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1 Introduction

We consider a market with m risky assets. Denote by Si(t) the price of the
i-th asset at time t. We shall assume that the prices of assets depend on k
economic factors xi(n), i = 1, . . . , k, with values changing at discrete times
n = 0, 1, . . . , so that for t ∈ [n, n+ 1) the prices satisfy the equation

dSi(t)
Si(t)

= ai(x(n))dt+
k+m∑
j=1

σij(x(n))dwj(t), (1.1)

where (w(t) = (w1(t), w2(t), . . . , wk+m(t)) is a (k+m)-dimensional Brownian
motion defined on a given probability space (Ω, (Ft),F , P ). The economic
factors x(n) = (x1(n), . . . , xk(n)) evolve according to the equation
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xi(n+ 1) = xi(n) + bi(x(n)) +
k+m∑
j=1

dij(x(n))[wj(n+ 1)− wj(n)]

= g(x(n),W (n)), (1.2)

where W (n) := (w1(n+ 1)− w1(n), . . . , wk+m(n+ 1)− wk+m(n)).
We assume that a, b are bounded and continuous vector functions, and

σ, d are bounded and continuous matrix functions of suitable dimensions.
Additionally we shall assume that the matrix ddT (T stands for transpose) is
nondegenerate. Notice that equation (1.2) corresponds to the discretization
of a diffusion process. The set of factors may include dividend yields, price-
earning ratios, short term interest rates, the rate of inflation see e.g. [1]. The
dynamics of such factors is usually modelled using diffusions, frequently linear
as in the case when a is a function of a spot interest rate governed by the
Vasicek process (see [1]). Our assumptions concerning boundedness of the
vector functions a and b may be relaxed allowing linear growth. However in
this case we need more complicated assumptions to obtain analogs of Lemmas
3.2, 3.3 and Corollary 3.1 which are important in the proof of Proposition 3.1.

Assume that starting with an initial capital V (0) we invest in the
given assets. Let hi(n) be the part of the wealth process located in the
i-th asset at time n, which is assumed to be nonnegative. The choice of
hi(n) depends on our observation of the asset prices and economic fac-
tors up to time n. Denoting by V (n) the wealth process at time n and by
h(n) = (h1(n), . . . , hm(n)) our investment strategy at time n, we have that
h(n) ∈ U = {(h1, . . . , hm), hi ≥ 0,

∑m
i=1 hi = 1} and

V (n+ 1)
V (n)

=
m∑
i=1

hi(n)ξi(x(n),W (n)), (1.3)

where

ξi(x(n),W (n)) = exp

ai(x(n))− 1
2

k+m∑
j=1

σ2ij(x(n))

+
k+m∑
j=1

σij(x(n))[wj(n+ 1)− wj(n)]

 .

We are interested in the following investment problems:
maximize the risk neutral cost functional

J0x({h(n)}) = lim inf
n→∞

1
n
Ex [lnV (n)] (1.4)

and maximize the risk sensitive cost functional

Jγ
x ({h(n)}) =

1
γ
lim sup
n→∞

1
n
lnEx [V (n)γ ] (1.5)
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with γ < 0. Using (1.3) we can rewrite the cost functional (1.4) as

J0x({h(n)}) = lim inf
n→∞

1
n
Ex

[
n−1∑
t=0

ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

)]

= lim inf
n→∞

1
n
Ex

[
n−1∑
t=0

c(x(t), h(t))

]
, (1.6)

with c(x, h) = E {ln (
∑m

i=1 hiξi(x,W (0)))}. It is clear that risk neutral cost
functional J0 depends on the uncontrolled Markov process (x(n)) and we prac-
tically maximize the cost function c itself. Consequently an optimal control
is of the form (û(x(n))), where suph c(x, h) = c(x, û(x)) and the Borel mea-
surable function û : Rk �→ U exists by continuity of c for fixed x ∈ Rk. This
control does not depend on asset prices and is a time independent function of
current values of the factors x only. The Bellman equation corresponding to
the risk neutral control problem is of the form

w(x) + λ = sup
h

[c(x, h) + Pw(x)] (1.7)

where Pf(x) := Ex {f(x(1))} for f ∈ bB(Rk) - the space of bounded Borel
measurable functions on Rk, is a transition operator corresponding to (x(n)).
In Section 2 we shall show that there are solutions w and λ to the equation
(1.7) and λ is the optimal value of the cost functional J0.
Letting

ζh,γn (ω) :=
n−1∏
t=0

exp

(
γ ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

))
(
E

[
exp

(
γ ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

))
|Ft−1

])−1

consider a probability measure Ph,γ defined by its restrictions Ph,γ
|n to the

first n times, given by the formula

Ph,γ
|n (dω) = ζh,γn (ω)P|n(dω).

Then the cost functional (1.5) can be rewritten as

Jγ
x ({h(n)}) =

1
γ
lim sup
n→∞

1
n
lnEx

[
exp

(
γ

n−1∑
t=0

ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

))]

=
1
γ
lim sup
n→∞

1
n
lnEh,γ

x

[
exp

(
n−1∑
t=0

cγ(x(t), h(t))

)]
, (1.8)

with
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cγ(x, h) := ln

(
E

[(
m∑
i=1

hiξi(x,W (0))

)γ])
. (1.9)

The risk sensitive Bellman equation corresponding to the cost functional Jγ

is of the form

ewγ(x) = inf
h

[
e(cγ(x,h)−λγ)

∫
E

ewγ(y)Ph,γ(x, dy)
]
. (1.10)

where for f ∈ bB(Rk)

Ph,γf(x) = E

[(
m∑
i=1

hiξi(x,W (0))

)γ

exp (−cγ(x, h)) f (g(x,W (0)))

]
,

(1.11)
with g as in (1.2) and where 1

γλγ is the optimal value of the cost functional
(1.8). Notice that under measure Ph,γ the process (x(n)) is still Markov but
with controlled transition operator Ph,γ(x, dy). Following [6] we shall show
that

1
γ
λγ → λ (1.12)

whenever γ ↑ 0.
In what follows we distinguish two special classes of controls (hn): Markov

controls UM = {(h(n)) : h(n) = un(x(n))}, where un : Rk �→ U is a sequence
of Borel functions, and stationary controls Us = {(hn) : h(n) = u(x(n))},
where u : Rk �→ U is a Borel function. We shall denote by B(Rk) the set of
Borel subsets of Rk and by P(Rk) the set of probability measures on Rk.

The study of risk sensitive portfolio optimization has been originated in [1]
and then continued in a number of papers, in particular, in [16]. Risk sensitive
cost functional was studied in papers [13], [6], [7], [3], [4], [12], [2], [8] and
references therein. In this paper using techniques based on the splitting of
Markov processes (see [15]) we study the Poisson equation for additive cost
functional, the solution of which is also a solution to the risk neutral Bellman
equation. We then consider the problem of risk sensitive portfolio optimization
with risk factor close to 0. We generalize the result of [16], where uniform
ergodicity of factors was required and using [8] we show the existence of the
solution to the Bellman equation for small risk in a more general ergodic case.
The proof that a nearly optimal continuous risk neutral control function is
also nearly optimal for risk sensitive cost functional with risk factor close to 0
is based on a modification of the arguments in [6] using some results from the
theory of large deviations.

2 Risk neutral Bellman equation

By the nondegeneracy of the matrix ddT there exists a compact set C ⊂ Rk,
for which we can find a closed ball in Rk, β > 0 and ν ∈ P(Rk) such that
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ν(C) = 1 and ∀A∈B(Rk)

inf
x∈C

P (x,A) ≥ βν(A). (2.1)

We fix a compact set C, β > 0 and ν ∈ P(Rk) satisfying the above minoriza-
tion property. Additionally assume that the set C is ergodic, i.e.

∀x∈Rk Ex {τC} <∞ and sup
x∈C

Ex {τC} <∞,

where τC = inf {i > 0 : xi ∈ C}.
Consider a splitting of the Markov process (x(n)) (see [15]).
Let R̂k =

{
C × {0} ∪ C × {1} ∪ (Rk \ C)× {0}

}
and x̂(n) = (x1(n), x2(n))

be a Markov process defined on R̂k such that

(i) when (x1(n), x2(n)) ∈ C × {0}, x1(n) moves to y accordingly to
(1− β)−1(P (x1(n), dy)− βν(dy)) and whenever y ∈ C, x2(n) is changed
into x2(n+ 1) = βn+1, where βn is i.i.d.

P {βn = 0} = 1− β, P {βn = 1} = β,

(ii) when (x1(n), x2(n)) ∈ C × {1}, x1(n) moves to y accordingly to ν and
x2(n+ 1) = βn+1,

(iii) when (x1(n), x2(n)) ∈ Rk \ C × {0}, x1(n) moves to y accordingly to
P (x1(n), dy) and whenever y ∈ C, x2(n) is changed into x2(n+1) = βn+1.

Let C0 = C × {0}, C1 = C × {1}.
Following [8] and [15] we have

Proposition 2.1. For n = 1, 2 . . . we have P -a.e.

P (x̂(n) ∈ C0|x̂(n) ∈ C0 ∪ C1, x̂(n− 1), . . . , x̂(0)) = 1− β. (2.2)

The process (x̂(n) = (x1(n), x2(n))) is Markov with transition operator
P̂ (x̂(n), dy) defined by (i)-(iii). Its first coordinate (x1(n)) is also a Markov
process with transition operator P (x1(n), dy). Furthermore, for any bounded
Borel measurable function f : (Rk)n+1 �→ R we have

Ex {f(x(1), x(2), . . . , x(n))} = Êδ∗x

{
f(x1(1), x1(2), . . . , x1(n))

}
(2.3)

where δ∗x = δ(x,0) for x ∈ Rk \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C

and Êµ stands for conditional law of Markov process (x̂(n)) with initial law
µ ∈ P(R̂k).

Proof. Since the Markov property of (x1(n)) is fundamental in this paper we
recall this proof from [8] leaving the proof of other statements to the reader.
For A ∈ Rk we have
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P
(
x1(n+ 1) ∈ A|x1(n), x1(n− 1), . . . , x1(0)

)
= P

(
x1(n+ 1) ∈ A|x1(n), x2(n) = 0, x1(n− 1), . . . , x1(0)

)
P
(
x2(n) = 0|x1(n), x1(n− 1), . . . , x1(0)

)
+P
(
x1(n+ 1) ∈ A|x1(n), x2(n) = 1, x1(n− 1), . . . , x1(0)

)
P
(
x2(n) = 1|x1(n), x1(n− 1), . . . , x1(0)

)
.

In the case when x1(n) ∈ C, the right-hand side of the last equation is equal
to

P an(x1(n), A)− βν(A)
1− β

(1− β) + βν(A) = P an(x1(n), A).

For x1(n) /∈ C, it is equal to P an(x1(n), A), which completes the proof of the
Markov property of (x1(n)).

✷

By the assumption on C and the construction of the split Markov process
we immediately have

Corollary 2.1. Êx [τC1 ] <∞ for x ∈ R̂k and supx∈C1
Êx [τC1 ] <∞.

Lemma 2.1. Given h(n) ∈ UM there is a unique λ({h(n)}) such that for
x ∈ C1

Êx

[τC1∑
t=1

(
c(x1(t), h(t))− λ({h(n)})

)]
= 0. (2.4)

Proof. Notice that for x ∈ C1 the mapping

D : λ �→ Êx

[τC1∑
t=1

(
c(x1(t), h(t))− λ

)]

is continuous and strictly decreasing. Since the values of this mapping for ‖c‖
and −‖c‖ are, respectively, nonpositive and nonnegative, there is a unique λ
for which the mapping attains 0.

✷

For Borel measurable u : Rk �→ U let

ŵu(x) = Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]
, (2.5)

where we use the notation λ(u) = λ({u(x(n))}).

Lemma 2.2. Function ŵu defined in (2.5) is the unique (up to an additive
constant) solution to the additive Poisson equation (APE ) for the split Markov
process (x̂(n)):

ŵu(x) = c(x1, u(x1))− λ(u) +
∫
R̂k

ŵu(y)P̂ (x, dy). (2.6)
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Furthermore, if ŵ and λ satisfy the equation

ŵ(x) = c(x1, u(x1))− λ+
∫
R̂k

ŵ(y)P̂ (x, dy) (2.7)

then λ = λ(u) (defined in Lemma 2.1) and ŵ differs from ŵu by an additive
constant.

Proof. In fact, we have using (2.4)

Êx [w(x̂(1))] = Êx

[
χx̂(1)∈C1Êx(1)

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]]

+Êx

[
χx̂(1)/∈C1Êx(1)

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]]
= Êx

[
χx̂(1)∈C1

(
c(x1(1), u(x1(1)))− λ(u)

)]
+Êx

[
χx̂(1)/∈C1

τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]

= Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]
−
(
c(x1, u(x1))− λ(u)

)
from which (2.6) follows. If ŵu is a solution to (2.6) then by iteration we
obtain that

ŵu(x) = Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)
+ Êx̂τC1

[ŵu(x̂(1))]

]
, (2.8)

where by the construction of the split Markov process

ÊxτC1
[ŵu(x̂(1))] = (1− β)

∫
Rk

ŵu(z, 0)ν(dz) + β

∫
Rk

ŵu(z, 1)ν(dz).

Consequently, ŵu differs from ŵu defined in (2.5) only by an additive constant.
Similarly, if ŵ and λ are solutions to (2.7) then ŵ differs from

w̃(x) = Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)]

by an additive constant Êz {ŵ(x̂(1))} with z ∈ C1. Since w̃ itself is a solution
to (2.7) we have that Êz {w̃(x̂(1))} = 0 for z ∈ C1. Therefore, for z ∈ C1
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0 = Êz [w̃(x̂(1))] = Êz

[
χ
R̂k\C1

(x̂(1))
τC1∑
t=1

(
c(x1(t), u(x1(t)))− λ

)
+χC1(x̂(1))Êx̂(1)

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)]]

= Êz

[τC1∑
t=1

(
c(x1(t), u(x1(t)))− λ

)]

and by Lemma 2.1 we have λ = λ(u) which completes the proof.
✷

Corollary 2.2. Given a solution ŵu : R̂k �→ R to the APE (2.6) we have that
wu defined by

wu(x) := ŵu(x, 0) + 1C(x)β [ŵu(x, 1)− ŵu(x, 0)] (2.9)

is a solution to the APE for the original Markov process (x(n))

wu(x) = c(x, u(x))− λ(u) +
∫
Rk

wu(y)P (x, dy). (2.10)

Furthermore if wu is a solution to (2.10) then ŵu defined by

ŵu(x1, x2) = c(x1, u(x1))− λ(u) + Êx1,x2

[
wu(x1(1))

]
(2.11)

is a solution to (2.6).

Proof. By (2.2) we have

Êx [ŵu(x̂(1))] = Êx

[
Êx

[
ŵu(x̂(1))|x1(1)

]]
= Êx

[
χC(x1(1))

[
(1− β)ŵu(x1(1), 0) + βŵu(x1(1), 1)

]
+ χE\C(x1(1))ŵu(x1(1), 0)

]
= Êx

[
wu(x1(1))

]
. (2.12)

Therefore by (2.6) we obtain that wu defined in (2.9) is a solution to (2.10).
Assume now that wu is a solution to (2.10). Then by (2.3)

Êδ∗x

[
wu(x1(1))

]
= Ex [wu(x(1))]

and for ŵu given in (2.11) we obtain (2.9). From (2.9) we obtain (2.12) which
in turn by (2.11) shows that ŵu is a solution to (2.6).

✷

Remark 2.1. The APE has been a subject of intensive studies in [14] (together
with the so called multiplicative Poisson equation). The results given above
show that the use of splitting techniques provides an explicit form for the
solutions to this equation.
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The value of λ(u) has another important characterization. Namely, we have

Proposition 2.2. For Borel measurable u : Rk → U the value λ(u) defined
in Lemma 2.1 is equal to

λ(u) = lim
n→∞

1
n
Ex

[
n−1∑
t=0

c(x(t), u(x(t)))

]
(2.13)

Proof. Let λ > λ(u). For z ∈ C1 we have

Êz

[τC1∑
t=1

(
c(x1(t), u(x1(t)))− λ

)]
< 0

and consequently for N ≥ N0

Êz

τC1∧N∑
t=1

(
c(x1(t), u(x1(t)))− λ

) ≤ 0. (2.14)

Let

wu
N (x) = Êx

σC1∧N−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

) (2.15)

with σC1 = inf {t ≥ 0 : x̂(t) ∈ C1}.
For x /∈ C1

wu
N+1(x) = Êx

[
c(x1(0), u(x1(0)))− λ

+Êx̂(1)

[ σC1∧N−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

) ]]
= Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]

(2.16)

and for x ∈ C1 by (2.14) we have

wu
N+1(x) = c(x1(0), u(x1(0)))− λ

≥ Êx

[
c(x1(0), u(x1(0)))− λ

+ Êx̂(1)

[ σC1∧N−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

) ]]
= Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]
. (2.17)
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Consequently,

wu
N+1(x) ≥ Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]

(2.18)

and by iteration for N ≥ N0

wu
N+k(x) ≥ Êx

[
k−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)
+ wu

N (x̂(k))

]

≥ Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))− λ− ‖c‖N
]
.

Therefore,

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]

≤ 1
k
‖c‖N +

1
k
sup
N
Êx

σC1∧N−1∑
t=1

(
c(x1(t), u(x1(t)))− λ(u)

)+ λ

and, consequently,

lim sup
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≤ λ.

With λ decreasing to λ(u), we obtain

lim sup
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≤ λ(u). (2.19)

Assume now that λ < λ(u). For z ∈ C1 we have

Êz

[τC1∑
t=1

(
γc(x1(t), u(x1(t)))− λ

)]
> 0

and, consequently, for N ≥ N0

Êz

τC1∧N∑
t=1

(
c(x1(t), u(x1(t)))− λ

) ≥ 0. (2.20)

Therefore, for wu
N defined in (2.15), similarly to (2.16)-(2.17), we have

wu
N+1(x) ≤ Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]

(2.21)

and by iteration for N ≥ N0
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wu
N+k(x) ≤ Êx

[
k−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)
+ wu

N (x̂(k))

]

≤ Êx

[
k−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)
+ ‖c‖N

]
.

Therefore,

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]

≥ −1
k
‖c‖N +

1
k
inf
N
Êx

σC1∧N−1∑
t=1

(
c(x1(t), u(x1(t)))− λ(u)

)+ λ

and

lim inf
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≥ λ

and, finally,

lim inf
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≥ λ(u) (2.22)

which together with (2.19) completes the proof.
✷

We summarize the results of this section in the following

Theorem 2.1. There exists a unique (up to an additive constant) function
w : Rk �→ R and a unique constant λ which are solutions to the Bellman
equation (1.7). Furthermore, λ is the optimal value of the cost functional J0.

Proof. Notice that for û optimal we find w and λ as a solution to the APE

w(x) = c(x, û(x))− λ+
∫
Rk

w(y)P (x, dy),

which exist by Lemmas 2.1, 2.2 and Corollary 2.2. By Proposition 1.17, λ
is an optimal value of the cost functional J0. Uniqueness up to an additive
constant of w follows from uniqueness of the solutions to APE for the split
Markov process (Lemma 2.2) and Corollary 2.2.

✷

3 Risk sensitive asymptotics

In what follows we shall assume that γ ∈ (−1, 0). The following estimation
will be useful in this section



222 G.B. Di Masi and L̂. Stettner

Lemma 3.1. We have

eγ‖a‖ ≤ E

[(
m∑
i=1

hiξi(x,W (0))

)γ]
≤ e|γ|‖a‖+

1
2γ

2‖σ2‖. (3.1)

Proof. Since r(z) = zγ is convex, by the Jensen inequality we have

E

[(
m∑
i=1

hiξi(x,W (0))

)γ]
≤

m∑
i=1

hiE [(ξi(x,W (0)))γ ] .

Using the Hölder inequality twice we have

E

[(
m∑
i=1

hiξi(x,W (0))

)γ]
≥ 1

E
[
(
∑m

i=1 hiξi(x,W (0)))−γ
]

≥ 1

(
∑m

i=1 hiE [(
∑m

i=1 ξi(x,W (0)))])−γ
.

Then using standard estimations for ξi we easily obtain (3.1).
✷

Immediately from Lemma 3.1 we have

Corollary 3.1.

lim sup
γ→0

sup
x∈Rk

sup
h∈U

∣∣∣∣∣E
[(

m∑
i=1

hiξi(x,W (0))

)γ]
− 1

∣∣∣∣∣ = 0 (3.2)

and
lim
γ→0

sup
x∈Rk

sup
h∈U

|cγ(x, h)| = 0. (3.3)

We furthermore have

Lemma 3.2.
lim
γ→0

1
γ
cγ(x, h) = c(x, h) (3.4)

and the limit is increasing and uniform in x and h from compact subsets.

Proof. By the Hölder inequality 1
γ cγ(x, h) is increasing in γ. Using l’Hôpital’s

rule for γ → 0 we identify the limit as c(x, h). Since the functions c(x, h)
and cγ(x, h) are continuous, by Dini’s theorem the convergence is uniform on
compact sets.

✷

Lemma 3.3. We have that

sup
A∈B(Rk)

sup
x∈Rk

sup
h∈U

∣∣∣∣Ph,γ(x,A)
P (x,A)

− 1
∣∣∣∣→ 0 (3.5)

as γ → 0.



Remarks on Risk Neutral and Risk Sensitive Portfolio Optimization 223

Proof. Notice that by the Hölder inequality we have

Ph,γ(x,A) ≤ e−cγ(x,h)e
1
2 c2γ(x,h)

√
P (x,A) (3.6)

and
P (x,A) ≤ e

1
2 cγ(x,h)e−

1
2γ‖a‖

√
Ph,γ(x,A) (3.7)

from which (3.5) easily follows.
✷

In what follows we shall assume that for some γ < 0 we have

Ex

[
e|γ|τC

]
<∞ (3.8)

for x ∈ Rk and
sup
x∈C

Ex

[
e|γ|τC

]
<∞. (3.9)

where C is the same compact set as in Section 2.
We recall the following fundamental result from [8].

Theorem 3.1. For γ < 0 sufficiently close to 0 there exists λγ and a contin-
uous function wγ : Rk �→ R such that the Bellman equation (1.10) is satisfied.
Moreover 1

γλ
γ is an optimal value of the cost functional Jγ

x and the control
û(xn), where û is a Borel measurable function for which the infimum in the
right hand side of (1.10) is attained, is an optimal control within the class of
all controls from Us.
Furthermore, if for an admissible control (hn) we have that

lim sup
t→∞

E(hn)
x

[(
Eht
xt

[
ewγ(x1)

])α]
<∞

for every α > 1, then 1
γλ

γ ≤ Jγ
x ((hn)).

Notice now that by the Hölder inequality the value of the functional Jγ is
increasing in γ < 0 and, by the Jensen inequality, is dominated by the value of
J0. Consequently, the same holds for the optimal values of the cost functionals,
i.e.

1
γ
λγ ≤ λ. (3.10)

Furthermore, there is a sequence un of continuous functions from Rk to
U such that c(x, un(x)) converges uniformly in x from compact subsets to
suph∈U c(x, h). By Lemma 2.1 and Theorem 2.1 we immediately have that
λ((un))→ λ as n→∞. This means that for any ε > 0 there is an ε-optimal
continuous control function uε. We are going to show that for each ε > 0

Jγ(uε(x(n)))→ J0(uε(x(n))) (3.11)

as γ → 0. Since the proof will be based, following Section 5 of [6], upon large
deviation estimates, we need the following assumption:
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(A) there is a continuous function f0 : Rk �→ [1,∞) such that for each
positive integer n the set Kn :=

{
x ∈ Rk : f0(x)

Pf0(x)
≤ n
}
is compact.

Remark 3.1. By direct calculation one can show that for a large class of ergodic
processes (x(n)) function f0(x) = ec‖x‖

2
satisfies (A) for small c. To be more

precise, assume for simplicity that k = 1 and |x+b(x)| ≤ β|x| for a sufficiently
large x with 0 < β < 1. Then for 0 < c < 1−β2

2ddT
assumption (A) holds.

Proposition 3.1. Under (A) for continuous control function u : Rk �→ U we
have

Jγ(u(x(n)))→ J0(u(x(n))) (3.12)

as γ → 0.

Proof. Under (A) using Lemma 3.3 we see that the set

Ku,γ
n :=

{
x ∈ Rk :

f0(x)
Pu,γf0(x)

≤ n

}
is compact for each n. Therefore, by Theorem 4.4 of [10] we have an upper
large deviation estimate for empirical distributions of Markov process with
transition operator Pu(x),γ(x, ·). Using the theorem in Section 3 of [11] we
also have a lower large deviation estimate. Consequently, we have a large
deviation principle corresponding to the rate function

Iu,γ(ν) := sup
h∈H

∫
Rk

ln
h(x)

Pu(x),γh(x)
ν(dx), (3.13)

where H is the set of all bounded functions h : Rk �→ R such that 1
h(x) is also

bounded and ν ∈ P(Rk). Therefore, by Varadhan’s theorem (Theorem 2.1.1
of [5]) we have

1
γ

lim
n→∞

1
n
lnEh,γ

x

[
exp

(
n−1∑
t=0

cγ(x(t), h(t))

)]

= inf
ν∈P(Rk)

(∫
Rk

1
γ
cγ(z, u(z))ν(dz)−

1
γ
Iu,γ(ν)

)
. (3.14)

There is a sequence of measures νγi with γi → 0 as i→∞ such that∫
Rk

1
γi
cγi(z, u(z))νgi(dz)−

1
γi
Iu,γi(νγi)

≤ inf
ν∈P(Rk)

(∫
Rk

1
γi
cγi(z, u(z))ν(dz)−

1
γi
Iu,γi(ν)

)
+

1
i
. (3.15)

Since from (3.1)
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1
γ

lim
n→∞

1
n
lnEh,γ

x

[
exp

(
n−1∑
t=0

cγ(x(t), h(t))

)]
≤ ‖a‖ (3.16)

we have that Iu,γi(νγi) → 0. We shall show that the sequence (νγi) is tight.
Applying Fatou’s lemma to the sequence {f0 ∧N} with N → ∞ we obtain
that ∫

Rk

ln
f0(x)

Pu(x),γf0(x)
νγi(dx) ≤ Iu,γi(νγi). (3.17)

By (3.5) for ε > 0 there is γ0 such that for γ ≥ γ0

(1− ε)Pf0(x) ≤ Pu(x),γf0(x) ≤ (1 + ε)Pf0(x). (3.18)

Therefore, by (3.17)∫
Rk

ln
f0(x)
Pf0(x)

νγi(dx) ≤ Iu,γi(νγi) + ln(1 + ε) (3.19)

for i > i0. Let ρn := infx∈Kn
ln f0(x)

Pf0(x)
. Then

ρnνγi(Kn) + lnnνγi(K
c
n) ≤ Iu,γi(νγi) + ln(1 + ε) (3.20)

where Kc
n := Rk \Kn. Consequently,

lnnνγi(K
c
n) ≤

Iu,γi(νγi) + ln(1 + ε)− ρn
lnn− ρn

(3.21)

and since lnn ≥ 1 + ρn for sufficiently large n, we have the tightness of
the measures νγi . By the Prohorov theorem there exists a subsequence of
νγi , for simplicity still denoted by νγi , and a probability measure ν̄ such
that νγi → ν̄ as i → ∞. Since by (3.5) Iu,γ(ν) converges uniformly to
Iu(ν) := suph∈H

∫
Rk ln

h(x)
Pu(x)h(x)

ν(dx) as γ → 0 and Iu is a nonnegative
lower semicontinuous function, we have that Iu(ν̄) = 0. By Lemma 2.5 of
[9] the measure ν̄ is invariant for the transition operator P (x, ·). Therefore,
by Lemma 3.2

lim
i→∞

1
γi

lim
n→∞

1
n
lnEh,γi

x

[
exp

(
n−1∑
t=0

cγi(x(t), h(t))

)]

≥ lim
i→∞

∫
Rk

1
γi
cγi(z, u(z))νγi =

∫
Rk

c(z, u(z))ν̄(dz) = J0(u(x(n))(3.22)

and using the fact that the cost functional Jγ is increasing in γ we obtain
(3.12), which completes the proof.

✷

We are now in position to summarize the results of this section.
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Theorem 3.2. Under (A) a continuous ε-optimal control function uε for J0

is also a 2ε-optimal control function for Jγ provided 0 > γ > γ0. Consequently
convergence (1.12) holds.

Remark 3.2. One can expect that at least a subsequence of 1γwγ(x) converges
to w(x) uniformly on compact subsets, as γ → 0 , where w is a solution to
the risk neutral Bellman equation (1.7). Unfortunately, the authors were not
able to show this.
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