so
∆zθt
zθt−

=
f(T − t, θ −Xt)
f(T − t, θ −Xt−)

− 1,

from this we obtain (for more details, see [19, p. 175]) that the P θ compensator
νθ of µX is

νθ(dt, du) =
f(T − t, θ − (Xt− + u))
f(T − t, θ −Xt−)

π(du)dt. (4.16)

Moreover, since the expression on the right-hand side of (4.12) is a martin-
gale, the function f(t, u) satisfies the following integro-differential equation,
which might be called Kolmogorov backward integro-differential equation:

∂f

∂t
(T − t, θ − x) =

1
2
σ2
∂2f

∂x2
(T − t, θ − x)− a

∂f

∂x
(T − t, θ − x)

+
∫

R

(
f (T − t, θ − (x+ y)) (4.17)

−f (T − t, θ − x) +
∂f

∂x
(T − t, θ − x) y

)
π(dy)

with the boundary condition f(T, θ − x) = δ{0}(θ − x).

Example: Brownian motion

We look again the Brownian case, as in Subsection 4.2, but now using the
Lévy processes approach. Since the triplet of X is T = (0, σ2I, 0), the equation
(4.17) is reduced to:

∂f

∂t
(T − t, θ − x) =

1
2
σ2
∂2f

∂x2
(T − t, θ − x)

with boundary condition f(T, θ − x) = δ{0}(θ − x).
It is well-known that the solution is
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f(T − t, θ − x) =
1√

2π(T − t)
exp
{
− (θ − x)2

2(T − t)

}

and so βθ =
θ −Xs

T − s
and a new drift is Bθ

t =
∫ t

0

θ −Xs

T − s
ds.

Example: Gamma process

Let X be a Gamma process. This means that the (P,F)-triplet of X is T =
(ab t, 0,

a
ue
−bududt). We know also that the density f(t, x) = P (Xt ∈ dx) is

f(t, x) = bat

Γ (at)x
at−1e−bx with some parameters a, b > 0 (see [5, p.73] ). In

particular, we have that Xt − a
b t is a (P,F)-martingale.

Put again ϑ = XT and we have from (4.16) that the (P θ, F ) compensator
is

νθ(dx, dt) =
(
1− x

θ −Xt−

)a(T−t)−1
a

x
dxdt.

Hence, (P θ,F)-drift of the process X is∫ t

0

∫ θ−Xt−

0

x

(
1− x

θ −Xs−

)a(T−s)−1
a

x
dxdt =

∫ t

0

θ −Xs−
T − s

ds,

and this means that the process Xt− a
b t−

∫ t
0

θ−Xs−
T−s ds is a (P θ,F)-martingale.

Example: Poisson process

We look again at the Poisson case, as in subsection 4.3. We indicate briefly
how one can use the approach described in 4.4, where we know only the triplet
of the process X. So, let X be a Poisson process with intensity λ.

Put again ϑ = XT . Put p(t, k) := P (Xt = k) and we assume that for k ≥ 0
the functions p(·, k) ∈ C1(R+).

We know (see (4.12)) that

dαt

dα
(θ) =

p(T − t, θ −Xt)
p(T, θ)

.

We start with the trivial identity, which is the analog of the Itô formula here:

p(T − t, θ −Xt) = (4.18)

p(T, θ)−
∫ t

0

pt(T − s, θ −Xs−)ds+
∑
s≤t

∆p(T − s, θ −Xs).

Using the fact that ∆Xt ∈ {0, 1}, we have the identity
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∆p(T − s, θ −Xs) = (p(T − s, θ − (Xs− + 1))− p(T − s, θ −Xs−))∆Xs;

since the right-hand side of (4.18) is a (P,F)-martingale, we obtain that the
functions p(t, k) satisfy the following system of differential equations:

pt(T − s, k) = λ(p(T − s, k)− p(T − s, k + 1)) (4.19)

and, hence,

p(T − s, k) = e−λ(T−s)
(λ(T − s))k

k!
is the solution of (4.19) with the boundary condition p(T, θ−x) = δ{0}(θ−x).
It remains to note that

p(T − s, k)− p(T − s, k + 1) = p(T − s, k)
(

k + 1
λ(T − s)

− 1
)

(4.20)

and we can conclude that with respect to the measure P θ the process X has
intensity θ−Xs−

T−s . This means that the process Xt −
∫ t
0

θ−Xs−
T−s ds is a (P θ,F)-

martingale.

5 Weak information

In this and in the next sections we discuss briefly some other applications
of the Bayesian viewpoint related with the enlargement and arithmetic mean
measure.

5.1 Weak insider information

The notion of weak information in mathematical finance was introduced by
Baudoin [3, 4]. Before we discuss briefly this notion, recall our basic setup.
We have a semimartingale X on a filtered space (Ω,F ,F, P ) with the right-
continuous version of natural filtration F = (FX

t )t≥0 completed by the P -null
sets of F , and F = FX

∞. We assume the predictable representation property
for FX and we denote by T = (B,C, ν) the (P,F)-triplet of X.

Let ϑ be a FT -measurable random variable with the values in a measurable
Polish space (Θ,A). Let α := L(ϑ|P ), αt(dθ) := P (ϑ ∈ dθ|Ft), assume that
we have (4.1), and define zθt by (4.3) and finally put dP θ

t = zθt dPt. Recall that
in this case the arithmetic mean measure is

P̄α
t (B) :=

∫
Θ

P θ
t (B)α(dθ) = P (B).

In particular, the (P,F)-triplet of the semimartingaleX does not change under
the arithmetic mean measure P̄α (see Remark 1).

Consider three types of agents in the pricing model, where the stock price
is given by the semimartingale X: ordinary agents, strong insiders and weak
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insiders. We do not want to go in too detailed description of the pricing model,
but we define these three types by giving the information and the (historical)
probability of the agent.

• ordinary agents For the ordinary agent the information is given by F, the
probability is P and he uses the triplet T = (B,C, ν) to build his strategy.

• strong insiders For the strong insider the information is given in the pair
(X,ϑ), and we can model this by an initial enlargement of the filtration.
By using Theorem 4.1 we see that one possibility to model strong insider
is to change the probability P to P θ, and the strong insider works with
the filtration F and the new triplet T θ.

We describe the notion of weak insider in more detail. Let γ be the
probability distribution on (Θ,A). Following [3, p. 112] we assume that γ 0 α.
Then it is easy to see that P̄ γ 0 P̄α = P , where

P̄ γ
t (B) =

∫
Θ×B

zθt γ(dθ)dP,

and the measure P̄ γ is the arithmetic mean measure with respect to the prior
distribution γ; in [3] the corresponding measure on (Ω,F ,F) is called the
minimal probability associated with the conditioning (T, ϑ, γ).

Hence, we can model the weak insiders as follows:

• weak insiders For the weak insider the information is given by the filtration
F, but he changes the probability measure P to the measure P̄ γ and he
works with the triplet T̄ γ = (B̄γ , C, ν̄γ).

Assume that we have
γt 0 γ

and we have assumption 3.3 with respect to the measure P ⊗ γ.
We can now use Theorem 3.1 to compute the new triplet with respect to

the measure P̄ γ and we obtain:

B̄γ = B + β̄γ · C + (Ȳ γ − 1)l ∗ ν,
C̄γ = C, (5.1)
ν̄γ = Ȳ γ · ν,

where the predictable local characteristics β̄γ and Ȳ γ are given by

β̄γt = Eγt−βθt , Ȳ γ
t = Eγt−Y θ

t (5.2)

with γt and γt− be the a posteriori distributions under γ. Recall that γt is
defined by :

γt(A) :=

∫
A
zθt γ(dθ)∫

Θ
zθt γ(dθ)

, A ∈ A,
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and γt− is given by the same formula with replacing zθt by zθt−.
Define now m̄γ as

m̄γ = β̄γ ·Xc +

(
Ȳ γ − 1 +

ˆ̄Y γ − 1̂
1− 1̂

)
∗ (µ− ν),

then we have that
dP̄ γ

t

dPt
= E(m̄γ)t.

By definition of P̄ γ
t and γt we have also that

dγt

dγ
(θ) =

dP θ
t

dP̄ γ
t

=
dP θ

t

dPt

dPt

dP̄ γ
t

= zθt
1

E(m̄γ)t
.

In comparison with
dαt

dα
(θ) which is equal to zθt (Pt × α -a.s.), it means that

dγt

dγ
(θ) =

dαt

dα
(θ)

1
E(m̄γ)t

.

Example: Brownian motion

Let X be a Brownian motion stopped in T and suppose that the Brownian
filtration F is enlarged by ϑ = XT . In this example T = (0, I, 0) and

βθ =
θ −Xt

T − t
.

Consider the example of final value distorted with a noise. We suppose that
the weak insider knows in advance the value y of random variable Y = XT +ε,
where ε is independent of XT and has N (0, η2) as law. The prior of the insider
with weak information is γ = P (XT |Y ), which by the normal correlation
theorem is N (m,σ2) with σ2 = (T−1 + η−2)−1 and m = Y σ2/η2.

For t < T the posterior distribution is γt := P (XT |Y,Xt), which by the
normal correlation theorem is N (mt, σ

2
t ) with σ

2
t = ((T − t)−1 + η−2)−1 and

mt = (Y η−2 +Xt(T − t)−1)σ2t .
According to previous results on triplets the drift of X under the insider

measure is given by

B̄γ
t =

t∫
0

Eγsϑ−Xs

T − s
ds. (5.3)

Since

Eγsϑ =
Y (T − s) +Xsη

−2

T − s+ η−2
,

we have after simplifications that



280 D. Gasbarra, E. Valkeila and L. Vostrikova

B̄γ
t =

t∫
0

Y −Xs

T − s+ η2
ds.

Remark 1. One can analyze the increasing information along the same lines.
By this we mean that the insider obtains dynamically more and more precise
information about the random variable ϑ. A model of this type is the following:
in addition to the price process X the insider observes the process Y , where

Yt = ϑ+ εt,

where ε is a semimartingale, independent of the random variable ϑ such that
εt → 0 P -a.s. as t→ T . This kind of models are analyzed in [7].

6 Additional expected logarithmic utility of an insider

6.1 Introduction

We consider the pricing model with two assets, the stock (risky asset) and the
bond (riskless asset). We assume as in [1] that the process X has the dynamics

dXt = µtd〈M〉t + dMt (6.1)

where µ is a predictable process and M is a continuous Gaussian martingale
with deterministic bracket 〈M〉. We assume that the interest rate r is equal
to zero, so the bond price Bt = 1 for all t.

We assume that the stock price S has the dynamics

dSt = StdXt.

For the investment strategy π we have the portfolio dynamics

dV π
t = πtV

π
t dXt.

Then it can be shown that with respect to the logarithmic utility, the
average optimal strategy πo of an ordinary investor is πo := µ. Note that here
the average optimal strategy is computed with respect to the measure P .

6.2 Additional expected utility of strong insiders

Now consider a strong insider who knows the final value of the stock. We
assume that it is the same as the insider knows the final value of the martingale
MT . Put again ϑ =MT .

Then he can model the dynamics of X as

dXt = (µt + βθt )d〈M〉t + dMθ
t . (6.2)
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Here Mθ is a continuous Γ -martingale with

Mθ
t =Mt −

∫ t

0

βθsd〈M〉s

and
βθt =

θ −Mt

〈M〉t,T
where 〈M〉t,T = 〈M〉T − 〈M〉t. Again the optimal expected investment strat-
egy of an insider agent for the logarithmic utility is πi = µ+βθ. Note that the
expectation is computed with respect to the measure IP which is the joint law
of (M,ϑ(ω)). The log-value of the optimal strategy for an ordinary investor is

log V πo

t = log V0 +
∫ t

0

µsdMs +
1
2

∫ t

0

µ2sd〈M〉s. (6.3)

Similarly, the log-value of the optimal strategy for the insider investor is

log V πi

t = log V0 +
∫ t

0

(µs + βθs )dM
θ
s +

1
2

t∫
0

(βθs + µs)2d〈M〉s. (6.4)

To calculate the expectation E we need the following lemma.

Lemma 6.1. Let uθ = (uθt )t≥0 be a positive F-adapted càdlàg process for each
θ ∈ Θ. Suppose that the application u : (ω, t, θ) → uθt (ω) is O(IG)-measurable
with IG defined by (4.2). Then

E
∫ t

0

uθsd〈M〉s = E

∫ t

0

ūαs d〈M〉s (6.5)

where and ūαs is the posterior mean of u
θ
s, i.e.

ūαs = Eαs−uθs

Proof Recall first the following fact. Assume that y = (yt)t≥0 is a posi-
tive uniformly integrable (P,F)-martingale and D is a predictable increasing
process with D0 = 0. Then by [15, Theorem 5.16, p. 144 and Remark 5.3, p.
137]

EytDt = E

∫ t

0

(pY )sdDs = E
∫ t

0

Ys−dDs. (6.6)

Since zθ is the conditional density of the law of X given ϑ = θ with respect
to P , we have using (6.6) and the ordinary Fubini theorem that

E
∫ t

0

uθsd〈M〉s = E

(∫
Θ

zθt

∫ t

0

uθsd〈M〉sdα
)
=
∫
Θ

E

(
zθt

∫ t

0

uθsd〈M〉s
)
dα

=
∫
Θ

E

∫ t

0

zθs−u
θ
sd〈M〉sdα = E

∫ t

0

(∫
Θ

zθs−u
θ
sdα

)
d〈M〉s

= E

∫ t

0

ūαs d〈M〉s.
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This proves (6.5). �
Let us now compute the expected utility from the insider point of view.

This means that we take the expectation of (6.4) with respect to the insider
measure IP which is the joint law of (ω, ϑ). In the computation we use the
fact that the martingale M has a drift

∫ ·
0
βθsd〈M〉s with respect to the insider

measure. We obtain:

E(log V πi

t − log V πo

t ) =
1
2
E
∫ t

0

(µs + βθs )
2d〈M〉s

−1
2
E
∫ t

0

µ2sd〈M〉s −E
∫ t

0

µsdMs

=
1
2
E
∫ t

0

(βθs )
2d〈M〉s

=
1
2
E

∫ t

0

v̄αs (β)d〈M〉s

where v̄αs (β) is the posterior variance of the process βθs . Next we give the
Bayesian interpretation of this result. Note first that the Kullback–Leibler
information in the prior with respect to posterior is

I(α|ατ ) := Eατ log
dατ

dα
(θ).

In our case we have:

E(log V πi

t − log V πo

t ) = EI(α|αt).

For more information on this kind of computations we refer to [10].
We compute next the difference of the expected gain from the ordinary

agent point of view. This has the interpretation that an ordinary agent has
excess to the insider information, but he thinks that this is false. We model
this by the measure P ⊗ α — this means that the ordinary agent does not
change his triplet. So the expected utility gain has to be calculated using the
measure P ⊗ α. With a similar computation to the previous one we obtain
that

EP⊗α(log V πo

t − log V πi

t ) =
1
2
EP⊗α

∫ t

0

(βθs )
2d〈M〉s.

The Kullback–Leibler information in the posterior ατ with respect to the prior
α is define by

I(ατ |α) := Eα log
dα

dατ
.

For our model we can conclude that

EP⊗α(log V πo

t − log V πi

t ) = EI(αt|α).

Note that the differences of the expected gains are in both cases positive
— this reflects the fact the the investors act optimally according to their own
model.
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6.3 Additional expected logarithmic utility of weak insider

Assume that γ and α are two different equivalent priors for the parameter ϑ;
we can define the arithmetic mean measures P̄ γ and P̄α; we can compute the
(F, P̄ γ) and (F, P̄α)-triplets of the semimartingale X by (3.1). Note that here
we do not assume that α is the marginal law of the parameter ϑ.

Denote the optimal strategies based on the weak information for the prior
γ and α by πw,γ and πw,α, respectively.

Then, with a familiar computation

EP̄γ (log V w,γ
t − log V w,α

t ) =
1
2
EP̄γ

( t∫
0

(β
γ

s − β
α

s )
2d〈M〉s

)
(6.7)

where
β̄γs = Eγs−βθs , β̄αs = Eαs−βθs .

Note that the right-hand side of (6.7) is nothing else but thye Kullback–Leibler
information of P̄α in P̄ γ and, hence,

EP̄γ (log V w,γ
t − log V w,α

t ) = I(P̄α|P̄ γ)t.

Note that

0 ≤ I(P̄α|P̄ γ)t = EP̄γ log
dP̄ γ

t

dP̄α
t

=

=
∫
Θ

∫
Ω

{
log

dP θ
t

dP̄α
t

− log
dP θ

t

dP̄ γ
t

}
P θ
t (dω)γ(dθ)

= Eγ

{
I(P θ

t |P̄α
t )− I(P θ

t |P̄ γ
t )
}
= EP̄γ

t

{
I(α|αt)− I(γ|γt)

}
In particular, this means that

EP̄γ
t
I(γ|γt) = inf

α
EP̄γ

t
I(α|αt)

where the infimum is taken over all measures α which are equivalent to γ.
The interpretation is that if one believes in his own prior γ, he expects to get
less information from the data than any other person using the same model
with a “wrong” prior.
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