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To Albert Shiryaev with love, admiration and respect



Preface

This volume contains a collection of articles dedicated to Albert Shiryaev on
his 70th birthday. The majority of contributions are written by his former
students, co-authors, colleagues and admirers strongly influenced by Albert’s
scientific tastes as well as by his charisma. We believe that the papers of this
Festschrift reflect modern trends in stochastic calculus and mathematical fi-
nance and open new perspectives of further development in these fascinating
fields which attract new and new researchers. Almost all papers of the vol-
ume were presented by the authors at The Second Bachelier Colloquium on
Stochastic Calculus and Probability, Metabief, France, January 9-15, 2005.

Ten contributions deal with stochastic control and its applications to eco-
nomics, finance, and information theory.

The paper by V. Arkin and A. Slastnikov considers a model of optimal
choice of an instant to launch an investment in the setting that permits the
inclusion of various taxation schemes; a closed form solution is obtained.
M.H.A. Davis addresses the problem of hedging in a “slightly” incomplete
financial market using a utility maximization approach. In the case of the ex-
ponential utility, the optimal hedging strategy is computed in a rather explicit
form and used further for a perturbation analysis in the case where the option
underlying and traded assets are highly correlated.

The paper by G. Di Masi and L. Stettner is devoted to a comparison of
infinite horizon portfolio optimization problems with different criteria, namely,
with the risk-neutral cost functional and the risk-sensitive cost functional
dependent on a sensitivity parameter γ < 0. The authors consider a model
where the price processes are conditional geometric Brownian motions, and the
conditioning is due to economic factors. They investigate the asymptotics of
the optimal solutions when γ tends to zero. An optimization problem for a one-
dimensional diffusion with long-term average criterion is considered by A. Jack
and M. Zervos; the specific feature is a combination of absolute continuous
control of the drift and an impulsive way of repositioning the system state.
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Yu. Kabanov and M. Kijima investigate a model of corporation which
combines investments in the development of its own production potential with
investments in financial markets. In this paper the authors assume that the
investments to expand production have a (bounded) intensity. In contrast to
this approach, H. Pham considers a model with stochastic production capacity
where accumulated investments form an increasing process which may have
jumps. Using techniques of viscosity solutions for HJB equations, he provides
an explicit expression for the value function.

P. Katyshev proves an existence result for the optimal coding and decoding
of a Gaussian message transmitted through a Gaussian information channel
with feedback; the scheme considered is more general than those available in
the literature.

I. Sonin and E. Presman describe an optimal behavior of a female decision-
maker performing trials along randomly evolving graphs. Her goal is to select
the best order of trials and the exit strategy. It happens that there is a kind
of Gittins index to be maximized at each step to obtain the optimal solution.

M. Rásonyi and L. Stettner consider a classical discrete-time model of
arbitrage-free financial market where an investor maximizes the expected util-
ity of the terminal value of a portfolio starting from some initial wealth. The
main theorem says that if the value function is finite, then the optimal strategy
always exists.

The paper by I. Sonin deals with an elimination algorithm suggested ear-
lier by the author to solve recursively optimal stopping problems for Markov
chains in a denumerable phase space. He shows that this algorithm and the
idea behind it can be applied to solve discrete versions of the Poisson and
Bellman equations.

In the contribution by five authors — O. Barndorff-Nielsen, S. Graversen,
J. Jacod, M. Podolski, and N. Sheppard — a concept of bipower variation
process is introduced as a limit of a suitably chosen discrete-time version.
The main result is that the difference between the approximation and the
limit, appropriately normalizing, satisfies a functional central limit theorem.

J. Carcovs and J. Stoyanov consider a two-scale system described by ordi-
nary differential equations with randomly modulated coefficients and address
questions on its asymptotic stability properties. They develop an approach
based on a linear approximation of the original system via the averaging prin-
ciple.

A note of A. Cherny summarizes relationships with various properties of
martingale convergence frequently discussed at the A.N. Shiryaev seminar. In
another paper, co-authored with M. Urusov, A. Cherny, using a concept of
separating times makes a revision of the theory of absolute continuity and
singularity of measures on filtered space (constructed, to a large extent by
A.N. Shiryaev, J. Jacod and their collaborators). The main contribution con-
sists in a detailed analysis of the case of one-dimensional distributions.

B. Delyon, A. Juditsky, and R. Liptser establish a moderate deviation prin-
ciple for a process which is a transformation of a homogeneous ergodic Markov
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chain by a Lipshitz continuous function. The main tools in their approach are
the Poisson equation and stochastic exponential.

A. Guschin and D. Zhdanov prove a minimax theorem in a statistical game
of statistician versus nature with the f -divergence as the loss functional. The
result generalizes a result of Haussler who considered as the loss functional
the Kullback–Leibler divergence.

Yu. Kabanov, Yu. Mishura, and L. Sakhno look for an analog of Harrison–
Pliska and Dalang–Morton–Willinger no-arbitrage criteria for random fields
in the model of Cairolli–Walsh. They investigate the problem for various ex-
tensions of martingale property for the case of two-parameter processes.

Several studies are devoted to processes with jumps, which theory seems
to be interested from the point of view of financial applications.

To this class belong the contributions by J. Fajardo and E. Mordecki
(pricing of contingent claims depending on a two-dimensional Lévy process)
and by D. Gasbarra, E. Valkeila, and L. Vostrikova where an enlargement of
filtration (important, for instance, to model an insider trading) is considered
in a general framework including the enlargement of filtration spanned by a
Lévy process.

The paper by H.-J. Engelbert, V. Kurenok, and A. Zalinescu treats the
existence and uniqueness for the solution of the Skorohod reflection problem
for a one-dimensional stochastic equation with zero drift and a measurable
coefficient in the noise term. The problem looks exactly like the one consid-
ered previously by W. Schmidt. The essential difference is that instead of the
Brownian motion, the driving noise is now any symmetric stable process of
index α ∈]0, 2].

C. Klüppelberg, A. Lindner, and R. Maller address the problem of mod-
elling of stochastic volatility using an approach which is a natural continuous-
time extension of the GARCH process. They compare the properties of their
model with the model (suggested earlier by Barndorff-Nielsen and Sheppard)
where the squared volatility is a Lévy driven Ornstein–Uhlenbeck process.

A survey on a variety of affine stochastic volatility models is given in a
didactic note by I. Kallsen.

The note by R. Liptser and A. Novikov specifies the tail behavior of distri-
bution of quadratic characteristics (and also other functionals) of local mar-
tingales with bounded jumps extending results known previously only for
continuous uniformly integrable martingales.

In their extensive study, S. Lototsky and B. Rozovskii present a newly de-
veloped approach to stochastic differential equations. Their method is based
on the Cameron–Martin version of the Wiener chaos expansion and provides a
unified framework for the study of ordinary and partial differential equations
driven by finite- or infinite-dimensional noise. Existence, uniqueness, regular-
ity, and probabilistic representation of generalized solutions are established
for a large class of equations. Applications to non-linear filtering of diffusion
processes and to the stochastic Navier–Stokes equation are also discussed.
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The short contribution by M. Mania and R. Tevzadze is motivated by
financial applications, namely, by the problem of how to characterize variance-
optimal martingale measures. To this aim the authors introduce an exponen-
tial backward stochastic equation and prove the existence and uniqueness of
its solution in the class of BMO-martingales.

The paper by J. Oblój and M. Yor gives, among other results, a complete
characterization of the “harmonic” functions H(x, x̄) for two-dimensional
processes (N, N̄) where N is a continuous local martingale and N̄ is its run-
ning maximum, i.e. N̄t := sups≤tNt. Resulting (local) martingales are used
to find the solution to the Skorohod embedding problem. Moreover, the paper
contains a new interesting proof of the classical Doob inequalities.

G. Peskir studies the Kolmogorov forward PDE corresponding to the solu-
tion of non-homogeneous linear stochastic equation (called by the author the
Shiryaev process) and derives an integral representation for its fundamental
solution. Note that this equation appeared first in 1961 in a paper by Shiryaev
in connection with the quickest detection problem. In statistical literature one
can meet also the “Shiryaev–Roberts procedure” (though Roberts worked only
with a discrete-time scheme).

The note by A. Veretennikov contains inequalities for mixing coefficients
for a class of one-dimensional diffusions implying, as a corollary, that processes
of such type may have long-term dependence and heavy-tail distributions.

N. Bingham and R. Schmidt give a survey of modern copula-based meth-
ods to analyze distributional and temporal dependence of multivariate time
series and apply them to an empirical studies of financial data.

Yuri Kabanov
Robert Liptser

Jordan Stoyanov
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Albert SHIRYAEV

Albert Shiryaev, outstanding Russian mathematician, celebrated his 70th
birthday on October 12, 2004. The authors of this biographic note, his former
students and collaborators, have the pleasure and honour to recollect briefly
several facts of the exciting biography of this great man whose personality
influenced them so deeply.

Albert’s choice of a mathematical career was not immediate or obvious. In
view of his interests during his school years, he could equally well have become
a diplomat, as his father was, or a rocket engineer as a number of his relatives
were. Or even a ballet dancer or soccer player: Albert played right-wing in
a local team. However, after attending the mathematical evening school at
Moscow State University, he decided – definitely – mathematics. Graduating
with a Gold Medal, Albert was admitted to the celebrated mechmat, the
Faculty of Mechanics and Mathematics, without taking exams, just after an
interview. In the 1950s and 1960s this famous faculty was at the zenith of
its glory: rarely in history have so many brilliant mathematicians, professors
and students – real stars and superstars – been concentrated in one place,
at the five central levels of the impressive university building dominating the
Moscow skyline. One of the most prestigious chairs, and the true heart of the
faculty, was Probability Theory and Mathematical Statistics, headed by A.N.
Kolmogorov. This was Albert’s final choice after a trial year at the chair of
Differential Equations.

In a notice signed by A.N. Kolmogorov, then the dean of the fac-
ulty, we read: “Starting from the fourth year A. Shiryaev, supervised by
R.L. Dobrushin, studied probability theory. His subject was nonhomogeneous
composite Markov chains. He obtained an estimate for the variance of the sum
of random variables forming a composite Markov chain, which is a substantial
step towards proving a central limit theorem for such chains. This year A.
Shiryaev has shown that the limiting distribution, if it exists, is necessarily
infinitely divisible”.

Besides mathematics, what was Albert’s favourite activity? Sport, of
course. He switched to downhill skiing, rather exotic at that time, and it
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became a lifetime passion. Considering the limited facilities available in Cen-
tral Russia and the absence of equipment, his progress was simply astonish-
ing: Albert participated in competitions of the 2nd Winter Student Games in
Grenoble and was in the first eight in two slalom events! Since then he has
done much for the promotion of downhill skiing in the country, and even now
is proud to compete successfully with much younger skiers. Due to him, skiing
became the most popular sport amongst Soviet probabilists.

Albert’s mathematical talent and human qualities were noticed by Kol-
mogorov who became his spiritual father. Kolmogorov offered Albert and his
friend V. Leonov positions in the department he headed at the Steklov Math-
ematical Institute, where the two of them wrote their well-known paper of
1959 on computation of semi-invariants.

In Western surveys of Soviet mathematics it is often noted that, unlike
European and American schools, in the Soviet Union it was usual not to
limit the research interests to pure mathematics. Many top Russian mathe-
maticians renowned for their great theoretical achievements have also worked
fruitfully on the most applied, but practically important, problems arising in
natural and social sciences and engineering. The leading example was Kol-
mogorov himself, with his enormous range of contributions from turbulence
to linguistics.

Kolmogorov introduced Albert to the so-called “disorder” or “quickest de-
tection” problem. This was a major theoretical challenge but also had impor-
tant applications in connection with the Soviet Union’s air defence system. In a
series of papers the young scientist developed, starting from 1960, a complete
theory of optimal stopping of Markov processes in discrete and continuous
time, summarized later in his well-known monograph Statistical Sequential
Analysis: Optimal Stopping Rules, published in successive editions in Russian
(1969, 1977) and English (1972, 1978). It is worth noting that the passage to
continuous-time modelling turned out to be a turning point in the application
of Ito calculus. A firm theoretical foundation built by Albert gave a rigorous
treatment, replacing the heuristic arguments employed in early studies in elec-
tronic engineering, which sometimes led to incorrect results. The stochastic
differential equations (known as Shiryaev’s equations) describing the dynam-
ics of the sufficient statistics were the basis of nonlinear filtering theory. The
techniques used to determine optimal stopping rules revealed deep relations
with a moving boundary problem for the second-order PDEs (known as the
Stefan problem). Shiryaev’s pioneering publications and his monograph are
cited in almost every publication on sequential analysis and optimal stopping,
showing the deep impact of his studies.

The authors of this note were Albert’s students at the end of sixties,
charmed by his energy, deep understanding of random processes, growing eru-
dition, and extreme feeling for innovative approaches and trends. His seminar,
first taking place at Moscow State University, at the Laboratory of Statistical
Methods (organized and directed by A.N. Kolmogorov who invited Albert to
be a leader of one of his teams) and hosted afterwards at Steklov Institute,
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became more and more popular as a prestigious place for exchanging new
ideas and presenting current research. At that period Albert concentrated his
efforts on nonlinear filtering, prediction and smoothing of partially observed
processes. Jointly with his colleagues and students, Shiryaev created a general
theory for diffusion-type processes (stochastic partial differential equation for
the filtering density) and for Markov processes with countable set of states,
extending the well-known Kalman–Bucy filtering equation to the condition-
ally Gaussian case. His students were working on topics including stochastic
differential equations, anticipating stochastic calculus, and point processes.

Naturally, these studies were not restricted to purely theoretical exercises
but followed a quest for possible applications, such as optimal control with
incomplete data, optimal coding/decoding in noisy information channels, sta-
tistical inference for diffusion processes, and even using the noise-free Kalman
filter for solving ill-posed systems of linear algebraic equations. An account
of these researches can be found in the book Statistics of Random Processes,
written with Robert Liptser. This book has been appreciated by generations
of scholars: it first appeared in Russian in 1974 while the 2nd English edition
(in two volumes) appeared in 2000!

The end of the seventies was a revolution in the theory of random
processes: the construction of stochastic calculus (i.e. theory of semimartin-
gales) as a unified theory was completed. It combines the classical Ito calculus,
jump processes and discrete-time models. This was done by the efforts of the
French and Soviet schools, especially that of P.-A. Meyer (with his funda-
mental works on the general theory of processes and stochastic integration),
J. Jacod, A.V. Skorohod, and A. Shiryaev. Symbolically, two prestigious ple-
nary talks in Probability Theory at the International Mathematical Congress
in Helsinki (1978) were given by representatives of these schools (a scarce
event because of the historical dominance of classical fields!). The talk by
Claude Dellacherie was an announcement that the calculus had achieved its
most general form: a process with respect to which one can integrate while
preserving natural properties must be a semimartingale. The talk by Albert
Shiryaev was about necessary and sufficient conditions for absolute continuity
of measures corresponding to semimartingales or, more generally, of measures
on a filtered probability space, results whose importance was fully revealed
much later, in the context of financial modelling.

At the beginning of the eighties Albert launched another ambitious project:
functional limit theorems for semimartingales as an application of stochastic
calculus to the classical branch of probability theory. He was one of the first
who understood the importance of the canonical decomposition and triplets
of predictable characteristics introduced by J. Jacod in an analogy with the
Lévy–Khinchine formula. Convergence of triplets implies convergence of dis-
tributions: the observation permitting to put many traditional limit theorems,
even the ones for models with dependent summands, into a much more general
context of weak convergence of distributions of semimartingales. These studies
resulted in two fundamental monographs, The Theory of Martingales (1986)
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and Limit Theorems for Stochastic Processes (1987) co-authored, respectively,
with R. Liptser and J. Jacod.

It was observed by Harrison and Pliska in 1981 that stochastic calculus is
tailor-made for financial modelling. On the other hand, pricing of American
options is reduced to a solution of an optimal stopping problem. So it is not
surprising that Albert, just starting to work in mathematical finance, imme-
diately contributed to this new field by a number of interesting results (see his
works with L. Shepp, D. Kramkov, M. Jeanblanc, M. Yor and many others).
The true surprise was perhaps a voluminous book written in record time (just
in two years): Essentials of Stochastic Finance: Facts, Models, Theory (1998),
reprinted annually because of a regularly exhausted stock.

What is the best textbook in probability for mathematical students? There
are many; but our favourite is Probability by A.N. Shiryaev (editions in
Russian, English, German,...) which can be considered as an elementary in-
troduction into the technology of stochastic calculus containing a number of
rather recent results for discrete-time models. The latest valuable addendum
to this textbook is a volume of selected problems.

Shiryaev’s charisma always attracted students who never regretted the
choice of their supervisor as “doctor father”. More than fifty scholars are
proud to be his PhD-students, and they are working worldwide. Thousands
followed his brilliant lectures at the Moscow State University where he has
been Professor since 1970 and the Head of the Chair of Probability Theory
since 1996.

Albert was engaged in editorial activity from his first days at the Steklov
Institute. He was charged by Kolmogorov with serving as an assistant for the
newly established Probability Theory and Its Applications (now subtitled ‘The
Kolmogorov Journal’); he was the deputy of the Editor Yu. V. Prohorov from
1988. He has served on the editorial boards of a long list of distinguished
mathematical, statistical, and mathematical finance journals, and is, for ex-
ample, currently a co-editor of Finance and Stochastics. Throughout his career
he has championed in a very active way the traditions of good mathematical
literature, and been a severe critic of sloppily written texts.

Among his publishing activities we should also mention his recent great
efforts in the promotion of Kolmogorov’s legacy: three volumes of inestimable
historical documents including a diary, correspondence, bibliography and
memoirs. Albert is especially proud of the production of a DVD with a doc-
umentary about the life of his great teacher and his scientific heritage.

A further aspect of his work has been enthusiastic participation in the orga-
nization of memorable international meetings and large-scale events strongly
influencing the life of the mathematical community: the Soviet–Japanese Sym-
posia in Probability Theory (starting from 1969), the First World Congress
of the Bernoulli Society (Tashkent, 1986), the Kolmogorov Centenary Confer-
ence (Moscow, 2003), and many others.
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Albert’s mathematical achievements and services to the mathematical
community have been recognized in a series of international honours and
awards, some of which are listed below.

On October 12, 2004, Albert Shiryaev tuned seventy years old, but he
remains young as never before.

Albert N. Shiryaev: Honours and Awards

Honorary Fellow of the Royal Statistical Society (1985).
Member of the Academia Europea (1990).
Correspondent member of the Russian Academy of Sciences (1997).
Member of the New York Academy of Science (1997).
President of the Bernoulli Society (1989-1991).
President of the Russian Actuarial Society (1994-1998).
President of the Bachelier Finance Society (1998-1999).
Markov prize winner (1974), Kolmogorov prize winner (1994).
Humboldt Research Award (1996).
Doctor Rerum Naturalium Honoris Causa Albert-Ludwig-Universität
Freiburg-im-Bresgau (2000).
Professor Honoris Causa of the Amsterdam University (2002).
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Naukowe (PWN), 1980, pp. 121–132 (with H. J. Engelbert).

62. On absolute continuity of probability measures for Markov–Itô processes.
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289–295 (with D. O. Kramkov).

125. Local martingales and the fundamental asset pricing theorems in the
discrete-time case. Finance Stoch. 2 (1998), no. 3, 259–273 (with J. Jacod).

126. Solution of the Bayesian sequential testing problem for a Poisson process.
MaPhySto Publ. no. 30. Aarhus: Aarhus Univ., Centre for Mathematical
Physics and Stochastics, 1998 (with G. Peskir).

127. On arbitrage and replication for fractal models. Research report no. 20.
Aarhus: Aarhus Univ., Centre for Mathematical Physics and Stochastics,
1998.

128. Mathematical theory of probability. Essay on the history of formation.
(Russian) Appendix to: A. N. Kolmogorov. Foundations of the Theory of
Probability. Moscow: “FAZIS”, 1998, pp. 101–129.

129. On Esscher transforms in discrete finance model. ASTIN Bull. 28 (1998),
no. 2, 171–186 (with H. Bühlmann, F. Delbaen, and P. Embrechts).

130. On probability characteristics of “downfalls” in a standard Brownian
motion. (Russian) Teor. Veroyatnost. i Primenen. 44 (1999), no. 1, 3–
13; Engl. thansl. in Theory Probab. Appl. 44 (1999), no. 1, 29–38 (with
R. Douady and M. Yor).

131. On the history of the foundation of the Russian Academy of Sciences
and about the first articles on probability theory in Russian publications.
(Russian) Teor. Veroyatn. i Primenen. 44 (1999), no. 2, 241–248; Engl.
thansl. in Theory Probab. Appl. 44 (1999), no. 2, 225–230.

132. Some distributional properties of a Brownian motion with a drift, and an
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Summary. We present a finite difference scheme for stochastic Burgers’ equation
driven by space-time white noise. We estimate the rate of convergence of the the
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1 Introduction

We consider stochastic Burgers’ equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(u(t, x)) + u(t, x)

∂u

∂x
(t, x) +

∂W

∂t∂x
(t, x), (1.1)

for t ∈ [0, T ], x ∈ [0, 1], with Dirichlet boundary condition

u(t, 0) = u(t, 1) = 0, t > 0, (1.2)

and initial condition

u(0, x) = u0(x) , x ∈ [0, 1]. (1.3)

Here f is a Lipschitz continuous function on the real line, u0 is a square-
integrable function over [0, 1], and ∂W

∂t∂x (t, x) is a space-time white noise. This
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equation is very often viewed as a model equation of the motion of turbulent
fluid. The solvability and the properties of its solution have been intensively
studied in the literature, see, e.g., [1], [2], [7] and the references therein. Our
aim is to investigate a numerical scheme for this equation. We study the
following space-discretization of problem (1.1)–(1.2):

dun(t, xnk ) =
(
∆nu

n(t, xnk ) + f(u(t, xnk )) +
1
2
∂−n [[u

n(t)]](xnk )
)
dt

+d∂nW (t, xnk ) , k = 1, . . . , n− 1, (1.4)

un(t, xn0 ) = un(t, xnn) = 0, t ≥ 0, (1.5)

over the grid Gn := {xnk = k/n : k = 0, 1, 2, ..., n}, where d stands for the
differential in t, and

∆nh(xnk ) := n2
(
h(xnk+1)− 2h(xnk ) + h(xnk−1)

)
,

∂nh(xnk ) := n
(
h(xnk+1)− h(xnk )

)
,

∂−n h(x
n
k ) :=

(
h(xnk )− h(xnk−1)

)
,

[[h]](xnk ) :=
1
3

(
h2(xnk+1) + h2(xnk ) + h(xnk+1)h(x

n
k )
)
,

h(xn0 ) = h(xnn) := 0,

for functions h defined on the grid. For fixed n ≥ 2 system (1.4) is a stochastic
differential equation for the (n− 1)-dimensional process

un(t) = (unk )(t) := (un(t, xnk )).

We show that for every initial condition un(0) = (ank ) ∈ Rn−1 equation (1.4)
has a unique solution {un(t) : t ∈ [0, T ]}. We extend un(t) from the grid onto
[0, 1] by un(t, x) := un(t, [nx]/n), and show that this extension converges to u,
the solution of stochastic Burgers’ equation, provided that the initial condition
un(0) converges to u0. Moreover, we estimate the rate of convergence.

Numerical schemes for parabolic stochastic PDEs driven by space-time
white noise have been investigated thoroughly in the literature, see, e.g.,
[3], [6], [10], [11] and the references therein. The class of equations consid-
ered in these papers does not contain stochastic Burgers’ equation. A semi-
discretization in time of stochastic Burgers’ equation is studied in [9].

2 Formulation of the main result

Let (Ω,F , {Ft}0≤t≤T , P ) be a filtered probability space carrying an Ft-
Brownian sheet W = (W (t, x)) on [0, T ]× [0, 1]. This means W is a Gaussian
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field, EW (t, x) = 0, E(W (t, x)W (s, y)) = (t ∧ s)(x ∧ y), W (t, x) is Ft-
measurable, and W (t, x)−W (s, x) +W (s, y)−W (t, y) is independent of Fs

for all 0 ≤ s ≤ t and x, y ∈ [0, 1].
Let f := f(z) be a locally bounded Borel function on R, and let u0 = u0(x)

be an F0-measurable random field such that almost surely u0 ∈ L2([0, 1]).
We say that an L2([0, 1])-valued continuous Ft-adapted random process is a
solution of problem (1.1), (1.2), (1.3), if almost surely∫ 1

0

u(t, x)ϕ(x) dx =
∫ 1

0

u0(x)ϕ(x) dx+
∫ t

0

∫ 1

0

u(s, x)ϕ′′(x) dxds

+
∫ t

0

∫ 1

0

f(u(s, x))ϕ(x) dxds− 1
2

∫ t

0

∫ 1

0

u2(s, x)ϕ′(x) dxds

+
∫ t

0

∫ 1

0

ϕ(x) dW (s, x)

for all t ∈ [0, T ] and ϕ ∈ C2([0, 1]), ϕ(0) = ϕ(1) = 0, where the last integral
in the right-hand side of this equality is understood as Itô’s integral, and
ϕ′, ϕ′′ denote the first and second derivatives of ϕ. We assume the following
condition.

Assumption 2.1 The force term f is Lipschitz continuous, i.e., there is a
constant L such that

|f(y)− f(z)| ≤ L|y − z|
for all y, z ∈ R.
It is well-known that under this condition problem (1.1), (1.2), (1.3) has a
unique solution u, which satisfies also the integral equation

u(t, x) =
∫ 1

0

G(t, x, y)u0(y) dy +
∫ t

0

∫ 1

0

G(t− s, x, y)f(u(s, y)) dy ds

−
∫ t

0

∫ 1

0

Gy(t− s, x, y)u2(s, y) dy ds+
∫ t

0

∫ 1

0

G(t− s, x, y) dW (s, y), (2.6)

where

G(t, x, y) :=
∞∑
j=1

exp{−j2π2t}ϕj(x)ϕj(y), ϕj(x) :=
√
2 sin(jπx), (2.7)

is the heat kernel, and

Gy(t, x, y) =
∞∑
j=1

jπ exp{−j2π2t}ϕj(x)ψj(y), ψj(x) :=
√
2 cos(jπx).

(2.8)
Moreover, if u0 is a continuous random field, then the solution u has a modi-
fication which is continuous in (t, x), see [1], [2] and [7].

First we formulate our result for problem (1.4)–(1.5).



4 A. Albert and I. Gyöngy

Theorem 2.1. Let Assumption 2.1 hold. Let n ≥ 2 be an integer, and let
(ank )

n−1
k=1 be an F0-measurable random vector in Rd−1. Then system (1.4)–

(1.5) with the initial condition

un(0, xnk ) = ank , k = 1, 2, ..., n− 1, (2.9)

admits a unique solution un = {un(t, xnk ) : k = 0, 1, 2, ..., n; t ≥ 0}, which
is continuous in t ≥ 0. Moreover, for every T > 0, there is a finite random
variable ξ such that

sup
t≤T

1
n

n−1∑
j=1

|un(t, xnj )|2 ≤ ξ

 1
n

n−1∑
j=1

|ank |2 + 1

 (a.s.) (2.10)

for all n ≥ 2.

In order to formulate the main result of the paper we extend (un(t, xnk )),
the solution of system (1.4)–(1.5) with initial condition un(0, xnk ) = u0(xnk ),
k = 0, 1, 2..., n, as follows:

un(t, x) := un(t, κn(x)), x ∈ [0, 1], t ≥ 0,

where κn(x) := [nx]/n, and [z] denotes the integer part of z. The main result
of the present paper is the following.

Theorem 2.2. Let Assumption 2.1 hold. Assume that u0 ∈ C([0, 1]) almost
surely. Then un(t) almost surely converges in L2([0, 1]) to u(t), the solution of
problem (1.1)–(1.3), uniformly in t in bounded intervals. Moreover, if almost
surely u0 ∈ C3([0, 1]), then for each α < 1/2, T > 0 there exists a finite
random variable ζα such that

sup
t≤T

∫ 1

0

|un(t, x)− u(t, x)|2 dx ≤ ζαn
−α (a.s.) (2.11)

for all integers n ≥ 2.

We prove Theorem 2.1 in the next section, and after presenting some
preliminary estimates in Section 4, we prove Theorem 2.2 in Section 5.

3 Proof of Theorem 2.1

Using the notation

unk (t) := un(t, xnk ) = un
(
t,
k

n

)
Wn

k (t) :=
√
n
(
W (t, xnk+1)−W (t, xnk )

)
for k = 1, 2, . . . , n− 1, we can write equations (1.4)–(1.5) as
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dunk (t) = n2
n−1∑
i=1

Dkiu
n
i (t) dt+ f(unk (t)) dt

+
n

6

(
|unk+1|2(t)− |unk−1|2(t) + unk+1(t)u

n
k (t)− unk (t)u

n
k−1(t)

)
dt

+
√
n dWn

k (t), k = 1, 2, . . . , n− 1, (3.12)
unk (0) = ank , k = 1, 2, . . . , n− 1, (3.13)

where un0 = unn := 0, and Dkk = −2, Dki = 1 for |k − i| = 1, Dki = 0 for
|k − i| > 1. Notice that Wn(t) := (Wn

k (t)) is an (n − 1)-dimensional Wiener
process. Fix n ≥ 2 and define the vector field

A(x) := n2Dx+ F (x) + nH(x), x ∈ Rn−1,

where D = (Dij) is the (n− 1)× (n− 1) matrix given above, and

Fk(x1, x2, . . . , xn−1) : = f(xk),

Hk(x1, x2, . . . , xn−1) : =
1
6
(x2k+1 − x2k−1 + xk+1xk − xkxk−1),

for k = 1, 2, . . . , n − 1, with x0 = xn := 0. Then equations (3.12)–(3.13) can
be written as

dun(t) = A(un(t)) dt+
√
ndWn(t), (3.14)

un(0) = an, (3.15)

where un(t) := (unk (t)) and an := (ank ) are column vectors in Rn−1. Notice
that

(x,Dx) = −x21 − x2n−1 −
n−2∑
k=1

(xk+1 − xk)2, (3.16)

(x,H(x)) = 0, (3.17)

(x, F (x)) =
n−1∑
k=1

xkf(xk) ≤ C

(
n+

n−1∑
k=1

x2k

)
(3.18)

for all x ∈ Rn−1, where (x, y) :=
∑n−1

k=1 xkzk is the inner product of vectors
x, y ∈ Rn−1, C := L+f2(0), and L is the Lipschitz constant from Assumption
2.1. Hence A satisfies the following growth condition:

(x,A(x)) = n2(x,Dx) + (x, F (x)) ≤ C

(
n+

n−1∑
k=1

x2k

)

for all x ∈ Rn−1 and for every integer n ≥ 2. Clearly, A is locally Lipschitz in
x ∈ Rn−1. This and the above growth condition imply that equation (3.14)
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with initial condition (3.15) admits a unique solution un, which is an Ft-
adapted Rn−1-valued continuous process. (See the general result, Theorem 1
in [4], or Theorem 3.1 in [8], for example.)

It remains to show estimate (2.10). To this end we rewrite equation (3.14)
for the solution un in the form

un(t) = en
2tDan +

∫ t

0

en
2(t−s)D

(
F (un(s)) + nH(un(s))

)
ds

+
√
n

∫ t

0

en
2(t−s)D dWn(s), (3.19)

and consider the Rn−1-valued random processes

ηn(t) :=
√
n

∫ t

0

en
2(t−s)D dWn(s), v(t) := vn(t) := un(t)− ηn(t).

Then from equation (3.19) we get that v satisfies

dv(t) =
(
n2Dv(t) + F (v(t) + η(t)) + nH(v(t) + ηn(t))

)
dt,

v(0) = an.

Hence for |v(t)|2 :=
∑n−1

k=1 |vk(t)|2 we get

d|v(t)|2 = 2n2
(
v(t),Dv(t)

)
dt+ 2

(
v(t), F (v(t) + ηn(t))

)
dt

+2n
(
v(t),H(v(t) + ηn(t))

)
dt

≤ −2n2
n∑

k=1

(vk+1(t)− vk(t))2 dt+ 4C(n+ |v(t)|2)

+2n
(
v(t),H(v(t) + ηn(t))−H(v(t))

)
dt (3.20)

with v0(t) := vn(t) := 0, by virtue of (3.16), (3.17), (3.18), where C is the
constant from inequality (3.18). Taking into account that for x ∈ Rn−1

Hk(x) = [[x]]k − [[x]]k−1, k = 1, . . . , n− 1

with

[[x]]j :=
1
6
(x2j+1 + x2j + xj+1xj), j = 0, 1, . . . , n− 1, x0 := xn := 0,

we have
2|
(
v(t),H(v(t) + η(t))−H(v(t))

)
| =

2|
n−1∑
k=0

(vk+1(t)− vk(t)){[[v(t) + ηn(t)]]k − [[v(t)]]k}|
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≤ n
n−1∑
k=0

(vk+1(t)− vk(t))2 + n−1
n−1∑
k=0

{[[v(t) + ηn(t)]]k − [[v(t)]]k}2

≤ n
n−1∑
k=0

(vk+1(t)− vk(t))2 + 100n−1
n−1∑
k=1

(
|η̄n|2|vk|2(t) + |η̄n|4

)
, (3.21)

where
η̄n := max

0<k<n
sup
t≤T

|ηnk (t)|.

Thus from (3.20) and (3.21) we get

1
n
|v(t)|2 ≤ 1

n
|v(0)|2 + 100|η̄n|4 + 4Ct+ (100|η̄n|2 + 4C)

∫ t

0

1
n
|v(s)|2 ds.

Hence by Gronwall’s inequality

sup
t≤T

1
n
|v(t)|2 ≤ e(100|η̄

n|2+4C)T
(
1
n
|v(0)|2 + 100|η̄n|4 + 4CT

)
,

which implies

sup
t≤T

1
n

n−1∑
k=1

|unk (t)|2 ≤ ξn

(
1
n

n−1∑
k=1

|ank |2 + 1

)
(3.22)

with
ξn := e(100|η̄

n|2+4C)T + 100|η̄n|4 + 4CT + 2|η̄n|2.
We are going to show that ξ := supn≥2 ξn is a finite random variable. To this
end note that the vectors e1, . . . , en−1 defined by

ej = (ej(k)) =
(√

2
n
sin
(
j
k

n
π
))

, k = 1, 2, . . . , n− 1,

form an orthonormal basis in Rn−1, and that they are eigenvectors of the
matrix n2D, with eigenvalues

λnj := −4 sin2
( j
2n
π
)
n2 = −j2π2cnj ,

where
4
π2

≤ cnj := sin2
( jπ
2n

) / ( jπ
2n

)2
≤ 1 (3.23)

for j = 1, 2, . . . , n − 1 and every n ≥ 1. Therefore, for the random field
{ηn(t, x) : t ≥ 0, x ∈ [0, 1]} defined by

ηn(t, xk) := ηnk :=
√
n

∫ t

0

en
2(t−s)D dWn(s)
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for xk := k/n, n = 1, 2, ..., n− 1, and

ηn(t, 0) = ηn(t, 1) = 0,

ηn(t, x) := ηn(t, κn(x)), x ∈ (0, 1),

we have

ηn(t, x) =
∫ t

0

∫ 1

0

Gn(t, x, y) dW (t, y),

for all t ≥ 0, x ∈ [0, 1], where

Gn(t, x, y) :=
n−1∑
j=1

exp(λnj t)ϕ
n
j (κn(x))ϕj(κn(y)), (3.24)

ϕj(x) :=
√
2 sin(jxπ).

(Recall that κn(y) := [ny]/n.) Thus considering the special case f = 0, σ = 1,
u0 in Theorem 3.1 of [5], we get that almost surely

sup
n≥2

η̄n ≤ sup
x∈[0,1]

sup
t≤T

|ηn(t, x)| <∞,

which obviously implies that ξ := supn≥2 ξn is a finite random variable. The
proof of Theorem 2.2 is now complete. ��

4 Preliminary estimates

Define

Gn
y (t, x, y) := ∂nG

n(t, x, y) := n(Gn(t, x, y +
1
n
)−Gn(t, x, y))

=
n−1∑
j=1

exp{−j2π2cnj t}ϕj(κn(x))n
(
ϕj(κ+n (y))− ϕj(κn(y))

)
, (4.25)

for t ≥ 0, x, y ∈ [0, 1], where κ+n (y) =: κn(y) +
1
n .

Lemma 4.1. For each T > 0 there exists a constant K > 0 such that∫ 1

0

(Gn
y −Gy)2(s, x, y) dx = Kn−2s−5/2

for all y ∈ [0, 1], s ∈ (0, T ] and all integers n ≥ 2.
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Proof. Clearly,
Gn

y −Gy = A1 +A2 +A3 +A4 , (4.26)

where

A1 :=
∞∑
j=1

exp{−j2π2s}
[
ϕj(x)− ϕj(κn(x))

]
jπψj(y) ,

A2 :=
∞∑
j=n

exp{−j2π2s}ϕj(κn(x))jπψj(y) ,

A3 :=
n−1∑
j=1

exp{−j2π2s}ϕj(κn(x))
[
jπψj(y)− n

(
ϕj(κ+n (y))− ϕj(κn(y))

)]
,

A4 :=
n−1∑
j=1

{
[
exp(−j2π2s)− exp(−j2π2cnj s)

]
×ϕj(κn(x))n

(
ϕj(κ+n (y))− ϕj(κn(y))

)
}.

Let ‖Ai‖ denote the L2([0, 1])-norm of Ai in the x-variable. Fix T > 0, and
let K denote constants, which are independent of t ∈ [0, T ], x, y ∈ [0, 1],
s ∈ (0, T ], n ≥ 2, but can be different even if they appear in the same line.
Then notice that

‖A1‖2 =
∫ 1

0

∣∣Gy(s, x, y)−Gy(s, x, y)
∣∣2 dx

≤ Kn−2
∫ 1

0

∣∣Gyx(s, x, y)
∣∣2 dx = Kn−2s−5/2, (4.27)

by the well-known estimate

|Gyx(s, x, y)| ≤ Ks−3/2e−(x−y)
2/s, s ∈ [0, T ], x, y ∈ [0, 1],

on the heat kernel. By the orthogonality of {ϕj} in L2([0, 1]),

‖A2‖2 =
∞∑
j=n

exp{−2j2π2s}j2π2ψj(y)2

≤
∞∑
j=n

j2 exp{−j2s} ≤ 32
∞∑
j=n

j2
1

(js1/2)5
≤ Kn−2s−5/2. (4.28)

By the mean-value theorem

‖A3‖2 =
n−1∑
j=1

exp{−2j2π2s}
[
jπψj(y)− n

(
ϕj(κ+n (y))− ϕj(κn(y))

)]2
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=
n−1∑
j=1

exp{−2j2π2s}
[
jπψj(y)− jπψj(θn(y))

]2
,

where θn(y) ∈ [κn(y), κ+n (y)]. Hence

‖A3‖2 ≤ Kn−2
n−1∑
j=1

j4 exp{−j2s} ≤ Kn−2s−2
n−1∑
j=1

j4s2 exp{−j2s}

≤ Kn−2s−2
∫ n
√
s

0

x4 exp{−x2}s−1/2 dx ≤ Kn−2s−5/2. (4.29)

Finally,

‖A4‖2 =
n−1∑
j=1

[
exp{−j2π2s} − exp{−j2π2cnj s}

]2
n2
[
ϕj(κ+n (y))− ϕj(κn(y))

]2
≤ K

n−1∑
j=1

j2
[
exp{−j2π2s} − exp{−j2π2cnj s}

]2
≤ K

n−1∑
j=1

j2
[
j2π2 exp{−j2π2cnj s}(1− cnj )s

]2
≤ K

n−1∑
j=1

j6(1− cnj )
2s2 exp{−j2s}

by the mean-value theorem and the fact that cnj ≤ 1. Hence by the definition
of cnj in (3.23), using sinx = x+O(x3), we have

‖A4‖2 ≤ K

n−1∑
j=1

j6(jπ/2n)4s2 exp{−j2s} ≤ K

n−1∑
j=1

j6(j/n)4s2 exp{−j2s}

≤ Kn−4
n−1∑
j=1

j10s2 exp{−j2s} ≤ Kn−2s−2
n−1∑
j=1

j8s4 exp{−j2s}

≤ Kn−2s−2
∫ s
√
n

0

x8 exp{−x2}s−1/2 dx ≤ Kn−2s−5/2 . (4.30)

Thus by virtue of equality (4.26) and inequalities (4.27), (4.28), (4.29) and
(4.30) the proof is complete. ��

Lemma 4.2. For each T > 0 there exists a constant K such that

I :=
∫ T

0

(∫ 1

0

|Gn
y −Gy|2(s, x, y) dx

)1/2
ds ≤ Kn−1/2 (4.31)

for all y ∈ [0, 1].
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Proof. Clearly, I ≤ I1 + I2 + I3, where

I1 :=
∫ ε

0

(∫ 1

0

Gy(s, x, y)2 dx
)1/2

ds,

I2 :=
∫ ε

0

(∫ 1

0

Gn
y (s, x, y)

2 dx
)1/2

dsdy,

I3 :=
∫ T

ε

∫ 1

0

(Gn
y −Gy)2(s, x, y) dx

)1/2
dsdy.

From

Gy(s, x, y) =
∞∑
j=1

exp(−j2π2s)ϕj(x)jπψj(y),

using the orthogonality of {ϕj}, we get∫ 1

0

Gy(s, x, y)2 dx ≤
∞∑
j=1

exp(−2j2π2s)j2π2ψ2j (y)

≤ 20
∞∑
j=1

exp(−j2s)j2 ≤ Cs−3/2

for some constant C. Therefore,

I1 ≤
∫ ε

0

Cs−3/4 ds ≤ 4Cε1/4.

In exactly the same way, we obtain a constant C such that I2 ≤ Cε1/4. By
the estimate in Lemma 4.1, there is a constant C such that

I3 ≤ Cn−1
∫ T

ε

s−5/4 dsdy ≤ Cn−1ε−1/4.

Taking ε = n−2, we obtain the statement of the lemma. ��

5 Proof of Theorem 2.2

We prove the theorem when f = 0. The proof in the general case of a Lip-
schitz function f goes in the same way, with some additional terms in the
calculations, but without new difficulties. Notice that un(t, x) satisfies

un(t, x) =
∫ 1

0

Gn(t, x, y)u(0, κn(y)) dy

−
∫ t

0

∫ 1

0

Gn
y (t− s, x, y)[[un(s)]](κn(y))dy ds

+
∫ t

0

∫ 1

0

Gn(t− s, x, y) dW (s, y), (5.32)
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where Gn and Gn
y are defined by (4.25) and (4.25), respectively. From equa-

tions (2.6) and (5.32)

‖un(t, ·)− u(t, ·)‖ ≤ A(t) +B(t) + C(t), (5.33)

with

A(t) := ‖
∫ 1

0

Gn(t, ·, y)un0 (y) dy −
∫ 1

0

G(t, ·, y)u0(y) dy‖, (5.34)

B(t) := ‖
∫ t

0

∫ 1

0

Gy(t− s, ·, y)u(s, y)2 dy ds

−
∫ t

0

∫ 1

0

Gn
y (t− s, ·, y)[[un(s)]](κn(y)) dy ds‖,

C(t) := ‖
∫ t

0

∫ 1

0

Gn(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

G(t− s, x, y) dW (s, y)‖.
(5.35)

Clearly, B ≤ B1 +B2, where

B21(t) :=
∫ 1

0

(∫ t

0

∫ 1

0

(Gn
y −Gy)(t− s, x, y)[[un(s)]](y) dy ds

)2
dx,

B22(t) :=
∫ 1

0

(∫ t

0

∫ 1

0

Gy(t− s, x, y)([[un(s)]](y)− |u(s, y)|2) dy ds
)2

dx.

By Minkowski’s inequality, Lemma 4.2 and Theorem 2.1 we get

B21(t) ≤
(∫ 1

0

∫ t

0

(∫ 1

0

(Gn
y −Gy)2(s, x, y) dx

)1/2
[[un(t− s)]](y) dsdy

)2
≤ Kn−1

(∫ t

0

∫ 1

0

[[un(s)]](y) dy ds
)2
≤ ξn−1 (5.36)

for all t ∈ [0, T ], where K is a constant and ξ is a finite random variable,
independent of t and n. By Lemma 3.1 (i) from [7], (take q = 1, ρ = 2,
κ = 1/2 there), we have

B22(t) ≤ K
(∫ t

0

(t− s)−3/4‖[[un(s, ·)]]− |u(s, ·)|2‖1 ds
)2

(5.37)

for all t ∈ [0, T ], where ‖ · ‖1 denotes the L1([0, 1])-norm. By simple calcula-
tions, using the Cauchy–Bunyakovskii inequality we get

‖[[un(s, ·)]]− |u(s, ·)|2‖1 ≤ K‖un(s, ·)− u(s, ·)‖(‖un(s, ·)‖+ ‖u(s, ·‖)
+K‖u(s, ·)− u(s, ·+ n−1)‖‖un(s, ·‖ (5.38)
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for all s ∈ [0, T ] with a constant K. By Theorem 2.1 and Theorem 1 in [7],
there is a finite random variable ξ such that almost surely

‖un(s, ·)‖2 ≤ ξ, ‖u(s, ·)|2 ≤ ξ

for all s ∈ [0, T ] and integers n ≥ 2. Thus from (5.38) and (5.37) by Jensen’s
inequality we obtain

|B2(t)|2 ≤ ξ

∫ t

0

(t− s)−3/4‖un(s, ·)− u(s, ·)‖2 ds+ ξζn (5.39)

for all t ∈ [0, T ] and n ≥ 2, where

ζn := sup
s≤T

‖u(s, ·)− u(s, ·+ n−1)‖2, (5.40)

and ξ is a finite random variable independent of t and n. By Burkholder’s
inequality for every p ≥ 1 there exists a constant Kp such that

E

[
sup
t≤T

|C(t)|2p
]
≤ Kp

∥∥∥∫ t

0

∫ 1

0

(Gn −G)2(t− s, ·, y) dy ds
∥∥∥
p
,

where ‖ · ‖p stands for the Lp([0, 1]) norm. Consequently, for each p ≥ 1 there
exists a constant Cp such that

E

[
sup
t≤T

|C(t)|2p
]
≤ Cpn

−p,

since

sup
x∈[0,1]

∫ ∞
0

∫ 1

0

|Gn −G|2(t, x, y) dy dt ≤ c

n

with a universal constant c by Lemma 3.2 part (i) in [5]. Hence, by standard
arguments, for any α ∈ (0, 1), one gets a finite random variable ξα such that
almost surely

sup
t≤T

|C(t)|2 ≤ ξαn
−α (5.41)

for all n ≥ 2. From (5.33) (5.36), (5.39) and (5.41) we get that almost surely

‖un(t, ·)− u(t, ·)‖2 ≤ ξ

∫ t

0

(t− s)−3/4‖un(s, ·)− u(s, ·)‖2 ds

+ξ(ζn + |A(t)|2 + n−1) + ξαn
−α

for all t ∈ [0, T ], and integers n ≥ 2, with a finite random variable ξ, where
A(t), ζn and ξα are defined in (5.34), (5.40) and (5.41), respectively. Hence,
applying a Gronwall-type lemma (e.g. Lemma 3.4 from [5]), we obtain that
almost surely
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sup
t≤T

‖un(t, ·)− u(t, ·)‖2 ≤ ξ

(
ζn + sup

t≤T
|A(t)|2 + n−1 + ξαn

−α
)

(5.42)

Now we are going to investigate the behaviour of A(t) and ζn as n→∞. Set

vn(t, x) :=
∫ 1

0

Gn(t, x, y)u0(κn(y)) dy

v(t, x) :=
∫ 1

0

G(t, x, y)u0(y) dy.

Assume that u0 ∈ C3([0, 1]). Then by Proposition 3.8 in [5] we have a finite
random variable ξ such that almost surely

sup
t,∈[0,T ]

sup
x∈[0,1]

|vn(t, x)− v(t, x)| ≤ ξn−1

for all n ≥ 2. Hence almost surely

sup
t∈[0,T

|A(t)|2 =
∫ 1

0

|vn(t, x)− v(t, x)|2 dx ≤ ξ2n−2 (5.43)

for all t ∈ [0, T ] and integers n ≥ 2. Moreover, using Lemma 3.1 (iii) from [7]
(with ρ = 2, q = 1 and κ = 1/2 there), we get a finite random variable ξ, such
that almost surely

ζn := sup
s≤T

‖u(s, ·)− u(s, ·+ n−1)‖2 ≤ ξn−1 (5.44)

for all n ≥ 2. Consequently, inequalities (5.42), (5.43) and (5.44) imply esti-
mate (2.11) of Theorem 2.2. Assume now that u0 ∈ C([0, 1]). Then by Lemma
3.1 (iii) from [7] and Proposition 3.8 in [5] we have that almost surely

sup
t∈[0,T ]

A(t) + ζn → 0,

as n→∞. Hence as n→∞,

sup
t≤T

‖un(t, ·)− u(t, ·)‖2 → 0 (a.s.).

The proof of Theorem 2.2 is complete. ��
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Summary. We develop a model of the behavior of an agent acting under uncer-
tainty and in a fiscal environment who wants to invest into a creation of new firm
and faces a timing problem. The presence of tax exemptions for newly created firms
reduces the investor planning to the optimal stopping problem for bivariate diffu-
sion process with a non-linear homogeneous reward function. We find a closed-form
formula for optimal stopping time and prove that under certain conditions it gives
indeed the optimal solution to the investment timing problem.
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1 Introduction

Uncertainty and irreversibility have long been recognized as main determi-
nants of investment. As argued in [6], most investment decisions feature three
important characteristics: investment irreversibility, uncertainty, and the abil-
ity to choose the optimal timing of investment. In contrast with the traditional
investment theory based on the Net Present Value Criterion and Now-or-Never
Principle, the real option literature has been focused around the delay in in-
vestment decisions (see, e.g., [6], [17] as well as the seminal paper [11]). This
flexibility in the investment timing gives the option to wait for new informa-
tion.

In the real option framework the optimal investment policy can be obtained
as the solution to an optimal stopping problem. In the simple case of a project
with constant (over time) investments the underlying problem is an optimal
stopping for one-dimensional process of the present value of the project, which
is usually assumed to be a geometric Brownian motion without/with jumps
(see [6], [11], [12]). In a more symmetric case, when both the present value
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and the investment required for launching the project evolve as stochastic
processes, the underlying problem will be an optimal stopping for bivariate
stochastic process (usually, of a geometric Brownian type) and reward function
which is the expected discounted difference between the present value and
the investment cost. One of the first results in this direction was obtained
by McDonald and Siegel [11] who gave a closed-form solution for the case of
bivariate correlated geometric Brownian motion. However, they did not set the
precise conditions needed for the validity of their result. The rigorous proof of
optimality in the McDonald–Siegel formula for optimal stopping time as well
as the relevant conditions was given only a decade later by Hu and Øksendal
[8]. Moreover, they treated a multi-dimensional case where the investment
cost is a sum of correlated geometric Brownian motions.

Another source of multi-dimensional optimal stopping problems is a valu-
ation of American options on multiple assets — see, e.g. [5], [7]. The Russian
option introduced by Shepp and Shiryaev [14], also can be viewed as an opti-
mal stopping problem for a bivariate Markov process whose components are
processes of stock prices and maximal historical (up to the current time) stock
prices.

Although the theory provides general rules for finding an optimal stopping
time (see, e.g., Shiryaev’s monographs [15], [16]), the obtaining of closed form
formulas is a hard problem for multi-dimensional processes. Most of results in
this direction (for multivariate case) are related to geometric Brownian motion
and linear reward function. A rare exception is the paper by Gerber and
Shiu [7], who derived a closed-form formula for bivariate correlated geometric
Brownian motion and homogeneous reward function. Their case covers such
perpetual (without the expiration date) American options on two stocks as
Margrabe exchange option, maximum option and some others. They used
first-order conditions to determine the optimal stopping boundaries, but did
not verify whether the relevant solution is indeed the optimal one to the
underlying problem.

In the present paper we demonstrate that multivariate optimal stopping
problem with non-linear reward function arises in a natural way for the mod-
els of creation of new firms in a fiscal environment (including both taxes
and tax exemptions for new firms). Namely, some not restrictive assumptions
about the structure of investor’s cash flow and tax holidays for newly created
enterprizes lead to an optimal investment timing problem with non-linear (rel-
atively to the underlying processes) reward function. We derive a closed-form
formula for optimal investment time and prove that under certain conditions
it gives indeed the optimal solution to the investment timing problem.

The paper is organized as follows. Section 2 describes the behavior of an
investor (under uncertainty and in a fiscal environment) who is interested in
investing into the project aimed at creating a new firm and faces the invest-
ment timing problem. A solution to this problem, an optimal investment rule,
is described in Section 3. As we show in 3.3, the problem under considera-
tion is reduced to an optimal stopping problem for bivariate diffusion process
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and homogeneous (of degree 1) reward function. The closed-form formula for
optimal investment time described in Theorem 1 is proved in Section 4.

2 The basic model

Before to proceed with the model description, we compare our model with
some closely related contributions.

The model is connected with an investment project directed to the creation
of a new industrial firm (enterprize). An important feature of the considered
model is the assumption that, at any moment, a decision-maker (investor)
may either accept the project and proceed with the investment or delay the
decision until he obtains a new information on the environment (prices of the
product and resources, the demand etc.). Thus, the main goal of the decision-
maker in this situation is to find, using the available information, a “good”
time for investing the project (investment timing problem).

The real options theory is a convenient and adequate tool for modelling the
process of firm creation since it allows us to study the effects connected with a
delay in the investment (investment waiting). As in the real options literature,
we model investment timing problem as an optimal stopping problem for
present values of the created firm (see, e.g. [6], [11]).

A creation of an industrial enterprize is usually accompanied by certain
tax benefits (in particular, the new firm can be exempted from the profit
taxes during a certain period). The distinguishing feature of our settings is
the representation of the firm present value as an integral of the profit flow.
Considerations of this type allows us to take into account in an explicit form
some peculiarities of a corporate profit taxation system, including the tax ex-
emption. Such an approach was applied by the authors in a detailed modelling
of investment project under taxation (but without tax exemptions) in [3], and
for finding the optimal depreciation policy in [1].

Uncertainty in an economic system is modelled by a probability space
(Ω,F ,P) with a filtration F = (Ft, t ≥ 0). The σ-algebra Ft can be inter-
preted as the observable information about the system up to the time t.

An infinitely-lived investor faces a problem to choose when to invest in a
project aimed to launch a new firm.

The cost of investment required to create firm at time t is It. Investment
are considered to be instantaneous and irreversible so that they cannot be
withdrawn from the project any more and used for other purposes (sunk
cost). We assume that (It, t ≥ 0) is an adapted random process.

Let us suppose that investment into creating a firm is made at time τ ≥ 0.
Let πττ+t be the flow of profit from the firm at time t+ τ , i.e. gross income

minus production cost except depreciation charges, and Dτ
t+τ denotes the

flow of depreciation at the same time. πττ+t and Dτ
t+τ are assumed to be

Ft+τ -measurable random variables (t, τ ≥ 0).
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If γ is the corporate profit tax rate, then after-tax cash flow of the firm at
time t+ τ is equal to

πττ+t − γ(πττ+t −Dτ
t+τ ) = (1− γ)πττ+t + γDτ

t+τ . (2.1)

Creating a new firm in the real economy is usually accompanied by certain
tax benefits. One of the popular incentives tools is tax holidays, when the
new firm is exempted from the profit tax during a payback period. According
to the accepted definitions, the payback period is specified as the minimal
interval (following the time of firm’s creation) during which the accumulated
discounted expected profits exceed the initial investment required for creating
the firm.

For the firm created at time τ , we define the payback period ντ as follows:

ντ = inf

{
ν ≥ 0 : E

( ν∫
0

πττ+te
−ρtdt

∣∣∣Fτ

)
≥ Iτ

}
(2.2)

where ρ is discount rate.
Note that ντ is an Fτ -measurable random variable not necessarily finite

a.s. Further we will often refer to the set of finite payback periods:

Ωτ = {ω ∈ Ω : ντ <∞}. (2.3)

For simplicity we assume that the firm begins to generate profits right
after the investment is made. Then, accordingly to the cash flow (2.1) and tax
holidays (2.2), the present value of the firm Vτ (discounted to the investment
time τ) can be expressed by the following formula:

Vτ = E

 ντ∫
0

πττ+te
−ρtdt+ χΩτ

∞∫
ντ

[(1− γ)πττ+t + γDτ
t+τ ]e

−ρt dt

∣∣∣∣∣∣Fτ

 , (2.4)

where χΩτ
(ω) is the indicator function of the event Ωτ defined in (2.3).

The behavior of the agent is assumed to be rational. This means that he
solves the investment timing problem: at any time τ prior to the investment
he chooses whether to pay Iτ and earn the present value Vτ , or to delay
further his investment. So, the investor’s decision problem is to find such a
stopping time τ (investment rule), that maximizes the expected net present
value (NPV) from the future activity:

E (Vτ − Iτ ) e−ρτ → max
τ
, (2.5)

where the maximum is taken over all Markov times τ and Vτ is defined in
(2.4).



Optimal Time to Invest 21

3 Solution of the investment timing problem

3.1 Main assumptions

Let (w1t ), (w
2
t ) be two independent standard Wiener processes on the given

stochastic basis. They are thought as underlying processes modelling Eco-
nomic Stochastics. We assume that σ-algebra Ft is generated by these
processes up to t, i.e. Ft = σ{(w1s , w2s), s ≤ t}.

The process of profits πττ+t is represented as follows:

πττ+t = πτ+tξ
τ
τ+t, t, τ ≥ 0, (3.6)

where (πt) is geometric Brownian motion, specified by the stochastic equation

πt = π0 + α1

t∫
0

πs ds+ σ1

t∫
0

πs dw
1
s (π0 > 0, σ1 ≥ 0), t ≥ 0, (3.7)

and (ξττ+t, t ≥ 0) is a family of non-negative diffusion processes, homogeneous
in τ ≥ 0, defined by the stochastic equations

ξττ+t = 1 +

t+τ∫
τ

a(s− τ, ξτs ) ds+

t+τ∫
τ

b(s− τ, ξτs ) dw
1
s , t, τ ≥ 0, (3.8)

with given functions a(t, x), b(t, x) (satisfying the standard conditions for the
existence of the unique strong solution in (3.8) – see, e.g. [13, Ch.5]).

The process πt in representation (3.6) can be related to the exogeneous
prices of produced goods and consumed resources (external uncertainty),
whereas fluctuations ξττ+t can be generated by the firm created at time τ
(firm’s uncertainty). Obviously, πττ = πτ for any τ ≥ 0.

The cost of the required investment It is also described by the geometric
Brownian motion as

It = I0 + α2

t∫
0

Is ds+

t∫
0

Is(σ21 dw1s + σ22 dw
2
s), (I0 > 0) t ≥ 0, (3.9)

where σ21, σ22 ≥ 0. To avoid a degenerate case we assume that σ22 > 0.
Then the linear combination σ21w

1
t + σ22w

2
t has the same distribution as

(σ221 + σ222)
1/2w̃t, where w̃t is a Wiener process correlated with w1t and the

correlation coefficient is equal to σ21(σ221 + σ222)
−1/2.

Depreciation charges at the time t+ τ (for the firm created at the time τ)
will be represented as:

Dτ
τ+t = Iτat, t ≥ 0, (3.10)

where (at) is the “depreciation density” (per unit of investment), character-
izing a depreciation policy, i.e. a non-negative function a : R1+ → R1+ such
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that
∫
at dt = 1. Such a scheme covers various depreciation models, accepted

by the modern tax laws (more exactly, their variants in continuous time).
For example, the well-known Declining Balance Depreciation Method can be
described by the exponential density at = ηe−ηt, where η > 0 is the DB-
depreciation rate.

3.2 Derivation of the present value

The above assumptions allow us to obtain formulas for the present value of
the future firm.

In order all values in the model were well-defined, we suppose that the
profits πττ+t have finite expectations for all t, τ ≥ 0.

We need the following assertion.

Lemma 3.1. Let τ be a finite (a.s.) Markov time. Then for all t ≥ 0

E(πττ+t|Fτ ) = πτBt, where Bt = E(πtξ0t )/π0.

Proof. Recall that the process ŵt = w1t+τ − w1τ , t ≥ 0 is a Wiener process
independent on Fτ . Using the explicit formula for the geometric Brownian
motion one can rewrite relation (3.6) as follows:

πττ+t = πτΠ
τ
t+τ , where Πτ

t+τ = exp{(α1 − 1
2σ

2
1)t+ σ1ŵt}ξττ+t.

Homogeneity of the family (3.8) in τ implies that the process ξττ+t coincides
(a.s.) with the unique (in the strong sense) solution of the stochastic equation

ξt = 1 +

t∫
0

a(s, ξs) ds+

t∫
0

b(s, ξs) dŵs.

Since (ξt, t ≥ 0) is independent on Fτ , the process Πτ
t+τ is independent also.

Moreover, Πτ
t+τ has the same distribution as exp{(α1 − 1

2σ
2
1)t + σ1ŵt}ξt, or

as (πt/π0)ξ0t . Therefore, E(π
τ
τ+t|Fτ ) = πτEΠτ

t+τ = πτE(πtξ0t )/π0. ��

Let us assume that the following condition holds:

B =

∞∫
0

Bte
−ρt dt <∞,

where the function Bt is defined in Lemma 1.
We will denote the conditional expectation with respect to Fτ as Eτ .
The above relations and Lemma 1 give the following formulas for the

present value (2.4).
Let τ be a finite (a.s.) Markov time.
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If payback period ντ <∞ (i.e. ω ∈ Ωτ , see (2.3)), then

Vτ = Iτ + (1− γ)

Eτ

∞∫
0

πττ+te
−ρtdt−Eτ

ντ∫
0

πττ+te
−ρtdt

+ γIτA(ντ )

= Iτ (1 + γA(ντ ))− (1− γ)

Iτ − πτ

∞∫
0

Bte
−ρtdt


= γIτ (1 +A(ντ )) + (1− γ)πτB, (3.11)

where the function A(·) is defined as

A(ν) =

∞∫
ν

ate
−ρtdt, ν ≥ 0. (3.12)

According to (2.2) on the set Ωτ we have:

Iτ = Eτ

ντ∫
0

πττ+te
−ρtdt = πτ

ντ∫
0

Bte
−ρtdt. (3.13)

Let us define the function

ν(p) = min{ν > 0 :

ν∫
0

Bte
−ρtdt ≥ p−1}, p > 0 (3.14)

(we put ν(p) =∞ if min in (3.14) is not attained).
Then (3.13) implies that ντ = ν(πτ/Iτ ) for ω ∈ Ωτ . It is easy to see that

Ωτ = {ντ <∞} = {ν(πτ/Iτ ) <∞}.
If ντ =∞ (i.e. ω /∈ Ωτ ), then

Vτ = Eτ

∞∫
0

πττ+te
−ρtdt = πτB. (3.15)

Combining (3.11) and (3.15) we can write the following formula for the
present value of the created firm:

Vτ =

{
γIτ (1 +A(ν(πτ/Iτ ))) + (1− γ)πτB, if ν(πτ/Iτ ) <∞
πτB, if ν(πτ/Iτ ) =∞,

(3.16)

where the function ν(·) is defined in (3.14).
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3.3 Optimal investment timing

As it was pointed out at previous section the problem faced by the investor
(2.5) can be considered as an optimal stopping problem:

E(Vτ − Iτ )e−ρτ → max
τ∈M

, (3.17)

where M is the class of all Markov times with values in R+ ∪ {∞}.
Let us define the following function: for p ≥ 0

Â(p) =

{
A(ν(p)), if ν(p) <∞,

0, if ν(p) =∞,

where ν(p) is specified in (3.14), and put

g(π, I) = (1− γ)(πB − I) + γIÂ(π/I). (3.18)

Obviously, g(π, I) is a homogeneous, i.e. g(λπ, λI) = λg(π, I) for all λ ≥ 0,
but non-linear, function. It follows from (3.16) that Vτ − Iτ ≤ g(πτ , Iτ ). More
precisely, Vτ − Iτ = g(πτ , Iτ ) if ν(πτ/Iτ ) < ∞, and Vτ − Iτ < g(πτ , Iτ ) if
ν(πτ/Iτ ) =∞.

Consider the optimal stopping problem for the bivariate process (πτ , Iτ ):

Eg(πτ , Iτ )e−ρτ → max
τ∈M

. (3.19)

A relation between the solutions to the problems (3.17) and (3.19) is de-
scribed by the lemma below.

Lemma 3.2. Let τ∗ be a finite (a.s.) stopping time solving the problem (3.19).
If ν(πτ∗/Iτ∗) < ∞ (a.s.), then τ∗ is the optimal investment time for the
investor problem (3.17).

Proof. Obviously,

max
τ
E(Vτ − Iτ )e−ρτ ≤ max

τ
Eg(πτ , Iτ )e−ρτ = Eg(πτ∗ , Iτ∗)e−ρτ

∗
.

On the other hand, since ν(πτ∗/Iτ∗) <∞ a.s., then

max
τ
E(Vτ − Iτ )e−ρτ ≥ E(Vτ∗ − Iτ∗)e−ρτ

∗
= Eg(πτ∗ , Iτ∗)e−ρτ

∗
.

Therefore,

max
τ
E(Vτ − Iτ )e−ρτ = Eg(πτ∗ , Iτ∗)e−ρτ

∗
= E(Vτ∗ − Iτ∗)e−ρτ

∗
,

i.e. τ∗ is an optimal stopping time for the problem (3.17). ��
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So, the investment timing problem is reduced to an optimal stopping prob-
lem for bivariate geometric Brownian motion and homogeneous reward func-
tion. Similar problem was considered by Gerber and Shiu [7] in the framework
of perpetual American options on two assets. Their study was focused on the
derivation of optimal continuation regions by the smooth pasting method, but
they did not state precise conditions for the validity of their results.

We set below the formula for optimal stopping time for such a problem,
and prove rigorously that under some additional conditions it gives indeed an
optimal solution to the investment timing problem.

Let β be a positive root of the quadratic equation

1
2 σ̃

2β(β − 1) + (α1 − α2)β − (ρ− α2) = 0, (3.20)

where σ̃2 = (σ1−σ21)2+σ222 > 0 (since σ22 > 0) is the “total” volatility of
investment project. It is easy to see that β > 1 whenever ρ > max(α1, α2).

Let us denote f(p) = g(p, 1), where function g is defined in (3.18), and

h(p) = f(p)p−β , p > 0. (3.21)

As one can see, h(p) < 0 if p < B−1 (and ν(p) =∞), h(p) > 0 if p > B−1,
and h(p) → 0 when p → ∞. Since g is continuous function, h(p) attains
maximum at some point p∗ > B−1. Remind that p∗ is called a strict maximum
point for the function h(p) if h(p∗) > h(p) for any p �= p∗.

The next theorem characterizes completely the optimal investment time.

Theorem 3.1. Let the processes of profits and required investments be de-
scribed by relations (3.6)–(3.9). Assume that ρ > max(α1, α2) and the follow-
ing condition is satisfied:

α1 −
1
2
σ21 ≥ α2 −

1
2
(σ221 + σ222). (3.22)

Let at, Bt ∈ C1(R+), p∗ be the strict maximum point for the function h(p),
and

f ′(p)p−β+1 decrease for p > p∗. (3.23)

Then the optimal investment time for the problem (3.17) is

τ∗ = min{t ≥ 0 : πt ≥ p∗It}.

The proof of this theorem one can find in the next section.

4 The proof

As we have seen above the investor’s problem (3.17) is reduced to the optimal
stopping problem (3.19) for bivariate process (πt, It) specified by formulas
(3.7) and (3.9).
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For proving the Theorem 3.3 we will use the variational approach to opti-
mal stopping problems for multi-dimensional diffusion processes described in
[2], [3]. Besides the formal proof we demonstrate also an approach to obtain
a formula for the optimal stopping time different from the smooth pasting
method.

It is convenient to introduce the “homogeneous” notations X1
t = πt, X

2
t =

It. The process Xt = (X1
t ,X

2
t ), is a bivariate geometric Brownian motion with

correlated components:

dX1
t = X1

t (α1dt+ σ1dw
1
t ),

dX2
t = X2

t [α2dt+ (σ21 dw1t + σ22 dw
2
t )],

(4.24)

and initial state (X1
0 ,X

2
0 ) = (x1, x2).

Let us consider a family of regions in R2++ = {(x1, x2) : x1, x2 > 0} of the
following type

Gp = {(x1, x2) ∈ R2++ : x1 < px2}, p > 0.

For the process Xt = (X1
t ,X

2
t ), described by the system (4.24) with initial

state x = (x1, x2) ∈ R2++, we denote τp(x) the exit time from the region Gp:

τp(x) = min{t ≥ 0 : Xt /∈ Gp} = min{t ≥ 0 : X1
t ≥ pX2

t }.

For x ∈ R2++ and homogeneous function g(x) (see (3.18)) define

Fp(x) = Exe−ρτp(x)g(Xτp(x))

(here and below the upper index at the expectation Ex denotes the initial
state x of the process Xt).

If x /∈ Gp, then τp(x) = 0 and, hence, Fp(x) = g(x) for x ∈ R2++\Gp. If
x ∈ Gp, then τp(x) > 0 a.s. due to continuity of diffusion process.

Lemma 4.3. If (3.22) holds, then τp(x) <∞ a.s. for any x∈R2++ and p > 0.

Proof. It follows the explicit formulas for X1
t and X2

t that

X1
t

X2
t

=
x1
x2

exp
{(

α1−α2 +
σ221+σ

2
22−σ21
2

)
t+ (σ1−σ21)w1t − σ22w

2

}
=
x1
x2

exp
{(

α1−α2 +
σ221+σ

2
22−σ21
2

)
t+ σ̃w̃t

}
, (4.25)

where w̃t =
σ1−σ21
σ̃

w1t −
σ22
σ̃
w2 is a standard Wiener process. According to

the law of iterated logarithm for Wiener process

lim sup
t→∞

|w̃t|/
√
2t log log t = 1 a.s.
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and (4.25) implies lim sup
t→∞

X1
t /X

2
t = ∞ a.s. if α1−α2+ 1

2 (σ
2
21+σ

2
22−σ21) ≥ 0

(condition (3.22)). Therefore, τp(x) = min{t ≥ 0 : X1
t /X

2
t ≥ p} <∞ a.s. for

any x ∈ R2++ and p > 0. ��

Now we can derive the functional Fp(x).

Lemma 4.4. If ρ > max(α1, α2) and (3.22) holds, then

Fp(x1, x2) =
{
h(p)xβ1x

1−β
2 , if x1 < px2

g(x1, x2), if x1 ≥ px2
,

where h(p) is defined in (3.21).

Proof. At first, show that Fp(x) is a homogeneous (of degree 1) function.
Since τp(x) is the first exit time over the level p for the process X1

t /X
2
t ,

formula (4.25) implies that the function τp(x) is homogeneous of degree 0 in
x = (x1, x2), i.e. τp(λx) = τp(x) for all λ > 0. The homogeneity properties of
the process Xt (in initial state) and the function g imply:

Fp(λx) = Eλxe−ρτp(λx)g(Xτp(λx)) = E
λxe−ρτp(x)g(Xτp(x))

= Exe−ρτp(x)g(λXτp(x)) = λFp(x).

It is known that Fp(x) is the solution of Dirichlet boundary problem:

LF (x) = ρF (x), x ∈ Gp, (4.26)
F (x)→ g(a), when x→ a, x ∈ Gp, a ∈ ∂Gp, (4.27)

where L is the generator of the process Xt (variants of a more general state-
ment usually referred to as the Feynman–Kac formula one can find in [9], [10],
[13]).

As one can see, the generator of the process (4.24) is

LF (x1, x2) = α1x1
∂F

∂x1
+ α2x2

∂F

∂x2
+

1
2
σ21x

2
1

∂2F

∂x21
+ σ1σ21x1x2

∂2F

∂x1∂x2

+
1
2
(σ221 + σ222)x

2
2

∂2F

∂x22
. (4.28)

The homogeneous function Fp(x) can be represented as Fp(x1, x2) =
x2Q(y) where y = x1/x2, Q(y) = Fp(y, 1). This and formula (4.28) for the
elliptic operator L transforms PDE (4.26) to the ordinary differential equation

1
2
y2Q′′(y)σ̃2 + yQ′(y)(α1 − α2)−Q(y)(ρ− α2) = 0. (4.29)

The general solution of equation (4.29) for 0 < y < p is of the form
Q(y) = C1y

β1 + C2y
β2 , where β1 > 0, β2 < 0 are the roots of quadratic

equation (3.22). Returning to initial function we have
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Fp(x1, x2)=C1x
β1
1 x

1−β1
2 +C2x

β2
1 x

1−β2
2 , 0 < x1 < px2. (4.30)

Since the homogeneous function g, defined in (3.18), is bounded by some linear
function, i.e. g(x1, x2) ≤ C(x1 + x2), were C = max

0≤y≤1
g(y, 1− y),

Fp(x1, x2) ≤ Cmax
τ
E(X1

τ +X2
τ )e
−ρτ

where max is taken over all Markov times τ . Standard martingale arguments
and the condition ρ > max(α1, α2) imply that

EX1
τ e
−ρτ = x1Ee−(ρ−α1)τeσ1w

1
τ−σ2

1τ/2 ≤ x1Eeσ1w
1
τ−σ2

1τ/2 = x1.

Similarly, EX2
τ e
−ρτ ≤ x2. Therefore, Fp(x1, x2) is also bounded by the linear

function C(x1 + x2).
This fact implies that C2 = 0 in representation (4.30) (otherwise Fp(x1, x2)

would be unbounded when x1 → 0, x1 < px2). The constant C1 can be
found from the boundary condition (4.27) at the line {x1 = px2}, namely,
Fp(px2, x2) = C1x2p

β1 = g(px2, x2) = x2f(p), i.e. C1 = f(p)p−β1 = h(p), see
(3.21). ��

Let M1(x) = {τp(x), p > 0} ⊂ M be the class of first exit times from the
sets Gp for the process Xt (starting from the state x = (x1, x2)). Consider the
restriction of the optimal stopping problem (3.19) to the class M1(x):

Exg(Xτ )e−ρτ → max
τ∈M1(x)

. (4.31)

Obviously, this problem is equivalent to the following extremal problem

Fp(x1, x2)→ max
p>0

. (4.32)

The explicit form of the functional Fp from Lemma 4.2 allows us to find
the solution to the problem (4.32) and, therefore, the solution to the optimal
stopping problem (4.31).

Lemma 4.5. Let the conditions of Lemma 4.2 hold, p∗ be a strict maximum
point of the function h(p) (defined in (3.21)), and h(p) decrease for p > p∗.
Then the following statements hold:

1) τ∗ = min{t ≥ 0 : X1
t ≥ p∗X2

t } is the optimal stopping time for the
problem (4.31) for all x ∈ R2++;

2) If, in addition, τ
p̂
(x) > 0 a.s. for some x ∈ R2++, p̂ > 0, and h(p)

strictly decreases for p > p∗, then τ
p̂
(x) is the optimal stopping time for the

problem (4.31) if and only if p̂ = p∗;
3) The optimal value of the functional in the problem (4.31) is

Φ(x1, x2) =
{
h(p∗)xβ1x

1−β
2 , if x1 < p∗x2

g(x1, x2), if x1 ≥ p∗x2
. (4.33)
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Proof. 1) Let us check that Fp(x) ≤ Fp∗(x) for all p > 0 and x ∈ R2++.
By the definition of p∗ we have for the homogeneous function g:

g(x) = x2f(x1/x2) = h(x1/x2)x
β
1x

1−β
2 ≤ h(p∗)xβ1x

1−β
2 .

Let p<p∗. Then Lemma 4.2 gives: if x1≥p∗x2 then Fp(x)=g(x)=Fp∗(x);
if px2≤x1<p∗x2 then Fp(x)=g(x)≤h(p∗)xβ1x

1−β
2 =Fp∗(x); and if x1<px2 then

Fp(x) = h(p)xβ1x
1−β
2 < h(p∗)xβ1x

1−β
2 = Fp∗(x). (4.34)

For p > p∗ we have: if x1≥px2 then Fp(x)=g(x)=Fp∗(x); if p∗x2≤x1<px2
then Fp(x)=h(p)x

β
1x

1−β
2 ≤h(x1/x2)xβ1x

1−β
2 =g(x)=Fp∗(x) due to monotonicity

of h(p) for p > p∗; and if x1 < p∗x2 then

Fp(x) = h(p)xβ1x
1−β
2 < h(p∗)xβ1x

1−β
2 = Fp∗(x). (4.35)

Thus, Fp(x) ≤ Fp∗(x) for all x ∈ R2++ and p > 0. Hence, maximum at
the problem (4.32) is attained at p = p∗. From this and the definition of class
M1(x) follows statement 1).

2) Since τ
p̂
(x) > 0 a.s., x1 < p̂x2. Let us show that the optimality of τ

p̂
(x)

implies that p̂ = p∗.
Assume that p̂ < p∗. Then we have inequality (4.34) with p = p̂, that

contradicts to the optimality of τ
p̂
(x). Assume now that p̂ > p∗. For x1 < p∗x2

we have (4.35) with p = p̂, i.e. the contradiction with the optimality. And if
p∗x2≤x1<p̂x2, then Fp̂

(x)=h(p̂)xβ1x
1−β
2 <h(x1/x2)x

β
1x

1−β
2 =g(x)=Fp∗(x) due

to strict decreasing of h(p) for p > p∗. So, p̂ = p∗ that proves (together with
the optimality of p∗) statement 2) of the lemma.

Statement 3) follows directly from Lemma 4 for p = p∗. ��

Let us emphasize that the region of optimal stopping

Gp∗ = {(x1, x2)∈R2++ : x1 ≥ p∗x2}

does not depend on the initial state of the process Xt.

Proof of Theorem 3.3. In order to prove that the stopping time τ∗, defined in
Lemma 4.3, will be optimal for the initial problem

Exg(Xτ )e−ρτ → max
τ∈M

(4.36)

(over all Markov timesM) we use the following “verification theorem”, based
on variational inequalities method (see, e.g. [4], [13]). Below we formulated it
for our case.

Theorem 4.2 (Øksendal [13], Hu, Øksendal [8]). Suppose, there exists
a function Φ : R2++ → R, satisfying the following conditions:
1) Φ ∈ C1(R2++) ∩ C2(R2++ \ ∂G) where G = {x∈R2++ : Φ(x)>g(x)};
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2) ∂G is locally the graph of Lipschitz function and Ex

∫ ∞
0

χ∂G(Xt) dt = 0
for all x ∈ R2++;

3) Φ(x) ≥ g(x) for all x ∈ R2++;
4) LΦ(x) = ρΦ(x) for all x ∈ G;
5) LΦ(x) ≤ ρΦ(x) for all x ∈ R2++ \ Ḡ (Ḡ is a closure of the set G);
6) τ̄ = inf{t ≥ 0 : Xt /∈ G} <∞ a.s. for all x ∈ R2++;
7) the family {g(Xτ )e−ρτ , M� τ ≤ τ̄} is uniformly integrable for all x ∈ G.

Then τ̄ is the optimal stopping time for the problem (4.36), and Φ(x) is
the correspondent optimal value of the functional in (4.36).

As a candidate we try the function Φ(x1, x2), defined in (4.33). It is easy
to see that Φ∈C1(R2++) due to first-order condition for the maximum point
p∗: βh(p∗)(p∗)β−1 = f ′(p∗).

For x = (x1, x2) ∈ R2++ let us denote p(x) = x1/x2.
Since h(p∗)>h(p) for all p �= p∗, then on the set {(x1, x2)∈R2++ : x1<p∗x2}

we have

Φ(x1, x2) = h(p∗)xβ1x
1−β
2 > h(p(x))x2 (x1/x2)

β

= x2f (x1/x2) (x1/x2)
−β (x1/x2)

β = g(x1, x2)

(the latter equality follows from the homogeneity of the function g).
Therefore, Φ(x) ≥ g(x) for all x ∈ R2++, and the domain G = {x ∈ R2++ :

Φ(x) > g(x)} coincides with {x1 < p∗x2} = {(x1, x2) : 0 ≤ p(x) < p∗}. So,
∂G = {(x1, x2) : x1 = p∗x2}.

The property Φ∈C2(R2++\∂G) follows from the twice differentiability
of g(x1, x2) on the set {(x1, x2)∈R2++ : Bx1>x2}, due to the conditions
at, Bt∈C1(R+).

Condition 2) of Theorem 4.4 follows from local properties of geometric
Brownian motion. Condition 4) follows immediately from the construction of
the function Φ = Fp∗ (see (4.26) in the proof of Lemma 4.2).

Furthermore, τ̄ = inf{t ≥ 0 : Xt /∈ G} = inf{t ≥ 0 : X1
t ≥ p∗X2

t } < ∞
a.s. for all x ∈ R2++ due to Lemma 4.1, i.e. 6) holds.

Let us show that condition 7) of Theorem 4.4 holds if ρ > α2. Indeed, if
τ ≤ τ̄ then X1

τ ≤ p∗X2
τ and, therefore,

Φ(Xτ )e−ρτ=h(p∗)X2
τ

(
X1

τ

X2
τ

)β

e−ρτ≤h(p∗)(p∗)βX2
τ e
−ρτ=CX2

τ e
−ρτ ,

where C = h(p∗)(p∗)β .
Let us denote σ22 = σ221 + σ222. Then w̄t = (σ221w

1
t + σ222w

2
t )/σ2 is the stan-

dard Wiener process. Hence, from the explicit formula for geometric Brownian
motion using martingale arguments we have:
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Ex[Φ(Xτ )e−ρτ ]k ≤ Ckxk2E
x exp{[−ρτ + (α2 −

1
2
σ22)τ + σ2w̄τ ]k}

= Ckxk2E
x exp{−[ρ−α2−

1
2
σ22(k−1)]kτ+kσ2w̄τ−

1
2
k2σ22τ}

≤ Ckxk2E
x exp{kσ2w̄τ −

1
2
k2σ22τ} = Ckxk2 ,

if k > 1 is chosen such that ρ − α2 − 1
2σ

2
2(k − 1) ≥ 0. Thus, the uniform

integrability of the family {g(Xτ )e−ρτ , τ ≤ τ̄} holds (since g(x) ≤ Φ(x)) .
It is remained to check the condition 5) of Theorem 4.4. Let us

take x=(x1, x2)/∈Ḡ, i.e. x1>p∗x2. For this case p(x)>p∗ and Φ(x1, x2) =
g(x1, x2) = x2f(p(x)). Repeating arguments, similar to those in the proof
of Lemma 4.2, we have:

Lg(x)− ρg(x) = x2

[
1
2
p2(x)f ′′(p(x))σ̃2 + p(x)f ′(p(x))(α1 − α2)

−f(p(x))(ρ− α2)
]
.

The condition (3.23) is equivalent to the inequality pf ′′(p) ≤ (β − 1)f ′(p)
for p > p∗. Integrating both sides of the latter relation from p∗ to p one can
obtain that pf ′(p) ≤ p∗f ′(p∗) − βf(p∗) + βf(p) = βf(p), since h′(p∗) = 0.
These inequalities imply:

Lg(x)− ρg(x)
x2

=
1
2
p2f ′′(p)σ̃2 + pf ′(p)(α1 − α2)− f(p)(ρ− α2)

≤ 1
2
p2f ′′(p)σ̃2 + pf ′(p)

[
α1 − α2 −

1
β
(ρ− α2)

]
=

1
2
p2f ′′(p)σ̃2 − pf ′(p)

1
2
σ̃2(β − 1) ≤ 0, where p = p(x)

(here we use the fact that β is a root of equation (3.22)). Thus, all the condi-
tions of Theorem 4.4 hold and, therefore, τ̄ = inf{t ≥ 0 : X1

t ≥ p∗X2
t } = τ∗

is the finite (a.s.) optimal stopping time for the problem (4.34).
As it is shown before the formulation of Theorem 3.3, p∗ > 1/B. Hence

ν(p∗) = ν(X1
τ∗/X2

τ∗) <∞, and, due to Lemma 3.2, τ∗ is the optimal stopping
time for the investor’s problem (3.17). ��
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Summary. Consider a semimartingale of the form Yt = Y0+
∫ t

0
asds+

∫ t

0
σs− dWs,

where a is a locally bounded predictable process and σ (the “volatility”) is an
adapted right–continuous process with left limits and W is a Brownian motion. We
consider the realised bipower variation process

V (Y ; r, s)nt = n
r+s
2 −1

[nt]∑
i=1

|Y i
n
− Y i−1

n
|r|Y i+1

n
− Y i

n
|s,

where r and s are nonnegative reals with r + s > 0. We prove that V (Y ; r, s)nt con-
verges locally uniformly in time, in probability, to a limiting process V (Y ; r, s)t (the
”bipower variation process”). If further σ is a possibly discontinuous semimartingale
driven by a Brownian motion which may be correlated with W and by a Poisson
random measure, we prove that

√
n (V (Y ; r, s)n − V (Y ; r, s)) converges in law to a

process which is the stochastic integral with respect to some other Brownian mo-
tion W ′, which is independent of the driving terms of Y and σ. We also provide a
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ing Network, and the financial support of the Deutsche Forschungsgemeinschaft
(SFB 475, ”Reduction of complexity in multivariate data structures”) is gratefully
acknowledged.
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multivariate version of these results, and a version in which the absolute powers are
replaced by smooth enough functions.

Key words: Central limit theorem, quadratic variation, bipower variation.
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1 Introduction

For a wide class of real–valued processes Y , including all semimartingales, the
“approximate (or, realised) quadratic variation processes”

V (Y ; 2)nt =
[nt]∑
i=1

(Y i
n
− Y i−1

n
)2, (1.1)

where [x] denotes the integer part of x ∈ R+, converge in probability, as
n → ∞ and for all t ≥ 0, towards the quadratic variation process V (Y ; 2)t,
usually denoted by [Y, Y ]t.

This fact is basic in the ”general theory of processes” and is also used
in a large variety of more concrete problems, and in particular for the sta-
tistical analysis of the process Y when it is observed at the discrete times
i/n : i = 0, 1, . . . (sometimes V (Y ; 2)nt is called the “realised” quadratic
variation, since it is explicitly calculable on the basis of the observations).
In that context, in addition to the convergence in probability one is inter-
ested in the associated CLT (Central Limit Theorem), which says that the√
n (V (Y ; 2)nt − V (Y ; 2)t)’s converge in law, as processes, to a non–trivial lim-

iting process. Of course, for the CLT to hold we need suitable assumptions on
Y . This type of tool has been used very widely in the study of the statistics
of processes in the past twenty years. References include, for example, the
review paper [10] in the statistics of processes and [1], [2], [3], [6] in financial
econometrics. [2] provides a review of the literature in econometrics on this
topic.

Now, when Y describes some stock price, with a stochastic volatility possi-
bly having jumps, a whole new class of processes extending the quadratic vari-
ation has been recently introduced, and named “bipower variation processes”:
let r, s be nonnegative numbers. The realised bipower variation process of order
(r, s) is the increasing processes defined as:

V (Y ; r, s)nt = n
r+s
2 −1

[nt]∑
i=1

|Y i
n
− Y i−1

n
|r |Y i+1

n
− Y i

n
|s, (1.2)

with the convention 00 = 1. Clearly V (Y ; 2)n = V (Y ; 2, 0)n. The bipower
variation process of order (r, s) for Y , denoted by V (Y ; r, s)t, is the limit in
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probability, if it exists for all t ≥ 0, of V (Y ; r, s)nt . It has been introduced
in [4] and [5], where it is shown that the bipower variation processes exist
for all nonnegative indices r, s as soon as Y is a continuous semimartingale
of “Itô type” with smooth enough coefficients. These papers also contain a
version of the associated CLT under somewhat restrictive assumptions and
when r = s = 1.

The aim of this paper is mainly to investigate the CLT, and more precisely
to give weaker conditions on Y which ensure that it holds and which cover
most concrete situations of interest, and also to precisely describe the limiting
process. We prove the existence of the bipower variation process for a wide
class of continuous semimartingales (extending the results of [4] and [5]). We
establish the CLT in a slightly more restricted setting. The restriction is that
the volatility of Y (that is, the coefficient in front of the driving Wiener process
for Y ) is a semimartingale driven by a Lévy process, or more generally by a
Wiener process (possibly correlated with the one driving Y ) and a Poisson
random measure.

We also investigate the multidimensional case, when Y = (Y j)1≤j≤d is d–
dimensional. It is then natural to replace (1.2) by the realised “cross–bipower
variation processes”:

V (Y j , Y k; r, s)nt = n
r+s
2 −1

[nt]∑
i=1

|Y j
i
n

− Y j
i−1
n

|r |Y k
i+1
n

− Y k
i
n
|s. (1.3)

We state the results in Section 2, and the proofs are given in the other
sections. The reader will notice that we replace the powers like |Y i

n
− Y i−1

n
|r

in (1.2) by an expression of the form g(
√
n(Y i

n
−Y i−1

n
)) for a suitable function

g: this can prove useful for some applications, and it is indeed a simplification
rather than a complication for the proof itself. Written in this way, our results
also extend some of the results of Becker in [7], and of the unpublished paper
[8].

It is also worth observing that, apart from the notational complexity, the
proofs when r > 0 and s > 0 are not really more difficult than when r > 0
and s = 0, that is, when we have only one power in (1.2). That means that,
obviously, the same types of results would hold for the ”realised multipower
variation processes” which are defined by

V (Y j1 , . . . , Y jN ; r1, . . . , rN )nt

= n
r1+...+rN

2 −1
[nt]∑
i=1

|Y j1
i
n

− Y j1
i−1
n

|r1 . . . |Y jN
i+N−1

n

− Y jN
i+N−2

n

|rN , (1.4)

for any choice of ri ≥ 0 and any fixed N . We do not prove those more general
results here, but simply state the results.
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2 Statement of results

We start with a filtered space (Ω,F , (F t)t≥0,P), on which are defined various
processes, possibly multidimensional: so we systematically use matrix and
product–matrices notations. The transpose is denoted by ", all norms are
denoted by ‖.‖. We denote by Md,d′ the set of all d × d′–matrices, and by
Md,d′,d′′ the set of all arrays of size d × d′ × d′′, and so on. For any process
X we write ∆n

i X = Xi/n −X(i−1)/n.
Our basic process is a continuous d–dimensional semimartingale Y =

(Y i)1≤i≤d. We are interested in the asymptotic behavior of all finite fami-
lies of processes of type (1.3), that is for all j, k ∈ {1, . . . , d} and all finite
families of pairs (r, s). So in order to simplify notation (which will neverthe-
less remain quite complicated, sorry for that !), we introduce the following
processes:

Xn(g, h)t =
1
n

[nt]∑
i=1

g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ), (2.1)

where g and h are two maps on Rd, taking vakues in Md1,d2 and Md2,d3

respectively. So Xn(g, h)t takes its values in Md1,d3 . Note that, letting

fj,r(x) = |xj |r, (2.2)

we have V (Y j , Y k; r, s)n = Xn(fj,r, fk,s), and any finite family of processes
like in (1.3) is a process of the type (2.1) with the components of g and h
being the various fj,r.

2.1 Convergence in probability

We start with the convergence in probability of the processes Xn(g, h). We
need the following structural assumption on Y :

Hypothesis (H): We have

Yt = Y0 +
∫ t

0

asds+
∫ t

0

σs− dWs, (2.3)

where W is a standard d′–dimensional BM, a is predictable Rd–valued locally
bounded, and σ is Md,d′–valued càdlàg.

Below ρΣ denotes the normal law N (0, ΣΣ
	

), and ρΣ(g) is the integral of
g w.r.t. ρΣ .

Theorem 2.1. Under (H) and when the functions g and h are continuous
with at most polynomial growth, we have

Xn(g, h)t → X(g, h)t :=
∫ t

0

ρσs
(g)ρσs

(h)ds, (2.4)

where the convergence is local uniform in time, and in probability.
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If we apply this with the functions g = fj,r and h = fk,s, we get a result
of existence for the bipower variation processes. We denote by µr the rth
absolute moment of the law N (0, 1).

Theorem 2.2. Under (H), and if r, s ≥ 0, we have

V (Y j , Y k; r, s)nt → V (Y j , Y k; r, s)t := µrµs

∫ t

0

|σjju |r|σkku |s du, (2.5)

where the convergence is local uniform in time, and in probability.

This result is essentially taken from [4]. The assumption (H) could be
weakened, of course, but probably not in any essential way. For instance the
càdlàg hypothesis on σ can be relaxed, but we need at least the functions
u �→ |σjju |r to be Riemann–integrable, for all (or P–almost all) ω. The fact
that the driving terms in (2.3) are t and Wt is closely related to the fact that
the discretization in time has a constant step 1/n. If we replace (2.3) by

Yt = Y0 +
∫ t

0

asdAs +
∫ t

0

σs−dMs,

where A is a continuous increasing process and M a continuous martingale,
then a result like (2.5) can hold only for discretization along increasing se-
quences of stopping times, related in some way to A and to the quadratic
variation of M . If further Y is discontinuous, this type of result cannot pos-
sibly hold (with the normalizing factor n

r+s
2 −1), as is easily seen when Y is

a simple discontinuous process like a Poisson process. As a matter of fact,
this observation was the starting point of the papers [4] and [5] for intro-
ducing bipower variations, in order to discriminate between continuous and
discontinuous processes.

Finally, we state the multipower variation result: the processes of (1.4)
converge (under (H)) towards

V (Y j1 , . . . , Y jN ; r1, . . . , rN )t = µr1 . . . µrN

∫ t

0

|σj1j1u |r1 . . . |σjN jN
u |rN du.

(2.6)

2.2 The central limit theorem

For the CLT we need some additional structure on the volatility σ. A relatively
simple assumption is then:

Hypothesis (H0): We have (H) with

σt = σ0 +
∫ t

0

a′sds+
∫ t

0

σ′s−dWs +
∫ t

0

vs−dZs, (2.7)
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where Z is a d′′–dimensional Lévy process on (Ω,F , (F t)t≥0,P), independent
of W (and possibly with a non–vanishing continuous martingale part). Fur-
thermore the processes σ′ and v, and a of (2.7), are adapted càdlàg, with val-
ues in Md,d′,d′ and Md,d′,d′′ and Md,d′ respectively, and a′ is Md,d′–valued,
predictable and locally bounded.

This assumption is in fact not general enough for applications. Quite often
the natural ingredient in our model is the ”square” c = σσ∗ rather than σ
itself, and it is this c which satisfies an equation like (2.7). In this case the
”square–root” σ of c does not usually satisfy a similar equation. This is why
we may replace (H0) by the following assumption:

Hypothesis (H1): We have (H) with

σt = σ0 +
∫ t

0

a′sds+
∫ t

0

σ′s−dWs +
∫ t

0

vs−dVs +∫ t

0

∫
E

ϕ ◦ w(s−, x)(µ− ν)(ds, dx) +
∫ t

0

∫
E

(w − ϕ ◦ w)(s−, x)µ(ds, dx). (2.8)

Here a′ and σ′ and v are like in (H0); V is a d′′–dimensional Wiener process
independent of W , with an arbitrary covariance structure; µ is a Poisson ran-
dom measure on (0,∞)×E independent of W and V , with intensity measure
ν(dt, dx) = dtF (dx) and F is a σ–finite measure on the Polish space (E, E);
ϕ is a continuous truncation function on Rdd′

(a function with compact sup-
port, which coincides with the identity map on a neigbourhood of 0); finally
w(ω, s, x) is a map Ω × [0,∞) × E → Md,d′ which is Fs ⊗ E–measurable
in (ω, x) for all s and càdlàg in s, and such that for some sequence (Sk) of
stopping times increasing to +∞ we have:

sup
ω∈Ω,s<Sk(ω)

‖w(ω, s, x)‖ ≤ ψk(x), where
∫
E

(1∨ψk(x)2) F (dx) <∞. (2.9)

This hypothesis looks complicated, but it is usually simple to check. The
conditions on the coefficients imply in particular that all integrals in (2.8) are
well defined. It is weaker than (H0): indeed if (H0) holds, we also have (H1)
with E = Rd′′

and V being the Wiener part of Z if it exists, and µ being the
random measure associated with the jumps of Z (so F is the Lévy measure of
Z), and w(ω, t, x) = vt(ω)x (note that v is the same in (2.7) and in (2.8); the
processes a′ in the two formulae are different, depending on the drift of Z).

We also sometimes need an additional assumption:

Hypothesis (H’): The process σσ" is everywhere invertible.

Set once more c = σσ∗. If the processes c and c− are invertible, (H1)
holds if and only if the process c satisfies an equation like (2.8), with the same
assumptions on the coefficients. This is not longer true if we replace (H1) and
(2.8) by (H0) and (2.7).
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As for the functions g and h, we will suppose that their components satisfy
one of the following assumptions, which we write for a real–valued function
f on Rd; if f is differentiable at x, we write ∇f(x) for the row matrix of its
partial derivatives:

Hypothesis (K): The function f is even (that is, f(−x) = f(x) for all
x ∈ Rd) and continuously differentiable, with partial derivatives having at
most polynomial growth.

Hypothesis (K’): The function f is even and continuously differentiable on
the complement Bc of a closed subset B ⊂ Rd and satisfies

‖y‖ ≤ 1 ⇒ |f(x+ y)− f(x)| ≤ C(1 + ‖x‖p) ‖y‖r (2.10)

for some constants C > 0, p ≥ 0 and r ∈ (0, 1]. Moreover:
a) If r = 1 then B has Lebesgue measure 0.
b) If r < 1 then B satisfies

for any positive definite d× d matrix C and any
N (0, C)–random vector U the distance d(U,B)
from U to B has a density ψC on R+, such that
supx∈R+,‖C‖+‖C−1‖≤A ψC(x) <∞ for all A <∞,

 (2.11)

and we have

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2
⇒

‖∇f(x)‖ ≤
C(1+‖x‖p)
d(x,B)1−r ,

‖∇f(x+ y)−∇f(x)‖ ≤ C(1+‖x‖p)‖y‖
d(x,B)2−r .

(2.12)

The additional requirements when r < 1 above are not “optimal”, but
they accomodate the case where f equals fj,r, as defined in (2.2): this function
satisfies (K) when r > 1, and (K’) when r ∈ (0, 1] (with the same r of course).
When B is a finite union of hyperplanes it satisfies (2.11). Also, observe that
(K) implies (K’) with r = 1 and B = ∅. For the concept of “stable convergence
in law”, introduced by Renyi in [11], we refer to [9] for example; it is a kind
of convergence which is a bit stronger than the ordinary convergence in law.

Theorem 2.3. Under (H1) (or (H0)) and either one the following assump-
tions:

(i) all components of g and h satisfy (K),
(ii) (H’) holds, and all components of g and h satisfy (K’),

the processes
√
n (Xn(g, h)−X(g, h)) converge stably in law towards the lim-

iting process U(g, h) given componentwise by

U(g, h)jkt =
d1∑

j′=1

d3∑
k′=1

∫ t

0

α(σs, g, h)jk,j
′k′

dW ′j
′k′

s (2.13)
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where∑d1
l=1

∑d3
m=1 α(Σ, g, h)

jk,lmα(Σ, g, h)j
′k′,lm = A(Σ, g, h)jk,j

′k′

and A(Σ, g, h)jk,j
′k′

=
∑d2

l,l′=1

(
ρΣ(gjlgj

′l′)ρΣ(hlkhl
′k′
)

+ρΣ(gjl)ρΣ(hl
′k′
)ρΣ(gj

′l′hlk) + ρΣ(gj
′l′)ρΣ(hlk)ρΣ(gjlhl

′k′
)

−3ρΣ(gjl)ρΣ(gj
′l′)ρΣ(hlk)ρΣ(hl

′k′
)
)
,


(2.14)

andW ′ is a d1d3–dimensional Wiener process which is defined on an extension
of the space (Ω,F , (F t)t≥0,P) and is independent of the σ–field F .

The first formula in (2.14) means that α is a square–root of the d1d3×d1d3–
matrix A, which is symmetric semi–definite positive. Observe that the right
sides of (2.4) and (2.13) always make sense, due to the fact that t �→ σt is
càdlàg and thus with all powers locally integrable w.r.t. Lebesgue measure.

Under (H) and if both g and h are even and continuous, the processes

Un(f, g)t =
1√
n

[nt]∑
i=1

(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y )

−E(g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y )|F i−1
n
)
)

(2.15)

still converge stably in law to U(g, h) provided a and σ have some integra-
bility properties in connection with the growth rate of g and h (so that the
conditional expectations above are meaningful): see Theorem 5.6 below for a
version of this when a and σ are bounded. But such a CLT is probably of
little practical use.

Remarks: For simplicity we state the remarks when all processes are 1–
dimensional and when h(x) = 1.

1. When g is not even we still have a limiting process which is the process
U(g, 1) plus a process which has a drift and an integral term w.r.t. W :
for example if g(x) = x, then X(g, 1) = 0 and of course

√
n Xn(g, h)t =

Y[nt]/n, so the limit is Y itself (in this case U(g, 1) = 0). For more details,
see [8].

2. In view of the result on (2.15), when h = 1 the CLT is essentially equiva-
lent to the convergence of

1√
n

[nt]∑
i=1

(
E(g(

√
n ∆n

i Y )|F i−1
n
)− n

∫ i
n

i−1
n

ρσu
(g)du

)

to 0 (locally uniform in t). This in turn is implied by the convergence to
0 of the following two processes:
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1√
n

[nt]∑
i=1

(
E(g(

√
n ∆n

i Y )|F i−1
n
)−E(g(

√
n σ i−1

n
∆n

i W )|F i−1
n
)
)
, (2.16)

1√
n

[nt]∑
i=1

(
ρσ i−1

n

(g)− n

∫ i
n

i−1
n

ρσu
(g)du

)
. (2.17)

3. For (2.17) we need some smoothness of σ: e.g. u �→ σu is Hölder with
some index > 1/2. Hypothesis (H1) is of this kind (although σ can have
jumps, (2.8) sort of implies that it is ”Hölder” of order 1/2 and further
some compensation arises).

4. The differentiability of g is in fact used for the convergence of (2.16).
Another natural idea would be to compare the transition densities of Y
and W for small times, provided of course the former ones exist: that
allows to get the results for functions g and h which are only Borel–
measurable, in Theorem 2.3 and in Theorem 2.1 as well, but it necessitates
quite stringent assumptions on Y (like a Markov structure, and non–
degeneracy).

2.3 Applications to bipower variations

Let us now explain how the general CLT above writes for bipower variations.
The most general form is given below, but for simplicity we first consider the
1–dimensional case for Y , with a single bipower process.

Theorem 2.4. Let r, s ≥ 0 and assume that d = d′ = 1. Assume (H1)
and also that either r, s ∈ {0} ∪ (1,∞) or (H’) holds. Then the processes
(
√
n (V (Y ; r, s)n − V (Y ; r, s))) converge stably in law to a process U(r, s) of

the form

U(r, s)t =
√
µ2rµ2s + 2µrµsµr+s − 3µ2rµ2s

∫ t

0

|σu|r+s dW ′u, (2.18)

where W ′ is a Wiener process which is defined on an extension of the space
(Ω,F , (F t)t≥0,P) and is independent of the σ–field F .

For the general case we consider simultaneously all cross–bipower varia-
tions for any finite family of indices. We need some more notation: we de-
note by µ(Σ; r, s; j, k) the expected value of |Uj |r|Uk|s when U = (Uj)1≤j≤d
is an N (0, ΣΣ∗)–distributed random variable, and also by µ(Σ; r; j) the ex-
pected value of |Uj |r (so µ(Σ; r; j) = µ(Σ; r, 0; j, k) for any k, and µ(Σ; r; j) =
|Cjj |r/2µr, where C = ΣΣ∗).

Theorem 2.5. Let (rl, sl) be a family of nonnegative reals. Under (H1) and
either one of the following assumptions:

(i) rl, sl ∈ {0} ∪ (1,∞),
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(ii) (H’) and rl, sl ∈ [0,∞),
the L× d× d–dimensional processes

(
√
n (V (Y j , Y k; rl, sl)n − V (Y j , Y k; rl, sl)) : 1 ≤ l ≤ L, 1 ≤ j, k ≤ d)

converge stably in law to a process (U(rl, sl, j, k) : 1 ≤ l ≤ L, 1 ≤ j, k ≤ d)
having the form

U(rl, sl, j, k)t =
L∑

l′=1

d∑
j′=1

d∑
k′=1

∫ t

0

α(σu)ljk,l
′j′k′

dW ′l
′j′k′

u , (2.19)

where∑L
l′′=1

∑d
j′′=1

∑d
k′′=1 α(Σ)

ljk,l′′j′′k′′
α(Σ)l

′j′k′,l′′j′′k′′
= Aljk,l′j′k

and A(Σ)ljk,l
′j′k′

= µ(Σ; rl, rl′ ; j, j′)µ(Σ; sl, sl′ ; k, k′)

+µ(Σ; rl; j)µ(Σ; sl′ ; k′)µ(Σ; rl′ , sl; j′, k)

+µ(Σ; rl′ ; j′)µ(Σ; sl; k)µ(Σ; rl, sl′ ; j, k′)

−3µ(Σ; rl; j)µ(Σ; rl′ ; j′)µ(Σ; sl; k)µ(Σ; sl′ ; k′)


(2.20)

and where W ′ is an L × d × d–dimensional Wiener process which is defined
on an extension of (Ω,F , (F t)t≥0,P) and is independent of the σ–field F .

This result readily follows from Theorem 2.3, upon taking d1 = Ld, d2 = L,
d3 = d, g(x)lj,l

′
= |xj |rlεll′ (εll′ is the Kronecker symbol) and h(x)l,j = |xj |sl .

Apart from Theorem 2.4, several particular cases are worth being mentioned
(recall that c = σσ∗):

1. If j = k then
√
n (V (Y j ; r, s)n − V (Y j ; r, s)) stably converges to

√
µ2rµ2s + 2µrµsµr+s − 3µ2rµ2s

∫ t

0

|cjju |
r+s
2 dW ′u.

This is also, of course, a consequence of Theorem 2.4.
2. The bivariate processes with components

√
n (V (Y j ; r, 0)n − V (Y j ; r, 0))

and
√
n (V (Y k; 0, s)n−V (Y k; 0, s)) stably converge to a continuous mar-

tingale with (matrix–valued) bracket C given by

C11t = (µ2r − µ2r)
∫ t
0
|cjju |r du

C12t =
∫ t
0
(µ(σu; r, s; j, k)− µrµs|cjju |r/2|ckku |s/2) du

C22t = (µ2s − µ2s)
∫ t
0
|cjju |s du

 . (2.21)

The same is true for the processes with components
√
n (V (Y j ; r, 0)n −

V (Y j ; r, 0)) and
√
n (V (Y k; s, 0)n − V (Y k; s, 0)). When j = k we get

C12t = (µr+s − µrµs)
∫ t
0
|cjju |

r+s
2 du.
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Finally we state the multipower variation result, in the 1–dimensional case
only for simplicity. We consider the processes of (1.4) and (2.6), which are
written V (Y ; r1, . . . , rN )n and V (Y ; r1, . . . , rN ) here. For any choice of rl ≥ 0,
and under (H1) and also under (H’) if any of the rl is in the set (0, 1], the
processes

√
n (V (Y ; r1, . . . , rN )n − V (Y ; r1, . . . , rN )) converge stably towards

a limiting process of the form

U(r1, . . . , rN )t =
√
A

∫ t

0

|σu|r1+...+rN dW ′u,

where W ′ is a Wiener process independent of the σ–field F , and where

A =
N∏
l=1

µ2rl − (2N − 1)
N∏
l=1

µ2rl + 2
N−1∑
k=1

k∏
l=1

µrl

N∏
l=N−k+1

µrl

N−k∏
l=1

µrl+rl+k
.

2.4 Outline of the proof

The remainder of this paper is devoted to proving Theorems 2.1 and 2.3:

1. In Section 3 we replace the ”local” assumptions (H), (H1) and (H’) by
”global” ones called (SH), (SH1) and (SH’): these stronger assumptions
are likely to be satisfied in many practical applications, and the ”local-
ization techniques” using stopping times are standard: so the reader can
very well skip most of that section and read only the assumptions and
(3.6).

2. The idea of the proof is simple enough. First, replace the increments ∆n
i Y

of the process (2.3) by σ(i−1)/n∆
n
i W : then the CLT is a simple conse-

quence of the convergence of triangular arrays of martingale differences,
and the convergence in probability follows from the CLT: this is basi-
cally the content of Section 4. In Section 5 we prove the CLT for the
processes of (2.15): this easily follows from Section 4. Hence proving The-
orems 2.1 and 2.3 amounts to control of the differences Xn(g, h)−Un(g, h)
or
√
n (Xn(g, h)−Un(g, h)): for Theorem 2.1 this is simple, see Section 6.

For Theorem 2.3 it is done in Section 8: we have to split the above differ-
ences into a large number of terms, which are estimated separately. So we
gather the necessary (very cumbersome) notation and technical estimates
in Section 7.

3 Some stronger assumptions

Under (H) we have a sequence Tk of stopping times increasing to +∞ and
constants Ck such that

s ≤ Tk =⇒ |as|+ |σs−| ≤ Ck.
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Set a(k)s = as∧Tk
, and σ

(k)
s = σs if s < Tk and σ

(k)
s = σTk− if s ≥ Tk. We

associate Y (k) with a(k) and σ(k) by (2.3), and Xn,(k)(g, h) with Y (k) by (2.1),
and similarly X(k)(g, h) and U (k)(g, h) with σ(k) by (2.4) and (2.13) (and the
same process W ′ for all k).

Suppose that we have proved Theorem 2.1 for Xn,(k)(g, h), for each k.
Observing that Xn,(k)(g, h)t = Xn(g, h)t and X(k)(g, h)t = X(g, h)t and
U (k)(g, h)t = U(g, h)t for all t < Tk, and since Tk increases to∞ as k →∞, it
is obvious that the result of Theorem 2.1 also holds for Xn(g, h). So, instead
of (H), it is no restriction for proving Theorem 2.1 to assume the following
stronger hypothesis:

Hypothesis (SH): We have (H), and further the processes a and σ are
bounded by a constant.

Now we proceed to strenghten (H1) in a similar manner. Assume (H1) and
recall the sequence (Sk) in (2.9): it is no restriction to assume in addition that
Sk ≤ k. Set for k, l ≥ 1:

Ek,l = {x ∈ E : ψk(x) > l}, Rk,l = inf(t : µ((0, t]× Ek,l) ≥ 1).

Then we have

P(Rk,l ≤ Sk) ≤ E(µ((0, Sk]×Ek,l)) = F (Ek,l) E(Sk) ≤ k F (Ek,l).

In view of (2.9) we have liml→∞ F (Ek,l) = 0. Hence we find lk such that
P(Rk,lk < Sk) ≤ 2−k, and obviously the sequence of stopping times S′k =
Sk ∧Rk,lk has supk S′k =∞ a.s.

Next, just as above, we find a sequence S′′k of stopping times increasing to
+∞ and constants Ck such that

s ≤ S′′k =⇒ ‖as‖+ ‖σs−‖+ ‖a′s‖+ ‖σ′s−‖+ ‖vs−‖ ≤ Ck.

Then if Tk = S′k ∧ S′′k , we still have supk Tk =∞ a.s., and further

s ≤ Tk =⇒ ‖as‖+ ‖σs−‖+ ‖a′s‖+ ‖σ′s−‖+ ‖vs−‖ ≤ Ck,

µ((0, Tk)× Ek,lk) = 0.

}
. (3.1)

Set

a′(k)s =

{
a′s if s ≤ Tk

0 if s > Tk

(a(k)s , σ′(k)s , v(k)s , w(k)(s, x)) =

{
(as, σ′s, vs, w(s, x)) if s < Tk

(0, 0, 0, 0) if s ≥ Tk,

µ(k)(ds, dx) = µ(ds, dx) 1Ec
k,lk

(x),
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ν(k)(ds, dx) = ds⊗ Fk(dx), where Fk(dx) = F (dx) 1Ec
k,lk

(x).

Then µ(k) is a new Poisson measure, still independent of W and V , with
compensator ν(k), and ψk is square–integrable w.r.t. Fk. We then put

σ
(k)
t = σ0 +

∫ t

0

a′(k)s ds+
∫ t

0

σ
′(k)
s− dWs +

∫ t

0

v
(k)
s−dVs

+
∫ t

0

∫
E

ϕ ◦ w(k)(s−, x)(µ(k) − ν(k))(ds, dx)

+
∫ t

0

∫
E

(w(k) − ϕ ◦ w(k))(s−, x)µ(k)(ds, dx) (3.2)

= σ0 +
∫ t

0

(a′(k)s + α(k)s )ds+
∫ t

0

σ
′(k)
s− dWs +

∫ t

0

v
(k)
s−dVs

+
∫ t

0

∫
E

w(k)(s−, x)(µ(k) − ν(k))(ds, dx), (3.3)

provided α(k)s =
∫
E
(w(k)−ϕ◦w(k))(s−, x)Fk(dx). Then σ

(k)
s = σs when s < Tk

and ‖α(k)s ‖ ≤ C ′k for all s, for some constant C ′k.
We associate Y (k) with a(k) and σ(k) by (2.3), and Xn,(k)(g, h) with Y (k)

by (2.1), and similarly X(k)(g, h) and U (k)(g, h) with σ(k) by (2.4) and (2.13)
(and the same processW ′ for all k). We clearly have Xn,(k)(g, h)t = Xn(g, h)t
and X(k)(g, h)t = X(g, h)t and U (k)(g, h)t = U(g, h)t for all t < Tk.

Hence, exactly as for (H), for proving Theorem 2.3 it is no restriction to
replace (H1) by the following stronger assumption (recall (3.3)):

Hypothesis (SH1): We have (SH) with

σt = σ0 +
∫ t

0

a′sds+
∫ t

0

σ′s−dWs +
∫ t

0

vs−dVs +
∫ t

0

∫
E

w(s−, x)(µ− ν)(ds, dx)

(3.4)
with V , µ and ν as in (H1), and a′, σ′, v and a are like in (H0) and uniformly
bounded. Finally w is like in (H1), with further

sup
ω∈Ω,s≥0

‖w(ω, s, x)‖ ≤ ψ(x), where
∫
E

ψ(x)2 F (dx) <∞, ψ(x) ≤ C.

(3.5)

In a similar way, under (H’) we find a sequence Tk of stopping times
satisfying (3.1) and also ‖(σsσ"s )−1‖ ≤ Ck if s < Tk. So the same argument as
above allows to replace (H’) in Theorem 2.3 by

Hypothesis (SH’): We have (H’) and further the process (σσ")−1 is
bounded.

Finally, let us denote by M′ the closure of the set {σu(ω) : ω ∈ Ω, u ≥ 0}
in Md,d′ . Then there is a constant A0 such that:
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under (SH) we have Σ ∈M′ ⇒ ‖Σ‖ ≤ A0

under (SH’) we have Σ ∈M′ ⇒ ‖(ΣΣ")−1‖ ≤ A0.

}
(3.6)

In view of the previous results, we can and will assume in the sequel either
(SH), or (SH1), and sometimes (SH’).

Let us also fix some conventions. We write V n P−→ V for a sequence (V n)
of processes and a continuous process V when sups≤t ‖V n

s − Vs‖ goes to 0
in probability for all t > 0. When V n takes the form V n

t =
∑[nt]

i=1 ζ
n
i for an

array of variables (ζni ), and when V n P−→ 0, we say that this array is AN, for
Asymptotically Negligible.

The constants occuring here and there may depend on the constants in
(SH) or (SH1) and on the functions g and h and are all denoted by C and
change from line to line; if they depend on another external parameter p, we
write them Cp.

4 A first simplified problem

In this section we prove the CLT in a slightly different setting: in some sense,
we pretend that at stage n, σ is constant over the interval [(i − 1)/n, i/n).
More precisely, we introduce the following Rd–valued random variables:

βni =
√
n σ i−1

n
∆n

i W, β′ni =
√
n σ i−1

n
∆n

i+1W, (4.1)

and we write ρni = ρσi/n
. To begin with, we consider an Md1,d2–valued

adapted càdlàg and bounded process δ and an Md2,d3–valued function f on
Rd. Then we introduce the Md1,d3–valued process (recall (4.1)):

Un
t =

1√
n

[nt]∑
i=1

δ i−1
n

(
f(βni )− ρni−1(f)

)
. (4.2)

In a similar way, for g and h like in (2.1), we set

U ′nt =
1√
n

[nt]∑
i=1

(
g(βni )h(β

′n
i )− ρni−1(g)ρ

n
i−1(h)

)
. (4.3)

Our aim in this section is then to prove the following two CLT’s:

Proposition 4.1 Under (SH), if f is at most of polynomial growth, the se-
quence of processes Un in (4.2) is C-tight. If further f is even, then it con-
verges stably in law to the process U defined componentwise by
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U jk
t =

d1∑
j′=1

d3∑
k′=1

∫ t

0

δ′jk,j
′k′

u dW ′j
′k′

u , (4.4)

where

d1∑
l=1

d3∑
m=1

δ′jk,lmu δ′j
′k′,lm

u =
d2∑

l,l′=1

(
ρσu

(f lkf l
′k′
)− ρσu

(f lk)ρσu
(f l

′k′
)
)
δjlu δ

j′l′

u ,

(4.5)
and W ′ is a d1d3–dimensional Wiener process defined on an extension of
(Ω,F , (F t)t≥0,P) and which is independent of the σ–field F .

Proposition 4.2 Under (SH) and if g and h are continuous with at most
polynomial growth, the sequence of processes U ′n is C-tight. If further g and
h are even, then it converges stably in law to the process U(g, h) described in
(2.13).

Before proceeding to the proofs, let us mention the following estimates,
which are obvious under (SH):

E(‖βni ‖q) +E(‖β′ni ‖q) ≤ Cq. (4.6)

Next, saying that f is of at most polynomial growth means that for some
constants C > 0 and p (we can always choose p ≥ 2),

x ∈ Rd ⇒ |f(x)| ≤ C(1 + ‖x‖p). (4.7)

Observe also that Propositions 4.1 and 4.2 imply respectively

1
n

[nt]∑
i=1

δ i−1
n
f(βni )

P−→
∫ t

0

δu ρσu
(f) du, (4.8)

1
n

[nt]∑
i=1

g(βni )h(β
′n
i ) P−→

∫ t

0

ρσu
(g)ρσu

(h) du. (4.9)

Proof of Proposition 4.1. We have Un
t =

∑[nt]
i=1 ζ

n
i , where ζni =

δ i−1
n
(f(βni )− ρni−1(f))/

√
n. Recalling (4.6) and (4.7), we trivially have

E(ζni |F i−1
n
) = 0, E(‖ζni ‖4|F i−1

n
) ≤ C

n2
, (4.10)

E(ζn,jki ζn,j
′k′

i |F i−1
n
) =

1
n
∆jk,j′k′

i−1
n

,

where ∆jk,j′k′

u is the right side of (4.5). Moreover since σ is càdlàg we deduce
from (4.7) that s �→ ρσs

(f) also is càdlàg. Thus by the Riemann integrability
we get
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[nt]∑
i=1

E(ζn,jki ζn,j
′k′

i |F i−1
n
) →

∫ t

0

∆jk,j′k′

u du. (4.11)

Then (4.10) and (4.11) are enough to imply the tightness of the sequence
(Un).

Now, assume further that f is even. Since the variables ∆n
i W and −∆n

i W
have the same law, conditionally on F (i−1)/n, we get

E(ζn,jki ∆n
i W

l|F i−1
n
) =

d2∑
m=1

δjmi−1
n

E(∆n
i W

l f(
√
n σ i−1

n
∆n

i W )mk|F i−1
n
) = 0.

(4.12)
Next, let N be any bounded martingale on (Ω,F , (F t)t≥0,P), which is orthog-
onal toW . For j and k fixed, we consider the martingaleMt = E(g(βni )

jk|F t),
for t ≥ i−1

n . Since W is an (F t)–Brownian motion, and since βni is a function
of σ(i−1)/n and of ∆n

i W , we see that (Mt)t≥(i−1)/n is also, conditionally on
F (i−1)/n, a martingale w.r.t. the filtration which is generated by the process
Wt −W i−1

n
. By the martingale representation theorem the process M is thus

of the formMt =M i−1
n
+
∫ t

i−1
n
ηsdWs for an appropriate predictable process η.

It follows that M is orthogonal to the process N ′t = Nt −N i−1
n

(for t ≥ i−1
n ),

or in other words the product MN ′ is an (F t)t≥ i−1
n
–martingale. Hence

E(∆n
i N g(

√
n σ i−1

n
∆n

i W )jk|F i−1
n
) = E(∆n

i N
′Mi/n|F i−1

n
)

= E(∆n
i N
′∆n

i M |F i−1
n
) = 0,

and thus
E(ζni ∆

n
i N |F i−1

n
) = 0. (4.13)

If we put together (4.10), (4.11), (4.12) and (4.13), we deduce the result
from Theorem IX.7.28 of [9]. ��

Proof of Proposition 4.2. A simple computation shows that U ′nt =∑[nt]+1
i=2 ζni + γn1 − γn[nt]+1, where

ζni =
1√
n

(
g(βni−1)(h(β

′n
i−1)− ρni−2(h)) + (g(βni )− ρni−1(g))ρ

n
i−1(h)

)
,

γni =
1√
n
(g(βni )− ρni−1(g)) ρ

n
i−1(h).

We trivially have (4.10), while (4.12) and (4.13) (for any bounded martin-
gale N orthogonal toW ) are proved exactly as in the previous proposition. We
will write ρni−2,i−1(g, h) =

∫
g(σ i−1

n
x)h(σ i−2

n
x)ρ(dx), where ρ is the N (0, Id′)

law. An easy computation shows that
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E(ζn,jki ζn,j
′k′

i |F i−1
n
)

=
1
n

d2∑
l,l′=1

[
g(βni−1)

jlg(βni−1)
j′l′
(
ρni−2(h

lkhl
′k′
)− ρni−2(h

lk)ρni−2(h
l′k′

)
)

+g(βni−1)
jl ρni−1(h

l′k′
)
(
ρni−2,i−1(g

j′l′ , hlk)− ρni−2(h
lk)ρni−1(g

j′l′)
)

+g(βni−1)
j′l′ ρni−1(h

lk)
(
ρni−2,i−1(g

jl, hl
′k′
)− ρni−2(h

l′k′
)ρni−1(g

jl)
)

+ρni−1(h
l′k′

)ρni−1(h
lk)
(
ρni−1(g

jlgj
′l′)− ρni−1(g

jl)ρni−1(g
j′l′)
) ]
.

and thus by (4.8) and since the components of g and h satisfy (4.7) and are
continuous and σ is càdlàg (hence in particular ρni−2,i−1(g, h)− ρni−2(gh) goes
to 0, uniformly in i ≤ [nt] + 1), we get with the notation (2.14):

[nt]+1∑
i=2

E(ζn,jki ζn,j
′k′

i |F i−1
n
) →

∫ t

0

A(σu, g, h)jk,k
′j′ du.

Then exactly as in the previous proof we deduce that the processes
∑[nt]

i=1 ζ
n
i

are C–tight, and that they converge stably in law to the process U(g, h) of
(2.13) when further g and h are even.

On the other hand γni is the transpose of the jump at time i/n of the
process Un of (4.2) when δu = ρσu

(h∗) and f = g∗, so Proposition 4.1 yields
supi≤[nt] ‖γni ‖

P−→ 0 for any t: hence the results. ��

5 A second simplified problem

So far Y has played no role, but it will come in this section. Recalling (4.1),
we set

ξni =
√
n ∆n

i Y − βni , ξ′ni =
√
n ∆n

i+1Y − β′ni . (5.1)

Observe that

ξni =
√
n

(∫ i
n

i−1
n

audu+
∫ i

n

i−1
n

(σu− − σ i−1
n
)dWu

)
,

and a similar equality for ξ′ni , with the integrals between i/n and (i + 1)/n.
Then under (SH) we have for any q ∈ [2,∞), by Burkholder Inequality:

E(‖
√
n ∆n

i Y ‖q) +E(‖ξni ‖q) +E(‖ξ′ni ‖q) ≤ Cq. (5.2)

We can now consider the processes Un(g, h) of (2.15): in view of (5.2), the
conditional expectations in (2.15) are finite as soon as g and h have polynomial
growth.
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Theorem 5.6. Under (SH) and if g and h are continuous with at most poly-
nomial growth, the sequence of processes Un(g, h) of (2.15) is C–tight. If fur-
ther g and h are even, it converges stably in law to the processes U(g, h) of
(2.13).

We first prove three lemmas. The first one is very simple:

Lemma 5.1. Let (ζni ) be an array of random variables satisfying for all t:

[nt]∑
i=1

E(‖ζni ‖2 | F i−1
n
) P−→ 0. (5.3)

If further each ζni is F (i+1)/n–measurable, the array (ζni − E(ζni | F (i−1)/n))
is AN.

Proof. Of course the result is well known when ζni is F i/n–measurable. Oth-
erwise, we set ηni = E(ζni | F i/n). This new array satisfies also (5.3) and now
ηni is F i/n–measurable: so the array (ηni −E(ηni | F (i−1)/n)) is AN.

Next, (5.3) and Lenglart’s inequality (see e.g. I-3.30 in [9]) yield∑[nt]
i=1E(‖ζni ‖2 | F i/n)

P−→ 0, so the afore mentioned well known result also
yields that the array (ζni − ηni ) is AN, and the result follows. ��

Lemma 5.2. Under (SH) we have for all t > 0:

1
n

[nt]∑
i=1

E
(
‖ξni ‖2 + ‖βni+1 − β′ni ‖2

)
→ 0. (5.4)

Proof. First, the boundedness of a yields

E(‖ξni ‖2) ≤ C

(
1
n
+ nE

(∫ i
n

i−1
n

‖σu− − σ i−1
n
‖2du

))
.

We also trivially have

E(‖βni+1 − β′ni ‖2) ≤ CE(‖σ i
n
− σ i−1

n
‖2)

≤ CnE

(∫ i
n

i−1
n

(
‖σu− − σ i−1

n
‖2 + ‖σu− − σ i

n
‖2
)
du

)
.

Hence the left side of (5.4) is smaller than

C

(
t

n
+
∫ t

0

E
(
‖σu− − σ[nu]/n‖2 + ‖σu− − σ([nu]+1)/n‖2

)
du

)
.

Since σ is càdlàg, the expectation above goes to 0 for all u except the fixed
times of discontinuity of the process σ, that is for almost all u, and it stays
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bounded by a constant because of (SH): hence the result by Lebesgue’s theo-
rem. ��

For further reference, the third lemma is stated in a more general setting:

• f and k are functions on Rd satisfying (4.7);

• γni , γ
′n
i , γ′′ni are Rd–valued variables,

• Zn
i = 1 + ‖γni ‖+ ‖γ′ni ‖+ ‖γ′′ni ‖ satisfies E((Zn

i )
p) ≤ Cp.

 (5.5)

Lemma 5.3. Under (5.5) and if further k is continuous and

1
n

[nt]∑
i=1

E(‖γ′ni − γ′′ni ‖2)→ 0, (5.6)

then we have for all t > 0:

1
n

[nt]∑
i=1

E
(
f(γni )

2(k(γ′ni )− k(γ′′ni ))2
)
→ 0. (5.7)

Proof. Set θni = (f(γni )(k(γ
′n
i )− k(γ′′ni )))2 and mA(ε) = sup(|k(x) − k(y)| :

‖x− y‖ ≤ ε, ‖x‖ ≤ A). For all ε ∈ (0, 1] and A > 1 we have

θni ≤ C
(
A2pmA(ε)2 +A4p1{‖γ′n

i
−γ′′n

i
‖>ε}

+(Zn
i )
4p(1{‖γn

i
‖>A} + 1{‖γ′n

i
‖>A} + 1{‖γ′′n

i
‖>A})

)
≤ C

(
A2pmA(ε)2 +

A4p‖γ′ni − γ′′ni ‖2
ε2

+
(Zn

i )
4p+1

A

)
.

Then in view of (5.5) we get

1
n

[nt]∑
i=1

E(θni ) ≤ C

A2pmA(ε)2 +
1
A
+
A4p

nε2

[nt]∑
i=1

E(‖γ′ni − γ′′ni ‖2)

 .

This holds for all ε ∈ (0, 1] and A > 1. Since mA(ε) → 0 as ε → 0, for every
A, (5.7) readily follows from (5.6). ��

Proof of Theorem 5.6. In view of Proposition 4.2, it is clearly enough to
prove that Un(g, h)− U ′n

P−→ 0. Set

ζni =
1√
n

(
g(
√
n∆n

i Y )h(
√
n ∆n

i+1Y )− g(βni )h(β
′n
i )
)

(5.8)

and observe that Un(g, h)t − U ′nt =
∑[nt]

i=1

(
ζni − E(ζni | F (i−1)/n)

)
and that

ζni is F (i+1)/n-measurable. Then by Lemma 5.1 it suffices to prove that
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[nt]∑
i=1

E(‖ζni ‖2)→ 0. (5.9)

For proving (5.9) it is clearly enough to consider the case where both g
and h are 1–dimensional. Recalling

√
n ∆n

i Y = βni + ξni , we then have

‖ζni ‖2 ≤
C

n

(
h(
√
n ∆n

i+1Y )
2 (g(βni + ξni )− g(βni ))

2

+g(βni )
2 (h(βni+1 + ξni+1)− h(βni+1))

2 + g(βni )
2(h(βni+1)− h(β′ni ))2

)
.

Then (5.9) immediately follows from (4.6) and (5.2) and from Lemmas 5.2
and 5.3. ��

6 The proof of Theorem 2.1

As stated in Section 2, we can and will assume (SH). We use the notation ζni
of (5.8), and set

ηni = E
(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ) | F i−1
n

)
, η′ni = ρni−1(g)ρ

n
i−1(h)

and V n
t =

∑[nt]
i=1η

n
i and V ′nt =

∑[nt]
i=1η

′n
i . Theorem 5.6 implies that

1
n (X

n(g, h) − V n) P−→ 0, and Riemann integrability yields 1
n V ′n → X(g, h)

pointwise in ω and locally uniformly in time. So we need to prove that
1
n (V

n − V ′n) P−→ 0. Since ηni − η′ni =
√
n E(ζni | F (i−1)/n), it clearly suf-

fices to prove that

1√
n

[nt]∑
i=1

E(‖ζni ‖)→ 0. (6.1)

By the Cauchy–Schwarz inequality, the left side of (6.1) is smaller than(
t
∑[nt]

i=1E(‖ζni ‖2)
)1/2

and thus (6.1) follows from (5.9). ��

7 Technical preliminaries for Theorem 2.3

As said before, for proving Theorem 2.3 we can and will assume (SH), and also
(SH’) when at least one of the components of g or h satisfies (K’) instead of
(K). In fact, this theorem is deduced from Theorem 5.6, provided we can show
that

√
n (Xn(g, h)t − Un(g, h)t) goes to 0 in probability, locally uniformly in

t. This amounts to proving that the array

ζni =
1√
n
E
(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ) | F i−1
n

)
−
√
n

∫ i
n

i−1
n

ρσu
(g)ρσu

(h)du
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is AN. Obviously, we can work componentwise, and so we will assume w.l.o.g.
that both g and h are 1–dimensional (they still are functions on Rd, though).

We have ζni = ζ ′ni + ζ ′′ni , where

ζ ′ni =
1√
n

(
E
(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ) | F i−1
n

)
−E
(
g(βni ) | F i−1

n
) E
(
h(β′ni ) | F i−1

n

))
, (7.1)

ζ ′′ni =
√
n

∫ i
n

i−1
n

(
ρσu

(g)ρσu
(h)− ρni−1(g)ρ

n
i−1(h)

)
du. (7.2)

So we are left to prove that both arrays (ζ ′ni ) and (ζ ′′ni ) are AN. For the second
one this is relatively simple, but for the first one it is quite complicated, and
we need to split the difference in (7.1) into a large number of terms, which are
treated in different ways: this section is devoted to estimates for these various
terms.

7.1 Some notation

First, we fix a sequence of numbers εn ∈ (0, 1] (which will be chosen later in
such a way that ε2nn ≥ 1), and we set En = {x ∈ E : ψ(x) > εn}. Then,
recalling the product–matrix notation, under (SH1) we can introduce a (long)
series of Rd–valued random variables:

ζ(1)ni =
√
n

∫ i
n

i−1
n

(au − a i−1
n
)du+

√
n

∫ i
n

i−1
n

(∫ u

i−1
n

a′sds

+
∫ u

i−1
n

(σ′s− − σ′i−1
n

)dWs +
∫ u

i−1
n

(vs− − v i−1
n
)dVs

)
dWu,

ζ(1)′ni =
√
n

(∫ i
n

i−1
n

a′sds+
∫ i

n

i−1
n

(
σ′s− − σ′i−1

n

)
dWs

+
∫ i

n

i−1
n

(vs− − v i−1
n
)dVs

)
∆n

i+1W,

ζ(2)ni =
√
n

(
1
n
a i−1

n
+ σ′i−1

n

∫ i
n

i−1
n

(Wu −W i−1
n
)dWu

+v i−1
n

∫ i
n

i−1
n

(Vu− − V i−1
n
)dWu

)
,

ζ(2)′ni =
√
n
(
σ′i−1

n

∆n
i W + v i−1

n
∆n

i V
)
∆n

i+1W,

ζ(3)ni =
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
Ec
n

w(s−, x)(µ− ν)(ds, dx)

)
dWu,
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ζ(3)′ni =
√
n

(∫ i
n

i−1
n

∫
Ec
n

w(s−, x)(µ− ν)(ds, dx)

)
∆n

i+1W,

ζ(4)ni = −
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

ν(ds, dx)

)
dWu,

ζ(4)′ni = −
√
n

(∫ i
n

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

ν(ds, dx)

)
∆n

i+1W,

ζ(5)ni = −
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

w
( i− 1

n
, x
)
ν(ds, dx)

)
dWu,

ζ(5)′ni = −
√
n

(∫ i
n

i−1
n

∫
En

w
( i− 1

n
, x
)
ν(ds, dx)

)
∆n

i+1W,

ζ(6)ni =
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

µ(ds, dx)

)
dWu,

ζ(6)′ni =
√
n

(∫ i
n

i−1
n

∫
En

(
w(s−, x)− w

( i− 1
n

, x
))

µ(ds, dx)

)
∆n

i+1W,

ζ(7)ni =
√
n

∫ i
n

i−1
n

(∫ u

i−1
n

∫
En

w
( i− 1

n
, x
)
µ(ds, dx)

)
dWu,

ζ(7)′ni =
√
n

(∫ i
n

i−1
n

∫
En

w
( i− 1

n
,
)
µ(ds, dx)

)
∆n

i+1W.

We also set

ξ̂ni = ζ(1)ni + ζ(3)ni + ζ(4)ni + ζ(6)ni , ξ̃ni = ζ(2)ni + ζ(5)ni + ζ(7)ni

ξ̂′′ni = ζ(1)′ni + ζ(3)′ni + ζ(4)′ni + ζ(6)′ni ,

ξ̃′′ni = ζ(2)′ni + ζ(5)′ni + ζ(7)′ni

ξ̂′ni = ξ̂ni+1 + ξ̂′′ni , ξ̃′ni = ξ̃ni+1 + ξ̃′′ni .


(7.3)

In view of (5.1), a tedious but simple computation shows that

√
n ∆n

i Y − βni = ξni = ξ̂ni + ξ̃ni ,
√
n ∆n

i+1Y − β′ni = ξ′ni = ξ̂′ni + ξ̃′ni . (7.4)

Next, we put ϕ(ε) =
∫
{‖ψ(x)‖≤ε} ψ(x)

2F (dx), so that

ε ↓ 0 ⇒ ϕ(ε)→ 0

θ ∈ [0, 2] ⇒
∫
{ψ(x)>ε} ψ(x)

θF (dx) ≤ C
ε2−θ ,

θ ≥ 2 ⇒
∫
{ψ(x)≤ε} ψ(x)

θF (dx) ≤ ϕ(ε) εθ−2.

 (7.5)
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Finally, set

αn,q
i =

1
nq/2

+E

((
n

∫ i
n

i−1
n

(
‖au − a i−1

n
‖2 + ‖σ′u− − σ′i−1

n

‖2 + ‖vu− − v i−1
n
‖2

+
∫
En

∥∥∥∥w(u−, x)− w
( i− 1

n
, x
)∥∥∥∥2 F (dx)

)
du

)q/2
 , (7.6)

7.2 Estimates for ζ(k)nj and ζ(k)′nj

Here we estimate moments of the variables ζ(k)ni and ζ(k)′ni . A repeated use
of the Hölder and Burkholder inequalities gives us for q ≥ 2, and under (SH1):

E(‖ζ(1)ni ‖q) +E(‖ζ(1)′ni ‖q) ≤ Cq α
n,q
i /nq/2,

E(‖ζ(2)ni ‖q) +E(‖ζ(2)′ni ‖q) ≤ Cq/n
q/2.

}
(7.7)

Lemma 7.4. Under (SH1), and for any even integer q ≥ 2, we have

E(‖ζ(3)ni ‖q) +E(‖ζ(3)′ni ‖q) ≤ Cq ϕ(εn)
εq−2n

n
. (7.8)

Proof. Apply the Hölder and Burkholder inequalities repeatedly to get

E(‖ζ(3)ni ‖q) ≤ CqE


n∫ i

n

i−1
n

∥∥∥∥∥
∫ u

i−1
n

∫
Ec
n

w(s, x)(µ− ν)(ds, dx)

∥∥∥∥∥
2

du

q/2


≤ Cq n

∫ i
n

i−1
n

E

(∥∥∥∥∥
∫ u

i−1
n

∫
Ec
n

w(s, x)(µ− ν)(ds, dx)

∥∥∥∥∥
q

du

)

≤ Cq n

∫ i
n

i−1
n

E

(∫ u

i−1
n

∫
Ec
n

‖w(s, x)‖2µ(ds, dx)
)q/2

 du

≤ Cq E

(∫ i
n

i−1
n

∫
Ec
n

ψ(x)2µ(ds, dx)

)q/2
 :

= E((Zn
i
n
− Zn

i−1
n

)q/2),

where Zn
t =

∫ t
0

∫
Ec
n
ψ(x)2µ(ds, dx) is an increasing pure jump Lévy process,

whose Laplace transform is

λ �→ E(e−λ(Z
n
s+t−Zn

s )) = exp t

∫
Ec
n

(
e−λψ(x)

2 − 1
)
F (dx).
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We compute the q/2–moment of Zn
s+t−Zn

s by differentiating q/2 times the
Laplace transform at 0: this is the sum, over all choices u1, . . . , uk of positive
integers with

∑k
i=1 ui = q/2, of suitable constants times the product for all

i = 1, . . . , k of the terms t
∫
Ec
n
ψ(x)2uiF (dx); moreover this term is smaller

than tε2ui−2
n ϕ(εn). Since further εn ≤ 1 and ϕ(1) <∞, we deduce that

E((Zn
s+t − Zn

s )
q/2) ≤ Cqϕ(εn)

q/2∑
k=1

tkεq−2kn ≤ Cqϕ(εn)(tεq−2n + tq/2).

We deduce (7.8) for ζ(3)ni (recall nε2n ≥ 1), and the same holds for ζ(3)′ni . ��

Lemma 7.5. Under (SH1), for any q > 2 we have

E(‖ζ(4)ni ‖q) +E(‖ζ(4)′ni ‖q) +E(‖ζ(5)ni ‖q) +E(‖ζ(5)′ni ‖q) ≤
Cq

εqn nq
. (7.9)

Proof. Applying the Hölder and Burkholder inequalities and ‖w(s, x)‖ ≤
ψ(x) yields for j = 4, 5:

E(‖ζ(j)ni ‖q + ‖ζ(j)′ni ‖q) ≤

≤ CqE


n∫ i

n

i−1
n

(∫ u

i−1
n

∫
En

ψ(x)ν(ds, dx)

)2
du

q/2


≤ Cq

(∫ i
n

i−1
n

ds

∫
En

ψ(x)F (dx)

)q

≤ Cq

nq

(∫
En

ψ(x)F (dx)
)q

. (7.10)

The result readily follows from (7.5). ��

For ζ(j)ni and ζ(j)′ni with j = 6, 7 the analogous estimates are not quite
enough for our purposes, and we need a bit more. Below, we consider a pair
(r,B), where r ∈ (0, 1] and B is a closed subset of Rd, with Lebesgue measure
0, and such that (2.11) holds when r < 1 and that r = 1 if B = ∅. Let also

r = 1 ⇒ γ̂ni = 1

r < 1 ⇒ γ̂ni = 1 + 1
d(γn

i
,B) , with either γni = βni or γni = β′ni

 (7.11)

Lemma 7.6. Under (SH1) and the previous assumptions, and if further (SH’)
holds whenever r < 1, for any q ∈ (1, 2) and l ∈ [0, 1) we can find u > 1
(depending on q and l) such that

E
(
‖ζ(6)ni ‖q (γ̂ni )

l
)
+E

(
‖ζ(6)′ni ‖q (γ̂ni )

l
)
≤ Cl,q (αn,2

i
)1/u

nq/2 ,

E
(
‖ζ(7)ni ‖q (γ̂ni )

l
)
+E

(
‖ζ(7)′ni ‖q (γ̂ni )

l
)
≤ Cl,q

nq/2 .

 (7.12)
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Proof. We set Mn
i = sups∈[(i−1)/n,i/n] ‖Ws − W(i−1)/n‖ and wn(s, x) =

w(s−, x)− w( i−1n , x) for i−1
n < s ≤ i

n , and

Zn
t =

∫ t

0

∫
En

ψ(x) µ(ds, dx), Z ′nt =
∫ t

0

∫
En

‖wn(s, x)‖ µ(ds, dx).

Observe that Zn and Z ′n are nondecreasing, piecewise constant, and Z ′nt −
Z ′ns ≤ 2(Zn

t − Zn
s ) whenever s < t. Then

‖ζ(6)ni ‖ ≤ C
√
n Mn

i (Z
′n
i
n
− Z ′ni−1

n

).

Set u′ = 1
2

(
1 + 1

l

∧
1

q−1

)
, which satisfies u′ > 1 because l < 1 and q ∈ (1, 2).

With δni = (
√
nMn

i )
u′q (γ̂ni )

u′l we then have (since u′ > 1 and u′q−u′+1 > 0):

‖ζ(6)ni ‖q (γ̂ni )l ≤ Cq

(
δni (Zn

i
n
− Zn

i−1
n

)u
′q−u′+1

) 1
u′

(Z ′ni
n
− Z ′ni−1

n

)
u′−1
u′ ,

and Hölder’s inequality yields

E
(
‖ζ(6)ni ‖q(γ̂ni )l

)
≤ Cq

(
E
(
δni (Zn

i
n
− Zn

i−1
n

)u
′q−u′+1

)) 1
u′
(
E(Z ′ni

n
− Z ′ni−1

n

)
)u′−1

u′
. (7.13)

Now, if we combine (2.11) and (3.6), we see that when r < 1 (so (SH’)
holds) the variable d(γni , B) has a conditional law knowing F (i−1)/n which has
a density which is bounded uniformly in n, i and ω, so E((γ̂ni )

s | F (i−1)/n)
is bounded by a constant Cs for all s ∈ [0, 1), whether r = 1 or r < 1. Also,
E((

√
n Mn

i )
p | F (i−1)/n) ≤ Cq for all p > 0. Then by Hölder’s inequality

we get E
(
δni | F (i−1)/n

)
≤ Cq,l. Since further the variable Zn

i/n − Zn
(i−1)/n is

independent of δni , conditionally on F i−1
n
, we deduce

E
(
δni (Zn

i
n
− Zn

i−1
n

)u
′q−u′+1

)
≤ Cq,l E((Zn

i
n
− Zn

i−1
n

)u
′q−u′+1). (7.14)

Next, we estimate the moments of Zn and Z ′n. Observe that Z ′n = A′n+
N ′n, where

A′nt =
∫ t

0

∫
En

‖wn(s, x)‖ν(ds, dx), N ′n =
∫ t

0

∫
En

‖wn(s, x)‖(µ− ν)(ds, dx).

On the one hand, since F (En) ≤ C/ε2n by (7.5) and nε2n ≥ 1,

(A′ni
n
−A′ni−1

n

)2 ≤ 1
n

∫ i
n

i−1
n

ds

(∫
En

‖wn(s, x)‖ F (dx)
)2

≤ 1
n

∫ i
n

i−1
n

ds F (En)
∫
En

‖wn(s, x)‖2 F (dx)

≤
∫ i

n

i−1
n

ds

∫
En

‖wn(s, x)‖2 F (dx).
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On the other hand N ′n is a square–integrable martingale, and thus

E
(
(N ′ni

n
−N ′ni−1

n

)2
)
≤ E

(∫ i
n

i−1
n

ds

∫
En

‖wn(s, x)‖2F (dx)
)
,

and thus

E
(
(Z ′ni

n
− Z ′ni−1

n

)2
)
≤ C αn,2

i

n
. (7.15)

If we replace ‖wn(s, x)‖ by ψ(x), we obtain in a similar fashion

E
(
(Zn

i
n
− Zn

i−1
n

)2
)
≤ C

n
. (7.16)

Then if we combine (7.13), (7.14), (7.15) and (7.16), and since u′q−u′+1 ≤ 2,
we obtain the result for ζ(6)ni , with u =

2u′

u′−1 > 1, and the proof for ζ(6)′ni is
similar. Finally if we replace wn by w (then αn,2

i is replaced by a constant),
we get the result for ζ(7)ni and ζ(7)′ni . ��

7.3 Estimates for the variables of (7.3)

Here we derive estimates on the variables defined in (7.3). Below, the pair
(B, r) and the variable γ̂ni are like in Lemma 7.6. We also consider positive
random variables Zn

i which satisfy

E((Zn
i )

q) ≤ Cq ∀q ≥ 2. (7.17)

Observe that ξni and ξ′ni do not depend on the sequence εn, but ξ̂ni and ξ̂′ni
do. Remember also the variables αn,q

i defined ibn (7.6).

Lemma 7.7. Assume (SH1) and (SH’) and (7.11) and (7.17). Let p ≥ 2 and
l ∈ (0, 1). Then if θ ∈ (1, 2) we have

E
(
(Zn

i )
p ‖ξ̃ni ‖θ (γ̂ni )

l
)
+E
(
(Zn

i )
p ‖ξ̃′ni ‖θ (γ̂ni )

l
)
≤ Cp,θ,l

nθ/2
, (7.18)

Moreover one can find a sequence εn > 0 with nε2n ≥ 1 and a sequence zn > 0
with zn → 0, both sequences depending on l only, and also two numbers q, q′ ≥
1 depending on l only, such that

E((Zn
i )

p‖ξ̂ni ‖(γ̂ni )l) ≤
Cp,l√

n

(
zn + (αn,q

i )1/q + (αn,2
i )1/q

′
)
,

E((Zn
i )

p‖ξ̂′ni ‖(γ̂ni )l)) ≤
Cp,l√

n

(
zn + (αn,q

i )1/q + (αn,q
i+1)

1/q

+(αn,2
i )1/q

′
+ (αn,2

i+1)
1/q′
)
.

 (7.19)
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Proof. We prove (7.18) and (7.19) for ξni and ξ̂ni only, the proofs for ξ′ni and
ξ̂′ni being similar. We have seen in the proof of Lemma 7.6 that, by (7.11),

s ∈ [0, 1) ⇒ E((γ̂ni )
s) ≤ Cs. (7.20)

Although ξni does not depend on the sequence εn, we need to introduce a
suitable sequence εn to prove (7.18): so we prove (7.18) and (7.19) simulta-
neously, with some fixed θ ∈ [1, 2) for the first result, and with θ = 1 for the
second one. If t = 1

2

(
1 + 1

l

∧
2
θ

)
, by (7.17) and Hólder’s inequality we get

E((Zn
i )

p ‖ξni ‖θ (γ̂ni )l) ≤ Cp,θ,l

(
E(‖ξni ‖tθ (γ̂ni )tl)

)1/t
,

E((Zn
i )

p ‖ξ̂ni ‖ (γ̂ni )l) ≤ Cp,l

(
E(‖ξ̂ni ‖t (γ̂ni )tl)

)1/t
.

 (7.21)

Next, let s be the biggest number in (1, 1/tl) such that its conjugate
exponent s′ is of the form s′ = 2m/tθ for some m ∈ N with m ≥ 2,
and put q = s′tθ. Note that s′ and q depend on θ and l only. The set
{y > 0 : yqϕ(y/

√
n) ≤ 1} is an open or semi–open interval whose left end

point is 0, and whose right end point is denoted by a′n, and since ϕ(y) → 0
as y → 0 it is clear that a′n → ∞. At this point, we set an = 1

∨
(a′n − 1/n):

then an → ∞, and for all n big enough an < a′n and thus aqnϕ(an/
√
n) ≤ 1.

Then we choose the sequence εn as εn = an/
√
n, thus nε2n ≥ 1. Observe that

both sequences εn and an only depend on θ and l.
Now we apply (7.8) and (7.9) with q and εn as above, plus (7.20) and

Hölder’s inequality, to get(
E(‖ζ(3)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l ϕ(εn)
1/s′t aθ−2/s′t

n

nθ/2 ≤ Cθ,l

nθ/2a
2/s′t
n

≤ Cθ,l

nθ/2 ,(
E(‖ζ(4)ni ‖tθ (γ̂ni )tl

)1/t + (E(‖ζ(5)ni ‖tθ (γ̂ni )tl)1/t ≤ Cθ,l

nθ/2aθn
≤ Cθ,l

nθ/2 .

 (7.22)

In a similar way, (7.20) and (7.7) and Hólder’s inequality give (with the same
q as above): (

E(‖ζ(1)ni ‖tθ (γ̂ni )tl
)1/t ≤ Cθ,l (α

n,q
i
)θ/q

nθ/2 ,(
E(‖ζ(2)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l

nθ/2 .

 (7.23)

Finally applying (7.12) and tθ < 2 yields(
E(‖ζ(6)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l (α
n,2
i
)1/q

′

nθ/2 ,(
E(‖ζ(7)ni ‖tθ (γ̂ni )tl

)1/t ≤ Cθ,l

nθ/2

 (7.24)

for some q′ > 1 depending on tθ and tl, hence on θ and l only.
Then if we put together (7.21), (7.22), (7.23) and (7.24), and in view of

(7.3) and (7.4), we readily get (7.18), and also (7.19) with zn = a
−2/s′t
n + a−1n

(note that for (7.19) we take θ = 1). ��
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7.4 Final estimates

The previous subsection gave us estimates on the variables of (7.3), which in
view of (7.4) are the building blocks for obtaining the difference occuring in
(7.1). Now we procees to give estimates for this difference itself. We start with
a lemma about the variables of (7.6).

Lemma 7.8. Under (SH1) we have for all q ≥ 2 and q′ ≥ 1 and t > 0:

αn,q
i ≤ Cq,

1
n

[nt]∑
i=1

(αn,q
i )1/q

′ → 0. (7.25)

Proof. We can of course forget about the term 1/nq/2 in (7.6), whereas the
first part of (7.25) is obvious. For the second part we set

γn(u) = ‖au − a[nu]/n‖2 + ‖σ′u− − σ′[nu]/n‖2 + ‖vu− − v[nu]/n‖2

+
∫
E

∥∥∥∥w(u−, x)− w
( i− 1

n
, x
)∥∥∥∥2 F (dx).

Then the Hölder inequality yields

1
n

[nt]∑
i=1

(αn,q
i )1/q

′ ≤ [nt]
n

 1
[nt]

[nt]∑
i=1

E

(n∫ i
n

i−1
n

γn(u)du

)q/2
1/q

′

≤ [nt]
n

 1
[nt]

[nt]∑
i=1

E

(
n

∫ i
n

i−1
n

γn(u)q/2du

)1/q
′

≤ t
q′−1
q′

(
E
(∫ t

0

γn(u)q/2du
))1/q′

.

Since γn is uniformly bounded and converges pointwise to 0, we get the result.
��

Let us now introduce a list of growth or smoothness assumptions on a
real–valued function f on Rd, with complement (4.7). Below, C > 0 and
p ≥ 2 are suitable constants, and the pair (B, r) is given, with the properties
stated before (7.11). We list some conditions, for which we assume that f
is differentiable on the complement Bc. Below, each ΨA,ε is an increasing
continuous function on R+ with ΨA,ε(0) = 0.

x ∈ Bc ⇒ |∇f(x)| ≤ C(1 + ‖x‖p)
(
1 +

1
d(x,B)1−r

)
, (7.26)

x, y ∈ Rd ⇒ |f(x+ y)− f(x)| ≤ C(1 + ‖x‖p + ‖y‖p) ‖y‖r, (7.27)
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‖x‖ ≤ A, ‖y‖ ≤ ε′ < ε < d(x,B) ⇒ ‖∇f(x+ y)−∇f(x)‖ ≤ ΨA,ε(ε′) (7.28)

0 < ‖y‖ ≤ d(x,B)
2

=⇒ ‖∇f(x+ y)−∇f(x)‖ ≤ C(1 + ‖x‖p + ‖y‖p) ‖y‖
d(x,B)2−r

.(7.29)

The connections with our assumptions (K) and (K’) are as follows (with B
and r identical in (K’) and above, or B = ∅ and r = 1 in the case of (K)):

(K), or (K’) with r = 1 ⇒ (4.7), (7.26), (7.27) and (7.28), (7.30)

(K’) with r < 1 ⇒ (4.7) , (7.26), (7.27) and (7.29) (7.31)

Next, we consider the setting of (5.5), with k is differentiable on Bc. We
let γ′′ni be either βni or β′ni , and we introduce the following subsets of Ω:

An
i = {‖γ′ni − γ′′ni ‖ > d(γ′′ni , B)/2}, (7.32)

(observe that An
i = ∅ when B = ∅). Let also γni be an auxiliary variable which

for each ω is on the segment joining γ′ni and γ′′ni , and let γ̂ni be 1 when r = 1
and 1 + 1/d(γ′′ni , B) when r < 1. Then we set

Φn
i = f(γni )

(
(k(γ′ni )− k(γ′′ni ))1An

i
−∇k(γ′′ni )(γ′ni − γ′′ni )1An

i

+(∇k(γni )−∇k(γ′′ni ))(γ′ni − γ′′ni )1(An
i
)c

)
, (7.33)

Φ̂n
i = f(γni ) ∇k(γ′′ni )(γ′ni − γ′′ni ) (7.34)

(by the fact that B has Lebesgue measure 0, we see that k is a.s. differentiable
at the point γ′′ni , which is either βni or β′ni , so (7.33) and (7.34) make sense).

Lemma 7.9. Assume the following:
(i) (SH1) and (5.5) and k satisfies (7.26) and (7.27);
(ii) if r = 1 then k satisfies (7.28);
(iii) if B �= ∅ then (SH’) holds;
(iv) if r < 1 then k satisfies (7.29).

(a) If γ′′ni = βni and γ
′n
i − γ′′ni = ξni , or if γ

′′n
i = β′ni and γ′ni − γ′′ni = ξ′ni , we

have for all t > 0:

1√
n

[nt]∑
i=1

E(|Φn
i |) → 0. (7.35)

(b) If γ′′ni = βni and γ
′n
i − γ′′ni = ξ̂ni , or if γ

′′n
i = β′ni and γ′ni − γ′′ni = ξ̂′ni , we

have for all t > 0:

1√
n

[nt]∑
i=1

E(|Φ̂n
i |) → 0. (7.36)
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Proof. 1) We first prove (7.35) when r = 1. We choose εn = 1 for all n and
putting together all estimates in (7.7), (7.8), (7.9) and (7.12) (with l = 0, so
this estimate holds for q = 2 as well) to get

q ≥ 2 ⇒ E(‖γ′ni − γ′′ni ‖q) ≤ Cq

n
. (7.37)

Then (4.7) and (7.26) and An
i ⊂ {d(γ′′ni , B) < ε} ∪ {‖γ′ni − γ′′ni ‖ ≥ ε/2} yield

for all A > 0, ε > 2ε′ > 0:

|Φn
i |+ |Φ̂n

i | ≤ C(Zn
i )
2p

(
ΨA,ε′(ε) +

‖γ′′ni ‖
A

+‖γ′ni − γ′′ni ‖
(
1
ε
+

1
ε′

)
+ 1{d(γ′′n

i
,B)≤ε}

)
‖γ′ni − γ′′ni ‖. (7.38)

If B = ∅ the indicator function above vanishes. Otherwise, the variable γ′′ni
has a conditional law knowing F i−1

n
which has a density (on Rd) that is smaller

than some (non–random) Lebesgue integrable function ϕ (see (3.6)), so it also
has an unconditional density smaller than ϕ. Therefore

P(d(γ′′ni , B) ≤ ε) ≤ αε :=
∫
{x:d(x,B)≤ε}

ϕ(x)dx,

and limε→0 αε = 0. Then (5.5), (7.37), (7.38) and the multivariate Hölder
inequality yield

E(|Φn
i |) +E(|Φ̂n

i |) ≤
C√
n

(
ΨA,ε(ε′) +

1
A
+

1
n1/4

(
1
ε
+

1
ε′

)
+ α1/4ε

)
.

Hence (7.35) readily follows: choose A big, then ε small, then ε′ small.

2) Now we suppose that r < 1, hence B �= ∅. We have

|Φn
i | ≤ (Zn

i )
2p
(
‖γ′ni − γ′′ni ‖r 1An

i
+ ‖γ′ni − γ′′ni ‖ 1An

i

+
‖γ′ni − γ′′ni ‖
d(γ′′ni , B)1−r

1An
i
+
‖γ′ni − γ′′ni ‖2
d(γ′′ni , B)2−r

1(An
i
)c

)
≤ C(Zn

i )
2p ‖γ′ni − γ′′ni ‖1+r/2 (γ̂ni )

1−r/2, (7.39)

where the first inequality follows from (7.26), (7.27) and (7.29) for k, while the
second one is obtained by using the definition of the set An

i . Hence Lemmas
7.7 and 7.8 readily give (7.35).

3) Finally, in all cases we have

|Φ̂n
i | ≤ C(Zn

i )
2p ‖γ′ni − γ′′ni ‖ (γ̂ni )1−r. (7.40)

Therefore (7.36) follows from Lemmas 7.7 (see (7.19)) and 7.8 again. ��
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8 The proof of Theorem 2.3

1) As said at the beginning of the previous Section, we can assume that g
and h are 1–dimensional, and that (SH1), and also (SH’) when either g or h
satisfies (K’) instead of (K), and we need to prove that the arrays defined in
(7.1) and (7.1) are AN.

2) Let us prove first that (ζ ′′ni ) is AN. If f is continuously differentiable, and f
and ∇f have polynomial growth, we readily deduce from Lebesgue’s theorem
that Σ �→ ρΣ(f) = E(f(ΣU)) (where U is an N (0, Id)–random vector) is
bounded, continuously differentiable and with bounded derivatives over the
setM′ defined in connection with formula (3.6). Hence if both g and h satisfy
(K) we have (recall the notation (3.6), and set ϕ(Σ) = ρΣ(g)ρΣ(h)):

Σ, Σ′ ∈M′ ⇒


|ϕ(Σ)|+ ‖∇ϕ(Σ)‖ ≤ C

|ϕ(Σ)− ϕ(Σ′)| ≤ C‖Σ −Σ′‖
|ϕ(Σ)− ϕ(Σ′)−∇ϕ(Σ′)(Σ −Σ′)‖

≤ Ψ(‖Σ −Σ′|)‖Σ −Σ′‖

(8.1)

for some constant C (depending on A0 in (3.6)) and some increasing function
Ψ on R+, continuous and null at 0 (here,∇ϕ isMd,d–valued, and∇ϕ(Σ′)(Σ−
Σ′) is R–valued).

If g or h (or both) satisfy (K’) only we also have (SH’), and since

ρΣ(f) =
∫

1
(2π)d/2det(ΣΣ")1/2

f(x) exp
(
−1
2
x"(ΣΣ")−1x

)
dx

we see that as soon as f has polynomial growth the function Σ �→ ρΣ(f) is
C∞ with bounded derivatives of all orders on the setM′. Hence we also have
(8.1), which thus holds in all cases.

Since we can write (7.2) as ζ ′′ni =
√
n
∫ i/n
(i−1)/n(ϕ(σu) − ϕ(σ(i−1)/n)du, we

have ζ ′′ni = ηni + η′ni where

ηni =
√
n ∇ϕ(σ i−1

n
)
∫ i

n

i−1
n

(σu − σ i−1
n
) du,

η′ni =
√
n

∫ i
n

i−
n

(
ϕ(σu)− ϕ(σ i−1

n
)−∇ϕ(σ i−1

n
)(σu − σ i−1

n
)
)
du.

and we need to prove that the two arrays (ηni ) and (η′ni ) are AN.
We decompose further ηni as ηni = µni + µ′ni , where

µni =
√
n ∇ϕ(σ i−1

n
)
∫ i

n

i−1
n

du

∫ u

i−1
n

a′sds,
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µ′ni =
√
n ∇ϕ(σ i−1

n
)
∫ i

n

i−1
n

(∫ u

i−1
n

σs−dWs +
∫ u

i−1
n

vs−dVs

+
∫ u

i−1
n

∫
E

w(s−, x)(µ− ν)(ds, dx)

)
du.

On the one hand, we have |µni | ≤ C/n3/2 by (8.1) and the boundedness of a′,
so the array (µni ) is AN. On the other hand, we also get by (SH1) and (8.1)
and Cauchy–Schwarz applied twice:

E
(
µ′ni | F i−1

n

)
= 0, E

(
(µ′ni )

2 | F i−1
n

)
≤ C

n3
.

Then the array (µ′ni ) is AN, as well as the array (ηni ).
Finally, using (8.1) once more, we see that for all ε > 0,

|η′ni | ≤
√
n

∫ i
n

i−1
n

Ψ(‖σu − σ i−1
n
‖) ‖σu − σ i−1

n
‖ du

≤
√
n Ψ(ε)

∫ i
n

i−1
n

‖σu − σ i−1
n
‖ du+ C

√
n

ε

∫ i
n

i−1
n

‖σu − σ i−1
n
‖2 du.

Since E(‖σu − σ i−1
n
‖2) ≤ C/n when u ∈ ((i− 1)/n, i/n], we deduce that

[nt]∑
i=1

E(|η′ni |) ≤ Ct

(
Ψ(ε) +

1
ε
√
n

)
.

From this we deduce the AN property of the array (η′ni ) because ε > 0 is
arbitrarily small and limε→0 Ψ(ε) = 0. Hence, finally, the array (ζ ′′ni ) is AN.

3) Now we start proving that the array (ζ ′ni ) also is AN. Since ϕ(σ(i−1)/n) =
E(g(βni )h(β

′n
i ) | F (i−1)/n), we have ζ ′ni = E(δni | F (i−1)/n), where

δni =
1√
n

(
g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y )− g(βni )h(β
′n
i )
)
.

Let us set
An

i = {‖
√
n ∆n

i Y − βni ‖ > d(βni , B)/2},
A′ni = {‖

√
n ∆n

i+1Y − β′ni ‖ > d(β′ni , B
′)/2},

where B (resp. B′) is either empty or is the set associated with g (resp. h),
according to whether that function satisfies (K) or (K’). We can express the
difference g(

√
n ∆n

i Y ) − g(βni ) using a Taylor expansion if we are on the set
(An

i )
c, and we can thus write
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g(
√
n ∆n

i Y )− g(βni )
= (g(

√
n ∆n

i Y )− g(βni ))1An
i
−∇g(βni )(

√
n ∆n

i Y − βni )1An
i

+(∇g(γni )−∇g(βni ))(
√
n ∆n

i Y − βni ) 1(An
i
)c

+∇g(βni )(
√
n ∆n

i Y − βni ), (8.2)

where γni is some (random) vector lying on the segment between
√
n ∆n

i Y
and βni : recall that ∇g(γni ) is well defined because on (An

i )
c we have γni ∈ Bc,

while ∇g(βni ) is a.s. well defined because either B is empty, or it has Lebesgue
measure 0 and βni has a density. Analogously, h(

√
n ∆n

i+1Y )− h(β′ni ) can be
written likewise, provided we replace ∆n

i Y , β
n
i , A

n
i , γ

n
i by ∆n

i+1Y , β
′n
i , A′ni ,

γ′ni .
Now observe that

δni =
1√
n
g(
√
n ∆n

i Y )
(
h(
√
n ∆n

i+1Y )− h(β′ni )
)

+
1√
n

(
g(
√
n ∆n

i Y )− g(βni )
)
h(β′ni ),

Therefore we deduce from the decomposition (8.2) and the analogous one for
h, and also from (7.3) and (7.4), that δni =

∑6
k=1 δ

n
i (k), where

δni (1) =
1√
n
g(
√
n ∆n

i Y )∇h(β′ni )ξ̃′′ni ,

δni (2) =
1√
n
g(
√
n ∆n

i Y )∇h(β′ni )ξ̃ni+1,

δni (3) =
1√
n
h(β′ni )∇g(βni )ξ̃ni ,

δni (4) =
1√
n

(
g(
√
n ∆n

i Y )∇h(β′ni )ξ̂′ni + h(β′ni )∇g(βni )ξ̂ni
)
,

δni (5) =
1√
n
g(
√
n ∆n

i Y )
(
(h(

√
n ∆n

i+1Y )− h(β′ni ))1A′n
i

−∇h(β′ni )(
√
n ∆n

i+1Y − β′ni )1A′n
i

+(∇h(γ′ni )−∇h(β′ni ))(
√
n ∆n

i+1Y − β′ni ) 1(A′n
i
)c

)
,

δni (6) =
1√
n
h(β′ni )

(
(g(
√
n ∆n

i Y )− g(βni ))1An
i

−∇g(βni )(
√
n ∆n

i Y − βni )1An
i

+(∇g(γni )−∇g(βni ))(
√
n ∆n

i Y − βni ) 1(An
i
)c

)
.



66 O. E. Barndorff–Nielsen et al.

If we combine (5.2) with Lemma 7.9, we readily get
∑[nt]

i=1E(‖δni (k)‖)→ 0
when k = 4, 5, 6. So we are left to proving that

the array
{
µni (k) = E

(
δni (k) | F i−1

n

)}
is AN. (8.3)

for k = 1, 2, 3.

4) Let us introduce the Md,d′–valued martingales

M(n, i)t =

0 if t ≤ i−1
n

v i−1
n
(Vt − V i−1

n
) +
∫ t

i−1
n

∫
En
w( i−1n , x)(µ− ν)(ds, dx) otherwise.

We see that ξ̃ni = ζ(2)ni + ζ(5)ni + ζ(7)ni =
√
n (ηni + η′ni ), where

ηni =
1
n
a i−1

n
+
∫ i

n

i−1
n

(Wu −W i−1
n
)dWu,

η′ni =
∫ i

n

i−1
n

M(n, i)udWu = ∆n
i M(n, i)∆n

i W −
∫ i

n

i−1
n

dM(n, i)u Wu.

Now we can write

µni (3) = ρni−1(h) E
(
∇g(

√
n σ i−1

n
∆n

i W )(ηni + η′ni ) | F i−1
n

)
.

g is even, so ∇g is odd; hence the variable ∇g(√n σ i−1
n
∆n

i W )ηni is multiplied
by −1 if we change the sign of the process (Ws − W(i−1)/n)s≥(i−1)/n, and
this sign change does not affect the F (i−1)/n–conditional distribution of this
process. Hence we get

E
(
∇g(

√
n σ i−1

n
∆n

i W )ηni | F i−1
n

)
= 0.

On the other hand, the processes M(n, i) and Ws − W(i−1)/n are inde-
pendent, conditionally on F (i−1)/n, when the times goes through ((i −
1)/n, i/n]. So if F0s denotes the σ–field generated by F (i−1)/n and by
(Wu −W(i−1)/n)(i−1)/n≤u≤s, we get that M(n, i) is an (F0s)–martingale for
s ∈ ((i− 1)/n, i/n], and thus E(η′ni |F0i/n) = 0. By successive conditioning, we
immediately deduce that

E
(
∇g(

√
n σ i−1

n
∆n

i W )η′ni | |F i−1
n

)
= 0,

and therefore µni (3) = 0. In a similar way, ∇h is odd and β′ni is the product of
an F (i−1)/n–measurable variable, times ∆n

i+1W . So exactly as above we have

E
(
∇h(β′ni ) ξ̃ni+1 | F i

n

)
= 0,
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and so a fortiori µni (2) = 0.

5) It remains to study µni (1). With the previous notation M(n, i), it is easy
to check that

µni (1)

=
1√
n

d∑
l=1

d′∑
m=1

zn,lmi E
(
g(
√
n ∆n

i Y )(σ
′
i−1
n

∆n
i W +∆n

i M(n, i))lm
)
| F i−1

n

)
,

where zn,lmi =
∫
∂xlh(σ i−1

n
x) xm ρ(dx) and ρ is N (0, Id′) (the law of W1), so

‖zn,lmi ‖ ≤ C. Recalling once more
√
n ∆n

i Y = βni + ξ̂ni + ξ̃ni , we see that

µni (1) =
d∑

l=1

d′∑
m=1

(
E
(
µni (l,m) | F i−1

n

)
+E
(
µ′ni (l,m) | F i−1

n

))
,

where

µni (l,m) =
1√
n
zn,lmi

(
g(βni + ξ̂ni + ξ̃ni )−g(βni )

)(
σ′i−1

n

∆n
i W+∆n

i M(n, i)
)lm

,

µ′ni (l,m) =
1√
n
zn,lmi g(βni )

(
σ′i−1

n

∆n
i W +∆n

i M(n, i)
)lm

.

Use (5.2) and (7.37) and the property E(‖∆n
i W‖q) + E(‖∆n

i M(n, i)‖q) ≤
Cq/n for all q ≥ 2 to get that

∑[nt]
i=1E(|µni (l,m)|) → 0. Finally, since g is

even and ∆n
i W and ∆n

i M(n, i) are independent conditionally on F (i−1)/n and
E(∆n

i M(n, i) | F (i−1)/n) = 0, we find that indeed E(µ′ni (l,m) | F (i−1)/n) = 0.
So we get (8.3) for k = 1, and we are done.
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1 Introduction

Copula functions link multivariate distributions to their corresponding uni-
variate marginals and allow one to study the distributional dependence of
multivariate distributions. In contrast to temporal dependence of a time se-
ries, the term distributional dependence refers to the (contemporaneous) de-
pendence among multiple time series. In finance and insurance, copulas have
recently become very popular due to two important applications.

First, copulas have been recognized as a promising tool to analyze and
model the dependence structure of credit-risky portfolios [19], [38], [32], [15].
The adequate modelling of dependence in credit portfolios has been identified
as one of the most important and pressing issues to be addressed in modern
credit-risk management. This is partly because the pressure of globalization
has led to a significant increase of dependencies within assets and asset classes
of particular markets and between markets. For example, many empirical
studies, such as [46], [49], and [22], have focused on the so-called ”correlation
break-down”. The latter refers to the significant increases of distributional
dependence between financial asset returns during bear markets, which leads
to failure of conventional diversification strategies in times when they are most
needed. In particular, the precise analysis of the extreme (negative) returns
of an asset portfolio, which depends heavily on the dependence structure of
the individual extreme asset returns, must be studied carefully as it provides
important insights into the appropriate supply of economic capital, cf. [56].

Second, in order to manage and control portfolio credit risk, a new gener-
ation of financial instruments such as basket credit derivatives and collater-
alised debt obligations (CDOs) has been introduced to financial markets. The
pricing and hedging of these instruments require a careful analysis of the de-
pendence structure between the respective underlying as well. For the active
management of portfolio credit risk, copulas have recently been applied to
model the dependence structure between default times involved in the pricing
and hedging of basket credit derivatives and CDOs. For example, [48] utilizes
the so-called Gaussian copula to price first-to-default credit derivatives. [47]
and [60] extend the copula-based pricing to other basket credit derivatives
and CDOs by applying other types of copulas.

For further application, see [24] or [57] for a time series approach with
copulas and [43], who apply copulas in the framework of multidimensional
option pricing.

This paper provides a survey of the most important techniques of mod-
elling and measuring distributional dependence with a view towards pricing
and hedging the afore-mentioned financial instruments and towards portfolio
risk management. In the first section we present the concept of copulas and
relevant results, and we outline their importance for analyzing distributional
dependence. In passing we introduce the family of tail copulas which helps
analyzing the distributional dependence of extreme events. We then discuss
various dependence measures related to (tail) copulas and indicate financial
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applications. Afterwards we focus on nonparametric statistical inference for
(tail) copulas and dependence measures and point out that the majority of
statistical results are valid under the assumption of i.i.d. data. However, it
is well known that every real financial time series incorporates temporal de-
pendence. For example we will show that some high-frequency financial data
possess a very characteristic seasonal and autoregressive temporal dependence
structure of its volatilities. The latter is often referred to as volatility cluster-
ing. The amount of literature on filtering techniques for time series, in order
to obtain i.i.d. data, is enormous. In practice, the most popular filtering tech-
nique for volatility clustering of asset returns is unquestionably the (G)ARCH
filtering. Although, (G)ARCH filtering usually leads to a rejection of the i.i.d.
hypothesis of the resulting residuals due to model misidentification. However,
its simple interpretation, estimation and forecasting has made it the favorite
filtering technique in the financial industry. (G)ARCH models have been in-
troduced and discussed in [18], [29], and [1].

The second part of the paper continues with the previous discussion and
investigates the sensitivity of measures of distributional dependence towards
deseasonalisation and GARCH filtering for a General Motors (GM) and In-
ternational Business Machines (IBM) high-frequency data set. Our particular
choice of the GARCH filter is justified by its afore-mentioned popularity. We
will especially focus on the distributional dependence of extreme events.

Our results show that filtering techniques crucially affect the distributional
dependence structure and thus inherit the danger of wrong conclusions from
inappropriate dependence measures. As a side product we advocate autocor-
relation functions (ACF) based on scale-invariant (copula-based) dependence
measures and provide new insights into the interplay between distributional
and temporal dependence of multivariate time series. The discussion of a new
type of nonparametric estimator for the so-called tail dependence gives in-
sight into the dependence measurement of extreme events. We will compare
our results with the findings of [20].

2 Modelling distributional dependence

Each multivariate distribution function can be split into its univariate mar-
ginal distribution functions and a copula function (Sklar’s theorem, [61]). In
other words, copulas allow one to study the distributional dependence struc-
ture of random vectors irrespective of their marginal distributions.

Definition 1 (Copula). Let X = (X1, . . . , Xd)′ be an d-dimensional ran-
dom vector with distribution function F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤
xd) and marginal distribution-functions Fi(xi) = P (Xi ≤ xi) for all i =
1, . . . , d. Then the distribution function C of the d-dimensional random vector
(F1(X1), . . . , Fd(Xd))′ is called copula (or copula function) of X or F.
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It can be shown that the copula function is uniquely determined by the
multivariate distribution function F if all univariate marginal distribution
functions are continuous (Sklar’s Theorem) and that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Thus, copulas can be utilized to build flexible multivariate distribution
functions in two steps: First, model the distributional dependence via some
copula, and second, plug in appropriate marginals.

Copula functions represent standardized distributions in the sense that
their one-dimensional marginals are uniformly distributed on the interval
[0, 1]. An important property is that the copula of a random vectorX stays the
same irrespectively of any strictly increasing transformation of the marginals
Xj , j = 1, . . . , d. This invariance property (also called “scale invariance”) is a
desired feature of dependence functions and dependence measures, as we un-
derstand dependence itself to represent the association between “large” and
“small” realizations of random vectors irrespectively of their scale.
Kendall’s tau and Spearman’s rho. A proper dependence measure

for multivariate distributions should be scale invariant (or invariant under
change of the marginal distributions). All dependence measures derived from
the copula are scale invariant, and so in line with our basic requirement. The
most important scale invariant dependence measure in financial applications
is Kendall’s τ.

Definition 2 (Kendall’s tau). Let X and X̄ be independent d - dimensional
random vectors with common continuous distribution function F and copula
C. Kendall’s tau of the margins Xi and Xj , i < j, is defined by

τij : = Prob((Xi − X̄i)(Xj − X̄j) > 0)− Prob((Xi − X̄i)(Xj − X̄j) < 0)

= 4
∫
[0,1]2

Cij(ui, uj) dCij(ui, uj)− 1, (2.1)

where Cij(ui, uj) = C(1, . . . , 1, ui, 1, . . . , 1, uj , 1 . . . , 1).

The finite-sample version of Kendall’s tau τ̂ij is defined as the ratio of the
number of concordant minus the number of discordant pairs of sample points
with respect to the number of concordant and discordant pairs of sample
points. Here, a pair of sample points (xi, xj) and (x̄i, x̄j) is called concordant
if xi < (>)x̄i and xj < (>)x̄j , and discordant otherwise. Formally

τ̂ =
concordant pairs − disconcordant pairs
concordant pairs + disconcordant pairs

. (2.2)

Obviously this dependence measure is scale-invariant and it represents one of
the most intuitive dependence measures.

The Pearson’s correlation coefficient ρ(Xi,Xj) of the i-th and j-th com-
ponent of X = (X1, . . . , Xd)′ measures linear dependence and is thus not
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scale-invariant. However, we might intuitively substitute for the random vari-
ables Xi and Xj the standardized random variables Fi(Xi) and Fj(Xj) in
order to obtain the scale-invariant correlation coefficient ρ(Fi(Xi), Fj(Xj)).
Indeed, this dependence measure is well known and is called Spearman’s rho
ρSij := ρ(Fi(Xi), Fj(Xj)). It can be shown that

ρSij = 12
∫∫

[0,1]2
Cij(ui, uj) duiduj − 3.

In contrast to Pearson’s correlation coefficient, the latter two dependence
measures are always 1 or −1, respectively, if one random variable is an increas-
ing function (completely positively correlated) or decreasing function (com-
pletely negatively correlated) of the other. Recall that Pearson’s correlation
coefficient might be zero in both cases. A detailed treatment of copulas and
other dependence measures can be found in [44] and [55].
Tail dependence and tail copula. In contrast to the dependence mea-

sures discussed so far, tail dependence focuses solely on the distributional
dependence of extreme or tail events. In the context of tail dependence, the
immediate analogue to copulas, which describe the entire distributional de-
pendence structure, is given by tail copulas. In this paper we restrict ourself
to so-called lower tail copulas. However, the results hold similarly for upper
tail copulas; see [59] for the definition. If not otherwise stated, we assume
continuous marginal distributions.

Definition 3 (Tail copula). Let F be a d-dimensional distribution function
with copula C. If for the subsets I, J ⊂ {1, . . . , d}, I ∩ J = ∅, the following
limit exists everywhere on R̄d

+ := [0,∞]d\{(∞, . . . ,∞)} :

ΛI,J
L (x) := lim

t→∞
IP(Xi ≤ F−1i (xi/t), ∀i ∈ I | Xj ≤ F−1j (xj/t), ∀j ∈ J)

= lim
t→∞

C(xi/t, ∀i ∈ I | xj/t, ∀j ∈ J), (2.3)

then the function ΛI,J
L : R̄d

+ → R is called a lower tail-copula associated with
F (or C) with respect to I, J .

For simplicity and notational convenience all further definitions and results
are provided only for the bivariate case. The multidimensional extensions are
given in [59]. The statistical inference becomes easier if the following slight
modification of the tail copula is utilized:

ΛL(x1, x2) := x2 · Λ{1},{2}L (x1, x2), x1 ∈ R̄+, x2 ∈ R+, (2.4)

where the indices {1} and {2} can be dropped. Further, set ΛL(x1,∞) := x1
for all x1 ∈ R+.

The next definition embeds the well-known tail-dependence coefficient (see
[44], p. 33) within the framework of tail copulas.
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Definition 4 (Tail dependence). A bivariate random vector (X1,X2)′ is
said to be lower tail-dependent if ΛL(1, 1) exists and

λL := ΛL(1, 1) = lim
v→0+

Prob(X1 ≤ F−11 (v) | X2 ≤ F−12 (v)) > 0. (2.5)

Consequently, (X1,X2)′ is called lower tail-independent if λL equals 0. Fur-
ther, λL is referred to as the lower tail-dependence coefficient.

It is well known that the multivariate normal distributions, the multivari-
ate generalized-hyperbolic distributions, and the multivariate logistic distrib-
utions are lower tail-independent whereas the multivariate t-distributions and
the α-stable distributions are lower tail-dependent. For a general account on
tail dependence for elliptically-contoured distributions we refer to [58]. Both
preceding definitions show that tail dependence is again a copula property.
In particular, the tail-dependence coefficients are invariant under strictly in-
creasing transformations of the marginals.

Practitioners interpret tail dependence as the limiting likelihood of an
asset/portfolio return falling below its Value at Risk given that another as-
set/portfolio return has fallen below its Value at Risk.
Application: CDOs and multi-name credit derivatives. We have

already mentioned in the introduction of this paper that the increasing active
management and control (in contrast to the traditional passive management
and control) of portfolio credit risk has led to a new generation of finan-
cial instruments such as multi-name credit derivatives and collateralised debt
obligations (CDOs). Examples of these instruments are basket credit default
swaps (We refer to [16] for more background reading.). Because of the associ-
ation with a pool of credit-risky underlying, the pricing and hedging of these
instruments require a careful analysis of the dependence structure between
the respective underlying. In this context, copulas have recently been applied
to model the dependence structure between default times of the underlying.
Let us consider a portfolio of d underlying assets and let τi represent the de-
fault time of the ith underlying (or the corresponding obligor). Further, let
Fi(t) = P (τi ≤ t) be the marginal distributional function of the default time
of obligor i. The copula function C is now used to obtain the multivariate
default-time distribution F (t1, . . . , td) = C(F1(t1), . . . , Fd(td)). The latter ap-
proach allows to calibrate the default-time distribution, in the first step, for
each margin separately. This calibration is also necessary in order to construct
so-called credit yield curves. In the second step, a parametric copula is usu-
ally calibrated via some scale-invariant dependence measure such as Kendall’s
tau. The optimal choice of the copula is the topic of many recently published
research papers. For example, [48] utilizes the so-called Gaussian copula to
price first-to-default credit derivatives. [47] and [60] extend the copula-based
pricing to other basket credit derivatives and CDOs by applying other types
of copulas.
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3 Statistical inference

Empirical copula. Concerning the estimation of copula functions, several
parametric, semi-parametric, and nonparametric procedures have already
been proposed in the literature (cf. [62], [41], [42]). Regarding the nonparamet-
ric estimation, [26], [27], and [36] establish weak convergence of the so-called
empirical copula process under independent and dependent marginal distrib-
utions. In the following we will confine to the bivariate case.

Definition 5 (Empirical copula). Consider the bivariate random sample
{(X1

i ,X
2
i )
′, i = 1, . . . , n}. Then the corresponding (lower) empirical copula is

defined by

Cn(u1, u2) =
1
n

n∑
i=1

1{F1,n(X1
i ) ≤ u1, F2,n(X2

i ) ≤ u2}, (3.6)

where 1 denotes the indicator function and Fj,n is n/(n+1) times the empirical
distribution function of {(Xj

i ), i = 1, . . . , n}, j = 1, 2.

Note that the empirical copula is a function of the ranks of the observa-
tions. Powerful test for independence or goodness of fit (such as Cramér-von
Mises or Kolmogorov-Smirnov) could be based on functionals of the empirical
copula. However, there does not exist a simple expression for the asymptotic
distribution of the empirical copula process

Cn(u1, u2) =
√
n{Cn(u1, u2)− C(u1, u2)}. (3.7)

The limiting process of (3.7) is derived in [62] and [39] (Test of independence
based on the empirical copula process are developed in [40].). Analogous lim-
iting results, although one needs different techniques of proof, can be obtained
for the so-called empirical tail copula process.
Empirical tail copula. A nonparametric estimator, the so-called empiri-

cal tail copula, for the bivariate (lower) tail-copula ΛL(x1, x2), (x1, x2)′ ∈ R̄2+,
is proposed. Note that nonparametric estimation turns out to be appropriate
for unknown tail copulas as no general finite-dimensional parametrization of
tail copulas exists (in contrast to the one-dimensional extreme value distri-
butions). Further, the choice of the empirical distribution function to model
the marginal distributions avoids any misidentification of the copula due to a
wrong parametrical fit of the marginal distributions. Empirical investigations
regarding such misidentifications and misinterpretations of the corresponding
(extremal) dependence structure are provided in [37].

Definition 6 (Empirical tail copula). Consider the bivariate random sam-
ple {(X1

i ,X
2
i )
′, i = 1, . . . , n} and denote the rank of X1

i and X
2
i by R1

in and
R2

in, respectively. The (lower) empirical tail copula is defined via formula (2.3)
by:
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Λ̂L,n(x1, x2) :=
n

k
Cn

(kx1
n
,
kx2
n

)
=

1
k

n∑
i=1

1{R1
in ≤ kx1 and R2

in ≤ kx2}

with empirical copula Cn and some threshold k ∈ {1, . . . , n}.

The optimal choice of the threshold k in Definition 6 is related to the
usual variance-bias problem, also known from tail index estimations of regular
varying distributions, and will be addressed in a forthcoming work. For the
asymptotic results we assume that k = k(n)→∞ and k/n→ 0 as n→∞.

Remark. Definitions 5 and 6 can be generalized for bivariate time series in
an obvious way. In this case we refer to the empirical (tail) copula as quasi-
empirical (tail) copula.

Condition 3.1 (Second-Order Condition) 1exsecond order conditionThe
lower tail-copula ΛL(x, y) is said to satisfy a second-order condition if a func-
tion A : R+ → R+ exists such that A(t)→ 0 as t→∞ and

lim
t→∞

ΛL(x, y)− tC(x/t, y/t)
A(t)

= g(x, y) <∞

locally uniformly for (x, y)′ ∈ R̄2+ and some nonconstant function g. The
second-order condition for the upper tail-copula is defined analogously.

Note that A(t) is regularly varying at infinity, so this is just a second-order
condition on regular variation, cf. [25].

Theorem 3.2 (Asymptotic normality). Let F be the bivariate distribution
function of the random sample {(X1

i ,X
2
i )
′, i = 1, . . . , n} with continuous

marginal distribution functions F1 and F2. If the tail copula ΛL �≡ 0 exists,
possesses continuous partial derivatives, and the Second-Order Condition 3.1
holds, then for n→∞

√
k
{
Λ̂L,n(x1, x2)− ΛL(x1, x2)

} w→ GΛL
(x1, x2),

where GΛL
(x1, x2) is a centered tight continuous Gaussian random field. Weak

convergence takes place in the space of uniformly-bounded functions on com-
pacta in R̄2+. The covariance structure of GΛ̂L

(x1, x2) is given in Corollary 1
below.

Corollary 1 (Covariance structure). The limiting process in Theorem 3.2
can be expressed by

GΛ̂L
(x1, x2) = GΛ̂∗

L
(x1, x2) (3.8)

− ∂

∂x1
ΛL(x1, x2)GΛ̂∗

L
(x1,∞)− ∂

∂x2
ΛL(x1, x2)GΛ̂∗

L
(∞, x2),

where GΛL
(x1, x2) is a centered tight continuous Gaussian random field. The

covariance structure of GΛ∗
L
is given by
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E
(
GΛ̂∗

L
(x1, x2) ·GΛ̂∗

L
(x̄1, x̄2)

)
= ΛL

(
min{x1, x̄1},min{x2, x̄2}

)
(3.9)

for (x1, x2)′, (x̄1, x̄2)′ ∈ R̄2+.

The proof of asymptotic normality, see [59], is accomplished in two steps.
In the first step the marginal distribution functions F1 and F2 are assumed to
be known and an asymptotic normality result is derived. In the second step
the marginal distribution functions F1 and F2 are assumed to be unknown
and the asymptotic result is proven by utilizing a particular version of the
functional delta method, as provided in [63].

The evaluation of the empirical tail copula at the point (1, 1)′ immediately
yields a non-parametric estimator for the lower tail-dependence coefficient.
The estimation of the lower tail-dependence coefficient (briefly: lower TDC)
is important for practical applications, for example in risk management, where
one is primarily interested in the dependence between large loss events. It has
been addresses in several publications, see [52], [45], [5], [20], and [37]. Consider
the following nonparametric estimator for the lower TDC:

λ̂L,n(k) = Λ̂L,n(1, 1) =
1
k
·

n∑
j=1

1{R1
in ≤ k ∧ R2

in ≤ k} 1 ≤ k ≤ n,

with k = k(n)→∞ and k/n→ 0 as n→∞.
Under the same technical conditions as in Theorem 3.2 we obtain that for

n→∞ √
k
{
λ̂L,n − λL

} d→ GλL
,

with GλL
being centered and normally distributed, i.e. GλL

∼ N(0, σ2L) with

σ2L = λL +
( ∂
∂x
ΛL(1, 1)

)2
+
( ∂
∂y
ΛL(1, 1)

)2
+ 2λL

(( ∂
∂x
ΛL(1, 1)− 1

)( ∂
∂y
ΛL(1, 1)− 1

)
− 1
)
.

[59] prove strong consistency of λ̂L,n and Λ̂L,n if k/ log(log n)→∞ as n→∞.

4 Dependence of high-frequency asset returns - An
empirical study

4.1 The GM-IBM high-frequency data set

So far we have surveyed important techniques of modelling and measuring dis-
tributional dependence for financial time series. We have mentioned the con-
cept of empirical (tail) copulas which is a central element for nonparametric
statistical inference from real data. We pointed out that the related results on
asymptotic normality and strong consistency are proven under the assumption
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of i.i.d. data (Note that the limiting distributions are already quite compli-
cated in this case.). However, each financial time series incorporates temporal
dependence, i.e. the data cannot be assumed to be independent and identical
distributed. Furthermore, almost all common filtering techniques will lead to
a rejection of the i.i.d. hypothesis due to the usual model misidentification.

The question is therefore: How sensitive is the distributional dependence
(although the measurements are always obtained from data which are tempo-
rally dependent) towards various filtering methods?

To give a partial answer to this question we consider a typical financial time
series, namely a General Motors (GM) and International Business Machines
(IBM) high-frequency data set. High-frequency asset return data comprise
several very characteristic dependence features which are usually only found
in experimentally-generated time series, and thus they are very interesting for
our empirical analysis. Many authors have already been attracted to explore
these features. In the framework of univariate time series, [9], [2], [51], and [6]
investigate the estimation of the actual volatility of stochastic-volatility mod-
els (SV) by means of so-called realized volatilities of high-frequency data. Fur-
ther, [3], [4], [23], and [54] address the question of how to model the character-
istic (volatility) seasonality and volatility clustering effects of high-frequency
data. The direct fitting of well-established financial models to high-frequency
asset returns is usually complicated, due to market microstructure effects such
as discreteness of prices, bid/ask bounce, irregular trading etc. (see for exam-
ple [7]). Moving-average structures for asset returns, which often occur as the
result of no-trading effects or bid/ask bounce effects, are discussed in [21].

However, there is not much literature on multivariate aspects related to
high-frequency financial data; among them we mention [10] and [20].
The plan of our statistical analysis. In the first step, we apply var-

ious filtering techniques to the afore-mentioned data set in order to obtain
approximately i.i.d. data. In particular, we utilize a GARCH filter, in order to
reduce the observed volatility clustering of the asset returns, as it is the most
popular and common filtering technique in the financial sector. In the second
step, we analyze the effect of the filtering on the quasi-empirical copula and
on the magnitude of tail dependence. In passing, we introduce autocorrelation
functions (ACFs) based on Kendall’s tau.
The data. The data of high-frequency asset returns we utilize in this

paper correspond to the cleaned bivariate stock prices of GM and IBM over
the time horizon 4th of January 1993 to 29th of May 1998. For reasons of
market efficiency, we consider 15-minute price quotes which are aggregated
from tick-by-tick price quotes leading to a sample size of n = 36855 data. The
prices are observed each trading day during the time from 9.30h to 16.00h.
Figure 1 illustrates the log-return movements over different time intervals.

The price quotes are denoted by P j
i , i = 1, . . . , n, j ∈ {GM, IBM} and

the corresponding log-returns (briefly: returns) are defined by

Rj
i := log(P j

i )− log(P j
i−1), i = 2, . . . , n, and Rj

1 = 0, j ∈ {GM, IBM}.
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Fig. 1. Stock log-returns for each 15 minutes for General Motors (GM) and In-
ternational Business Machines (IBM) over the years 1993-1998 (left plot) and over
January and February 1995 (right plot).

The right plot of Figure 1 zooms into the IBM return series at the be-
ginning of the year 1995 and reveals that the volatility clustering is less pro-
nounced than it is typically seen in foreign-exchange (FX) high-frequency
data, cf. [20]. The volatility clusters are hardly observable solely by glanc-
ing at the plot, and so we provide the autocorrelation function (ACF) for
the returns Rj

i , the squared returns (Rj
i )
2, and the absolute returns |Rj

i |, re-
spectively, in Figure 2. Note that the characteristic trading pattern of almost
discrete changes of the price quote can be clearly seen in the right plot of
Figure 1.

From Figure 2 we learn that the returns themselves are not autocorrelated,
but the squared and especially the absolute returns show significant serial and
seasonal autocorrelation which is persistent over time. In particular, the time
series is not stationary. The latter seasonality has its origin in the contrast
between the beginning of the trading day, which shows high volatility, and the
middle, which shows low volatility. Figure 3 illustrates the average volatility
over the trading day for the return series of GM and IBM. Note that from
an economical point of view, the asset returns at 9.30h accumulate much
more information than the consecutive 15-minute returns. Thus, the 9.30h
returns are often excluded from the data investigation. However, since our
primary interest lies in the dependence structure and not in the economic
interpretation, we keep the 9.30h data in our analysis.

The immediate problem arising from the latter empirical observations is
how to deseasonalize the data with respect to the observed volatility struc-
ture. Two different approaches are frequently used. We may either utilize
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Fig. 2. Autocorrelation function (ACF) for the returns Rj
i (left plots), squared

returns (Rj
i )

2 (middle plots), and absolute returns |Rj
i | (right plots) for GM and

IBM over the years 1993-1998 with lags ranging between 1 and 200.
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Fig. 3. Volatilities measured by the sample standard-deviation and corresponding
empirical confidence bounds over one trading day for returns of GM and IBM over
the years 1993-1998.
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the concept of random time-change, as described in [23] (which preserves ad-
ditivity of the returns over different time intervals), or we may use volatility
weighting as in [3], [4], [54], or [20]. In the latter framework, the deseasonalized
returns R̃j

i are expressed by

R̃j
i := c+Rj

i/v
j
i , i = 1, . . . , n, j ∈ {GM, IBM},

where vji , i = 1, . . . , n, j ∈ {GM, IBM} denote the (expected) seasonal
volatilities and c refers to the mean return. The latter volatilities could be
derived via some filtering technique from time series theory. A simple approach
which is often applied (see for example [20]) estimates the squared volatilities
(vji )

2 by

(vji )
2 =

1
nτ

nτ∑
k=1

(
Rj

k·τ(i)
)2

j ∈ {GM, IBM},

where τ(i) = imod(1day) ∈ {1, . . . , 27}, since we consider 27 observation times
(from 9.30h to 16.00h in 15-minute steps) per day, and nτ = [n/27]. The ACF
plots for the deseasonalized returns R̃j

i (provided in Figure 4) illustrate that
this approach removes the seasonality of the volatility quite well. However, the
lagged volatilities are still serially correlated, and show the typical volatility
clustering effect. Note that the absolute returns indicate the characteristic
pattern of long-range dependence.
Remark. As with the above marginal volatility weighting, we may weight

the bivariate return-vector by the expected seasonal volatility matrix. Al-
though the latter technique seems to be more appropriate for multidimen-
sional data modelling, the main results of this empirical study stay the same.

Finally, we reduce the remaining serial correlation of the volatilities of the
deseasonalized returns R̃j

i by fitting an univariate GARCH(1,1) model (see
[18]) to each margin separately. Indeed, the GARCH(1,1) model is the most
frequently applied GARCH model in practice. Alternatively we fit a multivari-
ate GARCH model to the bivariate deseasonalized return series. Regarding
the latter, we utilized a diagonal VEC(1,1) model (DVEC(1); see [17]) for
the deseasonalized returns R̃j

i . Both models assume the following covariance
dynamics:

Σi = A+B ⊗ (εi−1ε′i−1) + C ⊗Σi−1,

where the symbol ⊗ stands for the Hadamard product (element-by-element
multiplication) and A,B,C ∈ R2×2 (in the univariate case, these matrices
are diagonal matrices). To improve our fit, we model the error terms εi via a
bivariate Student t-distribution.

Although after each GARCH filtering we must reject the hypothesis of
i.i.d. residuals, the ACFs of the residual’s (co)variances imply that the ser-
ial correlation of volatilities and cross-correlations is not that significant any
more. It turns out that the residuals themselves are slightly autocorrelated
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Fig. 4. ACF for the volatility-weighted returns R̃j
i (left plots), squared returns

(R̃j
i )

2 (middle plots) and absolute returns |R̃j
i | (right plots) for GM and IBM over

the years 1993-1998 with lags ranging between 1 and 200.

over the first lag of 15min; however, this time frame is too short for significant
arbitrage opportunities.
Remark. According to our empirical study, the main results stay the same

irrespective of the choice of a multivariate or an univariate GARCH model.

4.2 Excursion: Analyzing the temporal dependence
with Kendall’s tau

In Figures 2 and 4 we analyzed the ACF to draw conclusions about the tem-
poral dependence of the underlying (volatility weighted) asset returns. Espe-
cially Figure 2 indicates that there might be an unusually large dependence
between the return data with a lag of k-days (i.e. lag= k · 27). Undoubtedly
there is a larger dependence at this special lag, but the correlation coeffi-
cient, which can only measure linear dependence, exaggerates the magnitude
enormously. A standardization of the bivariate return data to approximately
uniformly distributed margins (via the quasi-empirical distribution function
which is again explained in formula (4.10) below) gives a better picture of the
respective serial dependence. Figure 5 shows that all large peaks in the ACF
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disappear after this standardization. The sensitivity of the correlation coeffi-
cient under monotone increasing transformations is thus misleading as to the
proper analysis of the temporal dependence structure. This is especially so if
the dependence is non-linear, as it is in our case. As an alternative, we advo-
cate a new ACF based on the scale-invariant dependence measure Kendall’s
tau. Note that the definition of Kendall’s tau requires a common continuous
distribution function; however, the respective marginal distribution functions
might be discontinuous.

Definition 7 (ACF based on Kendall’s tau). Let (Yi)i∈N denote a se-
quence of random variables (or univariate time series). The autocorrelation
with lag j of some Yi, i = j + 1, . . . based on Kendall’s tau is defined by

τj = IP((Yi − Ȳi)(Yi−j − Ȳi−j) > 0)− IP((Yi − Ȳi)(Yi−j − Ȳi−j) < 0),

where (Ȳi, Ȳi−j)′ is an independent copy of (Yi, Yi−j)′ which has a common
continuous distribution function. The plot of τj against j is called the ACF
based on Kendall’s tau.

The sample autocorrelation with lag j based on Kendall’s tau is de-
fined as the sample version of Kendall’s tau derived from the realizations of
(Yi, Yi−j)′, i = j + 1, . . . , n (see formula (2.2)).
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Fig. 5. ACF of the squared returns (RGM
i )2 (left plot), ACF of the squared returns

which are standardized by the quasi-empirical distribution function (middle plot)
and ACF based on Kendall’s tau of the squared returns (RGM

i )2 over the years
1993-1998 with lags ranging between 1 and 100.

4.3 Analyzing the quasi-empirical copula

We return to our question:

How much did we change the distributional dependence structure?

Let {(X1
i ,X

2
i )
′, i = 1, . . . , n} denote some bivariate time series. Consider

the transformed series

{(F1,n(X1
i ), F2,n(X

2
i ))
′, i = 1, . . . , n}, (4.10)
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where Fj,n is n/(n + 1) times the quasi-empirical distribution function of
{(Xj

i ), i = 1, . . . , n}, j = 1, 2. We apply transformation (4.10) to the original
GM-IBM returnsRj

i , to the volatility-weighted returns R̃
j
i , and to the GARCH

residuals of the volatility-weighted returns.
The results are illustrated in Figure 6. Note that only for the third data

set, the underlying data are approximate realization of an empirical copula
since these data are closest to i.i.d. For the second data set, the volatility
weighted returns, we could impose some ergodicity or mixing conditions to
ensure the weak convergence of the quasi-empirical copula to the correspond-
ing real copula (see for example [28] or [34]). The latter seems to be not
possible for the first data set because the time series is not even stationary.
However, transformation (4.10) gives a better indication of the underlying
distributional dependence structure than, for example, a simple scatter plot.
Although, any interpretations from related dependence measures should be
considered very carefully.

The left plots of Figure 6 illustrate the returns Rj
i , the volatility weighted

returns R̃j
i , and the GARCH residuals of the volatility weighted returns of

GM and IBM after they have been transformed (or standardized) according
to formula (4.10). Thus, the plots refer to the respective quasi-empirical copula
density. The characteristic cross in the middle of the two upper-left plots indi-
cates the atomic mass of zero returns; i.e. time points where the stocks are not
traded. Note that the copula is not uniquely defined for discontinuous distri-
bution functions. All other modes of the marginal return distributions, which
have been present in Figure 1, are not observable in this plot, which shows
that the latter transformation really removes the characteristics of the mar-
ginal distributions. We would like to point out the intensifying accumulation
of data points in the lower-left and upper-right corner of all quasi-empirical
copula density plots. This feature might be an indicator for tail dependence
or, in other words, dependence of extreme events. In the next section we
solely concentrate on the problem of whether tail dependence changes heavily
after filtering. Note, that the quasi-empirical copula density of the GARCH
residuals does not possess the characteristic cross.

The plots on the right side of Figure 6 indicate the temporal evolvement of
the GM margins F̂GM (·) corresponding to the respective quasi-empirical cop-
ula density given in the left plots. The strong impact of the filtering becomes
quite clear in these plots. For example the characteristic trading pattern of
discrete percentual changes of the price quotes, as illustrated by the lines in
the upper-right plot (see also Figure 1), vanishes completely after the filtering.

Summarizing the observations, Figure 6 clearly shows that the distribu-
tional dependence structures, measured via the quasi-empirical copula, differ
completely from each other. This indicates that the filtering has a strong
impact on the analysis of distributional dependence and on the interpreta-
tional power of common dependence measures.Wrong or misleading economic
interpretations can be drawn, if no attention is paid to this basic insight
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Fig. 6. Quasi-empirical copula density (left plots) of the returns Rj
i (upper plots),

the volatility-weighted returns R̃j
i (middle plots), and the GARCH residuals of the

volatility-weighted returns R̃j
i (lower plots) for GM and IBM over the years 1993-

1998 and the corresponding transformed margins F̂GM (·) (right plots).

(see also [35] for further statistical pitfalls in dependence modelling). In order
to underpin the so-far obtained conclusions, we discuss the impact of filtering
on the estimation of tail dependence.

4.4 Analyzing the tail dependence

Because of the complicated temporal-dependence structure of the considered
GM-IBM high-frequency asset returns, we favor an estimator which does not
depend on any distributional assumptions.
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Figure 7 illustrates the estimates λ̂L,n(k) of the lower tail-dependence
coefficient λL (TDC) for various thresholds k for the returns Rj

i , the
volatility-weighted returns R̃j

i , and the GARCH residuals of the volatility-
weighted returns of GM and IBM over the years 1993-1998. According to the
regular variation property of tail-dependent distributions (see [59] for more
details), tail dependence is present in a bivariate i.i.d. data set if the plot
of λ̂L,n(k) for various thresholds k shows a characteristic plateau for small
k. This characteristic plateau is typically located between a higher variance
of the estimator for smaller thresholds and a larger bias of the estimator
for bigger thresholds. The estimate of the lower TDC and the corresponding
threshold k is chosen according to the latter plateau.
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Fig. 7. Estimates λ̂L,n(k) of the lower tail-dependence coefficient for various thresh-
olds k for returns Rj

i (upper left plot), volatility-weighted returns R̃j
i (upper right

plot), and GARCH residuals of the volatility-weighted returns (lower plot) for GM
and IBM over the years 1993-1998.

Figure 7 indicates that the original GM-IBM returns are lower-tail depen-
dent with λ̂L,n = 0.15. The volatility weighted returns show less pronounced
tail dependence with λ̂L,n = 0.1. Finally, the GARCH residuals of the volatil-
ity weighted returns are lower-tail independent according to the absence of
any plateau; see the lower plot in Figure 7. However, the original returns and
the volatility weighted returns are by no means i.i.d. Therefore the question is:
Are the characteristic plateaus induced by the various temporal dependence
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structures of the data? For example, [20] stop after the volatility weighting
and draw several conclusions about the distributional dependence, although
their deseasonalized high-frequency data set still shows a pronounced volatil-
ity clustering. In a forthcoming paper, we will dig into the question how much
tail dependence can be introduced into a tail independent data set by applying
certain transformations (which cause temporal dependence).

In contrast, we point out that the correlation coefficient is not significantly
different for all three data series. The original GM-IBM returns have a corre-
lation coefficient of 0.24, the volatility weighted returns possess a correlation
coefficient of 0.23, and the GARCH residuals of the volatility weighted returns
end up with a correlation coefficient of 0.22. This again unmistakably shows
that the interpretational power of distributional dependence measures/models
(such as copulas, Kendall’s tau or tail dependence) has to be handled very
carefully if the analyzed data are not i.i.d.

5 Conclusion

In this paper, we have surveyed and advocated the usage of copulas with a par-
ticular view towards financial applications. The recently developed concepts
of tail dependence and tail copulas are presented and some new results on sta-
tistical inference are stated. The assumption of i.i.d. data, which is necessary
in order to obtain the latter results, turns out to be difficult to obtain for real
financial time series. In fact, we illustrate for the GM-IBM high-frequency
data set that the distributional dependence is very sensitive towards common
filtering methods such as GARCH filtering. We conclude that the analysis of
the distributional dependence of multidimensional financial data with tempo-
ral dependence is a rich and promising area, in which much remains to be
done.
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5. Ané, T., Kharoubi, C.: Dependence Structure and Risk Measure. Journal of
Business, 76(3), 411-438 (2003)

6. Areal, N.P., Taylor, S.J.: The realised volatility of FTSE-100 futures prices.
Forthcoming in Journal of Futures Markets, 22 (2002)

7. Bai, X., Russell, J.R., Tiao, G.C.: Beyond Merton’s utopia: effects of non-
normality and dependence on the precision of variance estimates using high-
frequency financial data. Graduate School of Business, University of Chicago
(2000)

8. Baringhaus, L.: Testing for spherical symmetry of a multivariate distribution.
Annals of Statistics 19, 899–917 (1991)

9. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realised volatil-
ity and its use in estimating stochastic volatility models. Journal of the Royal
Statistical Society, Series B, 64, 253–280 (2002)

10. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realised covari-
ation: high frequency covariance, regression and correlation in financial eco-
nomics. Econometrica, 72, 885–925 (2004)

11. Basel Committee on Banking Supervision: The New Basel Capital Accord. BIS
Basel, Switzerland URL: http://www.bis.org/bcbs (2003)

12. Beran, R.: Testing for ellipsoidal symmetry of a multivariate density. Annals of
Statistics, 7, 150–162 (1979)

13. Bingham, N.H., Kiesel,R.: Modelling asset return with hyperbolic distribu-
tions. In: Knight, J., Satchell, S. (eds.) Asset return distributions. Butterworth-
Heinemann, pp. 1–20 (2001)

14. Bingham, N.H., Kiesel, R.: Semi-parametric modelling in finance: theoretical
foundation. Quantitative Finance 2, 241–250 (2002)

15. Bingham, N.H., Kiesel, R., Schmidt, R.: Semi-parametric modelling in Finance:
Econometric applications. Quantitative Finance, 3(6), 426–441 (2003)

16. Bluhm, C., Overbeck, L., Wagner, C.: An Introduction to Credit Risk Modelling.
Chapman & Hall (2003)

17. Bollerslev, T., Engle, R.F., Wooldridge, J. M.: A Capital-Asset Pricing Model
with Time-Varying Covariances. Journal of Political Economy, 96, 116–131
(1988)

18. Bollerslev, T.: Generalized Autoregressive Conditional Heteroskedasticity. Jour-
nal of Econometrics, 31, 307–327 (1986)
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pendent Data. Birkhäuser Verlag (2002)

29. Ding, Z., Granger, C.W.J.: Modeling Volatility Persistence of Speculative Re-
turns: A New Approach. Journal of Econometrics, 73, 185–215 (1996)

30. Eberlein, E.: Application of generalized hyperbolic Lévy motions to finance. In:
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1 Introduction: Model and Problems

The averaging principle and diffusion approximation procedures are among
the most frequently used asymptotic methods for analysis of nonlinear dy-
namical systems subjected to random perturbations [1], [5], [6], [9], [13], [15],
[16], [18], [19], [20]. It has been recognized that the averaging principle is a
powerful tool for analyzing interesting phenomena in the engineering sciences,
for example, when studying asymptotically stable multifrequency oscillations,
loss of stability due to parametric resonance, etc., see [17] and the references
therein. This approach, supplemented recently by probabilistic limit theorems,
was used not only in engineering sciences [2] but also applied in social sciences
such as economics and medicine [22], [8], [20]. The limit theorems obtained
in this area allow us to construct simpler dynamical systems, which are suc-
cessfully used for approximate analysis of the initial system on finite time
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intervals and also to describe the asymptotic behavior of the phase coordi-
nates as the time t → ∞, see [1], [10], [11], [13], [20]. It is worth mentioning
that mostly in engineering applications only a part of the coordinates have
limits as t → ∞, while the rest coordinates undulate and do not have any
limit [2]. This creates some difficulties when applying asymptotic methods of
nonlinear dynamics and probabilistic limit theorems.

Let us describe the model which we are going to study in this paper.
We introduce a “small” positive parameter ε, where ε ∈ (0, ε0), for some
fixed ε0 > 0. We assume that the system variables, as functions of time,
are separated into a fast component (called “radial motion”), and a slow
component (called “rotation”). The fast component has “velocity” which is
proportional to a negative power of ε, while the slow component has a limit
as ε → 0. We also assume that the dynamical system depends on other fast
random variables (that means functions of t/ε) modelled as an ergodic Markov
process [13], [15], [19]. Thus we study a system of random differential equations
of the following form:

dxε(t)
dt

= F (xε(t), yε(t), ξε(t), ε), (1.1)

dyε(t)
dt

=
1
ε
H(yε(t), ξε(t), ε), t ≥ 0. (1.2)

Here ε ∈ (0, ε0), F (x, y, z, ε) and H(y, z, ε) are vector-functions, x ∈ Rn,
y ∈ Rm, z ∈ G, and ξε = (ξε(t), t ≥ 0) is a homogeneous right continuous
ergodic Markov process on some compact phase space G with a weak infini-
tesimal operator Qε and an invariant measure µ, which is the same for all ε. If
F (x, y, z, ε) and H(y, z, ε) are sufficiently smooth functions, then the Cauchy
problem for the system (1.1)–(1.2) with initial conditions xε(s) = x, yε(s) = y
and ξε(s) = z, where s ≥ 0, has a unique solution xε(t) = xε(s, t, x, y, z),
yε(t) = yε(s, t, x, y, z) for any t ≥ s, x ∈ Rn, y ∈ Rm, z ∈ G. Let us as-
sume that the trivial solution xε(t) ≡ 0 ∈ Rn is an equilibrium point for the
slow motion (1.1), that is, F (0, y, z, ε) ≡ 0. One of our goals is to analyze
asymptotic stability properties of this equilibrium. For completeness of the
presentation we recall some definitions from the classical book [12]. In these
definitions ε is fixed and we are interested in the stability of the trivial solu-
tion of (1.1) uniformly in ε ∈ (0, ε0). Examples of systems which are stable in
one sense but not in another one can be seen in [12].

We say that equation (1.1), or that its trivial solution, is:

• locally stable almost surely (a.s.), if for any s ≥ 0, η > 0 and β > 0, there
exists δ > 0 such that the inequality

sup
y∈Rm, z∈G

P
(
sup
t≥s

|xε(s, t, x, y, z)| > η

)
< β (1.3)

is satisfied for all x in the ball Bδ(0) := {u ∈ Rn : |u| < δ};
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• locally asymptotically stochastically stable, if it is locally a.s. stable and
there exists γ > 0 such that the trajectories, which do not leave the ball
Bγ(0), tend to 0 in probability, as t→∞, that is, for any c > 0 and fixed
other initial data, we have

lim
t→∞

P[|xε(s, t, x, y, z)| > c, {xε(s, t, x, y, z), t ≥ s} ⊂ Bγ(0)] = 0;

• asymptotically stochastically stable, if it is locally a.s. stable and for any
x ∈ Rn, s ∈ R+, and c > 0, the following relation holds:

lim
T→∞

sup
y∈Rm, z∈G

P
(
sup
t>T

|xε(s, t, x, y, z)| > c

)
= 0; (1.4)

• exponentially p-stable, if there are numbers M > 0, γ > 0 such that for
any x ∈ Rn, y ∈ Rm, z ∈ G, s ≥ 0 and t > s one holds:

E[|xε(s, t, x, y, z)|p] ≤M |x|p e−γ(t−s). (1.5)

The paper is organized as follows. In Section 2 we prove that for linear Markov
dynamical systems, the asymptotic stochastic stability of the equilibrium is
equivalent to the exponential p-stability for sufficiently small p > 0. In Sec-
tion 3 we show that the exponential p-stability of the linearized Markov system
in a neighborhood of its equilibrium state, guarantees the asymptotic (local)
stochastic stability of this equilibrium. These results are similar to results in
[19] and [20]. However, we have included them here for a better understand-
ing of our approach and for describing a modification of the second Lyapunov
method for stochastic stability analysis. Based on the results in Sections 2
and 3, we can analyze the equilibrium stability of the slow motion by rewrit-
ing the system (1.1)–(1.2) in the following form:

dxε(t)
dt

= [A0(yε(t), ξε(t)) + εA1(yε(t), ξε(t))]xε(t), (1.6)

dyε(t)
dt

=
1
ε
h−1(yε(t), ξε(t)) + h0(yε(t), ξε(t)), t ≥ 0. (1.7)

Here ξε = (ξε(t), t ≥ 0) is a Markov process with infinitesimal operator
Qε = 1

ε2Q. The operator Q is supposed to be closed with spectrum σ(Q)
split into two parts, σ(Q) = σ−ρ(Q) ∪ {0}, where σ−ρ(Q) ⊂ {Reλ ≤ −ρ < 0}
and zero eigenvalue has multiplicity one. This assumption, see [4], guaran-
tees ergodicity of Markov processes defined by infinitesimal operators 1

ε2Q
and with the same invariant measure µ. To avoid cumbersome formulas an
averaging in the Markov phase coordinate z ∈ G of any function f(x, y, z)
with respect to the invariant measure µ will be denoted by f̄ , that is,
f̄(x, y) :=

∫
G
f(x, y, z)µ(dz). In Section 4 we discuss some results for the fast

motion assuming that h̄−1(y) ≡ 0. In this case, under some assumptions, the
stability analysis is based on an averaging procedure for the slow motion (1.6)
with a diffusion approximation of the fast motion (1.7):
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dx̄(t)
dt

= Ā0(ŷ(t)) x̄(t), (1.8)

dŷ(t) = a(ŷ(t))dt+ σ(ŷ(t))dw(t), t ≥ 0. (1.9)

The coefficients a(y), σ(y) are defined by the functions in the right-hand side
of (1.7), being respectively the potential of the operator Q and averaging with
respect to the invariant measure µ. We prove that the asymptotic stochastic
stability of the slow motion (1.1) follows from the exponential p-stability of
the random differential equation (1.8).

2 Stochastic Stability of Linear Differential Equations
with Markov Coefficients

In this section we deal with the following linear differential equation in Rn:

dx(t)
dt

= A(y(t))x(t), t ≥ 0. (2.1)

Here A(y), y ∈ Rm is a continuous bounded matrix-valued function and y(t),
t ≥ 0 is a Y–valued stochastically continuous Feller Markov process with weak
infinitesimal operator Q and we assume that Y ⊂ Rm. The pair {x(t), y(t)},
t ≥ 0 forms, see [19], a homogeneous stochastically continuous Markov process
whose weak infinitesimal operator, denoted by L0, is defined as follows:

L0v(x, y) = 〈A(y)x,∇x〉v(x, y) +Qv(x, y). (2.2)

It is clear that there exists a family {X(s, t, y), 0 ≤ s ≤ t}, of matrix-valued
functions defined by the equality X(s, t, y)x = x(s, t, x, y), where x(s, t, x, y),
s ≤ t, denoted simply by x(t), is the solution of the Cauchy problem for (2.1)
under the conditions x(s) = x and y(s) = y. The matrices X(s, t, y) also
satisfy equation (2.1) for all t > s and the initial condition X(s, s, y) = I,
where I is the unit matrix of order n. This matrix family has the evolution
property:

X(s, t, y) = X(s, τ, y(τ))X(τ, t, y), y ∈ Y, 0 ≤ s ≤ τ ≤ t. (2.3)

The Lyapunov exponent, or p-index, λ(p), of equation (2.1) is defined by

λ(p) = sup
x,y

lim
t→∞

1
pt

lnE[|X(s, t, y)x|p]. (2.4)

It is not difficult to show that the exponential p-stability of the trivial solution
of equation (2.1) is equivalent to the condition λ(p) < 0. Since for any positive
p1 < p2 we have (E[|X(t, s, y)x|p1 ])1/p1 ≤ (E[|X(t, s, y)x|p2 ])1/p2 (Lyapunov
inequality), then p1 < p2 implies that λ(p1) ≤ λ(p2), and hence λ(p) is a
monotone decreasing function as p decreases to 0. In this section we will prove
that the asymptotic stochastic stability of (2.1) is equivalent to the following
condition: there exists a number p0 > 0, such that λ(p) < 0 for all p ∈ (0, p0).
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Lemma 2.1. If equation (2.1) is asymptotically stochastically stable, then it
is exponentially p-stable for all sufficiently small positive p.

Proof. In the definition of a.s. stability we take η = 1, β = 1
2 and choose α > 0

so small that supx,y P
(
supt≥0 |X(0, t, y)x| > 1

)
< 1

2 for |x| ≤ 2−α, y ∈ Y.
Since equation (2.1) is linear, then supx,y P

(
supt≥0 |X(0, t, y)x| > 2kα

)
< 1

2

for |x| ≤ 2−α(k−1), y ∈ Y and any k ∈ N. Let us introduce the following
notation:

gk := sup
|x|≤1, y∈Y

P
(
sup
t≥0

| X(0, t, y)x| ≥ 2kα
)
.

The pair {x(t), y(t)}, t ∈ R+ is a stochastically continuous Markov process.
Therefore for any x ∈ B1(0) there exits a time τ1(x) such that the trajectory
x(0, t, x, y) leaves the ball B1(0). Hence

gk+1 = sup
|x|≤1, y∈Y

∞∫
s=0

∫
|u|=2kα, v∈Y

Px,y(τ1(x) ∈ ds, x(s) ∈ du, y(s) ∈ dv)

×P
(
sup
t≥0

|X(0, t, v)u| > 2(k+1)α
)

≤ sup
|x|≤2kα, y∈Y

P
(
sup
t≥0

|X(0, t, y)x| > 2(k+1)α
)

× sup
|x|≤1, y∈Y

∞∫
s=0

∫
|u|=2kα, v∈Y

Px,y(τ1(x) ∈ ds, x(s) ∈ du, y(s) ∈ dv)

≤ 1
2

sup
|x|≤1, y∈Y

P
(
sup
t≥0

|X(0, t, y)x| ≥ 2kα
)
=

1
2
gk

and therefore gk ≤ 2−k for any k ∈ N. Define ζ(x, y) := supt≥0 |x(0, t, x, y)|p.
It is easy to see that for all p > 0, x ∈ Rn and y ∈ Y one can write

E[ζ(x, y)] ≤ |x|p sup
|x|≤1

E[ζ(x, y)] ≤
∞∑
k=1

2kαpP
(
sup
t≥0

|x(0, t, x, y)| ≥ 2(k−1)α
)
.

Therefore E[ζ(x, y)] ≤
∑∞

k=1 2
kαp2−k|x|p := K1|x|p for all x ∈ Rn, y ∈ Y

and p ∈ (0, α−1). The assumption in Lemma 2.1 implies that the solu-
tion x(0, t, x, y), t ≥ 0 of (2.1) tends to 0 a.s. as t → ∞ uniformly in
y ∈ Y. By the Lebesgue Theorem we conclude that limt→∞ supy∈YE[|x(s, s+
t, x, y)|p] = 0, for all x ∈ Rn and p ∈ (0, α−1). Moreover, it is not diffi-
cult to verify that this convergence is uniform in x ∈ B1(0) and s ≥ 0, i.e.
limt→∞ supx∈B1(0), y∈YE[|x(s, s+t, x, y)|p] = 0. Now we can choose a number
T so large that supy∈YE[|x(s, s + t, x, y)|p] ≤ |x|pe−1. Further, by using the
inequality
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Rn

∫
Y

P((k − 1)T, x, y,du,dv)E[|x(0, T, u, v)|p] ≤ 1
e
E[|x(0, (k − 1)T, x, y)|p],

where P(t, x, y,du,dv) is the transition probability of the homogeneous
Markov process {x(t), y(t)}, t ≥ 0, one can write

E[|x(0, t, x, y)|p]≤K1e
−[t/T ]T |x|p,

where [t/T ] stands for the integer part of the real number t/T . This completes
the proof. ��

The behavior of the solution of (2.1) for t ≥ u with x(u) = x, y(u) = y,
can be studied by using the well-known Dynkin formula:

E(u)x,y[v(x(t), y(t))] = v(x, y) +

t∫
u

E(u)x,y[L0v(x(s), y(s))] ds. (2.5)

Sometimes it is necessary to use Lyapunov functions depending also on the
time argument t. If v(t, x, y), as a function of x and y, belongs to the domain of
the infinitesimal operator L0 and has continuous t-derivative, we can rewrite
formula (2.5) in the form

E(u)x,y[v(t, x(t), y(t))] = v(u, x, y) +
∫ t

u

E(u)x,y

[(
∂

∂s
+ L0

)
v(s, x(s), y(s))

]
ds.

(2.6)

Lemma 2.2. The trivial solution of equation (2.1) is exponentially p-stable
if and only if there exists a Lyapunov function v(x, y) and a number p > 0
such that for some positive constants c1, c2, c3 and for all x ∈ Rn, y ∈ Y, the
following two conditions are satisfied:

c1|x|p ≤ v(x, y) ≤ c2|x|p, L0v(x, y) ≤ −c3|x|p. (2.7)

Proof. Suppose that there exists such a Lyapunov function. This implies that(
∂
∂s + L0

) (
v(x, y) ec3t/c2

)
≤ 0, which in combination with formula (2.6) yields

Ex,y[v(x(t), y(t)) ec3t/c2 ] ≤ v(x, y) ≤ c2 |x|p for all t > 0, x ∈ Rn and y ∈ Y.
Hence Ex,y[|x(t)|p] ≤ (c2/c1) e−c3t/c2 |x|p and we conclude that equation (2.1)
is exponentially p-stable. By using the solutions x(s, s + t, x, y) of (2.1), we
can define, for any T > 0, the function

v(x, y) :=

T∫
0

E[|x(s, s+ t, x, y)|p] dt, (2.8)

which does not dependent on s because of the homogeneity of the Markov
process y(t). Since the matrixA(y) is uniformly bounded, i.e. supy∈Y ‖A(y)‖ :=
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a <∞, it is easy to verify that the function v(x, y) satisfies the first condition
in (2.7). Let L0 be the weak infinitesimal operator of the pair {x(t), y(t)},
t ≥ 0. If the trivial solution of (2.1) is exponentially p-stable, one can write
the relations

L0v(x, y) = lim
δ→0

1
δ

 T∫
0

Ex,y{Ex(δ),y(δ)[|x(t+ δ)|p]}dt−
T∫
0

Ex,y[|x(s)|p] ds


= Ex,y[|x(T )|p]− |x|p ≤ (M e−γT − 1)|x|p,

where M and γ are the constants in the definition of the exponential p-
stability. Now we take T = (ln 2+lnM)/γ, and see that the proof is completed.

��

Corollary 2.1. Under the conditions in Lemma 2.2, the trivial solution of
equation (2.1) is asymptotically stochastically stable.

Proof. Applying formula (2.6) to the function v̄(t, x, y) = v(x, y) ec3t/c2 we
see that the random process θ(t) := v(x(t), y(t)) ec3t/c2 , t ≥ 0 is a positive
supermartingale. Hence

sup
y∈Y

P
(
sup
t≥0

|x(0, t, x, y| > ε

)
≤ sup

y∈Y

Px,y

(
sup
t≥0

{ 1
c1
v(x(t), y(t))} > εp

)
≤ sup

y∈Y

Px,y

(
sup
t≥0

θ(t) > εpc1

)
≤ (1/εpc1)Ex,y[θ(0)] ≤ (c2/εpc1) |x|p

and the trivial solution of (2.1) is a.s. stochastically stable. Now, to prove the
asymptotic stochastic stability, we apply the supermartingale inequality [3]:

sup
y∈Y

P
(
sup
t≥u

|x(u, t, x, y| > c

)
≤ sup

y∈Y

P(u)x,y

(
sup
t≥u

{ 1c1 v(x(t), y(t))} > cp
)

≤ sup
y∈Y

P(u)x,y

(
sup
t≥u

{ 1
c1
θ(t) e−c3t/c2} > cp

)
≤ (c2/cpc1) |x|p e−uc3/c2 .

The proof is complete. ��

3 Stochastic Stability Based on Linear Approximation

In this section we consider the quasilinear equation

dx̃(t)
dt

= A(y(t))x̃(t) + g(x̃(t), y(t)), t ≥ 0. (3.1)

Here the matrix A(y) and the Markov process y(t), t ≥ 0 satisfy the conditions
given in Section 2. We assume that the function g(x, y) is such that g(0, y) ≡ 0,
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and moreover that g(x, y) obeys bounded continuous x-derivative Dxg(x, y)
which is uniformly bounded in the ball Br(0) for any r > 0, that is,

sup
y∈Y, x∈Br(0)

‖Dxg(x, y)‖ := gr <∞. (3.2)

Theorem 3.1. Suppose that equation (2.1) is asymptotically stochastically
stable and that limr→0 gr = 0. Then equation (3.1) is locally asymptotically
stochastically stable.

Proof. Let us mention first that there are many functions g(x, y) satisfying
the condition limr→0 gr = 0. A simple example in the one-dimensional case is
to take g(x, y) = h(y)xγ/(1+x2), where γ = const > 1 and h(y) is a bounded
function.

We consider (2.1) as the linear approximation of equation (3.1). In view
of Lemma 2.1 and Lemma 2.2, we can construct the Lyapunov function (2.8)
with some small p > 0. Since the matrix-valued function Dx x(0, t, x, y) is the
Cauchy matrix of equation (2.1), then the following estimate is valid:

sup
y∈Y

E[‖Dx x(s, s+ t, x, y)‖p] ≤ h2 e
−γt

with some positive constants h, γ and for all t > 0. Therefore the above
Lyapunov function satisfies the conditions (2.7) and by construction for all
x �= 0 it has x-derivative which satisfies the inequalities∣∣∣∣∣∣

T∫
0

E[∇x|x(s, s+ t, x, y)|p] dt

∣∣∣∣∣∣
≤ p |x|p−1

T∫
0

sup
y∈Y

E[‖Dx x(s, s+ t, x, y)‖p] dt ≤ c3 |x|p−1

for some c3 > 0. Now we estimate the function Lv(x, y), where L is the weak
infinitesimal operator of the pair {x̃(t), y(t)}, t ≥ 0, and we use L0 as given
by (2.2):

Lv(x, y) = L0v(x, y) + 〈g(x, y),∇x〉v(x, y) ≤ −1
2
|x|p + c3 |x|p |g(x, y)|

≤
(
grc3 −

1
2

)
|x|p

for all x ∈ Br(0), r > 0. Hence, in view of the Dynkin formula, we use the
estimate

E(u)x,y[v(x̃(τr(t)), y(τr(t))] ≤ v(x, y) +
(
grc3 −

1
2

)
E(u)x,y

 τr(t)∫
u

|x̃(s)|p ds

 ,
(3.3)
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which is valid for all y ∈ Y, x ∈ Br(0), r > 0, t ≥ u ≥ 0. If r is sufficiently
small, then the second term in the right-hand side of (3.3) is non-positive.
Hence the process v(x̃(τr(t)), y(τr(t)), t ≥ 0 is a supermartingale, so

Px,y

(
sup
t≥0

|x̃(t)| > ε

)
≤ Px,y

(
sup
t≥0

v(x̃(τr(t)), y(τr(t)) > c1ε
p

)
≤ c2δ

p

c1εp
(3.4)

for all y ∈ Y, x ∈ Bδ(0), δ ∈ (0, ε), ε ∈ (0, r) and sufficiently small r > 0. The
a.s. local stability immediately follows from these estimates. Let us define the
function hR(r) as follows: hR(r) = 1 for x ∈ [0, R), hR(r) = (2R − r)/R for
x ∈ [R, 2R), hR(r) = 0 for x ≥ 2R. Consider the following random differential
equation:

dxR(t)
dt

= A(y(t))xR(t) + hR(|xR(t)|) g(xR(t), y(t)), t ≥ 0. (3.5)

The Cauchy problem for (3.5) with initial condition xR(0) = x has a unique
solution since the function hR(|x|) g(x, y) satisfies the Lipschitz condition with
a constant c2R. Hence the pair {xR(t), y(t)}, t ≥ 0 is a Markov process whose
weak infinitesimal operator LR is defined as follows:

LRv(x, y) = L0v(x, y) + 〈hR(|x|) g(x, y),∇x〉 v(x, y).

Now choosing R so small that (c2R c3 − 1
2 ) := −c4 < 0, one can write the

estimate LR v(x, y) ≤ −c4|x|p. Therefore

E(u)x,y[v(xR(t), y(t))] ≤ v(x, y)− c4
c1

t∫
u

E(u)x,y[v(xR(s), y(s))] ds (3.6)

for all t ≥ u ≥ 0. Hence the stochastic process v(xR(t), y(t)), t ≥ 0 is a positive
supermartingale and we have that

Px,y

(
sup
t≥s

v(xR(t), y(t)) > c1ε
p

)
≤ 1
c1εp

Ex,y[v(xR(s), y(s))] (3.7)

for all y ∈ Y, x ∈ BR(0), ε ∈ (0, R) and sufficiently small R > 0. We use (3.7)
to derive that Ex,y[v(xR(t), y(t))] ≤ v(x, y) e−c4t/c1 ≤ c2 |x|p e−c4t/c1 and then
from (3.6) to conclude that

Px,y

(
sup
t≥s

|xR(t)| > ε

)
≤ c2 |x|pε−pc−11 e−sc4/c1 .

Hence all solutions of equation (3.5) starting at t = 0 from a position x(0)
which is in the ball Bε(0) for ε ∈ (0, R), and with sufficiently small R, tend
to 0 with probability one. For the time before leaving the ball Bε(0), the
solutions of equations (3.1) and (3.5), with the same initial conditions in the
ball Bε(0), are coinciding. Hence, all solutions of (3.1), which are in the ball
Bε(0) for sufficiently small ε, tend to zero with probability one. The proof is
complete. ��
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4 Diffusion Approximation of the Slow Motion
and Stability

As mentioned in the Introduction, the operator Q can be considered as the
infinitesimal operator of a Markov process ξ(t), t ≥ 0 with the same phase
space G. It is assumed that Q is a closed operator such that its spectrum
σ(Q) is split into two parts, that is, σ(Q) = σ−ρ(Q) ∪ {0}, where σ−ρ(Q) ⊂
{Reλ ≤ −ρ < 0} and the zero eigenvalue has multiplicity one. The transition
probability P (t, z, A) of this Markov process satisfies the uniform ergodicity
condition [4] in the form

sup
A∈ΣG, z∈G

|P (t, z, A)− µ(A)| ≤ e−ct, c = const > 0,

where ΣG is the Borel σ-algebra of subsets of G. This implies that for any
v ∈ C(G), the space of continuous and bounded functions on G, which satisfies
the condition ∫

G

v(z)µ(dz) = 0, (4.1)

we can define the following continuous function:

Πv(z) :=

∞∫
0

∫
G

v(u)P (t, z,du) dt, z ∈ G.

The operator Π, see [4], is said to be the potential of the Markov process. We
extend this operator on the whole space C(G) by the equality

Πv(z) :=
∫ ∞
0

∫
G

[v(u)− v̄]P (t, z, du) dt, where v̄ =
∫

G

v(y)µ(dz). (4.2)

We denote its norm by ‖Π‖ := supz∈G, v∈C(G) |v(z)|. Note that, according
to [3], the equation Qf = −v has a solution iff v satisfies the orthogonality
condition (4.1) and this solution can be taken in the form f = Πv. It is clear
that the Markov process ξε(t), t ≥ 0 with an infinitesimal operator Qε = 1

ε2Q
can be defined by the formula ξε(t) = ξ(t/ε2), t ≥ 0. In this section we consider
the linear equation (1.6) for the slow motion xε(t), t ≥ 0 with a Markov process
ξε(t) = ξ(t/ε2) and the fast variable yε(t), t ≥ 0, satisfying equation (1.7).
We also suppose that A(y, z), as well as h−1(y, z) and h0(y, z), are continuous
and bounded functions such that their y-derivatives of order up to three are
all bounded. The triple {xε(t), yε(t), ξε(t)}, t ≥ 0 is a homogeneous Feller
Markov process on Rn×Rm×G, see [19], and its week infinitesimal operator
L(ε) is defined for appropriately smooth functions by the equality

L(ε)v(x, y, z) = 〈A0(y, z)x,∇x〉v(x, y, z) + ε〈A1(y, z)x,∇x〉v(x, y, z)

+
1
ε
〈h−1(y, z),∇y〉v(x, y, z) + 〈h0(y, z),∇y〉v(x, y, z) +

1
ε2
Qv(x, y, z).

(4.3)
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Here ∇y is the gradient operator in Rm, 〈·, ·〉 denotes the scalar product in
Rm and the operator Q acts on the third argument.

The properties of the pair {xε(t), yε(t)}, t ∈ [0, T ], for a fixed T > 0,
considered as a stochastic process in the Skorokhod’s space D([0, T ],Rn×Rm),
depends essentially on the averaged value h̄−1(y) of the function h−1(y, z) with
respect to the invariant measure µ.

We assume that h̄−1(y) ≡ 0; the case h̄−1(y) �= 0 needs a separate
study. Thus, applying methods and results from [19], under the condition
h̄−1(y) ≡ 0, one can prove that on any fixed time interval [0, T ], as ε→ 0, the
pair {xε(t), yε(t)}, t ∈ [0, T ], converges weekly to a diffusion Markov process
{x̄(t), ŷ(t)}, t ∈ [0, T ]. Here the Markov process ŷ(t), which is said to be the
diffusion approximation of yε(t), is given by its infinitesimal operator

L̂v(y) = 〈b(y),∇y〉v(y) +
1
2
〈σ2(y)∇y,∇y〉v(y), (4.4)

with b(y) = h̄0(y) + {DyΠ{h−1}}(y, ·)h−1(y, ·) and the symmetric non-
negatively defined matrix σ2(y) given by the formula

σ2(y) = h−1(y, ·){Πh−1}T (y, ·) + {Πh−1}(y, ·){h−1(y, ·)}T .

Moreover, x̄(t), t ≥ 0 satisfies the random differential equation

d
dt
x̄(t) = Ā0(ŷ(t)) x̄(t), t ≥ 0, (4.5)

with a matrix Ā0(ŷ(t)) depending on the above Markov process ŷ, whose
infinitesimal operator is L̂. For further reference it is convenient to define the
stochastic process ŷ(t), t ≥ 0 as the solution of an Itô stochastic differential
equation. We suppose that this equation is of the form

dŷ(t) = b(ŷ(t)) dt+ σ(ŷ(t)) dw(t), t ≥ 0. (4.6)

Here the vector b(y) and the matrix σ(y) are as given above. The assumptions
imposed previously imply that the matrix Ā0(y), the vector b(y) and the
matrix σ(y) are three times continuously differentiable and bounded uniformly
in y ∈ Rm together with their derivatives. We denote by x̄(s, t, x, y), ŷ(s, t, y),
t ≥ 0, or simply x̄(t), ŷ(t), t ≥ s, the solution of the system (4.5)–(4.6) with
initial conditions x̄(s) = x, ŷ(s) = y. Our goal in this section is to prove that,
for sufficiently small ε, the system (4.5)–(4.6) can by successfully used for the
exponential p-stability analysis of the slow motion (1.6), which is subjected
to the random perturbations yε(t), ξε(t), t ≥ 0.

It is easy to see that the pair {x̄(t), ŷ(t)}, t ≥ 0 is a homogeneous Feller
Markov process in the space Rn × Rm. The weak infinitesimal operator L̄ of
this process is defined for sufficiently smooth functions v(x, y) by the formula

L̄v(x, y) = 〈Ā(y)x,∇x〉 v(x, y) + 〈b(y),∇y〉 v(x, y) +
1
2
〈σ2(y)∇y,∇y〉 v(x, y).

(4.7)
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Let us take the function v(x, y) as follows:

v(x, y) :=

T∫
0

E[|x̄(0, t, x, y)|p] dt (4.8)

with a number T > 0 which will be specified later. In order to find useful esti-
mates for this function and its derivatives, we need to estimate the derivatives
of the solution of the system (4.5)–(4.6) with respect to the initial conditions
y(0) = y and x(0) = x. To avoid complicated notations and computations, we
consider the process ŷ(t) to be 1-dimensional, i.e., m = 1. The assumptions
on the functions hj(y, z), j = −1, 0 imply that the drift b(y) and the diffu-
sion σ2(y) of the Markov process ŷ have at least three continuous uniformly
bounded derivatives in y. This property follows from the definition of the
potential and the possibility to differentiate in y under the integral sign. By
definition, the matrix Ā(y) also has three continuous and uniformly bounded
derivatives. Hence, the Markov diffusion process {x̄(t), ŷ(t)} allows differenti-
ation with respect to the initial data y, where y = ŷ(0). We can study these
derivatives as solutions of the corresponding equations.

Lemma 4.1. The solution x̄(t), t ≥ 0 of equation (4.5), with ŷ(t), t ≥ 0 given
by (4.6), admits three continuous y-derivatives for which the following bounds
hold for any r ∈ N:

sup
0≤t≤T, y∈Rm

Ex,y[|Dj
y x̄(t)|r] ≤ kr |x|r, j = 1, 2, 3.

Proof. The y-derivative Dyx̄(t) := Dyx̄(0, t, x, y) of the solution of (4.5) sat-
isfies the differential equation

dDyx̄(t)
dt

= Ā(ŷ(t))Dyx̄(t) +DyĀ
(1)(ŷ(t))x̄(t), t ≥ 0. (4.9)

Here and below Ā(j)(y) = Dj
yĀ(y), j = 1, 2, 3. By definition, Dyx̄(0) = 0. Now

we use the Cauchy integral formula allowing us to write the solution of (4.9),
which depends on the parameter y, in the following form:

Dyx̄(t) =

t∫
0

Dy ŷ(s)H(1)(s, t, y)Ā(1)(ŷ(s))x̄(s) ds, (4.10)

where H(1)(s, t, y) is the Cauchy operator of the corresponding homoge-
neous equation. Similarly we write the differential equation for the second
y-derivative D2

yx̄(t) of the solution x̄(t):

d
dt
D2

yx̄(t) = Ā(ŷ(t))D2
yx̄(t) + 2Dy ŷ(t)Ā(1)(ŷ(t))Dyx̄(t)

+D2
y ŷ(t)Ā

(1)(ŷ(t))x̄(t) +Dy ŷ(t)2Ā(2)(ŷ(t))x̄(t), t ≥ 0 (4.11)
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with the initial condition D2
yx̄(0) = 0. The equation for the third derivative

D3
yx̄(t) can be written in the same way. All these taken together with the

smoothness of the drift and the diffusion imply that the solution of (4.5)
admits three y-derivatives and that for any fixed r ∈ N there exist constants
Mr and γr such that

Ey[‖Dj
y ŷ(t)‖ ≤Mr e

γrt, j = 1, 2, 3, t ∈ [0, T ]. (4.12)

Let us mention that our assumptions imply also that

sup
y∈Rm

‖Ā(j)(y)‖ := aj <∞, j = 1, 2, 3. (4.13)

It is not difficult to see that the Cauchy operator H(1) in (4.10) is a uniformly
bounded continuous matrix-function of t satisfying the following estimate:

‖H(1)(s, t, y)‖ ≤ h1 e
a(t−s) (4.14)

for any t ∈ [s, s + T ]. Hence, for some constant k1,r > 0, (4.10) implies that
for fixed T > 0 and for any r ∈ N, we have

sup
0≤t≤T, y∈Rm

Ex,y[|Dyx̄(t)|r] ≤ k1,r |x|r. (4.15)

Using the Cauchy operator H(2)(s, t, y) for equation (4.11) one can obtain a
formula similar to (4.10). Further on, we can use (4.12) and (4.13) and derive
for H(2) an estimate like (4.14). Thus we conclude finally that

sup
0≤t≤T, y∈Rm

Ex,y[|D2
yx̄(t)|r] ≤ kr|x|r (4.16)

with some constant kr > 0 for any r ∈ N. The third y-derivative of the solution
of (4.5) admits a similar estimate. This completes the proof. ��

Corollary 4.1. The Cauchy matrix X(t) of equation (4.5) is three times con-
tinuously y-differentiable and for any T ≥ 0 its derivatives admit the following
estimates:

sup
0≤t≤T, y∈Rm

Ex,y[‖Dj
yX(t)‖] := aT <∞, j = 1, 2, 3 (4.17)

Proof. It follows from the fact that the Cauchy matrix X(t) of (4.5) has x-
derivatives of its solution and satisfies the same equation under the initial
condition X(0) = I. ��

Lemma 4.2. The function v(x, y) has three continuous y-derivatives, and
there exists a constant β > 0 such that for any x ∈ Rn we have

‖Dj
yv(x, y)‖ ≤ β|x|p, j = 1, 2, 3.
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Proof. By definition we can write

∇y|x(t)|p = p 〈x(t),Dyx(t)〉 |x(t)|p−2. (4.18)

Hence, for any x �= 0 and p > 0, we have

|∇z |x(t)|p | ≤ p |x(t)|p−1‖Dzx(t)‖ ≤ p ea(p−1)t |x|p−1‖Dzx(t)‖. (4.19)

Now, using (4.12), we obtain supt,y Ex,y[‖Dyx(t)|] ≤ k1|x|, 0 ≤ t ≤ T ,
y ∈ Rm. Differentiating in y both sides of (4.18) yields ‖D2

y|x(t)|p‖ ≤
p ‖Dyx(t)‖2|x(t)|p−2+p |(x(t)|p−1‖D2

yx(t)‖+p |p−2| |x(t)|p−1‖Dyx(t)‖. Each
term of the right-hand side of this inequality admits an estimate of the
type (4.19), which is also true for |x(t)|p−1. Then we can apply Lemma 2.1 for
the expectations Ex,y[‖Dyx(t)‖j ], j = 1, 2, and for Ex,y[‖D2

yx(t)‖]. It remains
to differentiate twice the inequality (4.18) with respect to y and apply the
same estimates for the terms involved thus completing the proof. ��

Lemma 4.3. The vector V (x, y) := ∇xv(x, y) and its three y-derivatives ad-
mit the following estimates:

sup
y∈Rm

‖Dj
yV (x, y)‖ ≤ ρ|x|p−j , j = 0, 1, 2, 3 (4.20)

for some ρ > 0 and any x �= 0.

Proof. For our reasoning we need the following identity: |x(t)|p = |X(t)x|p =
〈XT (t)X(t)x, x〉p/2, where X(t) is the fundamental matrix of the linear equa-
tion (4.5). Let us prove first that supt,y |∇x |x(t)|p| ≤ ρ |x|p−1, 0 ≤ t ≤ T ,
y ∈ Rm for some ρ > 0. Differentiating the above identity for |x(t)|p in x
yields

∇x |x(t)|p = p 〈XT (t)X(t)x, x〉p/2−1XT (t)X(t)x. (4.21)

Hence |∇x |x(t)|p| ≤ p |X(t)x|p−1‖X(t)‖. Since the fundamental matrix
of (4.5) is uniformly bounded on any fixed interval [0, T ], then the esti-
mate (4.20) is established for j = 1. Next is to differentiate (4.21) in y:

Dy∇x |x(t)|p = p(p− 2)|x(t)|p/2−2〈x(t),Dyx(t)〉
× [XT (t)x(t) + p|x(t)|p−1(DyX

T (t)x(t) +XT (t)Dyx(t))]. (4.22)

The final step is to use the estimate ‖X(t)‖ ≤ eat, as well as the estimates for
the expectations of the derivatives Dyx(t) and DyX(t) thus obtaining (4.20).
The proof is completed. ��

Lemma 4.4. The matrix W (x, y) = Dx∇xv(x, y) and its two derivatives in
y admit the following estimates:

sup
y∈Rm

‖Dj
yW (x, y)‖ ≤ δ |x|p−2, j = 1, 2 (4.23)

for some δ > 0 and all x �= 0.
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Proof. The matrix of the second derivatives of |x(t)|p is as follows:

Dx∇x|x(t)|p = p (p− 1)〈XT (t)X(t)x, x〉p/2−2XT (t)x(t)xT (t)X(t)

+ p 〈XT (t)X(t)x, x〉p/2−1XT (t)X(t). (4.24)

We estimate each term in the right-hand side of (3.24) by using the fact that
‖X(t)‖ ≤ eat thus arriving at (4.23) for j = 1. Similarly, by differentiating
once more, we establish (4.23) also for j = 2. The proof is completed. ��

Theorem 4.1. Consider the processes x̄(t) and ŷ(t) defined by equations
(4.5) and (4.6), respectively, and suppose that all the assumptions related
to them are satisfied. Suppose now that equation (4.5) for x̄(t), with ŷ(t),
from (4.6), is exponentially p-stable. Then there is a number ε0 > 0 such that
equation (1.6), with coefficients depending on yε(t), t ≥ 0, is exponentially
p-stable for all ε ∈ (0, ε0).

Proof. It is based on the second Lyapunov method. We use the Lyapunov
function of the form vε(x, y, z) = v(x, y) + ε v1(x, y, z) + ε2 v2(x, y, z), where
v(x, y) is defined by (4.8). Let the functions v1(x, y, z) and v2(x, y, z) be the
solutions of the following two equations:

Qv1(x, y, z) = −〈A0(y, z)x,∇y〉 v(x, y), (4.25)

Qv2(x, y, z) = −
{
〈[A(y, z)− Ā(y)]x,∇x〉 v(x, y) + 〈h−1(y, z),∇y〉 v1(x, y, z)

−
∫

G

〈h−1(y, z),∇y〉 v1(x, y, z)µ(dz) + 〈h0(y, z)− h̄0(y),∇y〉 v(y, z)
}
.

(4.26)

The right-hand side of each of these equations, after integration in y with
respect of the measure µ(dy), is equal to 0. This implies that there ex-
ist solutions of both equations. By the definition of a potential, we have
v1(x, y, z) = 〈Πh−1(y, z),∇yv(x, y)〉. The estimates of this function and its
derivatives with respect to x and of y can be obtained from appropriate es-
timates for the scalar product 〈h−1(y, z),∇yv(x, y)〉 multiplied by ‖Π‖. This
follows from the possibility to differentiate the solution of (4.5) and the de-
finition of the potential operator Π. Hence, there exists a constant R1 > 0,
such that the following inequalities are satisfied:

|v1(x, y, z)| ≤ R1 |x|p, |∇x v1(x, y, z)| ≤ R1 |x|p−1, |∇y v1(x, y, z)| ≤ R1 |x|p,
‖Dx∇x v1(x, y, z)‖ ≤ R1 |x|p−2, ‖Dy∇x v1(x, y, z)‖ ≤ R1 |x|p−1,
‖Dy∇y v1(x, y, z)‖ ≤ R1 |x|p, ‖DyDx∇y v1(x, y, z)‖ ≤ R1 |x|p−1,

‖DyDx∇y v1(x, y, z)‖ ≤ R1 |x|p−1, ‖D2
x∇y v1(x, y, z)‖ ≤ R1 |x|p−2.

The same estimates hold also for the function v2(x, y, z). Hence, using the
results in Section 3, we conclude that
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‖∇yv2(x, y, z)‖ ≤ R2 |x|p, ‖∇xv2(x, y, z)‖ ≤ R2 |x|p−1

for any x ∈ Rn, y ∈ Rm, z ∈ G and some R2 > 0.
Let us denote by A(ε) the weak infinitesimal operator of the Markov

process {xε, yε, ξε} defined by (1.6)–(1.7), with a Markov process ξε. We apply
this operator to the function vε(x, y, z) = v(x, y)+ ε v1(x, y, z)+ ε2 v2(x, y, z).
By definition

A(ε)vε(x, y, z) = 〈A0(y, z)x,∇x〉 vε(x, y, z) + L(ε)vε(x, y, z),

where L(ε) is defined by the formula

L(ε) = 1
ε
〈h−1(y, z),∇y〉+ 〈f0(y, z),∇y〉+

1
ε2
Q.

Hence:

A(ε)vε(x, y, z) = 1
ε
{Qv1(x, y, z) + 〈h−1(y, z),∇y〉v(x, y)}

+ {〈A0(y, z)x,∇x〉v(x, y) + 〈h−1(y, z),∇y〉v1(x, y, z)
+ 〈h0(y, z),∇y〉v(x, y) +Qv2(x, y, z)}
+ ε{〈h−1(y, z),∇y〉v2(x, y, z) + 〈A0(y, z)x,∇x〉v1(x, y, z)
+ 〈h0(y, z),∇y〉v1(x, y, z))}
+ ε2{〈A0(y, z)x,∇x〉v2(x, y, z) + 〈h0(y, z),∇y〉v2(x, y, z)}.

(4.27)

The expression in the first brackets in the right-hand side of this formula is
equal to 0. It follows from (4.25) that the item in the second brackets, by
construction, is equal to L̄v(x, y). Hence, due to our assumption about the
exponential p-stability of the averaged system, L̄v(x, y) does not exceed the
quantity −c3 |x|p with some constant c3 > 0. The last items in (4.27) can be
estimated by r|x|p for some r > 0. Hence A(ε)vε(x, y, z) ≤ (−c3+εr+ε2r)|x|p.
In addition, |v1(x, y, z)| ≤ ρ|x|p, |v2(x, y, z)| ≤ ρ|x|p for some ρ > 0. Finally,
one can write the inequalities

(c1 − ερ− ε2ρ) |x|p ≤ vε(x, y, z) ≤ (c2 + ερ+ ε2ρ) |x|p

for some c2 ≥ c1 > 0. The exponential p-stability of equation (1.6) follows now
from these estimates and the estimates for the function v1 and its derivatives,
which have been written above. The theorem is proved. ��

We are now in a position to continue the analysis of the system (1.1)–
(1.2) with functions F (x, y, z) and H(y, z) in the right-hand sides not de-
pending explicitly on ε. The goal is to show the local asymptotic stochas-
tic stability property for equation (1.1). We introduce first the notation
A0(y, z) := DxF (x, y, z)|x=0 and let Ā0(y) and H̄0(y) be the µ–averaged func-
tions, respectively of A0(y, z) and H(y, z), namely:
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Ā0(y) =
∫

G

A0(y, z)µ(dz) and H̄(y) =
∫

G

H(y, z)µ(dz).

Corollary 4.2. Let us suppose that: (i) F (x, y, z) is continuous and bounded;
(ii) F (x, y, z) has two uniformly continuous and bounded x–derivatives uni-
formly in (y, z); (iii) H(y, z) is continuous and bounded with H̄(y) ≡ 0.
Suppose, finally, that equation (4.5), based on the above Ā0(y) with ŷ(t) sat-
isfying (4.6), is asymptotically stochastically stable. Then equation (1.1) is
locally asymptotically stochastically stable for all sufficiently small ε.

Proof. Together with (1.1) we consider the equation

dx̃ε(t)
dt

= A0(yε(t), ξε(t)) x̃ε(t), t ≥ 0,

where yε(t) satisfies (1.2) and ξε(t) is the Markov process as defined in the
Introduction. The asymptotic stochastic stability of equation (4.5), with ŷ(t)
from (4.6), combined with the results in Section 1 imply that (4.5) is ex-
ponentially p-stable for some p > 0. Now, applying Theorem 3.1 we conclude
that x̃ε(t) is asymptotically stochastically stable for all sufficiently small ε.
Since F (0, y, z) ≡ 0, we use the obvious equality

F (x, y, z) = (DxF (0, y, z))x+
[∫ 1

0

[DxF (tx, y, z)−DxF (x, y, z)|x=0]dt
]
x

to rewrite the right-hand side of equation (1.1) in the following form:

F (x, y, z) = A0(y, z)x+ g(x, y, z).

The expressions for A0(y, z) and g(y, z) are clear. We use the function
g(x, y, z) to find first its µ–averaged value ḡ(x, y), then the x–derivative
Dx ḡ(x, y) and by (3.2) determine the upper bound, say ḡr, which depends
on the radius r of the ball Br(0). It is not difficult to show that the pair
{yε(t), ξε(t)} is a Markov process with values in the space Y × G. Hence,
we need to refer to Theorem 3.1 and to the assumptions about the function
F (x, y, z) which guarantee that the relation limr→0 ḡr = 0 is satisfied and
then apply Theorem 2.1 in which stability analysis is based on the linear ap-
proximation. The proof is completed. ��
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Summary. This paper deals with the following problems:
Is a product of independent martingales also a martingale? We consider 8 par-

ticular formulations of this problem.
Is a limit of a converging sequence of martingales also a martingale? We consider

32 particular formulations of this problem.
Is a stochastic integral of a bounded process with respect to a martingale also a

martingale?
If X = (Xt)t≥0 is a positive process such that EXτ = EX0 for any finite stopping

time τ , then is is true that X is a uniformly integrable martingale?

Key words: convergence of martingales, local martingales, martingales, orthogonal
local martingales, quadratic covariation, stochastic integrals, uniformly integrable
martingales.
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1 Introduction

The Seminar “Stochastic Analysis and Financial Mathematics” conducted at
the Department of Probability Theory, Faculty of Mechanics and Mathemat-
ics, Moscow State University, by A.N. Shiryaev, A.A. Gushchin, M.A. Urusov,
and the author is in some sense a continuation of the Seminar held at the
Steklov Mathematical Institute in the 1970s and 1980s. The latter one was
founded by A.N. Shiryaev in 1966 and was conducted by A.N. Shiryaev,
N.V. Krylov, R.S. Liptser, and Yu.M. Kabanov. The new Seminar is some-
times called the “railroad seminar” because it is intended to work “as regularly
as the railroad”. The Seminar has its own symbol:
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One of the distinctive features of this Seminar is that a particular problem
is proposed to the listeners at each meeting and its solution is discussed at the
next meeting. These are called “corner problems” because they are written at
a corner of the blackboard.

In this paper, several such problems are considered. Some of the particular
formulations are known or very easy to solve; some others are more compli-
cated, and the obtained (negative or positive) results seem to be new.

1. Products of independent martingales. The problem is as follows:
Is a product of independent martingales also a martingale? We consider 8
formulations of this problem:

1. Let X and Y be martingales (each with respect to its natural filtration).
Is it true that XY is a martingale (with respect to its natural filtration)?

2. Let X and Y be local martingales (each with respect to its natural filtra-
tion). Is it true that XY is a local martingale (with respect to its natural
filtration)?

3. Let X and Y be martingales with respect to a common filtration (Ft). Is
it true that XY is an (Ft)-martingale?

4. LetX and Y be local martingales with respect to a common filtration (Ft).
Is it true that XY is an (Ft)-local martingale?

5. Let X and Y be continuous martingales (each with respect to its natural
filtration). Is it true that XY is a martingale (with respect to its natural
filtration)?

6. Let X and Y be continuous local martingales (each with respect to its
natural filtration). Is it true that XY is a local martingale (with respect
to its natural filtration)?

7. Let X and Y be continuous martingales with respect to a common filtra-
tion (Ft). Is it true that XY is an (Ft)-martingale?

8. Let X and Y be continuous local martingales with respect to a common
filtration (Ft). Is it true that XY is an (Ft)-local martingale?

Here the time index t for X and Y runs through the positive half-line or
through a compact interval (clearly, the answers to the above problems are
the same in these two cases).

Remarks. (i) By a local martingale we mean a process X, for which
there exists a localizing sequence (τn) such that, for any n, the stopped
process (Xt∧τn) is a martingale. An alternative definition is that the process
(Xt∧τnI(τn > 0)) should be a martingale. It is easy to check that the answers
to the problems under consideration are the same for these two definitions.

(ii) Two (Ft)-local martingales whose product is also an (Ft)-local mar-
tingale are said to be orthogonal. Thus, Problem 4 (resp., Problem 8) can
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be reformulated as follows: does the independence of local martingales (resp.,
continuous local martingales) imply their orthogonality?

2. Limits of martingales. The problem is as follows: Is a limit of a con-
verging sequence of martingales also a martingale? We consider 8 formulations
of this problem:

1. Let (Xn) be a sequence of martingales (each with respect to its natural
filtration) that converges to a process X in the sense of the weak conver-
gence of finite-dimensional distributions. Is it true that X is a martingale
(with respect to its natural filtration)?

2. Let (Xn) be a sequence of martingales (each with respect to its natural
filtration) that converges in distribution to a process X. Is it true that X
is a martingale (with respect to its natural filtration)?

3. Let (Xn) be a sequence of local martingales (each with respect to its
natural filtration) that converges to a process X in the sense of the weak
convergence of finite-dimensional distributions. Is it true that X is a local
martingale (with respect to its natural filtration)?

4. Let (Xn) be a sequence of local martingales (each with respect to its
natural filtration) that converges in distribution to a process X. Is it true
that X is a local martingale (with respect to its natural filtration)?

5. Let (Xn) be a sequence of martingales with respect to a common fil-
tration (Ft) such that Xn

t
P−−−−→

n→∞
Xt for any t. Is it true that X is an

(Ft)-martingale?
6. Let (Xn) be a sequence of martingales with respect to a common fil-

tration (Ft) that converges to a process X in probability uniformly on
compact intervals (i.e. sups≤t |Xn

s −Xs| P−−−−→
n→∞

0 for any t). Is it true that

X is an (Ft)-martingale?
7. Let (Xn) be a sequence of local martingales with respect to a common

filtration (Ft) such that Xn
t

P−−−−→
n→∞

Xt for any t. Is it true that X is an

(Ft)-local martingale?
8. Let (Xn) be a sequence of local martingales with respect to a common

filtration (Ft) that converges to a process X in probability uniformly on
compact intervals. Is it true that X is an (Ft)-local martingale?

Here the time index t for Xn runs through the positive half-line or through a
compact interval (clearly, the answers to the above problems are the same in
these two cases).

We consider each of the above problems in combination with one of the
following conditions on (Xn):

A. No additional assumptions on (Xn) are imposed.
B. The jumps of Xn are assumed to be bounded by a constant a > 0 and

Xn
0 = 0.

C. The processes Xn are assumed to be continuous and Xn
0 = 0.
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D. The processes Xn are assumed to be bounded by a constant a > 0.

Thus, we get 32 = 8 × 4 formulations of the above problem. In formulations
2.A, 2.B, 2.D, 4.A, 4.B, and 4.D, we consider the weak convergence in the
space D of càdlàg functions, while in formulations 2.C and 4.C, we consider
the weak convergence in the space C of continuous functions.

Remark. The above problem arises in connection with limit theorems for
stochastic processes (see [2]).

3. Stochastic integrals with respect to a martingale. The problem is
as follows: Let X be an (Ft)-martingale and H be an (Ft)-predictable process
such that |H| ≤ 1. Is it true that the stochastic integral of H with respect
to X is also an (Ft)-martingale?

Remark. If the word “martingale” in the above problem is replaced by the
word “semimartingale”, “Hp-semimartingale” (see [6]), “sigma-martingale”
(see [2, Ch. III, § 6e]), “local martingale”, or “Hp-martingale” (see [3, Ch. I,
§ 5]), then, clearly, the answer is positive.

4. Uniform integrability of martingales. The problem is as follows:
Let X = (Xt)t≥0 be an (Ft)-adapted càdlàg positive process such that
EXτ = EX0 <∞ for any (Ft)-stopping time τ that is finite a.s. Is it true
that X is a uniformly integrable (Ft)-martingale?

Remark. The origin of this problem lies in financial mathematics. Namely,
let X be the discounted price process of some asset. Define the set of dis-
counted incomes that can be obtained by trading this asset as:{ N∑

n=1

Hn(Xun
−Xun−1) : N ∈ N , u0 ≤ · · · ≤ uN <∞

are (Ft)-stopping times, Hn is Fun−1-measurable
}
.

As in [1], define the set of equivalent risk-neutral measures as the set of
probability measures Q ∼ P such that EQξ

− ≥ EQξ
+ for any ξ ∈ A (here

ξ− = (−ξ) ∨ 0, ξ+ = ξ ∨ 0; the expectations EQξ
− and EQξ

+ are allowed to
take on the value +∞). It is easy to show that a measure Q ∼ P is a risk-
neutral measure if and only if EQXτ = EQX0 for any finite (Ft)-stopping
time τ . Thus, the above problem can be reformulated as follows: does the
class of equivalent risk-neutral measures in the above model coincide with the
class of equivalent uniformly integrable martingale measures?

The reader is invited to solve as many of the above 42 problems as possible.
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2 Products of Independent Martingales

The answer to the problem “Is a product of independent martingales also a
martingale?” in formulations 1 and 5 is positive as shown by the following
theorem.

Theorem 2.1. Let X and Y be independent martingales (each with respect
to its natural filtration). Then XY is a martingale (with respect to its natural
filtration).

Proof. Fix s ≤ t. For any A ∈ FX
s ((FX

t ) denotes the natural filtration
of X, i.e. FX

t = σ(Xs; s ≤ t)) and B ∈ FY
s , we have

E(XtYtIAIB) = E(XtIA)E(YtIB) = E(XsIA)E(XsIB) = E(XsYsIAIB).

By the monotone class lemma,{
C ∈ FX

s ∨ FY
s : E(XtYtIC) = E(XsYsIC)

}
= FX

s ∨ FY
s .

Hence, E
(
XtYt |FX

s ∨FY
s

)
= XsYs, which implies that E

(
XtYt |FXY

s

)
= XsYs.

This is the desired statement. ��
The example below shows that the answer to the problem in formulation 2

is negative. The example is given in the continuous time, but it is easy to
provide also a discrete-time one.

Example 1. Let B be a Brownian motion and ξ be a non-integrable random
variable that is independent of B. Set

H0
t =

I(t < 1)
1− t

, t ≥ 0,

τ = inf
{
t ≥ 0 :

∫ t

0

H0
sdBs = ξ

}
,

Ht = H0
t I(t ≤ τ), t ≥ 0,

Xt =
∫ t

0

HsdBs, t ≥ 0.

Let η be a random variable independent of X taking on values ±1 with prob-
ability 1/2. Set Yt = ηI(t ≥ 1), t ≥ 0. Then X and Y are independent local
martingales (each with respect to its natural filtration), but XY is not a local
martingale (with respect to its natural filtration).

Proof. The first statement is clear. The second one follows from the prop-
erty that for any (FXY

t )-stopping time τ , we have {τ < 1} ∈
∨

t<1 FXY
t =

{∅, Ω}, while X1 = ξ is non-integrable. ��
The next example shows that the answer to the problem in formulations 3

and 4 is negative.
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Example 2. Let ξ and η be independent random variables taking on the val-
ues ±1 with probability 1/2. Set

Xt =

{
0, t < 1,
ξ, t ≥ 1,

Yt =

{
0, t < 1,
η, t ≥ 1,

Ft =

{
σ(ξη), t < 1,
σ(ξ, η), t ≥ 1.

Then X and Y are independent (Ft)-martingales, but XY is not an (Ft)-local
martingale.

Proof. The first statement follows from the independence of ξ and ξη and
the independence of η and ξη. In order to prove the second one, notice thatXY
is not an (Ft)-martingale. Being bounded, it is not an (Ft)-local martingale.

��
Remark. Examples 1 and 2 show that if we add the additional assumption

that the jumps of X and Y are bounded, the answers to the problem in
formulations 2, 3, and 4 will remain negative.

The theorem below shows that the answer to the problem in formulation 8
is positive.

Theorem 2.2. Let X and Y be independent continuous (Ft)-local martin-
gales. Then XY is an (Ft)-local martingale.

Proof. Let us first assume that X and Y are bounded. Then, for any t and
any sequence (∆n) of partitions of [0, t] whose diameters tend to 0, we have

E

( ∑
ti∈∆n

(
Xti+1 −Xti

)(
Yti+1 − Yti

))2
=
∑

ti∈∆n

E
(
Xti+1 −Xti

)2
E
(
Yti+1 − Yti

)2
≤ max

ti∈∆n
E
(
Xti+1 −Xti

)2 · ∑
ti∈∆n

E
(
Yti+1 − Yti

)2
= max

ti∈∆n

(
EX2

ti+1
− EX2

ti

)
· (EY 2t − EY 20 ).

The latter quantity tends to 0 as n → ∞ since the function s �→ EX2
s is

continuous in s. Consequently, 〈X,Y 〉 = 0, which implies that XY is an (Ft)-
local martingale.

Consider now the general case. Set X̃t = Xt −X0, Ỹt = Yt − Y0. Then

XtYt = X0Y0 +X0Ỹt + X̃tY0 + X̃tỸt.

For n ∈ N , set τn = inf{t : |X̃t| ≥ n}, σn = inf{t : |Ỹt| ≥ n}. Then the
stopped processes X̃τn = (X̃t∧τn) and Ỹ

σn = (Ỹt∧σn
) are independent (Ft)-

local martingales. Being bounded, they are (Ft)-martingales. Clearly, X0Ỹ σn
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and X̃τnY0 are (Ft)-martingales. By the reasoning above, XτnY σn is an (Ft)-
local martingale. Being bounded, it is an (Ft)-martingale. Consequently, for
any n ∈ N , (XY )τn∧σn is an (Ft)-martingale. As τn ∧ σn −−−−→

n→∞
∞, we get

the desired statement. ��
The next theorem shows that the answer to the problem in formulation 6

is positive.

Theorem 2.3. Let X and Y be independent continuous local martingales
(each with respect to its natural filtration). Then XY is a local martingale
(with respect to its natural filtration).

Proof. For n ∈ N , set τn = inf{t : |Xt| ≥ n}. Then the stopped process
Xτn is an (FX

t )-local martingale. As |Xτn | ≤ |X0| ∨ n and the latter random
variable is integrable, the process Xτn is an (FX

t )-martingale. For any s ≤ t,
A ∈ FX

s , and B ∈ FY
s , we have

E(Xτn
t IAIB) = E(Xτn

t IA)P(B) = E(Xτn
s IA)P(B) = E(Xτn

s IAIB).

Applying the monotone class lemma, we deduce that Xτn is a martingale with
respect to the filtration Ft = FX

t ∨ FY
t . As τn is an (Ft)-stopping time, X is

an (Ft)-local martingale. Similarly, Y is in the same class. By Theorem 2.2,
XY is an (Ft)-local martingale.

For n ∈ N , set ρn = inf{t : |XtYt| ≥ n}. Then (XY )ρn is an (Ft)-
local martingale. As |(XY )ρn | ≤ |X0Y0| ∨ n, the process (XY )ρn is an (Ft)-
martingale. Note that ρn is an (FXY

t )-stopping time. Hence,XY is an (FXY
t )-

local martingale. ��
The next theorem shows that the answer to the problem in formulation 7

is positive.

Theorem 2.4. Let X and Y be independent continuous (Ft)-martingales.
Then XY is an (Ft)-martingale.

Proof. Set X̃t = Xt −X0, Ỹt = Yt − Y0. Then

XtYt = X0Y0 +X0Ỹt + X̃tY0 + X̃tỸt,

and it is sufficient to prove that X̃Ỹ is an (Ft)-martingale. Fix s ≤ t. For
n ∈ N , set τn = inf{t : |X̃t| = n} and σn = inf{t : |Ỹt| = n}. Then the
stopped processes X̃τn and Ỹ σn are independent continuous (Ft)-martingales
and, by Theorem 2.2, X̃τn Ỹ σn is an (Ft)-local martingale. Being bounded, it
is an (Ft)-martingale. Hence,

E
(
X̃τn

t Ỹ σn
t

∣∣Fs

)
= X̃τn

s Ỹ σn
s . (2.1)

Furthermore, X̃τn
t

a.s.−−−−→
n→∞

X̃t and the family
(
X̃τn

t

)
n∈N is uniformly integrable

due to the martingale property of X̃. Consequently, X̃τn
t

L1

−−−−→
n→∞

X̃t. Similarly,

Ỹ σn
t

L1

−−−−→
n→∞

Ỹt. By the independence of X̃ and Ỹ ,
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E
∣∣X̃τn

t Ỹ σn
t − X̃tỸt

∣∣
≤ E
∣∣X̃τn

t

(
Ỹ σn
t − Ỹt

)∣∣+ E
∣∣(X̃τn

t − X̃t

)
Ỹt
∣∣

= E
∣∣X̃τn

t

∣∣ · E∣∣Ỹ σn
t − Ỹt

∣∣+ E
∣∣X̃τn

t − X̃t

∣∣ · E∣∣Ỹt∣∣
≤ E
∣∣X̃t

∣∣ · E∣∣Ỹ τn
t − Ỹt

∣∣+ E
∣∣X̃τn

t − X̃t

∣∣ · E∣∣Ỹt∣∣ −−−−→
n→∞

0.

(The last inequality is the Jensen inequality applied to the martingale X̃.)

Thus, X̃τn
t Ỹ σn

t
L1

−−−−→
n→∞

X̃tỸt. Now, (2.1) implies that E(X̃tỸt | Fs) = X̃sỸs,
which is the desired property. ��

Formulation Answer

1. X ∈ M, Y ∈ M, X ⊥⊥ Y
?

=⇒ XY ∈ M Yes, Th.
2.1

2. X ∈ Mloc, Y ∈ Mloc, X ⊥⊥ Y
?

=⇒ XY ∈ Mloc No, Ex. 1

3. X ∈ M(Ft), Y ∈ M(Ft), X ⊥⊥ Y
?

=⇒ XY ∈ M(Ft) No, Ex. 2

4. X∈Mloc(Ft), Y ∈Mloc(Ft), X ⊥⊥ Y
?

=⇒ XY ∈Mloc(Ft) No, Ex. 2

5. X ∈ Mc, Y ∈ Mc, X ⊥⊥ Y
?

=⇒ XY ∈ Mc Yes,
Th. 2.1

6. X ∈ Mc
loc, Y ∈ Mc

loc, X ⊥⊥ Y
?

=⇒ XY ∈ Mc
loc Yes,

Th. 2.3

7. X ∈ Mc(Ft), Y ∈ Mc(Ft), X ⊥⊥ Y
?

=⇒ XY ∈ Mc(Ft) Yes,
Th. 2.4

8. X∈Mc
loc(Ft), Y ∈Mc

loc(Ft), X ⊥⊥ Y
?

=⇒ XY ∈Mc
loc(Ft) Yes,

Th. 2.2

Table 1. Summary of the answers to the problem “Is a product of
independent martingales also a martingale?”. Here we use the following
notation: “X ⊥⊥ Y ” means that X and Y are independent; “X ∈ M”
means that X is a martingale with respect to its natural filtration;
“X ∈ Mloc” means that X is a local martingale with respect to its
natural filtration; “X ∈ Mc” means that X is a continuous martingale
with respect to its natural filtration; “X ∈ M(Ft)” means that X is
an (Ft)-martingale, and so on.
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3 Limits of Martingales

The answer to the problem “Is a limit of a converging sequence of martin-
gales also a martingale?” in formulations 1.A–8.A is negative as shown by the
following example.

Example 3. Let ξ be a non-integrable symmetric (i.e. ξ Law= −ξ) random vari-
able. Set

Xn
t =

{
0, t < 1,
−n ∨ ξ ∧ n, t ≥ 1,

Xt =

{
0, t < 1,
ξ, t ≥ 1,

Ft = FX
t .

Then each Xn is a martingale with respect to its natural filtration as well as
with respect to the filtration (Ft). Furthermore, (Xn) converges to X in prob-
ability uniformly on compact intervals (hence, the convergence in distribution
also holds). However, X is not an (Ft)-local martingale.

Proof. The first two statements are obvious. The last one follows from the
property that for any (FX

t )-stopping time τ , we have {τ < 1} ∈
∨

t<1 FX
t =

{∅, Ω}. ��
The next example shows that the answer to the problem in formula-

tions 1.B, 1.C, 2.B, 2.C, 5.B, 5.C, 6.B, and 6.C is negative.

Example 4. Let B be a 3-dimensional Brownian motion started at a point
B0 �= 0. Set

Xt =
1√

(B1t )2 + (B2t )2 + (B3t )2
, t ≥ 0,

τn = inf{t ≥ 0 : Xt ≥ n},
Xn

t = Xt∧τn , t ≥ 0.

Then each Xn is a continuous martingale with respect to its natural filtration
as well as with respect to the filtration Ft = FX

t . Furthermore, (Xn) converges
to X in probability uniformly on compact intervals (hence, the convergence
in distribution also holds). However, X is not a martingale with respect to
any filtration.

Proof. By Itô’s formula,

Xt = X0 −
3∑

i=1

∫ t

0

Bi
s

((B1s )2 + (B2s )2 + (B3s )2)3/2
dBi

s.

Therefore, X and each Xn are (FB
t )-local martingales. Being bounded, each

Xn is an (FB
t )-martingale and hence, it also an (Ft)-martingale and a mar-

tingale with respect to its natural filtration.
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Without loss of generality, we can assume that B20 = B30 = 0. Then

EXt ≤ E
1√

(B2t )2 + (B3t )2
=

const√
t
−−−→
t→∞

0.

This shows that X is not a martingale with respect to any filtration. ��
The next example shows that the answer to the problem in formula-

tions 3.B, 3.C, 7.B, and 7.C is negative.

Example 5. Let B be a Brownian motion started at zero. For n ∈ N , consider
the function

fn(t) = k2−n for t ∈ [(k − 1)2−n, k2−n), k ∈ N ,

define

τn1 = inf{t ≥ 0 : an1Bt = fn(t)},
Y n
t = an1Bt∧τn1 , t ∈ [0, 2−n),

and, for k = 1, 2, . . . , set

τnk+1 = inf{t ≥ k2−n : Y n
k2−n + ank+1(Bt −Bk2−n) = fn(t)},

Y n
t = Y n

k2−n + ank+1
(
Bt∧τn

k+1
−Bk2−n

)
, t ∈ [k2−n, (k + 1)2−n),

where (ank )k∈N are positive real numbers growing to +∞ so rapidly that

µL
(
t ≥ 0 : P(Y n

t = fn(t)) ≤ 1− 2−n
)
≤ 2−n (3.1)

(here µL denotes the Lebesgue measure). Let ξ be a random variable that is
independent of B and has the exponential distribution with parameter 1. Set
Xn

t = Y n
ξt, Xt = ξt, Γt = σ(ξ) ∨ FB

t , Ft = Γξt (note that, for any α ≥ 0,
ξα is a (Γt)-stopping time). Then each Xn is a continuous local martingale
with respect to its natural filtration as well as with respect to (Ft). Moreover,
Xn

t
P−−−−→

n→∞
Xt for any t ≥ 0 (hence, (Xn) also converges to X in the sense of

the weak convergence of finite-dimensional distributions). However, X is not
a local martingale with respect to any filtration.

Proof. Each process Y n is a stochastic integral of a locally bounded
(FB

t )-predictable process with respect to B. Hence, each Y n is a continu-
ous (FB

t )-local martingale. Consequently, each Y n is a continuous (Γt)-local
martingale. This implies that each Xn is a continuous (Ft)-local martingale
(see [5, Ch. V, Prop. 1.5]). Due the continuity of Xn, each Xn is a local
martingale with respect to its natural filtration.

It follows from (3.1) that Y n
t

a.s.−−−−→
n→∞

t for µL-a.e. t ≥ 0. Hence,

Xn
ξt

a.s.−−−−→
n→∞

ξt for any t ≥ 0.
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The process X is not a local martingale with respect to any filtration since
it has continuous paths of finite variation. ��

The proposition below shows that the answer to the problem in formula-
tions 4.B and 4.C is positive.

Proposition 1. Let (Xn) be a sequence of local martingales (each with respect
to its natural filtration) such that Xn

0 = 0 and |∆Xn| ≤ a for some constant
a > 0. Suppose that (Xn) converges in distribution to a process X. Then X
is a local martingale (with respect to its natural filtration).

For the proof, see [2, Ch. IX, Cor. 1.19].

The theorem below shows that the answer to the problem in formulations
8.B and 8.C is positive.

Theorem 3.1. Let (Xn) be a sequence of (Ft)-local martingales such that
Xn
0 = 0 and |∆Xn| ≤ a for some constant a > 0. Suppose that (Xn) converges

in probability uniformly on compact intervals to a process X. Then X is an
(Ft)-local martingale.

Proof. For m,n ∈ N , set τm = inf{t : |Xt| ≥ m}, σmn = inf{t : |Xn
t | ≥

2m}. Then, for any m ∈ N and t, we have

τm ∧ σmn ∧ t P−−−−→
n→∞

τm ∧ t,

and hence, the sequence of stopped processes (Xn)τm∧σmn converges in prob-
ability uniformly on compact intervals as n→∞ to the stopped process Xτm .
Note that ∣∣(Xn)τm∧σmn

∣∣ ≤ 2m+ a. (3.2)

Hence, (Xn)τm∧σmn is an (Ft)-martingale, i.e. for any s < t, we have

E
(
(Xn)τm∧σmn

t

∣∣Fs

)
= (Xn)τm∧σmn

s . (3.3)

Combining the property

(Xn)τm∧σmn
t

P−−−−→
n→∞

Xτm
t

with (3.2), we conclude that

(Xn)τm∧σmn
t

L1

−−−−→
n→∞

Xτm
t .

This, together with (3.3), shows that Xτm is an (Ft)-martingale. As
τm−−−−→

n→∞
∞, X is an (Ft)-local martingale. ��

The next theorem shows that the answer to the problem in formula-
tions 1.D, 2.D, 3.D, and 4.D is positive.
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Theorem 3.2. Let (Xn) be a sequence of martingales (each with respect to
its natural filtration) such that |Xn| ≤ a for some constant a > 0. Suppose
that (Xn) converges to a process X in the sense of the weak convergence of
finite-dimensional distributions. Then X is a martingale (with respect to its
natural filtration).

Proof. Fix s ≤ t. For any m ∈ N , any s1 ≤ · · · ≤ sm ≤ s, any bounded
continuous function f : Rm → R, and any n ∈ N , we have

E(Xn
t f(X

n
s1 , . . . , X

n
sm)) = E(Xn

s f(X
n
s1 , . . . , X

n
sm)).

Letting n→∞, we get

E(Xtf(Xs1 , . . . , Xsm)) = E(Xsf(Xs1 , . . . , Xsm)).

By the Lebesgue dominated convergence theorem,

E(XtI(Xs1 ∈ A1, . . . , Xsm ∈ Am)) = E(XsI(Xs1 ∈ A1, . . . , Xsm ∈ Am))

for any intervals A1, . . . , Am. Due to the monotone class lemma,

{C ∈ FX
s : E(XtIC) = E(XsIC)} = FX

s .

This is the desired statement. ��
The next theorem shows that the answer to the problem in formula-

tions 5.D, 6.D, 7.D, and 8.D is positive.

Theorem 3.3. Let (Xn) be a sequence of (Ft)-martingales such that |Xn| ≤ a

for some constant a > 0. Suppose that Xn
t

P−−−−→
n→∞

Xt for any t. Then X is an

(Ft)-martingale.

Proof. For any s ≤ t and any n ∈ N , we have E(Xn
t | Fs) = Xs. Further-

more, Xn
t

L1

−−−−→
n→∞

Xt. Hence, E(Xt | Fs) = Xs. ��

4 Stochastic Integrals with Respect to a Martingale

It follows from [4, Cor. 21] that the answer to the problem “Is a stochastic
integral of a bounded process with respect to a martingale also a martingale?”
is negative. Here we give an explicit counter-example (it follows from [4] that
such an example exists, but it is not constructed explicitly).

We construct a uniformly integrable (Ft)-martingale X = (Xt)t≥0 and
a bounded (Ft)-predictable process H = (Ht)t≥0 such that the stochastic
integral of H with respect to X is not a uniformly integrable martingale. This
yields the negative answer to the problem under consideration. Indeed, the
process
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X̃t =

{
X t

1−t
, t < 1,

X∞, t ≥ 1

is a martingale with respect to the filtration

F̃t =

{
F t

1−t
, t < 1,

F , t ≥ 1.

Furthermore, the stochastic integral of the process H̃t = H t
1−t

I(t < 1) with

respect to X̃ is not a martingale in view of the equality∫ t

0

H̃sdX̃s =
∫ t

1−t

0

HsdXs, t < 1.

Example 6. Let

an = 2n, bn =
2n

2n2 − n+ 1
, pn =

n− 1
2n2

, n ∈ N .

Construct the sequence (Xn)n∈N and the sequence of sets (An)n∈N by

X0 = 1, X1 = 1, A1 = Ω, . . .

P(Xn+1 = a2 . . . an+1 | An) = pn+1,

P(Xn+1 = a2 . . . anbn+1 | An) = 1− pn+1,

P(Xn+1 = Xn | Ac
n) = 1,

An+1 = {Xn+1 = a1 . . . an+1}, . . .

Define the continuous-time process (Xt)t≥0 by Xt = Xn for t ∈ [n, n+1). Set
Ft = FX

t and consider

Ht =
∞∑
n=1

I(2n− 1 < t ≤ 2n).

ThenX is a uniformly integrable (Ft)-martingale, while the stochastic integral
of H with respect to X is not a uniformly integrable (Ft)-martingale.

Proof. Clearly, X is an (Ft)-martingale. For any n < m ∈ N , we have

E|(Xm −Xn)| = E|(Xm −Xn)IAn
|

= E|(Xm −Xn)IAn+1 |+ E|(Xm −Xn)IAn
IAc

n+1
|

= E|(Xm −Xn)IAn+1 |+ E|(Xn+1 −Xn)IAn
IAc

n+1
|.

One can check by the induction in m that (Xm −Xn)IAn+1 > 0 for m > n.
Thus,
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E|(Xm −Xn)IAn+1 | = E(Xm −Xn)IAn+1

= E(Xn+1 −Xn)IAn+1 = E|(Xn+1 −Xn)IAn+1 |,

and consequently,

E|(Xm −Xn)| = E|(Xn+1 −Xn)IAn
|

= a2 . . . an(an+1 − 1)p2 . . . pnpn+1 + a2 . . . an(1− bn+1)p2 . . . pn(1− pn+1)

≤ a2 . . . anp2 . . . pn(an+1pn+1 + 1) =
1
n

(
n

n+ 1
+ 1
)
≤ 2
n
.

As a result, the sequence (Xn)n∈N converges in L1, which means that X is a
uniformly integrable (Ft)-martingale.

Furthermore, for any n ≤ m ∈ N , we have

E

∣∣∣∣IA2nIAc
2n+1

∫ 2m

0

HsdXs

∣∣∣∣ = E

(
IA2nIAc

2n+1

n∑
k=1

(X2k −X2k−1)
)

≥ E

(
IA2nIAc

2n+1
(X2n −X2n−1)

)
= p2 . . . p2n(1− p2n+1)a2 . . . a2n−1(a2n − 1)

≥ 1
4
p2 . . . p2na2 . . . a2n =

1
8n
.

Therefore,

E

∣∣∣∣∫ 2m

0

HsdXs

∣∣∣∣ ≥ m∑
n=1

E

∣∣∣∣IA2nIAc
2n+1

∫ 2m

0

HsdXs

∣∣∣∣ ≥ m∑
n=1

1
8n

−−−−→
m→∞

∞.

As a result, the stochastic integral of H with respect to X is not uniformly
integrable. ��

5 Uniform Integrability of Martingales

The answer to the problem “If X = (Xt)t≥0 is a positive process such that
EXτ = EX0 <∞ for any finite stopping time τ , then is it true that X is
a uniformly integrable martingale?” is positive as shown by the following
theorem.

Theorem 5.1. Let (Ft) be a filtration satisfying the usual assumptions of
right-continuity and completeness. Let X = (Xt)t≥0 be an (Ft)-adapted posi-
tive càdlàg process such that EXτ = EX0 < ∞ for any (Ft)-stopping time τ
that is finite a.s. Then X is a uniformly integrable (Ft)-martingale.
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Proof. Fix s ≤ t and A ∈ Fs. Consider stopping times τ1 = s and τ2 =
sIAc + tIA. Then the equality EXτ1 = EXτ2 implies that EXtIA = EXsIA. As
a result, X is an (Ft)-martingale.

Since X is positive, there exists a limit X∞ = (a.s.) limt→∞Xt. By the
Fatou lemma for conditional expectations,

E(X∞ | Ft) ≤ Xt, t ≥ 0. (5.1)

In particular, EX∞ ≤ EX0.
Suppose that EX∞ < EX0. The process X̃t = E(X∞ | Ft), t ≥ 0 has

a càdlàg modification. Moreover, X̃t
a.s.−−−→
t→∞

X∞. Consequently, the stopping
time

τ = inf
{
t ≥ 0 : |Xt − X̃t| ≤

EX0 − EX∞
2

}
is finite a.s. By the conditions of the theorem, EXτ = EX0, which implies that

EX̃τ > EX0 −
EX0 − EX∞

2
> EX∞.

This contradicts the equality EX̃τ = EX∞, which is a consequence of the
optional stopping theorem for uniformly integrable martingales. As a result,
EX∞ = EX0. This, combined with (5.1), shows that E(X∞ | Ft) = Xt for any
t ≥ 0. The proof is completed. ��

We conclude the paper by the following

Question. Let X = (Xt)t≥0 be an (Ft)-adapted càdlàg process such
that, for any (Ft)-stopping time τ that is finite a.s., the random variable
Xτ is integrable and EXτ = EX0. Is it true that X is a uniformly integrable
(Ft)-martingale?
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4. Meyer, P.-A.: Un cours sur les intégrales stochastiques. Lecture Notes in Mathe-
matics 511, 245–400 (1976)

5. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. 3rd Ed.
Springer 2003
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1 Introduction

The problems of absolute continuity and singularity of probability measures
defined on a filtered space play a significant role both in the pure stochastic
analysis and in its applications (for example, financial mathematics). The con-
tribution of A.N. Shiryaev to this subject is large and well known. This is rep-
resented, in particular, by his papers [13], [14], [22], [23], [24], [25], [28] as well
as his monographs [12], [26], [27], and [37]. The plenary talk of A.N. Shiryaev
at the International Congress of Mathematics (Helsinki, 1978) was entitled
“Absolute continuity and singularity of probability measures in functional
spaces”. We therefore hold it an honor to be able to put our paper in the
Festschrift.

The problems that are typically studied in relation to the subject men-
tioned concern such questions as: whether two measures are (locally) ab-
solutely continuous, whether they are singular, etc. However, a situation may
naturally occur, where the two measures are neither (locally) absolutely con-
tinuous nor singular.

Consider the following example: Ω = C([0,∞)), (Ft) is the canonical
filtration, and P (resp., P̃) is the distribution of a γ-dimensional (resp., γ̃-
dimensional) Bessel process started at a point x0 > 0. If γ ∧ γ̃ < 2, then, for
any t > 0, the measures

Pt = P | Ft and P̃t = P̃ | Ft

are neither equivalent nor singular. To be more precise, the situation is as
follows: for any stopping time τ such that τ < T0 := inf{t ≥ 0 : Xt = 0} (here
X is the coordinate process), the measures

Pτ = P | Fτ and P̃τ = P̃ | Fτ

are equivalent; for any stopping time τ ≥ T0, Pτ and P̃τ are singular. Thus,
the time T0 plays the following important role in this example: informally,
this is the time, at which P and P̃ are separated one from another.

The situation described above admits a clear interpretation in terms of
statistical sequential analysis, which is another big topic of the research activ-
ity of A.N. Shiryaev (this is reflected, in particular, by his monographs [27],
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[36], and [38]). Suppose that we are observing a process X that is governed
either by the measure P or by the measure P̃ (these are the measures described
above) and are trying to distinguish between these two hypotheses. Then, un-
til the time X hits zero, we cannot say for sure what the true measure is; but
immediately after this time we can say for sure what the true measure is. This
situation is in contrast with the typical setup of statistical sequential analysis,
where the two hypotheses are typically assumed to be locally equivalent.

Let us now consider the general situation: let (Ω,F , (Ft)t∈[0,∞)) be a space
with a right-continuous filtration (here F =

∨
t Ft) and P, P̃ be two probabil-

ity measures on this space. In Section 2, we formalize the concept of the time,
at which the two measures are separated. Namely, we prove that there exists
a P, P̃-a.s. unique stopping time S with the property: for any stopping time τ ,
the measures Pτ and P̃τ are equivalent on the set {τ < S} and are singular on
the set {τ ≥ S} (actually, S is given by inf{t ≥ 0 : Zt = 0 or Zt = 2}, where
Z denotes the density process of P with respect to (P + P̃)/2). Informally, P

and P̃ are equivalent before the time S and are singular after this time. We
call S the separating time for P and P̃. In order to be able to distinguish the
situation, where P and P̃ are locally equivalent and are globally singular (i.e.
singular on F), from the situation, where they are globally equivalent, we add
a point δ >∞ to [0,∞] and allow S to take values in [0,∞]∪{δ} (informally,
the equality S(ω) = δ means that P and P̃ are “globally equivalent on the ele-
mentary outcome ω”). The properties such as (local) absolute continuity and
singularity are easily expressed in terms of a separating time (see Lemma 2.1).

For example, P̃ 0 P iff S = δ P̃-a.s., P̃
loc
0 P iff S ≥ ∞ P̃-a.s. (i.e.

P̃(S ∈ {∞, δ}) = 1); P̃0 ⊥ P0 iff S = 0 P, P̃-a.s., etc.
In order to illustrate the notion of a separating time, we give in Section 3

the explicit form of this time for the case, where P and P̃ are distributions of
Lévy processes. This is just a translation of known results into the language
of separating times.

In Section 4, we consider the case, where P and P̃ are distributions of Bessel
processes of different dimensions started at the same point and prove that in
this case the separating time has the form S = inf{t ≥ 0 : Xt = 0}, where
X denotes the coordinate process. This puts the above discussion related to
Bessel processes on a solid mathematical basis.

The introduction of separating times enables us to give a complete answer
to the problem of (local) absolute continuity and singularity of solutions of
one-dimensional homogeneous stochastic differential equations (abbreviated
below as SDEs), i.e. equations of the form

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0 (1.1)

(the conditions we impose on the coefficients are the Engelbert–Schmidt condi-
tions, i.e. b and σ are measurable, σ �= 0 pointwise, and (1 + |b|)/σ2 ∈ L1loc(R);
this guarantees the existence and the uniqueness of a solution). Namely, in



128 A. Cherny and M. Urusov

Section 5, we find the explicit form of the separating time for the measure P
being the solution of (1.1) and the measure P̃ being the solution of a SDE

dXt = b̃(Xt)dt+ σ̃(Xt)dBt, X0 = x0.

As a corollary, we obtain criteria for (local) absolute continuity and singular-
ity of P and P̃. The problems of (local) absolute continuity and singularity
for diffusion processes were extensively studied earlier. Let us mention the
papers [8], [10], [13], [14], [15], [16], [17], [23], [31] and the monographs [12,
Ch. IV,§ 4b], [27, Ch. 7]. We consider here a more particular case (only homo-
geneous SDEs), but in this case we obtain more complete results. Namely, in
the majority of the sources mentioned above, conditions for (local) absolute
continuity and singularity are given in random terms (typically, in terms of the
Hellinger process). In contrast, here the explicit form of the separating time
and conditions for (local) absolute continuity and singularity are obtained in
non-random terms, i.e. in terms of the coefficients of SDEs. In this respect,
our results are similar to those in [31]. Furthermore, all the sources mentioned
above (including [31]) deal with (local) absolute continuity or singularity of
measures, while our results are applicable to measures that are in a general
position, i.e. they are neither (locally) equivalent nor singular.

Let us illustrate the structure of the results of Section 5 by a simple ex-
ample. Let P and P̃ be solutions of SDEs

dXt = σ(Xt)dBt, X0 = x0,

dXt = b̃(Xt)dt+ σ̃(Xt)dBt, X0 = x0,

respectively. We assume that both equations satisfy the Engelbert–Schmidt
conditions. Let us also assume for the simplicity of presentation that P̃ is non-
exploding (P is non-exploding automatically), although we consider exploding
solutions as well. Our results yield that the separating time for P and P̃ has
the form:

S =

{
δ if b̃ = 0 and σ̃2 = σ2 µL-a.e.,
+ inf{t ≥ 0 : Xt ∈ A} otherwise,

where X denotes the coordinate process, inf ∅ :=∞, µL denotes the Lebesgue
measure, and A denotes the complement to the set{

x ∈ R : b̃2/σ̃4 ∈ L1loc(x) and σ̃2 = σ2 µL-a.e. in a vicinity of x
}
.

As a corollary,

P̃ 0 P ⇐⇒ P 0 P̃ ⇐⇒ P̃ = P ⇐⇒ b̃ = 0 and σ̃2 = σ2 µL-a.e.,

P̃
loc
0 P ⇐⇒ P

loc
0 P̃ ⇐⇒ b̃2/σ̃4 ∈ L1loc(R) and σ̃2 = σ2 µL-a.e.,

P0⊥ P̃0 ⇐⇒ b̃2/σ̃4 /∈L1loc(x0)
or ∀ε>0, µL((x0−ε, x0+ε)∩{σ̃2 �=σ2})>0.
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Some facts concerning the qualitative behaviour of solutions of SDEs (these
are needed in the proofs of results of Section 5) are given in the Appendix.

A shortened version of this paper appeared as [5].

2 Separating Times

2.1. Mutual arrangement of a pair of measures on a measurable
space. Let P and P̃ be probability measures on a measurable space (Ω,F).
The following result is well known.

Proposition 1. There exists a decomposition Ω = E �D � D̃, E,D, D̃ ∈ F
such that P̃ ∼ P on the set E and P(D̃) = P̃(D) = 0 (here “�” denotes the
disjoint union). This decomposition is unique P, P̃-a.s.

Remarks. (i) For the above decomposition, we have P̃ ∼ P on E and
P̃ ⊥ P on Ec (here Ec denotes the complement to E). The decomposition
Ω = E � Ec with these properties is also unique P, P̃-a.s.

(ii) The sets E,D, D̃ from Proposition 1 can be obtained as:

D̃ =

{
dP

dQ
= 0,

dP̃

dQ
> 0

}
, E =

{
dP

dQ
> 0,

dP̃

dQ
> 0

}
,

D =

{
dP

dQ
> 0,

dP̃

dQ
= 0

}
,

where Q = P+P̃
2 .

(iii) Proposition 1 admits the following statistical interpretation. Suppose
that we deal with the problem of distinguishing between two statistical hy-
potheses P and P̃. Unlike the standard setting in statistics, we do not assume
that P and P̃ are equivalent. Suppose that an experiment is performed, and
an elementary outcome ω is obtained. If ω ∈ D, we can definitely say that the
true hypothesis is P; if ω ∈ D̃, we can definitely say that the true hypothesis
is P̃; if ω ∈ E, we cannot say for sure what is the true hypothesis.

The result of Proposition 1 is illustrated by Figure 1.

2.2. Mutual arrangement of a pair of measures on a filtered space.
Let (Ω,F) be a measurable space endowed with a right-continuous filtration
(Ft)t∈[0,∞). Recall that the σ-field Fτ (τ is a stopping time) is defined by

Fτ =
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft for any t ∈ [0,∞)

}
.

(In particular, F∞ = F .)
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︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
D̃ E D

P̃ P

Figure 1. Mutual arrangement of a pair of
measures on a measurable space

Let P and P̃ be probability measures on F . As usually, Pτ (resp., P̃τ )
denotes the restriction of P (resp., P̃) to Fτ .

In what follows, it will be convenient for us to consider the extended posi-
tive half-line [0,∞]∪{δ}, where δ is an additional point. We order [0,∞]∪{δ}
in the following way: we take the usual order on [0,∞] and let δ >∞.

Definition 1. An extended stopping time is a map T : Ω → [0,∞]∪{δ} such
that {T ≤ t} ∈ Ft for any t ∈ [0,∞].

The following theorem is an analog of Proposition 1 for a filtered space. A
similar statement is proved in [20, Lem. 5.2].

Theorem 2.1. (i) There exists an extended stopping time S such that, for
any stopping time τ ,

P̃τ ∼ Pτ on the set {τ < S}, (2.1)

P̃τ ⊥ Pτ on the set {τ ≥ S}. (2.2)

(ii) If S′ is another extended stopping time with these properties, then
S′ = S P, P̃-a.s.

Proof. (i) Set Q = P+P̃
2 . Let (Zt)t∈[0,∞] and (Z̃t)t∈[0,∞] denote the density

processes of P and P̃ with respect to Q (we set Z∞ = dP
dQ , Z̃∞ = dP̃

dQ ). Let (F t)
denote the Q-completion of the filtration (Ft). Then the (F t,Q)-martingales
Z and Z̃ have the modifications whose all trajectories are càdlàg. The time

S = inf{t ∈ [0,∞] : Zt = 0 or Z̃t = 0}

(“inf” is the same as “inf”, except that inf ∅ = δ) is an extended (F t)-stopping
time. According to [12, Ch. I, Lem. 1.19], there exists an extended (Ft)-
stopping time S such that S = S Q-a.s. It follows from [12, Ch. III, Lem. 3.6]
that ZtZ̃t = 0 on the stochastic interval [S,∞] Q-a.s. Consequently, for any
(Ft)-stopping time τ , we have Zτ Z̃τ = 0 Q-a.s. on {τ ≥ S}. The equality

dPτ

dQτ
= EQ

(
dP

dQ

∣∣∣∣Fτ

)
= EQ(Z∞ | Fτ ) = Zτ
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and the analogous equality for dP̃τ

dQτ
complete the proof.

(ii) Proposition 1 implies that, for any stopping time τ , the sets {τ ≥ S}
and {τ ≥ S′} coincide P, P̃-a.s. This yields the desired statement (one needs
to consider only the deterministic τ). ��

Definition 2. A separating time for P and P̃ is an extended stopping time
that satisfies (2.1) and (2.2) for all stopping times τ .

Remarks. (i) It is seen from the proof of Theorem 2.1 (ii) that in defining
the separating time one may use only the deterministic τ .

(ii) Theorem 2.1 admits the following statistical interpretation (compare
with Remark (iii) after Proposition 1). Suppose that we deal with the problem
of the sequential distinguishing between two statistical hypotheses P and P̃.
Assume for example that (Ft) is the natural filtration of an observed process
(Xt)t≥0. Suppose that an experiment is performed, and we are observing a
path of X. Then, until time S occurs, we cannot say definitely what the
true hypothesis is. But after S occurs, we can say definitely what the true
hypothesis is (on the set {Z̃S = 0}, this is P; on the set {ZS = 0}, this is P̃).

Corollary 2.1. (i) There exists an extended stopping time S such that, for
any stopping time τ ,

P̃τ 0 Pτ on the set {τ < S}, (2.3)

P̃τ ⊥ Pτ on the set {τ ≥ S}. (2.4)

(ii) If S′ is another extended stopping time with these properties, then
S′ = S P̃-a.s.

Definition 3. A time separating P̃ from P is an extended stopping time that
satisfies (2.3) and (2.4) for any stopping time τ .

Clearly, a separating time for P and P̃ is also a time separating P̃ from P.
The converse is not true since the former time is unique P, P̃-a.s., while the
latter time is unique only P̃-a.s.

Informally, Theorem 2.1 states that the measures P and P̃ are equivalent
up to a random time S and become singular at a time S. The equality S = δ
means that P and P̃ never become singular, i.e. they are equivalent up to
infinity. Thus, the knowledge of the separating time yields the knowledge of
the mutual arrangement of P and P̃. This is illustrated by the following result.
Its proof is straightforward.

Lemma 2.1. Let S be a separating time for P and P̃. Then
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(i) P̃ ∼ P ⇐⇒ S = δ P, P̃-a.s.;
(ii) P̃ 0 P ⇐⇒ S = δ P̃-a.s.;
(iii) P̃

loc∼ P ⇐⇒ S ≥ ∞ P, P̃-a.s.;

(iv) P̃
loc
0 P ⇐⇒ S ≥ ∞ P̃-a.s.;

(v) P̃ ⊥ P ⇐⇒ S ≤ ∞ P, P̃-a.s. ⇐⇒ S ≤ ∞ P-a.s.
(vi) P̃0⊥P0 ⇐⇒ S = 0 P, P̃-a.s. ⇐⇒ S = 0 P-a.s.

Remark. Other types of the mutual arrangement of P and P̃ are also easily
expressed in terms of the separating time. For example, for any t ∈ [0,∞],

P̃t ⊥ Pt ⇐⇒ S ≤ t P, P̃-a.s. ⇐⇒ S ≤ t P-a.s.

✲
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Figure 2. Mutual arrangement of a pair of
measures on a filtered space (here S(ω1) = 0,
S(ω3) = ∞, S(ω4) = δ)

The mutual arrangement of P and P̃ is illustrated by Figure 2. In this
figure, the measure P̃ “lies above” the curve 1; the measure P “lies below”
the curve 2. The decomposition Ω = Et �Dt � D̃t of Proposition 1 for the
measurable space (Ω,Ft) is obtained by drawing a vertical line corresponding
to the time t. Figure 2 shows three decompositions of this type: for t = 0, for
t = u ∈ (0,∞), and for t =∞.

The separating time for P and P̃ is illustrated as follows. If ω ∈ D0 � D̃0,
then S(ω) = 0 (see ω = ω1 in Figure 2). If ω ∈ E0, then S(ω) is the time,
at which the horizontal line drawn through the point ω crosses curves 1 or 2
(see ω = ω2 in Figure 2). If this line crosses neither curve 1 nor curve 2, then
S =∞ in the case ω ∈ D∞ � D̃∞ (see ω = ω3 in Figure 2), and S = δ in the
case ω ∈ E∞ (see ω = ω4 in Figure 2).
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3 Separating Times for Lévy Processes

Let D([0,∞),Rd) denote the space of the càdlàg functions [0,∞) → Rd. Let
X denote the canonical process on this space, i.e Xt(ω) = ω(t). Consider the
filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =

∨
t Ft. In what follows,

(· , ·) denotes the scalar product in Rd and ‖ · ‖ denotes the Euclidean norm.
Let P be the distribution of a Lévy process with characteristics (b, c, ν),

where b ∈ Rd, c is a symmetric positively definite d × d matrix, and ν is a
measure on B(Rd) such that ν({0}) = 0 and

∫
Rd(‖x‖2 ∧ 1) ν(dx) <∞. This

means that, for any t ∈ [0,∞) and λ ∈ Rd,

EPEi(λ,Xt)

= exp
{
t
[
i(λ, b)− 1

2
(λ, cλ) +

∫
Rd

(Ei(λ,x) − 1− i(λ, x)I(‖x‖ ≤ 1))ν(dx)
]}
.

(For further information on Lévy processes, see [1], [34], [37, Ch. III, § 1b].)
Let P̃ be the distribution of a Lévy process with characteristics (̃b, c̃, ν̃).

The following theorem yields an explicit form of the separating time for
P and P̃. This is actually a reformulation of known results (see, for example,
the survey paper [35]) into the language of separating times.

Theorem 3.1. The separating time S for P and P̃ has the following form.
(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P �= P̃ and

c = c̃, (3.1)

∫
Rd

(√
dν

d(ν + ν̃)
−
√

dν̃

d(ν + ν̃)

)2
d(ν + ν̃) <∞, (3.2)

b− b̃−
∫
{‖x‖≤1}

xd(ν − ν̃ ) ∈ N(c), (3.3)

where N(c) = {cx : x ∈ Rd}, then

S = inf{t ∈ [0,∞) : 4Xt �= 0,4Xt /∈ E} P, P̃-a.s.

(we set inf ∅ =∞), where E ∈ B(Rd) is a set such that ν̃ ∼ ν on E and ν̃ ⊥ ν
on the complement to E.
(iii) If any of conditions (3.1)–(3.3) is violated, then S = 0 P, P̃-a.s.

Remarks. (i) The expression in (3.2) is the Hellinger distance between ν
and ν̃.

(ii) If (3.2) is true, then
∫
{‖x‖≤1} ‖x‖d‖ν− ν̃‖ <∞, where ‖ν− ν̃‖ denotes

the total variance of the signed measure ν − ν̃ (see [34, Rem. 33.3] or [35,
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Lem. 2.18]). Thus, the integral in (3.3) is well defined if condition (3.2) is
true.

Theorem 3.1, combined with Lemma 2.1, yields the following corollary.
This result is known (see [11], [12, Ch. IV, § 4c], [13], [21], [28], [29], [30], [39],
[40], [41]).

Corollary 3.1. (i) Either P̃ = P or P̃ ⊥ P.

(ii) We have P̃
loc
0 P if and only if conditions (3.1)–(3.3) and the condition

ν̃ 0 ν are satisfied.
(iii) We have P̃0 ⊥ P0 if and only if any of conditions (3.1)–(3.3) is

violated.

4 Separating Times for Bessel Processes

Consider the SDE

dXt = γ dt+ 2
√
|Xt|dBt, X0 = x0

with γ ≥ 0, x0 ≥ 0. It is known that this SDE has a unique solution Q in
the sense of Definition 5. Moreover, the measure Q is concentrated on positive
functions. A process (Zt)t∈[0,∞) with the distribution Q is called a square of
a γ-dimensional Bessel process started at

√
x0. The process

√
Z is called a

γ-dimensional Bessel process started at
√
x0. For more information on Bessel

processes, see [2], [3], [6], [32], [33, Ch. XI].
Let X denote the canonical process on C([0,∞)). Consider the filtration

Ft =
⋂

ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =
∨

t Ft.

Theorem 4.1. Let P (resp., P̃) be the distribution of a γ-dimensional (resp.,
γ̃-dimensional) Bessel process started at x0. Then the separating time S for
P and P̃ has the following form.
(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P �= P̃, then

S = inf{t ∈ [0,∞) : Xt = 0} P, P̃-a.s.

(we set inf ∅ =∞).

Proof. We should prove only (ii). Set T0 = inf{t ∈ [0,∞) : Xt = 0}. It
follows from [2, Th. 4.1] and the strong Markov property of Bessel processes
that S ≤ T0 P, P̃-a.s.

Let us prove that S ≥ T0 P, P̃-a.s. For x0 = 0, this is obvious, so we
assume that x0 > 0. Fix ε ∈ (0, x0/2) and consider the stopping time
Tε = inf{t ∈ [0,∞) : Xt = ε}. Define the map Fε : C([0,∞)) → C([0,∞))
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by Fε(ω)(t) = ω(t ∧ Tε(ω)) and let Pε denote the image of P under this map.
Using Itô’s formula, one can check that Pε is a solution of the SDE

dXt =
γ − 1
2Xt

I(t ≤ Tε) dt+ I(t ≤ Tε) dBt, X0 = x0.

Let (Ω′,F ′,P′) be a probability space with a Brownian motion (Wt)t∈[0,∞).
Consider the space (C([0,∞))×Ω′,F ×F ′,Pε ×P′) and let Qε be the distri-
bution of the process

Zt = Xt +
∫ t

0

I(s > Tε)dWs, t ∈ [0,∞).

Then Qε is a solution of the SDE

dXt =
γ − 1
2Xt

I(t ≤ Tε) dt+ dBt, X0 = x0.

Similarly, using the measure P̃, we define the measure Q̃ε that is a solution of
the SDE

dXt =
γ̃ − 1
2Xt

I(t ≤ Tε) dt+ dBt, X0 = x0.

Since the drift coefficients γ−1
2Xt

I(t ≤ Tε) and γ̃−1
2Xt

I(t ≤ Tε) are bounded, we get

by Girsanov’s theorem that Q̃ε loc∼ Qε. The obvious equalities Pε = Qε ◦ F−1ε

and P̃ε = Q̃ε ◦F−1ε yield that P̃ε loc∼ Pε. One can verify that Pε|FT2ε = P|FT2ε

and P̃ε|FT2ε = P̃|FT2ε . Consequently, P̃|Ft∧T2ε ∼ P|Ft∧T2ε for any t ∈ [0,∞).
Since t ∈ [0,∞) and ε ∈ (0, x0/2) are arbitrary, we get the desired inequality
S ≥ T0 P, P̃-a.s. The proof is completed. ��

It is known that if 0 ≤ γ < 2, then a γ-dimensional Bessel process started
at a strictly positive point hits zero with probability one; if γ ≥ 2, then a γ-
dimensional Bessel process started at a strictly positive point never hits zero
with probability one. Theorem 4.1, combined with Lemma 2.1 and with these
properties, yields

Corollary 4.1. (i) Either P̃ = P or P̃ ⊥ P.
(ii) If P̃ �= P and x0 = 0, then P̃0 ⊥ P0.

(iii) Let P̃ �= P and x0 > 0. Then P̃
loc
0 P ⇐⇒ γ̃ ≥ 2.

This corollary generalizes the result of [2, Th. 4.1].

5 Separating Times for Solutions of SDEs

5.1. Basic definitions. We consider one-dimensional SDEs of the form
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dXt = b(Xt) dt+ σ(Xt) dBt, X0 = x0, (5.1)

where b and σ are Borel functions R→ R and x0 ∈ R.
The standard definition of a solution, which goes back to I.V. Girsanov [9],

is as follows.

Definition 4. A solution of (5.1) is a pair (Y,B) of continuous adapted
processes on a filtered probability space

(
Ω,Γ, (Γt)t∈[0,∞),Q

)
such that

i) B is a (Γt,Q)-Brownian motion;
ii) for any t ∈ [0,∞),∫ t

0

(|b(Ys)|+ σ2(Ys)) ds <∞ Q-a.s.;

iii) for any t ∈ [0,∞),

Yt = x0 +
∫ t

0

b(Ys) ds+
∫ t

0

σ(Ys) dBs Q-a.s.

Remark. A solution in the sense of Definition 4 is sometimes called a weak
solution.

In what follows, it will be convenient for us to treat a solution as a solu-
tion of the corresponding martingale problem, i.e. as a measure on the space
C([0,∞)) of continuous functions. The corresponding definition goes back to
D.W. Stroock and S.R.S. Varadhan [43]. Let X denote the canonical process
on C([0,∞)). Consider the filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t + ε]) and set

F =
∨

t Ft.

Definition 5. A solution of (5.1) is a probability measure P on F such that
i) P(X0 = x0) = 1;
ii) for any t ∈ [0,∞),∫ t

0

(|b(Xs)|+ σ2(Xs)) ds <∞ P-a.s.;

iii) the process

Mt = Xt −
∫ t

0

b(Xs) ds, t ∈ [0,∞)

is an (Ft,P)-local martingale with the quadratic variation

〈M〉t =
∫ t

0

σ2(Xs) ds, t ∈ [0,∞).

The following statement (see, for example, [19, § 5.4.B]) shows the rela-
tionship between Definitions 4 and 5.
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Proposition 2. (i) Let (Y,B) be a solution of (5.1) in the sense of Defini-
tion 4. Set P = Law(Yt; t ∈ [0,∞)). Then P is a solution of (5.1) in the sense
of Definition 5.
(ii) Let P be a solution of (5.1) in the sense of Definition 5. Then there

exist a filtered probability space
(
Ω,Γ, (Γt)t∈[0,∞),Q

)
and a pair of processes

(Y,B) on this space such that (Y,B) is a solution of (5.1) in the sense of
Definition 4 and Law(Yt; t ∈ [0,∞)) = P.

5.2. Exploding solutions. Definitions 4 and 5 do not include exploding
solutions. However, we need to consider them. Let us introduce some nota-
tions.

Let us add a point ∆ to the real line and let C∆([0,∞)) denote the space
of functions f : [0,∞) → R ∪ {∆} with the property: there exists a time
ζ(f) ∈ [0,∞] such that f is continuous on [0, ζ(f)), f = ∆ on [ζ(f),∞)),
and if 0 < ζ(f) < ∞, then limt↑ζ(f) f(t) = ∞ or limt↑ζ(f) f(t) = −∞.
The time ζ(f) is called the explosion time of f . Below in this subsec-
tion, X denotes the canonical process on C∆([0,∞)). Consider the filtration
Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =

∨
t Ft. Let ζ denote the explosion

time of the process X.
The next definition is a generalization of Definition 5 for the case of ex-

ploding solutions.

Definition 6. A solution of (5.1) is a probability measure P on F such that
i) P(X0 = x0) = 1;
ii) for any t ∈ [0,∞) and n ∈ N such that n > |x0|,∫ t∧τn

0

(|b(Xs)|+ σ2(Xs)) ds <∞ P-a.s.,

where τn = inf{t ∈ [0,∞) : |Xt| = n} (we set inf ∅ =∞);
iii) for any n ∈ N such that n > |x0|, the process

Mn
t = Xt∧τn −

∫ t∧τn

0

b(Xs) ds, t ∈ [0,∞)

is an (Ft,P)-local martingale with the quadratic variation

〈Mn〉t =
∫ t∧τn

0

σ2(Xs) ds, t ∈ [0,∞).

Clearly, if P is a solution of (5.1) in the sense of Definition 6 and ζ = ∞
P-a.s., then the restriction of P to C([0,∞)) is a solution of (5.1) in the sense of
Definition 5. Conversely, if P is a solution of (5.1) in the sense of Definition 5,
then there exists a unique extension of the measure P to C∆([0,∞)) that is a
solution of (5.1) in the sense of Definition 6.
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Definition 7. A Borel function f : R→ [0,∞) is locally integrable at a point
a ∈ [−∞,∞] if there exists a neighborhood U of a such that

∫
U
f(x) dx <∞.

(A neighborhood of ∞ is a ray of the form (x,∞); a neighborhood of −∞ is
a ray of the form (−∞, x).) Notation: f ∈ L1loc(a).

A function f is locally integrable on a set A ⊆ [−∞,∞] if f is locally
integrable at each point of this set. Notation: f ∈ L1loc(A).

Below we shall use the following result (see [7]).

Proposition 3 (Engelbert, Schmidt). Suppose that the coefficients b and
σ of (5.1) satisfy the conditions:

σ(x) �= 0 ∀x ∈ R, (5.2)
1 + |b|
σ2

∈ L1loc(R). (5.3)

Then, for any starting point x0 ∈ R, there exists a unique solution of (5.1)
in the sense of Definition 6.

For the information on the qualitative behaviour of the solution of (5.1)
under conditions (5.2) and (5.3), see the Appendix.

5.3. Explicit form of the separating time. Here we use the notations
F , Ft, X, and ζ introduced in Subsection 5.2.

Consider the SDEs

dXt = b(Xt) dt+ σ(Xt) dBt, X0 = x0, (5.4)

dXt = b̃(Xt) dt+ σ̃(Xt) dBt, X0 = x0 (5.5)

with the same starting point x0. Let us assume that conditions (5.2), (5.3)
and the similar conditions for b̃, σ̃ are satisfied.

Set

ρ(x) = exp
{
−
∫ x

0

2b(y)
σ2(y)

dy
}
, x ∈ R, (5.6)

s(x) =
∫ x

0

ρ(y) dy, x ∈ R, (5.7)

s(∞) = lim
x→∞

s(x), (5.8)

s(−∞) = lim
x→−∞

s(x). (5.9)

Similarly, we define ρ̃, s̃, s̃(∞), and s̃(−∞) through b̃ and σ̃. Let µL denote
the Lebesgue measure on B(R).

We say that a point x ∈ R is good if there exists a neighborhood U of x
such that σ2 = σ̃2 µL-a.e. on U and (b − b̃)2/σ4 ∈ L1loc(x). We say that the
point ∞ is good if all the points from [x0,∞) are good and
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s(∞) <∞, (5.10)

(s(∞)− s)
(b− b̃)2

ρσ4
∈ L1loc(∞). (5.11)

We say that the point −∞ is good if all the points from (−∞, x0] are good
and

s(−∞) > −∞, (5.12)

(s− s(−∞))
(b− b̃)2

ρσ4
∈ L1loc(−∞). (5.13)

Let A denote the complement to the set of good points in [−∞,∞]. Clearly,
A is closed in [−∞,∞]. Let us define

Aε = {x ∈ [−∞,∞] : ρ(x,A) < ε},

where ρ(x, y) = | arctg x− arctg y|, x, y ∈ [−∞,∞] (we set ∅ε = ∅).
The main result of this section is the following theorem. Its proof is given

in Subsection 5.5.

Theorem 5.1. Suppose that b, σ, b̃, σ̃ satisfy conditions (5.2) and (5.3). Let
P and P̃ denote the solutions of (5.4) and (5.5) in the sense of Definition 6.
Then the separating time S for P and P̃ has the following form.
(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P �= P̃, then

S = sup
n

inf{t ∈ [0,∞) : Xt ∈ A1/n} P, P̃-a.s.,

where “inf” is the same as “inf”, except that inf ∅ = δ.

Remarks. (i) Let us explain the structure of S in case (ii). Denote by α
the “bad point that is closest to x0 from the left side”, i.e.

α =

{
sup{x : x ∈ [−∞, x0] ∩A} if [−∞, x0] ∩A �= ∅,
∆ if [−∞, x0] ∩A = ∅.

(5.14)

Let us consider the “hitting time of α”:

U =



δ if α = ∆,

δ if α = −∞ and lim
t↑ζ

Xt > −∞,

ζ if α = −∞ and lim
t↑ζ

Xt = −∞,

Tα if α > −∞,
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where Tα = inf{t ∈ [0,∞) : Xt = α}. Similarly, denote by γ the “bad point
that is closest to x0 from the right side” and denote by V the “hitting time
of γ”. Then S = U ∧ V P, P̃-a.s. (This follows from Proposition A.1.)

(ii) Suppose that [x0,∞) ⊆ [−∞,∞] \ A. Combining Theorem 5.1 with
results of Appendix, we get that the pair of conditions (5.10), (5.11) is equiv-
alent to the inequality P({S = δ} ∩ (B+ ∪ C+)) > 0, where B+ and C+ are
defined in the Appendix. By the definition of a separating time, the latter
condition is equivalent to the inequality P̃({S = δ} ∩ (B+ ∪C+)) > 0. Apply-
ing once more Theorem 5.1 (to the measures P̃ and P rather than P and P̃)
and results of Appendix, we get that this condition is, in turn, equivalent to
the pair

s̃(∞) <∞, (5.15)

(s̃(∞)− s̃)
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(∞). (5.16)

Thus, assuming that [x0,∞) ⊆ [−∞,∞] \ A, we get the equivalence between
(5.10)+(5.11) and (5.15)+(5.16). A similar remark is true for (5.12)+(5.13).

Theorem 5.1, combined with Lemma 2.1 and Propositions A.1–A.3, yields
several corollaries concerning the mutual arrangement of P and P̃. In order to
formulate them, let us introduce the conditions:

s̃(∞) =∞, (5.17)

s̃(∞) <∞ and
s̃(∞)− s̃

ρ̃ σ̃2
/∈ L1loc(∞), (5.18)

s̃(∞) <∞ and (s̃(∞)− s̃)
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(∞). (5.19)

Condition (5.17) means that the paths of the canonical process X under the
measure P̃ do not tend to∞ as t→∞ (see Proposition A.2). Condition (5.18)
means that the paths of the canonical process X with a strictly positive P̃-
probability tend to ∞ as t → ∞, but do not explode into ∞, i.e. the ex-
plosion time for them is ∞ (see Proposition A.2). Condition (5.19) is the
pair (5.15), (5.16). Similarly, we introduce the conditions at −∞:

s̃(−∞) = −∞, (5.20)

s̃(−∞) > −∞ and
s̃− s̃(−∞)

ρ̃ σ̃2
/∈ L1loc(−∞), (5.21)

s̃(−∞) > −∞ and (s̃− s̃(−∞))
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(−∞). (5.22)

Corollary 5.1. Under the assumptions of Theorem 5.1, we have P̃ 0 P if
and only if at least one of conditions (a)–(d) below is satisfied:
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(a) P = P̃;
(b) (5.17), (5.22), and (5.23) are satisfied;
(c) (5.19), (5.20), and (5.23) are satisfied;
(d) (5.19), (5.22), and (5.23) are satisfied.

Corollary 5.2. Under the assumptions of Theorem 5.1, we have P̃
loc
0 P if

and only if the condition

σ2 = σ̃2 µL-a.e. and
(b− b̃)2

σ4
∈ L1loc(R), (5.23)

at least one of conditions (5.17)–(5.19), and at least one of conditions (5.20)–
(5.22) are satisfied.

Remark. The result of Corollary 5.2 is closely connected with the result
of Orey [31], where a criterion for the local absolute continuity of regular
continuous strong Markov families is provided.

Corollary 5.3. Under the assumptions of Theorem 5.1, we have P̃ ⊥ P if and
only if P̃ �= P and −∞,∞ ∈ A.

Corollary 5.4. Under the assumptions of Theorem 5.1, we have P̃0 ⊥ P0 if
and only if x0 ∈ A.

5.4. Examples. In this subsection, we give 9 examples, which show var-
ious types of the mutual arrangement of P and P̃ from the point of view of
their (local) absolute continuity, and singularity. The proofs are straightfor-
ward applications of Theorem 5.1 (it is convenient to use also Remark (ii)
following Theorem 5.1). One should also take into account the results on the
qualitative behaviour of solutions of SDEs that are described in Appendix.
In particular, these results imply that a solution P of SDE (5.1) satisfying
condition (5.3) with σ ≡ 1, has the following properties:

• If b is a constant in the neighborhood of +∞, then P({ζ <∞, limt↑ζ Xt =
+∞) = 0.

• If b is a strictly positive constant in the neighborhood of +∞, then
P(limt→∞Xt = +∞) > 0.

• If moreover b is positive in the neighborhood of −∞, then P(limt→∞Xt =
+∞) = 1.

• If b(x) = x2 in the neighborhood of +∞, then P(ζ < ∞, limt↑ζ Xt =
+∞) > 0.

• If moreover b is positive in the neighborhood of −∞, then P(ζ <
∞, limt→∞Xt = +∞) = 1.

In all the examples below, σ = σ̃ ≡ 1, x0 = 0, and we specify only b and b̃.
We use the notation P̃4P to denote that P and P̃ are in a general position,

i.e. P̃ �0 P, P �0 P̃, P̃ �⊥ P.
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Example 1. If
b ≡ 1, b̃(x) = 1 + I(0 < x < 1),

then
P̃ �= P, P̃ ∼ P.

Example 2. If
b(x) = I(x > 0)− I(x < 0), b̃ ≡ 1,

then
P̃ 0 P, P �0 P̃, P

loc
0 P̃.

Example 3. If
b(x) = I(x > 0)− x2I(x < 0), b̃ ≡ 1,

then
P̃ 0 P, P �

loc
0 P̃.

Example 4. If

b(x) = I(x > 0)− I(x < 0), b̃(x) = I(x > 0)− 2I(x < 0),

then
P̃4P, P̃

loc∼ P.

Example 5. If

b(x) = I(x > 0)− x2I(x < 0), b̃(x) = I(x > 0)− I(x < 0),

then
P̃4P, P̃

loc
0 P, P �

loc
0 P̃.

Example 6. If

b ≡ 1, b̃(x) = 1 +
I(−1 < x < 0)√

x+ 1
,

then
P̃4P, P̃ �

loc
0 P, P �

loc
0 P̃.

Example 7. If
b ≡ 0, b̃ ≡ 1,

then
P̃ ⊥ P, P̃

loc∼ P.

Example 8. If
b(x) = x2, b̃ ≡ 0,

then
P̃ ⊥ P, P̃

loc
0 P, P �

loc
0 P̃.
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Type of arrangement Example

P̃ = P trivial

P̃ �= P, P̃ ∼ P Example 1

P̃ � P, P �� P̃, P
loc
� P̃ Example 2

P̃ � P, P �
loc
� P̃ Example 3

P̃�P, P̃
loc∼ P Example 4

P̃�P, P̃
loc
� P, P �

loc
� P̃ Example 5

P̃�P, P̃ �
loc
� P, P �

loc
� P̃ Example 6

P ⊥ P, P̃
loc∼ P Example 7

P̃ ⊥ P, P̃
loc
� P, P �

loc
� P̃ Example 8

P̃ ⊥ P, P̃ �
loc
� P, P �

loc
� P̃ Example 9

Table 1. Various possible types of the mutual arrange-
ment of P and P̃ (up to the symmetry between P and P̃)

Example 9. If

b ≡ 0, b̃(x) =
I(0 < x < 1)√

x
,

then
P̃ ⊥ P, P̃ �

loc
0 P, P �

loc
0 P̃.

Examples 1–9 show that all the possible types of the mutual arrangement
of P and P̃ can be realized. However, the lemma below shows that the types of
the mutual arrangement that appear in Examples 3, 5, and 8 can be realized
only if P explodes. (In Examples 1, 2, 4, 6, 7, and 9, the measures P and P̃ do
not explode.)

Lemma 5.1. Suppose that P does not explode and P̃
loc
0 P. Then P

loc
0 P̃.

Proof. Let S be the separating time for P and P̃. By Lemma 2.1,
P̃(S ≥ ∞) = 1. It follows from Theorem 5.1 and Proposition A.3 (i), that
all the points of (−∞,∞) are good. As P does not explode, P(S ≥ ∞) = 1.

One more application of Lemma 2.1 yields P
loc
0 P̃. ��

Remark. Example 8 reveals an interesting effect. Suppose that we are ob-
serving a path of the process X and are trying to distinguish between the
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hypotheses P and P̃ (given by Example 8). If P is the true hypothesis, we will
find this out within a finite time of observations. However, if P̃ is the true
hypothesis, we will find this out only within the infinite time of observations.

5.5. Proof of Theorem 5.1. In the proof of this theorem, we use the
techniques of random time-changes and local times. These can be found in [33,
Ch. V, § 1; Ch. VI, §§ 1,2]. Below we deal with the following two settings.

Setting 1. Let X denote the canonical process on C([0,∞)). Consider the
filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ ε]) and set F =

∨
t∈[0,∞) Ft.

Setting 2. LetX denote the canonical process on C∆([0,∞)) and ζ denote
the explosion time of X. Consider the filtration Ft =

⋂
ε>0 σ(Xs; s ∈ [0, t+ε])

and set F =
∨

t∈[0,∞) Ft.

We begin with a series of auxiliary lemmas.

Lemma 5.2. In Setting 1 or in Setting 2, consider an (Ft)-stopping time τ .
Let ω and ω′ be such that τ(ω) = t0 ∈ [0,∞) and ω′(s) = ω(s) on [0, t0 + ε]
for some ε > 0. Then τ(ω′) = t0 and, for any A ∈ Fτ , ω ∈ A⇐⇒ ω′ ∈ A.

This lemma may be proved by the standard technique. For statements
with similar proofs, see, for example, [12, Ch. III, Lem. 2.43], [33, Ch. I,
Ex. 4.21], [36, Ch. I, § 2, Lem. 13].

Lemma 5.3. Let Y = (Yt)t∈[0,∞) be a continuous process on a probability
space (Ω,G,Q). Introduce the filtration GY

t =
⋂

ε>0 σ(Ys; s ∈ [0, t+ ε]). Let τ
be a (GY

t )-stopping time. Then there exists an (Ft)-stopping time ρ such that
τ = ρ(Y ), where (Ft) denotes the filtration introduced in Setting 1.

This lemma may be proved similarly to [12, Ch. I, Lem. 1.19].

Lemma 5.4. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3). Let P be a solution of (5.1) in the sense of Definition 6
(so, we consider Setting 2). Then F0 is P-trivial.

Proof. This is a consequence of the following result (see [43, Th. 6.2] or [18,
Th. 18.11]): if for any starting point x0 ∈ R, there exists a unique solution Px0

of (5.1), then the family (Xt,Ft,Px; t ∈ [0,∞), x ∈ R) possesses the strong
Markov property. After applying this result one should note that any strong
Markov family satisfies the required zero-one law. ��

Lemma 5.5. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3) and that the solution is non-exploding. Let P be a solution
of (5.1) in the sense of Definition 5 (so, we consider Setting 1). Then, for
any (Ft)-stopping time ξ such that ξ > 0 P-a.s., there exists an (Ft)-stopping
time ξ′ such that 0 < ξ′ < ξ P-a.s.
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Proof. 1) Define the functions ρ and s by formulas (5.6) and (5.7). Con-
sider the process Y = s(X). Due to the Ito-Tanaka formula (see [33, Ch. VI,
Th. 1.5]), Y is a continuous (Ft,P)-local martingale with the quadratic varia-
tion 〈Y 〉t =

∫ t
0
κ2(Yu) du, where κ(x) = ρ(s−1(x))σ(s−1(x)), x ∈ s(R). Since

σ(x) �= 0 for any x ∈ R, then P-a.s. the trajectories of 〈Y 〉 are continuous
and strictly increasing. Denote by F the P-completion of the σ-field F and
by (F t) the P-completion of the filtration (Ft). Define an (F t)-time-change

τt = inf{s ∈ [0,∞) : 〈Y 〉s > t}, t ∈ [0,∞). (5.24)

Consider an (F ′t,P′)-Brownian motion W ′ on some stochastic basis
(Ω′,F ′, (F ′t),P′) and set

Ω = C([0,∞))×Ω′, G = F × F ′, Gt =
⋂
ε>0

Fτt+ε
×F ′t+ε, Q = P× P′.

Denote by G the Q-completion of the σ-field G and by (Gt) the Q-completion
of the filtration (Gt). Consider the stochastic basis (Ω,G, (Gt),Q). All the
random variables and the processes defined on C([0,∞)) or on Ω′ can be
viewed as random variables and processes on Ω. In what follows, we do not
explain on which space we consider a random variable or a process if this is
clear from the context.

Set
Wt = Yτt +W ′t −W ′t∧〈Y 〉∞ , t ∈ [0,∞). (5.25)

By the Dambis-Dubins-Schwartz theorem (see [33, Ch. V, Th. 1.6]), the
process W = (Wt)t∈[0,∞) is a (Gt,Q)-Brownian motion with the starting
point s(x0).

As P-a.s. the trajectories of 〈Y 〉 are continuous, we have 〈Y 〉τt = t P-a.s.
on {t < 〈Y 〉∞}, i.e.∫ τt

0

κ2(Yu) du = t P-a.s. on {t < 〈Y 〉∞}.

As P-a.s. the trajectories of 〈Y 〉 are strictly increasing, then P-a.s. the tra-
jectories of τ are continuous (however, they may explode). By the change of
variables in the Stieltjes integral, we get∫ t

0

κ2(Yτu) dτu = t P-a.s. on {t < 〈Y 〉∞},

and therefore,

τt =
∫ t

0

κ−2(Yτu) du P-a.s. on {t < 〈Y 〉∞}.

Since τt →∞ P-a.s. as t ↑ 〈Y 〉∞ and Yτt =Wt for t < 〈Y 〉∞, we have
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τt =
∫ t

0

κ−2(Wu) du Q-a.s., t ∈ [0,∞) (5.26)

(here we set κ(x) = 1 for x /∈ s(R)).
Consider the filtration HW

t =
⋂

ε>0 σ(Ws; s ∈ [0, t + ε]) and let (HW

t )
denote its Q-completion. By (5.26), the process τ viewed as a process on Ω is
(HW

t )-adapted. Due to (5.24),

〈Y 〉t = inf{s ∈ [0,∞) : τs > t} P-a.s., t ∈ [0,∞).

Therefore, the process 〈Y 〉 viewed as a process on Ω is an (HW

t )-time-change.
Furthermore, (5.25) implies that Yt =W〈Y 〉t Q-a.s. Since the right-continuous
and Q-complete filtration generated by Y viewed as a process on Ω contains
the filtration (F t × {∅, Ω′}), we have

F t × {∅, Ω′} ⊆ HW

〈Y 〉t . (5.27)

The process τ is an (F t × {∅, Ω′})-time-change. It follows from (5.27) (see
also [33, Ch. V, Ex. 1.12]) that

Fτt × {∅, Ω′} ⊆ HW

t∧〈Y 〉∞ ⊆ HW

t . (5.28)

2) It is easy to verify that 〈Y 〉ξ viewed as a random variable on Ω is
an (Fτt × {∅, Ω′})-stopping time. By (5.28), 〈Y 〉ξ is an (HW

t )-stopping time.
Since ξ > 0 P-a.s., then 〈Y 〉ξ > 0 Q-a.s. Furthermore, the σ-field HW

0 is
Q-trivial; it is also well known that every stopping time on a complete Brown-
ian filtration is predictable. Hence, there exists an (HW

t )-stopping time η such
that

0 < η < 〈Y 〉ξ Q-a.s. (5.29)

It is known (see [12, Ch. I, Lem. 1.19]) that every stopping time with respect
to a completion of a right-continuous filtration (Kt) a.s. coincides with a (Kt)-
stopping time. Therefore, we can choose η in such a way that it is an (HW

t )-
stopping time. Due to Lemma 5.3, there exists an (Ft)-stopping time ρ such
that

η = ρ(W ) Q-a.s. (5.30)

Now, define the process Vt = Yτt , t ∈ [0,∞). (Note that {τt =∞} = {〈Y 〉∞ ≤
t} P-a.s. and on the set {〈Y 〉∞ < ∞} the process Yt tends P-a.s. to a finite
random variable Y∞. Hence, the process V is well defined.) Equations (5.29)
and (5.30) imply that ρ(W ) < 〈Y 〉∞ Q-a.s. Since V = W 〈Y 〉∞ Q-a.s., then,
by Lemma 5.2, ρ(W ) = ρ(V ) Q-a.s. The random variables ρ(V ) and 〈Y 〉ξ are
defined on C([0,∞)). Hence, we can write

0 < ρ(V ) < 〈Y 〉ξ P-a.s. (5.31)



Separating Times 147

Consider the filtration FV
t on C([0,∞)) defined by the formula

FV
t =

⋂
ε>0

σ(Vs; s ∈ [0, t+ ε]).

Since the process V is Fτt -adapted and the filtration Fτt is right-continuous,
we have FV

t ⊆ Fτt . Consequently, ρ(V ) is an (Fτt)-stopping time. By [33,
Ch. V, Ex. 1.12], τρ(V ) is an (F t)-stopping time. Due to [12, Ch. I, Lem. 1.19],
there exists an (Ft)-stopping time ξ′ such that ξ′ = τρ(V ) P-a.s. Finally,
(5.31) implies that 0 < ξ′ < ξ P-a.s. ��

Now, let us introduce some notations. Suppose that a, c ∈ [−∞,∞]. In
Setting 1 or in Setting 2, define

Ta = inf{t ∈ [0,∞) : Xt = a}, (5.32)
Ta,c = Ta ∧ Tc. (5.33)

Note that if a = −∞ or a =∞, then Ta =∞. Similarly, for a process Y , we
use the notations

Ta(Y ) = inf{t ∈ [0,∞) : Yt = a}, (5.34)
Ta,c(Y ) = Ta(Y ) ∧ Tc(Y ). (5.35)

Below in this section, we use the notations ρ, s, s(∞), s(−∞) introduced
in (5.6)–(5.9). Let us define the function κ by the formula

κ(x) = ρ(s−1(x))σ(s−1(x)), x ∈ s(R). (5.36)

We need a more detailed version of the Engelbert-Schmidt theorem than
Proposition 3 (see [7]).

Proposition 4 (Engelbert, Schmidt). Suppose that the coefficients b and
σ of (5.1) satisfy conditions (5.2) and (5.3).
(i) Then, for any starting point x0 ∈ R, there exists a unique solution

of (5.1) in the sense of Definition 6.
(ii) Let Px0 denote this solution. Consider a stochastic basis

(Ω,G, (Gt)t∈[0,∞),Q) with a right-continuous and complete filtration. Let B
be a (Gt,Q)-Brownian motion with the starting point s(x0). Define the process
(At)t∈[0,∞) and the (Gt)-time-change (τt)t∈[0,∞) by the formulas

At =

{∫ t
0
κ−2(Bs) ds if t < Ts(−∞),s(∞)(B),

∞ if t ≥ Ts(−∞),s(∞)(B),
(5.37)

τt = inf{s ∈ [0,∞) : As > t}. (5.38)

Then
Px0 = Law

(
s−1(Bτt); t ∈ [0,∞)

∣∣Q),
where we set s−1(s(∞)) = s−1(s(−∞)) = ∆.
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Remark. Propositions A.1 and A.3 may easily be derived from the second
part of Proposition 4.

Lemma 5.6. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3). Additionally assume that s(∞) < ∞. Denote by P the
solution of (5.1) in the sense of Definition 6 (so, we consider Setting 2). Let
a < x0 and f be a positive Borel function such that f/σ2 ∈ L1loc([a,∞)).
(i) If (s(∞)− s)f/(ρσ2) ∈ L1loc(∞), then∫ ζ

0

f(Xt) dt <∞ P-a.s. on the set {Ta =∞}

(recall that ζ denotes the explosion time of X).
(ii) If (s(∞)− s)f/(ρσ2) /∈ L1loc(∞), then∫ ζ

0

f(Xt) dt =∞ P-a.s. on the set {Ta =∞}.

Remark. Due to Proposition A.1, limt↑ζ Xt = ∞ P-a.s. on the set {Ta =
∞}. Therefore, Lemma 5.6 deals, in fact, with the convergence of some inte-
grals on the trajectories that tend to ∞ or explode to ∞. Clearly, this lemma
has its analog for the trajectories that tend to −∞ or explode to −∞.

Proof of Lemma 5.6. We prove only the first part. The proof of the second
one is analogous.

Consider a stochastic basis (Ω,G, (Gt)t∈[0,∞),Q) with a right-continuous
and complete filtration and let B be a (Gt,Q)-Brownian motion with the
starting point s(x0). Define the process (At)t∈[0,∞) and the (Gt)-time-change
(τt)t∈[0,∞) by formulas (5.37) and (5.38). Set ξ = ATs(−∞),s(∞)(B)−.

Proposition 4 yields that the convergence of the integral
∫ ζ
0
f(Xt) dt

P-a.s. on the set {Ta = ∞} is equivalent to the convergence of the integral∫ ξ
0
f(s−1(Bτt)) dt Q-a.s. on the set {Ts(∞)(B) < Ts(a)(B)}. By the change of

variables in the Stieltjes integral, we get∫ ξ

0

f(s−1(Bτt)) dt =
∫ ξ

0

f(s−1(Bτt)) dAτt =
∫ τξ

0

f(s−1(Bt)) dAt

=
∫ Ts(−∞),s(∞)(B)

0

f

ρ2σ2
(s−1(Bt)) dt.

Set
g(x) =

f

ρ2σ2
(s−1(x)), x ∈ s(R).

Since Ts(−∞),s(∞)(B) = Ts(∞)(B) on the set {Ts(∞)(B) < Ts(a)(B)},
then the problem reduces to investigating the convergence of the integral∫ Ts(∞)(B)

0
g(Bt) dt Q-a.s. on the set {Ts(∞)(B) < Ts(a)(B)}.



Separating Times 149

Since (s(∞)− s)f/(ρσ2) ∈ L1loc(∞), then

∃ ε > 0:
∫ s(∞)

s(∞)−ε
(s(∞)− x)g(x) dx <∞.

As f/σ2 ∈ L1loc([a,∞)), we have g ∈ L1loc([s(a), s(∞))). Now, we need to use
the results of the paper [2], where the convergence of some integrals associated
with Bessel processes is investigated. By [2, Th. 2.2],∫ Ts(a)(s(∞)−Y )

0

g(s(∞)− Y ) dt <∞ R2+-a.s.,

where Y is a three-dimensional Bessel process started at zero and defined on
a probability space with a measure R2+. Set Zt = s(∞)− Yt, t ∈ [0,∞). Then∫ Us(x0)(Z)

0

g(Zt) dt <∞ R2+-a.s. on the set {Us(x0)(Z) < Ts(a)(Z)},

where we use the notation Uc(Z) = sup{t ∈ [0,∞) : Zt = c}. Now, the
Williams theorem (see [33, Ch. VII, Cor. 4.6]), combined with the last formula,
yields∫ Ts(∞)(B)

0

g(Bt) dt <∞ Q-a.s. on the set {Ts(∞)(B) < Ts(a)(B)}.

This completes the proof. ��
In what follows, µL denotes the Lebesgue measure on B(R).

Lemma 5.7. Assume that the coefficients b and σ of (5.1) satisfy condi-
tions (5.2) and (5.3). Additionally assume that s(−∞) = −∞ and s(∞) =∞.
Denote by P the solution of (5.1) in the sense of Definition 6 (so, we consider
Setting 2). Let f be a positive Borel function such that µL(f > 0) > 0. Then∫ ∞

0

f(Xt) dt =∞ P-a.s.

(Let us recall that, by Propositions A.1 and A.2, ζ = ∞ P-a.s. whenever
s(∞) =∞ and s(−∞) = −∞.)

Remark. Lemmas 5.6 and 5.7 complement each other. Indeed, Lemma 5.6
deals with the convergence of some integrals on the trajectories that tend to
∞ (or to −∞), while Lemma 5.7 deals with the convergence of some integrals
on the trajectories that are recurrent.

Proof of Lemma 5.7. Using a reasoning similar to that of the previous lemma,
we see that we need to prove the equality

∫∞
0
g(Bt) dt = ∞ Q-a.s., where

g(x) = f
ρ2σ2 (s−1(x)), x ∈ R, and B is a Q-Brownian motion defined on some
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probability space. It is known that local times of a Brownian motion satisfy
Lx
∞(B) = ∞ for all x ∈ R (see [33, Ch. VI, Cor. 2.4]). By the occupation

times formula (see [33, Ch. VI, Cor. 1.6]),∫ ∞
0

g(Bt) dt =
∫

R

g(x)Lx
∞(B) dx =∞ Q-a.s.

The proof is completed. ��
Let Y be a continuous semimartingale on some stochastic basis. Below in

this section, we use the notation Lx
t (Y ) (t ∈ [0,∞), x ∈ R) for the local time

of a process Y spent at a point a by a time t. We take versions of local times
that are càdlàg in x and use the notation Lx−

t (Y ) := limε↓0 L
x−ε
t (Y ).

Lemma 5.8. Assume that the coefficients b, σ and b̃, σ̃ of (5.4) and (5.5)
satisfy conditions (5.2) and (5.3) and that the solutions are non-exploding.
Let P and P̃ be the solutions of (5.4) and (5.5) in the sense of Definition 5
(so, we consider Setting 1). Suppose that the condition

∀ ε > 0, µL((x0 − ε, x0 + ε) ∩ {σ2 �= σ̃2}) > 0 (5.39)

or the condition
(̃b− b)2

σ4
/∈ L1loc(x0) (5.40)

is satisfied. Then P̃0 ⊥ P0 (let us recall that P0 and P̃0 denote the restrictions
of P and P̃ to the σ-field F0).

Proof. 1) Let us first assume that condition (5.39) holds. By the occupation
times formula (see [33, Ch. VI, Cor. 1.6]),∫ t

0

I{σ2 �=σ̃2}(Xu)σ2(Xu) du =
∫ t

0

I{σ2 �=σ̃2}(Xu) d〈X〉u

=
∫

R

I{σ2 �=σ̃2}(x)L
x
t (X) dx P-a.s.

It follows from [4, Th. 2.7] that Lx0
t (X) > 0 and Lx0−

t (X) > 0 P-a.s. for any
t > 0. Therefore, for any t > 0,∫ t

0

I{σ2 �=σ̃2}(Xu)σ2(Xu) du > 0 P-a.s.

Hence, for any t > 0,

P

(
∃ 0 < s ≤ t :

∫ s

0

σ2(Xu) du �=
∫ s

0

σ̃2(Xu) du
)
= 1,

and consequently,
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P

(
∀ t > 0 ∃ 0 < s ≤ t :

∫ s

0

σ2(Xu) du �=
∫ s

0

σ̃2(Xu) du
)
= 1. (5.41)

Let us recall that P-quadratic variation (resp., P̃-quadratic variation) of X
at time s equals

∫ s
0
σ2(Xu) du P-a.s. (resp.,

∫ s
0
σ̃2(Xu) du P̃-a.s.). Therefore,

for any sequence (∆n) of subdivisions of the interval [0, s] whose diameters
tend to 0, we have∫ s

0

σ2(Xu) du = P- lim
n→∞

∑
ti∈∆n

(Xti −Xti−1)
2

and ∫ s

0

σ̃2(Xu) du = P̃- lim
n→∞

∑
ti∈∆n

(Xti −Xti−1)
2.

Now, consider all rational times s. By extracting a.s. converging subse-
quences and using Cantor’s diagonal method, we see that (5.41) implies the
desired result P̃0 ⊥ P0.
2) Assume now that condition (5.40) holds. Denote by S the separating

time for P and P̃. Due to Lemma 5.4, the σ-field F0 is trivial with respect to
each of the measures P and P̃. Combining this with Lemma 2.1, we obtain
that either S = 0 P, P̃-a.s. or S > 0 P, P̃-a.s. Let us prove that the second
variant is not possible.

Suppose, on the contrary, that S > 0 P, P̃-a.s. (or, equivalently, P̃0 �⊥ P0).
By Lemma 5.5, there exist stopping times τ ′ and τ ′′ such that 0 < τ ′ < S P-a.s.
and 0 < τ ′′ < S P̃-a.s. Set τ = τ ′ ∧ τ ′′. Then it follows from our assumption
P̃0 �⊥ P0 and from the fact that F0 is both P- and P̃-trivial that 0 < τ <
S P, P̃-a.s. Hence, P̃τ ∼ Pτ .

Consider the càdlàg (Ft,P)-martingale

Zt = EP

(
dP̃τ

dPτ

∣∣∣∣Ft

)
, t ∈ [0,∞).

Notice that Z is a uniformly integrable martingale with a limit Z∞ = dP̃τ

dPτ
.

Since Z∞ > 0 P-a.s., the processes Z and Z− are strictly positive P-a.s.
(see [12, Ch. III, Lem. 3.6]). Set

Lt =
∫ t

0

1
Zu−

dZu, t ∈ [0,∞).

The (Ft,P)-local martingale L is well defined. Clearly, we have Z = Z0 E(L)
(i.e. Z is a stochastic exponent of L). Since P is a unique solution of (5.4), any
(Ft,P)-local martingale is a stochastic integral with respect to the local mar-
tingale Y (see [12, Ch. III, Th. 4.29]), where Y is the continuous martingale
part of the (Ft,P)-semimartingale X, i.e.
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Yt = Xt −
∫ t

0

b(Xu) du, t ∈ [0,∞).

In particular, there exists a predictable process β such that∫ t

0

β2u d〈Y 〉u <∞ P-a.s., t ∈ [0,∞)

and

Lt =
∫ t

0

βu dYu P-a.s., t ∈ [0,∞).

This yields that the process L is continuous.
Consider the measure Q = Z∞ · P. Then Qτ = P̃τ . It follows from Gir-

sanov’s theorem for local martingales (see [12, Ch. III, Th. 3.11]) that the
process Y − 〈Y,L〉 is an (Ft,Q)-local martingale. We have

〈Y,L〉t =
∫ t

0

βu d〈Y 〉u =
∫ t

0

βuσ
2(Xu) du P-a.s., t ∈ [0,∞).

For any t ∈ [0,∞), set

Mt =


Xt∧τ −

∫ t∧τ

0

(b(Xu) + βuσ
2(Xu)) du if

∫ t∧τ

0

(|b(Xu)|

+|βu|σ2(Xu)) du <∞,

∞ otherwise.

The process M is finite and continuous with respect to P. Hence, it is finite
and continuous with respect to Q. Since Qτ = P̃τ and Mt is Fτ -measurable
for any t ∈ [0,∞), the process M is finite and continuous also with respect to
the measure P̃. Furthermore, as M = (Y − 〈Y,L〉)τ Q-a.s., M is an (Ft,Q)-
martingale. Consider the stopping times

ηn = inf{t ∈ [0,∞) : |Mt| > n}, n ∈ N.

Clearly, ηn ↑ ∞ P, P̃-a.s. and Mηn is an (Ft,Q)-martingale for any n ∈ N.
Since Qτ = P̃τ , then, for any s < t and B ∈ Fs, we have

E
P̃
[IB(M

ηn
t −Mηn

s )] = E
P̃
[IB∩{s<τ}(M

ηn
t −Mηn

s )]

= EQ[IB∩{s<τ}(M
ηn
t −Mηn

s )]
= EQ[IB(M

ηn
t −Mηn

s )] = 0.

Hence, M is an (Ft, P̃)-local martingale. Consequently, as P̃ is a solution
of (5.5), the process

Nt =
∫ t∧τ

0

b(Xu) du+
∫ t∧τ

0

βuσ
2(Xu) du−

∫ t∧τ

0

b̃(Xu) du, t ∈ [0,∞)
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is well defined with respect to P̃ and is a continuous (Ft, P̃)-local martingale
of locally bounded variation. This means that N = 0 P̃-a.s. Thus, we have

P̃

(
∀ t ∈ [0,∞) :

∫ t∧τ

0

(b(Xu) + βuσ
2(Xu)) du =

∫ t∧τ

0

b̃(Xu) du
)
= 1.

As P̃τ ∼ Pτ , we get

P

(
∀ t ∈ [0,∞),

∫ t∧τ

0

(b(Xu) + βuσ
2(Xu)) du =

∫ t∧τ

0

b̃(Xu) du
)
= 1. (5.42)

Now, let us recall that Lx0
t (X) > 0 and Lx0−

t (X) > 0 P-a.s. for any t > 0
(see [4, Th. 2.7]). Then it follows from the occupation times formula and (5.40)
that, for any t > 0,∫ t

0

(̃b− b)2

σ2
(Xu) du =

∫ t

0

(̃b− b)2

σ4
(Xu) d〈X〉u

=
∫

R

(̃b− b)2

σ4
(x)Lx

t (X) dx =∞ P-a.s.

Thus,

P

(
∀ t ∈ (0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du =∞

)
= 1. (5.43)

Let us recall that τ > 0 P-a.s. and
∫ t
0
β2uσ

2(Xu) du < ∞ P-a.s., t ∈ [0,∞).
Therefore, conditions (5.42) and (5.43) contradict each other. As a result,
S = 0, which means that P̃0 ⊥ P0. ��

Lemma 5.9. Assume that the coefficients b, σ and b̃, σ̃ satisfy condi-
tions (5.2) and (5.3). Let P and P̃ be the solutions of (5.4) and (5.5) in
the sense of Definition 6 (so, we consider Setting 2). Let a and c be real num-
bers such that −∞ < a < x0 < c <∞ and [a, c] ⊆ [−∞,∞] \A (recall that A
denotes the complement to the set of good points). Then P̃Ta,c

∼ PTa,c
and

dP̃Ta,c

dPTa,c

= exp

{∫ Ta,c

0

b̃− b

σ2
(Xu) dYu −

1
2

∫ Ta,c

0

(̃b− b)2

σ2
(Xu) du

}
, (5.44)

where the integrals are taken with respect to the measure P and Y is a contin-
uous (Ft,P)-local martingale defined by the formula

Yt = Xt∧Ta,c
−
∫ t∧Ta,c

0

b(Xu) du, t ∈ [0,∞).

Remark. Since P is a solution of (5.4), then Y is an (Ft,P)-local martingale
with the quadratic variation
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〈Y 〉t =
∫ t∧Ta,c

0

σ2(Xu) du, t ∈ [0,∞).

Hence,∫ Ta,c

0

(̃b− b)2

σ2
(Xu) du =

∫ Ta,c

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u P-a.s. (5.45)

Let us show that this integral is finite P-a.s. By the occupation times formula
(see [33, Ch. VI, Cor. 1.6]),∫ Ta,c

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u =

∫ Ta,c

0

(̃b− b)2

σ4
(XTa,c

u ) d〈XTa,c〉u

=
∫

R

(̃b− b)2

σ4
(x)Lx

Ta,c
(XTa,c) dx P-a.s.

(We consider the local time of the process XTa,c rather than of X because X
may explode.) Since [a, c] ⊆ [−∞,∞] \ A, then (̃b − b)2/σ4 ∈ L1loc([a, c]). As
P-a.s. the process (Lx

Ta,c
(XTa,c))x∈R is equal to zero outside [a, c], we have∫ Ta,c

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u <∞ P-a.s. (5.46)

Proof of Lemma 5.9. 1) Since A is a closed subset of [−∞,∞], there exist a′

and c′ such that −∞ < a′ < a, c < c′ <∞, and [a′, c′] ⊆ [−∞,∞] \A. Let us
define a continuous (Ft,P)-local martingale Y ′ by the formula

Y ′t = Xt∧Ta′,c′ −
∫ t∧Ta′,c′

0

b(Xu) du, t ∈ [0,∞).

Note that ∫ Ta′,c′

0

(̃b− b)2

σ2
(Xu) du <∞ P, P̃-a.s. (5.47)

(This follows from the analogs of (5.45) and (5.46) for the process Y ′ instead
of Y .) Fix an arbitrary n ∈ N, n > 1. Consider the stopping time

τ = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du ≥ n

}
(5.48)

(we set (̃b−b)2
σ2 (∆) = 0). Consider a continuous (Ft,P)-local martingale

Lt =
∫ t∧Ta′,c′∧τ

0

b̃− b

σ2
(Xu) dY ′u, t ∈ [0,∞) (5.49)

(L is well defined due to (5.47)). We have
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EP exp
{
1
2
〈L〉∞

}
= EP exp

{
1
2

∫ Ta′,c′∧τ

0

(̃b− b)2

σ2
(Xu) du

}
≤ En/2 <∞.

By Novikov’s criterion, the process Z = E(L) (i.e. Z is the stochastic exponent
of L) is a uniformly integrable (Ft,P)-martingale. Due to Girsanov’s theorem
for local martingales (see [12, Ch. III, Th. 3.11]), the process Y ′ − 〈Y ′, L〉
is a continuous (Ft,Q)-local martingale, where the probability measure Q is
defined by the formula Q = Z∞ · P. Note that for any t ∈ [0,∞),

Y ′t − 〈Y ′, L〉t

= Xt∧Ta′,c′ −
∫ t∧Ta′,c′

0

b(Xu) du−
∫ t∧Ta′,c′∧τ

0

(̃b− b)(Xu) du Q-a.s.

Consider the process

Mt = Xt∧Ta′,c′∧τ −
∫ t∧Ta′,c′∧τ

0

b̃(Xu) du, t ∈ [0,∞). (5.50)

It is well defined with respect to Q and M = (Y ′−〈Y ′, L〉)τ Q-a.s. Therefore,
M is a continuous (Ft,Q)-local martingale with the quadratic variation

〈M〉t =
∫ t∧Ta′,c′∧τ

0

σ2(Xu) du, t ∈ [0,∞).

Using the occupation times formula and the fact that σ2 = σ̃2 µL-a.e. on
[a′, c′], we get

〈M〉t =
∫ t∧Ta′,c′∧τ

0

σ̃2(Xu) du, t ∈ [0,∞). (5.51)

2) Let us define the functions ρ̃, s̃, and κ̃ through b̃ and σ̃ similarly to (5.6),
(5.7), and (5.36). Consider the process N = s̃(XTa′,c′∧τ ). By the Ito-Tanaka
formula (see [33, Ch. VI, Th. 1.5]) applied under the measure Q,

Nt = s̃(x0) +
∫ t

0

ρ̃
(
X

Ta′,c′∧τ
u

)
dMu, t ∈ [0,∞).

Hence, N is a continuous (Ft,Q)-local martingale with the quadratic variation

〈N〉t =
∫ t∧Ta′,c′∧τ

0

κ̃2(Nu) du, t ∈ [0,∞).

Since σ̃(x) �= 0 for any x ∈ R, we have that Q-a.s. the trajectories of 〈N〉 are
continuous and strictly increasing up to the time Ta′,c′ ∧ τ and they are con-
stant after Ta′,c′ ∧ τ . Let F denote the Q-completion of the σ-field F and (F t)
denote the Q-completion of the filtration (Ft). Define an (F t)-time-change by
the formula
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ξt = inf{s ∈ [0,∞) : 〈N〉s > t}, t ∈ [0,∞).

Consider an (F ′t,P′)-Brownian motion W ′ on a stochastic basis
(Ω′,F ′, (F ′t),P′) and set

Ω = C∆([0,∞))×Ω′, G = F ×F ′, Gt =
⋂
ε>0

Fξt+ε
×F ′t+ε, R2+ = Q×P′.

Denote by G the R2+-completion of the σ-field G and by (Gt) the R2+-
completion of the filtration (Gt). Consider the stochastic basis (Ω,G, (Gt), R2+).
All the random variables and the processes defined on C∆([0,∞)) or on Ω′

can be viewed as random variables and processes on Ω. In what follows, we
do not explain on which space we consider a random variable or a process if
this is clear from the context.

Set
Wt = Nξt +W ′t −W ′t∧〈N〉∞ , t ∈ [0,∞).

By the Dambis-Dubins-Schwartz theorem (see [33, Ch. V, Th. 1.6]), the
process W = (Wt)t∈[0,∞) is a (Gt, R

2
+)-Brownian motion with the starting

point s̃(x0).
As Q-a.s. the trajectories of 〈N〉 are continuous, we have

〈N〉ξt = t Q-a.s. on the set {t < 〈N〉∞},

i.e. ∫ ξt

0

κ̃2(Nu) du = t Q-a.s. on the set {t < 〈N〉∞}.

As Q-a.s. the trajectories of 〈N〉 are strictly increasing up to the time
Ta′,c′ ∧ τ , we have that Q-a.s. the trajectories of ξ are continuous up to the
time 〈N〉∞. By the change of variables in the Stieltjes integral, we get∫ t

0

κ̃2(Nξu) dξu = t Q-a.s. on the set {t < 〈N〉∞},

and hence,

ξt =
∫ t

0

κ̃−2(Nξu) du Q-a.s. on the set {t < 〈N〉∞}.

Clearly, ξt =∞ whenever t ≥ 〈N〉∞. Therefore, R2+-a.s. for any t ∈ [0,∞),

ξt =

{∫ t
0
κ̃−2(Wu) du if t < 〈N〉∞,

∞ if t ≥ 〈N〉∞.

Using the occupation times formula, it is easy to verify that P-a.s. we have

∀ t < 〈N〉∞,
∫ ξt

0

(̃b− b)2

σ2
(Xu) du =

∫ ξt

0

(̃b− b)2

σ̃2
(Xu) du.
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By the change of variables in the Stieltjes integral, R2+-a.s. we get

∀ t < 〈N〉∞,
∫ ξt

0

(̃b− b)2

σ̃2
(Xu) du =

∫ ξt

0

(̃b− b)2

σ̃2
(s̃−1(Nu)) du

=
∫ t

0

(̃b− b)2

σ̃2
(s̃−1(Nξu)) dξu

=
∫ t

0

(̃b− b)2

ρ̃ 2σ̃4
(s̃−1(Wu)) du.

(5.52)

Letting t ↑ 〈N〉∞ in (5.52), we get∫ Ta′,c′∧τ

0

(̃b− b)2

σ2
(Xu) du =

∫ 〈N〉∞
0

(̃b− b)2

ρ̃ 2σ̃4
(s̃−1(Wu)) du R2+-a.s. (5.53)

Set

η(W ) = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

ρ̃ 2σ̃4
(s̃−1(Wu)) du ≥ n

}

(we set (̃b−b)2

ρ̃ 2σ̃4
(s̃−1(x)) = 0 if x /∈ s̃(R)), where n is the number that appears

in (5.48). Let us now prove the equality

〈N〉∞ = T
s̃(a′),̃s(c′)

(W ) ∧ η(W ) R2+-a.s. (5.54)

For this, note that∫ Ta′,c′∧τ

0

(̃b− b)2

σ2
(Xu) du = n P-a.s. on the set {τ < Ta′,c′}. (5.55)

Indeed, condition (5.55) may be violated only if the integral is less than n

and the process
(∫ t
0
(̃b−b)2
σ2 (Xu) du

)
t∈[0,∞) jumps to infinity at time τ . But

P-a.s. this cannot happen on the set {τ < Ta′,c′} since (5.47) holds. More-
over, as ξ〈N〉∞− = Ta′,c′ ∧ τ , we have 〈N〉∞ ≥ T

s̃(a′),̃s(c′)
(W ) R2+-a.s. on the

set {Ta′,c′ ≤ τ}. By (5.53) and (5.55), 〈N〉∞ ≥ η(W ) R2+-a.s. on the set
{τ < Ta′,c′}. Thus, 〈N〉∞ ≥ T

s̃(a′),̃s(c′)
(W ) ∧ η(W ) R2+-a.s. Finally, the re-

verse inequality easily follows from (5.52). So, statement (5.54) is proved.
It follows from the reasoning above that R2+-a.s. for any t ∈ [0,∞),

ξt =


∫ t

0

κ̃−2(Wu) du if t < T
s̃(a′),̃s(c′)

(W ) ∧ η(W ),

∞ if t ≥ T
s̃(a′),̃s(c′)

(W ) ∧ η(W ).

Let us recall that

〈N〉t = inf{s ∈ [0,∞) : ξs > t} Q-a.s., t ∈ [0,∞),

Nt =W〈N〉t R2+-a.s., t ∈ [0,∞),

XTa′,c′∧τ = s̃−1(N).
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So, we obtain an explicit construction of the measure Law
(
XTa′,c′∧τ

∣∣Q)
through the Wiener measure. Furthermore, as P̃ is a solution of (5.5), the
process M introduced in (5.50) is a continuous (Ft, P̃)-local martingale with
the same quadratic variation as in formula (5.51). Therefore, repeating the
reasoning of part 2) with the measure P̃ instead of Q, we obtain that the
measure Law

(
XTa′,c′∧τ

∣∣P̃) can be constructed from the Wiener measure in
the same way as Law

(
XTa′,c′∧τ

∣∣Q). Thus,
Law

(
XTa′,c′∧τ

∣∣P̃) = Law
(
XTa′,c′∧τ

∣∣Q). (5.56)

3) Consider the stopping time

ρ = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du ≥ n− 1

}
,

where n appears in (5.48). Using (5.55) and the analogous condition for the
measure P̃, we get Ta,c ∧ ρ < Ta′,c′ ∧ τ P, P̃-a.s. Applying Lemma 5.2, we
obtain that P, P̃-a.s. for any event B ∈ FTa,c∧ρ,

X ∈ B ⇐⇒ XTa′,c′∧τ ∈ B.

Then, due to (5.56), for any B ∈ FTa,c∧ρ, we have

P̃(B) = P̃(X∈B) = P̃(XTa′,c′∧τ ∈B)
= Q(XTa′,c′∧τ ∈B) = Q(X∈B) = Q(B).

Consequently, the measures Q and P̃ coincide on the σ-field FTa,c∧ρ. Let us
now recall that Q = Z∞ ·P, where the uniformly integrable (Ft,P)-martingale
Z is defined by the formula Z = E(L) and L is defined in (5.49). Hence,
P̃Ta,c∧ρ ∼ PTa,c∧ρ and

dP̃Ta,c∧ρ
dPTa,c∧ρ

= EP(Z∞|FTa,c∧ρ) = ZTa,c∧ρ. (5.57)

4) Now, let us use the notation

τn = inf

{
t ∈ [0,∞) :

∫ t

0

(̃b− b)2

σ2
(Xu) du ≥ n

}
, n ∈ N.

(We fixed some n ∈ N above and considered stopping times τn and τn−1,
which were denoted by τ and ρ for the simplicity of notation. Below we need
to use all τn. That is why we now change the notation.) By (5.57),
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dP̃Ta,c∧τn
dPTa,c∧τn

= exp

{∫ Ta,c∧τn

0

b̃− b

σ2
(Xu)dY ′u −

1
2

∫ Ta,c∧τn

0

(̃b− b)2

σ2
(Xu)du

}
. (5.58)

It follows from (5.47) that

lim
n→∞

τn ≥ Ta′,c′ > Ta,c P, P̃-a.s. (5.59)

As a consequence, we get

FTa,c
=
∞∨
n=1

FTa,c∧τn (5.60)

up to events of P, P̃-zero measure. (Indeed, the inclusion FTa,c
⊆
∨∞

n=1 FTa,c∧τn
follows from the formula

B =
∞⋃
n=1

(B ∩ {Ta,c = Ta,c ∧ τn}) P, P̃-a.s.,

and the reverse inclusion is obvious.) Formulas (5.58), (5.59), and (5.60) imply
that

dP̃Ta,c

dPTa,c

= exp

{∫ Ta,c

0

b̃− b

σ2
(Xu) dY ′u −

1
2

∫ Ta,c

0

(̃b− b)2

σ2
(Xu) du

}
, (5.61)

where by dP̃Ta,c

dPTa,c
we denote the density of the absolutely continuous part of

the measure P̃Ta,c
with respect to the measure PTa,c

. Since dP̃Ta,c

dPTa,c
> 0 P-a.s.,

we get PTa,c
0 P̃Ta,c

. Due to the symmetry between P and P̃, P̃Ta,c
0 PTa,c

.
Thus, P̃Ta,c

∼ PTa,c
and the density of P̃Ta,c

with respect to PTa,c
is given

by formula (5.61). Finally, it is clear that the process Y ′ in (5.61) may be
replaced by Y . ��

Before passing on to the proof of Theorem 5.1, we need one more technical
lemma.

Lemma 5.10. In Setting 2, consider a ∈ R and a sequence (cn) such that
c1 > a, cn+1 > cn, and cn ↑ ∞. Then FTa

=
∨∞

n=1 FTa,cn
.

Proof. Consider the collection D of sets B ∈ F such that

B ∩ {Ta =∞, lim
t↑ζ

Xt =∞} ∈
∞∨
n=1

FTa,cn
.
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Notice that

{Ta =∞, lim
t↑ζ

Xt =∞} =
∞⋂
n=1

{XTa,cn
I(Ta,cn <∞) = cn} ∈

∞∨
n=1

FTa,cn
.

(5.62)
Now, one can easily check that D is a σ-field. Since for any t ∈ [0,∞) and
d ∈ R,

{Xt < d} ∩ {Ta =∞, lim
t↑ζ

Xt =∞}

=

[ ∞⋃
n=1

(
{Ta,cn > t} ∩ {Xt∧Ta,cn

< d}
)]
∩ {Ta =∞, lim

t↑ζ
Xt =∞},

then by applying (5.62), we obtain D = σ(Xt; t ∈ [0,∞)) = F .
Now, the inclusion FTa

⊆
∨∞

n=1 FTa,cn
follows from the formula

B =

[ ∞⋃
n=1

(
B ∩ {Ta = Ta,cn}

)]
∪
(
B ∩ {Ta =∞, lim

t↑ζ
Xt =∞}

)
,

and the reverse inclusion is obvious. ��
Proof of Theorem 5.1. We should prove only (ii). Therefore, below we assume
that P �= P̃. Set

τ = sup
n

inf{t ∈ [0,∞) : Xt ∈ A1/n}.

Let us prove that the separating time S equals τ . Denote by α the “bad point
that is closest to x0 from the left side” (see (5.14)). Similarly, denote by γ the
“bad point that is closest to x0 from the right side”. It is convenient for us to
set

α′ =

{
−∞ if α = ∆,

α if α �= ∆

and

γ′ =

{
∞ if γ = ∆,

γ if γ �= ∆.

If x0 /∈ A (or, equivalently, α′ < x0 < γ′), then we consider sequences (an)
and (cn) such that a1 < x0 < c1, an+1 < an, an ↓ α′, cn+1 > cn, and cn ↑ γ′.

The proof consists of two parts.
I. Let us first prove that S ≥ τ P, P̃-a.s. If x0 ∈ A, then τ = 0 and this

inequality is obvious. Therefore, we consider the case x0 /∈ A. By Lemma 5.9,
P̃Tan,cn

∼ PTan,cn
for any n ∈ N, and hence, S > Tan,cn P, P̃-a.s.

Suppose that α �= ∆ and γ �= ∆. Clearly, in this case Tan,cn ↑ τ P, P̃-a.s..
Thus, we obtain the desired inequality S ≥ τ P, P̃-a.s.

Suppose now that α = ∆ or γ = ∆. In this case Tan,cn ↑ τ ∧ ζ P, P̃-a.s.,
and hence,
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S ≥ τ ∧ ζ P, P̃-a.s. (5.63)

It is easy to establish that

{τ > ζ} = B−∞ ∪B∞ P, P̃-a.s., (5.64)

where

B−∞ =

{
{limt↑ζ Xt = −∞} ∩ {∀ t < ζ : Xt < γ′} if α = ∆,

∅ if α �= ∆,

B∞ =

{
{limt↑ζ Xt =∞} ∩ {∀ t < ζ : Xt > α′} if γ = ∆,

∅ if γ �= ∆.

Let us prove that P̃ ∼ P on the set B∞. If γ �= ∆, then this is obvious.
Therefore, we consider the case γ = ∆. Fix a ∈ (α′, x0) and define continuous
(Ft,P)-local martingales Y n, Ln, and Zn by the formulas

Y n
t = Xt∧Ta,cn

−
∫ t∧Ta,cn

0

b(Xu) du, t ∈ [0,∞),

Ln
t =

∫ t∧Ta,cn

0

b̃− b

σ2
(Xu) dY n

u , t ∈ [0,∞),

Zn
t = exp

{
Ln
t −

1
2
〈Ln〉t

}
, t ∈ [0,∞).

Note that the process Ln is well defined with respect to the measure P (see the
Remark following Lemma 5.9). Clearly, Zn = E(Ln) (i.e. Zn is the stochastic
exponent of Ln). Set T = Ta ∧ ζ. Since Ta,cn ↑ T P-a.s. and

Ln+1
t = Ln

t P-a.s. on the set {t < Ta,cn},
Zn+1
t = Zn

t P-a.s. on the set {t < Ta,cn},

we can define continuous (Ft,P)-local martingales L and Z on the stochastic
interval [0, T ) (for the definition of a process on a stochastic interval, see [33,
Ch. IV, Ex. 1.48]) such that

Lt = Ln
t P-a.s. on the set {t < Ta,cn},

Zt = Zn
t P-a.s. on the set {t < Ta,cn}.

Notice that

Zt = exp
{
Lt −

1
2
〈L〉t

}
, t ∈ [0, T )

and

〈L〉t =
∫ t

0

(̃b− b)2

σ2
(Xu) du, t ∈ [0, T ).
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Since Z is positive, it converges P-a.s. as t ↑ T to a finite random variable
ZT (this follows from the Dambis-Dubins-Schwartz theorem for continuous
local martingales on a stochastic interval; see [33, Ch. V, Ex. 1.18]). Hence,

ZTa,cn
→ ZT P-a.s. Furthermore, due to Lemma 5.9, ZTa,cn

=
dP̃Ta,cn

dPTa,cn

, and

due to Lemma 5.10, FTa
=
∨∞

n=1 FTa,cn
. By the Jessen theorem (see [42,

Th. 5.2.26]), ZT is the density of the absolutely continuous part of the measure
P̃Ta

with respect to the measure PTa
.

Applying Lemma 5.6 to the function f = (̃b − b)2/σ2, we get 〈L〉T < ∞
P-a.s. on the set {Ta = ∞} (recall that we consider the case γ = ∆, i.e.
∞ is a good point). Clearly, 〈L〉T < ∞ P-a.s. on the set {Ta < ∞}. Hence,
〈L〉T < ∞ P-a.s. It follows now from the Dambis-Dubins-Schwartz theorem
for continuous local martingales on a stochastic interval that ZT > 0 P-a.s.
Consequently, PTa

0 P̃Ta
.

Since ∞ is a good point, s(∞) <∞. By Proposition A.3, P(Ta =∞) > 0.
As PTa

0 P̃Ta
, we get P̃(Ta =∞) > 0. Hence, s̃(∞) <∞. Now, let us prove

that the condition

(s̃(∞)− s̃ )
(b− b̃)2

ρ̃ σ̃4
∈ L1loc(∞). (5.65)

holds. For this, apply the above reasoning to P instead of P̃. Define continuous
(Ft, P̃)-local martingales L̃ and Z̃ on the stochastic interval [0, T ) similarly to
the processes L and Z. Then Z̃T is the density of the absolutely continuous
part of the measure PTa

with respect to the measure P̃Ta
. If condition (5.65)

does not hold, then, by Lemma 5.6, 〈L̃〉T = ∞ P̃-a.s. on the set {Ta = ∞}.
Due to the Dambis-Dubins-Schwartz theorem for continuous local martingales
on a stochastic interval, we have lim t↑T L̃t = −∞ P̃-a.s. on the set {Ta =∞}.
Hence, P̃-a.s. on the set {Ta =∞} we get

Z̃T = lim
t↑T

Z̃t = exp

{
lim
t↑T

L̃t −
1
2
〈L̃〉T

}
= 0.

As a consequence, P̃Ta
⊥ PTa

on the set {Ta = ∞}, which contradicts the
conditions PTa

0 P̃Ta
and P(Ta =∞) > 0. Hence, condition (5.65) holds.

Since s̃(∞) < ∞ and condition (5.65) holds, we can repeat the above
reasoning using the processes L̃ and Z̃ instead of L and Z. As a result, we get
Z̃T > 0 P̃-a.s., and therefore, P̃Ta

0 PTa
.

Thus, P̃Ta
∼ PTa

. Hence, P̃ ∼ P on the set {Ta =∞}. Since a ∈ (α′, x0) is
arbitrary, and in view of the fact that the sets {Ta =∞} tend to B∞ P, P̃-a.s.
as a ↓ α′, we get that P̃ ∼ P on the set B∞. Similarly, P̃ ∼ P on the set
B−∞. Consequently, S = δ P, P̃-a.s. on the set B−∞ ∪ B∞. Combining this
with (5.63) and (5.64), we obtain the desired inequality S ≥ τ P, P̃-a.s.

II. Let us now prove that S ≤ τ P, P̃-a.s. Consider several cases.
1) Suppose that x0 ∈ A. Set
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b′(x) = b(x)I[x0−2,x0+2](x), x ∈ R,
b′′(x) = b̃(x)I[x0−2,x0+2](x), x ∈ R,
σ′(x) = σ(x), x ∈ R,
σ′′(x) = σ̃(x), x ∈ R

and consider the SDEs

dXt = b′(Xt) dt+ σ′(Xt) dBt, X0 = x0, (5.66)
dXt = b′′(Xt) dt+ σ′′(Xt) dBt, X0 = x0. (5.67)

The coefficients b′, σ′ and b′′, σ′′ satisfy conditions (5.2) and (5.3). Let P′

and P′′ denote the solutions of (5.66) and (5.67) in the sense of Definition 6.
By [4, Th. 2.11], PTx0−1,x0+1 = P′Tx0−1,x0+1

and P̃Tx0−1,x0+1 = P′′Tx0−1,x0+1
. It

follows from Propositions A.1 and A.2 that P′ and P′′ do not explode. Due to
Lemma 5.8, P′0 ⊥ P′′0 . Therefore, P̃0 ⊥ P0, and hence S = 0 P, P̃-a.s.

2) Suppose that −∞ < α < x0 < γ < ∞. Then τ = Tα,γ P, P̃-a.s. Since
Tα,γ <∞ P, P̃-a.s., then, using the strong Markov property of solutions of
SDEs (see [43, Th. 6.2] or [18, Th. 18.11]) and the result of 1), we obtain that
P̃Tα,γ

⊥ PTα,γ
. Hence, S ≤ Tα,γ = τ P, P̃-a.s.

3) Suppose that −∞ < α < x0, γ = ∞. Then τ = Tα ∧ ζ P, P̃-a.s.
Therefore, we need to prove that

S ≤ Tα P, P̃-a.s. on the set {Tα <∞} (5.68)

and
S ≤ ζ P, P̃-a.s. on the set {Tα =∞}. (5.69)

Condition (5.68) holds due to the strong Markov property of solutions
of SDEs. Prior to proving (5.69), let us notice that Fζ = F . Hence,
FTα∧ζ = FTα

∩ Fζ = FTα
.

If s(∞) =∞, then P(Tα =∞) = 0. Therefore, P̃Tα∧ζ ⊥ PTα∧ζ on the set
{Tα = ∞}. Consequently, S ≤ Tα ∧ ζ P, P̃-a.s. on the set {Tα = ∞} and it
follows that (5.69) holds.

Finally, let us prove (5.69) in the case, where s(∞) < ∞. For this, fix
a ∈ (α, x0), set T = Ta ∧ ζ, and consider the continuous (Ft,P)-local mar-
tingales L and Z on the stochastic interval [0, T ) introduced in part I of the
proof. By Lemma 5.6, 〈L〉T =∞ P-a.s. on the set {Ta =∞} (recall that here
∞ is a bad point). Due to the Dambis-Dubins-Schwartz theorem for continu-
ous local martingales on a stochastic interval, we have lim t↑T Lt = −∞ P-a.s.
on the set {Ta =∞}. Hence, P-a.s. on the set {Ta =∞} we get

ZT = lim
t↑T

Zt = exp

{
lim
t↑T

Lt −
1
2
〈L〉T

}
= 0.
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Since ZT is the density of the absolutely continuous part of the measure
P̃Ta

with respect to the measure PTa
, we have P̃Ta

⊥ PTa
on the set {Ta =

∞}. As FTa∧ζ = FTa
, we get P̃Ta∧ζ ⊥ PTa∧ζ on the set {Ta = ∞}. Hence,

S ≤ Ta ∧ ζ P, P̃-a.s. on the set {Ta = ∞}. Since a ∈ (α, x0) is arbitrary,
condition (5.69) is satisfied.

In a similar way, we consider the case, where α = −∞, x0 < γ <∞.
4) Suppose that −∞ < α < x0, γ = ∆. Then τ = inf{t ∈ [0,∞) : Xt = α}

P, P̃-a.s. Therefore, we need to prove only condition (5.68), and this follows
from the strong Markov property of solutions of SDEs.

In a similar way, we consider the case, where α = ∆, x0 < γ <∞.
5) Suppose that α = −∞, γ =∞. Then τ = ζ P, P̃-a.s. Let us first assume

that s(−∞) > −∞ or s(∞) < ∞. It follows from Propositions A.2 and A.3
that in this case

P({limt↑ζ Xt =∞} ∪ {limt↑ζ Xt = −∞}) = 1. (5.70)

Similarly to the proof of (5.69), we establish that S ≤ ζ P, P̃-a.s. on the set
{limt↑ζ Xt = ∞} and S ≤ ζ P, P̃-a.s. on the set {limt↑ζ Xt = −∞}. Hence,
by (5.70), P̃ ⊥ P. Since Fζ = F , we have P̃ζ ⊥ Pζ . Thus, S ≤ ζ = τ P, P̃-a.s.

Let us now assume that s(−∞) = −∞ and s(∞) =∞. Then the measure
P does not explode. Consider the continuous (Ft,P)-local martingale

Yt = Xt −
∫ t

0

b(Xu) du, t ∈ [0,∞).

By the occupation times formula (see [33, Ch. VI, Cor. 1.6]),∫ t

0

(̃b− b)2

σ4
(Xu) d〈Y 〉u =

∫ t

0

(̃b− b)2

σ4
(Xu) d〈X〉u

=
∫

R

(̃b− b)2

σ4
(x)Lx

t (X) dx <∞ P-a.s.,

since P-a.s. the process (Lx
t (X))x∈R is equal to zero outside a finite interval

(let us recall that in the case under consideration, (̃b − b)2/σ4 ∈ L1loc(R)).
Hence, the continuous (Ft,P)-local martingales

Lt =
∫ t

0

b̃− b

σ2
(Xu) dYu, t ∈ [0,∞)

and

Zt = exp
{
Lt −

1
2
〈L〉t

}
, t ∈ [0,∞)

are well defined with respect to the measure P (note that Z = E(L)). Since
Z is a positive (Ft,P)-local martingale, it converges P-a.s. as t → ∞ to a
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finite random variable Z∞. Consider sequences (an) and (cn) such that a1 <
x0 < c1, an+1 < an, an ↓ −∞, cn+1 > cn, and cn ↑ ∞. Then ZTan,cn

→

Z∞ P-a.s. By Lemma 5.9, ZTan,cn
=

dP̃Tan,cn

dPTan,cn

. By the Jessen theorem (see [42,
Th. 5.2.26]), Z∞ is the density of the absolutely continuous part of the measure
Q̃ with respect to the measure Q, where Q and Q̃ are the restrictions of P and
P̃ to the σ-field

∨∞
n=1 FTan,cn

.
Due to Lemma 5.7,

〈L〉∞ =
∫ ∞
0

(̃b− b)2

σ2
(Xu) du =∞ P-a.s.

Consequently,

Z∞ = lim
t→∞

Zt = exp
{
lim
t→∞

Lt −
1
2
〈L〉∞

}
= 0 P-a.s.

Hence, Q̃ ⊥ Q, i.e. P̃ ⊥ P. Since Fζ = F , we have P̃ζ ⊥ Pζ . Thus, S ≤ ζ = τ

P, P̃-a.s.
6) Suppose that α = ∆, γ =∞. Consider the sets

D =
{
ζ =∞, lim

t→∞
Xt =∞, lim

t→∞
Xt = −∞

}
,

D+ =
{
lim
t↑ζ

Xt =∞
}
, D− =

{
lim
t↑ζ

Xt = −∞
}
.

By Proposition A.1,

P(D ∪D+ ∪D−) = P̃(D ∪D+ ∪D−) = 1.

In the case under consideration, τ = δ on D− τ =∞ on the set D, τ = ζ on
the set D+. Since s(−∞) > −∞ (−∞ is a good point), we have P(D) = 0.
Consequently, P̃ ⊥ P on the set D, and therefore, S ≤ ∞ P, P̃-a.s. on the
set D. Similarly to the proof of (5.69), we establish that S ≤ ζ P, P̃-a.s on the
set D+. Thus, S ≤ τ P, P̃-a.s.

In a similar way, we consider the case, where α = −∞, γ = ∆.
7) Finally, suppose that α = γ = ∆. In this case τ = δ and the desired

inequality S ≤ τ is obvious. The proof is completed. ��

Appendix

Here we describe the behaviour of solutions of SDEs. We use the notations F ,
Ft, X, and ζ introduced in Subsection 5.2.

Let us consider SDE (5.1) and assume that conditions (5.2) and (5.3) are
satisfied. According to Proposition 3, this equation has a unique solution P in
the sense of Definition 6. Consider the sets
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D =
{
ζ =∞, lim

t→∞
Xt =∞, lim

t→∞
Xt = −∞

}
,

B+ =
{
ζ =∞, lim

t→∞
Xt =∞

}
,

C+ =
{
ζ <∞, lim

t↑ζ
Xt =∞

}
,

B− =
{
ζ =∞, lim

t→∞
Xt = −∞

}
,

C− =
{
ζ <∞, lim

t↑ζ
Xt = −∞

}
.

Define ρ, s, s(∞), s(−∞) by formulas (5.6)–(5.9).
The statements below follow from [4, Ch. 4].

Proposition A.1. Either P(D) = 1 or P(B+ ∪B− ∪ C+ ∪ C−) = 1.

Proposition A.2. (i) If s(∞) =∞, then P(B+) = P(C+) = 0.
(ii) If s(∞) < ∞ and (s(∞) − s)/ρσ2 /∈ L1loc(∞), then P(B+) > 0,

P(C+) = 0.
(iii) If s(∞) < ∞ and (s(∞) − s)/ρσ2 ∈ L1loc(∞), then P(B+) = 0,

P(C+) > 0.

Clearly, Proposition A.2 has its analog for the behaviour at −∞.

For any a, c ∈ R, set Ta = inf{t ∈ [0,∞) : Xt = a} (here inf ∅ = ∞) and
set Ta,c = Ta ∧ Tc.
Proposition A.3. (i) For any a ∈ R, P(Ta <∞) > 0.
(ii) Let a ∈ (−∞, x0). Then Ta <∞ P-a.s.⇐⇒ s(∞) =∞.
(iii) Let a ∈ (x0,∞). Then Ta <∞ P-a.s.⇐⇒ s(−∞) = −∞.
(iv) Let a ∈ (−∞, x0), c ∈ (x0,∞). Then Ta,c < ∞ P-a.s. Moreover,

P(Ta < Tc) > 0 and P(Tc < Ta) > 0.
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Summary. It often happens that options are written on underlying assets that
cannot be traded directly, but where a ‘closely related’ asset can be traded. Rather
than simply using the traded asset as a proxy for the option underlying, one should
calculate some ‘best’ hedging strategy. The market is incomplete, and we address the
problem using a utility maximization approach. With exponential utility the optimal
hedging strategy can be computed in reasonably explicit form using the methods of
convex duality. In particular, a perturbation analysis using ideas of Malliavin calcu-
lus gives the modification to the exact replication strategy that is appropriate when
the option underlying and traded assets are highly, but not perfectly, correlated.

Key words: Mathematical finance, utility-based pricing, duality, hedging strate-
gies, Malliavin calculus
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1 Introduction

On the trading floor at Tokyo-Mitsubishi International, I found that the
traders usually had excellent intuition about the sensitivity of option val-
ues to various modelling assumptions and parameter values. Correlation was
however one area where their intuition sometimes seemed mis-calibrated. If
one is hedging a book of equity options, for example, then by far the cheapest
things to hedge with are index futures: the transaction costs for trading the
underlying securities themselves are an order of magnitude higher. Since the
(return) correlation between a representative basket of stocks and the index is
very high – perhaps 80% – most traders were perfectly happy to hedge using
the index as a “proxy” asset, but had very little idea what the residual risk was

∗Work supported by the Austrian Science Foundation (FWF) under the Wittgen-
stein Prize grant Z36-MAT awarded to Professor Walter Schachermayer.
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in doing so. To see the problem, consider the model (3.1), (3.2) below, where
we have asset prices St, Yt driven by correlated Brownian motions w,w0. We
can construct these from independent Brownian motions w,w′ in the usual
way by taking w0t = ρwt+

√
1− ρ2w′t. If ρ = 1/

√
2 then ρ =

√
1− ρ2, so that

with a correlation of 70.7% half the variance of w0 is due to the independent
component w′. (Note that

√
1− ρ2 is still a massive 19.9% when ρ = 98%!)

These simple facts suggest that the correlation has to be very high indeed
before asset St can reasonably be regarded as a proxy for Yt. The analysis
below shows that this is the case.

The first version of this paper was written in 2000 while I was at the
Financial and Actuarial Mathematics group at the Technical University of
Vienna. Before publishing it, I wanted to do some simulations in order to
establish whether the optimal strategy I derived was really any improvement
on the ‘naive hedge’ obtained by proceeding on the assumption that ρ =
1. However, I didn’t have time to do this myself, and various students to
whom I suggested it didn’t do a particularly convincing job. Meanwhile other
authors including Akahori [1], Henderson and Hobson [7], [8], [9], and Musiela
and Zariphopoulou [14], had joined the party with alternative approaches
and new results. Finally, Monoyios [13] gave a clean treatment including the
computational results needed to complete the picture.

I am very happy to contribute this paper – which has been quite widely
cited in preprint form – to this Festschrift for my old friend Albert Shiryaev,
particularly since it concerns a problem in stochastic control theory. I first
met Albert in Warsaw in 1973, when we were both participants (and for a
while the only two visiting ‘stochasticians’) at the first ever Semester of the
Banach Institute, devoted to Control Theory and organized by Czel̀aw Olech
and (on the stochastic side) Jerzy Zabczyk. It is simply amazing how the
techniques of stochastic analysis have developed and moved into the main
stream in many application areas since then, most particularly of course in
mathematical finance. Nobody has helped this process along with more talent,
enthusiasm, dedication and effectiveness than Albert, a role model for us all.
Happy birthday Albert!

2 Hedging with proxy assets

It frequently happens that options are written on underlying assets for which
no liquid market exists, but where there is a liquid market in some ‘closely
related’ asset. The hedging problem mentioned above is a good example. This
raises the question as to what are an appropriate price and the best hedging
strategy using only the tradable assets. Hubalek and Schachermayer [10] show
that no non-trivial conclusions on the price can be drawn from no-arbitrage
arguments. Indeed, since this is an ‘incomplete markets’ problem, there is no
preference-independent answer and it is appropriate to formulate the problem
in the context of utility maximization. In an earlier paper [4] we calculated the
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‘fair price’ of an option written on a log-normal underlying asset when only a
second, correlated, log-normal asset can be traded. The ‘fair price’ is the ‘zero
marginal rate of substitution’ price introduced in [3]. In this paper we use a
similar framework but concentrate on the hedging (or investment) strategy,
using the duality approach to incomplete market investment problems in the
style laid out by Kramkov and Schachermayer [12]. The problem is in fact
one of investment with ‘random endowment’ as studied by Cvitanić et al. [2].
Like these authors we use duality theory, showing directly the existence of
an optimal solution to the dual problem and the absence of a ‘duality gap’,
thus producing a solution to the primal problem and the optimal investment
strategy. This strategy is given in Theorem 7.1 and has a nice interpretation.
When the traded asset is perfectly correlated with the option underlying we
can hedge perfectly using the ‘rescaled’ Black-Scholes delta given by (3.4)
below. When correlation is imperfect the same strategy is optimal, but with
the Black-Scholes option value C replaced by the value functionW of a certain
stochastic control problem.

As will be seen, the stochastic control problem emerges from solving the
dual problem. While existence of a solution to the stochastic control problem
follows from well-known theory there is no closed-form solution since the ter-
minal conditions are option-like payoffs, not, say, quadratic penalties. Thus
we are still in general obliged to resort to numerical algorithms in order to
compute the solution. However, it is also possible to do a perturbation analy-
sis. We are mainly interested in the case ρ ≈ 1, where ρ is the correlation
between the option underlying and the tradable asset. Defining ε =

√
1− ρ2

we can, using elementary ideas of Malliavin calculus, get the leading term in
the expansion of the value function of the stochastic control problem in powers
of ε. (The case ε = 0 is Black-Scholes.) This determines the modification in
hedging strategy required when the correlation is just slightly less than one.

In this paper we use an exponential utility function and assume that option
payoffs are bounded from below. This covers puts and long calls, and most
varieties of spread options, but unfortunately not short calls which are in some
ways the most interesting case. Short call options and exponential utility are
simply incompatible under the standard log-normal price model.

3 Problem formulation

Suppose we have two assets whose prices Yt, St are log-normal diffusions, i.e.,
satisfy

dYt = µ0Ytdt+ σ0Ytdw
0
t (3.1)

dSt = µStdt+ σStdwt (3.2)

where w, w0 are standard Brownian motions with E(dwtdw
0
t ) = ρdt. All

parameters are constant and (3.1), (3.2) are in the physical measure, not a



172 Mark H.A. Davis

risk neutral measure. The riskless rate of interest is r, again assumed constant.
If |ρ| < 1 there is no necessary relationship between the parameters in (3.1),
(3.2). On the other hand if ρ = 1 then µ0, µ must be related by

µ0 = r +
σ0
σ
(µ− r) (3.3)

to avoid arbitrage (see [4]).
A European option has been written on asset Yt whose payoff to us

at exercise time T is h(YT ) where h is a bounded continuous function.
For example, if we are short a spread option with strikes K1 < K2, then
h(y) = [y −K2]+ − [y −K1]+. Let C(t, y) be the Black-Scholes value of the
option at time t when Yt = y. If we hedge using Yt then the hedge ratio
(the number of stock units in the replication portfolio) is of course the Black-
Scholes delta ∂C/∂y(t, Yt). Asset Yt, however, cannot be traded; the only
tradable asset is St. If ρ = 1 we can still form a perfectly replicating portfolio;
the hedge ratio – now the number of St stock units – is2

∂C

∂y
(t, Yt)

σ0Yt
σSt

. (3.4)

If |ρ| < 1, perfect hedging is generally impossible. When ρ is close to 1 we
might consider using strategy (3.4), but the performance of this strategy is
rather poor, even when ρ is well in excess of 95%; see section 10 below. To
approach the problem systematically, let us assume that our overall objective
is to maximize utility as measured by the exponential utility function3

U(x) = −e−γβx (3.5)

where γ > 0 is a fixed constant and β = e−rT . Starting with an initial
endowment x, and in the absence of any options, we wish to maximize

ExU(Xπ
T ) (3.6)

where Xπ
T is the portfolio value at time T under trading strategy π with

Xπ
0 = x (precise definitions later). If at time 0 we purchase for price p an

option with payoff h(YT ) then the objective must be modified to maximizing

Ex−pU (Xπ
T + h(YT )) . (3.7)

In [4] we considered the pricing problem, i.e., determining the value of p such
that the maximized utilities in (3.6), (3.7) are the same. Here we consider
problem (3.7) with an arbitrary initial endowment x′, the aim being to es-
tablish in as much detail as possible what the optimal investment strategy
π is. The fair price will come out as a by-product; see Theorem 8.1 below.

2Note that the price process Yt can be observed even though Yt cannot be traded.
3The factor β is notationally convenient.
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Throughout the paper, the utility function U is always the exponential utility
(3.5).

It is easy to see that if |ρ| < 1 and h(Y ) = −[Y − K]+, i.e., we are
short a call option, then ExU(Xπ

t + h(YT )) = −∞ for any trading strat-
egy. (Roughly speaking, h(YT ) ≈ −eσ0wT and E exp(eX) = ∞ for any nor-
mal random variable X.) To get a meaningful problem we would have to
choose a different utility function, one that decreases sufficiently slowly so
that EU(−[YT −K]+) > −∞. But then we lose some of the explicit compu-
tations that are available for exponential utility.

The precise assumptions on the option exercise value are as follows.

Assumption 3.1 h : R+ → R bounded below and is a finite linear combina-
tion of European put and call exercise values.

As pointed out in the Introduction this covers long and short puts, long calls
and various spread options, but excludes short calls. Note that Assumption
3.1 implies the existence of constants y0, c1, c2 such that h(y) = c1 + c2y for
y ≥ y0. h is bounded if c2 = 0; otherwise c2 > 0.

4 Local martingale measures

Let us write
w0t = ρwt +

√
1− ρ2w′t

where wt, w
′
t are independent Brownian motions. The stochastic basis will be

(Ω, (F)t≤T , P ) where Ft is the natural filtration of (wt, w
′
t). From now on we

assume |ρ| < 1 unless otherwise mentioned, and denote ε =
√
1− ρ2.

If Q is a probability measure equivalent to P on FT then there exist
adapted processes mt, gt such that

∫ T
0
m2

tdt <∞,
∫ T
0
g2t dt <∞, a.s., and

dQ

dP
= exp

(∫ T

0

mtdwt −
1
2

∫ T

0

m2
tdt+

∫ T

0

gtdw
′
t −

1
2

∫ T

0

g2t dt

)
. (4.1)

Under measure Q the processes w̃t, w̃′t defined by

dw̃t = dwt −mtdt (4.2)
dw̃′t = dw′t − gtdt (4.3)

are independent Brownian motions. Q is a local martingale measure if the
process e−rtSt is a Q-local martingale (recall that St is the only traded asset)
and this is true if and only if

mt ≡ m :=
r − µ

σ
.
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The set of equivalent local martingale measures, denoted M, is therefore in
one-to-one correspondence with the set of integrands gt via formula (4.1) with
mt = m. Under measure Q, Yt satisfies

dYt = Yt(µ0 + σ0ρm+ σ0εsilongt)dt+ Ytσ0dw̃
0
t (4.4)

where w̃0t = ρw̃t+εsilonw̃′t is a Brownian motion. Thus Yt can have essentially
arbitrary drift under equivalent martingale measures, while the drift for St is
the riskless rate r.

5 Trading Strategies

A trading strategy is an adapted process πt satisfying∫ T

0

π2t dt <∞ a.s. (5.1)

πt is the dollar value of stock in our portfolio at time t. Let A0 denote the
set of trading strategies. Since St is the price, the number of stock units is
Ht = πt/St. If the total portfolio value is Xπ

t , then (Xπ
t − πt) is invested at

the riskless rate r, so the increment in portfolio value is

dXπ
t = HtdSt + (Xπ

t − πt)rdt
= rXπ

t dt+ σπtdw̃t,

where w̃t is given by (4.2). Denoting

X̌π
t = e−rtXπ

t , π̌t = e−rtπt

we find that
dX̌π

t = π̌σdw̃t (5.2)

so that X̌π
t is a local martingale under any equivalent martingale measure

Q ∈ M. Note that if we work in terms of discounted prices Št = e−rtSt then
(5.2) becomes

dX̌π
t = HtdŠt.

Our objective is to maximize the utility (3.7) over some class of trading strate-
gies π. We can express (3.7) in terms of discounted quantities by writing

exp (−γβ (Xπ
T + h(YT ))) = exp

(
−γ
(
X̌π

T + βh(YT )
))
,

so that
EU (Xπ

T + h(YT )) = EUγ

(
X̌π

T + βh(YT )
)
. (5.3)

As is well known, in order to obtain a meaningful optimization problem
we have to place some restriction on the trading strategies, to eliminate ‘dou-
bling strategies’ [6]. In the spirit of Schachermayer [15] we make the following
definitions
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Ab = {π ∈ A0 : Xπ
t ≥ aπ a.s. for all t ∈ [0, T ], for some aπ ∈ R} . (5.4)

U = {U (Xπ
T + h(YT )) : π ∈ Ab}c . (5.5)

Here {. . .}c denotes the closure in L1(Ω,FT , P ).

A = {π ∈ A0 : U (Xπ
T + h(YT )) ∈ U} . (5.6)

The point here is that the class Ab is not big enough. When wealth can be
negative as well as positive, it is natural — and, as we shall see, necessary —
to allow certain strategies where the wealth is not bounded below.

6 The Dual Problem

Duality methods are well established in utility maximization, see Karatzas
and Shreve [11] or Kramkov and Schachermayer [12] for example. The dual
function V : R+ → R is defined by

V (η) = max
x∈R

{Uγ(x)− xη} (6.1)

=
η

γ

(
log

η

γ
− 1
)

(6.2)

= Uγ(I(η))− ηI(η), (6.3)

where I = (U ′γ)
−1 is given by

I(η) = − 1
γ
log

η

γ
.

The dual problem is to minimize M(η,Q) over M for each η ∈ R+, where

M(η,Q) = E

{
V

(
η
dQ

dP

)
+ βη

dQ

dP
h(YT )

}
= V (η) +

η

γ
EQ log

(
dQ

dP

)
+ βηEQh(YT )

(from (6.2) and with EQ denoting the Q-expectation). The argument at the
beginning of section 7 below shows why this is the appropriate form of dual
problem to consider. Under measure Q we have from (4.2), (4.3)

log
dQ

dP
= mw̃T +

1
2
m2T +

∫ T

0

gtdw̃
′
t +
∫ T

0

g2t dt.

If

EQ

∫ T

0

g2t dt <∞ (6.4)

then EQ

∫
gdw̃ = 0 and
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EQ log
dQ

dP
=

1
2
m2T +

1
2
EQ

∫ T

0

g2t dt,

whereas if (6.4) is not satisfied then we define EQ log dQ/dP =∞. Denoting
by M′ the subset of M for which the integrands g satisfy (6.4) we see that
for Q ∈M′,

M(η,Q) = V (η) +
1
2
m2T

η

γ
+ ηEQ

{
1
2γ

∫ T

0

g2t dt+ βh(YT )

}
, (6.5)

and clearly infQ∈M′ M(η,Q) = infQ∈MM(η,Q). The dual problem is thus
equivalent to the stochastic control problem of minimizing

EQ

{
1
2γ

∫ T

0

g2t dt+ βh(YT )

}
(6.6)

over control processes gt. For a given process gt the measure Q is defined by
(4.1) and Yt is then a weak solution of the SDE (4.4). We can equivalently
pose the problem in the context of admissible systems. An admissible system
is a collection S = (Ξ, (Gt), P, (Bt), (gt)), where (Ξ, (Gt), P ) is a filtered prob-
ability space and Bt, gt are adapted processes such that Bt is a Gt-Brownian
motion while gt satisfies

E

∫ T

0

g2t dt <∞.

Given S, a starting time s and an initial point y there is a unique strong
solution Yt to the SDE

dYt = Yt(µ0 + σ0ρm+ σ0εgt)dt+ Ytσ0dBt, Ys = y, (6.7)

to which we associate a cost

CS(s, y) = E

{
1
2γ

∫ T

s

g2t dt+ βh(YT )

}
. (6.8)

Let c∗ = infS CS(0, Y0) be the infimal cost over the set of admissible systems.
Clearly c∗ is a lower bound for (6.6); we will show that this bound is attained
for some choice of (gt) in the original setup.

Theorem 6.1. There exists Q̂ ∈M′ such that for all η ∈ R+

M(η, Q̂) = min
Q∈M

M(η,Q).

The minimum value is

V (η) +
(

1
2γ
m2T +W (0, Y0)

)
η
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where W is the unique C1,2 solution of (6.15), (6.16) below4. The minimizing
measure Q̂ corresponds to g = ĝ in (4.1), where ĝ is given by (6.17).

Proof. Under Assumption 3.1, h is either constant, or has constant positive
slope, for large y. Let us first assume the former, specifically:

Assumption 6.1 The function h is bounded by h̄ ∈ R+.

Take an admissible system S as described above and define

Zt =
1
σ0

log Yt

and
f(z) = βh(eσ0z), z ∈ R.

We find that Zt satisfies

dZt = (a+ εgt)dt+ dBt (6.9)

where a := µ0/σ0+ρm−σ0/2. The cost (6.8) is expressed in the new variables
as

C ′S(s, z) = E

{
1
2γ

∫ T

s

g2t dt+ f(ZT )

}
. (6.10)

Minimizing (6.10) is a standard form of stochastic control problem, whose
solution is related to that of the corresponding Bellman equation , a semilinear
parabolic PDE to be satisfied by a C1,2 function L : [0, T ]× R→ R:

∂L

∂t
+

1
2
∂2L

∂z2
+min

g∈R

{
(a+ εg)

∂L

∂z
+

1
2γ
g2
}
= 0 (6.11)

L(T, z) = f(z) (6.12)

Lemma 6.1. When h satisfies Assumptions 3.1 and 6.1, there is a unique
function L, bounded and continuous on [0, T ]× R and C1,2 on [0, T [×R, sat-
isfying (6.11), (6.12). L is the value function for the control problem, i.e., for
(s, z) ∈ [0, T [×R,

L(s, z) = min
g
Es,z

{
1
2γ

∫ T

s

g2t dt+ f(ZT )

}
,

where the controlled process Zt starts at Zs = z. The optimal process gt is
given by

ĝt = −γε∂L
∂z

(t, Zt) (6.13)

(the minimizing value in (6.11)).
4C1,2 denotes the set of functions W (t, y) that are continuously differentiable up

to order one (two) in t, (y).
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Proof of Lemma. Assumption 6.1 implies that f is globally Lipschitz contin-
uous. Denote by CM (s, z) the infimum infS CS(s, z), taken over the set of
admissible systems satisfying the additional restriction |gt| ≤M , t ∈ [s, T ]. It
is clear from the simple dependence of ZT on z given in (6.9) that CM (t, z) is
Lipschitz continuous with the same constant κ′ as f . Now consider equations
(6.11), (6.12) where the minimum in (6.11) is taken over g ∈ [−M,M ]. It fol-
lows from Fleming and Rishel [5] Theorem VI.6.25 that these equations have
a unique C1,2 solution LM in [0, T [×R that is continuous in [0, T ] × R, and
that LM = CM . Hence LM is Lipschitz with constant κ′ and from (6.13) we
see that the optimal process ĝMs satisfies |ĝMs | ≤ γεκ′. Thus the bound M on
gt is irrelevant as long as M > εκ′ and then LM = L satisfying (6.11), (6.12)
as stated. This completes the proof. ��

The point of transforming coordinates from Yt and Zt is that (6.11) is
uniformly elliptic (the coefficient of the second-order term is uniformly positive
– in this case, constant.) Now, however, we can express things in the original
coordinates by defining

W (t, y) = L(t,
1
σ0

log y). (6.14)

We find that W satisfies

∂W

∂t
+ (µ0 + σ0ρm)y

∂W

∂y
+

1
2
σ20y

2 ∂
2W

∂y2

+min
g

{
1
2γ
g2 + σ0εgy

∂W

∂y

}
= 0 (6.15)

W (T, y) = βh(y) (6.16)

and the optimal gt is given by

ĝt = û(t, Yt) (6.17)

where û is the minimizing value in (6.15), i.e.,

û(t, y) = −γεσ0y
∂W

∂y
(t, y).

Since W satisfies (6.15), (6.16) if and only if L satisfies (6.11),(6.12), we
have shown that (6.15), (6.16) has a unique C1,2 solution W . Using ĝ
given by (6.17) to define the measure Q̂ in (4.1) gives an admissible sys-
tem (Ω, (Ft), Q̂, (w̃0t ), (ĝt)) that achieves the minimal cost. This completes
the proof under the supplementary Assumption 6.1.

Recall that when Assumption 3.1 holds but Assumption 6.1 does not,
h(y) = c1+ c2y for large y, with c2 > 0. For N ∈ R, define hN (y) = h(y)∧N .

5This result as stated requires f to be C2, but it covers our case by using uni-
formly Lipschitz C2 approximations to f and using the local PDE estimates men-
tioned in [5] Appendix E.
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Then for sufficiently large N , and N ′ > N , hN satisfies Assumption 6.1 and
there exist yN , yN ′ ∈ R+ such that for

hN
′
(y) = hN (y) + c2([y − yN ]+ − [y − yN ′ ]+).

Let S be an optimal admissible system for the control problem with initial
state Ys = y and terminal cost hN , with control process ĝt and cost

JN (ĝ) = E

(
1
2γ

∫ T

s

ĝ2t dt+ βhN (YT (ĝ))

)
. (6.18)

Recall ĝ is bounded by, say, c̄. Now let g̃(t, ω) be an adapted process such that
g̃(t, ω) ≥ 0 a.s. and E

∫ T
s
g̃(t, ω)dt > 0, and define

g(t, ω) = ĝ(t, ω) + g̃(t, ω).

Since ĝ is optimal, JN (g) ≥ JN (ĝ) and also

E([YT (g)− yN ]+ − [YT (g)− yN ′ ]+) ≥ E([YT (ĝ)− yN ]+ − [YT (g)− yN ′ ]+)

in view of the monotone dependence of YT (g) on g. Hence JN ′
(g) ≥ JN ′

(ĝ).
Thus candidate controls for minimizing JN ′

(g) must be less than or equal to
ĝ, in particular bounded above by c̄.

Denoting a0 = µ0 + σ0ρm, the solution to equation (6.7) is Yt = yξs,t
where

ξs,t = exp
(∫ t

s

(a0 + σ0εgu −
1
2
σ20)du+ σ0(Bt −Bs)

)
.

Thus for admissible systems starting at time s with two different starting
points y1, y2 we have, in an obvious notation,

|JN ′
(g)(y2)− JN ′

(g)(y1)| ≤ E|h(y2ξs,T )− h(y1ξs,T )|
≤ κ|y2 − y1|E[ξs,T ]
≤ |y2 − y1|κ exp ((a0 + σ0εc̄)T )

The functions JN ′
(g)(y) are thus uniformly Lipschitz continuous in y, and

we know that
WN ′

(s, y) = min
S
JN ′

(g)(y),

where WN ′
denotes the value function, i.e. the solution of (6.15),(6.16) with

h = hN
′
. The functions WN ′

are therefore uniformly Lipschitz continuous,
with the same constant, for all N ′ > N . Since in fact WN ′ ∈ C(1, 2), we have
shown that the derivatives ∂WN ′

/∂y are uniformly bounded.
The functions WN ′

are monotonically increasing in N ′ since the ’terminal
costs’ hN

′
are increasing. They are also bounded by βE(h(Y 0T )) where Y 0

denotes the solution of (6.7) with g ≡ 0. Thus WN ′
(s, y) ↑ W (s, y) where W

is a Lipschitz continuous function.
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We can now complete the proof following exactly the proof of Theorem
6.6.2 of Fleming and Rishel [5], pages 210-211. They show that, under condi-
tions that are satisfied here, the derivatives ∂WN ′

/∂y satisfy a uniform Hölder
condition on compact sets. An application of the Ascoli theorem shows that
WN ′

and the required first and second derivatives converge uniformly on
compact sets and hence that the limiting function W is C1,2 and satisfies
(6.15),(6.16). A standard ‘verification’ argument now shows that W is the
value function, i.e. W (s, y) = minS CS(s, y) where CS is given by (6.8). This
completes the proof of Theorem 6.1. ��

7 An optimal trading strategy

Taking a trading strategy π ∈ Ab and initial endowment x, let us write

X̌π
T = x+X = x+

∫ T

0

HtdŠt

using the notation of section 5. The stochastic integral is a local martingale
that is bounded below, and hence a supermartingale, for any Q ∈ M. By
definition of the dual function V , for η ∈ R+

EUγ (x+X + βh(YT ))

≤ E

{
V

(
η
dQ

dP

)
+ η (x+X + βh(YT ))

dQ

dP

}
(7.1)

≤ E

{
V

(
η
dQ

dP

)
+ ηβ

dQ

dP
h(YT )

}
+ xη.

Hence, minimizing the right hand side over Q ∈M we have

EUγ (x+X + βh(YT )) ≤ v(η) + xη (7.2)

where v(η) =M(η, Q̂). The expression v(η) + xη is minimized by η̂ satisfying
v′(η̂) = −x, and using (6.2) we find that η̂ satisfies

− 1
γ
log

η̂

γ
=

1
2γ
m2T +W (0, Y0) + x. (7.3)

Inequality (7.2) implies that EΘ ≤ v(η̂)+xη̂ for any Θ ∈ U where U is the set
of ‘achievable utilities’ defined by (5.5). If equality holds in (7.2) with η = η̂
and X corresponds to some π ∈ A then π is optimal in A, though π will
generally not be unique. We see from (6.3) that equality holds in (7.2) if and
only if

x+X + βh(YT ) = I

(
η̂
dQ̂

dP

)

= − 1
γ
log

η̂

γ
− 1
γ
log

dQ̂

dP
.
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Thus, using (7.3), we see that X is optimal only if X = X̂ where X̂ is given
by

X̂ =
1
γ
m2T +W (0, Y0)−

1
γ

(
mwT +

∫ T

0

ĝtdw
′
t −

1
2

∫ T

0

ĝ2t dt

)
− βh(YT ).

(7.4)

Theorem 7.1. Let

Ht =
µ− r

γσ2
ert

St
− ρert

∂W

∂y

σ0Yt
σSt

(7.5)

and π∗t = HtSt, where W (t, y) is the solution of (6.15), (6.16). Then π∗ ∈ A
and the utility of π∗ achieves supΘ∈U EΘ, where U is defined by (5.5).

Proof. Define X̂ by (7.4). Then equality holds in (7.2) with X = X̂ and η = η̂,
and therefore x+ X̂ is the optimal terminal wealth, as long as EQ̂X̂ = 0 and
there is some admissible strategy π∗ such that x+ X̂ = X̌π∗

T . In (7.4), recall
that βh(YT ) = W (T, YT ). Under measure P , Yt satisfies (3.1), so by the Itô
formula,

W (T, YT )−W (0, Y0) =
∫ T

0

(
∂W

∂t
+ µ0Yt

∂W

∂y
+ σ20Y

2 1
2
∂2W

∂y2

)
dt

+
∫ T

0

σ0Ytρ
∂W

∂y
dwt +

∫ T

0

σ0Ytε
∂W

∂y
dw′t. (7.6)

Now use (6.15),(6.16), recalling that equality holds in (6.15) when

gt = ĝt = −γεσ0Y
∂W

∂y
. (7.7)

We find that

βh(YT )−W (0, Y0) = −
∫ T

0

(
σ0ρmYt

∂W

∂y
+

1
2γ
ĝ2t + σ0εĝtYt

∂W

∂y

)
dt

+
∫ T

0

ρσ0Yt
∂W

∂y
dwt −

1
γ

∫ T

0

ĝtdw
′
t. (7.8)

Replacing βh(YT )−W (0, Y0) by the right-hand side of (7.8) in (7.4) and using
(7.7) we obtain

X̂ = −
∫ T

0

(
m

γ
+ ρσ0Yt

∂W

∂y

)
dw̃t

where w̃t = wt −mt is a Q-Brownian motion for any Q ∈ M, in particular
for Q = Q̂. Now ρσ0Yt∂W/∂y = −(ρ/γε)ĝt, and we know that

EQ̂

∫ T

0

ĝ2t dt <∞ (7.9)
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since ĝt is optimal for the control problem of minimizing (6.10). Hence

X̂t := −
∫ t

0

(
m

γ
+ ρσ0Ys

∂W

∂y

)
dw̃s (7.10)

is a Q̂-martingale. Comparing (7.10) with (5.2) we see that dX̂t = HtdŠt
where Ht is defined by (7.5) in the Theorem statement.

Finally, it is clear that π∗ ∈ A. If we define πnt = π∗t 1t<τn , where τn =
inf{t : X̂t ≤ −n} then πn ∈ Ab and Xπn

T → Xπ∗

T in L2. This completes the
proof. ��

Remark 1. The trading strategy Ht of (7.5) and corresponding portfolio value
process X̂t of (7.10) are very intuitive. When h ≡ 0, i.e., no option is written,
π̌∗t = −m/σγ is simply the optimal investment strategy for maximizing expo-
nential utility: this strategy keeps a constant dollar value (in discounted units)
in stock. When h �= 0 but ρ = 0 the same strategy is optimal. This is the ‘com-
pletely unhedgeable’ case where h(YT ) is independent of the traded asset St
and simply provides a random perturbation of the level of final wealth. Recall
that the exponential utility function has wealth-independent risk aversion:

−U
′(x)

U ′(x)
= γ.

This implies that the investor’s behavior does not depend on his initial endow-
ment. If we condition on the value of h(YT ) then the optimization problem is
equivalent to a shift in the initial endowment, having no effect on the optimal
strategy. Thus the strategy is the same whether or not the option payoff is
included.

At the other extreme is the case ρ = 1, ε = 0, when the assets are perfectly
correlated. Then the drifts µ and µ0 are related by the no-arbitrage condition
(3.3), and clearly the optimal control in (6.15) is ĝt ≡ 0. Thus (6.15), (6.16)
reduce to

∂W

∂t
+ ry

∂W

∂y
+

1
2
σ20y

2 ∂
2W

∂y2
= 0

W (T, y) = βh(y). (7.11)

By the Feynman-Kac formula, the solution to this is

W (t, y) = EQ
t,y[βh(YT )],

where EQ
t,y denotes expectation with respect to the (now unique) martingale

measure Q, starting at Yt = y. Recalling that β = e−rT , we can rewrite this
as

W (t, y) = e−rtEQ
t,y[e

−r(T−t)h(YT )]

= e−rtC(t, y),
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where C is the Black-Scholes option value. The second term in (7.5) therefore
coincides with (3.7), the perfect replication strategy implemented by trading
in St. Again, the fact that the optimal portfolio process (7.10) is the sum
of two funds, an ‘investment fund’ and a ‘hedging fund’ is a consequence of
wealth-independent risk aversion.

When |ρ| < 1 the optimal hedging strategy takes the same form as (3.7),
but with C replaced by the value function of the stochastic control problem
introduced in section 6.

8 Pricing

Let us now consider the question of option pricing. As mentioned in Section
3, the zero marginal rate of substitution price is the number p, if it exists,
such that

sup
π∈A

ExU (Xπ
T ) = sup

π∈A
Ex−pU (Xπ

T + h(YT )) (8.1)

where Ex denotes the expectation when the investor’s initial endowment is x.
(This could be a buying or writing price depending on whether h represents
a long or short position.) When h ≡ 0 the optimal investment strategy is

Ht =
µ− r

γσ2
ert

St
,

and the corresponding portfolio value is

X̌π
T = x+

m2

γ
T − m

γ
wT

(m = (r − µ)/σ), so that

EUγ

(
X̌π

T

)
= −e−γxem2T/2. (8.2)

With the option present, we know from the proof of Theorem 7.1 that the
maximum utility is equal to v(η̂)+ xη̂ where v(η̂) =M(η̂, Q̂) and η̂ is defined
by (7.3). From these equations we find that the maximum utility is

−e−γxem2T/2e−γW (0,Y0). (8.3)

We have shown the following. Note that the fair price does indeed reduce to
the Black-Scholes price when ρ = 1 and the no-arbitrage condition (3.3) is
satisfied.

Theorem 8.1. The fair price p of (8.1) is given by

p =W (0, Y0),

where W (t, y) is the solution of (6.15), (6.16).

Proof. This follows immediately by writing (8.3) as −e−γ(x+W )em
2T/2 and

comparing with (8.2).
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9 The High-Correlation Case

The ‘value function’ W introduced in Section 6 satisfies

W (t, y) = min
g
Et,y

{
1
2γ

∫ T

t

g2sds+ βh(Y ε
T )

}
(9.1)

where the minimum is taken over control processes gt for the stochastic dif-
ferential equation

dY ε
s = Y ε

s (µ0 + σ0ρm+ σ0εgs)ds+ Y ε
s σ0dBs (9.2)

Y ε
t = y

We now write Y ε
s instead of Ys to emphasize the dependence on ε, and we

wish to consider the case where ρ is close to 1, i.e., ε is small. Note that ε
multiplies gs in (9.2) but not the ‘penalty’ g2s in (9.1). This implies that the
optimal process ĝs must be ‘small’ and the corresponding process Y ε

s a small
perturbation away from Y 0s . Using elementary ideas of Malliavin calculus we
can compute explicitly the function W 0,2 in the expansion

W ε(t, y) =W 0(t, y) + ε2W 0,2(t, y) + o(ε2)

where W ε = W , defined by (9.1). This in turn gives us the perturbation in
the trading strategy due to imperfect correlation between the assets.

Consider first the case ε = 0, ρ = 1. The optimal control is gt ≡ 0, so that

W 0(t, y) = Et,y[βh(Y 0T )],

where
dY 0s = Y 0s (µ0 + σ0m)ds+ Y 0s σ0dBs.

If we write µ0 + σ0m = r − q then we see, as in Remark 1, that

W 0(t, y) = e−rtC(t, y, q),

where C(t, y, q) denotes the Black-Scholes price with dividend yield q. Note
that q = 0 if µ0 satisfies the no-arbitrage drift condition (3.3), but in the
present context there is no reason why this condition should be satisfied.

Moving to the case in which ε is small but strictly positive, we will need
the following simple result.

Lemma 9.1. Let A be a finite-variance random variable with standard devia-
tion σA, and consider the problem of minimizing E[AG] over random variables
G with EG=0, EG2 = κ2. The minimum value is −κσA, achieved by

G = −κA− EA

σA
.
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For a fixed control gs it is evident from (9.2) and the Girsanov theorem
that L(Y ε, P, t, y) = L(Y 0, P ε, t, y), where

dP ε

dP
= exp

(
ε

∫ T

t

gsdBs −
1
2
ε2
∫ T

t

g2sds

)
=: Gε

T (g). (9.3)

Here L(Y ε, P, t, y) denotes the law of Y ε under measure P , starting at Y ε
t = y.

Hence

1
ε

{
E [h(Y ε

T )]− E
[
h(Y 0T )

]}
= E

{
h(Y 0T )

1
ε
(Gε

T (g)− 1)
}
. (9.4)

Lemma 9.2. The function ε→ E[h(Y ε
T )] is differentiable at ε = 0 with deriv-

ative
∂

∂ε
E [h (Y ε

T )]|ε=0 = E

[
h
(
Y 0T
) ∫ T

t

gsdBs

]
, (9.5)

Further, if gt = αĝt where ĝt is a fixed integrand and α ∈ R,

E [h (Y ε
T )]− E

[
h
(
Y 0T
)]
− εE

[
h
(
Y 0T
) ∫ T

t

gsdBs

]
= O

(
ε2α2

)
. (9.6)

Proof. Define Gε(g) by (9.3). It is shown in Theorem E.2 of Karatzas and
Shreve [11] that

1
ε
(Gε

T (g)− 1)→
∫ T

t

gsdBs in L2 as ε→ 0. (9.7)

This establishes (9.5), in view of (9.4) and the fact that h is bounded.
When gt = αĝt we can express the left hand side of (9.6) as

E

{
h
(
Y 0T
)(

Gε
T − 1− εα

∫ T

t

ĝsdBs

)}

where Gε
T = Gε

T (g). Now Gε
T satisfies

dGε
s = εαGε

sĝsdBs, G
ε
t = 1

so that

Gε
T − 1− εα

∫ T

t

ĝsdBs = εα

∫ T

t

(Gε
sĝs − ĝs) dBs

= ε2α2
∫ T

t

ĝs
Gε

s − 1
εα

dBs.

Now (9.6) follows, using (9.7) again.
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Theorem 9.1. Denote by W ε(t, y) the right-hand side of (9.1). Then

W ε(t, y) =W 0(t, y) + ε2W 0,2(t, y) +O(ε4)

where
W 0,2(t, y) = −1

2
γβ2vart,y

(
h(Y 0T )

)
Proof. For fixed g we have from (9.5)

E

{
1
2γ

∫ T

t

g2sds+ βh(Y ε
T )

}

= βE
[
h(Y 0T )

]
+ E

{
1
2γ

∫ T

t

g2sds+ εβh(Y 0T )
∫ T

t

gsdBs

}
+O(ε2)

Consider the second term on the right. In view of Lemma 9.1, for a fixed value
of E

∫ T
t
g2sds we minimize this term by choosing gs = αĝs for some constant

α, where

h(Y 0T ) = E
[
h(Y 0T )

]
+
∫ T

t

ĝsdBs.

(Here Y 0s begins at Y 0t = y.) Such a choice of ĝs is possible, thanks to the
martingale representation theorem for Brownian motion and the assumption
that h is bounded. Then

E

{
1
2γ

∫ T

t

ĝ2sds+ εβh(Y 0T )
∫ T

t

ĝsdBs

}
= var

(
h(Y 0T )

)(α2
2γ

+ βεα

)
The best choice of α is α = −βγε, giving a minimum value of

−1
2
γε2β2var(h(Y 0T )).

The error term is O(ε2α2) = O(ε4), from (9.6).

10 How good is the ‘optimal’ strategy?

As mentioned in section 1, the computational side of this problem has been
thoroughly investigated by Monoyios [13]. In particular, he considers writing
a put option and hedging it both with the optimal strategies derived above
and with the ‘naive’ strategy obtained by assuming ρ = 1. In Monoyios’ simu-
lations, ρ was taken to be either 0.65 or 0.85, and the risk aversion coefficient
γ was 0.01 or .001. The results are qualitatively similar in all four cases. The
optimal strategy is superior to the naive hedge in that the hedge profit distri-
bution is more positively skewed, so that the median hedge profit is increased
and with it the hedger’s probability of a positive outcome. However, in all
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cases the variance of the hedge profit is very high, with a standard deviation
comparable to the Black-Scholes option value, so the trader is quite likely to
lose an amount on the hedge which is greater than the premium taken in. (By
contrast, the standard deviation of hedge error due to discrete rather than
continuous-time rebalancing would typically be 5-10% of the premium). The
conclusion is the one alluded to in section 1: even with very high correlation,
a large amount of unhedgeable noise is being injected into the non-traded
asset, making accurate hedging both practically and theoretically impossible.
Option trading in these circumstances is in fact a question of balancing risk
and reward, i.e. of optimal investment, making a utility-based approach highly
appropriate.
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Summary. For 1
2
< α < 1, we propose the MDP analysis for family

Sα
n =

1

nα

n∑
i=1

H(Xi−1), n ≥ 1,

where (Xn)n≥0 be a homogeneous ergodic Markov chain, Xn ∈ Rd, when the spec-
trum of operator Px is continuous. The vector-valued function H is not assumed to
be bounded but the Lipschitz continuity of H is required. The main helpful tools in
our approach are Poisson’s equation and Stochastic Exponential; the first enables
to replace the original family by 1

nαMn with a martingale Mn while the second to
avoid the direct Laplace transform analysis.

Key words: Moderate deviations, Poisson equation, Puhalskii theorem.

Mathematics Subject Classification (2000): 60F10, 60J27

1 Introduction and discussion

Let (Xn)n≥0 be a homogeneous ergodic Markov chain, Xn ∈ Rd with the
transition probability kernel for n steps: P (n)x = P (n)(x, dy) (for brevity
P
(1)
x := Px) and the unique invariant measure µ.
Let H be a measurable function Rd H→ Rp with

∫
Rd |H(z)|µ(dz) <∞ and
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Rd

H(z)µ(dz) = 0. (1.1)

Set

Sα
n =

1
nα

n∑
i=1

H(Xi−1), n ≥ 1; (0.5 < α < 1).

In this paper, we examine the moderate deviation principle (in short:
MDP) for the family (Sα

n )n≥1 when the spectrum of operator Px is continuous.
It is well known that for bounded H satisfying (1.1) ((H) - condition), the

most MDP compatible Markov chains are characterized by eigenvalues gap
condition (EG) (see Wu, [17], [18], Gong and Wu, [7], and citations therein):

the unit is an isolated, simple and the only eigenvalue with modulus 1
of the transition probability kernel Px.

In the framework of (H)-(EG) conditions, the MDP is valid with the rate of
speed n−(2α−1) and the rate function I(y), y ∈ Rd

I(y) =

{
1
2‖y‖2B⊕ , B⊕By = y

∞, otherwise,
(1.2)

where B⊕ is the pseudoinverse matrix (in Moore–Penrose sense, see e.g.[1])
for the matrix

B =
∫

Rd

H(x)H∗(x)µ(dx)

+
∑
n≥1

∫
Rd

[
H(x)(P (n)x H)∗ + (P (n)x H)H∗(x)

]
µ(dx) (1.3)

(henceforth, ∗, | · |, and ‖ · ‖Q are the transposition symbol, L1 norm and L2

norm with the kernel Q (‖x‖Q =
√
〈x,Qx〉) respectively).

Thanks to the quadratic form rate function, the MDP is an attractive tool
for an asymptotic analysis in many areas, say, with thesis

“MDP instead of CLT”

(see Section 7).
In this paper, we intend to apply the MDP analysis to Markov chain

defined by the recurrent equation

Xn = f(Xn−1, ξn), n ≥ 1

generated by i.i.d. sequence (ξn)n≥1 of random vectors, where f is some vector-
valued measurable function. Obviously, the function f and the distribution of
ξ1 might be specified in this way Px satisfies (EG). For instance, if d = 1 and

Xn = f(Xn−1) + ξn,
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then for bounded f and Laplacian random variable ξ1 (EG) holds. However,
(EG) fails for many useful in applications ergodic Markov chains. For d = 1,
a typical example gives Gaussian Markov chain defined by a linear recurrent
equation governed by i.i.d. sequence of (0, 1)-Gaussian random variables(here
|a| < 1)

Xn = aXn−1 + ξn.

In order to clarify this remark, notice that if (EG) holds true, than for any
bounded and measurable function H, satisfying (H)-property, for some con-
stants K > 0, [ ∈ (0, 1), n ≥ 1,

|ExH(Xn)| ≤ K[n. (1.4)

However, the latter fails for H(x) = sign(x) satisfying (1.1). In fact, if (1.4)
were correct, then

∑∞
n=0 |ExH(Xn)| ≤ K

1−M . On the other hand, it is readily
to compute that

∑∞
n=0 |ExH(Xn)| grows in |x| on the set {|x| > 1} faster

than O(log(|x|).
In this paper, we avoid a verification of (EG). Although our approach is

close to a conception of “Multiplicative Ergodicity” (see Balaji and Meyn
[2]) and “Geometrical Ergodicity” (see Kontoyiannis and Meyn, [8] and Meyn
and Tweedie, [11]), Chen and Guillin, [4]) we do not follow explicitly these
methodologies.

Our main tools are the Poisson equation and the Puhalskii theorem from
[15]. The Poisson equation enables to reduce the MDP verification for (Sα

n )n≥1
to ( 1nαMn)n≥1, where Mn is a martingale generated by Markov chain, while
the Puhalskii theorem allows to replace an asymptotic analysis for the Laplace
transform of 1

nαMn by the asymptotic analysis for, so called, Stochastic Ex-
ponential

En(λ) =
n∏

i=1

E
(
exp
[〈
λ,

1
nα

(Mi −Mi−1)
〉]∣∣∣Xi−1

)
, λ ∈ Rd, (1.5)

being the product of the conditional Laplace transforms for martingale incre-
ments.

An effectiveness of the Poisson equation approach (method of corrector)
combined with the stochastic exponential is well known from the proofs of
functional central limit theorem (FCLT) for the family (S0.5n )n≥1 (see, e.g.
Papanicolaou, Stroock and Varadhan [12], Ethier and Kurtz [6], Bhattacharya
[3], Pardoux and Veretennikov [13]; related topics can be found in Metivier
and Priouret (80’s) for stochastic algorithms analysis. The use of the same
approach for a continuous time setting can be found e.g. in [9], [10]).

2 Formulation of main result

We consider Markov chain (Xn)n≥0,Xn ∈ Rd, defined by a nonlinear recurrent
equation
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Xn = f(Xn−1, ξn), (2.1)

where f = f(z, v) is a vector function with entries f1(z, v), . . . , fd(z, v), u ∈
Rd, v ∈ Rp and (ξn)n≥1 is i.i.d. sequence of random vectors of the size p.

We fix the following assumptions.

Assumption 2.1 Entries of f are Lipschitz continuous functions in the fol-
lowing sense: for any v

|fi(z1 . . . , zj−1, z′j , zj+1 . . . , zd, v1, . . . , vp)
− fi(z1 . . . , zj−1, z′′j , zj+1 . . . , zd, v1, . . . , vp)|

≤ [ij |z′j − z′′j |,

|f(z′, v)− f(z′′, v)| ≤ [|v′ − v′′|,

where
max
i,j

[ij = [ < 1.

Assumption 2.2 For sufficiently small positive δ, Cramer’s condition holds:

Eeδ|ξ1| <∞.

Theorem 2.1. Under Assumptions 2.1 and 2.2, the Markov chain is ergodic
with the invariant measure µ such that

∫
Rd |z|µ(dz) < ∞. For any Lipschitz

continuous function H, satisfying (1.1), the family (Sα
n )n≥1 obeys the MDP

in the metric space (Rd, r) (r is the Euclidean metric) with the rate of speed
n−(2α−1) and the rate function given in (1.2).

Remark 1. Notice that:
- assumptions of Theorem 2.1 do not guarantee (EG),
- Lipschitz continuous H, obeying the linear growth condition, are permis-
sible for the MDP analysis,

- the ξ1-distribution with a continuous component is not required.

Consider now a linear version of (2.1):

Xn = AXn−1 + ξn,

where A is the d× d-matrix with entries Aij . Now, Assumption 2.1 reads as:
maxij |Aij | < 1. This assumption is too restrictive. We replace it by more
natural one

Assumption 2.3 The eigenvalues of A lie within the unit circle.
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Theorem 2.2. Under Assumption 2.3, the Markov chain is ergodic with the
invariant measure µ such that

∫
Rd ‖z‖2µ(dz) < ∞. For any Lipschitz con-

tinuous function H, satisfying (1.1), the family (Sα
n )n≥1 obeys the MDP in

the metric space (Rd, r) with the rate of speed n−(2α−1) and the rate function
given in (1.2).

3 Preliminaries

3.1 (EG)-(H) conditions

To clarify our approach to the MDP analysis, let us first demonstrate its
applicability under (EG)-(H) setting.

The (EG) condition provides the geometric ergodicity of P (n)x to the invari-
ant measure µ uniformly in x in the total variation norm: there exist constants
K > 0 and [ ∈ (0, 1) such that for any x ∈ Rd,

‖P (n)x − µ‖tv ≤ K[n, n ≥ 1.

The latter provides an existence of bounded function

U(x) = H(x) +
∑
n≥1

P (n)x H (3.1)

solving the Poisson equation

U(x) = H(x) + PxU. (3.2)

In view of the Markov property, a sequence (ζi)i≥1 of bounded random vectors
with ζi := U(Xi) − PXi−1U forms a martingale-differences relative to the
filtration generated by Markov chain. Hence, Mn =

∑n
i=1 ζi is the martingale

with bounded increments. With the help of Poisson’s equation we get the
following decomposition

1
nα

n∑
i=1

H(Xi−1) =
1
nα

[U(x)− U(Xn)]︸ ︷︷ ︸
corrector

+
1
nα
Mn. (3.3)

The boundedness of U provides a corrector negligibility in the MDP scale,
that is, the families Sα

n and 1
nαMn share the same MDP. In view of that,

suffice it to to establish the MDP for ( 1nαMn)n≥1.

Assume for a moment that ζi’s are i.i.d. sequence of random vectors. Recall,
Eζ1 = 0 and denote B = Eζ1ζ

∗
1 . Then, the Laplace transform for 1

nαMn is:

En(λ) =
(
Ee〈λ,

ζ1
nα 〉
)n
, λ ∈ Rd. (3.4)
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Under this setting, it is well known that 1
nαMn obeys the MDP if B is not

singular matrix and

lim
n→∞

n2α−1 logEn(λ) =
1
2
〈λ,Bλ〉, λ ∈ Rd.

We adapt this method of MDP verification to our setting. Instead of B, we
introduce matrices B(Xi−1), i ≥ 1 with

B(x) = PxUU
∗ − PxU

(
PxU)∗. (3.5)

The homogeneity of Markov chain and the definition of ζi provide a.s. that

E(ζiζ∗i |Xi−1) = B(Xi−1).

Instead of the Laplace transform (3.4), we apply the stochastic exponential
(1.5), expressed via ζi’s,

En(λ) =
n∏

i=1

E
(
e〈λ,

ζi
nα 〉
∣∣Xi−1

)
, λ ∈ R,

which is not the Laplace transform itself.
The Poisson equation (3.2) and its solution (3.1) permit to transform (3.5)

into
B(x) = H(x)H∗(x) +

∑
n≥1

[
H(x)

(
P (n)x H

)∗ + (P (n)x H
)
H∗
]
,

that is,
∫

Rd B(z)µ(dz) coincides with B from (1.3).

Now, we are in the position to formulate
Puhalskii Theorem. [for more details, see [15] and [16].] Assume B from
(1.3) is nonsingular matrix and for any ε > 0, λ ∈ Rd

lim
n→∞

1
n2α−1

logP
(∣∣∣n2α−1 logEn(λ)−

1
2
〈λ,Bλ〉

∣∣∣ > ε
)
= −∞. (3.6)

Then, the family 1
nαMn, n ≥ 1 possesses the MDP in the metric space

(Rd, r) (r is the Euclidean metric) with the rate of speed n−(2α−1) and rate
function I(y) = 1

2‖y‖2B−1 .

Remark 2. The condition (3.6) is verifiable with the help of

lim
n→∞

1
n2α−1

logP
( 1
n

∣∣∣ n∑
i=1

〈
λ,
[
B(Xi−1)−B

]
λ
〉∣∣∣ > ε

)
= −∞

lim
n→∞

1
n2α−1

logP
( 1
6n1+α

n∑
i=1

E
[
|ζi|3en

−α|ζi|
∣∣Xi−1

]
> ε
)
= −∞.

(3.7)
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The second condition in (3.7) is implied by the boundedness of |ζi|’s. The first
part in (3.7) is known as Dembo’s conditions, [5], formulated as follows: for
any ε > 0, λ ∈ Rd

lim
n→∞

1
n
logP

( 1
n

∣∣∣ n∑
i=1

〈
λ,
[
B(Xi−1)−B

]
λ
〉∣∣∣ > ε

)
< 0.

In order to verify the first condition in (3.7), we apply again the Poisson
equation technique. Set h(x) =

〈
λ,
[
B(x)−B

]
λ
〉
and notice that∫

Rd

h(z)µ(dz) = 0.

Then, the function u(x) = h(x) +
∑

n≥1 P
(n)
x h is well defined and solves the

Poisson equation u(x) = h(x) + Pxu. Similarly to (3.3), we have

1
n

n∑
i=1

h(Xi−1) =
u(x)− u(Xn)

n
+
mn

n
,

where mn =
∑n

i=1 zi is the martingale with bounded martingale-differences
(zi)i≥1. Since u is bounded, the first condition in (3.7) is reduced to

lim
n→∞

1
n2α−1

logP
(
|mn| > nε

)
= −∞ (3.8)

while (3.8) is provided by Theorem A.1 in Appendix which states that (3.8)
holds for any martingale with bounded increments.

Singular B

The conditions from (3.7) remain to hold whether B is nonsingular or singular.
For singular B the Puhalskii theorem is no longer valid. With singular B, we
use the Puhalskii theorem as a helpful tool.

It is well known that the family Mn

nα , n ≥ 1 obeys the MDP with the rate
of speed n−(2α−1) and some rate function,say I(y) provided that

lim
C→∞

lim
n→∞

1
n2α−1

logP
(∥∥∥Mn

nα

∥∥∥ > C
)
= −∞

lim
ε→0

lim
n→∞

1
n2α−1

logP
(∥∥∥Mn

nα
− y
∥∥∥ ≤ ε

)
≤ −I(y)

lim
ε→0

lim
n→∞

1
n2α−1

logP
(∥∥∥Mn

nα
− y
∥∥∥ ≤ ε

)
≥ −I(y).

(3.9)

The first condition in (3.9) provides the exponential tightness in the metric r
while the next others the local MDP.
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In order to verify of (3.9), we introduce “regularized” family Mβ
n

nα , n ≥ 1
with

Mβ
n =Mn +

√
β

n∑
i=1

ϑi,

where β is a positive parameter and (ϑi)i≥1 is a sequence of zero mean i.i.d.
Gaussian random vectors with cov(ϑ1, ϑ1) =: I (I is the unite matrix). The
Markov chain and (ϑi)i≥1 are assumed to be independent objects.

It is clear that for this setting the matrix B is transformed into a positive
definite matrix Bβ = B + βI. Now, the Puhalskii theorem is applicable and
guarantees the MDP with the same rate of speed and the rate function

Iβ(y) =
1
2
‖y‖2

B−1
β

.

We use now the well-known fact (see, e.g. Puhalskii, [14]) that MDP provides
the exponentially tightness and the the local MDP:

lim
C→∞

lim
n→∞

1
n2α−1

logP
(∥∥∥Mβ

n

nα

∥∥∥ > C
)
= −∞

lim
ε→0

lim
n→∞

1
n2α−1

logP
(∥∥∥Mβ

n

nα
− y
∥∥∥ ≤ ε

)
≤ −Iβ(y)

lim
ε→0

lim
n→∞

1
n2α−1

logP
(∥∥∥Mβ

n

nα
− y
∥∥∥ ≤ ε

)
≥ −Iβ(y).

(3.10)

Notice now that (3.9) is implied by (3.10) if

lim
β→0

Iβ(y) =

{
1
2‖y‖2B⊕ , B⊕By = y

∞, otherwise
(3.11)

and

lim
β→0

lim
n→∞

1
n2α−1

logP
(∥∥∥√β

nα

n∑
i=1

ϑi

∥∥∥ > η
)
= −∞, ∀ η > 0. (3.12)

Let T be an orthogonal matrix transforming B to a diagonal form:
diag(B) = T ∗BT. Then, owing to

2Iβ(y) = y∗(βI +B)−1y = y∗T (βI + diag(B))−1T ∗y,

for y = B⊕By we have (recall that B⊕BB⊕ = B⊕, see [1])

2Iβ(y) = y∗B⊕BT (βI + diag(B))−1T ∗y

= y∗B⊕TT ∗BT (βI + diag(B))−1T ∗y

= y∗B⊕T diag(B)(βI + diag(B))−1T ∗y

−−−→
β→0

y∗B⊕T diag(B) diag((B))⊕T ∗y

= y∗B⊕T diag(B)T ∗T (diag(B))⊕T ∗y

= y∗B⊕BB⊕u = u∗B⊕y = ‖y‖2B⊕ = 2I(y).



Moderate Deviation Principle 197

If y �= B⊕By, limβ→0 2Iβ(y) =∞.
Thus, (3.11) holds true.

Since (ϑi)i≥1 is i.i.d. sequence of random vectors and entries of ϑ1 are i.i.d.
(0, 1)-Gaussian random variables, the verification of (3.12) is reduced to

lim
β→0

lim
n→∞

1
n2α−1

logP
(∣∣∣ n∑

i=1

ξi

∣∣∣ > nαη√
β

)
= −∞, (3.13)

where (ξi)i≥1 is a sequence of i.i.d. (0, 1)-Gaussian random variables, and it
suffices to consider the case “+” only. By the Chernoff inequality with λ > 0,
we find that

P
( n∑

i=1

ϑi >
nαη√
β

)
≤ exp

(
− λ

nαη√
β
+ n

λ2

2

)
while the choice of λ = nαη

n
√

β
provides

1
n2α−1

logP
( n∑

i=1

ηi >
nαη√
β

)
≤ − η

2

2β
−−−→
β→0

−∞.

3.2 Virtual scenario

- (EG)-(H) are not assumed
- the ergodicity of Markov chain is checked
- H is chosen to hold (1.1).

(1) Let (3.1) hold. Hence, the function U solves the Poisson equation and the
decomposition from (3.3) is valid with Mn =

∑n
i=1 ζi, where

ζi = u(Xi)− PXi−1u.

Let
Eζ∗i ζi ≤ const.

E
[
|ζi|3en

−α|ζi|
∣∣Xi−1

]
≤ const.

(2) With B(x) and B are defined in (3.5) and (1.3) respectively, set

h(x) =
〈
λ,
[
B(x)−B

]
λ
〉
, λ ∈ Rd.

Let
(i) u(x) = h(x) +

∑
n≥1 P

(n)
x h is well defined

(ii) for zi = u(Xi)− PXi−1u,

Ez2i ≤ const.

E
[
|zi|3en

−α|zi|
∣∣Xi−1

]
≤ const.
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(3) For any ε > 0, let

lim
n→∞

1
n2α−1 logP

(
|U(Xn)| > nαε

)
= −∞

lim
n→∞

1
n2α−1 logP

(
|u(Xn)| > nαε

)
= −∞.

Notice that (EG)-(H) provide (1)-(3) and even if (EG)-(H) fail, (1)-(3)
may fulfill. Moreover, (1)-(3) guarantee the validity for all steps of the proof
given in Section 3.1.

Thus, an ergodic Markov chain, possessing (1)-(3), obeys the MDP.

The proof of Theorems 2.1 and 2.2 follows this scenario.

4 The proof of Theorem 2.1

4.1 Ergodic property

Lemma 4.1. Under Assumption 2.1, (Xn)n≥0 possesses the unique probabil-
ity invariant measure µ with

∫
Rd |z|µ(dz) <∞.

Proof. Let ν be a probability measure on Rd with
∫

Rd |x|ν(dx) < ∞ and
let a random vector X0, distributed in the accordance to ν, is independent
of (ξn)n≥1. We initialize the recursion, given in (2.1), by X0. Let now Xn is
generated by (2.1). Then, µn(dz) =

∫
Rd P

(n)
x (dz)ν(dx) defines the distribution

of Xn.
We show that the family (µn)n≥1 is tight in the Levy–Prohorov metric:

lim
k→∞

lim
n→∞

µn(|z| > k) = 0.

By the Chebyshev inequality, µn(|z| > k) ≤ E|Xn|
k . The tightness follows from

supn≥1E|Xn| <∞. Further, since by Assumption 2.1,

|Xn| = |f(0, ξn) + (f(Xn−1, ξn)− f(0, ξn))|
≤ |f(0, ξn)|+ |f(Xn−1, ξn)− f(0, ξn))|
≤ |f(0, ξn)|+ [|Xn−1|
≤ |f(0, 0)|+ ]|ξn|+ [|Xn−1|,

the sequence (E|Xn|)n≥1 solves a recurrent inequality

E|Xn| ≤ |f(0, 0)|+ ]E|ξ1|+ [E|Xn−1|

subject to E|X0| =
∫

Rd |x|ν(dx)(<∞). Hence, we find that for any n ≥ 1,

E|Xn| ≤ E|X0|+
|f(0, 0)|+ ]E|ξ1|

1− [
.
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Thus, the family {µn} is tight, so that, by the Prohorov theorem, {µn}
contains further subsequence {µn′} converging, as n′ ↗ ∞, in the Levy–
Prohorov metric to a limit µ being a probability measure on Rd: for any
bounded and continuous function g on Rd

lim
n′→∞

∫
Rd

g(z)µn
′
(dz) =

∫
Rd

g(z)µ(dz).

Thence, for g(z) = L ∧ |z| and L > 0, it holds∫
Rd

(L ∧ |z|)µ(dz) = lim
n′→∞

E(L ∧ |Xn′ |) ≤ lim
n→∞

E|Xn| <∞

and, by the monotone convergence theorem,∫
Rd

|z|µ(dz) ≤ lim
n→∞

E|Xn| <∞.

The µ is regarded now as a candidate to be the unique invariant measure. So,
we shall verify ∫

Rd

g(x)µ(dx) =
∫

Rd

Pxgµ(dx).

for any nonnegative, bounded and continuous function g. For notational con-
venience, write Xx

n and Xν
n, if X0 = x and X0 is distributed in the accordance

with ν. By Assumption 2.1,

|Xx
n −Xν

n| ≤ [|Xx
n−1 −Xν

n−1|, n ≥ 1,

that is, |Xx
n −Xν

n| converges to zero exponentially fast as long as n→∞. For
any x ∈ Rd, the latter provides limn′→∞Eg(Xx

n′) =
∫

Rd g(x)µ(dx). Since the
Markov chain is homogeneous, we also find that

lim
n′→∞

Eg(Xx
n′+1) =

∫
Rd

g(z)µ(dz).

On the other hand, owing to Eg(Xx
n′+1) = EPXx

n′ g, the above relation is
nothing but

lim
n′→∞

EPXx
n′ g =

∫
Rd

g(z)µ(dz).

Finally, owing to Pxg = Eg(f(x, ξ1)), the function Pxg of argument x is
bounded and continuous. Consequently, lim

n′→∞
EPXx

n′ g =
∫

Rd Pxgµ(dx).

Assume µ′ is another invariant probability measure, µ′ �= µ. Then, taking
Xµ
0 and Xµ′

0 , distributed in the accordance to µ and µ′ respectively and in-
dependent of (ξn)n≥1, we get two stationary Markov chains (Xµ

n ) and (Xµ′

n )
defined on the same probability space as:
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Xµ
n = f(Xµ

n−1, ξn)

Xµ′

n = f(Xµ′

n−1, ξn).

By Assumption 2.1, |Xµ
n −Xµ′

n | ≤ [|Xµ
n−1 −X

µ′

n−1|, i.e. lim
n→∞

|Xµ
n −Xµ′

n | = 0.

Recall that both processes Xµ
n and Xµ′

n are stationary with the marginal
distributions µ and µ′ respectively. Hence, for any bounded and continuous
function g : Rd → R,∣∣∣ ∫

Rd

g(x)µ(dx)−
∫

Rd

g(x)µ′(dx)
∣∣∣ ≤ E|g(Xµ

n )− g(Xµ′

n )| −−−−→
n→∞

0,

that is, µ = µ′.

4.2 The verification of (1)

Let K be the Lipschitz constant for H. Then |H(x)| ≤ |H(0)| + K|x| and∫
Rd |H(z)|µ(dz) <∞. By (1.1), EH(Xµ

n ) ≡ 0. Then,

|EH(Xx
n)| = |E(H(Xx

n)−H(Xµ
n )|

≤ K[nE|x−Xµ
n | ≤ K(1 + |x|)[n.

Therefore,
∑

n≥1 |EH(Xx
n | ≤ K

1−M (1 + |x|). Consequently, the function U(x),
given in (3.1), is well defined and solves the Poisson equation.

Recall that ζi = U(Xi)− PXi−1U .

Lemma 4.2. The function U(x) possesses the following properties:
1) U(x) is Lipschitz continuous;
2) Px(UU∗)− PxU(PxU)∗ is bounded and Lipschitz continuous;
3) For sufficiently small δ > 0 and any i ≥ 1

E
(∣∣U(Xi)− P

Xi−1
U
∣∣3eδ|U(Xi)−PXi−1

U |∣∣Xi−1
)
≤ const.

Proof. 1) Since by Assumption 2.1,

|Xx′

n −Xx′′

n | ≤ [|Xx′

n−1 −Xx′′

n−1|, |Xx′

0 −Xx′′

0 | ≤ |x′ − x′′|,

we have

|U(x′)− U(x′′)| ≤ |H(x′)−H(x′′)|+
∑
n≥1

E|H(Xx′

n )−H(Xx′′

n )|

≤ K

1− [
|x′ − x′′|.

(4.1)

2) Recall (see (3.5))
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Px(UU∗)− PxU(PxU)∗ = B(x)

and denote Bpq(x), p, q = 1, . . . , d, the entries of matrix B(x). Also, denote
by Up(x), p = 1, . . . , d, the entries of U(x). Since B(x) is nonnegative definite
matrix, it is sufficient to show only that Bpp(x)’s are bounded functions.
Denote F (z) the distribution function of ξ1. Taking into the consideration
(4.1) and Assumption 2.1, we get

Bpp(x) = E
(
Up

(
f(x, ξ1)

)
−
∫

Rd

Up

(
f(x, z)

)
dF (z)

)2
≤ (K])2

(1− [)2
E
∣∣∣ ∫

Rd

|ξ1 − z|dF (z)
∣∣∣2 ≤ 4

(K])2

(1− [)2
E|ξ1|2 <∞.

The Lipschitz continuity of Bpq(x) is proved similarly. Write

Bpq(x′)−Bpq(x′′) =: ab− cd,

where
a = E

(
Up

(
f(x′, ξ1)

)
−
∫

Rd

Uq

(
f(x′, z)

)
dF (z)

)
b = E

(
Uq

(
f(x′, ξ1)

)
−
∫

Rd

Uq

(
f(x′, z)dF (z)

)
c = E

(
Up

(
f(x′′, ξ1)

)
−
∫

Rd

Uq

(
f(x′′, z)

)
dF (z)

)
d = E

(
Uq

(
f(x′′, ξ1)

)
−
∫

Rd

Uq

(
f(x′′, z)

)
dF (z)

)
.

Now, applying ab− cd = a(b− d)+ d(a− c) and taking into account (4.1) and
Assumption 2.1, we find that |a|, |d| ≤ 2KP

1−ME|ξ1| and so

|Bpq(x′)−Bpq(x′′)| ≤
4K2][

(1− [)2
E|ξ1||x′ − x′′|.

3) By (4.1) and Assumption 2.1

|U(Xi)− PXi−1U | ≤
K]

1− [

(
E|ξ1|+ |ξi|

)
.

4.3 The verification of (2)

The properties of B(x) to be bounded and Lipschitz continuous provide the
same properties for

h(x) =
〈
λ,
[
B(x)−B

]
λ
〉
.

Hence (2) is provided by (1).
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4.4 The verification of (3)

Since U and u are Lipschitz continuous, they possess the linear growth condi-
tion, e.g., |U(x)| ≤ C(1 + |x|), ∃C > 0. So, (3) is reduced to the verification
of

lim
n→∞

1
n2α−1

logP
(∣∣Xn

∣∣ > εnα
)
= −∞, ε > 0. (4.2)

Due to Assumption 2.1, we have

|Xn| ≤ |f(Xn−1, ξn)| ≤ |f(0, ξn)|+ [|Xn−1|
≤ |f(0, 0)|+ [|Xn−1|+ ]|ξn|.

Iterating this inequality with X0 = x we obtain

|Xn| ≤ [n|x|+ |f(0, 0)|
n∑

j=1

[n−j + ]

n∑
j=1

[n−j |ξj |

≤ |x|+ |f(0, 0)|
1− [

+ ]

n−1∑
j=0

[j |ξn−j |.

Hence, (4.2) is reduced to

lim
n→∞

1
n2α−1

logP
( n−1∑

j=0

[j |ξn−j | ≥ nαε
)
= −∞. (4.3)

We verify (4.3) with the help of Chernoff’s inequality: with δ, involving in
Assumption 2.2, and γ = δ

1−M

P
( n−1∑

j=0

[j |ξn−j | ≥ nαε
)
≤ e−n

αγεEe

∑n−1

j=0
γMj |ξn−j |.

The i.i.d. property for ξj ’s provides

Ee

∑n−1

j=0
γMj |ξn−j | = Ee

∑n−1

j=0
γMj |ξ1| ≤ Ee

∑∞
j=0

γMj |ξ1| = Eeδ|ξ1| <∞

and we get

1
n2α−1

logP
( n−1∑

j=0

[j |ξn−j | ≥ nαε
)
≤ −n1−αδε+ logEeδ|ξ1|

n2α−1
−−−−→
n→∞

−∞.

5 The proof of Theorem 2.2

The proof of this theorem differs from the proof of Theorem 2.1 only in some
details concerning to (L.1). So, only these parts of the proof are given below.



Moderate Deviation Principle 203

5.1 Ergodic property and invariant measure

Introduce (ξ̃n)n≥1 the independent copy of (ξn)n≥1. Owing to

Xn = Anx+
n∑

i=1

An−iξi = Anx+
n−1∑
i=0

Aiξn−i,

we introduce

X̃n = Anx+
n−1∑
i=0

Aiξ̃i (5.1)

and notice that the i.i.d. property of (ξi)i≥1 provides (Xn)n≥0
law= (X̃n)n≥0.

By Assumption 2.3, An → 0, n→∞, exponentially fast. Particularly,

∞∑
i=0

trace
(
Ai cov(ξ1, ξ1)(Ai)∗

)
<∞,

so that lim
n→∞

X̃n =
∑∞

i=0A
iξ̃i a.s. and in L2 norm.

Thus, the invariant measure µ is generated by the distribution function of

X̃∞. In addition, E‖X̃∞‖2 =
∞∑
i=0

trace
(
Ai cov(ξ1, ξ1)(Ai)∗

)
, so that

∫
Rd

‖z‖2µ(dz) <∞.

5.2 The verification of (1) and (2)

Due to the relation

(Xx′

n −Xx′′

n ) = A(Xx′

n−1 −Xx′′

n−1),

we have (Xx′

n − Xx′′

n ) = An(x′ − x′′). Let us transform the matrix A into a
Jordan form A = TJT−1 and notice that An = TJnT−1. It is well known
that the maximal absolute value of entries of Jn is n|λ|n, where |λ| is the
maximal absolute value among eigenvalues of A. By Assumption 2.3, |λ| < 1.
So, there exist K > 0 and [ < 1 such that |λ| < [. Then, entries An

pq of An

are evaluated as: |An
pq| ≤ K[n. Hence, |Xx′

n − Xx′′

n | ≤ K[n|x′ − x′′|, n ≥ 1,
and the verification of (1), (2) is in the framework of Section 3.

5.3 The verification of (3)

As in Section 3, the verification of this property is reduced to

lim
n→∞

1
n2α−1

logP
(∣∣Xn

∣∣ > εnα
)
= −∞, ε > 0. (5.2)
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In (5.2), we may replace Xn by its copy X̃n defined in (5.1). Notice also that

|X̃n| ≤ |Anx|+
∞∑
i=0

max
pq

|Ai
pq||ξ̃|.

As was mentioned above, |Ai
pq| ≤ K[j for some K > 0 and [ ∈ (0, 1). Hence,

suffice it to verify

lim
n→∞

1
n2α−1

logP
( ∞∑

i=0

[i|ξi| > εnα
)
= −∞, ε > 0

what be going on similarly to corresponding part of the proof in Section 3.

6 Exotic example

Let (Xn)n≥0, Xn ∈ R and X0 = x, be Markov chain defined by the recurrent
equation

Xn = Xn−1 −m
Xn−1
|Xn−1|

+ ξn, (6.1)

where m is a positive parameter, (ξn) is i.i.d. sequence of zero mean random
variables with

Eeδ|ξ1| <∞, for some δ > 0,

and let 0
0 = 0.

Although the virtual scenario is not completely verifiable here we show
that for

H(x) =
x

|x|
the family (Sα

n )n≥1 possesses the MDP provided that

m >
1
δ
logEeδ|ξ1|. (6.2)

Indeed, by (6.1) we have

1
nα

n∑
k=1

Xk−1
|Xk−1|

=
1
m

(Xn − x)
nα

+
1
nα

n∑
k=1

ξk
m
.

The family
(
1
nα

n∑
k=1

ξk
m

)
n≥1 possesses the MDP with the rate of speed n−(2α−1)

and the rate function I(y) = m2

2Eξ21
y2. Then, the family (Sα

n )n≥1 obeys the

same MDP provided that
(
Xn−x
nα

)
n≥1 is exponentially negligible family with

the rate n−(2α−1). This verification is reduced to
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lim
n→∞

1
n2α−1

logP
(
|Xn| > nαε

)
= −∞, ε > 0. (6.3)

By the Chernoff inequality P
(
|Xn| > nαε

)
≤ e−δn

αεEeδ|Xn|, that is (6.3)
holds if sup

n≥1
Eeδ|Xn| <∞ for some δ > 0. We show that the latter holds true

for δ involved in (6.2). A helpful tool for this verification is the inequality∣∣z −m z
|z|
∣∣ ≤ ∣∣|z| −m

∣∣. Write

Eeδ|Xn| = Eeδ|Xn|I(|Xn−1| ≤ m) + Eeδ|Xn|I(|Xn−1| > m)

≤ eδmEeδ|ξ1| + e−δmEeδ|ξ1|Eeδ|Xn−1|.

Set ] = eδmEeδ|ξ1| and [ = e−δmEeδ|ξ1|. By (6.2), [ < 1. Hence, V (x) = eδ|x|

is the Lyapunov function: PxV ≤ [V (x) + ]. Consequently,

EV (Xn) ≤ [EV (Xn) + ], n ≥ 1

and so, supn≥1EV (Xn) ≤ V (x) + P
1−M .

7 Statistical example

An asymptotic analysis, given in this section, demonstrate the thesis “MDP
instead of CLT”.

Let
Xn = θf(Xn−1) + ξn,

where θ is a number and (ξn)n≥1 is i.i.d. sequence of of (0, 1)-Gaussian random
variables. We assume that |θ| < 1 and f is bounded continuously differentiable
function with |f ′(x)| ≤ 1. By Theorem 2.1, (Xn) is an ergodic Markov chain
and its invariant measure µθ depends on parameter θ. Since ξ1 is Gaussian
random variables, µθ, being a convolution of some measure with Gaussian
one, possesses a density relative to dz. Then, assuming f2(x) > 0 relative
to Lebesgue measure, we have Bθ =

∫
R
f2(z)µ(dz) > 0. Under the above

assumptions,

θn =
∑n

i=1 f(Xi−1)Xi∑n
i=1 f

2(Xi−1)

is a strongly consistent estimate of θ by sampling {X1, . . . , Xn}, that is,
limn→∞ θn = θ a.s. Moreover, it is known its asymptotic in the CLT scale:

√
n(θ − θn)

law−−−−→
n→∞

(
0,

1
Bθ

)
-Gaussian r. v.

Here, we give an asymptotic of θn in the MDP scale: for any α ∈
(
1
2 , 1
)
,

n1−α(θ − θn)
MDP−−−−→
n→∞

( 1
n2α−1

,
y2

2Bθ

)
.
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Theorem 7.1. The family n1−α(θ−θn) obeys the MDP with the rate of speed
1

n2α−1 and the rate function I(y) = y2

2Bθ
.

Proof. The use of

n1−α(θ − θn) =
1
nα

∑n
i=1 f(Xi−1)ξi

1
n

∑n
i=1 f

2(Xi−1)

and the law of large numbers, P - limn→∞
1
n

∑n
i=1 f

2(Xi−1) = Bθ, give a hint
that that the theorem statement is valid provided that

(i) for Mn =
∑

i=1 f(Xi−1)ξi, the family
(
1
nαMn

)
n→∞ obeys the MDP

with the rate of speed 1
n2α−1 and the rate function I(y) = y2

2B−1
θ

;

(ii) for any ε > 0,

lim
n→∞

1
n2α−1

logP
(∣∣∣ 1
n

n∑
i=1

[
f2(Xi−1)−Bθ

]∣∣∣ ≥ ε
)
= −∞.

Following to (1.5) and taking into account the setting, we notice that

En(λ) = exp
( n∑

i=1

λ2

2n2α
f2(Xi−1)

)
.

is the stochastic exponential related to
(
1
nαMn

)
n→∞. Consequently, (3.6) is

reduced to (ii), that is, only (ii) is left to be verified.
The verification of (ii) is in the framework of Theorem (2.1). The function

H(x) = f2(x)−Bθ satisfies the assumptions of Theorem 2.1. Hence, the family(
1
nα

∑n
i=kH(Xk1)

)
n→∞ obeys the MDP with the rate of speed 1

n2α−1 and the
rate function

J(y) =

{
y2

2 B̂
⊕
θ B̂θ > 0,

∞ , B̂θ = 0, y �= 0,

where, in accordance with (1.3),

B̂θ =
∫

R

H2(x)µθ(dx) + 2
∑
n≥1

∫
R

H(x)P (n)x Hµθ(dx).

In particular,

lim
n→∞

1
n2α−1

logP
(∣∣∣ 1
nα

n∑
k=1

H(Xk−1)
∣∣∣ ≥ Cε

)
≤
{
− 1

2B̂θ

C2ε2, B̂θ > 0

−∞, otherwise.

Hence, for any C > 0, we find that
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lim
n→∞

1
n2α−1

logP
(∣∣∣ 1
n

n∑
k=1

H(Xk−1)
∣∣∣ ≥ ε

)
= lim

n→∞

1
n2α−1

logP
(∣∣∣ 1
nα

n∑
k=1

H(Xk−1)
∣∣∣ ≥ n1−αε

)
≤ lim

n→∞

1
n2α−1

logP
(∣∣∣ 1
nα

n∑
k=1

H(Xk−1)
∣∣∣ ≥ Cε

)

≤
{
−C2ε2

2B̂θ

B̂θ > 0,

−∞ otherwise
−−−−→
C→∞

−∞.

A Exponentially integrable martingale-differences

Let ζn = (ζn)n≥1 be a martingale-difference with respect to some filtration

F = (Fn)n≥0 and Mn =
n∑

i=1

ζi be the corresponding martingale.

Theorem A.1. Assume that for sufficiently small positive δ and any i ≥ 1

E
(
eδ|ζi||Fi−1

)
≤ const. (A.1)

Then for any α ∈ (0.5, 1)

lim
n→∞

log
1

n2α−1
P
(
|Mn| > nε

)
= −∞.

Proof. Suffice it to prove lim
n→∞

1
n2α−1 logP

(
±M ′n > nε

)
= −∞. We verify

here only “+” only (the proof of “-” is similar).

For fixed positive λ and sufficiently large n, let us introduce the stochastic
exponential

En(λ) =
n∏

i=1

E
(
eλ

ζi
n

∣∣Fi−1
)
.

A direct verification shows that

E exp
(λMn

n
− logEn(λ)

)
= 1.

We apply this equality for further ones

1 ≥ EI
(
Mn > nε

)
exp
(λMn

n
− logEn(λ)

)
≥ EI

(
Mn > nε

)
exp
(
λε− logEn(λ)

)
.

(A.2)

Due to E
(
λ ζi

n |Fi−1
)
= 0 and (A.1), we find that
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logEn(λ) =
n∑

i=1

log
(
1 + E

[
eλ

ζi
n − 1− λ

ζi
n
|Fi−1

])
≤

n∑
i=1

{ λ2

2n2
E
(
(ζi)2|Xi−1

)
+

λ3

6n3
E
(
|ζi|3eλ

|ζi|
n |Fi−1

)}
≤ K

[λ2
2n

+
λ3

6n2
]
,

where K is some constant. This inequality, being incorporated into (A.2),
provides

1 ≥ EI
(
Mn > nε

)
exp
(
λε−K

[λ2
2n

+
λ3

6n2
])
.

If ε < 3, taking λ = εnK−1, we find that

1
n2α−1

logP
(
Mn > nε

)
≤ −ε

2n2(1−α)

K

(1
2
− ε

6

)
−−−−→
n→∞

−∞.

Thus, the desired statement holds true.
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1 Introduction

We consider a market with m risky assets. Denote by Si(t) the price of the
i-th asset at time t. We shall assume that the prices of assets depend on k
economic factors xi(n), i = 1, . . . , k, with values changing at discrete times
n = 0, 1, . . . , so that for t ∈ [n, n+ 1) the prices satisfy the equation

dSi(t)
Si(t)

= ai(x(n))dt+
k+m∑
j=1

σij(x(n))dwj(t), (1.1)

where (w(t) = (w1(t), w2(t), . . . , wk+m(t)) is a (k+m)-dimensional Brownian
motion defined on a given probability space (Ω, (Ft),F , P ). The economic
factors x(n) = (x1(n), . . . , xk(n)) evolve according to the equation

∗The research was supported by the MNiI grant 1 P03A 013 28
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xi(n+ 1) = xi(n) + bi(x(n)) +
k+m∑
j=1

dij(x(n))[wj(n+ 1)− wj(n)]

= g(x(n),W (n)), (1.2)

where W (n) := (w1(n+ 1)− w1(n), . . . , wk+m(n+ 1)− wk+m(n)).
We assume that a, b are bounded and continuous vector functions, and

σ, d are bounded and continuous matrix functions of suitable dimensions.
Additionally we shall assume that the matrix ddT (T stands for transpose) is
nondegenerate. Notice that equation (1.2) corresponds to the discretization
of a diffusion process. The set of factors may include dividend yields, price-
earning ratios, short term interest rates, the rate of inflation see e.g. [1]. The
dynamics of such factors is usually modelled using diffusions, frequently linear
as in the case when a is a function of a spot interest rate governed by the
Vasicek process (see [1]). Our assumptions concerning boundedness of the
vector functions a and b may be relaxed allowing linear growth. However in
this case we need more complicated assumptions to obtain analogs of Lemmas
3.2, 3.3 and Corollary 3.1 which are important in the proof of Proposition 3.1.

Assume that starting with an initial capital V (0) we invest in the
given assets. Let hi(n) be the part of the wealth process located in the
i-th asset at time n, which is assumed to be nonnegative. The choice of
hi(n) depends on our observation of the asset prices and economic fac-
tors up to time n. Denoting by V (n) the wealth process at time n and by
h(n) = (h1(n), . . . , hm(n)) our investment strategy at time n, we have that
h(n) ∈ U = {(h1, . . . , hm), hi ≥ 0,

∑m
i=1 hi = 1} and

V (n+ 1)
V (n)

=
m∑
i=1

hi(n)ξi(x(n),W (n)), (1.3)

where

ξi(x(n),W (n)) = exp

ai(x(n))− 1
2

k+m∑
j=1

σ2ij(x(n))

+
k+m∑
j=1

σij(x(n))[wj(n+ 1)− wj(n)]

 .

We are interested in the following investment problems:
maximize the risk neutral cost functional

J0x({h(n)}) = lim inf
n→∞

1
n
Ex [lnV (n)] (1.4)

and maximize the risk sensitive cost functional

Jγ
x ({h(n)}) =

1
γ
lim sup
n→∞

1
n
lnEx [V (n)γ ] (1.5)
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with γ < 0. Using (1.3) we can rewrite the cost functional (1.4) as

J0x({h(n)}) = lim inf
n→∞

1
n
Ex

[
n−1∑
t=0

ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

)]

= lim inf
n→∞

1
n
Ex

[
n−1∑
t=0

c(x(t), h(t))

]
, (1.6)

with c(x, h) = E {ln (
∑m

i=1 hiξi(x,W (0)))}. It is clear that risk neutral cost
functional J0 depends on the uncontrolled Markov process (x(n)) and we prac-
tically maximize the cost function c itself. Consequently an optimal control
is of the form (û(x(n))), where suph c(x, h) = c(x, û(x)) and the Borel mea-
surable function û : Rk �→ U exists by continuity of c for fixed x ∈ Rk. This
control does not depend on asset prices and is a time independent function of
current values of the factors x only. The Bellman equation corresponding to
the risk neutral control problem is of the form

w(x) + λ = sup
h

[c(x, h) + Pw(x)] (1.7)

where Pf(x) := Ex {f(x(1))} for f ∈ bB(Rk) - the space of bounded Borel
measurable functions on Rk, is a transition operator corresponding to (x(n)).
In Section 2 we shall show that there are solutions w and λ to the equation
(1.7) and λ is the optimal value of the cost functional J0.
Letting

ζh,γn (ω) :=
n−1∏
t=0

exp

(
γ ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

))
(
E

[
exp

(
γ ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

))
|Ft−1

])−1

consider a probability measure Ph,γ defined by its restrictions Ph,γ
|n to the

first n times, given by the formula

Ph,γ
|n (dω) = ζh,γn (ω)P|n(dω).

Then the cost functional (1.5) can be rewritten as

Jγ
x ({h(n)}) =

1
γ
lim sup
n→∞

1
n
lnEx

[
exp

(
γ

n−1∑
t=0

ln

(
m∑
i=1

hi(t)ξi(x(t),W (t))

))]

=
1
γ
lim sup
n→∞

1
n
lnEh,γ

x

[
exp

(
n−1∑
t=0

cγ(x(t), h(t))

)]
, (1.8)

with
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cγ(x, h) := ln

(
E

[(
m∑
i=1

hiξi(x,W (0))

)γ])
. (1.9)

The risk sensitive Bellman equation corresponding to the cost functional Jγ

is of the form

ewγ(x) = inf
h

[
e(cγ(x,h)−λγ)

∫
E

ewγ(y)Ph,γ(x, dy)
]
. (1.10)

where for f ∈ bB(Rk)

Ph,γf(x) = E

[(
m∑
i=1

hiξi(x,W (0))

)γ

exp (−cγ(x, h)) f (g(x,W (0)))

]
,

(1.11)
with g as in (1.2) and where 1

γλγ is the optimal value of the cost functional
(1.8). Notice that under measure Ph,γ the process (x(n)) is still Markov but
with controlled transition operator Ph,γ(x, dy). Following [6] we shall show
that

1
γ
λγ → λ (1.12)

whenever γ ↑ 0.
In what follows we distinguish two special classes of controls (hn): Markov

controls UM = {(h(n)) : h(n) = un(x(n))}, where un : Rk �→ U is a sequence
of Borel functions, and stationary controls Us = {(hn) : h(n) = u(x(n))},
where u : Rk �→ U is a Borel function. We shall denote by B(Rk) the set of
Borel subsets of Rk and by P(Rk) the set of probability measures on Rk.

The study of risk sensitive portfolio optimization has been originated in [1]
and then continued in a number of papers, in particular, in [16]. Risk sensitive
cost functional was studied in papers [13], [6], [7], [3], [4], [12], [2], [8] and
references therein. In this paper using techniques based on the splitting of
Markov processes (see [15]) we study the Poisson equation for additive cost
functional, the solution of which is also a solution to the risk neutral Bellman
equation. We then consider the problem of risk sensitive portfolio optimization
with risk factor close to 0. We generalize the result of [16], where uniform
ergodicity of factors was required and using [8] we show the existence of the
solution to the Bellman equation for small risk in a more general ergodic case.
The proof that a nearly optimal continuous risk neutral control function is
also nearly optimal for risk sensitive cost functional with risk factor close to 0
is based on a modification of the arguments in [6] using some results from the
theory of large deviations.

2 Risk neutral Bellman equation

By the nondegeneracy of the matrix ddT there exists a compact set C ⊂ Rk,
for which we can find a closed ball in Rk, β > 0 and ν ∈ P(Rk) such that
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ν(C) = 1 and ∀A∈B(Rk)

inf
x∈C

P (x,A) ≥ βν(A). (2.1)

We fix a compact set C, β > 0 and ν ∈ P(Rk) satisfying the above minoriza-
tion property. Additionally assume that the set C is ergodic, i.e.

∀x∈Rk Ex {τC} <∞ and sup
x∈C

Ex {τC} <∞,

where τC = inf {i > 0 : xi ∈ C}.
Consider a splitting of the Markov process (x(n)) (see [15]).
Let R̂k =

{
C × {0} ∪ C × {1} ∪ (Rk \ C)× {0}

}
and x̂(n) = (x1(n), x2(n))

be a Markov process defined on R̂k such that

(i) when (x1(n), x2(n)) ∈ C × {0}, x1(n) moves to y accordingly to
(1− β)−1(P (x1(n), dy)− βν(dy)) and whenever y ∈ C, x2(n) is changed
into x2(n+ 1) = βn+1, where βn is i.i.d.

P {βn = 0} = 1− β, P {βn = 1} = β,

(ii) when (x1(n), x2(n)) ∈ C × {1}, x1(n) moves to y accordingly to ν and
x2(n+ 1) = βn+1,

(iii) when (x1(n), x2(n)) ∈ Rk \ C × {0}, x1(n) moves to y accordingly to
P (x1(n), dy) and whenever y ∈ C, x2(n) is changed into x2(n+1) = βn+1.

Let C0 = C × {0}, C1 = C × {1}.
Following [8] and [15] we have

Proposition 2.1. For n = 1, 2 . . . we have P -a.e.

P (x̂(n) ∈ C0|x̂(n) ∈ C0 ∪ C1, x̂(n− 1), . . . , x̂(0)) = 1− β. (2.2)

The process (x̂(n) = (x1(n), x2(n))) is Markov with transition operator
P̂ (x̂(n), dy) defined by (i)-(iii). Its first coordinate (x1(n)) is also a Markov
process with transition operator P (x1(n), dy). Furthermore, for any bounded
Borel measurable function f : (Rk)n+1 �→ R we have

Ex {f(x(1), x(2), . . . , x(n))} = Êδ∗x

{
f(x1(1), x1(2), . . . , x1(n))

}
(2.3)

where δ∗x = δ(x,0) for x ∈ Rk \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C

and Êµ stands for conditional law of Markov process (x̂(n)) with initial law
µ ∈ P(R̂k).

Proof. Since the Markov property of (x1(n)) is fundamental in this paper we
recall this proof from [8] leaving the proof of other statements to the reader.
For A ∈ Rk we have



216 G.B. Di Masi and L̂. Stettner

P
(
x1(n+ 1) ∈ A|x1(n), x1(n− 1), . . . , x1(0)

)
= P

(
x1(n+ 1) ∈ A|x1(n), x2(n) = 0, x1(n− 1), . . . , x1(0)

)
P
(
x2(n) = 0|x1(n), x1(n− 1), . . . , x1(0)

)
+P
(
x1(n+ 1) ∈ A|x1(n), x2(n) = 1, x1(n− 1), . . . , x1(0)

)
P
(
x2(n) = 1|x1(n), x1(n− 1), . . . , x1(0)

)
.

In the case when x1(n) ∈ C, the right-hand side of the last equation is equal
to

P an(x1(n), A)− βν(A)
1− β

(1− β) + βν(A) = P an(x1(n), A).

For x1(n) /∈ C, it is equal to P an(x1(n), A), which completes the proof of the
Markov property of (x1(n)).

✷

By the assumption on C and the construction of the split Markov process
we immediately have

Corollary 2.1. Êx [τC1 ] <∞ for x ∈ R̂k and supx∈C1
Êx [τC1 ] <∞.

Lemma 2.1. Given h(n) ∈ UM there is a unique λ({h(n)}) such that for
x ∈ C1

Êx

[τC1∑
t=1

(
c(x1(t), h(t))− λ({h(n)})

)]
= 0. (2.4)

Proof. Notice that for x ∈ C1 the mapping

D : λ �→ Êx

[τC1∑
t=1

(
c(x1(t), h(t))− λ

)]

is continuous and strictly decreasing. Since the values of this mapping for ‖c‖
and −‖c‖ are, respectively, nonpositive and nonnegative, there is a unique λ
for which the mapping attains 0.

✷

For Borel measurable u : Rk �→ U let

ŵu(x) = Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]
, (2.5)

where we use the notation λ(u) = λ({u(x(n))}).

Lemma 2.2. Function ŵu defined in (2.5) is the unique (up to an additive
constant) solution to the additive Poisson equation (APE ) for the split Markov
process (x̂(n)):

ŵu(x) = c(x1, u(x1))− λ(u) +
∫
R̂k

ŵu(y)P̂ (x, dy). (2.6)



Remarks on Risk Neutral and Risk Sensitive Portfolio Optimization 217

Furthermore, if ŵ and λ satisfy the equation

ŵ(x) = c(x1, u(x1))− λ+
∫
R̂k

ŵ(y)P̂ (x, dy) (2.7)

then λ = λ(u) (defined in Lemma 2.1) and ŵ differs from ŵu by an additive
constant.

Proof. In fact, we have using (2.4)

Êx [w(x̂(1))] = Êx

[
χx̂(1)∈C1Êx(1)

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]]

+Êx

[
χx̂(1)/∈C1Êx(1)

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]]
= Êx

[
χx̂(1)∈C1

(
c(x1(1), u(x1(1)))− λ(u)

)]
+Êx

[
χx̂(1)/∈C1

τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]

= Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)]
−
(
c(x1, u(x1))− λ(u)

)
from which (2.6) follows. If ŵu is a solution to (2.6) then by iteration we
obtain that

ŵu(x) = Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ(u)

)
+ Êx̂τC1

[ŵu(x̂(1))]

]
, (2.8)

where by the construction of the split Markov process

ÊxτC1
[ŵu(x̂(1))] = (1− β)

∫
Rk

ŵu(z, 0)ν(dz) + β

∫
Rk

ŵu(z, 1)ν(dz).

Consequently, ŵu differs from ŵu defined in (2.5) only by an additive constant.
Similarly, if ŵ and λ are solutions to (2.7) then ŵ differs from

w̃(x) = Êx

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)]

by an additive constant Êz {ŵ(x̂(1))} with z ∈ C1. Since w̃ itself is a solution
to (2.7) we have that Êz {w̃(x̂(1))} = 0 for z ∈ C1. Therefore, for z ∈ C1
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0 = Êz [w̃(x̂(1))] = Êz

[
χ
R̂k\C1

(x̂(1))
τC1∑
t=1

(
c(x1(t), u(x1(t)))− λ

)
+χC1(x̂(1))Êx̂(1)

[τC1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)]]

= Êz

[τC1∑
t=1

(
c(x1(t), u(x1(t)))− λ

)]

and by Lemma 2.1 we have λ = λ(u) which completes the proof.
✷

Corollary 2.2. Given a solution ŵu : R̂k �→ R to the APE (2.6) we have that
wu defined by

wu(x) := ŵu(x, 0) + 1C(x)β [ŵu(x, 1)− ŵu(x, 0)] (2.9)

is a solution to the APE for the original Markov process (x(n))

wu(x) = c(x, u(x))− λ(u) +
∫
Rk

wu(y)P (x, dy). (2.10)

Furthermore if wu is a solution to (2.10) then ŵu defined by

ŵu(x1, x2) = c(x1, u(x1))− λ(u) + Êx1,x2

[
wu(x1(1))

]
(2.11)

is a solution to (2.6).

Proof. By (2.2) we have

Êx [ŵu(x̂(1))] = Êx

[
Êx

[
ŵu(x̂(1))|x1(1)

]]
= Êx

[
χC(x1(1))

[
(1− β)ŵu(x1(1), 0) + βŵu(x1(1), 1)

]
+ χE\C(x1(1))ŵu(x1(1), 0)

]
= Êx

[
wu(x1(1))

]
. (2.12)

Therefore by (2.6) we obtain that wu defined in (2.9) is a solution to (2.10).
Assume now that wu is a solution to (2.10). Then by (2.3)

Êδ∗x

[
wu(x1(1))

]
= Ex [wu(x(1))]

and for ŵu given in (2.11) we obtain (2.9). From (2.9) we obtain (2.12) which
in turn by (2.11) shows that ŵu is a solution to (2.6).

✷

Remark 2.1. The APE has been a subject of intensive studies in [14] (together
with the so called multiplicative Poisson equation). The results given above
show that the use of splitting techniques provides an explicit form for the
solutions to this equation.
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The value of λ(u) has another important characterization. Namely, we have

Proposition 2.2. For Borel measurable u : Rk → U the value λ(u) defined
in Lemma 2.1 is equal to

λ(u) = lim
n→∞

1
n
Ex

[
n−1∑
t=0

c(x(t), u(x(t)))

]
(2.13)

Proof. Let λ > λ(u). For z ∈ C1 we have

Êz

[τC1∑
t=1

(
c(x1(t), u(x1(t)))− λ

)]
< 0

and consequently for N ≥ N0

Êz

τC1∧N∑
t=1

(
c(x1(t), u(x1(t)))− λ

) ≤ 0. (2.14)

Let

wu
N (x) = Êx

σC1∧N−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

) (2.15)

with σC1 = inf {t ≥ 0 : x̂(t) ∈ C1}.
For x /∈ C1

wu
N+1(x) = Êx

[
c(x1(0), u(x1(0)))− λ

+Êx̂(1)

[ σC1∧N−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

) ]]
= Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]

(2.16)

and for x ∈ C1 by (2.14) we have

wu
N+1(x) = c(x1(0), u(x1(0)))− λ

≥ Êx

[
c(x1(0), u(x1(0)))− λ

+ Êx̂(1)

[ σC1∧N−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

) ]]
= Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]
. (2.17)
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Consequently,

wu
N+1(x) ≥ Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]

(2.18)

and by iteration for N ≥ N0

wu
N+k(x) ≥ Êx

[
k−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)
+ wu

N (x̂(k))

]

≥ Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))− λ− ‖c‖N
]
.

Therefore,

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]

≤ 1
k
‖c‖N +

1
k
sup
N
Êx

σC1∧N−1∑
t=1

(
c(x1(t), u(x1(t)))− λ(u)

)+ λ

and, consequently,

lim sup
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≤ λ.

With λ decreasing to λ(u), we obtain

lim sup
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≤ λ(u). (2.19)

Assume now that λ < λ(u). For z ∈ C1 we have

Êz

[τC1∑
t=1

(
γc(x1(t), u(x1(t)))− λ

)]
> 0

and, consequently, for N ≥ N0

Êz

τC1∧N∑
t=1

(
c(x1(t), u(x1(t)))− λ

) ≥ 0. (2.20)

Therefore, for wu
N defined in (2.15), similarly to (2.16)-(2.17), we have

wu
N+1(x) ≤ Êx

[
c(x1(0), u(x1(0)))− λ+ wu

N (x̂(1))
]

(2.21)

and by iteration for N ≥ N0
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wu
N+k(x) ≤ Êx

[
k−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)
+ wu

N (x̂(k))

]

≤ Êx

[
k−1∑
t=0

(
c(x1(t), u(x1(t)))− λ

)
+ ‖c‖N

]
.

Therefore,

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]

≥ −1
k
‖c‖N +

1
k
inf
N
Êx

σC1∧N−1∑
t=1

(
c(x1(t), u(x1(t)))− λ(u)

)+ λ

and

lim inf
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≥ λ

and, finally,

lim inf
k→∞

1
k
Êx

[
k−1∑
t=0

c(x1(t), u(x1(t)))

]
≥ λ(u) (2.22)

which together with (2.19) completes the proof.
✷

We summarize the results of this section in the following

Theorem 2.1. There exists a unique (up to an additive constant) function
w : Rk �→ R and a unique constant λ which are solutions to the Bellman
equation (1.7). Furthermore, λ is the optimal value of the cost functional J0.

Proof. Notice that for û optimal we find w and λ as a solution to the APE

w(x) = c(x, û(x))− λ+
∫
Rk

w(y)P (x, dy),

which exist by Lemmas 2.1, 2.2 and Corollary 2.2. By Proposition 1.17, λ
is an optimal value of the cost functional J0. Uniqueness up to an additive
constant of w follows from uniqueness of the solutions to APE for the split
Markov process (Lemma 2.2) and Corollary 2.2.

✷

3 Risk sensitive asymptotics

In what follows we shall assume that γ ∈ (−1, 0). The following estimation
will be useful in this section
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Lemma 3.1. We have

eγ‖a‖ ≤ E

[(
m∑
i=1

hiξi(x,W (0))

)γ]
≤ e|γ|‖a‖+

1
2γ

2‖σ2‖. (3.1)

Proof. Since r(z) = zγ is convex, by the Jensen inequality we have

E

[(
m∑
i=1

hiξi(x,W (0))

)γ]
≤

m∑
i=1

hiE [(ξi(x,W (0)))γ ] .

Using the Hölder inequality twice we have

E

[(
m∑
i=1

hiξi(x,W (0))

)γ]
≥ 1

E
[
(
∑m

i=1 hiξi(x,W (0)))−γ
]

≥ 1

(
∑m

i=1 hiE [(
∑m

i=1 ξi(x,W (0)))])−γ
.

Then using standard estimations for ξi we easily obtain (3.1).
✷

Immediately from Lemma 3.1 we have

Corollary 3.1.

lim sup
γ→0

sup
x∈Rk

sup
h∈U

∣∣∣∣∣E
[(

m∑
i=1

hiξi(x,W (0))

)γ]
− 1

∣∣∣∣∣ = 0 (3.2)

and
lim
γ→0

sup
x∈Rk

sup
h∈U

|cγ(x, h)| = 0. (3.3)

We furthermore have

Lemma 3.2.
lim
γ→0

1
γ
cγ(x, h) = c(x, h) (3.4)

and the limit is increasing and uniform in x and h from compact subsets.

Proof. By the Hölder inequality 1
γ cγ(x, h) is increasing in γ. Using l’Hôpital’s

rule for γ → 0 we identify the limit as c(x, h). Since the functions c(x, h)
and cγ(x, h) are continuous, by Dini’s theorem the convergence is uniform on
compact sets.

✷

Lemma 3.3. We have that

sup
A∈B(Rk)

sup
x∈Rk

sup
h∈U

∣∣∣∣Ph,γ(x,A)
P (x,A)

− 1
∣∣∣∣→ 0 (3.5)

as γ → 0.
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Proof. Notice that by the Hölder inequality we have

Ph,γ(x,A) ≤ e−cγ(x,h)e
1
2 c2γ(x,h)

√
P (x,A) (3.6)

and
P (x,A) ≤ e

1
2 cγ(x,h)e−

1
2γ‖a‖

√
Ph,γ(x,A) (3.7)

from which (3.5) easily follows.
✷

In what follows we shall assume that for some γ < 0 we have

Ex

[
e|γ|τC

]
<∞ (3.8)

for x ∈ Rk and
sup
x∈C

Ex

[
e|γ|τC

]
<∞. (3.9)

where C is the same compact set as in Section 2.
We recall the following fundamental result from [8].

Theorem 3.1. For γ < 0 sufficiently close to 0 there exists λγ and a contin-
uous function wγ : Rk �→ R such that the Bellman equation (1.10) is satisfied.
Moreover 1

γλ
γ is an optimal value of the cost functional Jγ

x and the control
û(xn), where û is a Borel measurable function for which the infimum in the
right hand side of (1.10) is attained, is an optimal control within the class of
all controls from Us.
Furthermore, if for an admissible control (hn) we have that

lim sup
t→∞

E(hn)
x

[(
Eht
xt

[
ewγ(x1)

])α]
<∞

for every α > 1, then 1
γλ

γ ≤ Jγ
x ((hn)).

Notice now that by the Hölder inequality the value of the functional Jγ is
increasing in γ < 0 and, by the Jensen inequality, is dominated by the value of
J0. Consequently, the same holds for the optimal values of the cost functionals,
i.e.

1
γ
λγ ≤ λ. (3.10)

Furthermore, there is a sequence un of continuous functions from Rk to
U such that c(x, un(x)) converges uniformly in x from compact subsets to
suph∈U c(x, h). By Lemma 2.1 and Theorem 2.1 we immediately have that
λ((un))→ λ as n→∞. This means that for any ε > 0 there is an ε-optimal
continuous control function uε. We are going to show that for each ε > 0

Jγ(uε(x(n)))→ J0(uε(x(n))) (3.11)

as γ → 0. Since the proof will be based, following Section 5 of [6], upon large
deviation estimates, we need the following assumption:
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(A) there is a continuous function f0 : Rk �→ [1,∞) such that for each
positive integer n the set Kn :=

{
x ∈ Rk : f0(x)

Pf0(x)
≤ n
}
is compact.

Remark 3.1. By direct calculation one can show that for a large class of ergodic
processes (x(n)) function f0(x) = ec‖x‖

2
satisfies (A) for small c. To be more

precise, assume for simplicity that k = 1 and |x+b(x)| ≤ β|x| for a sufficiently
large x with 0 < β < 1. Then for 0 < c < 1−β2

2ddT
assumption (A) holds.

Proposition 3.1. Under (A) for continuous control function u : Rk �→ U we
have

Jγ(u(x(n)))→ J0(u(x(n))) (3.12)

as γ → 0.

Proof. Under (A) using Lemma 3.3 we see that the set

Ku,γ
n :=

{
x ∈ Rk :

f0(x)
Pu,γf0(x)

≤ n

}
is compact for each n. Therefore, by Theorem 4.4 of [10] we have an upper
large deviation estimate for empirical distributions of Markov process with
transition operator Pu(x),γ(x, ·). Using the theorem in Section 3 of [11] we
also have a lower large deviation estimate. Consequently, we have a large
deviation principle corresponding to the rate function

Iu,γ(ν) := sup
h∈H

∫
Rk

ln
h(x)

Pu(x),γh(x)
ν(dx), (3.13)

where H is the set of all bounded functions h : Rk �→ R such that 1
h(x) is also

bounded and ν ∈ P(Rk). Therefore, by Varadhan’s theorem (Theorem 2.1.1
of [5]) we have

1
γ

lim
n→∞

1
n
lnEh,γ

x

[
exp

(
n−1∑
t=0

cγ(x(t), h(t))

)]

= inf
ν∈P(Rk)

(∫
Rk

1
γ
cγ(z, u(z))ν(dz)−

1
γ
Iu,γ(ν)

)
. (3.14)

There is a sequence of measures νγi with γi → 0 as i→∞ such that∫
Rk

1
γi
cγi(z, u(z))νgi(dz)−

1
γi
Iu,γi(νγi)

≤ inf
ν∈P(Rk)

(∫
Rk

1
γi
cγi(z, u(z))ν(dz)−

1
γi
Iu,γi(ν)

)
+

1
i
. (3.15)

Since from (3.1)
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1
γ

lim
n→∞

1
n
lnEh,γ

x

[
exp

(
n−1∑
t=0

cγ(x(t), h(t))

)]
≤ ‖a‖ (3.16)

we have that Iu,γi(νγi) → 0. We shall show that the sequence (νγi) is tight.
Applying Fatou’s lemma to the sequence {f0 ∧N} with N → ∞ we obtain
that ∫

Rk

ln
f0(x)

Pu(x),γf0(x)
νγi(dx) ≤ Iu,γi(νγi). (3.17)

By (3.5) for ε > 0 there is γ0 such that for γ ≥ γ0

(1− ε)Pf0(x) ≤ Pu(x),γf0(x) ≤ (1 + ε)Pf0(x). (3.18)

Therefore, by (3.17)∫
Rk

ln
f0(x)
Pf0(x)

νγi(dx) ≤ Iu,γi(νγi) + ln(1 + ε) (3.19)

for i > i0. Let ρn := infx∈Kn
ln f0(x)

Pf0(x)
. Then

ρnνγi(Kn) + lnnνγi(K
c
n) ≤ Iu,γi(νγi) + ln(1 + ε) (3.20)

where Kc
n := Rk \Kn. Consequently,

lnnνγi(K
c
n) ≤

Iu,γi(νγi) + ln(1 + ε)− ρn
lnn− ρn

(3.21)

and since lnn ≥ 1 + ρn for sufficiently large n, we have the tightness of
the measures νγi . By the Prohorov theorem there exists a subsequence of
νγi , for simplicity still denoted by νγi , and a probability measure ν̄ such
that νγi → ν̄ as i → ∞. Since by (3.5) Iu,γ(ν) converges uniformly to
Iu(ν) := suph∈H

∫
Rk ln

h(x)
Pu(x)h(x)

ν(dx) as γ → 0 and Iu is a nonnegative
lower semicontinuous function, we have that Iu(ν̄) = 0. By Lemma 2.5 of
[9] the measure ν̄ is invariant for the transition operator P (x, ·). Therefore,
by Lemma 3.2

lim
i→∞

1
γi

lim
n→∞

1
n
lnEh,γi

x

[
exp

(
n−1∑
t=0

cγi(x(t), h(t))

)]

≥ lim
i→∞

∫
Rk

1
γi
cγi(z, u(z))νγi =

∫
Rk

c(z, u(z))ν̄(dz) = J0(u(x(n))(3.22)

and using the fact that the cost functional Jγ is increasing in γ we obtain
(3.12), which completes the proof.

✷

We are now in position to summarize the results of this section.
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Theorem 3.2. Under (A) a continuous ε-optimal control function uε for J0

is also a 2ε-optimal control function for Jγ provided 0 > γ > γ0. Consequently
convergence (1.12) holds.

Remark 3.2. One can expect that at least a subsequence of 1γwγ(x) converges
to w(x) uniformly on compact subsets, as γ → 0 , where w is a solution to
the risk neutral Bellman equation (1.7). Unfortunately, the authors were not
able to show this.
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1 Introduction

In this paper we consider the one-dimensional stochastic equation

Xt = x0 +
∫ t

0

b(Xs−)dMs +Kt , t ≥ 0 , (1.1)

where the volatility b : [0,∞) → R is a Borel function, x0 ∈ [0,∞) is an
arbitrary initial value, the process X is nonnegative, K (called the reflecting
force) is a right-continuous increasing process with K0 = 0 and such that∫∞
0
1{Xt �=0}dKt = 0, and M is a symmetric stable process with M0 = 0.
It is well-known that every symmetric stable process can uniquely be char-

acterized by its stability index α ∈ (0, 2] in the following sense. A processM is
a symmetric stable process of index α iff it is a process with homogeneous and
independent increments and the characteristic function of Mt has the form

E exp(iλMt) = exp(−t |λ|α) , λ ∈ R , t ≥ 0 . (1.2)

For α = 2 the processM is a Brownian motion (with variance function 2t) and
for α = 1 it is a Cauchy process. The Brownian motion is the only symmetric
stable process with continuous sample paths. For all other parameters α ∈
(0, 2) the process M is a purely discontinuous semimartingale with infinite
variance. Therefore, the cases α = 2 and 0 < α < 2 are rather different,
at least from this point of view. The density function for symmetric stable
processes can be written in explicit form only in three cases: for the Brownian
motion, the Cauchy process and the 1

2 -stable process. For more details about
symmetric stable processes we refer to the well-known books [1], [15] or [18].

By a stochastic basis we understand a complete probability space (Ω,F , P )
with a filtration F = (Ft)t≥0 satisfying the usual conditions. Now, a symmetric
α-stable process with respect to the filtration F is a symmetric α-stable process
M which is F-adapted and such that Mt −Ms is independent of Fs for all
≤ s ≤ t. (Alternatively, exp (iλMt + t |λ|α) is a complex-valued F-martingale
for every λ ∈ R.) For the sake of simplicity, in that case we say that (M,F) is
a symmetric α-stable process.

Let α ∈ (0, 2], x0 ∈ [0,∞), and a Borel function b : [0,∞)→ R be fixed.

Definition 1. A process X defined on a stochastic basis (Ω,F , P ;F) is said
to be a reflected solution of SDE (1.1) in [0,∞) if there exist two processes
M and K such that:

1) X is F-adapted and Xt ≥ 0 for all t ≥ 0;
2) (M,F) is a symmetric stable process of index α;
3) K is an F-adapted, right-continuous and increasing process with K0 = 0;
4)
∫∞
0
1{Xt �=0}dKt = 0;

5) equation (1.1) is satisfied P -a.s.
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Relation 4) means that K increases only if X becomes zero. The process
K is called the reflecting force for the solution X of SDE (1.1).

Under the integral in (1.1) we may understand the stochastic integral with
respect to the symmetric stable process M in the sense of Itô as defined by
J. Rosiński and W. Woyczyński [13]. There is a great analogy between the
construction of this stochastic integral and the Itô integral for the Brownian
motion. However, and this is very important, the result is completely the
same if this integral is constructed as a stochastic integral with respect to
the semimartingale M , as in the book of J. Jacod and A.N. Shiryaev [7].
In both [7] (Chapter III, 6d) and [13] it was proven that the finiteness of∫ t
0
|b(Xs−)|α ds, for all t ≥ 0, is necessary and sufficient for the existence of

the stochastic integral in (1.1).
Multidimensional stochastic differential equations with reflections in gen-

eral form driven by Brownian motion were considered by many authors. We
only refer to the papers of L. Sl̀omiński [19], [20], and A. Rozkosz and L.
Sl̀omiński [14] where they investigated the equation under quite general as-
sumptions on the coefficients and where one can find other references on this
topic. In the one-dimensional case one can obtain more. Equation (1.1) with
driving process M being a Brownian motion was studied in detail by W. M.
Schmidt in [16], where he obtained necessary and sufficient conditions for
the existence of solutions. W. M. Schmidt essentially used the time change
method and the properties of the local time of the Brownian motion. Nonre-
flected SDEs driven by symmetric α-stable processes were considered by P.
A. Zanzotto [23], [24] (time-independent case), by H. Pragarauskas and P. A.
Zanzotto [10] (time-dependent case, 1 < α < 2) and by H.-J. Engelbert and
V. P. Kurenok [5] (time-dependent case, 0 < α ≤ 2).

The aim of the present paper is to solve SDE (1.1) for an arbitrary stability
index α ∈ (0, 2]. Our results about the existence of solutions will generalize,
in particular, the results of W. M. Schmidt for the case α = 2. To construct
a solution of (1.1) we use the time change method analogously to the case of
nonreflected SDEs (see, e.g., [5]).

The paper is organized as follows. In Section 2 we construct a symmetric
stable process with a reflecting boundary at zero for an arbitrary parame-
ter α ∈ (0, 2]. The method for the construction of a Brownian motion with
reflecting boundaries used by W. M. Schmidt cannot be applied to the case
0 < α < 2 because for 0 < α ≤ 1 there doesn’t exist a local time process
and for 1 < α < 2 (when the local time exists) there is no Tanaka formula,
at least in an explicit form as for the case of the Brownian motion. For the
general case we use the approach for the construction of a reflected process in
a bounded region given by A. V. Skorohod [17]. We prove that the reflected
α-stable processes are recurrent for every α ∈ (0, 2]. This allows us to con-
struct nonexploding solutions of (1.1); that is a situation different from the
nonreflected case (when 0 < α < 1). We also investigate some properties of
integral functionals of reflected symmetric stable processes which are the key
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for the construction of a solution of (1.1). They are collected in Section 3. The
last section is devoted to the existence and uniqueness of solutions of (1.1).

2 Reflected symmetric stable processes

In this section we shall construct (in the sense of trajectories) a symmetric
stable process reflected at the boundary zero to the right. First of all, we
define what we understand by such a process.

Definition 2. A process M̄ with M̄0 ≥ 0 is called a reflected symmetric stable
process of index α on [0,∞) if there exist processes M and K such that:

1) M is a symmetric stable process of index α;
2) M̄t ≥ 0 for all t ≥ 0;
3) K is an increasing, right-continuous process with K0 = 0 and∫ ∞

0

1{M̄t �=0}dKt = 0 ;

4) it holds
M̄t = M̄0 +Mt +Kt , t ≥ 0 . (2.1)

As in the previous section, the process K is called the reflecting force
for M̄ .

In the case α = 2, the reflected process can be described by |M |, where M
is a Brownian motion (with variance function 2t). Using the Tanaka formula,
we recover the reflecting force K as the local time ofM (or 12 of the local time
of |M |). This well-known fact was exploited by W. M. Schmidt [16].

But there is another possibility to obtain the reflected Brownian motion
which immediately follows from the solution of the deterministic Skorohod
problem. Let D be the space of functions x : [0,∞) → R which are càdlàg
(right-continuous, with finite left-hand limits). Then the deterministic Skoro-
hod problem can be formulated as follows. For a given function x ∈ D such
that x(0) ≥ 0 there are to find functions z and y from the space D such that:

1) z(t) ≥ 0 for all t ≥ 0;
2) y is an increasing function with y(0) = 0 and

∫∞
0
1{z(t) �=0}dy(t) = 0;

3) it holds z(t) = x(t) + y(t) for all t ≥ 0.

The existence and uniqueness of the solution of this problem for the space
of continuous functions was first proven by A. V. Skorohod [17] in 1961. H.
Tanaka [21] generalized the problem by formulating it in the space of càdlàg
functions, in the multi-dimensional case. In this generality he proved only
uniqueness (Lemma 2.3, [21]). However, in the one-dimensional case, existence
also holds and we give a proof, for the convenience of the reader.
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Lemma 1. For every function x ∈ D such that x(0) ≥ 0, the deterministic
Skorohod problem on [0,∞) has a unique solution (z, y), given by

y (t) := sup
0≤s≤t

max (−x (s) , 0) , z (t) := x (t) + y (t) , t ≥ 0 . (2.2)

Proof. We first prove existence. Let x ∈ D such that x(0) ≥ 0 and y, z be
defined by (2.2). It is obvious that y, z are in D, z(t) ≥ 0 for all t ≥ 0
and y is an increasing function with y(0) = 0. It remains only to prove that∫∞
0
1{z(t)>0}dy(t) = 0.
Let ε > 0 be fixed, but arbitrary. Since z ∈ D, the set {t ≥ 0 : z (t) > ε}

can be written as
⋃

n≥1 In, where In, n ≥ 1, are pairwise disjoint intervals of
the form In = (un, vn) or [un, vn).

We have, for n ≥ 1,

−x (t) = y (t)− z (t) ≤ y (vn−)− ε , ∀t ∈ In .

This yields

y (vn−) = max
(
y (un) , sup

un<t<vn

max (−x (t) , 0)
)

≤ max (y (un) , y (vn−)− ε) ,

which means that y (vn−) = y (un), for every n ≥ 1. It follows that∫ ∞
0

1{z(t)>ε}dy(t) = 0 , ∀n ≥ 1 .

By letting ε→ 0, we obtain the result.
For the uniqueness part, we consider two solutions, (z, y) and (z′, y′), of

the Skorokhod problem with input function x. Then,

z (t)− z′ (t) = y (t)− y′ (t) , ∀t ≥ 0 .

Integrating by parts, this yields that for every t > 0,

[(z − z′) (t)]2

= 2
∫
(0,t]

(z − z′) (s) d (y − y′) (s)−
∑
0<s≤t

[(z − z′) (s)− (z − z′) (s−)]2

≤ 2
∫
(0,t]

(z − z′) (s) d (y − y′) (s) .

On the other hand, the relations∫ ∞
0

z (s) dy(s) = 0 and
∫ ∞
0

z′ (s) dy′(s) = 0

imply that ∫
(0,t]

(z − z′) (s) d (y − y′) (s) ≤ 0, ∀t ≥ 0 .

Hence z (t) = z′ (t), ∀t ≥ 0, which proves the result.



232 H.-J. Engelbert, V. Kurenok and A. Zalinescu

Now suppose that M is a symmetric stable process of arbitrary index α
defined on a probability space (Ω,F , P ) and x0 ≥ 0. For all t ≥ 0 we put

Kt := sup
0≤s≤t

max (−Ms − x0, 0) (2.3)

and let
M̄t := x0 +Mt +Kt . (2.4)

For all 0 < α ≤ 2, the process M is a right-continuous process with
finite left-hand limits. By Lemma 1, the constructed process M̄ is a reflected
symmetric stable process in the sense of Definition 2. Reflected symmetric
α-stable processes were already introduced and studied by S. Watanabe [22].

We can also regard the symmetric α-stable processM as a (strong) Markov
process defined on a family (Ω,F ,F, Px, x ∈ R) of filtered probability spaces
such that Px (M0 = x) = 1 for every x ∈ R. Then, as it is noticed in [22], the
reflected process is a strong Markov process on [0,∞) when viewed as

M̄t :=Mt + sup
0≤s≤t

max (−Ms, 0) , t ≥ 0 .

(The difference from (2.3) and (2.4) is due to the fact that in this framework
M does not necessarily start at 0.)

Let us consider the following measure on [0,∞):

m(dy) := n(y)dy , y > 0 , (2.5)

where n(y) := α
2 y

α
2−1. Then the process M̄ has m as its invariant measure

([22]), which means that for every Borel measurable set A ⊆ [0,∞),∫ ∞
0

Px

(
M̄t ∈ A

)
m (dx) = m (A) , ∀t ≥ 0 . (2.6)

For α = 2, m becomes exactly the Lebesgue measure on the interval [0,∞).
In order to discuss the recurrence properties of the process M̄ , let us remind

some standard concepts for Markov processes. First, for any, say, standard
Markov processX with state space (E, E), defined on the corresponding family
of probability spaces (Ω,F ,F, Px, x ∈ E), we introduce the so-called potential-
measures U(x, ·) as

U(x,A) := Ex

(∫ ∞
0

1{Xt∈A}dt

)
, A ∈ E .

Then X is called recurrent if, for every measurable set A, U(·, A) ≡ ∞ or
U(·, A) ≡ 0. In [2], the definition of recurrence is given using nearly measurable
sets, but it is immediately seen that these definitions are equivalent.

Proposition 1. For all α ∈ (0, 2], the process M̄ is recurrent.
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Proof. From the construction of the process M̄ it follows that it returns into
the origin at arbitrarily large times. Indeed, let us consider the stopping times

τz := inf {t ≥ 0 :Mt ≤ −z} , z ≥ 0 . (2.7)

Then, Px-a.s., τn < ∞, ∀n ∈ N and τn ↗ ∞ as n → ∞, a consequence
of the fact that lim inf

t→∞
Mt = −∞ (see, for example p. 222, [1]) and of the

boundedness of M on finite intervals. It is obvious that, for every n ≥ 0,
M̄τn = 0, Px-a.s.

Let U be the potential measure associated with M̄ and suppose that there
exist z ≥ 0 and a Borel set A such that U(z,A) <∞. All we have to prove is
that U(x,A) = 0, for all x ≥ 0. First, we show that µ(A) = 0, where µ is the
Lebesgue measure on the positive half-line.

By the strong Markov property, for every n ∈ N we have

Ex

(∫ ∞
τn

1{M̄t∈A}dt

)
= E0

(∫ ∞
0

1{M̄t∈A}dt

)
, ∀x ≥ 0 .

For the particular choice x = z, passing to the limit as n→∞, the finiteness
of the left-hand term in this equality implies that U (0, A) = 0 and so∫ ∞

τ0

1{M̄t∈A}dt = 0 , Px-a.s. ,∀x ≥ 0 . (2.8)

On the other hand, relation (2.6) yields

tm (A) =
∫ ∞
0

Ex

(∫ t

0

1{M̄s∈A}ds

)
m (dx) .

From (2.8) and the property that Ms = M̄s on {s < τ0}, we get

tm (A) =
∫ ∞
0

∫ t

0

Px (Ms ∈ A, s < τ0) dsm (dx) , ∀t ≥ 0 . (2.9)

The measure Px (Mt ∈ dy, t < τ0) is the transition function of the process M
starting at x which is killed as soon as it leaves (0,∞). D. Ray [11] proved
that it is absolutely continuous with respect to the Lebesgue measure and its
density, p̃ (t, x, y), satisfies the relation∫ ∞

0

p̃ (t, x, y) dt =
1

Γ (α/2)2

∫ min(x,y)

0

ξ
α
2−1 (ξ + |y − x|)

α
2−1 dξ , x, y ≥ 0 ,

where Γ is the Gamma function. We also denote by p (s, x, y) the density of
the measure Px (Ms ∈ dy). Without loss of generality, we assume that the set
A is bounded. We choose a > 0 such that A ⊆ [0, a], and thus α

2 a
α
2−1µ (A) ≤

m (A). Splitting the integral in (2.9), we obtain, for every t ≥ 0,
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tm (A) ≤
∫ a

0

∫ ∞
0

∫
A

p̃ (s, x, y) dy dsm (dx) +
∫ ∞
a

∫ t

0

∫
A

p (s, x, y) dy dsm (dx)

≤ 1
Γ (α/2)2

∫ a

0

∫ a

0

∫ min(x,y)

0

ξ
α
2−1 (ξ + |y − x|)

α
2−1 dξ dym (dx)

+
α

2
a

α
2−1
∫ t

0

∫
A

∫ ∞
y

p (s, x, y) dx dy ds

≤ 1
Γ (α/2)2

∫ a

0

∫ a

0

xα−1 |y − x|
α
2−1 dy dx+

α

4
a

α
2−1t µ (A) .

The last inequality comes from the property that p is homogeneous and sym-
metric; indeed, we have∫ ∞

y

p (s, x, y) dx =
∫ ∞
y

p (s, 0, y − x) dx =
∫ ∞
0

p (s, 0,−x) dx = 1
2
,

since p (s, 0,−x) = p (s, 0, x) for all s, x > 0. Hence

1
2
tm (A) ≤ 1

Γ (α/2)2

∫ a

0

∫ a

0

xα−1 |y − x|
α
2−1 dy dx ≤ 4a

3α
2

α2Γ (α/2)2
.

This proves that m (A) = 0, t being taken arbitrarily. Therefore, µ (A) = 0.
From (2.8), the fact that Px (Mt ∈ ·, t < τ0) is absolutely continuous with

respect to µ and the relation

U (x,A) =
∫ ∞
0

Px (Ms ∈ A, s < τ0) ds+Ex

(∫ ∞
τ0

1{M̄s∈A}ds

)
, ∀x ≥ 0 ,

we conclude that U (x,A) = 0 for all x ≥ 0.

3 Integral Functionals of Reflected Symmetric
Stable Processes

Let M̄ be a reflected symmetric stable process of index α given by (2.3) and
(2.4) on a probability space (Ω,F , P ), with arbitrary initial state x0 ≥ 0. For
an arbitrary measurable function f : [0,∞)→ [0,∞] we consider the following
integral functional:

Tt :=
∫ t

0

f(M̄s)ds, t ≥ 0 . (3.1)

The first problem we analyse is whether the functional (3.1) is finite for all
t > 0.

For every y ≥ 0, let us denote by U(y) the family of open neighborhoods
in [0,∞) of y, and introduce
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Ef := {y ≥ 0 :
∫
U

f(z)m(dz) =∞, ∀U ∈ U(y)} ,

where m is the measure introduced by (2.5). We write f ∈ Lloc(m) to denote
that f is locally integrable with respect to m, i.e.,

∫
C
f(z)m(dz) <∞ for every

compact subset C of [0,∞) (which is equivalent to Ef = ∅).
We remind that a measurable set A is called polar if P (D(A) = ∞) = 1,

where D(A) := inf{t > 0 : M̄t ∈ A} is the first hitting time of the set A by
the process M̄ .

If 0 < α ≤ 1, we define the function hα,x0 : [0,∞)→ [0,∞] by

hα,x0 (y) :=

 |y − x0|α−1 , 0 < α < 1 ,

|ln |y − x0|| , α = 1 ,

and we assume the following hypothesis:

(Hα,x0
)


Ef is polar
and ∃U ∈ U(x0) :

∫
U
hα,x0 (z) f (z) dz <∞, 0 < α ≤ 1 ,

f ∈ Lloc(m), 1 < α < 2 .

Remark. Of course, since the polarity of a set depends only on the law
of the considered process, condition (Hα,x0) will depend only on α, x0 and
f . In the case x0 = 0, 0 < α ≤ 1, if Ef is polar, then the condition∫
U
hα,x0 (z) f (z) dz < ∞ for some U ∈ U(x0) is automatically satisfied. In-

deed, if Ef is polar then 0 cannot belong to Ef (cf. beginning of the proof of
Proposition 1). Hence, there exists U ∈ U(0) such that∫

U

f(z)m(dz) <∞ .

This yields ∫
U

hα,0 (z) f (z) dz <∞ .

Theorem 1. Let α ∈ (0, 2] and x0 ≥ 0. Suppose that f satisfies condition
(H α,x0). Then we have

Tt <∞ for all t ≥ 0, P -a.s.

Proof. First of all we note that the set Ef is closed. Hence we can find an
increasing sequence QN of open sets in [0,∞) with compact closures Q̄N ⊂ Ecf
such that Ecf =

⋃∞
N=1QN . We introduce the following sequence of stopping

times:
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ρN := inf{t ≥ 0 : M̄t ∈ QcN} .
It is easy to see that f is integrable over QN with respect to m. The quasi-left
continuity of the process M implies the quasi-left continuity of M̄ . From this,
the fact that Ef is polar and x0 ∈ Ecf , one can conclude that ρN increases to
infinity as N →∞, P -a.s.

We define the stopping time

σ := inf {t ≥ 0 : Mt ≤ −x0} .

Then ∫ t∧ρN

0

f
(
M̄s

)
ds =

∫ t∧ρN∧σ

0

f (x0 +Ms) ds+
∫ t∧ρN

t∧ρN∧σ
f
(
M̄s

)
ds

≤
∫ t

0

1QN
(x0 +Ms) f (x0 +Ms) ds

+et
∫ ∞
σ

e−s1QN

(
M̄s

)
f
(
M̄s

)
ds . (3.2)

But the function 1QN
(x0 + ·) f (x0 + ·) is integrable on the real line with

respect to the Lebesgue measure. Then, condition (Hα,x0) implies that the
assumptions of Corollary 2.2, Proposition 2.5, and Proposition 2.7 from [5] in
the cases α > 1, α = 1 and α < 1, respectively, are fulfilled. Therefore,∫ t

0

1QN
(x0 +Ms) f (x0 +Ms) ds <∞ . (3.3)

We now deal with the other term of the right-hand side of the inequality (3.2).
Let

ηλ(x) :=
2

αΓ (α/2)Γ (1 + (α/2))

(
n(x)− λ

∫ ∞
0

ḡλ(x, y)m(dy)
)
, λ > 0 ,

(3.4)
where ḡλ denotes the Green function of the resolvent operator corresponding
to M̄ .

Lemma 2. For any λ > 0 and any positive Borel measurable function g, it
holds

E
(∫ ∞

σ

e−λtg(M̄t)dt
)
=
Γ (1 + (α/2))√

λ
E
(
e−λσ

) ∫ ∞
0

ηλ(y)g(y)dy . (3.5)

The formula (3.5) was proven in [22] (see the proofs of Theorem 5.2 and
Theorem 5.3) for a reflected symmetric stable process M̄ defined on (−∞, 0].
According to the symmetry of a symmetric stable process, the behavior of the
process M on [0,∞) is the same as the behavior of −M on (−∞, 0]. Using
this, the proof of Lemma 2 follows the same steps as the proof in [22], and we
omit the details.
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Using the nonnegativity of the function ḡλ(x, y) for all (x, y), relation (3.4),
and choosing λ = 1 and g = 1QN

f , we obtain

E
∫ ∞
σ

e−s1QN

(
M̄s

)
f
(
M̄s

)
ds ≤ Γ

(α
2
+ 1
)∫

QN

η1(y)f (y) dy

≤ 2
αΓ (α/2)

∫
QN

f (y)m(dy) <∞ . (3.6)

Relations (3.3) and (3.6) yield that for all t ≥ 0 and N ≥ 1, Tt∧ρN < ∞,
P -a.s., which proves the theorem.

Example 1. The aim of this example is to show that, in the case 1 < α ≤ 2,∫ t

0

(
M̄s

)−β
ds =∞, ∀t > 0, P -a.s. (3.7)

if β ≥ α/2 and x0 = 0. This indicates that the condition f ∈ Lloc(m) seems to
be optimal for the convergence of the integral functionals

∫ t
0
f(M̄s)ds, t > 0.

For 1 < α ≤ 2, it is well-known that the symmetric α-stable process M
has a local time LM (t, a), jointly continuous in (t, a) (cf., e.g., [3]). It is then
natural to ask whether that still holds in the case of the reflected process M̄ .

For any Borel set A, let

S (t, A) :=
∫ t

0

1A
(
M̄s

)
ds, t ≥ 0 ,

denote the sojourn time of M̄ in A. In [9], F. B. Knight proved that for every
α ∈ (0, 2] there exists the local time in 0 of M̄ , which we denote LM̄ (t, 0). In
the case x0 = 0, the following holds:

0 < LM̄ (t, 0) = lim
ε↘0

ε−α/2S (t, [0, ε)) , ∀t > 0 , P -a.s. (3.8)

Suppose now that 1 < α ≤ 2. For every ω ∈ Ω, the set
{
t ≥ 0 : M̄t (ω) > 0

}
can be written as the union of pairwise disjoint intervals of the form In (ω) =
(un (ω) , vn (ω)) or [un (ω) , vn (ω)), n ≥ 1. As shown in the proof of Lemma
1, the reflecting force K· (ω) is constant on In. We denote this constant by
kn (ω). If a > 0 we define

LM̄ (t, a) :=
∞∑
n=1

(
LM (vn ∧ t, a− x0 − kn)− LM (un ∧ t, a− x0 − kn)

)
, t ≥ 0 .

(3.9)
We give a concise proof of the occupation times formula for LM̄ , i.e.,∫ t

0

g
(
M̄s

)
ds =

∫ ∞
0

g (a)LM̄ (t, a) da , ∀t ≥ 0 ,
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for every positive measurable function g, P -a.s. By (3.8) and the strong
Markov property of M̄ (when considered as such),

µ
({
t ≥ 0 : M̄t (ω) = 0

})
= 0 , P -a.s.

(recall that µ denotes the Lebesgue measure on the positive half-line). There-
fore it is sufficient to show the occupation times formula only for the function
of the type g ≡ 1A, where A is a Borel set in (0,∞). Integrating with respect
to a ∈ A in (3.9) and using the occupation times formula for LM , we obtain∫

A

LM̄ (t, a) da =
∞∑
n=1

∫
A−x0−kn

(
LM (vn ∧ t, a)− LM (un ∧ t, a)

)
da

=
∞∑
n=1

∫ vn∧t

un∧t
1A−x0−kn (Ms) ds =

∞∑
n=1

∫ vn∧t

un∧t
1A
(
M̄s

)
ds

=
∫ ∞
0

1A
(
M̄s

)
ds, t ≥ 0 .

That means LM̄ (t, a) is a possible candidate for the local time of the
process M̄ .

The equality (3.7) is then a consequence of the occupation times formula.
Indeed, from this it follows∫ t

0

(
M̄s

)−β
ds =

∫ ∞
0

a−βLM̄ (t, a) da , ∀t ≥ 0 , P -a.s. ,

and
S (t, [0, ε)) =

∫ ε

0

LM̄ (t, a) da , ∀t , ε > 0 , P -a.s.

Using integration by parts and (3.8), for sufficiently small ε > 0, we obtain∫ t

0

(
M̄s

)−β
ds ≥

∫ 1

ε

a−βLM̄ (t, a) da ≥
∫ 1

ε

a−α/2LM̄ (t, a) da

= S (t, [0, 1))− ε−α/2S (t, [0, ε)) +
α

2

∫ 1

ε

a−
α
2−1S (t, [0, a)) da

≥ −ε−α/2S (t, [0, ε)) + α

4
LM̄ (t, 0)

∫ √ε
ε

a−1da

≥ 1
8
LM̄ (t, 0) (−α ln ε− 16) .

The result then follows by letting ε→ 0.
Of course, if β < α/2, Theorem 1 ensures us that

∫ t
0
(M̄s)−βds < ∞,

∀t ≥ 0. This means that α/2 is the critical exponent for the convergence or
the divergence of the integral.

Let us now discuss briefly the conditions ensuring that
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T∞ =
∫ ∞
0

f(M̄s)ds =∞ .

Because the process M̄ is a recurrent one, it is logically to expect to have
similar sufficient conditions found for the symmetric stable process of index
α ∈ (1, 2], e.g., see [5].

Theorem 2. Suppose that µ ({a : f(a) > 0}) > 0. Then, for all x0 ≥ 0 and
α ∈ (0, 2], T∞ =∞, P -a.s.

Proof. For the convenience of the reader, we give a proof which is slightly
different of that of Proposition 2.6 [5].

It is sufficient to prove the assertion in the case f = 1A, where A is an
arbitrary Borel measurable set with µ(A) > 0.

Let ε > 0. By the strong Markov property of M̄ , we have that for every
n ∈ N

P0

(∫ ∞
0

1A(M̄s)ds > ε

)
= PM̄τn

(∫ ∞
0

1A(M̄s)ds > ε

)
= Px0

(∫ ∞
τn

1A(M̄s)ds > ε

∣∣∣∣Fτn

)
, Px0-a.s. ,

with τn defined by (2.7). The fact that lim
n→∞

τn =∞, Px0-a.s., allows us to pass
to the limit as n→∞ in this relation; from the theorem of Lebesgue-Lévy on
the convergence of conditional expectations we obtain that

P0

(∫ ∞
0

1A(M̄s)ds > ε

)
= 1⋂

n∈N

{∫∞

τn
1A(M̄s)ds>ε

}, Px0-a.s.

In the proof of Proposition 1, we have shown that µ(A) > 0 implies U (0, A) =
∞; thus P0

(∫∞
0
1A(M̄s)ds > ε

)
> 0. Consequently,

Px0

(⋂
n∈N

{∫ ∞
τn

1A(M̄s)ds > ε

})
= 1 .

Using once again the unboundedness of the sequence (τn)n∈N
, this relation

gives ∫ ∞
0

1A(M̄s)ds =∞ , Px0-a.s. ,

which proves Theorem 2.

4 Existence and Uniqueness of Solutions

Let us consider a Borel measurable function b : [0,∞) → R, an arbitrary
initial value x0 ≥ 0 and an arbitrary stability index α ∈ (0, 2]. We also define
the set
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Nb := {x ≥ 0 : b(x) = 0} .
Theorem 3. Assume that |b|−α satisfies condition (H α,x0). Then there exists
a (non-exploding) solution X of (1.1) with X0 = x0. For this solution, the
property ∫ ∞

0

1Nb
(Xs) ds = 0 , P -a.s.

is satisfied.

Proof. On a stochastic basis (Ω,F , P ;F) we consider a symmetric α-stable
process (M∗,F) and the corresponding reflected process M̄∗, defined by

K∗t := sup
0≤s≤t

max (−M∗s − x0, 0) ;

M̄∗t := x0 +M∗t +K∗t . (4.1)

Let

Tt =
∫ t

0

|b|−α (M̄∗s )ds, t ≥ 0 , (4.2)

and
At = inf{s ≥ 0 : Ts > t} .

It follows from Theorem 1 that T is a P -a.s. finite and continuous F-adapted
process with T0 = 0. Clearly, the condition of Theorem 2 is satisfied because
|b|−α is strictly positive. (Note that |b|−α (x) =∞ if b (x) = 0). Consequently,
T∞ =∞. Due to its definition, the process A is then a right-continuous F-time
change defined for all t ∈ [0,∞). The condition T∞ =∞ means that At <∞
for all t > 0, and we have A∞ := limt→∞At =∞, since T is finite. Moreover,
the process A is continuous on [0,∞) because T is strictly increasing, which is
also a consequence of the strict positivity of |b|−α. One can easily check that
A = T−1.

On the other side, the process M̄∗ is a right-continuous semimartingale
becauseM∗ is a right-continuous semimartingale and K∗ is a right-continuous
and increasing process. Then due to the well-known time change theorem for
semimartingales (see, e.g., [6], Theorem 10.16), the process (X,G), where

Xt := M̄∗At
, Gt := FAt

, t ≥ 0 , (4.3)

is again a right-continuous semimartingale. From (4.1) we then have

Xt = x0 +M∗At
+K∗At

, t ≥ 0 .

Obviously, Xt ≥ 0 for all t ≥ 0. We put M̃t =M∗At
and Kt = K∗At

.

Lemma 3. The process K is a reflecting force for X, i.e., K is increasing,
right-continuous, K0 = 0 and∫ ∞

0

1{Xs �=0}dKs = 0 . (4.4)
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Proof. It follows directly from the definition of the process K∗ and the con-
tinuity of A that K is also a right-continuous and increasing process with
K0 = 0. Moreover, for every t ≥ 0, it holds

Kt = sup
0≤s≤At

max(−M∗s − x0, 0)

= sup
0≤s≤t

max(−M∗As
− x0, 0)

= sup
0≤s≤t

max(−M̃s − x0, 0) .

Consequently, we have

Xt = x0 + M̃t + sup
0≤s≤t

max(−M̃s − x0, 0) ,

and from Lemma 1 it follows that the relation (4.4) is true.

Lemma 4. It holds

E
(∫ t

0

1Nb
(M̄∗s−)ds

)
= E

(∫ t

0

1Nb
(M̄∗s )ds

)
= 0 , ∀t ≥ 0 .

Proof. Using Lemma 2 for the function g = 1Nb\E|b|−α
and λ = 1, we estimate

E
(∫ t

0

g(M̄∗s )ds
)

≤ E
(∫ σ∧t

0

g(x0 +M∗s )ds
)
+ etE

(∫ ∞
σ

e−sg(M̄∗s )dt
)

≤
∫ t

0

P
(
x0 +M∗s ∈ Nb\E|b|−α

)
ds+

2et

αΓ (α/2)

∫ ∞
0

g(y)m (dy) .

It is obvious that m(Nb\E|b|−α) = 0. The right-hand side is then equal to zero
due to the equivalence between the Lebesgue measure and m, on one hand,
and to the absolute continuity of the distribution of M∗s , on the other hand.
The polarity of E|b|−α is used in order to finish the proof.

Lemma 5. There exists a symmetric stable process M of the same index α
such that for all t ≥ 0 we have

M̃t =
∫ t

0

b(Xs−)dMs . (4.5)

Proof. Because we have Tt <∞ for every t ≥ 0 and the integrand |b|−α (M̄∗t )
is Ft-measurable, we can conclude that for all t ≥ 0 there exists the stochastic
integral

∫ t
0
b−1(M̄∗s−)dM

∗
s (cf. [13], [7]). On the other side, from the time
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change properties for stochastic integrals with respect to stable processes (cf.,
e.g., [5] or [13]) it follows that the process M , defined by

Mt :=
∫ At

0

b−1(M̄∗s−)dM
∗
s , t ≥ 0 , (4.6)

is a G-adapted symmetric α-stable process.
A simple use of Lemma 4 shows that

At =
∫ At

0

1Nc
b

(
M̄∗s
)
ds =

∫ At

0

|b|α (M̄∗s ) |b|
−α (M̄∗s )ds , t ≥ 0 .

Consequently, changing the variables in the Lebesgue-Stieltjes integral, from
relation (4.2) and A = T−1 we obtain

At =
∫ At

0

|b|α (M̄∗s )dTs =
∫ TAt

0

|b|α
(
M̄∗As

)
ds =

∫ t

0

|b|α (Xs)ds , t ≥ 0 .

Therefore, with similar arguments as above, we have that there exists the
stochastic integral ∫ t

0

b(Xs−)dMs , t ≥ 0 . (4.7)

Now, using time change properties for stochastic integrals with respect to
semimartingales (see, e.g. [6], Chap. X) and taking into account (4.6) and
(4.7), we obtain

Mt =
∫ At

0

b−1(M̄∗s−)dM
∗
s =

∫ t

0

b−1(Xs−)dM∗As
, t ≥ 0 ,

and, consequently,∫ t

0

b(Xs−)dMs =
∫ t

0

b(Xs−)b−1(Xs−)dM∗As
, t ≥ 0 . (4.8)

From Lemma 4 we can conclude∫ t

0

1Nb
(M̄∗s−)dM

∗
s = 0, ∀t ≥ 0 , P -a.s. ,

which implies that∫ t

0

b(M̄∗s−)b
−1(M̄∗s−)dM

∗
s
=M∗t , ∀t ≥ 0 , P -a.s.

Using once again the properties of time change for stochastic integrals, we
have ∫ t

0

b(Xs−)b−1(Xs−)dM∗As
=M∗At

, ∀t ≥ 0 , P -a.s.

Combined with (4.8), this relation yields (4.5).
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We have shown that the process X has the form

Xt = x0 +
∫ t

0

b(Xs−)dMs +Kt , t ≥ 0 ,

where K is the reflecting force for X. Therefore, X is a solution of (1.1). From
Lemma 4 one can easily conclude that X also satisfies∫ ∞

0

1Nb
(Xs) ds = 0 , P -a.s.

This completes the proof of Theorem 3.

Remark. For α = 2 the assumption |b|−α ∈ Lloc(m) reduces to the condition
that b−2 is locally integrable over the half-line [0,∞), which coincides with
the condition found by W. M. Schmidt [16] for the case of a Brownian motion.

Finally we investigate the uniqueness in law of the solution of (1.1). At first
we notice that, in general, condition (Hα,x0) does not ensure the uniqueness
in law of the solution. We give the following general, but very simple example.

Example 2. Let the volatility b be such that |b|−α satisfies condition (Hα,x0).
Suppose that b (x0) = 0. Then the solution X of (1.1) with X0 = x0 is not
unique in law. Indeed, according to Theorem 3, there is a solution X of (1.1)
such that ∫ ∞

0

1Nb
(Xs) ds = 0 , P -a.s.

On the other side, we may put Y ≡ x0; obviously, Y is a solution of (1.1) with
Y0 = x0. It is clear that X and Y have different laws.

This example can be generalized as follows. Suppose that |b|−α satisfies
condition (Hα,x0). Let X be the solution of (1.1) constructed in the proof of
Theorem 3.

We assume that the first entry time D (Nb) of X into Nb,

D (Nb) := inf {t ≥ 0 : b (Xt) = 0} ,

is finite with positive probability:

P (D (Nb) <∞) > 0 .

Then the process Y obtained by stopping X at D (Nb),

Yt := Xt∧D(Nb) , t ≥ 0 ,

is again a solution of (1.1) with Y0 = x0 and, obviously, the laws of X and Y
are different. This motivates the following

Definition 3. Let condition (H x0,α) for |b|
−α be satisfied. A solution X of

(1.1) is called a fundamental solution if it holds
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0

1Nb
(Xs) ds = 0 , P -a.s. (4.9)

It is natural to expect that the solution X of (1.1) with X0 = x0 is unique
in law in the class of fundamental solutions. For preparing this result, let X
be an arbitrary solution of (1.1) with X0 = x0 given on the stochastic basis
(Ω,F , P ;F). Put

At :=
∫ t

0

|b|α (Xs) ds , t ≥ 0 . (4.10)

From [7], [13] we know that At <∞, t ≥ 0, P -a.s. and hence is a P -a.s. finite
continuous FX -adapted process. We introduce the right inverse T = (Tt)t≥0
of A:

Tt := inf {s ≥ 0 : As > t} , t ≥ 0 .

By G := FX ◦ T we denote the filtration
(
FX
Tt

)
t≥0. To begin with, we will

prove the following representation of the solution X.

Proposition 2. On a, possibly, enlarged stochastic basis (Ω′,F ′, P ′;F′) there
exists a reflected symmetric stable process M̄∗ of index α with M̄∗0 = x0 such
that

Xt = M̄∗At
, t ≥ 0 , P -a.s. (4.11)

Proof. We have

Xt = x0 +
∫ t

0

b (Xs−) dMs +Kt , t ≥ 0 ,

where M is a symmetric stable process of index α (with M0 = 0) and K is a
reflecting force for X. According to [5] (Proposition 4.3), changing the roles
of A and T , the process M̃∗ = (M̃∗t )t≥0 defined by

M̃∗t :=
∫ Tt

0

b (Xs−) dMs , t ≥ 0 ,

is a symmetric stable process of index α stopped at AT∞− = A∞ (this latter
equality holds because T∞ = ∞ P -a.s.). Using [5] (Lemma 4.2), we obtain
that there exists a symmetric stable process M∗ of index α (on a certain
extension of (Ω,F , P ;G)) such that

M̃∗t =M∗t∧A∞ , t ≥ 0 .

We now define the reflected symmetric stable process M̄∗ and the reflecting
force K∗ by (4.1). In order to verify relation (4.11), we first remark that, for
all t ≥ 0,

M∗At
= M̃∗At

=
∫ TAt

0

b (Xs−) dMs =
∫ t

0

b (Xs−) dMs ,
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the latter being true because [t, TAt
] are intervals of constancy for A and hence

for
∫ ·
0
b (Xs−) dMs (cf. [5], Proposition 4.3 (iv)). Furthermore, for all t ≥ 0,

K∗At
= sup

0≤s≤At

max (−M∗s − x0, 0) = sup
0≤s≤t

max
(
−M∗As

− x0, 0
)

= sup
0≤s≤t

max
(
−
∫ s

0

b (Xu−) dMu − x0, 0
)
= Kt ,

the reflecting force for X, because of Lemma 1. This proves M̄∗At
= Xt, t ≥ 0,

and hence Proposition 2.

Next we give a representation for the increasing process T = (Tt)t≥0.
Proposition 3. Suppose that the volatility b is such that |b|−α satisfies condi-
tion (H α,x0) and that X is a fundamental solution of (1.1) with X0 = x0. Let
M̄∗ be a reflected symmetric α-stable process with M̄∗0 = x0 on a, possibly,
enlarged stochastic basis, satisfying (4.11). Then

Tt =
∫ t

0

|b|−α (M̄∗s )ds , t ≥ 0 , P -a.s. (4.12)

Proof. From (4.9) and (4.11), we obtain

Tt =
∫ Tt

0

|b|−α (Xs) dAs =
∫ Tt

0

|b|−α (M̄∗As
)dAs

and, by time change in this Lebesgue-Stieltjes integral, we get

Tt =
∫ ATt

0

|b|−α (M̄∗ATs
)ds .

In view of the continuity of A, we conclude ATt
= t ∧A∞ and hence

Tt =
∫ t∧A∞

0

|b|−α (M̄∗s )ds . (4.13)

This yields (4.12) for t ≤ A∞. In particular,∫ A∞

0

|b|−α (M̄∗s )ds = TA∞ =∞ .

From this, we observe that (4.12) also holds for t > A∞.

The next proposition shows, in particular, that the representation (4.12)
do hold on the same stochastic basis (Ω,F , P ;G) if |b|−α satisfies condition
(Hα,x0) and if X is a fundamental solution. In this case, there is no need for
an enlargement.
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Proposition 4. Suppose that |b|−α satisfies condition (H α,x0). Let X be a
fundamental solution of (1.1) with X0 = x0. Then

A∞ =
∫ ∞
0

|b|α (Xs) ds =∞ P -a.s.

Proof. The assertion means that

Tt <∞ , t ≥ 0 , P -a.s.

But the latter property follows from the equality

Tt =
∫ t

0

|b|−α
(
M̄∗s
)
ds , t ≥ 0 , P -a.s. ,

cf. Proposition 3 and Theorem 1 for the reflected symmetric α-stable process
M̄∗ with M̄∗0 = x0 of Proposition 2.

Now we turn to the uniqueness in law of the fundamental solution.

Theorem 4. Suppose that the volatility b is such that |b|−α satisfies condition
(H α,x0). Then the fundamental solution X of (1.1) with X0 = x0 (which exists
by Theorem 3) is unique in law. Furthermore,∫ ∞

0

|b|α (Xs) ds =∞, P -a.s.

Proof. Let X be a fundamental solution of (1.1) with X0 = x0. According to
Proposition 2, X is a well-defined measurable functional of

(
M̄∗, A

)
, where

M̄∗ is a reflected symmetric stable process of index α with M̄∗0 = x0. Further-
more, Proposition 3 yields that T , and hence A, is a well-defined measurable
functional of M̄∗. Thus we may conclude that X is a well-defined measurable
functional of M̄∗. So, the law of X on the Skorokhod space is the image law
of M̄∗ by this measurable mapping and hence uniquely determined. The last
statement is exactly the conclusion of Proposition 4.

Corollary. Suppose that |b|−α satisfies condition (H α,x0) and, moreover,

b (x) �= 0 , ∀x ≥ 0 .

Then the solution X of (1.1) with X0 = x0 exists and is unique in law.
Furthermore, it holds ∫ ∞

0

|b|α (Xs) ds =∞ P -a.s.

In conclusion, we note that the fundamental solution X of (1) is nothing
else than a reflected symmetric α-stable process M̄∗ taken in another, ran-
dom clock A given by (4.10) and satisfying the additional property A∞ =∞.



Stochastic Equations Driven by Symmetric Stable Processes 247

In other words, the process X is running through the same trajectories as a
reflected symmetric α-stable process but in different clocks. So, roughly speak-
ing, the fundamental solution X of (1.1) has the same recurrence behaviour as
a a reflected symmetric α-stable process. In particular, X hits the boundary
0 infinitely often P -a.s. Moreover, if 1 < α < 2, as for α = 2, the process X
has a local time LX in the sense of a occupation time density, given by

LX(t, a) = LM̄∗
(At, a) , t ≥ 0 .

Indeed, it can easily be verified that for every nonnegative Borel function g
on [0,∞) ∫ t

0

g(Xs) dAs =
∫ ∞
0

g(a)LX(t, a) da , t ≥ 0 , P -a.s.

or, alternatively,∫ t

0

g(Xs) ds =
∫ ∞
0

g(a)LX(t, a)µb(da) , t ≥ 0 , P -a.s.

where the measure µb is given by µb(da) = |b|−α(a)µ(da).
In the first formula, the occupation time is measured by dAs, but the

occupation time density is taken with respect to the Lebesgue measure µ on
[0,∞), whereas in the second formula the occupation time is measured by ds,
however, in this case, the occupation time density is taken with respect to the
new measure µb depending on the volatility b.
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Verlag, 1983



248 H.-J. Engelbert, V. Kurenok and A. Zalinescu

5. Engelbert, H. J., Kurenok, V. P.: On one-dimensional stochastic equations
driven by symmetric stable processes. in: Buckdahn, R., Engelbert, H. J.,
Yor, M. (eds), Stochastic Processes and Related Topics, pp. 81–110, Taylor and
Francis Group, 2002

6. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in
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Summary. The aim of this work is to use a duality approach to study the pricing of
derivatives depending on two stocks driven by a two-dimensional Lévy process. The
main idea is to apply Girsanov’s theorem for Lévy processes, in order to reduce the
problem to the pricing of a one Lévy driven stock in an auxiliary market, baptized
as the “dual market”. In this way, we extend the results obtained by Gerber and
Shiu [5] for two-dimensional Brownian motion. Additionally, we obtain a put-call
relationship, that we call duality, and also a condition in order to have a symmetry
property in a Lévy market.
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1 Introduction

Since Margrabe’s 1978 paper [8], many important extensions have been car-
rying on to study derivatives written on two stocks. Margrabe studied the
pricing of European options for the case of two non-dividend-paying stocks
driven by a pair of Brownian motions, more exactly, the pricing of the right to
change one asset for another at the end of some fixed period of time, and ob-
tained closed-form formulas for this problem, extending in this way the Black
and Scholes pricing model.

The American option pricing problem leads to the solution of an optimal
stopping problem which, in general, does not admit closed form solutions,
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even in the one-asset model (see Jacka [6]). In the perpetual case, i.e. when
the option has no expiration date, Gerber and Shiu [5] obtain a closed-form
formula for Margrabe’s and other related options using the optional sampling
theorem, assuming that stock prices are driven by geometric Brownian mo-
tions, possibly constantly correlated, and stocks pay constant rate continuous
dividends.

In the present paper we consider the problem of pricing European and
American type derivatives written on a two-dimensional stock driven by a
two-dimensional Lévy process (it can be said that the stock follows a two-
dimensional geometric Lévy process), with a pay-off function homogeneous
of an arbitrary degree. Additionally, the interest rate can also be stochastic,
modelled by a third geometric Lévy process. As a related result, we obtain a
relation between prices of call and put vanilla options in Lévy markets, and a
condition on the jump structure of the process in order to have a symmetric
Lévy market.

The paper is organized as follows: in Section 2 we describe the market
model and introduce the pricing problem. In Section 3 we describe the Dual
Market Method, which allows us to reduce the two-stock problem with sto-
chastic interest rate into a one-stock problem with a deterministic interest
rate. In Section 4 we study duality and symmetry in Lévy markets. A short
conclusion is given in Section 5.

2 Market Model

2.1 Multidimensional Lévy Processes

Let X = (X1, . . . , Xd) be a d-dimensional Lévy process defined on a sto-
chastic basis B = (Ω,F , {Ft}t≥0, P ). This means that X is a stochastically
continuous stochastic process with independent increments such that the dis-
tribution of Xt+s − Xs does not depend on s, with X0 = 0 and trajectories
continuous from the left with limits from the right. The filtration {Ft}t≥0 is
supposed to satisfy the usual assumptions, i.e. continuity from the right and
F0 containing the P -null sets. For z = (z1, . . . , zd) in Cd, when the integral
is convergent (this is always the case if z = iλ with λ in Rd), the Lévy–
Khinchine formula states that EezXt = exp(tψ(z)) where the function ψ is
the characteristic exponent of the process, and is given by

ψ(z) = (a, z) +
1
2
(z,Σz) +

∫
Rd

(
e(z,y) − 1− (z, y)1{|y|≤1}

)
Π(dy), (2.1)

where a = (a1, . . . , ad) is a vector in Rd, Π is a positive measure defined on
Rd \ {0} such that

∫
Rd(|y|2 ∧ 1)Π(dy) is finite, and Σ = ((sij)) is a symmetric

nonnegative definite matrix which can always be written as Σ = A′A (where
′ denotes the transpose) for some matrix A.
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The triplet (a,Σ,Π) completely determines the law of the process X.
Particular interest has the case when α =

∫
Rd Π(dy) is finite, i.e. X is a

diffusion with jumps. Introducing F by Π(dy) = αF (dy), the Lévy–Khinchine
formula is (changing the value of a if necessary)

ψ(z) = (a, z) +
1
2
(z,Σz) +

∫
Rd

(
e(z,y) − 1

)
Π(dy), (2.2)

and the process X = {Xt}t≥0 can be represented by

Xt = at+AWt +
Nt∑
k=1

Yk,

where W is a standard d-dimensional Brownian motion, N = {Nt}t≥0 is a
Poisson process with parameter α, and {Yk}k≥1 is a sequence of independent
d-dimensional random vectors with identical distribution F (dy).

Another important case is when the coordinates of X are independent
processes. This happens if and only if Σ is a diagonal matrix (and A can be
chosen to be diagonal also) and the measure Π has support on the union of
the coordinate axes, see E 12.10 in Sato [10]. In this case ψ(z) =

∑d
k=1 ψk(zk),

where ψk is the characteristic exponent of the k-coordinate of X, given by

ψk(zk) = akzk +
1
2
skkz

2
k +
∫

R

(
ezky − 1− zky1{|y|≤1}

)
Πk(dy),

where Πk(A) =
∫
{x∈Rd : xk∈A}Π(dx).

2.2 Market and Problem

Consider a market model with three assets (S1, S2, S3) given by

S1t = eX
1
t , S2t = S20e

X2
t , S3t = S30e

X3
t (2.3)

where (X1,X2,X3) is a three-dimensional Lévy process; for simplicity and
without loss of generality we take S10 = 1. The first asset is the bond and
is usually deterministic. Randomness in the bond {S1t }t≥0 allows us to con-
sider more general situations, for example, the pricing problem of a derivative
written in a foreign currency, referred as Quanto Option.

Consider a function

f : (0,∞)× (0,∞)→ R

homogeneous of a degree α; i.e. for any λ > 0 and for all positive x, y

f(λx, λy) = λαf(x, y).
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In the above market a derivative contract with pay-off given by

Φt = f(S2t , S
3
t )

is introduced. Taking various homogeneous functions f we obtain several
examples of options considered in the literature: Options to Default, Mar-
grabe’s Options, Swap Options, Quanto Options, and Equity-Linked Foreign
Exchange Options. See the details in [3].

Assuming that we are under a risk-neutral martingale measure, i.e. Sk

S1 , k =
2, 3, are P -martingales (P is an equivalent martingale measure), we want
to price the derivative contract just introduced. In the European case, the
problem is reduced to the computation of

ET = E(S20 , S
3
0 , T ) = E

[
e−X

1
T f(S20e

X2
T , S30e

X3
T )
]
. (2.4)

In the American case, if MT denotes the class of stopping times up to time
T , i.e:

MT = {τ : 0 ≤ τ ≤ T, τ is a stopping time}
(with T = ∞ for the perpetual case), the problem of pricing the American-
type derivative consists in solving an optimal stopping problem, more pre-
cisely, in finding the value function AT and an optimal stopping time τ∗ in
MT such that

AT = A(S20 , S
3
0 , T ) = sup

τ∈MT

E
[
e−X

1
τ f(S20e

X2
τ , S30e

X3
τ3 )
]

= E
[
e−X

1
τ∗ f(S20e

X2
τ∗ , S30e

X3
τ∗ )
]
.

3 Dual Market Method

The main idea to solve the posed problems is the following: make a change
of measure through Girsanov’s theorem for Lévy processes, in order to re-
duce the original problems to a pricing problems for an auxiliary derivative
written on one Lévy driven stock in an auxiliary market with deterministic
interest rate. This method was used in Shepp and Shiryaev [11] and Kramkov
and Mordecki [7] with the purpose of pricing American perpetual options
with path-dependent pay-offs. It was employed by Araujo and Oliveira [1] to
consider the pricing of swaps, and is strongly related with the choice of the
numéraire (see Geman et al. [4]). This auxiliary market will be called the Dual
Market.

Observe that

e−X
1
t f(S20e

X2
t , S30e

X3
t ) = e−X

1
t+αX3

t f(S20e
X2

t−X3
t , S30).
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Put ρ = − log Ee−X
1
1+αX3

1 , we assume finite. The process

Zt = e−X
1
t+αX3

t+ρt (3.1)

is a density process (i.e. a positive martingale starting at Z0 = 1) that allow
us (under some hypothesis on the filtered space) to introduce a new measure,
the dual martingale measure P̃ , by its restrictions to each Ft by the formula

dP̃t

dPt
= Zt.

Denote now X̃t = X2
t −X3

t and St = S20e
X̃t . Finally, let

F (x) = f(x, S30).

With the introduced notations, under the change of measure we obtain our
main results:

ET = Ẽ
[
e−ρTF (ST )

]
, AT = sup

τ∈MT

Ẽ
[
e−ρτF (Sτ )

]
. (3.2)

The concluding step to compute the prices in (3.2) is to determine the law
of the process X under the auxiliary probability measure P̃ , what is done in
the following result, whose proof can be found in [3].

Lemma 3.1. Let X be a Lévy process on Rd with characteristic exponent
given in (2.1). Let u and v be vectors in Rd. Assume that Ee(u,X1) is finite,
and denote ρ = − log Ee(u,X1) = −ψ(u). In this conditions, introduce the
probability measure P̃ by its restrictions P̃t to each Ft by

dP̃t

dPt
= exp[(u,Xt) + ρt].

Then:
(a) The law of one-dimensional Lévy process {(v,Xt)}t≥0 under P̃ is given

by the triplet
ã = (a, v) + 1

2 [(v,Σu) + (u,Σv)] +
∫

Rd e
(u,y)(v, y)1{|(v,y)|≤1,|x|>1}Π(dx)

σ̃2 = (v,Σv)
π̃(A) =

∫
Rd 1{(v,y)∈A}e(u,y)Π(dy).

(3.3)
(b) In the particular case when X is a diffusion with jumps which char-

acteristic exponent given in (2.2) the law of one-dimensional Lévy process
{(v,Xt)}t≥0 under P̃ is given by the triplet

ã = (a, v) + 1
2 [(v,Σu) + (u,Σv)]

σ̃2 = (v,Σv)
π̃(A) =

∫
Rd 1{(v,y)∈A}e(u,y)Π(dy).

(3.4)
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Furthermore, the intensity of the Poisson process under P̃ is given by

α̃ =
∫

Rd

e(u,y)Π(dy) = α

∫
Rd

e(u,y)F (dy).

(c) Assume (b), and let Π(dy) = αF (dy) where F is the common distrib-
ution of the random variables {Yk}k≥1 with the characteristic function

ϕ(z) =
∫

Rd

e(z,y)F (dy).

Then the characteristic function of the same random variables under P̃ is
given by

ϕ̃(θ) =
ϕ(θv + u)
ϕ(u)

. (3.5)

4 Put-Call Duality and Symmetry

In this section, relying on the same type of arguments of previous sections, we
obtain a relationship between call and put vanilla options, that holds both in
the European and in the American case, that we refer to as put-call duality.
Based on this relation, we obtain conditions to have put-call symmetry.

In order to do this, with the previous notations, consider X1
t = rt, X2

t = 0
and X3

t = Xt, with Xt a Lévy process. In other words, we have a market with
two assets, Bt = ert and St = S0e

Xt , S0 > 0.
We also assume that the stock pays dividends, with constant rate δ ≥ 0,

and as in section 2, that the probability measure P is the chosen to be an equiv-
alent martingale measure. In other words, prices are computed as expectations
with respect to P , and the discounted and reinvested process {e−(r−δ)tSt} is
a P -martingale.

Let us assume that τ is a stopping time with respect to the given filtration
{Ft}. Introduce the notation

C(S0,K, r, δ, τ, ψ) = Ee−rτ (Sτ −K)+, (4.1)

P(S0,K, r, δ, τ, ψ) = Ee−rτ (K − Sτ )+. (4.2)

If τ = T , where T is a fixed constant time, then formulas (4.1) and (4.2) give
the price of the European call and put options respectively.

Proposition 1 (Put-Call duality). Consider a Lévy market with driving
process X with characteristic exponent ψ(z) given by

ψ(q) = iaq − 1
2
σ2q2 +

∫
R

(
eiqy − 1− iqy1{|y|<1}

)
Π(dy), (4.3)
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defined on the set

C0 =
{
z = p+ iq ∈ C :

∫
{|y|>1}

epyΠ(dy) <∞
}
. (4.4)

Then for the expectations introduced in (4.1) and (4.2) we have

C(S0,K, r, δ, τ, ψ) = P(K,S0, δ, r, τ, ψ̃), (4.5)

where
ψ̃(z) = ãz +

1
2
σ̃2z2 +

∫
R

(
ezy − 1− zy1{|y|≤1}

)
Π̃(dy) (4.6)

is a characteristic exponent (of a certain Lévy process) that satisfies

ψ̃(z) = ψ(1− z)− ψ(1), for 1− z ∈ C0.

In consequence,
ã = δ − r − σ2/2−

∫
R

(
ey − 1− y1{|y|≤1}

)
Π̃(dy),

σ̃ = σ,

Π̃(dy) = e−yΠ(−dy).
(4.7)

The proof of this proposition can be found in [3].
Observe that if we take a deterministic time τ = T in (4.5), we obtain

that the price of an European call option in the risk-neutral market (when
X has a law characterized by ψ) coincides with the price of an European put
option (with different parameters) in the dual market (when X has a law
characterized by ψ̃).

As this relation holds with for an arbitrary stopping time, taking supre-
mum in the classMT we obtain that the same relation holds true for American
options.

4.1 Symmetric Markets

It is interesting to note, that in a market with no jumps the distribution of the
discounted (and reinvested) stocks in both the given and dual Lévy markets
coincide. It is then natural to define a market to be symmetric when this
relation hold, i.e. when

L
(
e−(r−δ)t+Xt | P

)
= L
(
e−(δ−r)t−Xt | P̃

)
, (4.8)

meaning equality in law. In view of (4.7), and due to the fact that the char-
acteristic triplet determines the law of a Lévy processes, we obtain that a
necessary and sufficient condition for (4.8) to hold is

Π(dy) = e−yΠ(−dy). (4.9)

This ensures Π̃ = Π, and from this follows a − (r − δ) = ã − (δ − r), giving
(4.8), as we always have σ̃ = σ. Condition (4.9) answers a question raised by
Carr and Chesney (1996), see [2].
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5 Conclusions

In this paper we have extended the results obtained by Gerber and Shiu [5] for
the bidimensional geometric Brownian motion to the case of two-dimensional
geometric Lévy motion. We have shown that using the Dual Market Method
it is possible to price many derivatives, with pay-offs homogeneous of any
degree, written in terms of two assets driven by geometric Lévy motions, in
the European case and for the American perpetual case. Another important
fact in this paper is the possibility of having a stochastic discount, this allow us
to consider derivatives as quanto derivatives. As a related result, we obtained
a relation between prices of call and put vanilla options in Lévy markets, and
obtained a condition on the jump structure of the process in order to have a
symmetric Lévy market.
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Summary. We show how the dynamical Bayesian approach can be used in the
initial enlargement of filtrations theory. We use this approach to obtain new proofs
and results for Lévy processes. We apply the Bayesian approach to some problems
concerning asymmetric information in pricing models, including so-called weak in-
formation approach introduced by Baudoin, as well as some other approaches. We
give also Bayesian interpretation of utility gain related to asymmetric information.
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1 Introduction

The initial enlargement of filtrations is an important topic in the theory of
stochastic processes, and it was studied in the fundamental works of Jeulin
[20], Jacod [18], Stricker and Yor [23] and Yor [24, 25] and others.

Recent interest to this question comes from pricing models in stochastic
finance, where the enlargement of filtrations theory is an important tool in
modelling of asymmetric information between different agents and the possible
additional gain due to this information (see Amendinger et al. [1], Imkeller et
al. [16] Baudoin [3, 4], Elliot and Jeanblanc [13] and others). For an approach
based on anticipating calculus, see, e.g., [21].
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The initial enlargement of filtration consists in the following.
Let (Ω,F , P ) be a probability space with the filtration F = (Ft)t≥0 satisfy-

ing the usual conditions and let X be a semimartingale with the (P,F)-triplet
T = (B,C, ν) of predictable characteristics of (we refer to [19] and Section
2 for more details on semimartingales). Suppose that we are given a random
variable ϑ on (Ω,F) such that σ(ϑ) � F0. Define now Gt := Ft ∨ σ(ϑ); then
Γ = (Gt)t≥0 is the initially enlarged filtration. The main problems studied are:
is the F-semimartingale X still a semimartingale with respect to the filtration
Γ and if this is true, what is the new triplet Tϑ = (Bϑ, Cϑ, νϑ) with respect
to (P, Γ )?

Surprising at the first glance [and very natural, in fact] the Bayesian ap-
proach proposed in the papers by Dzhaparidze et al. [9, 10] is closely related
to the problem of enlargement of filtrations. In the Bayesian approach one of
the basic concepts is the arithmetic mean measure. This means the follow-
ing. Suppose that on a filtered probability space (Ω,F ,F, P ) we observe a
semimartingale X = (Xt)t≥0, and the law P θ of X depends of a parameter
θ ∈ Θ. Assume that θ is a value of some random variable ϑ, taking values
in a measurable Polish space (Θ,A) where A is the Borel σ-algebra. Denote
the law of the random variable ϑ by α. We suppose that for each θ ∈ Θ the
measure P θ is absolutely continuous with respect to P and that the density
process zθ is measurable with respect to F ⊗ A. Then we can introduce on
the original space (Ω,F ,F, P ) the arithmetic mean measure P̄α: for B ∈ F

P̄α(B) :=
∫
Θ

P θ(B)α(dθ) =
∫
Θ

∫
B

zθdPα(dθ).

One can interpret the measure P̄α also as a ’randomised experiment’. In [9, 10]
it is shown how to compute the predictable characteristics of X with respect
to the arithmetic mean measure P̄α given the characteristics T θ of X with
respect to P θ.

The Bayesian approach to the initial enlargement of filtration goes as
follows. Suppose for simplicity that the initial σ-algebra is trivial. Let X be
a semimartingale with the (P,F)-triplet T = (B,C, ν). We suppose that we
have, in addition, a random variable ϑ : (Ω,F) → (Θ,A) with values in a
Polish space and the prior law α.

We consider next the product space (Ω×Θ,F⊗A, IG, IP) with the filtration
IG = (IGt)t≥0 defined by IGt = Ft ⊗ A and IP is the joint law of (X(ω), ϑ(ω)).
Let t ∈ R+ and αt be the regular a posteriori distribution of the random
variable ϑ given the information Ft:

αt(ω, θ) := P (ϑ ∈ dθ|Ft)(ω).

Assume now that αt 0 α. Then, according to the results of Jacod [18] the
process zθ = (zθt )t≥0 where

zθt (ω) :=
dαt(ω, θ)
dα(θ)

,
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is a (P,F)-martingale with zθ0 = 1. Define now a measure P θ by

dP θ
t := zθt dPt,

where the subscript means the restriction of the measure to the sub-σ-algebra
Ft. Then the process X is also a (P θ,F)-semimartingale. If we know the struc-
ture of the density martingale zθ, then, using the Itô formula, we can write a
semimartingale decomposition of it and the (P θ,F)-triplet T θ = (Bθ, C, νθ).
Finally, if T θ is P(F) ⊗ A-measurable, one obtains the (P, Γ )-triplet of the
semimartingale X by replacing in T θ the fixed parameter θ by the random
variable ϑ. This method is relatively simple and gives a unifying approach
to various concrete models like diffusion processes, counting processes and
Lévy processes. It can also be used outside the semimartingale world. Some
applications will be given in the paper [12].

The paper contains two parts. The first one is devoted to the initial enlarge-
ment of filtration. We begin with reminding some basic facts on semimartin-
gale characteristics and the Girsanov theorem. Then we apply the Bayesian
approach to the initial enlargement. For somewhat related studies see [6, 14].
We continue by giving some examples of the initial enlargement with the final
value. The Bayesian approach can be developed for the progressive enlarge-
ment of filtration as well. This will be done in a later work.

The second part is devoted to so-called weak information introduced in
Baudoin [3, 4]. We show that the notion of weak information can be inter-
preted as changing the “true” prior α, the law of the random variable ϑ, to
another prior distribution γ for the random variable ϑ. After this the whole
analysis can be reduced to the computation of the P̄ γ-characteristics of the
semimartingale X.

Some preliminary results of the Bayesian approach were already obtained
in [11]. We extend and generalize the results in various directions: in addition
to several examples and new applications, we give a Bayesian interpretation of
the so-called additional utility of an insider, or of a weak insider and, finally,
the gain on false information.

2 Characteristics of a semimartingale

We shall work with a semimartingale X defined on a filtered space
(Ω,F ,F, P ). Recall some facts concerning the triplet T of a semimartingale
X. Since the triplet T depends on the probability measure P and on the fil-
tration, we keep track of the measures and filtrations in what follows. We
assume that F := FX is the right-continuous version of the natural filtration
of X (completed by P -null sets and that F = FX

∞.
Let µ be the jump measure of X, i.e.∫ t

0

∫
|x|>ε

xµ(ds, dx) :=
∑
s≤t

∆Xs1{|∆Xs|>ε}.
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We use the standard notation from [19] and [15]: if µ := µX is the jump
measure of the semimartingale X, then g ∗ µ means the integral with respect
to the jump measure, g ∗ ν denotes the integral with respect to the (P,F)-
compensator ν of µ; later g · U is the stochastic integral with respect to a
local martingale U or Riemann–Stieltjes integral with respect to a bounded
variation process U .

Suppose that the semimartingale X has characteristics T = (B,C, ν) with
respect to (P,F). Recall that this means the following (see [19] for more
details and unexplained terminology). Let l : R→ R be a truncation function:
l(x) = x in the neighborhood of zero and l has a compact support. Then one
can write the semimartingale X as

X = (X −X(l)) +X(l),

where X(l) is a purely jump process, namely, the process with ’big’ jumps
defined as

X(l)t :=
∑
s≤t

(∆Xs − l(∆Xs))

with ∆Xs = Xs −Xs−.
Having bounded jumps, the process X̃ = (X − X(l)) is a special semi-

martingale and allows the representation

X̃t = X0 +Xc
t +
∫ t

0

∫
R\{0}

l(x)(µ(ds, dx)− ν(ds, dx)) +Bt(l),

where Xc is the continuous local martingale part of X, ν is the (P,F) com-
pensator of µ, Bt(l) is the unique (P,F)-predictable locally integrable process
such that the process X̃−B(l) is a (P,F)-local martingale. Let C be the con-
tinuous process such that the process (Xc)2 − C is a (P,F)-local martingale.
Having all this we have defined the triplet of predictable characteristics of a
semimartingale X as T = (B(l), C, ν). Later we write B instead of B(l).

Consider the class G of real bounded Borel functions on R vanishing in a
neighborhood of 0. If η and η̃ are measures on R such that η(|x| > ε) < ∞
and η̃(|x| > ε) <∞, and if for all g ∈ G∫

R

g(x)η(dx) =
∫

R

g(x)η̃(dx)

then η = η̃.
Recall Theorem II.2.21 from [19, p.80]

Theorem 2.1. A semimartingale X has the (P,F)-triplet T = (B,C, ν) if
and only if

• The process M(l) := X −X(l)−B −X0 is a local martingale.
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• The process

N(l) :=M(l)2 − C2 − l2 ∗ ν −
∑
s≤·

(∆Bs)2

is a local martingale.
• The process U(l) := g ∗ (µ− ν) is a local martingale whatever is g ∈ G.

Assume moreover that we have on (Ω,F ,F, P ) a family of probability
measures P θ with θ ∈ Θ such that P θ

t 0 Pt for all t ∈ R+.
Let θ ∈ Θ be fixed. Then X is a (P θ,F)-semimartingale with a triplet

T θ = (Bθ, Cθ, νθ) where

Bθ = B + βθ · C + (Y θ − 1)l ∗ ν,
Cθ = C, (2.1)
νθ = Y θ · ν,

with certain (P θ,F)-predictable processes βθ = (βθt )t≥0 and Y θ = (Y θ
t )t≥0

such that for all t ∈ R+

((βθ)2 · C)t + (|(Y θ − 1)l| ∗ ν)t <∞. (2.2)

For more details see [19].
We denote by P θ

t and Pt the restrictions of the corresponding measures
on Ft and we define the density process zθ = (zθt )t≥0 with

zθt =
dP θ

t

dPt
.

We note that the density process is (P,F)-martingale with the property
inft∈[0,T ] zθt > 0 P -a.s. for each T > 0, and we define the stochastic logarithm
mθ of zθ by

dmθ := dzθ/zθ−. (2.3)

Then mθ is a (P,F)-local martingale and zθ is the stochastic exponential of
mθ:

zθt = E(mθ)t.

Assume now that X is a (P,F)-semimartingale with a triplet T = (B,C, ν)
and that the natural filtration F of X has the predictable representation prop-
erty : a local martingale M with respect to this filtration has the representa-
tion:

M =M0 +H ·Xc +W ∗ (µ− ν). (2.4)

Here the predictable process H belongs to the space L2loc of locally square-
integrable processes with respect to C and the functionW =Wt(ω;x) belongs
to Gloc(µ). For information on the space Gloc(µ) see [19, II.1.1,pp. 72-74]. On
the predictable representation property one can consult [19, p.185].
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By the predictable representation property we have that the local martin-
gale mθ from (2.3) has the following semimartingale representation

mθ = βθ ·Xc +

(
Y θ − 1 +

Ŷ θ − 1̂
1− 1̂

)
∗ (µ− ν), (2.5)

where the processes βθ and Y θ are the same as in (2.1) and the ”hat” processes
are related to the jumps of the compensator ν, namely

1̂t(ω) := ν(ω; {t} × R0)

and
Ŷ θ
t (ω) :=

∫
R0

Y θ
t (ω, x)ν(ω, {t}, dx).

So, to find the triplet T θ we can read βθ and Y θ from (2.5) and use (2.1) .

3 Arithmetic mean measure

We consider a filtered probability space (Ω,F ,F, P ) with F = F∞. Suppose
that we are given a parametric family of probability measures (P θ)θ∈Θ where
θ belongs to a measurable Polish space (Θ,A).

We make the following assumption.

Assumption 3.1 For each θ ∈ Θ the probability P θ is locally absolute con-
tinuous with respect to P .

Then we can define density process: for each θ ∈ Θ and t ∈ R+

zθt =
dP θ

t

dPt

where P θ
t and Pt are the restrictions of P θ and P on Ft. We consider measur-

able with respect to θ versions of the density processes. Given a probability
measure α on (Θ,A) and t ∈ R+ and B ∈ Ft, we define the arithmetic mean
measure:

P̄α
t (B) :=

∫
Θ

P θ
t (B)α(dθ) =

∫
Θ×B

zθt P (dω)α(dθ), P̄α
t .

Remark 1. In the case of the initial enlargement by a random variable ϑ such
that α = L(ϑ|P ), considered in Section 4, we have P̄α = P . This follows from
the fact that in this case P θ is the regular conditional law of X given ϑ = θ.

We see that P̄α
t is absolutely continuous with respect to Pt but, in general,

P θ
t is not absolutely continuous with respect to P̄α

t . For this reason we add
another assumption.
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Assumption 3.2 For each θ ∈ Θ the probability P θ is locally absolute con-
tinuous with respect to P̄α .

Assume again that X is a (P,F)-semimartingale with triplet T = (B,C, ν)
and having the representation property. Then X is a (P θ,F)-semimartingale
with a triplet T θ = (Bθ, Cθ, νθ) where Bθ , Cθ , νθ are given in (2.1).

The next theorem is a generalization of a result by Kolomiets.

Theorem 3.1. Suppose that the assumptions 3.1 and 3.2 hold and X is a
(P,F)-semimartingale with triplet T = (B,C, ν). Then X is also a (P̄α,F)-
semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by

B̄ = Eαz̄
θ
− ·Bθ = B + Eαz̄

θ
−β

θ · C + Eαz̄
θ
−(Y

θ − 1)l ∗ ν,
C̄ = C, (3.1)
ν̄ = Eαz̄

θ
−Y

θ · ν,

where z̄θ is the density of P θ with respect to the arithmetic mean measure P̄α.

For the proof see [8, Theorem 3.3].

To interchange the order of integration in (3.1) by using the Fubini theorem
we introduce the following notation. For each t ∈ R+ we define a posteriori
measure αt. To do it for B ∈ A we put

αt(B) :=

∫
B
zθt α(dθ)∫

Θ
zθt α(dθ)

.

Let us define αt−(dθ) in the following natural way: for B ∈ A

αt−(B) :=

∫
B
zθt−α(dθ)∫

Θ
zθt−α(dθ)

.

Assuming that βθt and Y θ
t are integrable with respect to αt−, we put

β̄t = Eαt−βθt , Ȳt = Eαt−Y θ
t . (3.2)

Theorem 3.2. Suppose that the assumptions 3.1 and 3.2 hold and for t > 0

Eαt− |βθt | · Ct + Eαt− |Y θ − 1|l ∗ νt <∞. (3.3)

Then X is a (P̄α,F)-semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by

B̄ = B + β̄ · C + (Ȳ − 1)l ∗ ν
C̄ = C, (3.4)
ν̄ = Ȳ · ν

where β̄ and Ȳ are given in (3.2).
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Proof To prove our result we use the classical Fubini theorem. In order
to do it, we show that B̄ is the process of locally P -integrable variation. In
fact, for all t > 0

Var(B̄)t ≤ Var(B)t + Eαz̄
θ
−|βθ| · Ct + Eαz̄

θ
−|Y θ − 1|l ∗ νt.

Using classical Fubini theorem for positive functions in last two integrals and
integration with respect the measure αt− we have: for all t > 0

Var(B̄)t ≤ Var(B)t + Eα− |βθ| · Ct + Eα− |Y θ − 1|l ∗ νt.

We define a localizing sequence as follows. Put

τn = inf{t ≥ 0 : Eαt− |βθ| · Ct +Eαt− |Y θ − 1|l ∗ νt +Var(B)t > n}. (3.5)

and notice that τn is F-stopping time. Moreover, since the jumps of considered
processes are bounded by a constant, we can easily verify that

EP̄α [Eαt− |βθ| · Cτn + Eαt− |Y θ − 1|l ∗ ντn +Var(B)τn ] < n+ 3max
x∈R

l(x),

where l is the truncation function. Now, we notice that the sequence of F-
stopping times τn increases to infinity due to the condition (3.3). Then, we
localize with τn and apply the classical Fubini theorem to (3.1) and we have
(3.4). �
Remark 2. Theorem 3.2 is a special case of the stochastic Fubini theorem.
Namely, we know that

zθt = E(mθ)t,

where

mθ = βθ ·Xc +

(
Y θ − 1 +

Ŷ θ − 1̂
1− 1̂

)
Then by Theorem 3.2 we have the following variant of stochastic Fubini the-
orem

z̄t =
∫
Θ

zθt α(dθ) = E(m̄)t

with

m̄ = β̄ ·Xc +

(
Ȳ − 1 +

ˆ̄Y − 1̂
1− 1̂

)
.

Sometimes the verification of the condition (3.3) can be difficult and we
can be interested to replace it by another condition expressed in terms of the
density process. For instance, we can use the following assumption.

Assumption 3.3 There exists a localizing sequence of F- stopping times τn
such that for every n ≥ 1

E

∫
Θ

[zθ, zθ]1/2τn α(dθ) <∞

where E is the expectation with respect to the initial measure P .
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Theorem 3.3. Suppose that the assumptions 3.1, 3.2, 3.3 hold. Then X is a
(P̄α,F)-semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by (3.4).

Proof In fact, we have only to show that the assumption 3.3 implies
the local integrability of the variation of B̄. Since B is locally integrable with
respect to the arithmetic mean measure, which follows from the fact that the
jumps of B are bounded by a constant, we have only to show that there exists
a localizing sequence of stopping times sn such that for each n

EP̄α

(
Eα− |βθ| · Cτn + Eα− |Y θ − 1|l ∗ ντn

)
<∞. (3.6)

Let

Z̄t =
dP̄t

dPt
.

We remark that
Z̄t =

∫
Θ

zθt α(dθ).

Using the fact that Z̄ is a positive (P,F)-martingale and the observation that
we are dealing with the predictable positive processes, we obtain:

EP̄α

(
Eα− |βθ| · Cτn + Eα− |Y θ − 1|l ∗ ντn

)
= EP Z̄τn

(
Eα− |βθ| · Cτn + Eα− |Y θ − 1|l ∗ ντn

)
=
∫
Θ

EP {zθ−|βθ| · Cτn + zθ−|Y θ − 1|l ∗ ντn}α(dθ)

=
∫
Θ

EP {zθ−|βθ| · Cτn + zϑ−|Y θ − 1|l ∗ µXτn}α(dθ)

=
∫
Θ

EP {Var([zθ,X(l)−B])τn}α(dθ)

Let
τ ′n = inf{t ≥ 0 : sup

0≤s≤t
|Xs(l)−Bs| > n}

and sn = τ ′n ∧ τn. By the Fefferman inequality, (see [15, Theorem 10.17]) and
the fact that X(l)−B is (P,F)-local martingale we deduce that

EPVar([zθ,X(l)−B])sn ≤‖ (X(l)−B)sn ‖BMO EP [zθ, zθ]1/2sn .

We remark that

‖ (X(l)−B)sn ‖BMO≤ 2(n+ 2max
x

l(x))

where l is truncation function. So, after integration with respect to α, we ob-
tain from assumption 3.3 that (3.6) holds, and, hence, B̄ has locally integrable
variation with respect to P̄α. �
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4 Initial enlargement

4.1 Triplet and initial enlargement

Let X be a semimartingale on a filtered space (Ω,F ,F, P ) with the (right-
continuous completed) natural filtration ofX. Let T = (B,C, ν) be the (P,F)-
triplet of X.

Suppose that we have also a random variable ϑ with values in measurable
Polish space (Θ,A). Define the initially enlarged filtration Γ = (Gt)t≥0 by

Gt :=
⋂
s>t

(Fs ∨ σ(ϑ)).

Our problem is to find the semimartingale decomposition of X with respect
to the enlarged filtration Γ .

Let α be the distribution of the random variable ϑ, i.e. P (ϑ ∈ dθ) = α(dθ).
Let for αt be its regular conditional distribution with respect to the σ-algebra
Ft. Following Bayesian terminology we say that α is the a priori distribution
and αt is the a posteriori distribution of the random variable ϑ with respect
to the information Ft.

We make the following standing assumption.

Assumption 4.1 The posterior distributions αt and the prior distribution α
satisfy: for each t ∈ [0, T ] we have P -a.s.

αt 0 α. (4.1)

We make a stop to discuss the right-continuity of the filtration Γ : in
Amendinger [2, Proposition 3.3] it is shown that under the assumption αt ∼ α
we have that Gt = Ft ∨ σ(ϑ). Inspecting the proof of this result in [2], one
can see that, in fact, it is sufficient to assume only assumption 4.1. So, under
assumption 4.1 we have Gt = Ft ∨ σ(ϑ).

We consider next the product space (Ω×Θ,F ⊗A, IG, IP) where the filtra-
tion IG = (IGt)t≥0 is defined by

IGt =
⋂
s>t

(Fs ⊗A) (4.2)

and IP is the joint law of (ω, ϑ(ω)). Again, under assumption 4.1 we can take
IGt = Ft ⊗A.

Denote the optional and predictable σ-algebras on (Ω ×R+) with respect
to F by O(F) and P(F). With the filtration IG we have that

P(IG) = P(F)⊗A

and
O(F)⊗A ⊂ O(IG).

The following result is due to Jacod [18, Lemme 1.8., p.18-19].
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Lemma 4.1. Under assumption 4.1 there exists a strictly positive O(IG)-
measurable function (ω, t, θ) �→ zθt (ω) such that:

1. For each θ ∈ Θ, zθ is a (P,F)-martingale.
2. For each t ∈ R+, the measure zθt α(dθ) is a version of the regular condi-
tional distribution αt(dθ) so that Pt × α-a.s.

dαt

dα
(θ) = zθt . (4.3)

For each θ ∈ Θ define also a measure P θ:

dP θ
t := zθt dPt. (4.4)

The measure P θ is absolutely continuous with respect to the P , and so X
is a (P θ,F)-semimartingale with the (P θ,F)-triplet T θ = (Bθ, C, νθ).

Next we indicate how one can use the prior and posterior distributions
to obtain the semimartingale decomposition of a (P,F)-semimartingale with
respect to the filtration Γ .

1. We are given a semimartingale X with (P,F)-triplet T = (B,C, ν), where
the natural filtration F has the representation property, random variable
ϑ, prior α(dθ) = P (ϑ ∈ dθ) and posterior αt(dθ) = P (ϑ ∈ dθ|Ft).

2. Compute
dαt

dα
(θ) with the Itô formula as E(mθ) and read βθ and Y θ from

the representation (2.5), use (2.1) to obtain T θ .
3. If T θ is P(F) ⊗A-measurable, replace θ by ϑ in T θ to obtain the triplet

of X with respect to (P, Γ ).

In the following theorem we give the link between the Girsanov theorem
and enlargement of filtrations.

Theorem 4.1. Assume that the process X is a (P,F)-semimartingale with
triplet T = (B,C, ν) and we have the martingale representation property with
respect to natural filtration F. Let ϑ be a random variable such that the as-
sumption (4.1) is satisfied. Suppose also that L1(Ω,F , P ) is separable and the
condition (3.3) holds.

Then the following conditions are equivalent:

(a)X is a (P θ,F)-semimartingale with triplet T θ = (Bθ, C, νθ) on the space
(Ω,F ,F, P ) for α-almost all θ and the application T ′ : (ω, t, θ) → T θ

t (ω)
is P(F)⊗A-measurable.

(b)X is a (IP, IG)-semimartingale with triplet T
′
: (ω, t, θ) → T θ

t (ω) on the
product space (Ω ×Θ,F ⊗A, IG, IP) where IP is the joint law of (ω, ϑ(ω).

(c)X is a (P, Γ )-semimartingale on (Ω,F , P ) with triplet Tϑ = (Bϑ, C, νϑ).

Remark 1. It should be noticed that separability condition will be used only
in the direction: c)⇒ b)⇒ a).
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To prove the theorem we need some lemmas concerning the transformation
of triplets, stopping times and martingales.

Lemma 4.2. The function X : (ω, t, θ)→ (R,B(R)) is P(F)⊗A-measurable
if and only if Xϑ : (ω, t, ϑ(ω))→ (R,B(R)) is P(Γ )-measurable.

Proof It is sufficient to establish the property on semi-algebras generating
the corresponding σ-algebras. Let now a, b, c ∈ R, a < b,A ∈ Fa, B ∈ A and

X(ω, t, θ) = c1(a,b](t)1A(ω)1B(θ). (4.5)

Then X is an element of semi-algebra generating P(F)⊗A and

Xϑ(ω, t, ϑ(ω)) = c1(a,b](t)1A(ω)1B(ϑ(ω)) = c1(a,b](t)1A∩ϑ−1(B)(ω). (4.6)

Since the set A∩ ϑ−1(B) belongs to Fa ∨ σ(ϑ), it belongs also to Ga, and the
function Xϑ defined by (4.6) is an element of P(Γ ).

Inversely, let a, b, c ∈ R, a < b,C ∈ Ga−, then

Xϑ(ω, t, ϑ(ω)) = c1(a,b](t)1C(ω) (4.7)

is an element of semi-algebra generating P(Γ ). Since Ga− =
∨

s<a(Fs ∨ σ(ϑ))
it suffices to consider elements of the generating algebra

⋃
s<a(Fs ∨ σ(ϑ)). In

turn, if C ∈
⋃

s<a(Fs∨σ(ϑ)), then there exists s < a such that C ∈ Fs∨σ(ϑ).
Next, the σ-algebra Fs∨σ(ϑ) is generated by the sets A∩ϑ−1(B) with A ∈ Fs

and B ∈ A. So, we have to consider only the elements Xϑ of the form (4.7)
with C = A ∩ ϑ−1(B). But the corresponding application X is (4.5) and it is
P(F)⊗A-measurable. �

Lemma 4.3. Let for each θ ∈ Θ the process (Xθ
t )t≥0 be an F-adapted càdlàg

process. Let L > 0 and

τθL = inf{s ≥ 0 : Xθ
s (ω) > L}. (4.8)

If the application X : (ω, t, θ)→ Xθ
t is O(IG)-measurable, then

τϑL = inf{s ≥ 0 : Xϑ(ω)
s (ω) > L}

is a Γ -stopping time.

Proof Let t ∈ R+. Then

{(ω, θ) : τθL > t} = {(ω, θ) : sup
s≤t

Xθ
s ≤ L} ∈ IGt

where IGt is defined by (4.2). It means that for all u > t

{(ω, θ) : τθL > t} ∈ Fu ⊗A.
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Since Fu⊗A is generated by the semi-algebra of the sets A×B with A ∈ Fu

and B ∈ A, we can restrict ourselves to this special type of sets. But

{ω : (ω, ϑ(ω)) ∈ A×B} ∈ Fu ∨ σ(ϑ)

and, hence, for u > t
{ω : τϑL > t} ∈ Fu ∨ σ(ϑ).

Then, τϑL is a Γ -stopping time. �

Lemma 4.4. Let θ ∈ Θ and (Mθ
t )t≥0 be an F-adapted càdlàg process. Let M

be the application (t, ω, θ) → Mθ
t (ω). Suppose that L

1(Ω,F , P ) is separable.
Then the following conditions are equivalent:

a) Mθ is (P θ,F)-martingale for α-almost all θ and M is O(IG)-measurable
process,

b) M is a (IP, IG)-martingale,
c) Mϑ is a (P, Γ )-martingale.

Proof We show that

a)
(i)⇒ c)

(ii)⇒ b)
(iii)⇒ a).

(i): Let E be the expectation with respect to P and E be the expectation
with respect to IP, the joint law of (ω, ϑ(ω)). For each s < t,A ∈ Fs, B ∈ A

E(1A(ω)1B(ϑ(ω))(Mϑ
t −Mϑ

s )) = E(1A(ω)1B(θ)(M
θ
t −Mθ

s )).

Let Eα be the expectation with respect to α and Eθ is the expectation with
respect to P θ. Then by the Fubini theorem and conditioning we obtain:

E(1A(ω)1B(θ)(Mθ
t −Mθ

s )) = Eα[1B(θ)Eθ(1A(ω)Eθ(Mθ
t −Mθ

s |Fs))] = 0

since Mθ is a martingale α-a.s. with respect to (P θ,F). Hence, P -a.s.

E(Mϑ
t −Mϑ

s |Fs ∨ σ(ϑ)) = 0.

Since Mϑ is càdlàg, using corollary 2.4 of [22], p.59, we have:

E(Mϑ
t −Mϑ

s |Gs) = lim
u↓s

E(Mϑ
t −Mϑ

s |Fu ∨ σ(ϑ)) = 0

which gives c).
(ii): IfMϑ is (P, Γ )-martingale, then for each t ∈ IQ+ the random variable

Mϑ
t is Gt =

⋂
s>t(Fs ∨ σ(ϑ))-measurable and it can be written in the form

Mϑ
t (ω) = M(ω, t, ϑ(ω)) (P -a.s.) where M is measurable with respect to the

filtration IGt =
⋂

s>t(Ft ⊗ A). Taking a right-continuous version having left-
hand limits we obtain the application M : (ω, t, θ) → (R,B(R)) which is
O(IG)-measurable. For all s < t and A ∈ Fs, B ∈ A we have:
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E(1A(ω)1B(θ)(M(ω, t, θ)−M(ω, s, θ)) = E(1A(ω)1B(ϑ(ω))(Mϑ
t −Mϑ

s )) = 0

which means that IP-a.s.

E(M(ω, t, θ)−M(ω, s, θ)|Fs ⊗A) = 0

and we have b) in the same way as c) before, since M is càdlàg.
(iii): If we have b), then for each (ω, t, θ) we have Mθ

t = M(ω, t, θ). For
A ∈ Fs and B ∈ A we obtain by the Fubini theorem

0 = E(1A(ω)1B(θ)(M(ω, t, θ)−M(ω, s, θ)))

= Eα(1B(θ)Eθ(1A(ω)(Mθ
t −Mθ

s ))).

Hence, for each s < t and α-a.s.

Eθ(1A(Mθ
t −Mθ

s )) = 0.

The measurability problem which may occur here is that α-a.s. set can depend
on A and s. Since L1(Ω,F , P ) is separable, we obtain that α-a.s. for all s and
all Fs-measurable bounded functions gs

Eθ(gs(Mθ
t −Mθ

s )) = 0

and, hence,
Eθ(Mθ

t −Mθ
s |Fs) = 0

which gives a).
�

Proof We show that a), b), c) are equivalent. With the notation of The-
orem 2.1, the processes Mθ(l), Nθ(l) and Uθ(l) are (P,F)-local martingales.
Since the semimartingale X̃ has bounded jumps, all these local martingales
are also locally bounded, i.e. for each θ there exists a localizing sequence τθL
such that the stopped processes are bounded. By Lemma 4.3 the replacing θ
by ϑ in stopping times gives τϑL(ω) which is a (P, Γ )-stopping time. Moreover,
the application τL : (ω, t, θ)→ τθL is a (IP, IG)-stopping time.

Next, by Lemma 4.2 the replacing of θ by ϑ in T θ which supposed to
be P(F)⊗A-measurable, gives Tϑ which is P(Γ )-measurable. Moreover, the
application T ′ : (ω, t, θ)→ T θ is P(IG)-measurable.

Finally, the claim follows from Lemma 4.4 which guaranties the conserva-
tion of martingale properties in the case of replacing θ by the variable ϑ and
in the case of replacing of the initial space by the product space. �

In the considered case where P θ is the conditional law of semimartingale
X given ϑ = θ, one can rewrite the assumption 3.3 in terms of the so-called
decoupling measure Q as in [14]. Let us suppose that the density process
z = (zθ)θ∈Θ is O(F) ⊗ A-measurable. Then we can replace θ by ϑ to obtain
zϑ. We denote by Pt and Qt the restrictions of the measures P and Q to Gt
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where Γ = (Gt)t≥0 is the filtration enlarged by the initial value ϑ. If zϑt > 0
P -a.s. for all t > 0, we can define Q by

dQt = (zϑt )
−1dPt.

The decoupling measure has the following property: (Q,Γ )- triplet of X is the
same as the (P,F)- triplet of X and L(ϑ|Q) = L(ϑ|P ). We can also use an
another definition of a decoupling measure Q, namely, as the solution of the
following martingale problem, if it exists and unique: the (Q,Γ )-triplet of X
is the same as the (P,F)-triplet of X and L(ϑ|Q) = L(ϑ|P ).

Remark 2. If zϑt > 0 P -a.s. for all t > 0, the assumption 3.3 is equivalent to
the assumption:

EQ[zϑ, zϑ]1/2τn <∞ (4.9)

for some localizing sequence of F-stopping times τn. We note that [zϑ, zϑ]1/2

is (Q,Γ )-locally integrable (see [19, Corollary I.4.55]). Here we require the
existence of a localizing sequence of F-stopping times.

Theorem 4.2. Under the settings of Theorem 4.1, assume that a) and (4.9)
hold. Then X is a (P, Γ )-semimartingale with the triplet Tϑ = (Bϑ, C, νϑ).

Proof Using the proof of Theorem 4.1 we note that it remains to prove that
Bϑ is of locally integrable variation with respect to P . Since Bϑ is obtained
from Bθ by replacing θ by ϑ, we have:

Var(Bϑ)t ≤ Var(B)t + |βϑ| · Ct + |Y ϑ − 1|l ∗ νt.

Since B is locally integrable with respect to P , the question of local integra-
bility of Bϑ is reduced to the existence of a localizing sequence of F-stopping
times τn such that for each n

EP

(
|βϑ| · Cτ + |Y ϑ − 1|l ∗ ντn

)
<∞. (4.10)

We have:

EP

(
|βϑ| · Cτn + |Y ϑ − 1|l ∗ ντn

)
= EQ{zϑτ

(
|βϑ| · Cτn + |Y ϑ − 1|l ∗ ντn

)
}

= EQ{zϑ−|βϑ| · Cτn + zϑ−|Y ϑ − 1|l ∗ ντn}
= EQ{zϑ−|βϑ| · Cτn + zϑ−|Y ϑ − 1|l ∗ µXτn}
= EQVar([zϑ,X(l)−B])τn .

By the Fefferman inequality, (see [15, Theorem 10.17]) and the fact that
X(l)−B is both (Q,Γ )- and (P,F)-local martingale we deduce that

EQVar([zϑ,X(l)−B])τn ≤ ‖ (X(l)−B)τn ‖BMO EQ[zϑ, zϑ]1/2τn .
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From Proposition 2.38 in [17] it follows easily that the (P,F)-local martin-
gale (X(l)−B) is (P,F)-locally in BMO since it has bounded jumps, and by
assumption (4.9) there is a localizing sequence of F-stopping times τn tending
to infinity which makes the last expression finite. Hence, the inequality (4.10)
holds and Bϑ has locally integrable variation with respect to P . �

Remark 3. Assumption (4.9) can be expressed in term of information. More
precisely,

EQ[zϑ, zϑ]1/2τ ≤ C(1 + EQz
ϑ
τ log z

ϑ
τ ).

The boundedness of this information was used in [10] to verify the stochastic
Fubini theorem.

4.2 Initial enlargement and Gaussian martingales

Let us first consider a classical example of the initial enlargement of filtration.
Here X is a continuous Gaussian martingale with respect to the measure P
starting from zero and such that there exists lim

t→∞
Xt = X∞.

Let ϑ = X∞. We denote by 〈X〉 the predictable quadratic variation of X
and we put 〈X〉t,∞ := 〈X〉∞ − 〈X〉t.

The prior distribution α(dθ) := P (ϑ ∈ dθ) is a N (0, 〈X〉∞) and the pos-
terior distribution αt of ϑ given Ft is N (Xt, 〈X〉t,∞).

Assume 〈X〉t,∞ > 0 for all t ∈ R+, then αt is equivalent to α, so the
assumption (4.1) is valid.

From the Itô formula with the function f(x, y) = x2/y applied to the first
term in exponential we have:

dαt

dα
(θ) =

√
〈X〉∞√
〈X〉t,∞

exp
{
− (θ −Xt)2

2〈X〉t,∞
+

θ2

2〈X〉∞

}
= exp

{∫ t

0

βθsdXs −
1
2

∫ t

0

(
βθs
)2
d〈X〉s

}
,

where
βθs :=

θ −Xs

〈X〉s,∞
.

Since βθ is a predictable process for each θ ∈ Θ, continuous in θ uniformly
in t ∈ [0, T ] for each T > 0, the application (ω, t, θ) → βθt is P(F) ⊗ A-
measurable. By Theorem 4.1 we can now conclude that the process

Xt −
∫ t

0

X∞ −Xs

〈X〉s,∞
d〈X〉s

is a (P, Γ )-Gaussian martingale with the bracket 〈X〉.
We give some special cases of the above results.
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• Let Y be a Brownian motion and put Xt =
∫ t
0
asdYs, where a is deter-

ministic square-integrable function on R+. If as := I(0,T ](s), then we have:

ϑ = YT , 〈X〉t,∞ = T − t for t ≤ T and βθs =
θ − Ys
T − s

; this implies the

classical representation of the Brownian bridge

Yt =
∫ t

0

YT − Ys
T − s

ds+ Y Γ
t ,

where Y Γ is a Brownian motion with respect to Γ .
• In the previous case take a = I(0,T+η]. We obtain the case of final value

distorted by a small noise example from [1].
• Assume that Y is a fractional Brownian motion and let Xt := E[YT |FY

t ]
be the prediction martingale. This example and related will be studied in
detail in [12].

4.3 Initial enlargement in the Poisson filtration

Assume that X is a Poisson process with intensity 1 on (Ω,F ,F, P ) stopped
in time T and let ϑ = XT . Here the prior distribution α is Poisson(T ) and
the posterior distribution

αt(θ) =

{
eT−t (T−t)

θ−Xt

(θ−Xt)!
if θ ≥ Xt,

0 if θ < Xt.
(4.11)

Next, for all t ∈ [0, T [ we have αt 0 α and

dαt

dα
(θ) = e−t

(T − t)θ−Xt

T θ
I{θ≥Xt}

θ!
(θ −Xt)!

.

We put Y θ
s :=

θ −Xs−
T − s

and note that Y θ is a predictable process such that

0 ≤ Y θ
s <∞ for all s ∈ [0, T ] – this follows from the fact that ∆XT = 0 IP-a.s.

Since
dαt

dα
(θ) = exp

{∫ t

0

(Y θ
s − 1)ds

}∏
s≤t

(
Y θ
s

)∆Xs
,

we obtain that with respect to the filtration Γ the standard Poisson process
has the semimartingale representation:

Xt = nt +
∫ t

0

XT −Xs−
T − s

ds, t < T

where n = (nt)t≥0 is a (P, Γ )-martingale.
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4.4 Lévy processes: initial enlargement with the final value

Let X be a Lévy process. Then for each λ ∈ R the characteristic function of
Xt is

EeiλXt = e−tψ(λ)

where ψ is characteristic exponent given by

ψ(λ) = iaλ+
1
2
σ2λ2 +

∫
R

(
1− eiλx + iλxI{|x|<1}

)
π(dx)

with π a measure on R verifying
∫

R
(1 ∧ x2)π(dx) < ∞. The (P,F)-triplet of

X is T = (aI, σ2I, Leb⊗ π), where It = t.
We consider again stopped in T process and we take ϑ := XT . The process

X is a time-homogeneous Markov process with independent increments and
hence

αt(dθ) = P (XT ∈ dθ|Xt) = P (XT−t + x ∈ dθ)|x=Xt
.

To be able to continue we assume that the law of the random variable Xs has
a density f(s, y) with respect to fixed dominating measure η, i.e. for B ∈ B(R)

P (Xs ∈ B) =
∫
B

f(s, y)η(dy).

Moreover, we assume that f ∈ C1,2b (R+×U) where U is an open set belonging
to R.

Since αt ≺≺ α for t ∈ [0, T [, we can write that η-a.s.

dαt

dα
(θ) =

f(T − t, θ −Xt)
f(T, θ)

. (4.12)

Use the Itô formula to obtain that

f(T − t, θ −Xt) = f(T, θ)−
∫ t

0

∂f

∂s
(T − s, θ −Xs−)ds

−
∫ t

0

∂f

∂x
(T − s, θ −Xs−)dXs (4.13)

+
1
2
σ2
∫ t

0

∂2f

∂x2
(T − s, θ −Xs−)ds

+
∑
s≤t

(
∆f(T − s, θ −Xs) +

∂f

∂x
(T − s, θ −Xs−)∆Xs

)
.

We know that the expression in (4.12) is a (P,F)-martingale for each θ. So, we
can identify the continuous martingale part on the right-hand side of (4.13)
and then the continuous martingale part of (4.12) as

−
∫ t

0

∂f
∂x (T − s, θ −Xs−)

f(T, θ)
dXc

s . (4.14)
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Recall that zθt =
dαt

dα
(θ). According to the Girsanov theorem the term βθ in

the equation (2.1) is obtained as (for more details on this kind of computations
see [19, Lemma III.3.31])

βθt =
d〈zθ,Xc〉t

zθt−d〈Xc,Xc〉t
=
−∂f
∂x

(T − t, θ −Xt−)

f(T − t, θ −Xt−)

= − ∂

∂x
log f(T − t, x)|x=θ−Xt− . (4.15)

Consider next the pure jump martingale in (4.12): we have that

∆f(T − t, θ −Xt) = f(T − t, θ −Xt)− f(T − t, θ −Xt−)

and so
∆zθt
zθt−

=
f(T − t, θ −Xt)
f(T − t, θ −Xt−)

− 1,

from this we obtain (for more details, see [19, p. 175]) that the P θ compensator
νθ of µX is

νθ(dt, du) =
f(T − t, θ − (Xt− + u))
f(T − t, θ −Xt−)

π(du)dt. (4.16)

Moreover, since the expression on the right-hand side of (4.12) is a martin-
gale, the function f(t, u) satisfies the following integro-differential equation,
which might be called Kolmogorov backward integro-differential equation:

∂f

∂t
(T − t, θ − x) =

1
2
σ2
∂2f

∂x2
(T − t, θ − x)− a

∂f

∂x
(T − t, θ − x)

+
∫

R

(
f (T − t, θ − (x+ y)) (4.17)

−f (T − t, θ − x) +
∂f

∂x
(T − t, θ − x) y

)
π(dy)

with the boundary condition f(T, θ − x) = δ{0}(θ − x).

Example: Brownian motion

We look again the Brownian case, as in Subsection 4.2, but now using the
Lévy processes approach. Since the triplet of X is T = (0, σ2I, 0), the equation
(4.17) is reduced to:

∂f

∂t
(T − t, θ − x) =

1
2
σ2
∂2f

∂x2
(T − t, θ − x)

with boundary condition f(T, θ − x) = δ{0}(θ − x).
It is well-known that the solution is
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f(T − t, θ − x) =
1√

2π(T − t)
exp
{
− (θ − x)2

2(T − t)

}

and so βθ =
θ −Xs

T − s
and a new drift is Bθ

t =
∫ t

0

θ −Xs

T − s
ds.

Example: Gamma process

Let X be a Gamma process. This means that the (P,F)-triplet of X is T =
(ab t, 0,

a
ue
−bududt). We know also that the density f(t, x) = P (Xt ∈ dx) is

f(t, x) = bat

Γ (at)x
at−1e−bx with some parameters a, b > 0 (see [5, p.73] ). In

particular, we have that Xt − a
b t is a (P,F)-martingale.

Put again ϑ = XT and we have from (4.16) that the (P θ, F ) compensator
is

νθ(dx, dt) =
(
1− x

θ −Xt−

)a(T−t)−1
a

x
dxdt.

Hence, (P θ,F)-drift of the process X is∫ t

0

∫ θ−Xt−

0

x

(
1− x

θ −Xs−

)a(T−s)−1
a

x
dxdt =

∫ t

0

θ −Xs−
T − s

ds,

and this means that the process Xt− a
b t−

∫ t
0

θ−Xs−
T−s ds is a (P θ,F)-martingale.

Example: Poisson process

We look again at the Poisson case, as in subsection 4.3. We indicate briefly
how one can use the approach described in 4.4, where we know only the triplet
of the process X. So, let X be a Poisson process with intensity λ.

Put again ϑ = XT . Put p(t, k) := P (Xt = k) and we assume that for k ≥ 0
the functions p(·, k) ∈ C1(R+).

We know (see (4.12)) that

dαt

dα
(θ) =

p(T − t, θ −Xt)
p(T, θ)

.

We start with the trivial identity, which is the analog of the Itô formula here:

p(T − t, θ −Xt) = (4.18)

p(T, θ)−
∫ t

0

pt(T − s, θ −Xs−)ds+
∑
s≤t

∆p(T − s, θ −Xs).

Using the fact that ∆Xt ∈ {0, 1}, we have the identity
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∆p(T − s, θ −Xs) = (p(T − s, θ − (Xs− + 1))− p(T − s, θ −Xs−))∆Xs;

since the right-hand side of (4.18) is a (P,F)-martingale, we obtain that the
functions p(t, k) satisfy the following system of differential equations:

pt(T − s, k) = λ(p(T − s, k)− p(T − s, k + 1)) (4.19)

and, hence,

p(T − s, k) = e−λ(T−s)
(λ(T − s))k

k!
is the solution of (4.19) with the boundary condition p(T, θ−x) = δ{0}(θ−x).
It remains to note that

p(T − s, k)− p(T − s, k + 1) = p(T − s, k)
(

k + 1
λ(T − s)

− 1
)

(4.20)

and we can conclude that with respect to the measure P θ the process X has
intensity θ−Xs−

T−s . This means that the process Xt −
∫ t
0

θ−Xs−
T−s ds is a (P θ,F)-

martingale.

5 Weak information

In this and in the next sections we discuss briefly some other applications
of the Bayesian viewpoint related with the enlargement and arithmetic mean
measure.

5.1 Weak insider information

The notion of weak information in mathematical finance was introduced by
Baudoin [3, 4]. Before we discuss briefly this notion, recall our basic setup.
We have a semimartingale X on a filtered space (Ω,F ,F, P ) with the right-
continuous version of natural filtration F = (FX

t )t≥0 completed by the P -null
sets of F , and F = FX

∞. We assume the predictable representation property
for FX and we denote by T = (B,C, ν) the (P,F)-triplet of X.

Let ϑ be a FT -measurable random variable with the values in a measurable
Polish space (Θ,A). Let α := L(ϑ|P ), αt(dθ) := P (ϑ ∈ dθ|Ft), assume that
we have (4.1), and define zθt by (4.3) and finally put dP θ

t = zθt dPt. Recall that
in this case the arithmetic mean measure is

P̄α
t (B) :=

∫
Θ

P θ
t (B)α(dθ) = P (B).

In particular, the (P,F)-triplet of the semimartingaleX does not change under
the arithmetic mean measure P̄α (see Remark 1).

Consider three types of agents in the pricing model, where the stock price
is given by the semimartingale X: ordinary agents, strong insiders and weak
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insiders. We do not want to go in too detailed description of the pricing model,
but we define these three types by giving the information and the (historical)
probability of the agent.

• ordinary agents For the ordinary agent the information is given by F, the
probability is P and he uses the triplet T = (B,C, ν) to build his strategy.

• strong insiders For the strong insider the information is given in the pair
(X,ϑ), and we can model this by an initial enlargement of the filtration.
By using Theorem 4.1 we see that one possibility to model strong insider
is to change the probability P to P θ, and the strong insider works with
the filtration F and the new triplet T θ.

We describe the notion of weak insider in more detail. Let γ be the
probability distribution on (Θ,A). Following [3, p. 112] we assume that γ 0 α.
Then it is easy to see that P̄ γ 0 P̄α = P , where

P̄ γ
t (B) =

∫
Θ×B

zθt γ(dθ)dP,

and the measure P̄ γ is the arithmetic mean measure with respect to the prior
distribution γ; in [3] the corresponding measure on (Ω,F ,F) is called the
minimal probability associated with the conditioning (T, ϑ, γ).

Hence, we can model the weak insiders as follows:

• weak insiders For the weak insider the information is given by the filtration
F, but he changes the probability measure P to the measure P̄ γ and he
works with the triplet T̄ γ = (B̄γ , C, ν̄γ).

Assume that we have
γt 0 γ

and we have assumption 3.3 with respect to the measure P ⊗ γ.
We can now use Theorem 3.1 to compute the new triplet with respect to

the measure P̄ γ and we obtain:

B̄γ = B + β̄γ · C + (Ȳ γ − 1)l ∗ ν,
C̄γ = C, (5.1)
ν̄γ = Ȳ γ · ν,

where the predictable local characteristics β̄γ and Ȳ γ are given by

β̄γt = Eγt−βθt , Ȳ γ
t = Eγt−Y θ

t (5.2)

with γt and γt− be the a posteriori distributions under γ. Recall that γt is
defined by :

γt(A) :=

∫
A
zθt γ(dθ)∫

Θ
zθt γ(dθ)

, A ∈ A,
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and γt− is given by the same formula with replacing zθt by zθt−.
Define now m̄γ as

m̄γ = β̄γ ·Xc +

(
Ȳ γ − 1 +

ˆ̄Y γ − 1̂
1− 1̂

)
∗ (µ− ν),

then we have that
dP̄ γ

t

dPt
= E(m̄γ)t.

By definition of P̄ γ
t and γt we have also that

dγt

dγ
(θ) =

dP θ
t

dP̄ γ
t

=
dP θ

t

dPt

dPt

dP̄ γ
t

= zθt
1

E(m̄γ)t
.

In comparison with
dαt

dα
(θ) which is equal to zθt (Pt × α -a.s.), it means that

dγt

dγ
(θ) =

dαt

dα
(θ)

1
E(m̄γ)t

.

Example: Brownian motion

Let X be a Brownian motion stopped in T and suppose that the Brownian
filtration F is enlarged by ϑ = XT . In this example T = (0, I, 0) and

βθ =
θ −Xt

T − t
.

Consider the example of final value distorted with a noise. We suppose that
the weak insider knows in advance the value y of random variable Y = XT +ε,
where ε is independent of XT and has N (0, η2) as law. The prior of the insider
with weak information is γ = P (XT |Y ), which by the normal correlation
theorem is N (m,σ2) with σ2 = (T−1 + η−2)−1 and m = Y σ2/η2.

For t < T the posterior distribution is γt := P (XT |Y,Xt), which by the
normal correlation theorem is N (mt, σ

2
t ) with σ

2
t = ((T − t)−1 + η−2)−1 and

mt = (Y η−2 +Xt(T − t)−1)σ2t .
According to previous results on triplets the drift of X under the insider

measure is given by

B̄γ
t =

t∫
0

Eγsϑ−Xs

T − s
ds. (5.3)

Since

Eγsϑ =
Y (T − s) +Xsη

−2

T − s+ η−2
,

we have after simplifications that
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B̄γ
t =

t∫
0

Y −Xs

T − s+ η2
ds.

Remark 1. One can analyze the increasing information along the same lines.
By this we mean that the insider obtains dynamically more and more precise
information about the random variable ϑ. A model of this type is the following:
in addition to the price process X the insider observes the process Y , where

Yt = ϑ+ εt,

where ε is a semimartingale, independent of the random variable ϑ such that
εt → 0 P -a.s. as t→ T . This kind of models are analyzed in [7].

6 Additional expected logarithmic utility of an insider

6.1 Introduction

We consider the pricing model with two assets, the stock (risky asset) and the
bond (riskless asset). We assume as in [1] that the process X has the dynamics

dXt = µtd〈M〉t + dMt (6.1)

where µ is a predictable process and M is a continuous Gaussian martingale
with deterministic bracket 〈M〉. We assume that the interest rate r is equal
to zero, so the bond price Bt = 1 for all t.

We assume that the stock price S has the dynamics

dSt = StdXt.

For the investment strategy π we have the portfolio dynamics

dV π
t = πtV

π
t dXt.

Then it can be shown that with respect to the logarithmic utility, the
average optimal strategy πo of an ordinary investor is πo := µ. Note that here
the average optimal strategy is computed with respect to the measure P .

6.2 Additional expected utility of strong insiders

Now consider a strong insider who knows the final value of the stock. We
assume that it is the same as the insider knows the final value of the martingale
MT . Put again ϑ =MT .

Then he can model the dynamics of X as

dXt = (µt + βθt )d〈M〉t + dMθ
t . (6.2)
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Here Mθ is a continuous Γ -martingale with

Mθ
t =Mt −

∫ t

0

βθsd〈M〉s

and
βθt =

θ −Mt

〈M〉t,T
where 〈M〉t,T = 〈M〉T − 〈M〉t. Again the optimal expected investment strat-
egy of an insider agent for the logarithmic utility is πi = µ+βθ. Note that the
expectation is computed with respect to the measure IP which is the joint law
of (M,ϑ(ω)). The log-value of the optimal strategy for an ordinary investor is

log V πo

t = log V0 +
∫ t

0

µsdMs +
1
2

∫ t

0

µ2sd〈M〉s. (6.3)

Similarly, the log-value of the optimal strategy for the insider investor is

log V πi

t = log V0 +
∫ t

0

(µs + βθs )dM
θ
s +

1
2

t∫
0

(βθs + µs)2d〈M〉s. (6.4)

To calculate the expectation E we need the following lemma.

Lemma 6.1. Let uθ = (uθt )t≥0 be a positive F-adapted càdlàg process for each
θ ∈ Θ. Suppose that the application u : (ω, t, θ) → uθt (ω) is O(IG)-measurable
with IG defined by (4.2). Then

E
∫ t

0

uθsd〈M〉s = E

∫ t

0

ūαs d〈M〉s (6.5)

where and ūαs is the posterior mean of u
θ
s, i.e.

ūαs = Eαs−uθs

Proof Recall first the following fact. Assume that y = (yt)t≥0 is a posi-
tive uniformly integrable (P,F)-martingale and D is a predictable increasing
process with D0 = 0. Then by [15, Theorem 5.16, p. 144 and Remark 5.3, p.
137]

EytDt = E

∫ t

0

(pY )sdDs = E
∫ t

0

Ys−dDs. (6.6)

Since zθ is the conditional density of the law of X given ϑ = θ with respect
to P , we have using (6.6) and the ordinary Fubini theorem that

E
∫ t

0

uθsd〈M〉s = E

(∫
Θ

zθt

∫ t

0

uθsd〈M〉sdα
)
=
∫
Θ

E

(
zθt

∫ t

0

uθsd〈M〉s
)
dα

=
∫
Θ

E

∫ t

0

zθs−u
θ
sd〈M〉sdα = E

∫ t

0

(∫
Θ

zθs−u
θ
sdα

)
d〈M〉s

= E

∫ t

0

ūαs d〈M〉s.
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This proves (6.5). �
Let us now compute the expected utility from the insider point of view.

This means that we take the expectation of (6.4) with respect to the insider
measure IP which is the joint law of (ω, ϑ). In the computation we use the
fact that the martingale M has a drift

∫ ·
0
βθsd〈M〉s with respect to the insider

measure. We obtain:

E(log V πi

t − log V πo

t ) =
1
2
E
∫ t

0

(µs + βθs )
2d〈M〉s

−1
2
E
∫ t

0

µ2sd〈M〉s −E
∫ t

0

µsdMs

=
1
2
E
∫ t

0

(βθs )
2d〈M〉s

=
1
2
E

∫ t

0

v̄αs (β)d〈M〉s

where v̄αs (β) is the posterior variance of the process βθs . Next we give the
Bayesian interpretation of this result. Note first that the Kullback–Leibler
information in the prior with respect to posterior is

I(α|ατ ) := Eατ log
dατ

dα
(θ).

In our case we have:

E(log V πi

t − log V πo

t ) = EI(α|αt).

For more information on this kind of computations we refer to [10].
We compute next the difference of the expected gain from the ordinary

agent point of view. This has the interpretation that an ordinary agent has
excess to the insider information, but he thinks that this is false. We model
this by the measure P ⊗ α — this means that the ordinary agent does not
change his triplet. So the expected utility gain has to be calculated using the
measure P ⊗ α. With a similar computation to the previous one we obtain
that

EP⊗α(log V πo

t − log V πi

t ) =
1
2
EP⊗α

∫ t

0

(βθs )
2d〈M〉s.

The Kullback–Leibler information in the posterior ατ with respect to the prior
α is define by

I(ατ |α) := Eα log
dα

dατ
.

For our model we can conclude that

EP⊗α(log V πo

t − log V πi

t ) = EI(αt|α).

Note that the differences of the expected gains are in both cases positive
— this reflects the fact the the investors act optimally according to their own
model.
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6.3 Additional expected logarithmic utility of weak insider

Assume that γ and α are two different equivalent priors for the parameter ϑ;
we can define the arithmetic mean measures P̄ γ and P̄α; we can compute the
(F, P̄ γ) and (F, P̄α)-triplets of the semimartingale X by (3.1). Note that here
we do not assume that α is the marginal law of the parameter ϑ.

Denote the optimal strategies based on the weak information for the prior
γ and α by πw,γ and πw,α, respectively.

Then, with a familiar computation

EP̄γ (log V w,γ
t − log V w,α

t ) =
1
2
EP̄γ

( t∫
0

(β
γ

s − β
α

s )
2d〈M〉s

)
(6.7)

where
β̄γs = Eγs−βθs , β̄αs = Eαs−βθs .

Note that the right-hand side of (6.7) is nothing else but thye Kullback–Leibler
information of P̄α in P̄ γ and, hence,

EP̄γ (log V w,γ
t − log V w,α

t ) = I(P̄α|P̄ γ)t.

Note that

0 ≤ I(P̄α|P̄ γ)t = EP̄γ log
dP̄ γ

t

dP̄α
t

=

=
∫
Θ

∫
Ω

{
log

dP θ
t

dP̄α
t

− log
dP θ

t

dP̄ γ
t

}
P θ
t (dω)γ(dθ)

= Eγ

{
I(P θ

t |P̄α
t )− I(P θ

t |P̄ γ
t )
}
= EP̄γ

t

{
I(α|αt)− I(γ|γt)

}
In particular, this means that

EP̄γ
t
I(γ|γt) = inf

α
EP̄γ

t
I(α|αt)

where the infimum is taken over all measures α which are equivalent to γ.
The interpretation is that if one believes in his own prior γ, he expects to get
less information from the data than any other person using the same model
with a “wrong” prior.
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Summary. We consider the following game of a statistician against the nature.
First the nature chooses a measure P at random from a measurable set P of Borel
probability measures on a complete separable metric space X. Then, without know-
ing the strategy of the nature, the statistician chooses a Borel probability measure
Q on X. The loss of the statistician is the f -divergence Jf (P |Q). We show that
the minimax and maximin values of this game coincide and there always exists a
minimax strategy. This generalizes a result of Haussler proved for the case where
the loss is the Kullback–Leibler divergence D(P‖Q).

Key words: f -divergence, Bayes strategy, minimax strategy, minimax theorem,
statistical game
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1 Introduction and the Main Result

Statistical games are a part of Wald’s theory of statistical decision functions
[10]. For the theory of statistical games the reader may consult Blackwell and
Girshick [1], Ferguson [6], and Borovkov [2].

In this note we consider a generalization of the game studied by Haussler
[7]. Let (X, [) be a complete separable metric space and B(X) its Borel σ-
field. We denote by P(X) the set of all probability measures on (X,B(X)). It
is well known that the weak convergence in P(X) is metrizable. In particular,
one can use the bounded Lipschitz metric β defined as

β(P,Q) = sup
{∣∣∣∣∫ f dP −

∫
f dQ

∣∣∣∣} ,
where the supremum is taken over all real-valued functions f on X satisfying
|f(x)| � 1 and |f(x) − f(y)| � |x − y| for all x, y ∈ X. The metric space
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(P(X), β) is complete and separable (and compact if X is compact). Denote
by P(P(X)) the set of all probability measures on

(
P(X),B(P(X))

)
.

Let a Borel set P ∈ B(P(X)) be given. Elements of P are interpreted as
possible states of the nature. Consider now a game of a statistician against
the nature. First, the nature chooses a prior measure

π ∈ P(P) := {π ∈ P(P(X)) : π(P) = 1}

and picks a measure P ∈ P at random according to π. Then, without knowing
the value P and the strategy π, the statistician chooses a measure Q ∈ P(X).
Finally, the loss of the statistician is Jf (P |Q), where f is a fixed convex
function f : (0,∞)→ R and Jf (·|·) stands for the corresponding f -divergence
(see Section 2 for the precise definition). In particular, this setting includes
the following loss functions:

the Kullback–Leibler divergence D(P‖Q): f(x) = x log x,
the Kullback–Leibler divergence D(Q‖P ): f(x) = − log x,

the squared Hellinger distance [2(P |Q): f(x) = (x1/2 − 1)2,
the total variation distance ‖P −Q‖: f(x) = |x− 1|.

The minimax value of this game is

V = inf
Q∈P(X)

sup
π∈P(P)

∫
P

Jf (P |Q)π(dP )

and the maximin value is

V = sup
π∈P(P)

inf
Q∈P(X)

∫
P

Jf (P |Q)π(dP ).

(The integral above is well defined since the integrand is lower semicontinuous
and bounded from below, see Section 2.) It is clear that V � V . We shall say
that a measure Qπ ∈ P(X) is a Bayes strategy corresponding to a prior
π ∈ P(P) if

∫
P
Jf (P |Q)π(dP ) attains the infimum over Q ∈ P(X) at Qπ.

We can now formulate the main result of this note.

Theorem 1.1. V = V , and there exists a minimax strategy, i.e. there is a
measure Q ∈ P(X) such that

V = sup
π∈P(P)

∫
P

Jf (P |Q)π(dP ).

If f(x) = x log x, i.e. Jf (P |Q) = D(P‖Q), this result was proved by Haus-
sler [7], see also his paper for further references and for interpretations of this
game in the information theory and other fields. Under stronger assumptions
a similar statement for the same loss function appeared also in Krob and
Scholl [8].
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To prove the theorem Haussler considers separately two cases. First, he
assumes that the family P is relatively compact in the weak topology. Then
his arguments are close to those used in similar minimax theorems. However,
it is essential in this part of the proof that the family of Bayes strategies
corresponding to all π ∈ P(P) is also relatively compact, which follows easily
from the fact that, for f(x) = x log x, the measure Qπ defined by

Qπ(B) =
∫

P

P (B)π(dP ), B ∈ B(X),

is a Bayes strategy corresponding to π. For other f the relative compactness of
Bayes strategies does not hold in general. One can construct simple examples
where P is relatively compact, Jf (P |Q) = D(Q‖P ) or Jf (P |Q) = [2(P,Q),
and the family of Bayes strategies is not relatively compact.

If the family P is not relatively compact, Haussler shows that V =∞. For
general f this is also true if f(x)/x→∞ as x→∞; otherwise this assumption
on P seems to be rather useless.

Thus our proof is different from that of Haussler. The main idea is to com-
pactify the space X reducing the problem to the case of a compact space X.
In the compact case our arguments are quite standard for minimax theorems,
compare e.g. with the first case considered by Haussler.

If P is finite, the minimax result for arbitrary convex f was proved by
Csiszár [4]. (Here there is no need to impose topological assumptions on X.)
Csiszár indicates also a way of constructing Bayes strategies based on La-
grange multipliers.

2 Preliminaries

We fix a convex function f on (0,∞) with values in R. Put f(0) := limu↓0 f(u)
and f(∞)

∞ := limu↑∞
f(u)
u . Both limits exist and may belong to (−∞,∞]. The

f -divergence Jf (P |Q) of probability measures P and Q (given on the same
measurable space) is defined, see Csiszár [3], by

Jf (P |Q) =
∫
qf
(p
q

)
dλ, (2.1)

where λ is a σ-finite measure dominating P and Q, p = dP/dλ, q = dQ/dλ.
The following conventions are used in this definition and below:

0 · ∞ = 0, 0 · f
(a
0

)
= a · f(∞)

∞ .

The integral in (2.1) is well defined and its value does not depend on the
choice of a dominating measure λ.

We refer to Liese and Vajda [9] for properties of the f -divergence. Here
we mention a few ones used in the proof.
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For any pair P,Q

f(1) � Jf (P |Q) � f(0) +
f(∞)
∞ .

If P and Q are singular then Jf (P |Q) = f(0) + f(∞)
∞ . If f(0) = ∞ and

Jf (P |Q) <∞ then Q is absolutely continuous with respect to P .
Let now P,Q ∈ P(X), where X is a complete separable metric space.

Then the function P(X) × P(X)(P,Q) � Jf (P |Q) is lower semicontinuous
and convex, see Liese and Vajda [9, Theorem (1.47) and Corollary (1.55)].

Using boundedness of Jf (P |Q) from below and Fatou’s lemma, we imme-
diately obtain that for every prior π ∈ P(P(X)), the function

P(X)Q�
∫

P(X)

Jf (P |Q)π(dP )

is lower semicontinuous.

3 Proof of Theorem 1.1

Step 1. First we show that V = V if P is finite, cf. Haussler [7, Lemma 2].
Let P = {P1, . . . , Pk}. Put

S =
{(
Jf (P1|Q), . . . ,Jf (Pk|Q)

)
: Q ∈ P(X)

}
∩ Rk.

If S = ∅ then for any prior π ∈ P(P) with strictly positive weights we have∫
P

Jf (P |Q)π(dP ) =∞ for any Q ∈ P(X),

hence V =∞. So we assume that S �= ∅.
Let convS be the convex hull of S. By Carathéodory’s theorem, for each

z ∈ convS there exist s1, . . . , sk+1 in S and nonnegative α1, . . . , αk+1 such
that

k+1∑
i=1

αi = 1 and
k+1∑
i=1

αisi = z.

Let si =
(
Jf (P1|Qi), . . . ,Jf (Pk|Qi)

)
, Qi ∈ P(X), i = 1, . . . , k + 1. Then

for Q :=
∑k+1

i=1 αiQi

k+1∑
i=1

αiJf (Pj |Qi) � Jf (Pj |Q), j = 1, . . . , k,

due to convexity of the f -divergence. Thus for each z ∈ convS there is a point
s ∈ S such that sj � zj , j = 1, . . . , k.
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Let La := {(z1, . . . , zk) : zj � a, j = 1, . . . , k}, a ∈ R. Put V :=
sup {a : La ∩ convS = ∅}. According to the above, for every n � 1 there
is a measure Qn ∈ P(X) such that

Jf (Pj |Qn) � V +
1
n
, j = 1, . . . , k.

Thus V � V , and it remains to show that V � V .
Let IntLV be the interior of LV . Then IntLV and convS are disjoint

convex sets, and there exists a separating hyperplane, i.e. there are a nonzero
vector (p1, . . . , pk) and a real c such that

k∑
j=1

pjzj � c if zj < V, j = 1, . . . , k, (3.1)

and
k∑

j=1

pjJf (Pj |Q) � c for all Q ∈ P(X). (3.2)

It follows easily from (3.1) that pj are nonnegative. In particular
∑k

j=1 pj > 0.

Dividing pj and c by
∑k

j=1 pj , we can assume that
∑k

j=1 pj = 1.
Now it follows from (3.1) that c � V . On the other hand, (3.2) implies

V � c. Hence V � V .
Step 2. Now our aim is to prove the statement of the theorem if X is a

compact.
Assume that V < V . Let V be any real such that V < V . Given P ∈ P,

put
U(P ) := {Q ∈ P(X) : Jf (P |Q) > V }.

Since Jf (P |Q) is lower semicontinuous in Q, U(P ) is an open subset of the
compact P(X). Moreover, the sets U(P ), P ∈ P, cover P(X). Indeed,

sup
π∈P(P)

∫
P

Jf (P |Q)π(dP ) � V for every Q ∈ P(X),

hence there is a prior π ∈ P(P) such that∫
P

Jf (P |Q)π(dP ) > V,

and there is a measure P ∈ P such that Jf (P |Q) > V .
Therefore, there exists a finite subcover U(P1), . . . , U(Pk) of P(X), i.e. for

every Q ∈ P(X) there is a number j, 1 � j � k, such that Jf (Pj |Q) > V .
Applying the first step of the proof to P′ = {P1, . . . , Pk}, we obtain
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V = sup
π∈P(P)

inf
Q∈P(X)

∫
P

Jf (P |Q)π(dP ) � sup
π∈P(P′)

inf
Q∈P(X)

∫
P′
Jf (P |Q)π(dP )

= inf
Q∈P(X)

sup
π∈P(P′)

∫
P′
Jf (P |Q)π(dP ) = inf

Q∈P(X)
sup
j
Jf (Pj |Q) � V.

Since V is any number smaller than V , we have V = V .
As it was mentioned in the previous section, the function

P(X)Q�
∫

P

Jf (P |Q)π(dP )

is lower semicontinuous for every prior π. Therefore, the function

P(X)Q� sup
π∈P(P)

∫
P

Jf (P |Q)π(dP )

is also lower semicontinuous and hence attains its infimum over the compact
set P(X). This implies the existence of the minimax strategy.

Step 3. Finally we shall prove the theorem in full generality.
Since X is a separable metric space, there is another metric [′ for X

generating on X the same topology as [ and such that X is totally bounded
in [′, see e.g. Dudley [5, Theorem 2.8.2]. Let Y be the completion of X with
respect to [′, then (Y, [′) is compact. The Borel σ-field for (Y, [′) is denoted
by B(Y ).

Let F be a closed set in (X, [). Since the metric space (F, [) is complete and
its completion with respect to [′ coincides with the closure F of F in (Y, [′),
F is a countable intersection of sets that are open in (F , [′), see e.g. Dudley
[5, Theorem 2.5.4]. Hence F ∈ B(Y ), and it follows that B(X) ⊆ B(Y ).
Conversely let F be closed in (Y, [′). Since [ and [′ define the same topology
on X, F ∩ X is closed in (X, [). This implies that B ∩X ∈ B(X) for every
B ∈ B(Y ).

Let P(Y ) be the set of all probability measures on (Y,B(Y )). Evidently,
we can identify measures from P(X) as elements of P(Y ) that have zero mass
on Y \X. Let Pn, n � 1, and P be from P(X). If the sequence {Pn} weakly
converges to P in P(P(Y )), then it does the same in P(P(X)), which follows
from the definition. The converse statement follows from the Portmanteau
theorem. Hence the bounded Lipschitz metrics in P(X) and P(Y ) generate
the same topology on P(X). Repeating the above arguments, we conclude
that a set Q in P(X) belongs to B(P(X)) if and only if it belongs to B(P(Y )).
Thus we may consider priors from P(P) as elements of P(P(Y )) as well with
no danger of confusion.

The second step of our proof shows that

sup
π∈P(P)

inf
Q∈P(Y )

∫
P

Jf (P |Q)π(dP ) = inf
Q∈P(Y )

sup
π∈P(P)

∫
P

Jf (P |Q)π(dP ), (3.3)
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and there is a measure Q ∈ P(Y ) such that supπ∈P(P)

∫
P
Jf (P |Q)π(dP ) is

equal to the right-hand side of (3.3). To complete the proof it is enough to
show that for any Q ∈ P(Y ) \ P(X) there is a measure Q′ ∈ P(X) such that
Jf (P |Q) � Jf (P |Q′) for all P ∈ P(X), in particular, for all P ∈ P. We
consider three cases.

First, if Q(Y \X) = 1 then Q is singular with respect to every P ∈ P(X),
hence the f -divergence Jf (P |Q) takes its maximal value f(0)+ f(∞)

∞ , and any
Q′ ∈ P(X) does the job.

Second, let 0 < Q(X) < 1 and f(0) = ∞. Then Q is not absolutely
continuous with respect to every P ∈ P(X), Jf (P |Q) =∞, and any choice of
Q′ ∈ P(X) is appropriate again.

Finally, let 0 < Q(X) < 1 and f(0) <∞. Define a measure Q′ ∈ P(X) by

Q′(B) =
Q(B ∩X)
Q(X)

, B ∈ B(X).

Take a measure P ∈ P(X) and let λ = (P + Q)/2, p = dP/dλ, q = dQ/dλ.
Using the inequality

(1−Q(X))f(0) +Q(X)f
(u
v

)
� f
(
Q(X)

u

v

)
, v > 0, u � 0,

which is due to convexity of f , we obtain

Jf (P |Q) =
∫
Y

qf
(p
q

)
dλ

=
∫
X∩{q>0}

qf
(p
q

)
dλ+

f(∞)
∞ P (X ∩ {q = 0}) + (1−Q(X))f(0)

�
∫
X∩{q>0}

q

Q(X)
f
(
Q(X)

p

q

)
dλ− 1−Q(X)

Q(X)
f(0)

∫
X∩{q>0}

q dλ

+
f(∞)
∞ P (X ∩ {q = 0}) + (1−Q(X))f(0)

=
∫
X∩{q>0}

q

Q(X)
f
( p

q/Q(X)

)
dλ+

f(∞)
∞ P (X ∩ {q = 0})

= Jf (P |Q′).

The claim follows.
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Summary. We consider a problem that combines impulse control with absolutely
continuous control of the drift of a general one-dimensional Itô diffusion. The objec-
tive of the control problem is to minimize an ergodic or long-term average criterion
that penalizes both deviations of the state process from a given nominal point and
the use of control effort. Our analysis completely characterizes the optimal strategy.

Key words: Itô diffusions, impulse control, absolutely continuous control, ergodic
criterion
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1 Introduction

We consider a stochastic system, the state of which is modelled by the con-
trolled one-dimensional Itô diffusion

dXt = Ut dt+ dZt + σ(Xt) dWt, X0 = x ∈ R, (1.1)

whereW is a standard one-dimensional Brownian motion, U is a progressively
measurable process such that

Ut ∈ [−b(Xt), b(Xt)] for all t ≥ 0, (1.2)

and Z is a controlled piecewise constant process, the jumps of which occur at
the times when control effort is exercised in an impulsive way to reposition the
system’s state by an amount equal to the associated jump sizes. The objective
of the optimization problem is to minimize the long-term average criterion

∗Research supported by EPSRC grant no.GR/S22998/01
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lim sup
T→∞

1
T
Ex

[∫ T

0

h(Xt) dt+
∑

t∈[0,T ]

(
K+∆Zt + c+

)
1{∆Zt>0}

+
∑

t∈[0,T ]

(
−K−∆Zt + c−

)
1{∆Zt<0}

]
,

which is taken to be equal to∞ if X explodes in finite time with positive prob-
ability, over all admissible choices of the controlled processes U and Z. Here, h
is a given function that is strictly decreasing in ]−∞, 0[ and strictly increasing
in ]0,∞[, and c+, c−,K+,K− are positive constants. This performance index
penalizes deviations of the state process X from the nominal operating point
0. While the index does not explicitly penalize the expenditure of control ef-
fort associated with an admissible choice of U , which is constrained by (1.2),
it reflects a cost paid each time that control is exercised in an impulsive way.
In particular, the constants c+ and K+ (resp., c− and K−) provide a fixed
and a proportional cost paid each time that the controller incurs a jump of
the system’s state in the positive (resp., negative) direction.

This problem provides one of the few non-trivial examples of optimal sto-
chastic control models that admit a solution of an explicit analytic nature.
The version of the problem that arises when the drift of (1.1) is not control-
lable has been solved by Jack and Zervos [5]. Both of these problems have
been motivated by the research presented in Jeanblanc-Picqué [6], Mundaca
and Øksendal [8], Cadenillas and Zapatero [1, 2], and Chiarolla and Hauss-
mann [3] who consider the issue of controlling in an optimal way the stochastic
dynamics of a foreign exchange (FX) or an inflation rate by means of a central
bank intervention policy.

With regard to these references, we can see that the optimization problem
that we consider can be of use to a central bank in its task of controlling an
FX rate as follows. The process X is used to model the stochastic dynamics
of the logarithm of an FX rate relative to a given nominal point. The central
bank wishes to keep the rate as close as possible to its given nominal point,
which translates to 0 in the state space of X. To achieve this aim, the central
bank uses the function h to penalize deviations of the rate from its nominal
value. To control the rate, the central bank has two intervention policies at
its disposal. The first one is through the continuous adjustment of its interest
rate, the effect of which is modelled by the process U . The second policy is to
purchase or sell large amounts of foreign capital at discrete times, the effect
of which is incorporated into the model through the jumps of the process Z.
In contrast to the above mentioned references where discounted criteria are
considered, here, as well as in Jack and Zervos [5], we consider a long-term
average criterion. Since an FX rate is not an asset and the function h does
not represent a tangible cost, the choice of a discounting factor does not have
a clear economic interpretation. This observation suggests that addressing
this type of application using a long-term average criterion rather than a
discounted one conforms better with the standard economic theory.
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Our analysis is based on the explicit construction of an appropriate solu-
tion to the associated Hamilton–Jacobi–Bellman (HJB) equation. This con-
struction relies upon the use of the so-called “smooth-pasting condition” that
was first observed to characterize a wide class of optimal stopping problems
(e.g., see Shiryaev [9] and Krylov [7]). Also, part of it follows steps that paral-
lel the ones used in the analysis of Harrison, Sellke and Taylor [4] who consider
the impulse control of a Brownian motion with an expected discounted crite-
rion. With regard to the structure of the problem that we solve, it is worth
noting that, even though the dynamics modelled by (1.1) allow for the possi-
bility that the state process X explodes in finite time, our assumptions ensure
that the optimal control strategy is a “stabilizing” one.

2 The control problem

We consider a stochastic system, the state process X of which is driven by a
Brownian motionW, a controlled process U that affects the system’s dynamics
in an absolutely continuous way and a controlled process Z that affects the
system’s dynamics impulsively. In particular, we assume that the system’s
state process satisfies the controlled SDE

dXt = Ut dt+ dZt + σ(Xt) dWt, X0 = x ∈ R, (2.1)

where σ : R → R is a given function and W is a standard one-dimensional
Brownian motion. Here, U is a process such that, for some given function
b : R→ [0,∞[,

Ut ∈ [−b(Xt), b(Xt)] for all t ≥ 0, (2.2)

and Z is a piece-wise constant, càglàd process. The time evolution of both
of these processes is determined by the system’s controller. With reference to
the current impulse control literature, it is worth observing that an admissible
choice of a process Z can equivalently be described by the collection

Z = (τ1, τ2, . . . , τn, . . . ;∆Zτ1 ,∆Zτ2 , . . . ,∆Zτn , . . .) ,

where (τn, n ≥ 1) is the sequence of random times at which the jumps of Z
occur and (∆Zτn , n ≥ 1) are the sizes of the corresponding jumps.

We adopt a weak formulation of the control problem that we study:

Definition 1. Given an initial condition x ∈ R, a control of a stochastic
system governed by dynamics as in (2.1) is any nine-tuple

Cx = (Ω,F ,Ft, Px,W,U, Z,X, τ),

where
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(Ω,F ,Ft, Px) is a filtered probability space satisfying the usual
conditions,
W is a standard one-dimensional (Ft)-Brownian motion,
U is an (Ft)-progressively measurable process,
Z is a finite variation piecewise constant càglàd (Ft)-adapted
process with Z0 = 0,
X is a càglàd (Ft)-adapted process such that (2.1) and (2.2) are
well-defined and satisfied up to the explosion time τ .

We define Cx to be the family of all such controls Cx.

With a control Cx ∈ Cx we associate the performance criterion defined by

J(Cx) := lim sup
T→∞

1
T
Ex

[∫ T

0

h(Xt) dt+
∑

t∈[0,T ]

(
K+∆Zt + c+

)
1{∆Zt>0}

+
∑

t∈[0,T ]

(
−K−∆Zt + c−

)
1{∆Zt<0}

]
, if Px (τ =∞) = 1, (2.3)

where ∆Zt := Zt+ − Zt, and by

J(Cx) :=∞, if Px (τ =∞) < 1. (2.4)

Here h : R→ R is a given function that models the running cost resulting from
the system’s operation and K+, c+,K−, c− > 0 are given constants penalizing
the use of impulsive control effort.

The objective of the control problem is to minimize the performance crite-
rion defined by (2.3)–(2.4) over all controls Cx ∈ Cx. The next assumption on
the problem’s data is sufficient for our optimization problem to be well-posed.

Assumption 2.1 The following conditions hold:
(a) There exists C1 > 0 such that

0 < σ2(x) ≤ C1(1 + |x|) for all x ∈ R, (2.5)

(b) For all x ∈ R there exists ε > 0 such that∫ x+ε

x−ε

1 + b(s)
σ2(s)

ds <∞, (2.6)

(c) The function h is continuous, strictly decreasing on ]−∞, 0[ and strictly
increasing on ]0,∞[. Also, h(0) = 0, and there is a constant C2 > 0 such that

h(x) ≥ C2(|x| − 1) for all x ∈ R. (2.7)

(d) Given any constant γ ∈ R,

lim
x→±∞

1
σ2(x)

[h(x) + b(x)γ] =∞. (2.8)
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(e) There exist a− ≤ a+ such that the function

h(·)− b(·)K−


is strictly decreasing on ]−∞, a−[,
is strictly negative inside ]a−, a+[, if a− < a+,

is strictly increasing on ]a+,∞[.
(2.9)

(f) There exist α− ≤ α+ such that the function

h(·)− b(·)K+


is strictly decreasing on ]−∞, α−[,
is strictly negative inside ]α−, α+[, if α− < α+,

is strictly increasing on ]α+,∞[.
(2.10)

(g) K+, c+,K−, c− > 0.

Note that the conditions in this assumption involve no convexity properties
such as the ones often imposed in the stochastic control literature. Also, al-
though they appear to be involved, they are quite general and easy to verify
in practice.

Example 1. If we choose

b(x) = β|x|+ γ, σ(x) = ζ and h(x) = θ|x|p,

for some constants β, γ > 0, ζ �= 0, θ > 0 and p > 1, then Assumption 2.1
holds.

Remark 1. It is worth noting that we can easily dispense of the assumption
that h is continuous. However, we decided to keep it because to avoid compli-
cations in a part of our analysis.

3 The solution to the control problem

With regard to the general theory of stochastic control, the solution to the
control problem formulated in the previous section can be obtained by finding
a sufficiently smooth, for an application of Itô’s formula, function w and a
constant λ satisfying the HJB equation

min
{
1
2
σ2(x)w′′(x)− b(x)|w′(x)|+ h(x)− λ,

c+ − w(x) + inf
z≥0

[
w(x+ z) +K+z

]
,

c− − w(x) + inf
z≤0

[
w(x+ z)−K−z

]}
= 0. (3.1)

If such a pair (w, λ) exists, then, subject to suitable technical conditions, we
expect the following. Given any initial condition x ∈ R,
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λ = inf
Cx∈Cx

J(Cx).

Note that this expression also reflects the fact that the optimal value of the
performance criterion is independent of the system’s initial condition. The set
of all x ∈ R such that

c− − w(x) + inf
z≤0

[
w(x+ z)−K−z

]
= 0 (3.2)

is the part of the state space where the controller should act immediately with
an impulse in the negative direction, while the set of all x ∈ R such that

c+ − w(x) + inf
z≥0

[
w(x+ z) +K+z

]
= 0 (3.3)

is the region of the state space where the controller should act with an impulse
in the positive direction. The interior of the set of all x ∈ R such that

1
2
σ2(x)w′′(x)− b(x)|w′(x)|+ h(x)− λ = 0 (3.4)

defines the part of the state space in which the controller should act only
through the exercise of absolutely continuous control of the drift. Inside this
region, it is optimal to choose

Ut = − sgn(w′(Xt))b(Xt). (3.5)

It turns out that all of these statements, indeed, are true.
Now, we conjecture that an optimal strategy is characterized by five points,

y2 < y1 < a < x1 < x2, and takes the form that can be described as follows.
If the state space process X takes any value x ≥ x2, then impulsive control is
exercised to “push” it instantaneously to the level x1. Similarly, whenever the
state process X assumes a value x ≤ y2, impulsive control action is used to
reposition it at y1. As long as the state process is inside the interval ]y2, x2[,
the controller expends absolutely continuous control effort at the maximum
rate, given by b(X), to “push” the state process X towards a, which, in view
of (3.5), is associated with (3.9) below. We therefore look for a solution (w, λ)
to the HJB equation (3.1) such that

w(x) = w(x1) +K−(x− x1) + c−, for x ≥ x2, (3.6)
1
2
σ2(x)w′′(x)− b(x)|w′(x)|+ h(x)− λ = 0, for x ∈ ]y2, x2[, (3.7)

w(x) = w(y1) +K+(y1 − x) + c+, for x ≤ y2, (3.8)

w′(x)


< 0, for x < a,

= 0, for x = a,

> 0, for x > a.

(3.9)
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Assuming that this strategy is indeed optimal, we need a system of appro-
priate equations to determine the free-boundary points y2, y1, a, x1, x2 and
the constant λ. To derive such equations, we argue as follows. With regard
to the boundary points y2 and x2 that separate the three regions defined by
(3.2)–(3.4) and the so-called “smooth-pasting condition”, we impose

w′(y2+) = −K+ and w′(x2−) = K−. (3.10)

Now, relative to impulses in the negative direction, we consider the inequality

c− − w(x) + inf
z≤0

[
w(x+ z)−K−z

]
≥ 0.

Assuming for the sake of the argument that we have somehow calculated w,
this inequality implies that

c− − w(x2) + w(x)−K−(x− x2) ≥ 0 for all x ≤ x2.

With regard to (3.6) and the fact that x2 is a constant, this observation implies
that the function x �→ w(x) − K−x has a local minimum at x = x1, which
can be true only if

w′(x1) = K−. (3.11)

Moreover, for x = x2, (3.6) implies that∫ x2

x1

w′(s) ds = K− (x2 − x1) + c−. (3.12)

Similarly, considering impulses in the positive direction, we conclude that

w′(y1) = −K+ and
∫ y1

y2

w′(s) ds = −K+ (y1 − y2)− c+. (3.13)

Summarizing the considerations above, a candidate for an optimal strategy
is characterized by six parameters, namely y2 < y1 < a < x1 < x2 and λ, and
a function w such that (3.6)–(3.13) are all true. Now, (3.7) and (3.9) can both
be true only if w satisfies the equation

1
2
σ2(x)w′′(x)− sgn(x− a)b(x)w′(x) + h(x)− λ = 0, x ∈ ]y2, x2[,

which is the case if

w′(x) = g(x, λ, a) for all x ∈ ]y2, x2[, (3.14)

where g is defined by

g(x, λ, a) := p′a(x)
∫ x

a

[λ− h(s)] ma(ds), x ∈ ]y2, x2[. (3.15)
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Here, pa and ma are defined by

pa(x) :=

{∫ x
a
exp
(
2
∫ s
a
b(u)σ−2(u) du

)
ds, if x ≥ a,

−
∫ a
x
exp
(
2
∫ a
s
b(u)σ−2(u) du

)
ds, if x < a,

(3.16)

ma(dx) :=
2

p′a(x)σ2(x)
dx. (3.17)

It follows that, to determine the six parameters y2 < y1 < a < x1 < x2 and λ,
we have to solve the system of the following six algebraic nonlinear equations:

g(x2, λ, a) = K−, g(x1, λ, a) = K−, (3.18)

g(y2, λ, a) = −K+, g(y1, λ, a) = −K+, (3.19)∫ x2

x1

g(s, λ, a) ds = K− (x2 − x1) + c−, (3.20)∫ y1

y2

g(s, λ, a) ds = −K+ (y1 − y2)− c+, (3.21)

where g is as in (3.15).
At this point, it is worth observing that pa and ma are, respectively, the

scale function and the speed measure of the uncontrolled Itô diffusion

dXt = − sgn(Xt − a)b(Xt) dt+ σ(Xt) dWt.

The following result asserts that a solution to the HJB equation (3.1) that
conforms with all of the heuristic considerations above indeed exists. Its proof
is given in the Appendix.

Lemma 3.1. Suppose that Assumption 2.1 holds. The system (3.18)–(3.21)
has a solution (y2, y1, a, x1, x2, λ) such that y2 < y1 < a < x1 < x2, and, if
w is the function defined by (3.6), (3.8) and (3.14), then w ∈ W 2,∞

loc (R), w
satisfies (3.9), and the pair (w, λ) is a classical solution to the HJB equation
(3.1).

We can now establish our main result.

Theorem 3.1. Consider the control problem formulated in Section 2, suppose
that Assumption 2.1 holds and let (w, λ) be the solution to the HJB equation
(3.1) provided by Lemma 3.1. Given any initial condition x ∈ R,

λ = inf
Cx∈Cx

J(Cx), (3.22)

and the strategy discussed above, which is constructed rigorously in the proof
below, is optimal.

Proof. Throughout this proof, we fix the solution (w, λ) to the HJB equation
(3.1) constructed in Lemma 3.1. We also fix an initial condition x ∈ R.
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Consider any admissible control Cx ∈ Cx such that J(Cx) < ∞. Using
Itô’s formula, we calculate that

w(XT+) = w(x) +
∫ T

0

[
1
2
σ2(Xs)w′′(Xs) + Usw

′(Xs)
]
ds

+
∫ T

0

σ(Xs)w′(Xs) dWs +
∑

s∈[0,T ]
[w(Xs +∆Zs)− w(Xs)] ,

implying the representation

IT (Cx) :=
∫ T

0

h(Xs) ds+
∑

s∈[0,T ]

(
K+∆Zt + c+

)
1{∆Zt>0}

+
∑

s∈[0,T ]

(
−K−∆Zt + c−

)
1{∆Zt<0}

= λT + w(x)− w(XT+) +
∫ T

0

σ(Xs)w′(Xs) dWs

+
∫ T

0

[
1
2
σ2(Xs)w′′(Xs) + Usw

′(Xs) + h(Xs)− λ

]
ds

+
∑

s∈[0,T ]

[
w(Xs +∆Zs)− w(Xs) +K+∆Zs + c+

]
1{∆Zs>0}

+
∑

s∈[0,T ]

[
w(Xs +∆Zs)− w(Xs)−K−∆Zs + c−

]
1{∆Zs<0}.

(3.23)

With reference to (2.2), we note that Utw
′(Xt) ≥ −b(Xt)|w′(Xt)|. Combining

this observation with the fact that (w, λ) satisfies the HJB equation (3.1), we
get the bound

IT (Cx) ≥ λT + w(x)− w(XT+) +
∫ T

0

σ(Xs)w′(Xs) dWs. (3.24)

By construction, w is C1, w′(x) = K− for all x ≥ x2, and w′(x) = −K+

for all x ≤ y2. Therefore, there exists a constant C3 > 0 such that

w(x) ≤ C3(1 + |x|) and |w′(x)| ≤ C3, for all x ∈ R. (3.25)

For such a choice of C3, (3.24) yields

IT (Cx) ≥ λT + w(x)− C3 − C3 |XT+|+
∫ T

0

σ(Xs)w′(Xs) dWs. (3.26)

Now, with respect to Assumption 2.1.(c),
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∞ > J(Cx) ≥ −C2 + C2 lim sup
T→∞

1
T
Ex

[∫ T

0

|Xs| ds
]
. (3.27)

These inequalities imply that

Ex

[∫ T

0

|Xs| ds
]
<∞ for all T > 0, (3.28)

lim inf
T→∞

1
T
Ex [|XT+|] = 0. (3.29)

To see (3.29), suppose that lim infT→∞ T−1Ex [|XT+|] > ε > 0. This implies
that there exists T1 ≥ 0 such that Ex [|Xs+|] > εs/2, for all s ≥ T1. Since the
sample paths of X have countable discontinuities, it follows that

lim sup
T→∞

1
T
Ex

[∫ T

0

|Xs| ds
]
≥ lim sup

T→∞

1
T

∫ T

T1

εs

2
ds =∞,

which contradicts (3.27).
Taking into account (2.5) in Assumption 2.1, the second inequality in

(3.25), and (3.28), we obtain that

Ex

[∫ T

0

[σ(Xs)w′(Xs)]
2
ds

]
≤ C23C1

[
T + Ex

[∫ T

0

|Xs| ds
]]

<∞ (3.30)

for all T > 0, proving that the stochastic integral in (3.26) is a square inte-
grable martingale and, therefore, has zero expectation. In view of this obser-
vation, we can take expectations in (3.26) and divide by T to get the bound

1
T
Ex [IT (Cx)] ≥ λ+

w(x)
T

− C3
T
− C3

T
Ex [|XT+|] .

In view of (3.29) and the definition of IT (Cx) in (3.23), we can pass to the
limit T →∞ to obtain J(Cx) ≥ λ.

To prove the reverse inequality, suppose that we can find a control

Ĉx = (Ω̂, F̂ , F̂t, P̂x, Ŵ , Û , Ẑ, X̂, τ̂) ∈ Cx

such that

Ût = − sgn(X̂t − a)b(X̂t), (3.31)

X̂t+ ∈ [y2, x2], (3.32)

∆Ẑt1{∆Ẑt>0} = (y1 − y2)1{X̂t=y2}, (3.33)

∆Ẑt1{∆Ẑt<0} = −(x2 − x1)1{X̂t=x2}, (3.34)
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for all t ≥ 0, P̂x-a.s.. Plainly, (3.32) implies that X̂ is non-explosive, so that
τ̂ = ∞ P̂x-a.s. Also, since w satisfies (3.9), Ûtw

′(X̂t) = −b(X̂t)|w′(X̂t)|. In
view of this observation and (3.6)–(3.8), we can see that, in this context, (3.23)
implies the equality

IT (Ĉx) = λT + w(x)− w(X̂T+) +
∫ T

0

σ(X̂s)w′(X̂s) dŴs. (3.35)

Now, (2.5) in Assumption 2.1, (3.25) and (3.32) imply that

Ex

[∫ T

0

[
σ(X̂s)w′(X̂s)

]2
ds

]
≤ C23C1 (1 + |y2| ∨ |x2|)T <∞

for all T > 0, which proves that the stochastic integral in (3.35) is a square
integrable martingale, and

lim
T→∞

1
T
Ex

[
|w(X̂T+)|

]
≤ lim

T→∞

C3 (1 + |y2| ∨ |x2|)
T

= 0.

It follows that
lim

T→∞

1
T
Ex

[
IT (Ĉx)

]
= λ,

which proves that J(Ĉx) = λ, and establishes (3.22).
It remains to construct a control Ĉx ∈ Cx satisfying (3.31)–(3.34), which

amounts to constructing a weak solution (Ω̂, F̂ , F̂t, P̂x, Ŵ , Ẑ, X̂) to the SDE

dX̂t = − sgn(X̂t − a)b(X̂t) dt+ dẐt + σ(X̂t) dŴt (3.36)

that satisfies (3.32)–(3.34). To this end, we fix a filtered probability space
(Ω̂, F̂ , F̄t, P̂x) satisfying the usual conditions and supporting a standard
(scalar) Brownian motion W̄ . By appealing to a simple induction argument,
we construct a càglàd piecewise constant process Z̄ with Z̄0 = 0 such that, if

X̄t := pa(x) + Z̄t + W̄t, (3.37)

then

X̄t+ ∈ [pa(y2), pa(x2)] , (3.38)
∆Z̄t1{∆Z̄t>0} = (pa(y1)− pa(y2))1{X̄t=pa(y2)}, (3.39)

∆Z̄t1{∆Z̄t<0} = − (pa(x2)− pa(x1))1{X̄t=pa(x2)} (3.40)

P̂x-a.s. for all t ≥ 0. The function pa appearing here is the solution to the
ODE

1
2
σ2(x)p′′a(x)− sgn(x− a)b(x)p′a(x) = 0, (3.41)

that is given by (3.16). In what follows, we denote by qa the inverse function
of pa. For future reference, we note that the derivatives of qa satisfies the
relations
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q′a (pa(x)) =
1

p′a(x)
and q′′a (pa(x)) = − p′′a(x)

[p′a(x)]
3 . (3.42)

Now, we consider the continuous increasing process

At :=
∫ t

0

σ̃−2(X̄s) ds,

where
σ̃(x) := p′a

(
qa(x)

)
σ
(
qa(x)

)
, x ∈ R, (3.43)

and we observe that limt→∞At = ∞ due to (2.5) in Assumption 2.1 and
(3.38). Also, we denote by C the inverse of A defined by

Ct := inf {s ≥ 0 | As > t} ,

and we note that limt→∞ Ct =∞. Since C is continuous, if we define

F̂t := F̄Ct
, X̃t := X̄Ct

, Z̃t := Z̄Ct
and Mt := W̄Ct

, (3.44)

then

X̃, Z̃ are càglàd (F̂t)-adapted processes satisfying (3.38)–(3.40), (3.45)

and M is a continuous (F̂t)-local martingale. Furthermore, if we define

Ŵt :=
∫ t

0

σ̃−1(X̃s) dMs,

then, in view of (3.37) and (3.44),

dX̃t = dZ̃t + σ̃(X̃t) dŴt, X̃0 = pa(x).

To see that Ŵ is a standard (F̂t)-Brownian motion, we first observe that

〈M〉t = Ct =
∫ Ct

0

σ̃2(X̄s) dAs =
∫ t

0

σ̃2(X̃s) ds,

the last equality following due to the time change formula and the fact that
ACs

= s. It follows that

〈Ŵ 〉t =
∫ t

0

σ̃−2(X̃s) d〈M〉s = t.

By Lévy’s characterisation theorem, this calculation and the fact that Ŵ is a
continuous (F̂t)-local martingale imply that Ŵ is an (F̂t)-Brownian motion.

Finally, we define

X̂t := qa(X̃t) and Ẑt := 1{t>0}
∑

s∈ [0,t[

[
qa(X̃s +∆Z̃s)− qa(X̃s)

]
. (3.46)
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In view of (3.45), we can verify that these processes satisfy (3.32)–(3.34), while
an application of Itô’s formula yields

X̂t = x+
∫ t

0

1
2
σ̃2
(
pa(X̂s)

)
q′′a
(
pa(X̂s)

)
ds+ Ẑt

+
∫ t

0

σ̃
(
pa(X̂s)

)
q′a
(
pa(X̂s)

)
dŴs.

However, this SDE, (3.41), (3.42) and the identity

σ̃
(
pa(x)

)
= p′a(x)σ(x), x ∈ R,

which follows from the definition of σ̃ in (3.43), imply that (3.36) is satisfied,
and the construction is complete. ✷

Appendix: Proof of Lemma 3.1

Before addressing the proof of Lemma 3.1, we first establish some preliminary
results. For easy future reference, we list the formulae:

∂g

∂x
(x, λ, a) = − 2

σ2(x)
[
h(x)− b(x)|g(x, λ, a)| − λ

]
, (3.47)

∂g

∂λ
(x, λ, a) =

{
p′a(x)ma ([a, x]) > 0, if x > a,

−p′a(x)ma ([x, a]) < 0, if x < a,
(3.48)

which follow from the definition of g in (3.15). The development of our analysis
requires the following definitions:

λ∗(a) := inf
{
λ ∈ R | sup

x≥a
g(x, λ, a) =∞

}
, for a ∈ R, (3.49)

∗λ(a) := inf
{
λ ∈ R | inf

x≤a
g(x, λ, a) = −∞

}
, for a ∈ R, (3.50)

with the usual convention inf ∅ =∞.

Lemma 3.2. Fix a ∈ R and suppose that Assumption 2.1 is true. If λ∗(a) and
∗λ(a) are defined by (3.49) and (3.50), respectively, then λ∗(a), ∗λ(a) ∈ ]0,∞],
and

lim
x→∞

g(x, λ, a) =

{
−∞, if λ < λ∗(a),
∞, if λ ∈ [λ∗(a),∞] ∩ R,

(3.51)

lim
x→−∞

g(x, λ, a) =

{
∞, if λ < ∗λ(a),
−∞, if λ ∈ [∗λ(a),∞] ∩ R.

(3.52)
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Proof. We first prove that, given any λ, a ∈ R,

the equation g(x, λ, a) = 0 has at most two solutions x ∈ ]a,∞[,
(3.53)

and at most two solutions x ∈ ]−∞, a[.

Fix λ, a ∈ R, and consider the solvability of g(x, λ, a) = 0 for x ∈ ]a,∞[.
Assumption 2.1.(c) implies that there exist at most two points x > a such
that h(x) = λ. Also, (3.47) implies that

given any x > a such that g(x, λ, a) = 0,
(3.54)

∂g

∂x
(x, λ, a) = − 2

σ2(x)
[h(x)− λ] .

Combining these observations with the boundary condition g(a, λ, a) = 0, we
can conclude that the number of solutions of g(x, λ, a) = 0 inside ]a,∞[ is less
than or equal to the number of solutions of h(x) = λ inside ]a,∞[, which is
at most two. Similarly, we show that the number of solutions of g(x, λ, a) = 0
inside ]−∞, a[ is also less than or equal to two.

Now, we show that

lim
x→∞

g(x, λ, a), lim
x→−∞

g(x, λ, a) ∈ {−∞,∞}, for all a, λ ∈ R. (3.55)

With reference to (3.53), the conclusion limx→∞ g(x, λ, a) ∈ {−∞,∞} will
follow if we show that either of

lim inf
x→∞

g(x, λ, a) ∈ [0,∞[, lim sup
x→∞

g(x, λ, a) ∈ ]−∞, 0], (3.56)

leads to a contradiction. Assuming that the first relation in (3.56) is true, we
choose a sequence xn →∞ such that

lim
n→∞

g(xn, λ, a) = lim inf
x→∞

g(x, λ, a) and lim
n→∞

∂g

∂x
(xn, λ, a) = 0.

Assuming that the second relation in (3.56) holds, we choose a sequence (xn) in
a similar fashion. In either case, we define γ := supn≥1 |g(xn, λ, a)|. Observing
that γ ∈ R, and referring to (3.47) we calculate:

0 = lim
n→∞

−2
σ2(xn)

[h(xn)− b(xn)g(xn, λ, a)− λ]

≤ lim
n→∞

−2
σ2(xn)

[h(xn)− b(xn)γ − λ]

= −∞,

the inequality following because b ≥ 0, and the last equality following thanks
to Assumption 2.1.(d). This calculation provides the required contradiction.
Likewise, we can show that limx→−∞ g(x, λ, a) ∈ {−∞,∞}.
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We can now prove the claims made relative to λ∗(a). With regard to the
definition of g in (3.15), the positivity of h and a simple continuity argu-
ment, we can see that λ∗(a) ∈ ]0,∞]. Also, the fact that g(x, ·, a) is strictly
increasing, for all x > a, which follows from (3.48), implies that

sup
x≥a

g(x, λ, a)

{
<∞, for all λ < λ∗(a),
=∞, for all λ ∈ ]λ∗(a),∞] ∩ R.

To show that supx≥a g(x, λ∗(a), a) = ∞, and thus, in the light of (3.55),
complete the proof of (3.51), we argue by contradiction. To this end, we assume
that λ∗(a) <∞ and

lim
x→∞

g(x, λ∗(a), a) = −∞.

This limit and Assumption 2.1.(c) imply that there exists x̂(a) > a such that

g(x, λ∗(a), a) < 0 and h(x)− λ∗(a) > 0, for all x ≥ x̂(a). (3.57)

In view of the fact that limx→∞ g(x, λ, a) = ∞, for all λ > λ∗(a), (3.54)
and the second inequality in (3.57), we can appeal to a simple contradiction
argument to see that

g(x, λ, a) > 0, for all x ≥ x̂(a) and λ > λ∗(a).

However, this and the first inequality in (3.57) imply that

lim
λ↓λ∗(a)

g(x, λ, a) ≥ 0 > g(x, λ∗(a), a), for all x ≥ x̂(a),

contradicting the continuity of g.
Proving the statements relating to ∗λ(a) involves similar arguments. ✷

It is worth noting that the consideration of λ∗ and ∗λ is not a redundant
exercise. Indeed, we can easily construct examples in which λ∗(0), ∗λ(0) <∞.
With reference to the structure of the system of equations (3.18)–(3.21), which
involves the functions g(·, ·, ·)+K+ and g(·, ·, ·)−K−, we consider the following
definitions:

λ∗(a) := inf
{
λ > 0 | sup

x≥a
g(x, λ, a) ≥ K−

}
, (3.58)

∗λ(a) := inf
{
λ > 0 | inf

x≤a
g(x, λ, a) ≤ −K+

}
. (3.59)

Lemma 3.3. Given a ∈ R, λ∗(a) > λ∗(a) > 0, the equation g(x, λ, a) = K−

defines uniquely two C1-functions x1(·, a), x2(·, a) : ]λ∗(a), λ∗(a)[→ R such
that

a < x1(λ, a) < x2(λ, a) and a+ < x2(λ, a), for all λ ∈ ]λ∗(a), λ∗(a)[,

where a+ is as in Assumption 2.1.(e). Furthermore, the following statements
are true:
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x1(·, a) (resp., x2(·, a)) is strictly decreasing (resp., increasing), (3.60)
lim

λ↓λ∗(a)
x1(λ, a) = lim

λ↓λ∗(a)
x2(λ, a), lim

λ↑λ∗(a)
x2(λ, a) =∞, (3.61)

h(x)− b(x)K− − λ > 0, for all x > x2(λ, a). (3.62)

Proof. Fix any a ∈ R. In view of (3.15) and the positivity of h, we can see
that λ∗(a) > 0. Also, the definitions of λ∗(a), λ∗(a) and the continuity of g
imply trivially that λ∗(a) < λ∗(a).

Now, observe that a simple inspection of (3.47) reveals that

if x > a satisfies g(x, λ, a) = K−, then
(3.63)

∂g

∂x
(x, λ, a) = − 2

σ2(x)
[
h(x)− b(x)K− − λ

]
.

With regard to the definitions of λ∗(a) and λ∗(a), (3.51) in Lemma 3.2, the fact
that g(a, λ, a) = 0, Assumption 2.1.(e) and the continuity of g, this observation
implies the following:

(I) If λ < λ∗(a), then the equation g(x, λ, a) = K− has no solutions
x ∈ ]a,∞[.

(II) If λ ∈ ]λ∗(a), λ∗(a)[, then the equation g(x, λ, a) = K− has one solu-
tion x1(λ, a) > a such that

h(x1(λ, a))− b(x1(λ, a))K− − λ < 0, (3.64)

and one solution x2(λ, a) > x1(λ, a) such that

h(x2(λ, a))− b(x2(λ, a))K− − λ > 0. (3.65)

Moreover, (3.62) is true.
(III) If λ ≥ λ∗(a), then the equation g(x, λ, a) = K− has one solution

x1(λ, a) > a such that

h(x1(λ, a))− b(x1(λ, a))K− − λ < 0. (3.66)

Since λ∗(a) > 0, Assumption 2.1.(e) and (3.65) imply that the solution x2
in (II) above satisfies x2(λ, a) > a+. Also, (I) and (II) and the continuity of g
imply the first equality in (3.61), while (II), (III) and (3.60) imply the second
equality in (3.61). To prove (3.60), we differentiate g(xj(λ, a), λ, a) = K− with
respect to λ to calculate that

∂xj
∂λ

(λ, a) =
σ2(xj(λ, a)) ∂g∂λ (xj(λ, a), λ, a)

2 [h(xj(λ, a))− b(xj(λ, a))K− − λ]
,

for all λ ∈ ]λ∗(a), λ∗(a)[, j = 1, 2. However, this calculation, (3.48) and (3.64)
(resp., (3.65)) imply that the function x1(·, a) (resp., x2(·, a)) is strictly de-
creasing (resp., increasing), and the proof is complete. ✷

With regard to the problem’s data symmetry, we can trivially modify the
arguments of the preceding proof to establish the following result.
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Lemma 3.4. Given a ∈ R, ∗λ(a) > ∗λ(a) > 0, and the equation g(x, λ, a) =
−K+ defines uniquely two C1 functions y1(·, a), y2(·, a) : ]∗λ(a), ∗λ(a)[→ R

such that

y2(λ, a) < y1(λ, a) < a and y2(λ, a) < α−, for all λ ∈ ]∗λ(a), ∗λ(a)[

where α− is as in Assumption 2.1.(f). Furthermore,

y2(·, a) (resp., y1(·, a)) is strictly decreasing (resp., increasing), (3.67)
lim

λ↓∗λ(a)
y1(λ, a) = lim

λ↓∗λ(a)
y2(λ, a), lim

λ↑∗λ(a)
y2(λ, a) = −∞, (3.68)

h(x)− b(x)K+ − λ > 0, for all x < y2(λ, a). (3.69)

Proof of Lemma 3.1. With reference to (3.20)–(3.21), we define the functions
Q∗(·, a) : ]λ∗(a), λ∗(a)[→ R and ∗Q(·, a) : ]∗λ(a), ∗λ(a)[→ R by

Q∗(λ, a) =
∫ x2(λ,a)

x1(λ,a)

[
g(s, λ, a)−K−

]
ds− c−, (3.70)

∗Q(λ, a) =
∫ y1(λ,a)

y2(λ,a)

[
g(s, λ, a) +K+

]
ds+ c+, (3.71)

respectively, where x1, x2 are as in Lemma 3.3, and y1, y2 are as in Lemma 3.4.
Given these definitions, we will establish the claim regarding the solvability
of the system of equations (3.18)–(3.21) if we prove that

there exist ã ∈ R and λ̃ ∈ ]λ∗(ã), λ∗(ã)[∩ ]∗λ(ã), ∗λ(ã)[ (3.72)
such that Q∗(λ̃, ã) = ∗Q(λ̃, ã) = 0.

Differentiating (3.70) with respect to λ, and using the fact that both of
g(x1(λ, a), λ, a) and g(x2(λ, a), λ, a) are equal to the constantK−, we calculate

∂Q∗

∂λ
(λ, a) =

∫ x2(λ,a)

x1(λ,a)

∂g

∂λ
(s, λ, a) ds > 0, for λ ∈ ]λ∗(a), λ∗(a)[, (3.73)

the inequality following thanks to (3.48) and the fact that a < x1 < x2. Also,
with regard to (3.48), (3.51) and (3.60)–(3.61) in Lemma 3.3, we can see that

lim
λ↓λ∗(a)

Q∗(λ, a) = −c− < 0 and lim
λ↑λ∗(a)

Q∗(λ, a) =∞. (3.74)

Clearly, (3.73), (3.74) imply that there is a unique point Λ∗(a) ∈ ]λ∗(a), λ∗(a)[
such that Q∗(Λ∗(a), a) = 0. Similarly, we show that given any a ∈ R, there is
a unique point ∗Λ(a) ∈ ]∗λ(a), ∗λ(a)[ such that ∗Q(∗Λ(a), a) = 0.

With regard to these calculations, (3.72) will follow if we prove that

there exists ã ∈ R such that Λ∗(ã) = ∗Λ(ã). (3.75)
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To this end, we differentiate Q∗(Λ∗(a), a) = 0 with respect to a to obtain

d

da
Λ∗(a) = −

∂Q∗

∂a (Λ∗(a), a)
∂Q∗

∂λ (Λ∗(a), a)
. (3.76)

Furthermore, we calculate that

∂p′a
∂a

(x) = − sgn(x− a)
2b(a)
σ2(a)

p′a(x), for x �= a,

implying, in view of the definition of g in (3.15), that

∂g

∂a
(x, λ, a) =

2 [h(a)− λ]
σ2(a)

p′a(x), for x �= a.

Using this calculation and the fact that g(x, λ, a) = K− for x = x1(λ, a) or
x = x2(λ, a), we can see that

∂Q∗

∂a
(λ, a) =

2 [h(a)− λ]
σ2(a)

∫ x2(λ,a)

x1(λ,a)

p′a(s) ds.

This, combined with (3.73) and (3.76), implies that

d

da
Λ∗(a) > 0 for all a ∈ R such that h(a) < Λ∗(a). (3.77)

Using similar arguments, we can also show that

d

da
∗Λ(a) < 0, for all a ∈ R such that h(a) < ∗Λ(a). (3.78)

Now, if we assume that h(a) < Λ∗(a), for all a ∈ R, then (3.77) implies

h(a) < Λ∗(a) < Λ∗(0) for all a < 0,

which contradicts Assumption 2.1.(c). With respect to the usual convention
sup ∅ = −∞, it follows that A− := sup {a ∈ R | Λ∗(a) ≤ h(a)} > −∞. More-
over, since λ∗(a) < Λ∗(a), and h(a) < λ∗(a) for all a > 0 (see (3.15) and recall
the definition of λ∗(a) and Assumption 2.1.(c)), it follows that

A− := sup {a ∈ R | Λ∗(a) ≤ h(a)} ∈ ]−∞, 0[. (3.79)

Using a similar reasoning, we can also show that

A+ := inf {a ∈ R | ∗Λ(a) ≤ h(a)} ∈ ]0,∞[. (3.80)

With regard to (3.77)–(3.80), it follows that

the function Λ∗(·)− ∗Λ(·) is strictly increasing
(3.81)

on the interval ]A−, A+[.
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To proceed further, suppose that we have the inequality ∗Λ(A+) ≥ Λ∗(A+),
so that h(A+) ≥ ∗Λ(A+) ≥ Λ∗(A+). Then, (3.15) and Assumption 2.1.(c)
combined with the fact that A+ > 0 imply the inequality

g(x,Λ∗(A+), A+) < 0 for all x > A+,

which contradicts the definition of Λ∗. However, this proves that

Λ∗(A+)− ∗Λ(A+) > 0. (3.82)

Similarly, we can prove the inequality Λ∗(A−)−∗Λ(A−) < 0, which, combined
with (3.81) and (3.82), implies (3.75), and, therefore, (3.72). Moreover, these
arguments show that

h(ã) < λ̃. (3.83)

Now, with ã, λ̃ being as in (3.72), we define

w′(x) := g(x, λ̃, ã), for x ∈ [y2, x2] ≡ [y2(λ̃, ã), x2(λ̃, ã)]. (3.84)

With regard to our construction thus far, this, (3.6) and (3.8) define a unique,
modulo an additive constant, function w ∈ W 2,∞

loc (R) satisfying (3.6)–(3.8).
With reference to (3.51) and (3.52) in Lemma 3.2 and (3.72), we can see that

lim
x→−∞

g(x, λ̃, ã) =∞ and lim
x→∞

g(x, λ̃, ã) = −∞.

With regard to the definition of g in (3.15) and (3.83), we can combine these
asymptotics with (3.53), the fact that g(ã, λ̃, ã) = 0 and the fact that

g
(
y2(λ̃, ã), λ̃, ã

)
= −K− < 0 < K+ = g

(
x2(λ̃, ã), λ̃, ã

)
,

to conclude that w satisfies (3.9) as well.
To complete the proof, we still need to prove that the function w satisfies

the HJB equation (3.1). With regard to its construction, this will follow if we
show that

1
2
σ2(x)w′′(x)− b(x)w′(x) + h(x)− λ ≥ 0, for x > x2, (3.85)

1
2
σ2(x)w′′(x) + b(x)w′(x) + h(x)− λ ≥ 0, for x < y2, (3.86)

w(x+ z)− w(x)−K−z + c− ≥ 0, for z < 0, x ∈ R, (3.87)

w(x+ z)− w(x) +K+z + c+ ≥ 0, for z > 0, x ∈ R. (3.88)

In view of (3.84), inequalities (3.85) and (3.86) follow by a straightforward
calculation that shows that they are implied by the bounds (3.62) and (3.69),
respectively. Inequality (3.87) is equivalent to

−
∫ x

x+z

[
w′(s)−K−

]
ds+ c− ≥ 0, for z < 0, x ∈ R. (3.89)
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With regard to (3.9), the inequalities

w′(x)


< K−, for x < x1,

> K−, for x ∈ ]x1, x2[,
= K−, for x > x2,

and equation (3.70), it is straightforward to show that (3.89) is true. Finally,
the proof of (3.88) is similar. ✷
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It is a pleasure to start this paper by a short historical comment relevant
to our anniversary volume. The mathematical tools used in the note below are
common nowadays but in the early seventies they were the newest “hot” top-
ics of the seminar leaded by Albert Shiryaev and their development, to great
extent, was inspired by him. In this period, the seminar, due to his inex-
haustible energy and charisma, became one of the world centers in stochastic
calculus and control. We can only admire Shiryaev’s intuition to concentrate
efforts on the directions which were later recognized as the most important in
the theory of random processes and its applications, in particular, in math-
ematical finance. He was one of the first who understood the importance of
the predictable representation theorem due to J.M.C. Clark (1971), related,
as we know now, with the fundamental concept of market completeness. He
suggested me, as the subject of my diploma project, to find an easier proof
of this theorem and extend it to jump processes. It was the beginning of my
studies as a mathematician. Another area of his interests was the Girsanov
theorem and problems of absolute continuity. Shiryaev and his collaborators
(many of are authors of this book) published a number of papers on this
subject which constitutes an accomplished theory. Experience in these fields
which form the heart of modern stochastic finance was very useful in sub-
sequent studies in arbitrage theory. Optimal control was another preferable
topic of the seminar. I remember our excitement when Shiryaev brought from
France the first preprints by Bismut on backward stochastic equations and
stochastic maximum principle. He explained the importance of new concepts
and inspired members of the seminar to make research in this field (several
papers by Arkin, Saksonov and myself were published more when a decade
before the revival of the interest to BSDEs elsewhere).

Yuri Kabanov

1 Introduction

We consider here a consumption–investment decision problem for a single
“small” economic agent which can be viewed as a firm having production
and financial arms. The initial endowment is in both assets. The problem is
to maximize the total expected utility of the consumption rate over a finite
time interval [0, T ] investing into the production as well as in the financial
assets. It is assumed that the agent has an access to a frictionless security
market with d + 1 assets, one of which is riskless and the others are risky.
The market model is fairly standard: it is of the same type as in Karatzas et
al. [10], see also Cox and Huang [4] and the expository paper [9]. Allocating
the resources, the agent may invest funds into m production assets. This type
of assets has features different from that of financial assets in the following
two points. The investments into the manufacturing arm are irreversible. The
profit flow from the production at time t is R(t,Kt) where Kt = (K1

t , ...,K
m
t )
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is the capital accumulation. The latter subjects random depreciations and,
eventually, fluctuations due to external factors. The production assets cannot
be cashed back before the terminal date T when the production arm can be
sold at the price Q(KT ). A similar problem was considered by Hirayama and
Kijima in [8].

The agent in this model may be an owner of a small firm that produced
some production goods. The consumption in this case can be interpreted as
the dividend flow from the firm. The owner does not want to sell the business,
since the ownership for him is very important (this is rather typical, especially,
in such country as Japan). The role of the owner is to maximize the total utility
from dividend. To do so, the owner may want to invest the limited fund in the
production assets as much as possible to earn higher profits. But, since there
is a financial market, he may also allocate a part of his wealth in securities.
The problem for the owner is to decide portfolio strategy, dividend strategy,
and production strategy so as to maximize the objective.

As we mentioned already, without the production arm, our model is
reduced to the mainstream continuous-time portfolio optimization problem
started in the famous papers by Merton [15], [16] and developed further in
numerous publications (see, e.g., [4], [9], [10], [11], [17] and references therein).
Production models were considered in [14] but without financial investments
while the equilibrium approach to production economies was discussed in [19].
In real economies, firms invest their surplus funds in financial assets. It seems
of interest to study optimal strategies in this more general context.

In our presentation we try to avoid technicalities. That is why we work with
the easily treated hypotheses, preferring, e.g., the boundedness assumption on
coefficients to that of integrability. Our main message is that for the linear
model with concave utility and production functions the problem can be split
into two separate stages. First, the optimal production investment process
Io = (Iot ) can be found independently of the other counterparts of the optimal
control as the optimal solution of a certain auxiliary control problem. Finding
Io, we have to solve, as the second stage, a classical portfolio problem which,
as well-known, consists itself of two separate parts: a search for the optimal
consumption and a search for the optimal investment (that is why we can say
also that the whole problem has three stages).

This separation principle is the main feature of the considered model. It
is quite understandable because in the case of a complete market a suitably
integrable stochastic income (from the production, in our case) leads only to
a change of the initial endowment of the Merton problem. This fact (used
already in [8]) is now well-known, see, e.g., the paper [5] where the stochastic
income is bounded. Our hypothesis and the definition of admissible strategies
ensures the applicability of this principle.

We prove the needed existence of the optimal solution for the auxiliary
problem (using the Komlós theorem) and derive necessary and sufficient con-
ditions of optimality in the form of the Bismut maximum principle providing
a self-contained exposition of the latter for the considered case.
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We investigate in more details a particular case of the model where the pro-
duction block is not directly influenced by random perturbations. In this case
the first stage is a deterministic control problem, still interesting, which can be
analyzed on the basis of the Pontryagin maximum principle. We give examples
where the optimal production policy is of the bang–bang type. We provide
also an example showing that in a long-run the optimal production trajecto-
ries follow a “turnpike”. This means that there exists a function, independent
on the initial endowment and the terminal (liquidation) cost, with which the
optimal production trajectory coincides except its first part (depending on
the “starting point”) and its final part (depending on the “destination”, i.e.
of the terminal cost functional).

We use vector notations; in particular, xy stands for the scalar product
and diag x denotes the diagonal operator corresponding to the vector x.

2 Model Description

We shall work in the standard probabilistic framework assuming that the
stochastic basis (Ω,F ,F = (Ft), P ) is fixed and the filtration is spanned by a
d-dimensional Wiener process W . The time horizon T is finite.

First, we describe the production arm of the firm. It disposes m assets and
if K ∈ Rm

+ is a vector of values of these assets, the rate of the profit flow at
time t is R(t,K). The production asset i is depreciated with the rate λi which
is, in general, a non-negative bounded predictable process. Its value also may
fluctuate due to external factors. The capital accumulation evolves according
to the stochastic differential equations

dKi
t = (Iit − λitK

i
t)dt+Ki

tdL
i
t, Ki

0 = ki, (2.1)

where L is a martingale with

dLi
t =

d∑
j=1

σijt dW
j
t , i ≤ m,

for some bounded predictable matrix-valued process σ.
The investments are assumed to be irreversible, i.e. the capital accumula-

tion may decrease only by depreciation and by random fluctuations (if σ = 0,
the latter are not taken into account). The production strategy I is a pre-
dictable process with values in a compact convex subset Γ of Rm

+ . It follows
(by a standard arguments based on the Gronwall–Bellman lemma) that the
sup norm of the capital accumulation process are bounded by a square inte-
grable random variable.

The production assets cannot be sold before T , but they can be liquidated
at the price Q(KT ) at the terminal date. It is natural to assume that in the
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variable K the functions R and Q are concave and increasing (component-
wise).

Since the concave function is dominated by a linear one, the family of
random variables Q(KT ), K is a capital accumulation process, is dominated
by a random variable from L2. The same property holds for the family of
random variables

∫ T
0
R(s,Ks)ds when

R(s,K) ≤ f(s)(1 + lK),

where l ∈ Rm and f is a function integrable on the interval [0, 1]; we assume
that this condition is always fulfilled.

Thus, our set of assumptions ensures the following important property:∫ T

0

R(s,Ks)ds+Q(KT ) ≤ ζ ∈ L2. (2.2)

The agent also has an access to a frictionless financial market of the Black–
Scholes type with d+1 securities. One of them is non-risky (“bond” or “bank
account”) and has the price evolving as

dP 0t
P 0t

= rtdt, P 00 = p0 = 1. (2.3)

For simplicity, mainly, notational, we suppose from the very beginning that
r = 0, i.e. bond is the numéraire and all investments are measured in its units.

The prices of remaining assets, (risky) stocks, are modelled by the sto-
chastic equations

dP i
t

P i
t

= bitdt+ dM i
t , P i

0 = pi, (2.4)

where M is a square integrable martingale generating our basic filtration F
(of the Wiener process W ). We assume more specifically that

dM i
t =

d∑
j=1

Σij
t dW

j
t , i ≤ d.

The vector of instantaneous rate of returns b and the (non-degenerate) volatil-
ity matrix Σ and its inverse Σ−1 are assumed to be bounded predictable
processes.

The agent’s portfolio at date t contains nit units of the asset i. His holdings
in risky assets of the financial market πit = nitP

i
t , 1 ≤ i ≤ d, are predictable

processes such that ∫ T

0

|πt|2dt <∞.

The agent consumption intensity is a predictable non-negative process c = (ct)
with
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0

ctdt <∞.

The triplet of the investment processes and consumption u = (π, I, c) is
the control strategy. The optimization problem can be formulated as:

E

∫ T

0

e−βtU(ct)dt→ max, (2.5)

with the controlled dynamics of the total fund given by the following stochastic
differential equation where 1 := (1, ..., 1):

dXt = (R(t,Kt)− 1It − ct)dt+ πt(btdt+ dMt), X0 = x. (2.6)

To avoid technicalities, we suppose that the utility function U : R+ → R+
in (2.5) is a concave increasing function vanishing at zero with U ′(0) = ∞
and U ′(∞) = 0 (note that U is differentiable everywhere except at most a
countable number of points).

In addition to the constraints indicated above we impose a constraint on
the controls which prevents a “bankruptcy” before the date T . Namely, we
shall consider as admissible only the controls u such that

Vt := Xt + Ẽ

[∫ T

t

R(s,Ks)ds+Q(KT )|Ft

]
≥ 0, ∀ t ≤ T. (2.7)

The symbol Ẽ indicates that the expectation is taken with respect to the
(unique) martingale measure P̃ . The corresponding term can be interpreted
as the market evaluation of the manufacturing arm of the company. This
makes plausible the assumption that the agent may borrow funds until this
level.

The set of admissible strategies, denoted by A(y), depends on the initial
endowment y := (x, k).

We shall assume that A(y) �= ∅, i.e. at least one admissible strategy u does
exist. Obviously, this is always the case when R and Q are non-negative, since
u = (0, 0, 0) belongs to A(y).

Recall that P̃ = ZTP where

Zt = exp
{∫ t

0

θsdWs −
1
2

∫ t

0

|θs|2ds
}
,

with θs := −Σ−1s bs. Under P̃

W̃t :=Wt −
∫ t

0

θsds

is a Wiener process. Due to the boundedness of θ the random variable ZT is
square integrable. Thus, the random variable ζ in (2.2) belongs to L1(P̃ ). In
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particular, the conditional expectation in (2.7) is well-defined. Moreover, for
an admissible strategy, we have∫ T

0

R(s,Ks)ds+Q(KT ) ∈ L1(P̃ ).

Remark. The completeness of the financial market, i.e. the uniqueness of the
martingale measure, is essential for our further development: we rely on the
martingale representation theorem. The latter does not hold for more general
models of incomplete market (which may constitute one of possible directions
of future studies) where the natural extension of the admissibility condition
(2.7) involves the supremum of expectations over the set of all martingale
measures.

3 Existence and Structure of the Optimal Control

Take an arbitrary admissible control. Under the measure P̃ the dynamics of
the phase variable (2.6) can be rewritten as follows:

Xt = x+
∫ t

0

(R(s,Ks)− 1Is − cs)ds+
∫ t

0

πsdM̃s, (3.1)

where M̃ is a (square integrable) martingale with respect to P̃ . Notice that
X ≥ 0 while the ordinary integral above is less or equal to ζ ∈ L1(P̃ ), see
the assumption (2.2). Thus, with respect to P̃ , the stochastic integral, being a
local martingale dominating an integrable random variable, namely, −(x+ζ),
is a supermartingale.

Substituting the expression (3.1) into (2.7), we obtain the formula

Vt = x+ Ẽ

[∫ T

0

R(s,Ks)ds+Q(KT )|Ft

]
−
∫ t

0

(1Is + cs)ds+
∫ t

0

πsdM̃s.

The definition of admissibility implies, in particular, that ẼVT ≥ 0. Due to
the supermartingale property, the expectation of the stochastic integral with
respect to P̃ is negative and we infer the inequality

Ẽ

∫ T

0

csds ≤ x−H(I) (3.2)

where

H(I) := Ẽ

[∫ T

0

(1Is −R(s,Ks))ds−Q(KT )

]
. (3.3)

Let us denote by C(y) the set of pairs of production and investment
processes (I, c) for which (3.2) holds.

The next lemma is established in the same way as in the classical consump-
tion–investment model, see, e.g., the textbook [12].
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Lemma 3.1. For any given (I, c) ∈ C(y) there exists a portfolio process π
such that (π, I, c) ∈ A(y).

Proof. Let (I, c) ∈ C(y). Noticing that H(I) is finite, we consider the non-
negative process V with

Vt := Ẽ

[∫ T

0

(1Is + cs)ds|Ft

]
−
∫ t

0

(1Is + cs)ds

+x− Ẽ

[∫ T

0

(1Is + cs −R(s,Ks))ds−Q(KT )

]
.

It can be written in the form

Vt = x+ Ẽ

[∫ T

0

R(s,Ks)ds+Q(KT )|Ft

]
−
∫ t

0

(1Is + cs)ds+MV
t −MV

0 ,

where

MV
t := Ẽ

[∫ T

0

(1Is + cs −R(s,Ks))ds−Q(KT )|Ft

]
.

By the martingale representation theorem

MV
t −MV

0 =
∫ t

0

πsdM̃s

and we infer easily from (2.7) and (3.1) that the triplet (π, I, c) ∈ A(y). ✷

The conclusion following from this lemma is very important: solving the
original problem with a seemingly complicated “pointwise” constraint (2.7) is
reduced to the solving of a much simpler problem with a single “traditional”
inequality constraint given by a convex functional, with a consequent search
for the corresponding investment strategy. Moreover, it is easily seen that the
search for the optimal production and optimal consumption also can be done
in a separate consecutive way. Indeed, since the utility function is increasing,
for a given production strategy I with H(I) ≤ x (such a strategy exists as
there is an admissible strategy u), the corresponding maximal value of the
functional is attended on a consumption strategy for which (3.2) holds with
the equality. The maximal possible value will correspond to Io on which H(I)
attains minimum. The existence of the optimal Io as well as the solution of
the consumption problem satisfying (3.2) follows from the Komlós theorem -
we recall the arguments in Proposition 1 of the next section dealing with the
optimal production strategy. Summarizing, we arrive to the following

Theorem 3.1. In the solution (πo, Io, co) ∈ A(y) of the consumption-
investment problem with production possibilities the optimal investment Io

in manufacturing arm is the minimizer for the problem with the functional
(3.3) and the dynamics (2.1). The optimal consumption process co ≥ 0 is the
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solution of the maximization problem (2.5) under the constraint (3.2). The op-
timal portfolio strategy πo is the unique square-integrable predictable process
satisfying the identity

MV o

t =MV o

0 +
∫ t

0

πosdM̃s

with

MV o

t := Ẽ

[∫ T

0

(1Ios + cos −R(s,Ko
s ))ds−Q(Ko

T )|Ft

]
.

4 Optimal Production Investment

Let us consider separately the optimal control problem

H(I) := Ẽ

[∫ T

0

(1Is −R(s,Ks))ds−Q(KT )

]
→ min (4.1)

over the convex set I of all Γ -valued predictable processes I and where K
is given by (2.1)3. This problem belongs to the well-studied class of convex
problems for which one can use duality methods.

Proposition 1. The minimization problem (2.1), (4.1) has a solution.

Proof. Now standard (and fast) way to prove the existence in the convex
optimal control problems is the reference to the Komlós theorem. The latter
claims that for any L1-bounded sequence of random variables ξn there exist
a random variable ξ ∈ L1 and a subsequence ξnk

converging to ξ a.s. in the
Cesaro sense.

Let Ho = infI∈I H(I) and let H(In) → Ho for some In ∈ I. Due to the
boundedness of Γ we can apply the Komlós theorem to In considering these
processes as random variables on the space (Ω×[0, T ],P, dP̃ dt), where P is the
predictable σ-algebra. Renumbering, we may assume without loss of generality
that the original sequence converges dP̃dt-a.e. to some I in Cesaro sense. This
means simply that the controls Īn := n−1

∑n
j=1 I

j converge (a.e.) to Io which
is, clearly, an element of I. Let us denote by K̄n and Ko the corresponding
capital accumulation processes. The solution of (2.1) can be written explicitly
via the (stochastic) Cauchy formula. The latter implies that, outside a null-set,
the sequence K̄n

t (ω) converges to K
o
t (ω) whatever is t ∈ [0, T ]. Moreover, the

sequence supt K̄n
t (ω) is bounded (by a constant depending on ω). Recalling

the hypothesis R(s,K) ≤ f(s)(1+ lK), we deduce from here, using the Fatou
lemma for the integral and the continuity of R and Q in K, that

3Economically, this form suggests the minimization of losses, i.e. the manufac-
turing, presumably, is non-rentable; in more optimistic situation one could consider
the problem −H(I) → max, the maximization of profits.
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0

(1Ios−R(s,Ko
s ))ds−Q(Ko

T ) ≤ lim inf

[∫ T

0

(1Ios −R(s, K̄n
s ))ds−Q(K̄n

T )

]
.

Taking the P̃ -expectation with of the both side of this inequality and applying
again the Fatou lemma, this time with respect to P̃ (justified because the
random variable ζ in (2.2) belongs to L1(P̃ )) we obtain:

H(Io) ≤ lim infH(Īn) ≤ lim inf n−1
n∑

j=1

H(Ij) = Ho.

Thus, H(Io) = Ho, i.e. Io is the optimal control. ✷

We shall assume from now on that R(t,K) and Q(K) have derivatives in
the variable K. The particular structure of the problem (2.1), (4.1) (linear
dynamics and convex functional) implies that the necessary condition of op-
timality given the Bismut stochastic maximum principle, see [2], [3], is also a
sufficient one. For the considered case the arguments are easy and the proof
can be done in a few lines. For the reader’s convenience we give them instead
sending him to a general theory presented in [20].

Isolating the P̃ -martingale term and using the abbreviation µt := λt−σtθt,
we rewrite the dynamics of manufacturing capital in vector notations as

dKt = (It − diagKtµt)dt+ diagKt σtdW̃t, K0 = k, (4.2)

and introduce the Hamiltonian

H(t,K, I, p, h) := 〈p, I − diagK µt〉+ 〈h,diagK σt〉+R(t,K)− 〈1, I〉,

where p ∈ Rm while h and diagK σt are m × d-matrices interpreted as ele-
ments ofRmd. Exceptionally, we use here the notation 〈., .〉 for scalar products
following the traditional and easy to memorize form which was suggested by
Bismut. Note that the second term can be written as trh(diagK σt)∗, where
∗ denotes the transpose and tr the trace.

The maximum principle claims that the pair (Io,Ko) satisfying the equa-
tion

dKo
t = (Iot − diagKo

t µt)dt+ diagKo
t σtdW̃t, Ko

0 = k, (4.3)

is optimal for the problem (4.1), (4.2) if there exist a continuous pre-
dictable processes p with square integrable sup norm and a process h ∈
L2(Ω × [0, T ],P, dP̃ dt) solving the m-dimensional backward stochastic dif-
ferential equation (BSDE)

dpt = −∇H(t,Ko
t , I

o
t , pt, ht)dt+ htdW̃t, pT = ∇Q(Ko

T ), (4.4)

where ∇ is the gradient in the variable K, specifically,

dpt = (diagµt pt −∇R(t,Ko
t )− ĥt)dt+ htdW̃t, pT = ∇Q(Ko

T ), (4.5)
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where ĥit =
∑

j h
ij
t σ

ij
t and the following relation holds:

H(t,Ko
t , I

o
t , pt, ht) = max

I∈Γ
H(t,Ko

t , I, pt, ht) dP̃dt-a.e. (4.6)

For brevity we shall call any quadruplet of processes Io, Ko, p, and h sat-
isfying the above relations and the integrability assumption a Bismut quadru-
plet.

Knowing that the processes p and h satisfying (4.5) exist, there is almost
nothing to prove. Indeed, let I be an arbitrary Γ -valued predictable process.
Using (4.3) and (4.5) we get by the Ito formula that

d(ptKt) = (ptdiagµtKt −∇R(t,Ko
t )Kt − trh(diagK σt)∗)dt

+pt(It − diagKtµt)dt+ trh(diagK σt)∗dt+ dNt

= (ptIt −∇R(t,Ko
t )Kt)dt+ dNt

where N is a square integrable martingale with respect to P̃ .
Writing this in the integral form and observing that the expectation of

stochastic integral vanishes we arrive to the formula

Ẽ

∫ T

0

ptItdt = Ẽ∇Q(Ko
T )KT − p0k + Ẽ

∫ T

0

∇R(t,Ko
t )Ktdt.

This formula holds, in particular, for Io and Ko. Taking the difference of the
identities for the optimal and an arbitrary and using the concavity of R and
Q, we obtain easily that

Ẽ

∫ T

0

pt(Iot − It)dt ≤ Ẽ

∫ T

0

(R(t,Ko
t )−R(t,Kt))dt+ Ẽ(Q(Ko

T )−Q(KT )).

(4.7)
But the maximum principle (4.6) implies∫ T

0

1(Iot − It)dt ≤
∫ T

0

pt(Iot − It)dt P̃ -a.s. (4.8)

and we deduce from these two inequalities that H(Io) ≤ H(I).
Due to the simplicity of our problem we can see easily that the stochastic

maximum principle is the necessary condition: the optimal pair is the compo-
nent of a Bismut quadruplet. Indeed, starting from the optimal pair (Io,Ko)
we can define p and h satisfying (4.5). The optimality of (Io,Ko) implies
that in (4.7) and (4.8) we have equalities. But the fulfillment of (4.8) for any
I = (It) is equivalent to (4.6).

Summarizing, we have the following.

Proposition 2. A pair (Io,Ko) satisfying (4.3) is an optimal solution of the
problem (3.3), (4.2) if and only if it can be complimented to a Bismut quadru-
plet.
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In the case where σ = 0 and, therefore, h appears only in the diffusion
term, the linear backward equation is especially simple and can be “solved”
easily. Indeed, the m-dimensional random variable

ξ :=
∫ T

0

e−λs ∇R(s,Ko
s )ds+ e−λT ∇Q(Ko

T )

with

eλt := diag
{
e

∫ t

0
λ1
sds, ..., e

∫ t

0
λm
s ds
}

is a square integrable functional of the Wiener process. By the martingale
representation theorem

Ẽ(ξ|Ft) = Ẽξ +
∫ t

0

ϕsdM̃s

for some matrix-valued process ϕ ∈ L2(Ω × [0, T ],P, dP̃ dt) of an appropriate
dimension. It is easy to see that ht := eλt ϕt and

pt := eλt Ẽξ − eλt

∫ t

0

e−λs ∇R(s,Ko
s )ds+ eλt

∫ t

0

ϕsdM̃s

is the solution of the backward stochastic equation (4.5).
In the case d = 1 we can get an “explicit” solution of the BSDE for arbi-

trary σ by making at first the equivalent change of the probability measure,
removing the term ĥ from the drift (under this measure the process with
dW̃ ′t := dW̃t + σtdt Wiener). In general case we use just a reference to an
existence theorem for the solution of a linear BSDE. An appropriate result
can be found, e.g., in [6].

However, though attractive, the stochastic maximum principle is not very
helpful in getting the optimal solution. In the case when σ = 0 and the
coefficients are deterministic, it is “degenerated” to the ordinary Pontryagin
maximum principle (of a deterministic problem). The latter is a powerful tool
of the optimal control theory which allows to analyze the structure of the
optimal control. We do this by considering examples.

5 Special Cases

5.1 Deterministic Dynamics: Examples.

The separation result has an important consequence for the case of the model
where the values of the production assets may only depreciate (i.e. σ = 0) and
the parameters λi are deterministic. The problem becomes deterministic:

H(K) :=
∫ T

0

(1It −R(t,Kt))dt−Q(KT )→ min, (5.1)
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K̇i
t = Iit − λitK

i
t , Ki

0 = ki, (5.2)

where I = (It) is a Borel function taking values in Γ ⊂ Rm
+ .

The necessary and sufficient condition of optimality is the classical Pon-
triagin maximum principle. More specifically, a pair (Io,Ko) is optimal for
the problem (5.1), (5.2) if and only if it is a part of the “Pontryagin triplet”
(Io,Ko, p) satisfying the following relations:

K̇o
t = Iot − diag λtKo

t , Ko
0 = k, (5.3)

ṗt = ptdiag λt −∇R(t,Ko
t ), pT = ∇Q(Ko

T ), (5.4)

(pt − 1)Iot = max
I∈Γ

(pt − 1)It a.e. (5.5)

Due to the number of parameters involved, the complete analysis of this sys-
tem seems to be rather complicated. We restrict ourselves to the scalar prob-
lem with constant coefficients and Γ = [0, a] and provide several examples
where the solution can be obtained explicitly. For m = 1 we have:

K̇o
t = Iot − λKo

t , Ko
0 = k, (5.6)

ṗt = λpt −R′(Ko
t ), pT = Q′(Ko

T ), (5.7)

(pt − 1)Iot = max
I∈Γ

(pt − 1)It a.e. (5.8)

Case study: scalar homogeneous model with Q = const (such a situation
may arise in practice) and R(K) = (κ/γ)Kγ , κ > 0, γ ∈]0, 1[.

Due to the continuity, near the right extremity T of the time interval the
dual variable p is close to the value pT = 0; more precisely, it decreases to zero
because the equation (5.7) implies that the derivative ṗT = −κ(Ko

T )
γ−1 < 0.

Now put T1 := sup{t ≥ 0 : pt ≥ 1} (with the convention that T1 = 0 if
the set is empty). The maximum relation ensures that Iot = 0 on ]T1, T ]. If
T1 = 0, the phase trajectory is the decreasing exponential Ko

t = ke−λt while
the trajectory of the dual variable is

pt = eλt
∫ T

t

e−λsR′(Ko
s )ds = kγ−1

κ

λγ
eλt(e−λγt − e−λγT ).

To be compatible with the maximum principle the right-hand side should be
less or equal to unity on the whole interval [0, T ] and this requirement is met
when the initial endowment k ≥ kc where the threshold is given by

kc = sup
t≤T

[
κ

λγ
eλt(e−λγt − e−λγT )

] 1
1−γ

.

Thus, for large k the control Iot = 0. We shall have, for large initial endow-
ments in production assets, the similar structure of the optimal control also
for the model where Q′(K)→ 0 as K →∞.
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Qualitatively, this result means that in the case of small marginal liquida-
tion value the investor having high level of initial manufacturing facilities is
not motivated in their further development.

The situation seems to be rather different for k < kc. Then necessarily Io

is not equal to zero on a certain non-null subset of [0, T1]. Let us show that
for some range of parameters, Iot = aI[0,T1].

So, suppose that on [0, T1] the control Iot = a and, therefore, on this
interval the state dynamics is given by the formula

Ko
t = ke−λt +

a

λ
(1− e−λt) =

a

λ
+
(
k − a

λ

)
e−λt. (5.9)

First, we consider the simplest particular case where k = a/λ. Then Ko
t =

k on [0, T1[ (the maximal level of investments keeps the production capacity
constant) and, according to (5.7), ṗT1 = λ − κkγ−1. For t ∈ [T1, T ] we have
the formula Ko

t = keλT1e−λt and, hence, on this interval

pt = kγ−1eλ(γ−1)T1
κ

λγ
eλt(e−λγt − e−λγT ).

Note that the point T1 ∈]0, T [ can be defined from the equation pT1 = 1 which
solution does exist for k < kc. On the interval [0, T1] the function p solving
the differential equation

ṗt = λpt − κkγ−1, pT1 = 1,

and hence given by the formula

pt =
κ

λ
kγ−1 +

(
1− κ

λ
kγ−1

)
e−λ(T1−t)

should be larger or equal to unity. If also k < (κ/λ)
1

1−γ , the value of deriv-
ative ṗT1 < 0. Taking into account that the trajectory cannot cross the unit
level upwards with negative value of derivative (always equal to λ − κkγ−1),
we conclude that the control aI[0,T1] is optimal for such values of the initial
endowment k.

If k > a/λ, the trajectory supposed to be optimal decreases on [0, T1] from
its initial value k. For k < (λ/κ)

1
1−γ , we have ṗT1 < 0, i.e. the dual variable

cross the unit level at T1 and cannot do this before.
If k < a/λ, the candidate for the optimal trajectory on [0, T1] increases

from k to a certain value which is less than a/λ. At least, in the case of the
small ratio a/λ (i.e., when λ < κ(a/λ)γ−1), we can conclude again that pt > 1
on [0, T1[ and, therefore, Iot = aI[0,T1] is the optimal control.

In short, for initial endowments k less than a certain critical value kc (in
some case, with appropriate restrictions on other parameters), the optimal
strategy is of the bang-bang form and requires at the beginning of the planning
interval intensive investments in the production assets.

However, in the range ]kc, kc[ the structure of the optimal control may be
more involved and even not of the bang-bang type.
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5.2 Deterministic Dynamics: Turnpike Behavior

To investigate the general structure of the optimal control in the problem (5.1),
(5.2), we exclude the control variable from the functional using the expressions
Iit = K̇i

t + λit given by (5.2). After simple transformations we arrive to the
problem with the functional depending only of the phase variable:∫ T

0

Φ(t,Kt)dt+ S(KT )→ min, (5.10)

K̇i
t = Iit − λitK

i
t , Ki

0 = ki, (5.11)

where the functions Φ(t,K) := λtK −R(t,K) and S(K) := 1K −Q(K)− 1k
are convex in K.

It is well-known that, under minor assumptions, the optimal trajectory in
models of such type exhibits, on a large time interval, a turnpike behavior: it
coincides, except initial and final periods, with the function K̂ where K̂t is the
minimizer of the function Φ(t, .), i.e. the root of the equation ∇Φ(t,K) = 0.

To be specific, we consider again the one-dimensional time-homogeneous
model assuming also that k < a/λ, Φ′(a/λ) > 0, Φ′(0) = −∞. Then any
trajectory K evolves in the interval [0, a/λ]; it increases if I = a and decreases
if I = 0.

Now the dual variable ψ = p− 1 solves the equation

ψ̇t = λψt + Φ′(Ko
t ), ψT = −S′(Ko

T ). (5.12)

and the maximum principle says that Iot = 0 if ψt < 0, and Iot = a if ψt > 0.
It is convenient to introduce an auxiliary function qt := e−λtψt having the
same sign as ψt; its derivative q̇t = e−λtΦ′(Ko

t ).
Let t1 := inf{t : qt = 0}, t2 := sup{t : qt = 0}. Notice that if [t1, t2] is

not a singleton, then on this interval q = 0. Indeed, suppose that there is a
subinterval ]t′, t′′[ where q < 0 but qt′ = qt′′ = 0. Since on this subinterval
the control Io = 0, the trajectory Ko is decreasing, the trajectory Φ′(Ko)
is also decreasing and so is −q̇. This is impossible and, therefore, q cannot
deviate from zero downwards. Similarly, if q > 0 on ]t′, t′′[ and q vanishes at
the extremities, then on this interval Io = a, the trajectory Ko increases as
well as Φ′(Ko). Thus,

ψ̇t′ = Φ′(Ko
t′) < Φ′(Ko

t′′) = ψ̇t′′

in contradiction with the inequalities ψ̇t′ ≥ 0, ψ̇t′′ ≤ 0.
The equation (5.12) necessitates that Φ′(Ko) = 0 on [t1, t2], i.e. Ko = K̂

where K̂ is the minimizer of Φ; the optimal control is Io = K̂λ. The left
extremity coincides with zero if and only if k = K̂. If t1 > 0, there are two
possible cases: 1) on [0, t1[ the dual variable ψ is strictly negative, Io = 0
and the trajectory Ko decreases from k to the value K̂; 2) on [0, t1[ the dual
variable ψ is strictly positive, Io = a and the trajectory Ko increases from
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k to the value K̂. In both cases the interval [0, t1] does not depend on the
terminal part of the functional and t1 < T for sufficiently large T .

The case t2 = T is exceptional. This means that 0 = ψT = −S′(K̂), i.e., K̂
minimizes also the function S. Otherwise, the interval [t2, T ] is not a singleton.
The optimal control on this interval depends on the sign of S′(K̂). Suppose,
e.g., that S′(K̂) > 0. Let Io = 0. Then ψ is strictly negative, the trajectoryKo

decreases from the value K̂, Φ′(Ko) < 0 and, therefore, ψ̇ = λψ+Φ′(Ko) < 0,
i.e., the trajectory ψ decreases from zero. Since −S′ is a decreasing function,
the transversality condition ψT = −S′(Ko

T ) will be met for a certain (uniquely
defined) value of t2 (of course, the time horizon should be large enough).

The above arguments show that, for a long time interval, the optimal in-
vestments in the manufacturing consist in keeping the production on a specific
“turnpike” level which depends only of the technology used and not of the
initial capital and the liquidation value. This level should be attained in the
fastest way at the beginning of the planning period. At the end of the period,
the investment policy is to leave the turnpike quickly to profit from the selling
of the manufacturing arm.

5.3 Remark on the HJB equation

The case where the fluctuations of the price of production assets are assumed
(i.e. σ is not zero) can be studied by methods of dynamic programming.
The problem of interest can be imbedded in the family of stochastic control
problems parameterized by initial date t and the initial endowment x (we
prefer x to k here for notational convenience). The HJB equation is as follows:

Vt + inf
I∈[0,a]

[
1
2
σ2x2Vxx + (I − µx)Vx + (I −R(x))

]
= 0

with the terminal condition V (T, x) = −Q(x). The number Ho we are inter-
ested in is V (0, k). The above equation can be rewritten in the form

Vt +
1
2
σ2x2Vxx − µxVx + aI{Vx<−1} −R(x) = 0.

One can prove that the Bellman function V of the problem is a viscosity
solutions of this equation which is unique in an appropriate class but a detailed
discussion is beyond the scope of the present paper.

5.4 Piecewise-linear utility function

As we just see, in some cases the production problem may admit an explicit
solution otherwise the value Ho can be find numerically. An attractive feature
of the considered setting is that the investing problem is well-studied and also
admits cases with explicit solutions. The most famous one is the problem with
U(c) = ρ/cρ found by Merton.
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We discuss here an example where the utility function is linear up to a
saturation point, i.e.

U(c) = cI{c≤C} + CI{c>C}.

Thus, the optimal control problem is read now:

J(c) := E

∫ T

0

e−βtU(ct)dt→ max

over all non-negative predictable processes c such that

E

∫ T

0

Ztctdt ≤ x−H(Io).

Clearly, in our search for the optimum we can consider the subset of controls
for which the constraint is satisfied with an equality.

The solution can be found easily using the Lagrange multiplier method
removing the above constraint. Arguing formally, we write the unconstrained
problem

E

∫ T

0

[e−βtU(ct)− θZtct]dt→ max

where the multiplier θ ≥ 0. Its solution is any non-negative predictable process
c = (ct) maximizing pointwise the integrand. Of course, the solution depends
of the unknown Lagrange multiplier θ. Let

c∗t (θ) := CI{θZt>e−βt}.

Define on R+ the function

f(θ) := E

∫ T

0

Ztc
∗
t (θ)dt = C

∫ T

0

P̃ (eβtZt < 1/θ)dt

which is continuous and decreasing from f(0) = CT to f(∞) = 0.
Let us show that the optimal consumption process is co := c∗(θ∗) where θ∗

is defined as the solution of the equation f(θ∗) = x−H(Io) and this solution
we assume existing (otherwise the problem is trivial with the optimal solution
cot = C). Indeed, let c = (ct) be an arbitrary consumption process satisfying
the constraint with the equality. Then

J(co)− J(c) = E

∫ T

0

[e−βtU(co)− θ∗Ztc
o
t − e−βtU(ct) + θ∗Ztct]dt

and we get the result because the right-hand side is non-negative due to
the choice of co as the maximizer of the unconstrained problem with the
multiplier θ∗.
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1 Introduction.

The classical Dalang–Morton–Willinger theorem [2] says that in the standard
discrete time finite-horizon model of a frictionless financial market there are
no arbitrage opportunities if and only if there exists an equivalent martingale
measure with bounded density. In the probabilistic language this theorem can
be formulated as follows.

We are given an Rd+1-valued adapted process

S̄ = (S0t , St) = (S0t , S
1
t , ..., S

d
t )

where t = 0, 1, ..., T .
With any Rd+1-valued adapted process ϕ̄ = (ϕ0t , ϕt) with ϕ̄0 = 0 we

associate the scalar process Vt = ϕ̄tS̄t = ϕ0tS
0
t + ϕtSt. In financial modelling

S̄ is the price process, ϕ̄ is the strategy, representing holdings in various assets
(in nominal units), and V is the corresponding value process of the portfolio.

For a specified class K of strategies we define the set of random variables
RK

T := {ϕ̄T S̄T : ϕ̄ ∈ K}. We shall say that the NA(K)-property holds if
RK

T ∩ L0+ = {0}.
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In the standard model S0t = 1 identically, i.e. the corresponding asset (usu-
ally called bank account) is the numéraire, and K is the class of self-financing
strategies described as follows: the process ϕ̄ is predictable (in symbols: ϕ̄ ∈ P)
and

∆ϕ0t + St−1∆ϕt = 0, t = 1, ..., T, (1)

with the usual definition ∆Xt = Xt−Xt−1. The above relation can be written
also as S̄t−1∆ϕ̄t = 0. Thus, by the product formula, for the strategies from
this class we have

∆(S̄tϕ̄t) = S̄t−1∆ϕ̄t + ϕ̄t∆S̄t = ϕt∆St

and, therefore, RK
T = RT := {ϕ ·ST : ϕ ∈ P}, i.e. the set of the resulting ran-

dom variables is just the set of discrete time integrals ϕ · ST :=
∑T

t=1 ϕt∆St
where ϕ is an arbitrary d-dimensional predictable process without any con-
straints. With this AT := RT −L0+ is the set of hedgeable claims. We consider
also the subset RT (t) of RT corresponding to strategies which are zero except
the date t, that is RT (t) = {ϕt∆St : ϕt ∈ Ft−1}. The notation AT (t) is clear.

The condition RT ∩ L0+ = 0 (obviously equivalent to AT ∩ L0+ = 0) is
referred to as the NA-property.

The introduced concepts serve to model the situation when an agent revise
the portfolio between the trading days t − 1 and t using the information
available (ϕt is Ft−1-measurable) without retracting or adding funds (the
relation (1) is a “fund conservation law”); in this case, RK

T is the set of all
possible “results” achieved from zero initial endowment and absence of non-
risky profits corresponds to the absence of arbitrage opportunities on the
market.

The extended formulation of the Dalang–Morton–Willinger theorem is a
long list of equivalent conditions but we retain only four here:

(a) AT ∩ L0+ = {0} (NA);
(b) AT ∩ L0+ = {0} and AT = ĀT (closure in probability);
(c) AT (t) ∩ L0+ = {0} for all t ≤ T (NA for all one-step models);
(d) there is a probability measure P̃ ∼ P with dP̃ /dP ∈ L∞ such that S

is a P̃ -martingale.
The DMW theorem is widely recognized as one of the most important

results in the arbitrage pricing theory and we have no need to discuss its
various aspects. It is a (deep!) generalization of the pioneering Harrison–Pliska
theorem which has exactly the same formulation but under hypothesis that
Ω is finite. Of course, in the latter case the property (b) coincides with (a)
(AT is polyhedral cone) and (d) sounds simpler as all random variables are
bounded.

These result are the starting points of intensive mathematical studies and
their numerous generalizations and ramifications are known, see, e.g. the sur-
vey [6] with further references therein and more recent papers [3], [4], [5], [7],
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[9], [10]. In the present note we make an attempt to explore relationships be-
tween possible versions of the above conditions in the setting of random fields.
To our knowledge, the syntheses of both theories is not done yet.

A specific feature of random fields is that there are several rather natural
definitions of the “past” and consequently, several definitions of the martingale
property. We shall investigate analogs of NA criteria in the standard frame-
work of Cairoli–Walsh, using an appropriate techniques which sometimes is
quite different from that of one-parameter processes.

First, recall the basic definitions.
Let (Ω,F , (Ft)t∈T, P ) be a stochastic basis where T stands for the rectan-

gle [0,T] := {0, 1, ..., T1} × {0, 1, ..., T2} of the integer lattice Z2; the notation
]0,T] := {1, ..., T1} × {1, ..., T2} also will be used. We shall suppose that the
σ-algebras of the axes are trivial: Fi0 = F0k = {∅, Ω}.

Put i := (1, 0), j := (0, 1), and 1 := i+ j = (1, 1).
Let X = (Xt)t∈T be a random field. We shall use the following notations:

∆1Xt := Xt−Xt−i, ∆2Xt := Xt−Xt−j, ∆Xt = Xt−Xt−i−Xt−j+Xt−1.

Also X−i := (Xt−i) and, in the same spirit, X−j, X−1.
Clearly, knowing the field X on the axes as well as the elementary ”areas”

∆Xt, one can recover X on the whole rectangle T.
Define the σ-algebras F̂t := Ft+i ∨ Ft+j and also F̃1t := Ft1,T2 ∨ Ft+i,

F̃2t := Ft+j ∨ FT1,t2 (the parentheses in subscripts are omitted).

Definition 1. An integrable adapted field X constant on the coordinate axes
is called:

1) strong martingale if E(∆Xt|F̂t−1) = 0;
2) weak martingale if E(∆Xt|Ft−1) = 0;
31) 1-martingale if E(∆Xt|Ft−i) = 0;
32) 2-martingale if E(∆Xt|Ft−j) = 0.

Definition 2. The filtration (Ft) satisfies the Cairoli–Walsh condition (F4
of [1]) if for any F-measurable integrable random variable Z and for any
t = (t1, t2) ∈ T

E(E(Z|Ft1,T2)|FT1,t2) = E(E(Z|FT1,t2)|Ft1,T2) = E(Z|Ft1,t2).

Definition 3. We say that a random field H is:
1) weakly predictable if Ht+1 ∈ F̂t, t+ 1 ∈ T;
2) predictable if Ht+1 ∈ Ft, t+ 1 ∈ T.

Let X and Y be two random fields constant on the coordinate axes. We
define two lattice integrals as

X · Yt :=
∑

s∈]0,t]
Xs∆Ys, X ∗ Yt :=

∑
s∈]0,t]

[∆2Xs−i∆
1Ys +∆1Xs−j∆

2Ys]
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with the convention that they are equal to zero when t belongs to the axes.
It is easy to see that ∆(X · Y )t = Xt∆Yt and the following product formula
holds:

XtYt = X−1 · Yt +X ∗ Yt + Y ·Xt. (2)

We fix an Rd-valued adapted random field S which components on the
coordinate axes are equal to the unit and put S̄ := (1, S), i.e. we add to
S one more component identically equal to the unit everywhere. With any
Rd+1-valued adapted random field ϕ̄ = (ϕ0, ϕ) we associate a scalar field

Vt = ϕ̄tS̄t = ϕ0t + ϕtSt.

By analogy with the one-parameter case we shall call strategy the field ϕ̄
vanishing on the axes and V its value field.

For a class K of strategies define the set of random variables

RK
T := {ϕ̄TS̄T : ϕ̄ ∈ K}.

We say that the NA(K)-property holds if RK
T ∩ L0+ = {0}, or, equivalently,

AK
T ∩ L0+ = {0} with AK

T = RK
T − L0+.

2 Strong martingale, weakly predictable strategies

We say that a weakly predictable strategy ϕ̄ satisfies the strong SF-property
if

S̄t−1∆ϕ̄t +∆2S̄t−i∆
1ϕ̄t +∆1S̄t−j∆

2ϕ̄t = 0 ∀ t. (1)

This relation plays the role of (1): in this case from the product formula (2)
we have that Vt = ϕ · St for all t ∈ T.

In this section we fix as K the class of weakly predictable strategies satis-
fying the strong SF-property abbreviated as SSF .

It is easily seen that if ϕ is a weakly predictable d-dimensional field, then
it is the component of a certain strategy ϕ̄ = (ϕ0, ϕ) from SSF . Indeed,
suppose that ϕ̄ is already known outside of the rectangle [t,T]. We use the
self-financing condition (1) to define ϕ0t ∈ F̂t−1 and get that

ϕ0t = ϕ0t−i + ϕ0t−j − ϕ0t−1 − St−1∆ϕt −∆2St−i∆
1ϕt −∆1St−j∆

2ϕt.

Let us consider the point t+ i. Since ϕ̄ is already defined at the “preceding”
points t, t+ i−j, t+ i−1 and ϕt+i is known, the relation (1) corresponding to
the point t+ i serves as an equation to define the remaining component ϕ0t+i.
These arguments can be repeated also for t+2i, t+3i, and so on, allowing us
to define the SSF-strategy ϕ̄ outside of the rectangle [t+ j,T]. By symmetry,
we have the same recurrent structure along the y-axis. As a result, we obtain
the weakly predictable strategy ϕ̄ satisfying the strong SF-property on the
whole rectangle [0,T].

Since the d-dimensional weakly predictable field ϕ can be chosen arbitrar-
ily, we have the following
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Proposition 1. Assume that the NA(SSF )-property holds. Let α ∈ F̂t−1

and α∆St ≥ 0. Then α∆St = 0.

Remark 1. Note that this does not require any additional assumption on
the filtration and the probability space. In particularly, we do not use the
Cairoli–Walsh condition.

The next result is an analog of the Harrison–Pliska theorem and its proof
is exactly the same as the latter.

Proposition 2. Let Ω be finite. Then the following conditions are equivalent:
(a) the NA(SSF )-property holds;
(b) there exists a probability measure P̃ ∼ P such that S is a strong mar-

tingale with respect to P̃ .

Proposition 1 asserts that the NA(SSF )-property implies the NA(SSF )-
property for the increments (i.e., for all “one-step models”). Surprisingly, the
inverse implication fails to be true. We present an example where the NA
property does not hold though there is no-arbitrage for the increments, i.e.
the situation is similar to the observed already in models with restricted in-
formation, [8].
Example. It is very simple: the field S is one-dimensional, T1 = T2 = 2, and
the probability space consists only of five points. The filtration is natural. The
values of the field are given by the following table:

S11 S12 S21 S22
ω1 5/ 6 1/ 2 5/ 3 4/3
ω2 5/ 6 2/ 3 7/ 6 1
ω3 5/ 6 4/ 3 1/ 2 1
ω4 7/ 6 1 7/ 6 1
ω5 7/ 6 4/ 3 7/ 6 4/ 3

Recall that S equals 1 on the axes. Note that the values of S222 are chosen
to get the identity ∆S222 = 0, that is S222 = S212 + S221 − S211.

Let us show that the constant strategy ϕ̄ = (−1, 1) (obviously, weakly
predictable and strongly SF) is an arbitrage opportunity in our sense.

We have V22 = ϕ̄22S̄22 = ϕ22S22 − 1 and, hence,

V22(ω1) = V22(ω5) =
1
3
, V22(ω2) = V22(ω3) = V22(ω4) = 0.

It remains to verify that for each point t = (1, 2), t = (2, 1), and t = (2, 2)
the relation α∆St ≥ 0 with α ∈ F̂t−1 may hold only if α∆St = 0.

Note that F̂00 = F00, F̂10 = F11, F̂01 = F11,
4S11 = S11 − S00, 4S21 = S21 − S11, 4S12 = S12 − S11.
We want to prove that for α ∈ F00, β ∈ F11, γ ∈ F11 the inequalities



338 Yu. Kabanov et al.

α(S11 − S00) ≥ 0, β(S21 − S11) ≥ 0, γ(S12 − S11) ≥ 0,

may hold only as the equalities

α(S11 − S00) = 0, β(S21 − S11) = 0, γ(S12 − S11) = 0.

But this is obvious: on each atom the increments take values of different
signs.

The next proposition is a technical one. It deals with the case of SSF -
strategies measurable with respect to a wider σ-algebra.

Proposition 3. Let K be the class of d-dimensional fields ϕ = (ϕt) such that
ϕt ∈ F̃1t−1. Then the following conditions are equivalent:

(i) AK
T ∩ L0+ = {0};

(ii) AK
T ∩ L0+ = {0}, AK

T = ĀK
T ;

(iii) The relation α∆St ≥ 0 for t ∈ T and α ∈ F̃1t−1 holds only if α∆St = 0;
(iv) There exists a probability measure P̃ ∼ P with dP̃ /dP ∈ L∞ such that

∆St ∈ L1(P̃ ) and Ẽ(∆St|F̃1t−1) = 0 for all t ∈ T (i.e. S is a strong
martingale with respect to the filtration (F̃1t ) and P̃ ).

This result is easily reduced to the DMW-theorem. To see this we define
the bijection L of ]0,T] onto the set {1, 2, ..., T1T2} by the formula

L : t �→ (t1 − 1)T2 + t2.

The one-parametric process Wn :=
∑

k≤n ξk where ξk = ∆SL−1k is adapted
with respect to the filtration formed by the σ-algebras Fn := F̃1L−1n. The
conditions of the above proposition are those of the DMW-theorem for W .

3 Weak martingales, predictable strategies

We say that a predictable strategy ϕ̄ satisfies the weak SF-property if

S̄t−1∆ϕ̄t = 0 ∀ t. (1)

In this case the value field is given by the formula

Vt = ϕ̄ · S̄t + ϕ̄ ∗ S̄t.

For the no-arbitrage property in this case we shall use the notation NA(WSF).
The latter implies the no-arbitrage property for he increments. Namely, we
have

Proposition 1. Assume that the NA(WSF)-property holds. Let α ∈ Ft−1 be
such that α∆St ≥ 0. Then α∆St = 0.
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Proof. Suppose that the claim fails and there is α ∈ Ft−1 such that the
probability P (α∆St > 0) is strictly positive. We come to a contradiction by
constructing a predictable strategy ϕ̄ satisfying (1) and such that the end
value VT = ϕ̄TS̄T = α∆St. The ϕ-component of ϕ̄ will be zero except the
point t where it coincides with −α. To this aim, we put ϕ̄ equal to zero outside
of [t,T]. We use the self-financing condition (1) to define ϕ0t and get that

ϕ0t = αSt−1 ∈ Ft−1.

Let us consider the point t + i. Since that ϕ̄ is already defined at the points
t , t+ i− j , t+ i− 1 and we have ϕt+i = 0, the relation (1) corresponding
to the point t+ i takes the form:

ϕ0t+i − ϕ0t + St−j∆ϕt+i = 0

which suggests us to define

ϕ0t+i = −α(St−j − St−1) = −α∆1St−j ∈ Ft−j.

Similar observations for the point t+ j lead us to define

ϕ0t+j = −α(St−i − St−1) = −α∆2St−i ∈ Ft−i.

Next we consider the condition (1) at the point t+ 1. We get

∆ϕ0t+1 + St∆ϕt+1 = 0,

or
ϕ0t+1 − ϕ0t+j − ϕ0t+1 + ϕ0t + Stϕt = 0,

With the already defined values of the strategy ϕ, we come to the following
expression for ϕ0t+1:

ϕ0t+1 = α∆St ∈ Ft.

Now with such a strategy ϕ we get at the point t+1 the following expression
for the value field

Vt+1 = ϕ̄t+1S̄t+1 = α∆St.

It is left to finalize our construction by setting

ϕ0t+mi = ϕ0t+i, m = 2, . . . , T1 − t1,

ϕ0t+mj = ϕ0t+j, m = 2, . . . , T2 − t2,

and
ϕ0t+mi+lj = ϕ0t+1, m = 2, . . . , T1 − t1, l = 2, . . . , T2 − t2.

In such a way we obtain a predictable strategy satisfying WSF-property such
that VT = ϕ̄TS̄T = α∆St. Since α∆St �= 0 we obtain an arbitrage opportu-
nity, that is the contradiction. ��
Remark 2. The same example as in the previous section demonstrates that
the inverse implication is not true.

Introduce the notations: t1T := (T1, t2), t2T := (t1, T2), and Z := dP̃ /dP .
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Proposition 2. (a) Suppose that there is a measure P̃ ∼ P with Z ∈ L∞ such
that S is a weak P̃ -martingale and the Cairoli–Walsh commutation condition
is fulfilled for P̃ . Then the inequality∑

t∈[0,T−1]

αtE(∆St+1ξt|Ft+i) ≥ 0

with αt ∈ Ft2
T
and ξt = Z/E(Z|Ft+i) may hold only as the equality.

(b) Suppose that the inequality∑
t∈[0,T−1]

αtE(∆St+1|Ft+i) ≥ 0

with αt ∈ Ft2
T
may hold only as the equality. Then there is P̃ ∼ P with Z ∈

L∞ such that Ẽ(E(∆St+1|Ft+i)|Ft2
T
) = 0 for all t ∈ [0, T−1]. If, in addition,

the Cairoli–Walsh condition is fulfilled for P̃ , then Ẽ(∆St+1ξ̂t|Ft) = 0, where
ξ̂t = Z−1/E(Z−1|Ft+i).

Proof. (a) We have that Ẽ(∆St+1|Ft) = 0. Thus, for any αt ∈ Ft2
T
we get,

taking into account the Cairoli–Walsh, that

Ẽ

 ∑
t∈[0,T−1]

αtẼ(∆St+1|Ft+i)
∣∣∣Ft2

T

 = 0.

The proof follows now immediately from DMW theorem and the identity

Ẽ(∆St+1|Ft+i) = E(∆St+1ξt|Ft+i).

(b) We have, in particular, that the inequality∑
t∈[0,T−1]

αtE(∆St+1|Ft+i) ≥ 0

with αt ∈ Ft2
T
may hold only as the equality. In this case DMW theorem

guarantees that there exists P̃ ∼ P with Z ∈ L∞ such that∑
t∈[0,T−1]

αtẼ(E(∆St+1|Ft+i)|Ft2
T
) = 0.

The last step is obvious. ��
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Summary. Many stochastic volatility (SV) models in the literature are based on
an affine structure, which makes them handy for analytical calculations. The un-
derlying general class of affine Markov processes has been characterized completely
and investigated thoroughly by Duffie, Filipovic, and Schachermayer (2003). In this
note, we take a look at this set of processes and, in particular, affine SV models
from the point of view of semimartingales and time changes. In the course of doing
so, we explain the intuition behind semimartingale characteristics.

Key words: semimartingale characteristics, affine process, time change, stochastic
volatility
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1 Introduction

Semimartingale calculus is by now a standard tool which is covered in many
textbooks. However, this holds true to a lesser extent for the notion of semi-
martingale characteristics – despite of its practical use in many applications.
A first goal of this note is to convince readers (who are not already convinced)
that semimartingale characteristics are a very natural and intuitive concept.

We do so in Section 2 by taking ordinary calculus as a starting point
and by restricting attention to the important special case of absolutely con-
tinuous characteristics. We argue that differential characteristics and certain
martingale problems can be viewed as natural counterparts or extensions of
derivatives and ordinary differential equations (ODE’s). In this sense, affine
processes are the solutions to particularly simple martingale problems, which
extend affine ODE’s to the stochastic case. They are considered in Section 3.

∗This paper has been inspired by fruitful discussions with Arnd Pauwels.
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Affine processes have been characterized completely and investigated thor-
oughly in an extremely useful and impressive paper by Duffie et al. ([7], hence-
forth DFS). They work predominantly in the context of Markov processes and
their generators. But in a semimartingale setting, their results yield an explicit
solution to the affine martingale problem.

Next to interest rate theory and credit risk, stochastic volatility (SV) mod-
els constitute one of the main areas in finance where the power of the affine
structure has been exploited. In Section 4 we review a number of affine SV
models under the perspective of semimartingale characteristics.

Unexplained notation is typically used as in [12]. Superscripts refer gen-
erally to coordinates of a vector or vector-valued process rather than powers.
The few exceptions as e.g. ex, σ2, v1/αt should be obvious from the context.
The notion of a Lévy process X = (Xt)t∈R+ is applied slightly ambigiously.
In the presence of a given filtration F = (Ft)t∈R+ , X is supposed to denote a
Lévy process relative to this filtration (PIIS in the language of [12]), otherwise
an intrinsic Lévy process in the sense of [19], i.e. a PIIS relative to its own
natural filtration.

2 Differential semimartingale calculus

In this section we want to provide non-experts in the field with an intuitive
feeling for semimartingale characteristics. It is not the aim to explain the
mathematics behind this concept in detail. This is done exemplarily in the
standard reference [12] (henceforth JS) or in [11], [23].

We hope that the reader does not feel offended by the following digres-
sion on Rd-valued deterministic functions X = (Xt)t∈R+ of time. Specifically,
linear functions Xt = bt are distinguished by constant growth. They are com-
pletely characterized by a single vector b ∈ Rd. Many arbitrary functions
behave “locally” as linear ones. This local behavior is expressed in terms of
the derivative d

dtXt of X at time t ∈ R+. Of course, linear functions are up to
the starting value X0 the only ones with constant derivative. In many appli-
cations, functions occur as solutions to ODE’s rather than explicitly, i.e. their
derivative is expressed implicitly as

d

dt
Xt = f(Xt), X0 = x0. (2.1)

In simple cases, the solution to the initial value problem (2.1) can be found
in a closed form, e.g., if f is a linear or, more generally, an affine function.
Linear ODE’s are solved by exponential functions.

We now want to extend the above concepts to a probabilistic setting.
Firstly note that stochastic processes (Xt)t∈R+ are nothing else but random
functions of time. A natural interpretation of constant growth in stochas-
tic terms is stationary, independent increments. Therefore, the Lévy pocesses
(processes with stationary, independent increments) can be viewed as random
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counterparts of linear functions. This is also reflected by the importance of
Lévy processes in applications. The slope b of a linear function is paralleled
by the Lévy–Khintchine triplet (b, c, F ) of a Lévy process, where the vector
b ∈ Rd stands for a linear drift as in the deterministic case, the symmetric
non-negative d × d matrix c denotes the covariance matrix of the Brownian
motion part of the process, and the Lévy measure F on Rd reflects the inten-
sity of jumps of different sizes. By virtue of the Lévy–Khintchine formula, this
triplet characterizes the distribution of a Lévy process X uniquely. Indeed, we
have Eeiλ

�Xt = etψ(iλ), where the Lévy exponent ψ is given by

ψ(u) = u%b+
1
2
u%cu+

∫
(eu

�x − 1− u%h(x))F (dx) (2.2)

and h : Rd → Rd denotes a fixed truncation function as, e.g., h(x) = x1{|x|≤1}.
If h is replaced with another truncation function h̃, only the drift coefficient
b changes according to

b(h̃) = b(h) +
∫
(h̃(x)− h(x))F (dx). (2.3)

It may seem less obvious how to extend derivatives and initial value prob-
lems to the stochastic case. A classical approach is provided within the theory
of Markov processes. Infinitesimal generators describe the local behaviour of
a Markov process X in terms of the current value Xt, which means that
they naturally generalize ODE’s. In this note, however, we focus instead on
semimartingale characteristics and martingale problems as an alternative tool.
Although the general theory behind Markov processes and semimartingales
looks quite different in the first place, there exist close relationships between
the corresponding concepts (cf. [11], [8]).

Finally, one can use stochastic differential equations (SDE’s) to describe a
process in terms of its local behavior. Even though there is a natural connec-
tion between martingale problems and SDE’s, “linear” martingale problems
do not correspond to linear SDE’s as we shall see below.

The characteristics of a Rd-valued semimartingale X can be defined in
several equivalent ways. In the following definition they occur in an equation
which resembles (2.2).

Definition 1. Suppose that B is a predictable Rd-valued process, C a pre-
dictable process whose values are non-negative symmetric d×d matrices, both
with components of finite variation, and ν a predictable random measure on
R+ × Rd (i.e. a family (ν(ω; ·))ω∈Ω of measures on R+ × Rd with a certain
predictability property, cf. JS for details). Then (B,C, ν) is called character-
istics of X if and only if eiλ

�X −
∫ ·
0
eiλ

�Xt−dΨt(iλ) is a local martingale for
any λ ∈ Rd, where

Ψt(u) := u%Bt +
1
2
u%Ctu+

∫
[0,t]×Rd

(eu
�x − 1− u%h(x))ν(d(s, x)).
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It can be shown that any semimartingale has unique characteristics up
to a P -null set. This integral version of the characteristics can alternatively
be written in differential form. More specifically, there exist an increasing
predictable process A, predictable processes b, c, and a transition kernel F
from (Ω × R+,P) into (Rd,Bd) such that

Bt =
∫ t

0

bsdAs, Ct =
∫ t

0

csdAs, ν([0, t]×G) =
∫ t

0

Fs(G)dAs, G ∈ Bd.

This decomposition is, of course, not unique. However, in most applications
the characteristics (B,C, ν) are actually absolutely continuous, which means
that one may choose At = t. In this case we call the triplet (b, c, F ) differential
characteristics of X. It is unique up to some P (dω)⊗ dt-null set.

Definition 2. Suppose that b is a predictable Rd-valued process, c a predictable
process whose values are non-negative symmetric d × d matrices, and F a
transition kernel from (Ω × R+,P) to (Rd,Bd) such that F·({0}) = 0 and∫
(1 ∧ |x|2)F·(dx) <∞. We call the triplet (b, c, F ) differential characteristics
of X if eiλ

�X−
∫ ·
0
eiλ

�Xt−ψt(iλ)dt is a local martingale for any λ ∈ Rd, where

ψt(u) := u%bt +
1
2
u%ctu+

∫
Rd

(eu
�x − 1− u%h(x))Ft(dx)

denotes the Lévy exponent of (b, c, F )(ω, t). For want of a handy notation in
the literature, we write ∂X := (b, c, F ) in this case.

From an intuitive viewpoint one can interpret the differential characteris-
tics as a local Lévy–Khintchine triplet. Very loosely speaking, a semimartin-
gale with differential characteristics (b, c, F ) resembles locally after t a Lévy
process with triplet (b, c, F )(ω, t). Since this local behaviour may depend on
the history up to t, the differential characteristics may be random albeit pre-
dictable. In this sense, the connection between Lévy processes and differential
characteristics parallels the one between linear functions and derivatives of
deterministic functions. In fact, b equals the ordinary derivative if X has ab-
solutely continuous paths (and c = 0, F = 0 in this case). As is well-known, X
is a Lévy process if and only if the differential characteristics are deterministic
and constant (cf. JS, II.4.19):

Proposition 1 (Lévy process). A Rd-valued semimartingale X, X0 = 0,
is a Lévy process if and only if it has a version (b, c, F ) of the differential
characteristic which does not depend on (ω, t). In this case, (b, c, F ) equals
the Lévy-Khintchine triplet.

As for the ordinary derivative, a number of rules allows to calculate the
differential characteristics comfortably by using Lévy processes as building
blocks.
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Proposition 2 (Stochastic integration). Let X be a Rd-valued semi-
martingale and H a Rn×d-valued predictable process with Hj· ∈ L(X),
j = 1, . . . , n (i.e. integrable with respect to X). If ∂X = (b, c, F ), then the
differential characteristics of the Rn-valued integral process

H • X := (Hj· • X)j=1,...,n

equals ∂(H • X) = (̃b, c̃, F̃ ), where

b̃t = Htbt +
∫
(h̃(Htx)−Hth(x))Ft(dx),

c̃t = HtctH
%
t ,

F̃t(G) =
∫

1G(Htx)Ft(dx), G ∈ Bn.

Here, h̃ : Rn → Rn denotes the truncation function which is used on Rn.

Variants of Proposition 2 are stated in JS, IX.5.3 or [17], Lemma 3. The effect
of C2-functions on the characteristics follows directly from Itô’s formula (cf.
[9], Corollary A.6):

Proposition 3 (C2-function). Let X be a Rd-valued semimartingale with
differential characteristics ∂X = (b, c, F ). Suppose that f : U → Rn is twice
continuously differentiable on some open subset U ⊂ Rd such that X,X− are
U -valued. Then the Rn-valued semimartingale f(X) has differential charac-
teristics ∂(f(X)) = (̃b, c̃, F̃ ), where

b̃it =
d∑

k=1

∂kf
i(Xt−)bkt +

1
2

d∑
k,l=1

∂klf
i(Xt−)cklt

+
∫ (

h̃i (f(Xt− + x)− f(Xt−))−
d∑

k=1

∂kf
i(Xt−)hk(x)

)
Ft(dx),

c̃ijt =
d∑

k,l=1

∂kf
i(Xt−)cklt ∂lf

j(Xt−),

F̃t(G) =
∫

1G (f(Xt− + x)− f(Xt−))Ft(dx), G ∈ Bn.

Here, ∂k etc. denote partial derivatives and h̃ again the truncation function
on Rn.

A Girsanov-type theorem due to Jacod and Mémin studies the behaviour
of the characteristics under absolutely continuous changes of the probability
measure (cf. JS, III.3.24). We state here the following version.
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Proposition 4 (Change of the probability measure). Let X be a Rd-
valued semimartingale with differential characteristics ∂X = (b, c, F ). Suppose

that P̃
loc
0 P with the density process

Z = E(H • Xc +W ∗ (µX − νX)) (2.4)

for some H ∈ L(Xc), W ∈ Gloc(µX), where Xc denotes the continuous mar-
tingale part of X and µX , νX the random measure of jumps of X and its
compensator (cf. JS for details). Then the differential characteristics (̃b, c̃, F̃ )
of X relative to P̃ are given by

b̃t = bt +H%t ct +
∫
W (t, x)h(x)Ft(dx),

c̃t = ct,

F̃t(G) =
∫

1G(x)(1 +W (t, x))Ft(dx), G ∈ Bn.

In applications, the density process can typically be stated in the form (2.4).
Alternatively, one may use a version of Proposition 4 where (̃b, c̃, F̃ ) is ex-
pressed in terms of the joint characteristics of (X,Z) (cf. [15], Lemma 5.1).

Finally, we consider the effect of absolutely continuous time changes (cf.
[17], Lemma 5 and [11], Chapter 10 for details). They play an important role
in SV models as we shall see in Section 4.

Proposition 5 (Absolutely continuous time change). Let X be a Rd-
valued semimartingale with differential characteristics ∂X = (b, c, F ). Suppose
that (Tθ)θ∈R+ is a finite, absolutely continuous time change (i.e. Tθ is a finite
stopping time for any θ and Tθ =

∫ θ
0
Ṫρdρ with non-negative derivative Ṫρ).

Then the time-changed process (X̃θ)θ∈R+ := ((X ◦T )θ)θ∈R+ := (XTθ
)θ∈R+

is a semimartingale relative to the time-changed filtration

(F̃θ)θ∈R+ := (FTθ
)θ∈R+

with differential characteristics ∂X̃ = (̃b, c̃, F̃ ) given by

b̃θ = bTθ
Ṫθ,

c̃θ = cTθ
Ṫθ,

F̃θ(G) = FTθ
(G)Ṫθ, G ∈ Bn.

Let us now turn to the stochastic counterpart of the initial value problem
(2.1), where the local dynamics of X are expressed in terms of X itself. This
can be interpreted as a special case of a martingale problem in the sense of
JS, III.2.4 and III.2.18.

Definition 3. Suppose that P0 is a distribution on Rd and functions β : Rd×
R+ → Rd, γ : Rd × R+ → Rd×d, ϕ : Rd × R+ × Bd → R+ are given.



A Didactic Note on Affine Stochastic Volatility Models 349

We call (Ω,F,F, P,X) solution to the martingale problem related to P0 and
(β, γ, ϕ) if X is a semimartingale on (Ω,F,F, P ) such that L(X0) = P0 and
∂X = (b, c, F ) with

bt(ω) = β(Xt−(ω), t),
ct(ω) = γ(Xt−(ω), t), (2.5)

Ft(ω,G) = ϕ(Xt−(ω), t, G).

More in line with the common language of martingale problems, one may also
call the distribution PX of X solution to the martingale problem. In any case,
uniqueness refers only to the law PX because solution processes on different
probability spaces cannot be reasonably compared otherwise.

Since ODE’s are particular cases of this kind of martingale problems, one
cannot expect that unique solutions generally exist, let alone to solve them
(cf. JS, III.2c and [11] in this respect). In this note we will only consider
particularly simple martingale problems, namely linear and affine ones.

3 Affine processes

Parallel to affine ODE’s, we assume that the differential characteristics (2.5)
are affine functions of Xt− in the following sense:

β((x1, . . . , xd), t) = β0 +
d∑

j=1

xjβj ,

γ((x1, . . . , xd), t) = γ0 +
d∑

j=1

xjγj , (3.1)

ϕ((x1, . . . , xd), t, G) = ϕ0(G) +
d∑

j=1

xjϕj(G),

where (βj , γj , ϕj), j = 0, . . . , d are given Lévy–Khintchine triplets on Rd. As
in the deterministic case, it is possible not only to prove existence of a unique
solution but also to solve the affine martingale problem related to (3.1) in a
sense explicitly. This has been done by DFS. More precisely, they characterize
affine Markov processes and their laws. However, applied to the present setup
one obtains the statement below on affine martingale problems (cf. Theorem
3.1).

It is obvious that the d+1 Lévy–Khintchine triplets (βj , γj , ϕj) cannot be
chosen arbitrarily. It has to be ensured that the local covariance matrix c and
the local jump measure F in the differential characteristics ∂X = (b, c, F ) of
the solution remain positive even if some of the components Xj turn negative.
This leads to a number of conditions:
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Definition 4. Let m,n ∈ N with m + n = d. Lévy–Khintchine triplets
(βj , γj , ϕj), j = 0, . . . , d are called admissible if the following conditions hold:

βkj −
∫
hk(x)ϕj(dx) ≥ 0

ϕj((Rm
+ × Rn)C) = 0∫

hk(x)ϕj(dx) <∞

 if 0 ≤ j ≤ m, 1 ≤ k ≤ m, k �= j;

γklj = 0 if 0 ≤ j ≤ m, 1 ≤ k, l ≤ m unless k = l = j;

βkj = 0 if j ≥ m+ 1, 1 ≤ k ≤ m;
γj = 0
ϕj = 0

}
if j ≥ m+ 1.

A deep result of DFS shows that the martingale problem related to (3.1)
has a unique solution for essentially any admissible choice of triplets:

Theorem 3.1. Let (βj , γj , ϕj), j = 0, . . . , d, be admissible Lévy–Khintchine
triplets and denote by ψj the corresponding Lévy exponents in the sense of
(2.2). Suppose in addition that∫

{|x|≥1}
|x|kϕj(dx) <∞, 1 ≤ j, k ≤ m. (3.2)

Then the martingale problem related to (β, γ, ϕ) as in (3.1) and any ini-
tial distribution P0 on Rm

+ × Rn has a solution (Ω,F,F, P,X), where X is
Rm
+ × Rn-valued. Its distribution is uniquely characterized by its conditional
characteristic function

E

(
eiλ

�Xs+t

∣∣∣∣Fs

)
= exp

(
Ψ0(t, iλ) + Ψ (1,...,d)(t, iλ)%Xs

)
, λ ∈ Rd, (3.3)

where the mappings Ψ (1,...,d) = (Ψ1, . . . , Ψd) : R+× (Cm
− × iRn)→ (Cm

− × iRn)
and Ψ0 : R+ × (Cm

− × iRn) → C solve the following system of generalized
Riccati equations:

Ψ0(0, u) = 0, Ψ (1,...,d)(0, u) = u,

d

dt
Ψ j(t, u) = −ψj(Ψ (1,...,d)(t, u)), j = 0, . . . , d (3.4)

(and Cm
− := {z ∈ Cm : Re(zj) ≤ 0, j = 1, . . . ,m}).

Proof. Up to two details, the assertion follows directly from DFS, Theorems
2.7, 2.12 and Lemma 9.2. Equation (3.3) is derived in DFS under the additional
assumptions that the initial distribution is of degenerate form P0 = εx for
x ∈ Rm

+ × Rn and that the filtration F is generated by X. Hence, it suffices
to reduce the general statement to this case.

Let (Dd,Dd,Dd) be the Skorohod path space of Rd-valued càdlàg functions
on R+ endowed with its natural filtration (cf. JS, Chapter VI). Denote by Y
the canonical process, i.e. Yt(α) = α(t) for α ∈ Dd.
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Fix s ∈ R+, ω ∈ Ω. From the characterization in Definition 1 (more pre-
cisely, from the slightly more general formulation in JS, II.2.42, because we do
not know in the first place that Y is a semimartingale) it follows that Y has
differential characteristics of the form (2.5) and (3.1) relative to the probabil-
ity measure P̃s,ω := P (Xs+t)t∈R+ |Fs(ω, ·) on (Dd,Dd) (except for some P -null
set of ω’s). Therefore, Y solves the affine martingale problem corresponding
to (3.1) and it has degenerate initial distribution P̃Y0

s,ω = εXs(ω). Theorem 2.12
in DFS yields that

E

(
eiλ

�Xs+t

∣∣∣∣Fs

)
(ω) = Ẽs,ωe

iλ�Yt

= Ẽs,ω

(
Ẽs,ω

(
eiλ

�Yt

∣∣∣∣D0

))
= Ẽs,ω exp

(
Ψ0(t, iλ) + Ψ (1,...,d)(t, iλ)%Y0

)
,

= exp
(
Ψ0(t, iλ) + Ψ (1,...,d)(t, iλ)%Xs(ω)

)
for P -almost all ω ∈ Ω. �

Remarks.

1. The restriction X1, . . . , Xm ≥ 0 has to be naturally imposed because
otherwise γ(Xt−, t), ϕ(Xt−, t, G) in (3.1) may turn negative which does
not make sense. The remaining n components Xm+1, . . . , Xd, on the other
hand, affect the characteristics of X only through the drift rate βj . Due
to the conditions γj = 0, ϕj = 0, j ≥ m + 1, parts of the ODE system
(3.4) are reduced actually to simple integrals and linear equations which
can be solved in closed form (cf. (2.13)–(2.15) in DFS and Corollary 3.2
below for a special case).

2. Condition (3.2) guaranties that the solution process does not explode in
finite time and hence is a semimartingale on R+ in the usual sense. It
can be relaxed by a weaker necessary and sufficient condition (cf. DFS,
Proposition 9.1).

3. By introducing the zeroth component X0
t = 1, it is easy to see that an

affine process in Rm
+ ×Rn ⊂ Rd can be interpreted as a process with linear

characteristics in R1+m
+ × Rn ⊂ R1+d. Since the solution to linear ODE’s

are exponential functions, one could be tempted to call the solutions to
such linear martingale problems “stochastic exponentials.” However, this
notion usually refers to the solutions to linear SDE’s and the latter typi-
cally do not have linear characteristics. For example, Propositions 1 and 2
yield that the differential characteristics of the geometric Wiener process
Xt = 1 +

∫ t
0
XsdWs are of the form ∂X = (0,X2, 0). Hence they are

quadratic rather than linear in X.
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4. Observe that the solution depends on the involved triplets only through
their Lévy exponents, which is agreeable for concrete models where the
latter are known in closed form.

For such applications as, e.g., estimation purposes it is useful to dispose
of a closed form expression of the finite-dimensional marginals. It follows by
induction from Theorem 3.1.

Corollary 3.1. The joint characteristic function of Xt1 , . . . , Xtν is given by

E exp

(
i

ν∑
k=1

λk·Xtk

)

= P̂0
(
Ψν(t1 − t0, . . . , tν − tν−1; iλ1·, . . . , iλν·)

)
exp

(
ν∑

k=1

Ψ0(tk − tk−1, iλ
k·)

)
,

for any 0 = t0 ≤ t1 ≤ · · · ≤ tν and any λ ∈ Rν×d, where P̂0(u) :=
∫
euxP0(dx)

and Ψν is defined recursively via

Ψ1(τ1;u1) := Ψ (1,...,d)(τ1, u1)

and

Ψk(τ1, . . . , τk;u1, . . . , uk)

:= Ψk−1
(
τ1, . . . , τk−1;u1, . . . , uk−2, uk−1 + Ψ (1,...,d)(τk, uk)

)
.

Since an affine process is characterized by at most d+ 1 Lévy–Khintchine
triplets, one may wonder whether it can in fact be expressed pathwise in
terms of d + 1 Lévy processes with the corresponding triplets. We give a
partial answer to this question.

Theorem 3.2 (Time change representation of affine processes). Let
X be an affine process as in Theorem 3.1. On a possibly enlarged proba-
bility space, there exist intrinsic Rd-valued Lévy processes L(j) with triplets
(βj , γj , ϕj), j = 0, . . . , d, such that

Xt = X0 + L
(0)
t +

d∑
j=1

L
(j)

Θj
t

, (3.5)

where

Θj
t =

∫ t

0

Xj
s−ds. (3.6)

Proof. By an enlargement of the probability space (Ω,F, P ) we refer, specifi-
cally, to a space of the form (Ω×Dd′

,F⊗Dd′
, P ′) such that P ′(A×Dd′

) = P (A)
for A ∈ F. Here Dd′

denotes as before the space of Rd′
-valued càdlàg func-

tions. The process X is identified with the process X ′ on the enlarged space
which is given by X ′t(ω, α) := Xt(ω) for (ω, α) ∈ Ω × Dd′

.
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Step 1: Firstly, we choose triplets (β̃j , γ̃j , ϕ̃j), j = 0, . . . , (d+2)d, on R(d+2)d

as follows. For j = 0, . . . , d, we define (β̃j , γ̃j , ϕ̃j) as the Lévy–Khintchine
triplet of the R(d+2)d-valued Lévy process (V,U0, . . . , Ud) given by

Uk :=
{
V if k = j
0 ∈ Rd if k �= j,

where V denotes a Rd-valued Lévy process with triplet (βj , γj , ϕj). For
j > d, we set (β̃j , γ̃j , ϕ̃j) = (0, 0, 0). One verifies easily that the new
triplets (β̃j , γ̃j , ϕ̃j), j = 0, . . . , (d + 2)d are admissible (with d̃ := (d + 2)d,
m̃ := m, ñ := d̃ − m). By Theorem 3.1 (resp. DFS) there is an R(d+2)d-
valued affine process (X̃, Ỹ 0, . . . , Ỹ d) corresponding to the initial distribution
P̃0 = P0⊗

⊗d
j=0 ε0 and the triplets (β̃j , γ̃j , ϕ̃j); namely, the canonical process

on the path space (D(d+2)d,D(d+2)d,D(d+2)d) relative to some law Q on that
space.

Step 2: By applying Proposition 3 to the mapping f(x, y0, . . . , yd) = x,
we observe that the characteristics of the first d components X̃ coincide with
those of the original Rd-valued affine process X. Since P0 is the distribution
of both X0 and X̃0, we have that PX = QX̃ , i.e. the laws of X and X̃ coincide
as well.

Step 3: On the product space (Ω′,F′) := (Ω×D(d+1)d,F⊗D(d+1)d) define
a probability measure

P ′(dω × dy) := P (dω)Q(Ỹ
0,...,Ỹ d)|X̃=X(ω)(dy)

and a R(d+2)d-valued process (X ′, Y 0, . . . , Y d) with

(X ′, Y 0, . . . , Y d)t(ω, y) := (Xt(ω), y(t)).

Its distribution P ′(X
′,Y 0,...,Y d) equals Q by Step 2. If the filtration F′ on

(Ω′,F′) is chosen to be generated by (X ′, Y 0, . . . , Y d), then this process is
affine in the sense of Theorem 3.1 corresponding to the triplets (β̃j , γ̃j , ϕ̃j).
As suggested before Step 1, we identify X ′ on the enlarged space with X on
the original space.

Step 4: Applying Proposition 3 to the mapping

f(x, y0, . . . , yd) = x−
d∑

j=0

yj

yields that X−
∑d

j=0 Y
j has differential characteristics (0, 0, 0), which implies

that it is constant, i.e.

X = X0 +
d∑

j=0

Y j .
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Step 5: Finally, applying Proposition 3 to f(x, y0, . . . , yd) = yj yields that
Y j has differential characteristics

∂Y j = (Xj
−βj ,X

j
−γj ,X

j
−ϕj) (3.7)

for j = 1, . . . , d and ∂Y 0 = (β0, γ0, ϕ0). In particular, L(0) := Y 0 is a Lévy
process.

Step 6: Let j ∈ {m+ 1, . . . , d}. Since γj = 0, ϕj = 0, we have that

Y j
t = βj

∫ t

0

Xj
s−ds = L

(j)

Θj
t

for the deterministic Lévy process L(j)θ := βjθ and the (not necessarily in-
creasing) “time change” (3.6).

Step 7: Now, let j ∈ {1, . . . ,m}. For θ ∈ R+ define

T j
θ := inf{t ∈ R+ : Θj

t > θ}.

Since Θj = (Θj
t )t∈R+ is adapted, we have that its inverse T j = (T j

θ )θ∈R+ is a
time change in the sense of [11], §10.1a.

For H := 1{Xj
−=0}

we have ∂(H • Y j) = (0, 0, 0) by Proposition 2, which

implies that H • Y j = 0. For fixed ω′ ∈ Ω′ consider u < v with Θj
u = Θj

v.
Then (u, v] ⊂ {t ∈ R+ : Xj

t−(ω
′) = 0}, which implies that

Y j
v − Y j

u = H • Y j
v −H • Y j

u = 0.

In view of [11], (10.14), it follows that Y j is T j-adapted.
Define the time-changed process L(j) := Y j ◦T j (in the sense of [11], (10.6)

if T j
θ = ∞ for finite θ, i.e. if Θj

∞ < ∞). The integral characteristics of L(j)

relative to the corresponding time-changed filtration equal (B̃, C̃, ν̃) with

B̃θ = BT j
θ
, C̃θ = CT j

θ
, ν̃([0, θ]× ·) = ν([0, T j

θ ]× ·), (3.8)

where (B,C, ν) denote the integral characteristics of Y j . This is stated in
[16], Lemma 5, for the case Θj

∞ =∞. In the general case L(j) may only be a
semimartingale on [[0, Θj

∞[[ in the sense of [11], (5.4). Then (3.8) holds on this
stochastic interval as can be deduced from [11], (10.17), (10.27).

Consequently,

B̃θ = BT j
θ
= βj

∫ T j
θ

0

Xj
s−ds = βj(Θj ◦ T j)θ = βjθ

and accordingly for C̃, ν̃ if θ < Θj
∞. This means that L

(j) is a “Lévy process
on [[0, Θj

∞[[” in the sense that its characteristics on [[0, Θj
∞[[ equal those of a

Lévy process with triplet (βj , γj , ϕj).
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Step 8: By “glueing” (L(j)θ )θ∈[0,Θj
∞)

together with another Lévy process on
[[Θj
∞,∞[[ having the same triplet, we extend L(j) to the whole R+. This can

be done along the lines of [11], (10.32) and §10.2b after an enlargement of the
probability space.

Since Y j is T j-adapted (cf. Step 7), we have Y j
t = L

(j)

Θj
t

for any t ∈ R+.
The assertion follows now from Step 4. �

The previous result is not entirely satisfactory in some aspects. E.g., it is
not shown that X is a measurable function of L(j), j = 0, . . . , d, i.e., loosely
speaking, that X is a strong solution of the time change equations (3.5)-(3.6).

For the purposes of the subsequent section, let us state a simple special case
of Theorem 3.1. We suppose thatm = n = 1, where the second component X2

will denote a logarithmic asset price in the affine SV models considered below.
We assume that it has no mean-reverting term. Secondly, we suppose that
the “volatility” process X1 is of the Ornstein–Uhlenbeck type. This means
that the Riccati-type equation (3.4) is an affine ODE, which can be solved
explicitly.

Corollary 3.2. In the case m = n = 1 suppose that (βj , γj , ϕj), j = 0, 1, 2,
are Lévy–Khintchine triplets such that

β10 −
∫
h1(x)ϕ0(dx) ≥ 0,

γkl0 = 0 unless k = l = 2,
ϕ0((R+ × R)C) = 0,∫

h1(x)ϕ0(dx) <∞,

γkl1 = 0 unless k = l = 2,
ϕ1(({0} × R)C) = 0,

(β2, γ2, ϕ2) = (0, 0, 0).

Then the martingale problem related to (β, γ, ϕ) as in (3.1) and any initial
distribution P0 on R+×R has a solution (Ω,F,F, P,X), where X is R+×R-
valued. Its distribution is uniquely characterized by its conditional character-
istic function

E
(
eiλ

1X1
s+t+iλ2X2

s+t

∣∣∣Fs

)
= exp

(
Ψ0(t, iλ1, iλ2) + Ψ1(t, iλ1, iλ2)X1

s + iλ2X2
s

)
,

where Ψ j : R+ × (C− × iR)→ C, j = 0, 1, are given by

Ψ1(t, u1, u2) = eβ
1
1tu1 − 1− eβ

1
1t

β11
ψ1(0, u2),

Ψ0(t, u1, u2) =
∫ t

0

ψ0(Ψ1(s, u1, u2), u2)ds.
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4 Affine stochastic volatility models

In the empirical literature, a number of so-called stylized facts has been re-
ported repeatedly, namely semi-heavy tails in the return distribution, volatil-
ity clustering, and a negative correlation between changes in volatility and
asset prices (leverage effect). These features are reflected in the SV models
that have been suggested. At the same time, it seems desirable to work in set-
tings which are analytically tractable. Here, affine models play an important
role. The fact that the characteristic function is known in closed or semi-
closed form opens the door to derivative pricing, calibration, hedging, and
estimation.

If the model is set up under the risk-neutral measure, European option
prices can be computed by Laplace transform methods. This approach re-
lies on the fact that the characteristic function or Laplace transform can be
interpreted as a set of prices of complex-valued contingent claims. A large
class of arbitrary payoffs can be represented explicitly as a linear combination
or, more precisely, integral of such “simple” claims (cf. e.g. [4], [20]). As far
as estimation is concerned, the knowledge of the joint characteristic function
can be exploited for generalized moment estimators (cf. [13] and [26] for an
overview).

Typically, (broad-sense) stochastic volatility models fall into two groups.
Either market activity is expressed in terms of the time-varying size or mag-
nitude of price movements, or alternatively, by their speed or arrival rate. The
models of the first group are often stated in terms of an equation

dXt = σtdLt, (4.1)

possibly modified by an additional drift term. Here, X denotes the logarithm
of an asset price and L a Lévy process as, e.g., Brownian motion. In this
equation, the SV process σ affects the size of relative price moves.

Models of the second kind arise from time-changed Lévy processes

Xt = X0 + LVt
. (4.2)

Again, L denotes a Lévy process and X the logarithm of the asset price.
Here, the time change Vt =

∫ t
0
vsds affects the speed of price moves. Often Vt

is interpreted as business time. Measured on this operational time scale, log
prices evolve homogeneously but due to randomly changing trading activity
vt, this is not true relative to calender time.

If the Lévy process L is a Wiener process and if L, σ, respectively L, v, are
independent, then the two approaches lead essentially to the same models.
This fact is due to the self-similarity of Brownian motion and it is reflected
by Propositions 2 and 5, where the choice vt = σ2t leads to the same dif-
ferential characteristics of X in either case. Again due to self-similarity, the
correspondence between (4.1) and (4.2) remains true for α-stable Lévy mo-
tions L. In this case, vt = σαt leads to the same characteristics (cf. also [17]
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in this respect). For general Lévy processes, however, (4.1) and (4.2) lead to
quite different models because the change of measure in Proposition 2 does
not lead to a multiple of F as in Proposition 5. Except for α-stable Lévy
motions L, models of type (4.1), in general, do not lead to affine processes.
Typically, the distribution of X is not known in closed form.

Another important distinction refers to the sources of randomness that
drive the Lévy process L and the volatility process σ resp. v in (4.1) and
(4.2). In the simplest case, these two are supposed to be independent. This,
however, excludes the above-mentioned leverage effect, i.e. it does not allow
for negative correlation between volatility and asset price changes. Whereas
such a correlation can be incorporated easily in models of type (4.1), this is
less obvious in (4.2) because L and v live on different time scales (business
vs. calender time).

The other extreme would be to use a common source of randomness for
both L and σ or L and v, respectively. This can be interpreted in the sense
that changes in volatility are caused by changes in asset prices. This spirit un-
derlies the ARCH-type models in the econometric literature. An interesting
and natural continuous-time extension of GARCH(1,1) has recently been sug-
gested in [18]. But since ARCH models are based on rescaling the innovations
in the sense of (4.1), they do not lead to an affine structure. Nevertheless, the
idea to use a common driver for volatility and price moves can be carried out
in the context of affine processes as well (cf. Subsection 4.6).

We will now discuss a number of well-known affine SV models from the
point of view of characteristics. For a more exhaustive coverage of the litera-
ture, see DFS and [5]. We express the characteristics of the affine processes in
terms of triplets (3.1). By straightforward insertion one can derive closed-form
expressions for the corresponding Lévy exponents ψj , j = 0, . . . , d, in terms
of the Lévy exponents of the involved Lévy processes and the additional pa-
rameters in the corresponding model.

In all the examples, it is implicitly assumed that the filtration is generated
by the affine process under consideration (cf. the last remark of Subsection 4.8
in this context). Moreover, we assume generally that the identity h(x) = x is
used as “truncation” function because this simplifies some of the expressions
considerably. This choice implies that the corresponding Lévy measures have
first moments in the tails. The general formulation without such moment
assumptions can be derived immediately from (2.3).

4.1 Stein and Stein (1991)

Slightly generalized, the model in [24] is of the form

dXt = (µ+ δσ2t )dt+ σtdWt,

dσt = (κ− λσt)dt+ αdZt (4.3)

with constants κ ≥ 0, µ, δ, λ, α and Wiener processes W,Z having constant
correlation ρ. As can be seen from straightforward application of Propositions
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1-3, neither (σ,X) nor (σ2,X) have affine characteristics in the sense of (3.1)
unless the parameters are chosen in a very specific way (e.g. κ = 0). However,
the R3-valued process (σ, σ2,X) is “almost” the solution to an affine martin-
gale problem related with (3.1), namely, for (βj , γj , ϕj), j = 0, . . . , 3, given
by

(β0, γ0, ϕ0) =

((
κ
α2

µ

)
,

(
α2 0 0
0 0 0
0 0 0

)
, 0

)
,

(β1, γ1, ϕ1) =

((−λ
2κ
0

)
,

(
0 2α2 αρ

2α2 0 0
αρ 0 0

)
, 0

)
,

(β2, γ2, ϕ2) =

((
0

−2λ
δ

)
,

(
0 0 0
0 4α2 2αρ
0 2αρ 1

)
, 0

)
,

(β3, γ3, ϕ3) = (0, 0, 0) .

Since γ1 is not non-negative definite, (β1, γ1, ϕ1) is not a Lévy–Khintchine
triplet in the usual sense and hence Theorem 3.1 cannot be applied. Nev-
ertheless, the Riccati-type equation (3.4) leads to the correct characteristic
function in this case (see, e.g., the derivation in [22]). The process (σ, σ2,X)
is closely related to the non-degenerate example in DFS, Subsection 12.2 of
an affine Markov process with a non-standard maximal domain.

4.2 Heston (1993)

If κ is chosen to be 0 in the Ornstein-Uhlenbeck equation (4.3), then the Stein
and Stein model reduces to a special case of the model in [10]:

dXt = (µ+ δvt)dt+
√
vtdWt,

dvt = (κ− λvt)dt+ σ
√
vtdZt. (4.4)

Here, κ ≥ 0, µ, δ, λ, σ denote constants and W,Z Wiener processes with con-
stant correlation ρ. Calculation of the characteristics yields that (v,X) is an
affine process with triplets (βj , γj , ϕj), j = 0, 1, 2, in (3.1) given by

(β0, γ0, ϕ0) =
((

κ
µ

)
, 0, 0

)
,

(β1, γ1, ϕ1) =
((

−λ
δ

)
,

(
σ2 σρ
σρ 1

)
, 0
)
,

(β2, γ2, ϕ2) = (0, 0, 0) .

4.3 Barndorff-Nielsen and Shephard (2001)

In the article [1] (henceforth BNS) it is considered a model of the form
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dXt = (µ+ δvt−)dt+
√
vt−dWt + ρdZt,

dvt = −λvt−dt+ dZt. (4.5)

Here, µ, δ, ρ, λ denote constants, W a Wiener processes, and Z a subordina-
tor (i.e. an increasing Lévy process) with Lévy–Khintchine triplet (bZ , 0, FZ).
Compared to the Heston model, the square-root process (4.4) is replaced with
a Lévy-driven Ornstein–Uhlenbeck (OU) process. Since W and Z are neces-
sarily independent, leverage is introduced by the ρdZt term. Again, Proposi-
tions 1 and 2 yield that (v,X) is an affine process with triplets (βj , γj , ϕj),
j = 0, 1, 2, in (3.1) of the form

β0 =
(

bZ

µ+ ρbZ

)
, γ0 = 0, ϕ0(G) =

∫
1G(y, ρy)FZ(dy), G ∈ B2,

(β1, γ1, ϕ1) =
((

−λ
δ

)
,

(
0 0
0 1

)
, 0
)
,

(β2, γ2, ϕ2) = (0, 0, 0) .

Due to the simple structure of the characteristics, we are in the situation of
Corollary 3.2.

BNS consider also a slightly extended version of the above model. They ar-
gue that the autocorrelation pattern of volatility is not appropriately matched
by a single OU process. As a way out they suggest a linear combination of
independent OU processes, i.e. a model of the form

dXt = (µ+ δvt−)dt+
√
vt−dWt +

ν∑
k=1

ρkdZ
k
t ,

vt =
ν∑

k=1

αkv
(k)
t ,

dv
(k)
t = −λkv(k)t− dt+ dZk

t ,

with constants α1, . . . , αν ≥ 0, µ, δ, ρ1, . . . , ρν , λ1, . . . , λν , a Wiener processes
W , and a Rν-valued Lévy process Z with triplet (bZ , 0, FZ) whose components
are independent subordinators. (v(1), . . . , v(ν), v,X) is a Rν+2-valued affine
process whose triplets (βj , γj , ϕj), j = 0, . . . , ν + 2 are of the form

β0 =


bZ

1

...

bZ
ν∑

k
αkb

Zk

µ+
∑

k
ρkb

Zk

, γ0 = 0,

ϕ0(G) =
∫

1G(y1, . . . , yν ,
∑ν

k=1 αky
k,
∑ν

k=1 ρky
k)FZ(dy), G ∈ Bν+2,
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(βk, γk, ϕk) =
(
(0, . . . , 0,−λk, 0, . . . , 0,−αkλk, 0)%, 0, 0

)
, k = 1, . . . , ν,

(βν+1, γν+1, ϕν+1) =




0
...
0
δ

,


0 . . . 0 0
...
. . .

...
...

0 · · · 0 0
0 · · · 0 1

, 0
 ,

(βν+2, γν+2, ϕν+2) = (0, 0, 0) .

In order to preserve this affine structure, the subordinators Z1, . . . , Zν do
not have to be independent. The other extreme case Z1 = . . . = Zν , leads to
the realm of continuous-time ARMA processes proposed in [2].

4.4 Carr, Geman, Madan, Yor (2003)

The paper [3] (henceforth CGMY) generalizes both the Heston and the BNS
model by allowing for jumps in the asset price. As noted at the beginning of
this section, one must consider time changes in order to preserve the affine
structure unless the driver of the asset price changes is a stable Lévy motion
(cf. Subsection 4.5).

The analogue of the Heston model is

Xt = X0 + µt+ LVt
+ ρ(vt − v0),

dVt = vtdt,

dvt = (κ− λvt)dt+ σ
√
vtdZt, (4.6)

where κ ≥ 0, µ, ρ, λ, σ are constants, L denotes a Lévy process with triplet
(bL, cL, FL) and Z an independent Wiener process. Again, (v,X) is an affine
process whose triplets (βj , γj , ϕj), j = 0, 1, 2 meet the equations

(β0, γ0, ϕ0) =
((

κ
µ+ ρκ

)
, 0, 0

)
,

β1 =
(

−λ
bL − ρλ

)
, γ1 =

(
σ2 σ2ρ
σ2ρ σ2ρ2 + cL

)
, ϕ1(G) =

∫
1G(0, x)FL(dx),

(β2, γ2, ϕ2) = (0, 0, 0) .

Observe that we recover the characteristics of the Heston model – up to a
rescaling of the volatility process v – if L is chosen to be a Brownian motion
with drift.

Proof. It remains to be shown that the differential characteristics of (v,X)
are as claimed above. Note that ∂v and ∂(L◦V ) are obtained from Propositions
2 and 5, respectively. For any R2-valued semimartingale Y with ∂Y = (b, c, F )
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we have ∂Y 1 = (b1, c11, F 1) with F 1(G) := F ((G \ {0})×R) and likewise for
Y 2, e.g., by Proposition 3.

Since v does not jump, this yields Ft(G) =
∫
1G(0, x)FL◦V

t (dx), G ∈ B, for
the joint Lévy measure F of (v, L ◦ V ). Consequently, ∂(v, L ◦ V ) =: (b, c, F )
is completely determined if we know c12 (= c21). Since L is independent of Z
and hence of v, it follows from some technical arguments that 〈v, L ◦ V 〉 = 0,
which implies that c12 = 0 by JS, II.2.6. Applying Proposition 3 to the map-
ping f(y, x) = (y, x + ρy) yields ∂(v,X) in the case µ = 0. The modification
µ �= 0 just affects the drift coefficient of X. �

In order to generalize the BNS model, the square-root process (4.6) is
replaced with a Lévy-driven OU process:

Xt = X0 + µt+ LVt
+ ρZt,

dVt = vt−dt, (4.7)
dvt = −λvt−dt+ dZt.

Here, µ, ρ, λ are constants and L,Z denote independent Lévy processes with
triplets (bL, cL, FL) and (bZ , 0, FZ), respectively, and Z is supposed to be
increasing. The triplets (βj , γj , ϕj), j = 0, 1, 2, of the affine process (v,X) are
given by

β0 =
(

bZ

µ+ ρbZ

)
, γ0 = 0, ϕ0(G) =

∫
1G(y, ρy)FZ(dy), G ∈ B2,

β1 =
(
−λ
bL

)
, γ1 =

(
0 0
0 cL

)
, ϕ1(G) =

∫
1G(0, x)FL(dy), G ∈ B2,

(β2, γ2, ϕ2) = (0, 0, 0) .

For a Brownian motion with drift L, we recover the dynamics of the BNS
model (4.5). As in that case, Corollary 3.2 can be applied.

Proof. The differential characteristics of (v,X) are derived similarly as
above. Again, ∂v and ∂(L ◦ V ) are obtained from Propositions 2 and 5, re-
spectively. If we write ∂(v, L ◦ V ) =: (b, c, F ), then c11 = 0 and hence also
c12 = c21 = 0. The marginal of the instantaneous Lévy measure Ft are given
by the corresponding Lévy measures of v and L ◦ V , respectively. Since L is
independent of Z, we have that v and L ◦ V never jump at the same time
(up to some P -null set). Consequently, F is concentrated on the coordinate
axes, which implies that F (G) =

∫
1G(y, 0)F v(dy) +

∫
1G(0, x)FL◦V (dx). As

above, Proposition 3 yields the characteristics of (v, X̃) for X̃ := LVt
+ ρvt.

Since dXt = dX̃t + (µ+ λvt)dt, a correction of the drift yields ∂(v,X). �
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4.5 Carr and Wu (2003)

The study [5] considers a modification of the Heston model where the Wiener
process W is replaced by an α-stable Lévy motion L with α ∈ (1, 2) and
Lévy–Khintchine triplet (0, 0, FL):

dXt = µdt+ v
1/α
t dLt,

dvt = (κ− λvt)dt+ σ
√
vtdZt.

The self-similarity of L is reflected by the fact that
∫
1G(c1/αx)FL(dx) =

cFL(G) for c > 0, G ∈ B. An application of Propositions 1 and 2 shows that
(v,X) is an affine process with triplets (βj , γj , ϕj), j = 0, 1, 2, of the form

(β0, γ0, ϕ0) =
((

κ
µ

)
, 0, 0

)
,

β1 =
(
−λ
0

)
, γ1 =

(
σ2 0
0 0

)
, ϕ1(G) =

∫
1G(0, x)FL(dy), G ∈ B2,

(β2, γ2, ϕ2) = (0, 0, 0) .

4.6 Carr and Wu (2004) and affine ARCH-like models

In the paper [6] it is considered a number of models, two of which could be
written in the form

Xt = X0 + µt+ LVt
, (4.8)

dVt = vt−dt, (4.9)
vt = v0 + κt+ ZVt

(4.10)

with constants κ ≥ 0, µ and a Lévy process (Z,L) in R2 with triplet
(b(Z,L), c(Z,L), F (Z,L)), where Z has only non-negative jumps and finite ex-
pected value E(Z1).

Note that the above equation vt = v0+κt+Z∫ t

0
vs−ds

is implicit. It may not

be evident in the first place that a unique solution to this time change equation
exists. On the other hand, the affine martingale problem corresponding to
triplets (βj , γj , ϕj), j = 0, 1, 2, of the form

(β0, γ0, ϕ0) =
((

κ
µ

)
, 0, 0

)
,

(β1, γ1, ϕ1) =
(
b(Z,L), c(Z,L), F (Z,L)

)
,

(β2, γ2, ϕ2) = (0, 0, 0)

has a unique solution by Theorem 3.1. In view of Theorem 3.2, the solution
process (v,X) can be expressed in the form (4.8)–(4.10) for some Lévy process
(Z,L) with triplet (b(Z,L), c(Z,L), F (Z,L)).
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The paper [6] discusses two particular cases of the above setup, namely
a joint compound Poisson process with drift (Z,L) and, alternatively, the
completely dependent case Zt = −λt − σLt with constants λ, σ and some
totally skewed α-stable Lévy motion L, where α ∈ (1, 2]. The latter model
has an ARCH-like structure in the sense that the same source of randomness
L drives both the volatility and the asset price process. This extends to a more
general situation where L is an arbitrary Lévy process and ∆Zt = f(∆Lt)
for some deterministic function f : R → R+ as e.g. f(x) = x2. If L or f are
asymmetric, such models allow for leverage. A drawback of this setup is that
it is not of the simple structure in Corollary 3.2. Non-trivial ODE’s may have
to be solved in order to obtain the characteristic function.

4.7 A model with flexible leverage

Any affine SV model can be defined directly in terms of the involved Lévy–
Khintchine triplets, sometimes in the simple form of Corollary 3.2. Since this
leads automatically to handy formulas for characteristic functions as well as
differential characteristics, there is in principle no need for a stochastic differ-
ential equation or the like. Still, concrete equations of the above type may be
useful in order to reduce generality and to give more insight in the structure
of a model.

Observe that the dependence structure between changes in asset prices and
volatility in (4.7) is quite restrictive in the sense that any rise ∆Zt in volatility
results in a perfectly correlated move ρ∆Zt of the asset. This cannot be relaxed
easily by considering dependent Lévy processes L, Z because these two live
on different time scales. In this subsection, we suggest a class of models in the
spirit of (4.7), which is more flexible as far as the leverage effect is concerned.
Nevertheless, we retain the simple structure of Corollary 3.2, where no Riccati-
type equations have to be solved.

Xt = X0 + LVt
+ Yt,

dVt = vt−dt, (4.11)
dvt = −λvt−dt+ dZt.

Here, λ is a constant and L a Lévy process with triplet (bL, cL, FL), which is
assumed to be independent of another Lévy process (Z, Y ) in R2 with triplet
(b(Z,Y ), c(Z,Y ), F (Z,Y )) and Z is supposed to be a subordinator. As before,
(v,X) is an affine process with triplets (βj , γj , ϕj), j = 0, 1, 2, given by

(β0, γ0, ϕ0) =
(
b(Z,Y ), c(Z,Y ), F (Z,Y )

)
, (4.12)

β1 =
(
−λ
bL

)
, γ1 =

(
0 0
0 cL

)
, ϕ1(G) =

∫
1G(0, x)FL(dx), G ∈ B2,

(β2, γ2, ϕ2) = (0, 0, 0) .
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Proof. This follows similarly as in Subsection 4.4. In a first step, one derives
∂(v, Y ) and ∂(L ◦ V ) from Propositions 2 and 5. Since these two processes
have zero covariation and never jump together, this leads to the joint charac-
teristics ∂(v, Y, L ◦ V ) in the same way as for (4.7). Applying Proposition 3
yields ∂(v,X). �

The model (4.11) remains vague about how to choose the dependence
structure between Z and Y . Therefore, we consider the following more con-
crete special case of the above setup:

Xt = X0 + µt+ LVt
+ UZt

,

dVt = vt−dt,

dvt = (κ− λvt−)dt+ dZt,

where κ ≥ 0, λ are constants and L,U,Z three independent Lévy processes.
The triplet of L is denoted by (bL, cL, FL) and Z is supposed to be a subor-
dinator which equals the sum of its jumps, i.e. with triplet (bZ , 0, FZ) where
bZ =

∫
zFZ(dz). The triplets in (3.1) of the affine process (v,X) are of the

form

β0 =
(

κ+ bZ

µ+ bZE(U1)

)
, γ0 = 0, ϕ0(G) =

∫
1G(z, x)PUz (dx)FZ(dz),

β1 =
(
−λ
bL

)
, γ1 =

(
0 0
0 cL

)
, ϕ1(G) =

∫
1G(0, x)ϕL(dx), G ∈ B2,

(β2, γ2, ϕ2) = (0, 0, 0) ,

where PUθ denotes the law of Uθ for θ ∈ R+. Since the structure of the
corresponding Lévy exponent ψ0 is less obvious in this case, we express it
explicitly in terms of the Lévy exponents ψL, ψU , ψZ of L,Z,U , respectively.

ψ0(u1, u2) = κu1 + µu2 + ψZ
(
u1 + ψU (u2)

)
,

ψ1(u1, u2) = −λu1 + ψL(u2)

Proof. To determine the triplets (4.12), it remains to derive the joint charac-
teristics of (Z̃, Ỹ )t := (κt+Zt, µt+UZt

). Note that (Z̃t−κt, Ỹt−µt) = Ũ ◦Z
for the R2-valued Lévy process Ũθ = (θ, Uθ). Here, Proposition 5 cannot be
applied because the time change Z is not continuous. But [21], Theorem 30.1,
yields that Ũ ◦ Z is a Lévy process with triplet (bŨ◦Z , 0, F Ũ◦Z), where

bŨ◦Z =
(

bZ

bZE(U1)

)
, F Ũ◦Z(G) =

∫
1G(z, x)PUz (dx)FZ(dz), G ∈ B2.

Since
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E exp
(
u1Z̃t + u2Ỹt

)
= E

(
E
(
exp
(
u1(κt+ Zt) + u2(µt+ UZt

)
)∣∣Z))

= exp(u1κt+ u2µt)E exp
(
u1Zt + Ztψ

U (u2)
)

= exp
(
t
(
κu1 + µu2 + ψZ

(
u1 + ψU (u2)

)))
,

the Lévy exponent of (Z̃, Ỹ ) is given by

ψ(Z̃,Ỹ )(u1, u2) = κu1 + µu2 + ψZ(u1 + ψU (u2)).

The Lévy exponents ψ0, ψ1 follow now directly from (4.12). �

To be more specific, assume that Uθ = ρ+ σWθ for some Wiener process
W and constants ρ, σ, in which case ψU (u) = ρu + σ2

2 u. This means that,
conditionally on an upward move ∆v of the “volatility” process v, the log
asset price X exhibits a Gaussian jump with mean ρ∆v and variance σ2∆v.
For σ = 0 we are back in the setup of (4.7). For L,Z one may e.g. choose any
of the tried and tested processes in CGMY.

4.8 Further remarks

Ordinary versus stochastic exponential

In the literature, positive asset prices are modelled typically either as ordinary
or as stochastic exponential, i.e.

St = S0e
Xt = S0E(X̃)t.

Above, we considered the first representation in terms of X or, more precisely,
X + log(S0). In [16], the process X̃ is called the exponential transform of X.
One can compute X̃ from X and vice versa quite easily. It is well-known that
X is a Lévy process if and only if X̃ is a Lévy process. A similar statement
holds for the affine SV models above, where the differential characteristics of
(v,X) (resp. (v(1), . . . , v(ν), v,X) in the BNS case) do not depend on Xt. By
applying Propositions 3 and 2 one observes in a straightforward manner that
(v, X̃) (resp. (v(1), . . . , v(ν), v, X̃)) is affine as well. However, for purposes of
estimation or option pricing it is often more convenient to work with X rather
than X̃.

Statistical versus risk-neutral modelling

Statistical estimators based on historical data yield parameters of the model
under the physical probability measure P . By contrast, option pricing and
calibration refers to expectations relative to some risk-neutral measure P̃ .
For both purposes, affine models offer considerable computational advantages.
Therefore one may wonder whether a given measure change preserves the
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affine structure. This can be checked quite easily with the help of Proposition
4. E.g., if X is a Rd-valued affine process and if, in (2.4), Ht(ω) is constant
and W (ω, t, x) depends only on x, then the affine structure carries over to P̃ .
Only the triplets in (3.1) have to be adapted accordingly.

Martingale property of the asset price

Suppose that the process X in the examples above denotes the logarithm of
a discounted asset price. If the model is set up under some “risk-neutral”
probability measure, one would like eX to be a martingale or at least a local
martingale. The latter property can be directly read from the characteristics.
If ∂X = (b, c, F ), then eX is a local martingale if and only if EeX0 <∞ and

bt +
ct
2
+
∫
(ex − 1− h(x))Ft(dx) = 0, t ∈ R+, (4.13)

(cf. [16], Theorems 2.19, 2.18). In the context of the affine SV processes (v,X)
in the previous examples (i.e., in particular, with ψ2 = 0), Expression (4.13)
equals

ψ0(0, 1) + ψ1(0, 1)vt.

Since vt is random, both ψ0(0, 1) and ψ1(0, 1) typically have to be 0 in order
for eX to be a local martingale.

It is a more delicate to decide whether eX is a true martingale. This holds
automatically if X is a Lévy process (cf. [14], Lemma 4.4). In the affine case
a sufficient condition can be derived from DFS.

Proposition 1. Let (v,X) be an affine SV process as in the previous examples
(and hence the conditions in Theorem 3.1 hold). Suppose that (0, 1) ∈ U and
(0, 0) ∈ U for an open convex set U ⊂ C2 such that, for any u ∈ U ,
1. ψj(Re(u)) <∞, j = 0, 1,
2. there exists an U -valued solution Ψ (1,2)(·, u) on R+ to the initial value
problem (3.4).

If EeX0 <∞ and ψ0(0, 1) = 0 = ψ1(0, 1), then eX is a martingale.

Proof. From Lemmas 5.3, 6.5 and Theorem 2.16 in DFS it follows that (3.3)
holds also for λ = (0,−i), i.e.

E(eXs+t |Fs) = exp
(
Ψ0(t, 0, 1) + Ψ1(t, 0, 1)%(vs,Xs)

)
= eXs ,

which yields the assertion. �

The previous result carries over to the BNS case (v(1), . . . , v(ν), v,X) or to
more general affine situations. The point is to verify that exponential moments
can actually be calculated from (3.3).
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Observability of the volatility process

In the examples above we assumed implicitly that the affine process under
consideration as, e.g., (v,X) is adapted to the given filtration. In practice,
however, only the logarithmic asset price X but not the volatility process v
can be observed directly. Therefore, the canonical filtration of X would be a
natural choice. Fortunately, v is typically adapted to the latter if X is driven
by an infinite activity process. The intuitive reason is that one can recover
v in an almost sure fashion from X by observing the quadratic variation
of the continuous martingale part or by counting the jumps in the purely
discontinuous case (cf. e.g. [25], Theorem 1). This holds even in models with
leverage as e.g. (4.7) if the Lévy measure of L has considerably more mass
near the origin than the one of Z.
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Summary. We consider the transmission of Gaussian processes through the white
Gaussian noise channel with the feedback, under a mean power constraint. The
existence of uniformly optimal coding and decoding is proved and the minimal mean
square error of reconstruction of the message is calculated. The main feature of the
schemes of transmission under consideration is the possibility at each time moment
of using the whole cumulative information on the transmitted process. It is shown
that the results of the paper generalize the results of previous works in this area.
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1 Introduction

Let θ be some Gaussian message that should be transmitted through the white
Gaussian noise channel with the feedback. Such a channel is modelled by the
stochastic differential equation

dξt = A(t, θ, ξ)dt+ dwt, ξ0 = 0, t ∈ [0, T ], (1.1)

where A(t, θ, ξ) and ξt are the input and output signals at time moment t
respectively, w is a Wiener process (white noise) independent of θ. The func-
tion A is called a coding function. At time r ∈ [0, T ] the reconstruction of
the message θ using the observations ξ[0, r] = {ξs, 0 ≤ s ≤ r} is made by
means of some function θ̂(r, ξ[0, r]), the decoding function. Let also ∆(A, θ̂; r)
be a function that measures (for given coding A and decoding θ̂) the error of
reconstruction of initial message θ at time r. Then the general problem of op-
timal transmission may be formulated as follows: calculate the minimal error
inf

A,θ̂
∆(A, θ̂; r) = ∆(r) and find the optimal (or ε-optimal) coding and de-

coding functions. Obviously, in order to solve this problem we have to specify
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the nature of the message θ and the constraints imposed on the coding and de-
coding functions. In this paper we suppose that θ is a Gaussian process, and
the coding A satisfies (besides some regularity conditions) the mean power
constraint:

EA2(t, θ, ξ) ≤ P, (1.2)

where P > 0 is some constant.
Ihara [1] proved that if θ is a Gaussian random variable with variance

γ and ∆(A, θ̂; r) = E
(
θ − θ̂(r, ξ[0, r])

)2
then ∆(A, θ̂; r) ≥ γe−Pr and there

exists an optimal transmission scheme. In [2] a similar result was obtained
for the case when θ is a Gaussian random vector and ∆(A, θ̂; r) is the sum of
mean square errors of its components.

The problem of transmission of Gaussian and Markovian process θ satis-
fying the stochastic differential equation

dθt = a(t)θtdt+ b(t)dvt,

where a and b are non random functions and v is a Wiener process independent
on w, was considered in [3]. It was supposed that

∆(A, θ̂; r) = E
(
θr − θ̂(r, ξ[0, r])

)2
and the coding function A at each time moment t depends on θt. The results
of the work [3] were generalized in [4]. In that paper it was assumed that θ
is an arbitrary Gaussian and Markovian process with continuous correlation
function and coding A at each time moment t may depend on the whole
“history” θ[0, t] = {θs, 0 ≤ s ≤ t} of the process θ.

It is worth noting that basically the coding and decoding functions mini-
mizing the error ∆(A, θ̂; r) at time r may depend on r. But all optimal coding
and decoding functions obtained in the works mentioned above do not depend
on r. It is natural to call such functions uniform (on r) optimal coding and de-
coding. It was shown ([5]) that uniform optimal coding of Gaussian messages
may not exist.

In this paper we suggest a general scheme of transmission and prove the
existence of a uniform optimal coding and decoding functions. The main the-
orem of the paper generalizes the results obtained in [1–4].

The basis of the proposed scheme is the following. Let a random variable
ζ and a stochastic process θ = {θt, t ∈ [0, T ]} be such that (ζ, θ) is a Gaussian
system. It is supposed that the coding function A at each time moment t may
depend on the whole “history” θ[0, t] = {θs, 0 ≤ s ≤ t} of the process θ up to
t. The error function is

∆(A, θ̂; r) = E
(
ζ − θ̂(r, ξ[0, r])

)2
.

In other words, the random variable ζ is not “observed” and only the process
θ can be used in the coding A. We find the minimal mean square error and
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prove the existence of uniform optimal coding and decoding functions. It may
be easily verified that the proposed scheme includes all models considered in
the works [1], [3] and [4].

2 The formulation of the problem and main result

Let θ = {θt, t ∈ [0, T ]} be a measurable Gaussian process with trajectories
belonging to the measurable space (L2T ,L2T ) of square integrable functions
g = {gt, t ∈ [0, T ]} with the σ-field L2T generated by the cylindrical sets. Let
also ζ be a random variable such that (ζ, {θt, t ∈ [0, T ]}) is a Gaussian system.
Without loss of generality we may assume that E(ζ) = E(θt) = 0. Suppose
that continuous stochastic process ξ = {ξt, t ∈ [0, T ]} satisfies the equation
(1.1) where w = {wt, t ∈ [0, T ]} is a standard Wiener process independent of
(ζ, θ).

Now we define the set of admissible coding functions A. Let’s denote by
(CT , CT ) the measurable space of continuous functions x = {xt, t ∈ [0, T ]}
with Borel σ-field CT . Let also

Ct = σ{xs, 0 ≤ s ≤ t}, L2t = σ{gs, 0 ≤ s ≤ t}

be the σ-fields in the spaces CT and L2T respectively generated by the values
of functions up to time moment t. By BT we denote the Borel σ-field of [0, T ].

Definition 1. A function A( · , · , · ) in equation (1.1) is called an admissi-
ble coding function (or simply coding) if the following conditions are fulfilled:

1) It is defined on the space ([0, T ],BT )⊗(L2T ,L2T )⊗(CT , CT ) and is jointly
measurable.

2) For any t ∈ [0, T ] the function A(t, · , · ) is L2t ⊗ Ct-measurable.
3) For any Gaussian process θ = {θt, t ∈ [0, T ]} with trajectories from

L2T the equation (1.1) has a continuous strong solution ξ = {ξt, t ∈ [0, T ]}
on [0, T ], i.e. for each t ∈ [0, T ] the random variable ξt is Fθ,w

t –measurable,
where Fθ,w

t = σ {θu, ws, 0 ≤ u, s ≤ t}, or equivalently Fξ
t ⊆ Fθ,w

t , where
Fξ
t = σ {ξs, 0 ≤ s ≤ t}.
4) Let {θn, n = 1, 2, ...} be a sequence of Gaussian processes with trajec-

tories from L2T such that E (θnt − θt)
2 → 0 as n → ∞ uniformly in t ∈ [0, T ]

and let ξn be the solution of the equation

dξnt = A(t, θn, ξn)dt+ dwt, ξn0 = 0, t ∈ [0, T ]. (2.1)

Then E (ξnt − ξt)
2 → 0 and EA2(t, θn, ξn)→ EA2(t, θ, ξ) as n→∞ uniformly

in t ∈ [0, T ].
5) For each time t ∈ [0, T ] the mean power constraint (1.2) holds.
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Remarks.
1. It is known (see, for example, [6, Ch. 1]) that if the correlation function

of the process θ is continuous then almost all trajectories of the process θ
belong to L2T .

2. According to condition 2) any admissible coding A is a non-anticipative
function with respect both to θ and ξ. It means that all successive information
on θ can be used in coding and that there is an instantaneous and noiseless
feedback in the channel.

3. It can be shown ([7, Ch.4]) that the conditions 3) and 4) are fulfilled if
function A satisfies the integral Lipschitz condition

|A(t, g, x)−A(t, h, y)|2 ≤ N1

 t∫
0

|gs − hs|2 ds+
t∫
0

|xs − ys|2 dK(s)


+N2

[
|gt − ht|2 + |xt − yt|2

]
,

and has linear growth

A2(t, g, x) ≤ N1

 t∫
0

(1 + gs)2ds+

t∫
0

(1 + xs)2dK(s)

+N2(1 + g2t + x2t ),

where N1, N2 are positive constants and K(s) is a non decreasing right con-
tinuous function, 0 ≤ K(s) ≤ 1, g, h ∈ L2T , x, y ∈ CT .

Conditions 3) and 4) are also fulfilled if equation (1.1) has the following
form:

dξt = ft

θt − t∫
0

ϕ(s, t)dξs

 dt+ dwt, ξ0 = 0,

where f and ϕ are non random and continuous functions ([8]).
Let us denote by A the set of all admissible coding functions.
Definition 2. A function θ̂( · , · ) defined on the product of the spaces

([0, T ],BT ) ⊗ (CT , CT ) is called an admissible decoding function (or sim-
ply decoding) if for each t ∈ [0, T ] function θ̂(t, · ) is Ct–measurable and
E θ̂2(t, ξ) <∞ for each A ∈ A.

We denote by D the set of all admissible decoding functions.

For any A ∈ A and θ̂ ∈ D let us denote ∆(A, θ̂; r) = E
(
ζ − θ̂(r, ξ)

)2
and

∆(r) = inf{∆(A, θ̂; r) : A ∈ A, θ̂ ∈ D}. The function ∆(r) is the minimal
mean square error of reconstruction of the message ζ at time moment r.
Functions A∗ ∈ A, θ̂∗ ∈ D, for which ∆(A∗, θ̂∗; r) = ∆(r) are called optimal
coding and decoding functions (at time moment r).

Let A ∈ A, θ̂ ∈ D and let ξ be a corresponding solution of the equation
(1.1). Put

Fθ
t = σ(θs, 0 ≤ s ≤ t}, mt(ζ) = E

(
ζ | Fξ

t

)
.
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Since ∆(A, θ̂; r) ≥ ∆(A; r) ≡ E (ζ −mr(ζ))
2 for any θ̂ ∈ D,

∆(r) = inf{∆(A; r) : A ∈ A}.

So the optimal decoding function is a conditional mean. Therefore, the main
problem is to find the optimal coding function. Basically, even if the optimal
coding exists for given r, it may depend on this r. If we can find coding
function that is optimal for any r then we call it uniform optimal coding:
Definition 3. A function A∗ ∈ A is called the uniform optimal coding if

∆(A∗; r) = ∆(r) for any r ∈ [0, T ].
Finally, let us denote ηt = E

(
ζ
∣∣Fθ

t

)
, λt = ζ − ηt and γ(t) = Eη2t . Since

the process η is a (Gaussian) martingale its increments are uncorrelated and
therefore γ(t) is a non decreasing function. Let also z = inf{t ≤ T : γ(t) > 0}
and z = T if γ(t) = 0 for any t ∈ [0, T ]. Obviously if γ(t) = 0 then the random
variable ζ and σ-field Fθ

t are independent.
The main result of the paper is the following theorem.
Theorem. Let the following conditions hold:

(1) The correlation function of the process θ is continuous on [0, T ]× [0, T ];
(2) The function γ(t) is continuous on [0, T ].
Then:

(a)

∆(r) = γ(r)− P

r∫
0

γ(s) exp [−P (r − s)] ds+Eλ2r, r ∈ [0, T ], (2.2)

where P is the bound in (1.2).
(b) There exists a uniform optimal coding function A∗ ∈ A. The correspond-
ing process ξ∗ satisfies the stochastic differential equation

dξ∗t = ft

ηt − t∫
0

ϕ(s, t)dξ∗s

 dt+ dwt, ξ∗0 = 0, (2.3)

where the functions ft and ϕ(s, t) are non random functions, ϕ(s, t) = 0 for

0 ≤ s ≤ t ≤ z,
T∫
0

T∫
0

ϕ2(s, t) ds dt <∞ and

t∫
0

ϕ(s, t) dξ∗s = E
(
ηt

∣∣∣Fξ∗

t

)
≡ m∗t (η), (2.4)

f2t E (ηt −m∗t (η))
2 = P, t > z. (2.5)

In order to prove this theorem we need some preliminary results.



374 P. K. Katyshev

3 Auxiliary results

Let (Ω,F ,P) be a complete probability space. Suppose that there is a filtra-
tion {Ft ⊆ F , t ∈ [0, T ]} in it. Let us assume that A = {(At,Ft), t ∈ [0, T ]}

is a measurable stochastic process such that
T∫
0

E
(
A2t
)
dt < ∞. Define the

process ξ = {(ξt,Ft), t ∈ [0, T ]} by the formula

ξt =

t∫
0

As ds+ wt,

where w = {(wt,Ft), t ∈ [0, T ]} is a standard Wiener process. Let also θ be a
random element (defined on (Ω,F ,P)) with values in some measurable space
(Y,Y). Suppose that Fθ = σ(θ) ⊆ F0 (it means in particular that θ and w
are independent).
Lemma 1 ([4, 9]). Let us assume that there exists a regular conditional

distribution on F with respect to θ, i. e. there exists a function p(ω, F ), ω ∈ Ω,
F ∈ F such that (i) p(ω, ·) is a probability measure on F for any ω ∈ Ω; (ii)
p(ω, F ) = P

(
F
∣∣Fθ
)
(ω) P–a.s. for any F ∈ F .

Then

I(θ, ξ) =
1
2

T∫
0

E
(
A
2

t −A
2

t

)
dt =

1
2

T∫
0

E
(
At −At

)2
dt,

where I(θ, ξ) is a mutual information of the random elements θ and ξ,

At = E
(
At

∣∣∣Fθ,ξ
t

)
, At = E

(
At

∣∣∣Fξ
t

)
, Fθ,ξ

t = σ
(
Fθ,Fξ

t

)
.

Remark. When At = A (t, θ, ξ[0, t]), i.e when the random variable At is
Fθ,ξ
t –measurable for each t, this result is obtained in [10].
Henceforth we shall denote by I(x, y) the mutual information of two ran-

dom elements x and y.
Lemma 2 ([1]). Let θ be a Gaussian random variable and let ψ be some

other random variable with Eψ2 <∞. Then E(θ−ψ)2 ≥ V(θ) exp [−2I(θ, ψ)],
where V(θ) is a variance of θ.

Consider now the situation when θ is a piecewise constant process, namely,
suppose that there is a partition 0 = t0 < t1 < ... < tn−1 < tn = T of the time
interval [0, T ] and a Gaussian random vector (θ1, θ2, ..., θn) such that θt = θi
if ti−1 < t ≤ ti, i = 1, ..., n, θ0 = θ1. In this case any admissible coding A
at time t depends on (θ1, ..., θi) if ti−1 < t ≤ ti, i = 1, ..., n. Denote

ηi = E (ζ |θ1, ..., θi ) , i = 1, ..., n; R = ζ − ηn;
ε1 = η1, εi = ηi − ηi−1, i = 2, ..., n;

δi = Eε2i , d = ER2
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(recall that Eθi = Eζ = 0). Here ηi, εi are Gaussian random variables, εi and
εj are independent if i �= j, and the random variable εi does not depend on
(θ1, ..., θi−1), i ≥ 2. Moreover, the random variable R does not depend on the
random vector (θ1, θ2, ..., θn). Clearly,

ηi =
i∑

k=1

εk, i = 1, ..., n, ζ =
n∑

k=1

εk +R. (3.1)

Let A be some admissible coding and let ξ = {ξt, t ∈ [0, T ]} be the
corresponding solution of the equation (1.1). Let us denote

mt(ηi) = E
(
ηi

∣∣∣Fξ
t

)
, mt(εi) = E

(
εi

∣∣∣Fξ
t

)
, i = 1, ..., n.

Lemma 3. For any admissible coding A and for each k = 0, ..., n− 1 the
following inequality holds:

V(ηk+1) exp (−2I(ηk+1, ξ[0, tk])) ≥ δ1 exp (−Ptk)
+ δ2 exp (−P (tk − t1)) + ...+ δk exp (−P (tk − tk−1)) + δk+1.

(3.2)

Proof. For k = 0 the inequality (3.2) obviously holds. Let k ≥ 1.
It is known (see, for example [7]), that the a posteriori distribution
P
(
ηk+1 ≤ x

∣∣∣Fξ
tk

)
has the density πk(x) = d

dxP
(
ηk+1 ≤ x

∣∣∣Fξ
tk

)
. Let us de-

note by pk(x) the (a priori) density of the random variable ηk+1. Then the
mutual information I (ηk+1, ξ[0, tk]) can be represented as follows:

I (ηk+1, ξ[0, tk]) = H(ηk+1)−Hk(ηk+1), (3.3)

where H(ηk+1) = E ln pk(ηk+1) is the entropy and

Hk(ηk+1) = E lnπk(ηk+1)

is the conditional entropy of the random variable ηk+1. Since equation (1.1)
has a strong solution, Fξ

tk
⊆ σ

(
Fw
tk
, θ1, ..., θk

)
. Moreover, the random variable

εk+1 does not depend on w and θ1, ..., θk and, therefore, the pair (ηk, ξ[0, tk])
and εk+1 are independent. In [11] it is proven that in this case the following
inequality holds:

e2Hk(ηk+1) = e2Hk(ηk+εk+1) ≥ e2Hk(ηk) + e2Hk(εk+1)

= e2Hk(ηk) + e2H(εk+1).
(3.4)

From (3.3) and (3.4) we get that

V(ηk+1) exp (−2I(ηk+1, ξ[0, tk])) = V(ηk+1)e2Hk(ηk+1)−2H(ηk+1)

≥ V(ηk+1)
[
e2Hk(ηk+1) + e2H(ηk+1)

]
[2πeV(ηk+1)]

−1

= (2πe)−1
[
e2H(ηk)e2Hk(ηk)−2H(ηk) + 2πeδk+1

]
= V(ηk+1) exp (−2I(ηk, ξ[0, tk])) + δk+1.

(3.5)
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By virtue of Lemma 1 we have

I(ηk, ξ[0, tk]) =
1
2

tk−1∫
0

E
(
A
2

s −A
2

s

)
ds+

1
2

tk∫
tk−1

E
(
A
2

s −A
2

s

)
ds,

where As = E
(
As

∣∣Fθ,ξ
s

)
, As = E

(
As

∣∣Fξ
s

)
. Thus, from (3.5) we get:

V(ηk+1) exp (−2I(ηk+1, ξ[0, tk]))
≥ V(ηk) exp (−2I(ηk, ξ[0, tk−1])) e−P (tk−tk−1) + δk+1,

since EA
2

s ≤ EA2s ≤ P, EA
2

s ≥ 0. Induction completes the proof of the
lemma.
Lemma 4. For any admissible coding function A the following inequality

holds:

∆(A; r) ≥ δ1e
−Pr+δ2e−P (r−t1)+ ...+δie−P (r−ti−1)+δi+1+ ...+δn+d (3.6)

for ti−1 < r ≤ ti, i = 1, ..., n.. In particular,

∆(A;T ) ≥ δ1e
−PT + δ2e

−P (T−t1) + ...+ δne
−P (T−tn−1) + d. (3.7)

Proof. Let A ∈ A and ti−1 < r ≤ ti. Due to (3.1) we have that

ζ = ηi + εi+1 + ...+ εn +R

and, hence,

mr(ζ) = mr(ηi) +mr(εi+1) + ...+mr(εn) +mr(R).

Recall that that the random variables εj , j = i + 1, ..., n, R and σ-field Fξ
r

are independent, therefore, mr(ζ) = mr(ηi) and

∆(A; r) = E (ζ −mr(ζ))
2 = E (ηi −mr(ηi))

2 + δi+1 + ...+ δn + d.

Using Lemmas 1, 2 and well-known properties of mutual information we get
that

E (ηi −mr(ηi))
2 ≥ V(ηi) exp (−2I(ηi, mr(ηi))

≥ V(ηi) exp (−2I(ηi, ξ[0, r]) ≥ V(ηi) exp (−2I(ηi, ξ[0, ti−1]) e−P (r−ti−1).

Finally, applying Lemma 3 we get the inequality (3.6).
Remark. It can be shown that there exists admissible coding function A∗

for which the relation (3.6) holds as an equality.
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4 The proof of theorem

Let A be some admissible coding function and let ξ be the corresponding
solution of the equation (1.1). Let us denote ηt = E

(
ζ
∣∣Fθ

t

)
, fix r ∈ [0, T ] and

put λr = ζ − ηr. Clearly, the Gaussian random variable λr does not depend
on σ-field Fθ

r . Moreover λr and Fw
r are obviously independent. Since Fθ

r and
Fw
r are also independent this implies that λr does not depend on Fθ,w

r . By
virtue of condition 3 from Definition 1 it follows that λr does not depend on
σ-field Fξ

r . Therefore,

mr(ζ) = E
(
ζ
∣∣Fξ

r

)
= E

(
ηr
∣∣Fξ

r

)
+E

(
λr
∣∣Fξ

r

)
= E

(
ηr
∣∣Fξ

r

)
+E (λr) = mr(η)

and

∆(A; r) = E (ζ −mr(ζ))
2 = E (ηr + λr −mr(η))

2

= E (ηr −mr(η))
2 +Eλ2r.

(4.1)

Note that the value of Eλ2r does not depend on the coding function A.
Confine now the time interval to [0, r] and for each n = 1, 2, ... define piece

wise constant process θn: θnt = θ ir
n
if (i−1)rn < t ≤ ir

n , i = 1, ..., n, θn0 = θ r
n
.

Let {ξnt , 0 ≤ t ≤ r}, n = 1, 2, ..., be a sequence of solutions of equation
(2.1). The correlation function of the process θ is continuous and, therefore,
E (θnt − θt)

2 → 0 as n → ∞ uniformly on t ∈ [0, r]. So, the condition 4 from
Definition 1 implies that

E (ξnt − ξt)
2 → 0, EA2(t, θn, ξn)→ EA2(t, θ, ξ)

as n → ∞ uniformly in t ∈ [0, r]. This easily implies that there exists the
sequence of numbers {Pn, n = 1, 2, ...} such that

EA2(t, θn, ξn) ≤ Pn, lim
n→∞

Pn = P. (4.2)

Denote ηnt = E
(
ζ
∣∣Fθn

t

)
, mn

t (η) = E
(
ηnt

∣∣∣Fξn

t

)
and γn(t) = E (ηnt )

2. Using
Lemma 4 with ζ = ηr and T = r we get that

E (ηr −mn
r (η))

2 ≥
n∑

i=1

δni exp
(
−Pn

(
r − i− 1

n
r

))
, (4.3)

where

δni = E
[
E
(
ηr

∣∣∣θ r
n
, ..., θ ir

n

)
−E

(
ηr

∣∣∣θ r
n
, ..., θ (i−1)r

n

)]2
= E

[
E
(
ηr

∣∣∣θ r
n
, ..., θ ir

n

)]2
−E

[
E
(
ηr

∣∣∣θ r
n
, ..., θ (i−1)r

n

)]2
= E

[
E
(
ζ
∣∣∣Fθn

ir
n

)]2
−E

[
E
(
ζ
∣∣∣Fθn

(i−1)r
n

)]2
= γn

(
ir

n

)
− γn

(
(i− 1)r

n

)
, i ≥ 2, δn1 = γn

( r
n

)
.
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Hence, the inequality (4.3) can be rewritten as follows:

E (ηr −mn
r (η))

2 ≥
n∑

i=1

[
γn
(
ir

n

)
− γn

(
(i− 1)r

n

)]
× exp

(
−Pn

(
r − i− 1

n
r

))
.

Making routine calculations we get that

E (ηr −mn
r (η))

2 ≥ γn(r) exp
(
−Pnr

n

)
+

n∑
i=1

γn
(
ir

n

)[
exp
(
−Pn

(
r − (i− 1)r

n

))
− exp

(
−Pn

(
r − ir

n

))]

= γn(r) exp
(
−Pnr

n

)
−

n∑
i=1

γn
(
ir

n

)
exp
(
−Pn

(
r − ir

n

))
Pnr

n
+ αn,

(4.4)

where αn → 0 as n → ∞ because the functions γn(t) and exp(Pnt) are
uniformly bounded on interval [0, r]. (Here we use the elementary formula
eb − ea = ea(b− a) + o(b− a).) Now take the sub-sequence {nk, k = 1, 2, ...}
such that Fθnk

t ⊆ Fθnk+1

t for each t ∈ [0, r] (for example, we can take the
subsequence of binary rational partitions of the time interval [0, r]). We do
not complicate notations and (without loss of generality) may assume that
Fθn

t ⊆ Fθn+1

t .
Since Fθn

t ↑ Fθ
t for each t ∈ [0, r], by the Lévy theorem we have that

almost surely

E
(
ζ
∣∣∣Fθn

t

)
→ E

(
ζ
∣∣Fθ

t

)
= ηt as n→∞. (4.5)

The (ζ, θ) is a Gaussian system, therefore, the a.s.–convergence implies the
L2-convergence (see, for example [6]), so from (4.5) we get that

γn(t)→ γ(t) = Eη2t as n→∞ (4.6)

for each t ∈ [0, r].
Let us consider the function

gn(t) = Pn exp
(
−Pn

(
r − ir

n

))
, if

(i− 1)r
n

< t ≤ ir

n
, i = 1, ..., n.

By virtue of (4.2) we have that

gn(t)→ P exp (−P (r − t)) as n→∞ (4.7)

for each t ∈ [0, r].
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Now consider the second term in the right-hand side of (4.4). Clearly,
n∑

i=1

γn
(
ir

n

)
Pn exp

(
−Pn

(
r − ir

n

))
r

n
=
∫ r

0

γn(s)gn(s)ds.

Finally, we get that

E (ηr −mn
r (η))

2 ≥ γn(r) exp
(
−Pnr

n

)
−
∫ r

0

γn(s)gn(s)ds. (4.8)

It is easily seen that γn(t)gn(t) → γ(t)g(t) = γ(t)P exp (−P (r − t)) as
n → ∞ and |γn(t)gn(t)| ≤ C for all n and t ∈ [0, r]. So, by the Lebesgue
theorem

lim
n→∞

[
γn(r) exp

(
−Pnr

n

)
−
∫ r

0

γn(s)gn(s)ds
]

= γ(r)− P

∫ r

0

γ(s) exp(−P (r − s))ds.
(4.9)

We cannot directly take the limit of the left hand side of (4.8). Neverthe-
less, we can show that

E (ηr −mr(η))
2 ≥ γ(r)− P

∫ r

0

γ(s) exp(−P (r − s))ds.

In order to prove this inequality we construct a set of Fξn

r -measurable random
variables βn,N,k such that

lim
k→∞

lim
N→∞

lim
n→∞

E (βn,N,k −mr(η))
2 = 0. (4.10)

Let (R∞,B∞) be the measurable space of countable sequences. Then there
is a sequence {ri ≤ r, i = 1, 2, . . . }, and B∞-measurable function G such that
mr(η) = E

(
ηr
∣∣Fξ

r

)
= G(ξr1 , ξr2 , . . . ). Now select a Bk-measurable function

F (depending on k) such that E (ηr |ξr1 , . . . , ξrk ) = F (ξr1 , . . . , ξrk). Let us
denote by µk the measure in the space Rk generated by the random vector
(ξr1 , . . . , ξrk). Using the Luzin theorem we find functions FN (y), y ∈ Rk,
N = 1, 2, . . . , with the following properties:

1) each function FN (y) is continuous and bounded in Rk;
2) FN (y)→ F (y) µk-a.s., N →∞;
3) EF 4N (ξr1 , . . . , ξrk) ≤ EF 4 (ξr1 , . . . , ξrk) + 1 for every N .

Note that EF 4 (ξr1 , . . . , ξrk) = E [E(ηr|ξr1 , . . . , ξrk)]
4 ≤ E(ηr)4 ≤ const. From

2) and 3) it follows that

lim
N→∞

E |FN (ξr1 , . . . , ξrk)− F (ξr1 , . . . , ξrk)|
2 = 0. (4.11)

Put now βn,N,k = FN (ξnr1 , . . . , ξ
n
rk
) and verify the validity of (4.10). Since

E (ξnt − ξt)
2 → 0 as n → ∞ uniformly in t ∈ [0, r], we may assume that

ξnri → ξri P–a.s. as n→∞. Therefore,



380 P. K. Katyshev

lim
n→∞

E
∣∣mr(η)− FN (ξnr1 , . . . , ξ

n
rk
)
∣∣2 = E |mr(η)− FN (ξr1 , . . . , ξrk)|

2 (4.12)

since the functions FN (y) are bounded and continuous. Then, using (4.11),
we infer that

lim
N→∞

lim
n→∞

E
∣∣mr(η)− FN (ξnr1 , . . . , ξ

n
rk
)
∣∣2

= lim
N→∞

E |mr(η)− FN (ξr1 , . . . , ξrk)|
2 = E |mr(η)− F (ξr1 , . . . , ξrk)|

2
.

(4.13)

Due to the Lévy theorem

lim
k→∞

F (ξr1 , . . . , ξrk) = mr(η) P–a.s. (4.14)

Since Em4
r(η) ≤ C < ∞ and EF 4(ξr1 , . . . , ξrk) ≤ C < ∞, the set of random

variables {|mr(η)− F (ξr1 , . . . , ξrk)|
2
, k = 1, 2, . . . } is uniformly integrable

and because of (4.14) we have

lim
k→∞

E |mr(η)− F (ξr1 , . . . , ξrk)|
2 = 0. (4.15)

So, the inequality (4.10) follows from (4.12), (4.13), and (4.15).
Since the random variables βn,N,k are Fξn

r –measurable for every n,

E (ηr − βn,N,k)
2 ≥ E (ηr −mn

r (η))
2
,

and from (4.8), (4.9), (4.10) it follows that

E (ηr −mr(η))
2 ≥ γ(r)− P

∫ r

0

γ(s) exp(−P (r − s))ds

Finally, from (4.1) we get that

∆(A; r) ≥ γ(r)− P

∫ r

0

γ(s) exp(−P (r − s))ds+Eλ2r (4.16)

for any admissible coding function A.
Now we construct the admissible coding A∗ for which (4.16) holds with

the equality. Put

h(t) = γ(t)− P

∫ t

0

γ(s) exp(−P (t− s))ds.

Since γ is a nondecreasing function,

h(t) ≥ γ(t)− P γ(t)
∫ t

0

exp(−P (t− s))ds = γ(t)e−Pt,
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and if t > z then h(t) > 0 (recall that z = inf{t ≤ T : γ(t) > 0}). There-
fore, we can define the function ft =

√
P

h(t) for t > z, ft = 0 for t ≤ z,

and the process vt =
∫ t
0
fsηsds + wt. Denote mv

t (η) = E (ηt |Fv
t ) , nt =

E (ηt −mv
t (η))

2. It is proven in [12] that the function nt satisfies the follow-
ing equation:

nt = γ(t)−
∫ t

0

f2s n
2
s ds.

By direct calculation we check that the function nt = h(t) is a solution of this
equation.

It is shown in [13] that there exists a non random function ϕ(s, t) and a
process {µt, t ∈ [0, T ]} such that

dµt = ft

(
ηt −

∫ t

0

ϕ(s, t) dµs

)
dt+ dwt, (4.17)

and ∫ t

0

ϕ(s, t) dµs = E (ηt |Fµ
t ) ≡ mµ

t (η).

In [13] it is also shown that Fv
t = Fµ

t for each t ∈ [0, T ]. Then

E (ηt −mµ
t (η))

2 = Eη2t −E (mµ
t (η))

2 = Eη2t −E (mv
t (η))

2

= E (ηt −mµ
t (η))

2 = h(t)

and

E
{
ft

[
ηt −

∫ t

0

ϕ(s, t) dµs

]}2
= f2t E (ηt −mµ

t (η))
2 = f2t h(t) = P.

So, the scheme of transmission (4.17) is admissible and for it the relationship
(4.16) holds with the equality sign.

Finally, since the scheme (4.17) does not depend on r, it is uniformly
optimal.

The theorem is proven.
This theorem helps to obtain the uniform optimal scheme of the trans-

mission of Gaussian Markov processes and to calculate the minimum mean
square error ∆(r).

5 Transmission of Gaussian Markov processes

Suppose now that θ = {θt, t ∈ [0, T ]} is a Gaussian Markov process with
continuous correlation function Γ (s, t). Let the process ξ = {ξt, t ∈ [0, T ]}
satisfies the equation (1.1) with some admissible coding function A. Let us
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denote mt = E
(
θt

∣∣∣Fξ
t

)
and suppose that ∆(A; r) = E (θr −mr)

2. Using the
theorem we may obtain the following result.
Corollary. Let the correlation function Γ (s, t) of the process θ be contin-

uous in [0, T ]× [0, T ] and Γ (t, t) �= 0 for all t ∈ [0, T ]. Then:
1) ∆(r) = Γ (r, r)− P

∫ r
0

Γ 2(r,s)
Γ (s,s) e

−P (r−s)ds.
2) There exists an uniformly optimal coding function A∗ such that the

corresponding process ξ∗ satisfies the equation

dξ∗t =

√
P

∆(t)
(θt −m∗t ) dt+ dwt, ξ∗0 = 0, (5.1)

where m∗t = E
(
θt

∣∣∣Fξ∗

t

)
.

3) There is a non random function g(s, t), s, t ∈ [0, T ], s ≤ t, such that∫ T

0

∫ T

0

g2(s, t) ds dt <∞, m∗t =
∫ t

0

g(s, t) dξ∗s ,

and g(s, t) satisfies the Wiener–Hopf equation

Γ (s, t)−
∫ s

0

g(u, s)g(u, t)du =

√
∆(s)
P

g(s, t). (5.2)

(The equation (5.1) means that the optimal coding function at each time t
depends only on θt and does not use the past values of the process θ.)
Proof. 1), 2) Let A be any admissible coding function. Fix some time

r ∈ [0, T ] and use the theorem with ζ = θr. Since the process θ is a Markov
process,

ηt = E
(
θr
∣∣Fθ

t

)
= E (θr |θt ) =

Γ (r, t)
Γ (t, t)

θt, γ(t) = Eη2t =
Γ 2(r, t)
Γ (t, t)

.

Obviously λr = 0. Therefore, from (4.16) it follows that

∆(A; r) ≥ ∆(r) = Γ (r, r)− P

∫ r

0

Γ 2(r, s)
Γ (s, s)

e−P (r−s)ds. (5.3)

The optimal scheme of transmission (4.17) has the form (5.1) in this case
and the relationship (5.3) holds for it with equality. Since the corresponding
coding function does not depend on r, it is uniformly optimal.

3) The existence of the function g(s, t) follows directly from the proof of
the theorem. It is easily seen that the equation

E
[
θt

∫ t

0

f(s, t) dξ∗s

]
= E

[
m∗t

∫ t

0

f(s, t) dξ∗s

]
holds for each bounded measurable function f(s, t), and the process ξ∗is a
Wiener process because it coincides with its innovation process (see [7, Ch.
7]). These facts directly imply the equation (5.2). Corollary is proven.
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6 Conclusions

It may be easily checked that the theorem generalizes the results of the works
[1, 3, 4].

It was mentioned above that in some models the uniformly optimal scheme
does not exist. The results of this work allow us to make the hypothesis
that the existence of uniform optimal scheme is strongly connected with the
possibility to accumulate the information on the process θ and to use at each
time t the whole “history” of the process up to time t.

References

1. Ihara S.: Optimal coding in white Gaussian channel with feedback. Lecture
Notes Math., 330, 120–123.

2. Katyshev P.K.: Transmission of Gaussian vector through the channel with the
noiseless feedback. Probability Theory and its Applications, 20, N 1, 188–196
(1975)

3. Liptser R.Sh.: Optimal coding and decoding functions in transmissions of
Gaussian Markovian process through the channel with the noiseless feedback.
Problems of Transmission of Information, 10, N 4, 3–15 (1974)

4. Katyshev P.K.: On some problem of the control of stochastic process in infor-
mation theory. In: Stochastic processes and control. Moscow, “Nauka”, 75–93
(1978)

5. Katyshev P.K.: On uniformly optimal coding of Gaussian messages in white
Gaussian channels with feedback. In: New Trends in Probability and Statistics,
Eds. V. Sazonov, T. Shervashidze, Moscow, 436–444 (1991)

6. Ibraghimov I.A. and Rozanov Yu.A.: Gaussian Random Processes. Moscow,
“Nauka” (1970)

7. Liptser R.Sh. and Shiryaev A.N.: Statistics of Stochastic Processes. Moscow,
“Nauka” (1974)

8. Ihara S.: Coding theory in Gaussian channel with feedback II: Evaluation of the
filtering error. Nagoya Mathematical Journal, 58, 127–147 (1975)

9. Glonti O.A.: On a mutual information of the signals in transmission through the
channel with “noisy” feedback. Probability Theory and its Applications, 23, N
2, 395–397 (1978).

10. Kadota T., Zakai M., Ziv J.: Mutual information in white Gaussian channel
with feedback. IEEE, Trans. on Inf. Th., IT-17, 4, 368–371 ( 1971).

11. Blachman N.M.: The convolution inequality for entropy powers. IEEE, Trans.
on Inf. Th., IT-12, 2, 267–270 (1965)

12. Liptser R.Sh.: Gaussian martingales and generalization of the Kalman–Bucy
filter. Probability Theory and its Applications, 20, N 2, 292–308 (1975)

13. Ihara S.: Coding theory in white Gaussian channel with feedback. Journal of
Multivariate Analysis, 5, N 1, 106–118 (1975)



A Note on the Brownian Motion

Kiyoshi KAWAZU

Department of Mathematics, Faculty of Education, Yamaguchi University,
Yamaguchi 753-8513, Japan.
kawazu@yamaguchi-u.ac.jp
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1 Introduction

The First Soviet–Japan Symposium on Probability Theory (Khabarovsk, Rus-
sia, 1969) was an important event in the author’s professional life. The variety
of topics discussed and the reported results were so impressive that the author
was convinced that the basic of stochastic processes is ruled by the Brownian
motion {B(t), t ≥ 0}.

For example, the continuous state branching process with immigration,
studied in [13], can be represented in a differential form as follows:

dXt = a
√
Xt dB(t) + h(Xt) dt, t ≥ 0, X0 > 0.

The Sinai’s RandomWalk [16] had astonished many researchers in the area
of stochastic processes and theoretical physics. Sinai succeeded to change the
imagination of mathematicians and confirm a real phenomenon in physics.
Brox [2] has found out the mechanism. It is the Brownian motion. It is well-
known, that

dXt = dB(t) + 1
2W

′(Xt) dt, t ≥ 0,

where {W (x), x ∈ R} is a Brownian motion independent of {B(t), t ≥ 0}.
This process {Xt, t ≥ 0} is called a diffusion process in random environ-
ment. By using Brownian motion properties, Brox showed that for large t,
the process Xt behaves like log2 t. Notice, it is not of order

√
t. Kesten, [14],
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found the limit distribution of Xt as t→∞ by analyzing the Brownian paths,
see also [8] and [9].

The Brownian motion {B(t), t ≥ 0} is associated with many strange
phenomena which has been fascinating many mathematicians. For example,
Ikeda [4] mentions details of research history of Brownian motion and some
charming points.

The great book by Itô and McKean [7] provides us with so wide world.
The book by Ikeda and Watanabe [5] contains exhaustive description for the
expectation of integral functionals of Brownian motion. The book by Revuz
and Yor [15] is full of results, many of them describing phenomena which
involve the Brownian motion. Another face of the Brownian motion can be
seen reading the paper “States spaces of the snake and its tour – convergence
of the discrete snake” by Marckett and Mokkadem [6].

The present paper is organized as follows. In Section 2 we formulate two
statements and one open question. In Section 3 we prove Proposition 1 which
is based on an amazing calculation used previously in [12]. Next in Section 4
we show an interesting calculation involving a Brownian path property, which
allows us to prove Proposition 2. The idea is contained in [11] without details,
see also [10]. Finally, in Section 5, we give comments on our open question
about the expectation of integral functionals of the Brownian motion.

2 Main results and an open question

Throughout the paper we assume that {B(t), t ≥ 0} is a one-dimensional
Brownian motion.

Proposition 1.

E

[(∫ x

0

eB(u) du
)−1]

∼ 1√
2πx

, as x→∞.

For a ∈ R, let σa = inf
{
t > 0 : B(t) = a

}
, the first hitting time of level a

by the Brownian motion. Set

M = inf
{
x > 0 : B(x)− inf

0<y<x
B(y) = 1

}
.

Further, we define the random time b over the random interval (0,M) as
follows:

b = inf
{
x > 0 : B(x) = inf

0<y<M
B(y)

}
.

Proposition 2. The following identity is true:

E
[
ezb, σ− 1

2
< σ 1

2

]
=

sinh(
√
2z/2)√

2z cosh(
√
2z)

, z > 0.
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An open problem. What is the value of the following expectation:

E

[(∫ 1

0

B2n(u) du
)−1]

, for n = 1, 2, . . . ?

We are going to comment on this question in Section 5.

3 The proof of Proposition 1. Some comments

First, for any fixed x > 0, we have (by time reversing) the elementary property
of the Brownian motion:

{B(u), 0 < u < x} law= {B(x− u)−B(x), 0 < u < x}.

Then we have

E

[(∫ x

0

eB(u) du
)−1]

= E
[
1/
∫ x
0
eB(x−u)−B(x) du

]
= E

[
eB(x)/

∫ x
0
eB(u) du

]
= E

[
d
dx

(
log
∫ x

0

eB(u) du
)]

=
d
dx
E

[
log
∫ x

0

eB(u) du
]
.

Also we use another elementary property (self-similarity) of the Brownian
motion: for any fixed positive x,

{B(xu), u > 0} law= {
√
xB(u), u > 0}.

Therefore, we have

E

[
log
∫ x

0

eB(u)du
]
= E

[
log
∫ 1

0

e
√
xB(u) du+ log x

]
.

We use the Laplace method for continuous functions, hence, for Brownian
paths, to conclude that

lim
x→∞

1√
x
log
∫ 1

0

e
√
xB(u) du = max

0≤u≤1
B(u).

Thus,

E

[
log
∫ 1

0

e
√
xB(u) du

]
∼
√
xE

[
max
0≤u≤1

B(u)
]

as x→∞.
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Simple calculation shows that

E

[
max
0≤u≤1

B(u)
]
=

√
2
π
.

By de l’Hôspital rule, we obtain

E

[(∫ x

0

eB(u) du
)−1]

∼ 1√
2πx

, as x→∞.

This is exactly the statement in Proposition 1. ��
Now we use the Girsanov theorem allowing us to conclude that

E

[(∫ x

0

eB(u)+u du
)−1]

∼ 1√
2πx

e−x/2, as x→∞.

This formula was used in [12]. The above formula seems applicable in finance
calculations. The key point is that we cannot use the Markov property or the
martingale property when calculating the quantity E[(

∫ x
0
eB(u)+u du)−1].

4 The proof of Proposition 2. Some comments

Let us make first some useful relevant comments. Kesten [14] showed the
pivotal importance of the random time b when studying the limit distribution
of the Sinai random walk. Namely, b is the limit of the so-called bottom of the
random environment. Golosov [3] suggests a useful explanation. Let us recall
that the expectation E[e−zb], z > 0 has been calculated:

E[e−zb] =
sinh

√
2z√

2z cosh
√
2z

=
tanh

√
2z√

2z
.

This, however, is valid only for the Brownian motion {B(t), t ≥ 0}. Let us
notice that Kesten considered the bottom of {B(x), x ∈ R} whose Laplace
transform is slightly different.

When considering a one-sided Brownian environment, the situation
changes dramatically and differs from that in the Sinai’s Brownian motion,
where we work with a two-sided Brownian environment. We have published
an interesting result in [11] in the case of one-sided Brownian environment.
To mention especially that the condition {σ− 1

2
< σ 1

2
} plays a key role of a

strange phenomenon.
Now let us establish Proposition 2. The random variable b is not a stopping

time. Its Laplace transform is brought out by considering the stopping times
σa.

Before proceeding further we introduce the following notations:
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ξk = σ− 1
2− k

n
, ηk = σ 1

2− k
n
, k = 1, 2, . . . , n; ξ0 = σ− 1

2
, η0 = σ 1

2
.

We also use the time shift ω+, see [7].
We use the continuity property of the Brownian paths, thus arriving at

the following chain of relations:

E[e−zb, σ− 1
2
< σ 1

2
]

= E[e−zb, ξ0 < η0]

= lim
n→∞

n∑
k=1

E[exp{−z[ξ0 + ξ1(ω+ξ0) + . . .+ ξk(ω+ξk−1
)]}, Ak],

where the event Ak is given by

Ak = {ξ0 < η0, ξ1(ω+ξ0) < η1(ω+ξ0), . . . , ξk(ω
+
ξk−1

) < ηk(ω+ξk−1
),

ξk+1(ω+ξk) > ηk+1(ω+ξk)}

It is well-known that for x < 0 < y, we have

E[e−zσx , σx < σy] =
sinh(y

√
2z)

sinh((y − x)
√
2z)

,

E[e−zσx , σy < σx] =
sinh(−x

√
2z)

sinh((y − x)
√
2z)

,

P (σy < σx) =
−x
y − x

.

By using the Markov property and the space homogeneous property, we reach
the following :

lim
n→∞

n∑
k=1

E[exp(−zσ−1/2), σ−1/2 < σ1/2]

×
{
E[exp(−zσ−1/n), σ−1/n < σ1−1/n]

}k 1
n+ 1

= lim
n→∞

sinh(
√
2z
2 )

sinh(
√
2z)

sinh((1−1/n)
√
2z)

sinh(
√
2z)

1− sinh((1−1/n)
√
2z)

sinh(
√
2z)

1
n+ 1

=
sinh(

√
2z/2)√

2z cosh(
√
2z)

.

This completes the proof of Proposition 2. ��
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5 Comments on the open question

The random variable
∫ 1

0

B2(u) du is well-known to probabilists and to many

physicists. The author tried to calculate the expectation

E

[(∫ 1

0

B2(u) du
)−1]

,

however, without a success. In a correspondence, Yor [18] suggested to use
Laplace transform and then integration. The formula for this expectation is
given in [1]:

E

[
exp
{
−z
(∫ 1

0

B2(u) du
)}]

= 1/
√
cosh(

√
2z), z > 0.

Yor’s suggestion was to make the next step:

E

[(∫ 1

0

B2(u) du
)−1]

=
∫ ∞
0

1/
√
cosh(

√
2z) dz.

This integral seems difficult, the author was not successful. Also, the author
tried to use Mathematica, and the system answered it is impossible.

A colleague of the author, Takuya Kitamoto, used Mathematica to obtain
the following approximate value:

N[Integrate[1/Sqrt[Cosh[Sqrt[2x]]], {x, 0, Infinity},
Method -> DoubleExponential, WorkingPrecision -> 50]

=5.56286034255567484171772972234712712361085467055

Mathematica also tells the following:

N[Pi^(3/2), 50]
=5.5683279968317078452848179821188357020136243902832

Therefore, comparing those values it seems likely to expect that

E

[(∫ 1

0

B2(u) du
)−1]

∼ π3/2.

However, it would be incorrect to conclude that we have the equality. Recall
that Kesten [14] has found an error in such a computer calculation. We do not
know if this true. Hence we have formulated this as an open question. Yor,
[18], provided the author the formula

E
[( ∫ 1

0

B2(u)du
)−1]

= 4
√
2
∞∑
n=0

(−1)n (2n)!
22n(n!)2

1
(4n+ 1)2

.
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Moreover, we can suggest the following extension, which we believe, it is a
fascinating problem: Find the exact value of

E

[(∫ 1

0

B2n(u) du
)−1]

for n = 1, 2, . . . .
We notice the following relation:

E

[(∫ x

0

B2n(u) du
)−1]

=
1

xn+1
E

[(∫ 1

0

B2n(u) du
)−1]

.
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Summary. We compare the probabilistic properties of the non-Gaussian Ornstein–
Uhlenbeck based stochastic volatility model of Barndorff-Nielsen and Shephard
(2001) with those of the COGARCH process. The latter is a continuous time
GARCH process introduced by the authors (2004). Many features are shown to
be shared by both processes, but differences are pointed out as well. Furthermore,
it is shown that the COGARCH process has Pareto like tails under weak regularity
conditions.
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1 Introduction

It is common wisdom among financial researchers and the banking industry
that volatility is stochastic, has jumps, and often exhibits long range depen-
dence. Since such financial data as log-prices and exchange rates often come
as high-frequency intra-day data, continuous time models are useful. There
have been two main approaches.

The first, mathematical one is based on semimartingale (no arbitrage)
theory, takes its starting point as the Black–Scholes model, and introduces
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a stochastic volatility process. For an introduction and overview of stochas-
tic volatility models, we refer to Shephard [25]. The second, econometric, ap-
proach is based on empirical properties of financial time series. A recent model
fitting into both these approaches and having received much attention is the
stochastic volatility model of Barndorff-Nielsen and Shephard [2, 3, 4]. There,
the volatility process is modelled as an Ornstein–Uhlenbeck (OU) type process
driven by a Lévy process (or a superposition of such OU type processes), and
thus can exhibit jumps. The price process is then obtained using an indepen-
dent Brownian motion as driving noise.

The majority of the models arising from the econometric approach are in
discrete time. In particular, GARCH models and their extensions have been
in the limelight as appropriate models to capture certain empirical facts of
the empirical volatility process; see Engle [13] for an overview on GARCH
modelling. In this area, motivated again by the availability of high-frequency
data and by the option pricing problem, classical diffusion limits have been
used in a natural way to suggest continuous time limits; see, e.g., Nelson [23]
and Duan [12].

Unfortunately, in these situations, the limiting models can lose certain es-
sential properties of the discrete time GARCH models. Moreover, they can
have distinctly different statistical properties. As has been shown recently
by Wang [28], parameter estimation in the discrete time GARCH and the
corresponding continuous time limit stochastic volatility model may yield dif-
ferent estimates. Thus the continuous time models are probabilistically and
statistically different from their discrete time progenitors.

It is surprising and counter-intuitive that Nelson’s diffusion limit of the
GARCH process is driven by two independent Brownian motions, i.e. has
two independent sources of randomness, whereas the discrete time GARCH
process is driven only by a single white noise sequence. One of the features of
the GARCH process is the idea that large innovations in the price process are
almost immediately manifested as innovations in the volatility process, but
this feedback mechanism is lost in models such as the Nelson continuous time
version.

The phenomenon that a diffusion limit is driven by two independent
Brownian motions, while the discrete time model is given in terms of a single
white noise sequence, is not restricted to the classical GARCH process. Indeed,
Duan [12] has shown that this occurs for many GARCH like processes. In this
respect, Jeantheau [20] only recently developed a discrete time model having
many features with the GARCH model in common, but having a diffusion
limit driven by a single Brownian motion only.

In Klüppelberg, Lindner and Maller [22], the authors proposed a different
approach to obtain a continuous time model. This “COGARCH” (continuous
time GARCH) model, based on a single background driving Lévy process, is
different from, though related to, other continuous time stochastic volatility
models that have been proposed. It generalizes the essential features of the
discrete time GARCH process in a direct way.
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It is natural to compare the two main approaches outlined above, i.e.
stochastic volatility and GARCH type modelling. An empirical, likelihood
inference based comparison between discrete time stochastic volatility and
discrete time GARCH processes is given in Kim, Shephard and Chib [21].
In the present paper, we aim to compare the probabilistic properties of the
COGARCH process with those of the stochastic volatility model of Barndorff-
Nielsen and Shephard. It turns out that they share many mathematical prop-
erties, but that there are also certain differences. A striking difference is
manifested in the behaviour (lightness or heaviness) of the tails of their one-
dimensional distributions. The stochastic volatility model can exhibit many
different kinds of tail behaviour, depending on the driving Lévy process,
whereas the COGARCH model has Pareto like (heavy) tails for essentially
most driving Lévy processes.

The paper is structured as follows: in the next section, we recall the ba-
sic definitions of Lévy processes and give the definitions of the models under
consideration. We then proceed to collect the properties of the models and
compare them. The most obvious differences are pointed out in Section 2.3,
while in Section 3 we consider properties of the process itself, such as strict sta-
tionarity, Markovian properties and pathwise behaviour. Then, in Section 4,
second order properties are considered. It is shown that both processes have
essentially the same kind of autocovariance structure. Section 5 focusses on
distributional properties of both models. While it is well-known that the
stationary distribution of the squared volatility of the OU type process of
Barndorff-Nielsen and Shephard is self-decomposable, in Section 5.1 the same
is shown to hold for the COGARCH volatility. Then, in Section 5.3, we prove
some new results, showing that the COGARCH model has Pareto like tails
under wide conditions. Finally, a short conclusion is given in Section 6.

2 Definition of the models

Both the OU as well as the COGARCH model are driven by a Lévy process
L = (Lt)t≥0, assumed to be càdlàg and defined on a probability space with
appropriate filtration, satisfying the “usual conditions”, i.e. right-continuity
and completeness. We recall some properties of Lévy processes, see Bertoin [6]
and Sato [24]: for each t ≥ 0 the characteristic function of Lt at θ ∈ R can be
written in the form

E(eiθLt)

= exp
(
t

(
iγLθ − τ2L

θ2

2
+
∫ ∞
−∞

(
eiθx − 1− iθx1{|x|≤1}

)
ΠL(dx)

))
.(2.1)

The constants γL ∈ R, τ2L ≥ 0 (Gaussian part) and the measure ΠL on R form
the characteristic triplet of L; the Lévy measure ΠL is required to satisfy∫

R
min(1, x2)ΠL(dx) < ∞. If in addition

∫
R
min(1, |x|)ΠL(dx) < ∞, then
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γL,0 := γL−
∫
[−1,1] xΠL(dx) is called the drift of L. A Lévy process is of finite

variation if and only if
∫

R
min(1, |x|)ΠL(dx) < ∞ and τ2L = 0. In that case,

the sample paths of (Lt)t≥0 have finite variation on compacts. A Lévy process
with nondecreasing sample paths is called a subordinator. These are exactly
the Lévy processes of finite variation with non-negative drift and having Lévy
measure concentrated on (0,∞). In the following considerations, we will only
be interested in the situation when the Lévy measure is non-trivial, i.e. we
always assume that ΠL is nonzero.

2.1 The Barndorff-Nielsen and Shephard OU process

The stochastic volatility model presented in [2, 3, 4] specifies the volatility as
an Ornstein-Uhlenbeck process, driven by a subordinator. More precisely, let
(Lt)t≥0 be a subordinator and α > 0. Then the volatility process (σ̃t)t≥0 is
defined by the stochastic differential equation (SDE)

dσ̃2t = −ασ̃2t dt+ dLαt, t ≥ 0 , (2.2)

where σ̃20 is a finite random variable independent of (Lt)t≥0 and σ̃t :=
√
σ̃2t .

The solution to (2.2) is the Ornstein-Uhlenbeck type process (“OU process”)

σ̃2t =
(∫ t

0

eαsdLαs + σ̃20

)
e−αt , t ≥ 0 . (2.3)

The (logarithmic) price process (G̃t)t≥0 is then modelled by the SDE

dG̃t = (µ+ bσ̃2t )dt+ σ̃t dWt , t ≥ 0 , G̃0 = 0 , (2.4)

where µ and b are constants and (Wt)t≥0 is standard Brownian motion, inde-
pendent of σ̃20 and the Lévy process (Lt)t≥0. The Itô solution of this SDE is
given by

G̃t = µt+ b

∫ t

0

σ̃2s ds+
∫ t

0

σ̃s dWs , t ≥ 0 .

The logarithmic asset returns over time periods of length r > 0 are then given
by G̃(r)t := G̃t+r − G̃t, t ≥ 0. In the following, the notation G̃t and σ̃t (with
tildes) will always refer to the processes of Barndorff-Nielsen and Shephard
just defined. In contrast, the COGARCH process defined below will always be
denoted by Gt with volatility σt (without tildes). If the driving Lévy process
(Lt)t≥0 refers to the OU process, then it will always be assumed to be a
subordinator.

2.2 The COGARCH(1,1) model

The COGARCH(1,1) process (see [22]) is motivated by the discrete time
GARCH(1,1) process (Yn)n∈N0 , satisfying
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Yn = εnσn,disc, where σ2n,disc = β + λY 2n−1 + δσ2n−1,disc, n ∈ N, (2.5)

σn,disc :=
√
σ2n,disc, and (εn)n∈N0 is a sequence of independent and identically

distributed random variables, independent of σ20,disc. Here, N = {1, 2, 3, . . .}
denotes the set of positive integers and N0 = N ∪ {0}. The recursion in (2.5)
can be solved to give

σ2n,disc

=

β ∫ n

0

exp

−
's(∑
j=0

log(δ + λε2j )

 ds+ σ20,disc

 exp


n−1∑
j=0

log(δ + λε2j )

 .

In the continuous time version, the innovations εn are replaced by the jumps
of a Lévy process. Let (Lt)t≥0 be a Lévy process with jumps ∆Lt = Lt−Lt−,
and let 0 < δ < 1, λ ≥ 0. Define a càdlàg process (Xt)t≥0 by

Xt = −t log δ −
∑
0<s≤t

log(1 + (λ/δ)(∆Ls)2), t ≥ 0 . (2.6)

Then, with β > 0 and σ20 a finite random variable, independent of (Lt)t≥0,
define the (left-continuous) volatility process (σt)t≥0 by

σ2t =
(
β

∫ t

0

eXsds+ σ20

)
e−Xt− , t ≥ 0, (2.7)

where σt :=
√
σ2t , and define the integrated continuous time GARCH process

(“COGARCH”) (Gt)t≥0 as the càdlàg process satisfying

dGt = σt dLt , t ≥ 0 , G0 = 0 . (2.8)

Thus, G has jumps at the same times as L but of the size ∆Gt = σt∆Lt. The
logarithmic asset returns over time periods of length r > 0 are then modelled
by G(r)t := Gt+r −Gt, t ≥ 0.

In [22], Proposition 3.1, it is shown that the process (Xt)t≥0 is itself a spec-
trally negative Lévy process of finite variation, with drift γX,0 = − log δ and
zero Gaussian component τ2X = 0. The Lévy measureΠX is the image measure
of ΠL under the transformation R→ (−∞, 0], x �→ − log(1 + (λ/δ)x2).

2.3 A first comparison

Despite their arising and being motivated in quite different ways, the volatility
processes σ2 and σ̃2 are strikingly analogous in satisfying the general Ornstein-
Uhlenbeck equations (2.3) and (2.7). But an obvious difference between the
price processes is that the OU process of Barndorff-Nielsen and Shephard is fed
into a Hull-White model, driven by an independent Brownian motion, whereas
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the COGARCH price process is driven by the same Lévy process as is used in
the volatility. Furthermore, the SDE defining G̃t has an additional drift term
(µ+bσ̃2t )dt, which does not occur in (2.8). It is possible to add such a drift term
to (2.8) as well, but we will not do this since there is already a correspondence
of G to the discrete time GARCH process without the necessity for an extra
drift term.

Another obvious difference concerns the sample path properties of the
price processes: (G̃t)t≥0 will have continuous sample paths, inherited from
the driving Brownian motion (see e.g. Jacod and Shiryaev [19]), while (Gt)t≥0
exhibits jumps. Both these factors can be useful in different ways in practice.

For the volatility processes, note that both (σ̃2t )t≥0 and (σ2t )t≥0 exhibit
jumps. While (σ̃t)t≥0 is right-continuous, (σt)t≥0 is left-continuous. This is a
minor difference, since G̃t is driven by Brownian motion, and hence σ̃t in (2.4)
could equally well be replaced by σ̃t−. A more striking difference between the
volatility processes is that in (2.3) the driving Lévy process of the volatility is
in the integrator, while in (2.7) it appears in the integrand. Despite these facts,
we will see that both volatility processes nevertheless share many common
features.

3 Properties of the processes

In this section we shall consider Markov and stationarity properties, link the
integrated squared volatility and the quadratic variation for both processes,
and exhibit some pathwise properties of the volatility processes. We start
by mentioning that not only does σ̃t satisfy an SDE, but so does σt, see
Proposition 3.1 below, which was proved in [22], Proposition 3.2.

Proposition 3.1. [SDE and solution for σ]
The squared volatility process (σ2t )t≥0 of the COGARCH process satisfies the
stochastic differential equation

dσ2t+ = βdt+ σ2t e
Xt−d(e−Xt) , t > 0 ,

and we have

σ2t = βt+ log δ
∫ t

0

σ2sds+ (λ/δ)
∑
0<s<t

σ2s(∆Ls)2 + σ20 , t ≥ 0. (3.1)

Both volatility processes are Markovian:

Theorem 3.1. [Markov properties of the processes]
Both the squared volatility processes (σ̃2t )t≥0 and (σ

2
t )t≥0, as given by (2.3) and

(2.7), respectively, are time-homogeneous Markov processes. Furthermore, the
bivariate processes (σ̃t, G̃t)t≥0 and (σt, Gt)t≥0 are time-homogeneous Markov
processes.
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Proof. For the fact that (σ̃2t )t≥0 is a time homogeneous Markov process if
α = 1 see Sato [24], Lemma 17.1 and its preceding discussion. For general
α > 0, the assertions on (σ̃2t )t≥0 and (σ̃t, G̃t)t≥0 can be seen as follows. We
have

σ̃2t = σ̃2y e
α(y−t) +

∫ t

y

eα(s−t)dLαs = eα(y−t)

(
σ̃2y +

∫ α(t−y)

0

ev dLv+αy

)
.

Since {Lαs}y≤s≤t is independent of the σ-algebra generated by (σ̃2u)0≤u≤y,
the first equation gives the Markov property for σ̃t, and since the distribution
of the expression on the righthand side depends only on t− y we see that σ̃2

is time homogeneous. The Markov property of (σ̃t, G̃t)t≥0 follows from

G̃t = G̃y + µ(t− y) + b

∫ t

y

σ̃2s ds+
∫ t

y

σ̃s dWs, 0 ≤ y < t.

For the corresponding results on (σ2t )t≥0 and (σt, Gt)t≥0, see [22], Theorem 3.2
and Corollary 3.1.

The Markov property of the squared volatility processes can be regarded
as a special case of a result on more general Ornstein-Uhlenbeck processes.
Carmona, Petit and Yor [10] consider processes of the form

Vt = eξt
(∫ t

0

e−ξs− dηs + V0

)
, t ≥ 0 ,

where (ξt, ηt)t≥0 is a two-dimensional Lévy process independent of V0. Then
(Vt)t≥0 is a time-homogeneous Markov process, [10], Corollary 5.2. If (ξt)t≥0
and (ηt)t≥0 are independent, then Vt

D=
∫ t
0
eξs− dηs+V0eξt , see [10]. (Through-

out, “D=” means “equal in distribution”.) Without assuming independence of
ξ and η, Erickson and Maller [16], Theorem 2, give necessary and sufficient
conditions for the a.s. existence of the integral

∫∞
0
eξt− dηt. When this occurs

and ξ and η are independent, there is a stationary solution, V∞, say, and Vt
converges in distribution to this as t → ∞ (see Carmona et al. [11], Theo-
rem 3.1 and its proof). Theorem 3.2 below can be deduced from these results.
(We remark that separate proofs for the two types of volatility process can be
given without appealing to properties of the generalized OU-process (Vt)t≥0.
For (σ̃2t )t≥0, see [2, 3] or Sato [24], Theorems 17.5, 17.11 and Corollary 17.9
(apart from part (c) below), while for (σ2t )t≥0 see [22], Theorems 3.1, 3.2 and
Corollary 3.1.)

Theorem 3.2. [Stationarity condition for σ̃ and σ]
(a) The squared volatility process (σ̃2t )t≥0 of the OU model converges in dis-
tribution to a finite random variable σ̃2∞ as t→∞ if and only if∫ ∞

1

log y ΠL(dy) <∞. (3.2)
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In that case,

σ̃2∞
D=
∫ ∞
0

e−s dLs. (3.3)

(b) The squared volatility process (σ2t )t≥0 of the COGARCH model converges
in distribution to a finite random variable σ2∞ as t→∞ if and only if∫

R

log(1 + (λ/δ)y2)ΠL(dy) < − log δ (3.4)

(which, since δ > 0, incorporates the requirement that the integral be finite),
in which case

σ2∞
D= β

∫ ∞
0

e−Xtdt.

(c) If (3.2) or (3.4) are not satisfied, respectively, then the squared volatility
process diverges in probability to ∞ as t→∞.
(d) A stationary solution of (σ̃2t )t≥0 or (σ2t )t≥0 exists if and only if (3.2)
or (3.4) are satisfied, in which case the stationary distribution at time t is the
distribution of σ̃2∞ or σ2∞, respectively. In that case, (G̃t)t≥0 and (Gt)t≥0 have
stationary increments, i.e. the increment processes (G̃(r)t )t≥0 and (G(r)t )t≥0
are stationary for each fixed r > 0.

It is interesting to observe that the stationarity condition for (σ̃2t )t≥0 and
the distribution of σ̃2∞ depend on the Lévy measure ΠL only, whereas (3.4)
and σ2∞ depend on ΠL and on the parameters δ and λ. For the OU model,
this is a consequence of the unusual timing dLαt in (2.2), chosen deliberately
by Barndorff-Nielsen and Shephard [3] to separate the stationary distribution
from the dynamical structure, which depends on α.

Next we investigate pathwise properties of the volatility processes, espe-
cially the behaviour between jumps if the driving Lévy process is compound
Poisson.

Proposition 3.2. [Pathwise behaviour of σ̃ and σ]
(a) The volatility σt at time t of the GOGARCH process satisfies

σ2t ≥
β

− log δ
(1− et log δ), for all t ≥ 0.

If σ2t0 ≥
β

− log δ for some t0, then σ
2
t ≥ β

− log δ for every t ≥ t0.

If σ2t
D= σ2∞ is the stationary version, then

σ2∞ ≥ β

− log δ
a.s. (3.5)

The stationary version σ̃2∞ of the OU-process is bounded from below (i.e.
bounded away from 0) if and only if the drift term γL,0 of the subordina-
tor (Lt)t≥0 is strictly positive.
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(b) The jumps of both squared volatility processes at time t > 0 are described
by

σ̃2t − σ̃2t− = ∆Lαt, σ2t+ − σ2t = (λ/δ)σ2t (∆Lt)2.

(c) Let (Lt)t≥0 be a compound Poisson process with jump times 0 = T0 <
T1 < . . . Then the OU volatility satisfies for t ∈ (Tj/α, Tj+1/α), j ∈ N0,

d
dt
σ̃2t = −ασ̃2t , σ̃2t = σ̃2Tj/α

e−(αt−Tj),

while the COGARCH volatility satisfies for t ∈ (Tj , Tj+1),

d
dt
σ2t = β + (log δ)σ2t , σ2t =

β

− log δ
+
(
σ2Tj+ +

β

log δ

)
e(t−Tj) log δ.

Proof. (a) From (2.6) follows that for 0 ≤ s < t,

Xs −Xt− = (t− s) log δ +
∑

s<u<t

log
(
1 + (λ/δ)(∆Lu)2

)
≥ (t− s) log δ. (3.6)

In particular,

σ2t = β

∫ t

0

eXs−Xt− ds+ σ20 e
−Xt−

≥ β

∫ t

0

e(t−s) log δ ds =
β

− log δ
(
1− et log δ

)
.

Then (3.5) follows as t → ∞. Now let t > t0 and suppose that σ2t0 ≥
β

− log δ .
In equation (3.12) of [22] it was shown that

σ2t = eXt0−−Xt−σ2t0 + β

∫ t

t0

eXs−Xt− ds.

From (3.6) then follows

σ2t ≥ e(t−t0) log δ σ2t0 + β

∫ t

t0

e(s−t0) log δ ds

≥ e(t−t0) log δ
(

β

− log δ

)
+
(

β

− log δ

)
(1− e(t−t0) log δ) =

β

− log δ
.

That σ̃2∞ is bounded from below if and only if the drift is non-zero follows
from (3.3) and Sato [24], Example 17.10.

The proof of (b) and (c) follows easily from (2.3), (2.7) and (3.1).

Proposition 3.2 shows in particular that the stationary version of the CO-
GARCH volatility process is always bounded away from 0 once t > 0, which
is not necessarily the case for the OU volatility. From (b) it follows that if a
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volatility jump occurs for either process, then this jump is necessarily positive.
For compound Poisson driving processes, between jumps the processes show
similarities, since both decay exponentially (more precisely, the COGARCH
process decays only once it rises above the lower bound β/(− log δ), and before
that it increases). However, note that (σ̃2t ) satisfies a homogeneous differential
equation, while (σ2t ) satisfies an inhomogeneous differential equation, between
jumps.

Next, we link the integrated squared volatilities
∫ t
0
σ̃2s ds and

∫ t
0
σ2s ds with

the quadratic variations of the process G̃ andG, respectively. For the definition
and elementary properties of the quadratic variation [Y, Y ]t of a semimartin-
gale (Yt)t≥0, we refer to Jacod and Shiryaev [19], Chapter 1.

Proposition 3.3. [Quadratic variation and integrated squared volatility]
(a) For the stochastic volatility model of Barndorff-Nielsen and Shephard we
have

[G̃, G̃]t =
∫ t

0

σ̃2s ds, t ≥ 0. (3.7)

(b) For the COGARCH model we have

λ

δ
[G,G]t− = (

λ

δ
τ2L − log δ)

∫ t

0

σ2s ds + σ2t − σ20 − βt , t ≥ 0. (3.8)

Proof. (a) is clear from the general properties of stochastic integrals, see
e.g. [19], while (b) follows from

[G,G]t− =
∫ t−

0

σ2s d[L,L]s

=
∫ t−

0

σ2s d(sτ
2
L +

∑
0<u≤s

(∆Lu)2) = τ2L

∫ t

0

σ2s ds+
∑
0<u<t

σ2s(∆Ls)2.

Plugging this into (3.1) gives (3.8).

The integrated quadratic variation is a key measure for stochastic volatil-
ity models. Its importance can be seen from equation (5.3) below. Now (3.7)
means that the integrated volatility can be recovered from the quadratic vari-
ation. Equation (3.8) shows that for the COGARCH process, the integrated
volatility can at least be expressed with the aid of the quadratic variation and
the volatility at times t and 0 by a reasonably simple formula. An expression
in terms of the quadratic variation only cannot be expected, since the Lévy
process in (2.8) has jumps.

4 Second order properties

In this section we shall concentrate on moments and autocorrelation functions
of both the volatility processes and the price process. A short discussion of
the cumulant transform for the OU process is included.
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From now on, in order to avoid the trivial case of a deterministic volatility,
we shall always assume λ > 0 when dealing with the COGARCH process.

4.1 The volatility process

In this section we derive moments and autocorrelation functions of the squared
stochastic volatility processes (σ̃2t )t≥0 and (σ2t )t≥0. For convenience we shall
restrict ourselves to the case of the stationary versions of these volatility
processes. We start with a preparatory lemma on exponential moments of
(Xt)t≥0 for the COGARCH volatility, which by (2.7) are related to moments
of σ2t .

Lemma 4.1. [Exponential moments of X]
Let Xt be given by (2.6), and keep κ > 0 throughout.
(a) Ee−κXt <∞ for some t > 0, or, equivalently, for all t > 0, if and only if
E|L1|2κ <∞.
(b) When Ee−κX1 <∞, put Ψ(κ) = ΨX(κ) = logEe−κX1 . Then |Ψ(κ)| <∞,
Ee−κXt = etΨ(κ), and

Ψ(κ) = κ log δ +
∫

R

(
(1 + (λ/δ)y2)κ − 1

)
ΠL(dy). (4.1)

(c) If Ψ(κ) < 0 for some κ > 0, then Ψ(d) < 0 for all 0 < d < κ.

(d) If E|L1|2κ < ∞ and Ψ(κ) ≤ 0 for some κ > 0, then (3.4) holds, and a
stationary version of (σ2t )t≥0 exists.

Proof. (a), (b) and (c) are proved in Lemma 4.1 of [22]. For (d), note that
Ψ(κ) ≤ 0 is equivalent to

1
κ

∫
R

((
1 +

λ

δ
y2
)κ

− 1
)
ΠL(dy) ≤ − log δ.

Since log(1 + (λ/δ)y2) < (1/κ)((1 + (λ/δ)y2)κ − 1) for any y �= 0 (as a conse-
quence of x > 1 + log x for x > 1), this implies (3.4).

Next we give conditions for the existence of moments of the squared volatil-
ity processes. For σ̃2∞ this is done in terms of the cumulants. Recall that the cu-
mulant transform of a random variable Y is defined as cumY (θ) := logEeiθY ,
and that the kth cumulant cumY,k exists if and only if E|Y |k <∞, in which
case it is given by

cumY,k :=
1
ik

dk

dθk
cumY (0).

In particular,
cumY,1 = EY, cumY,2 = Var(Y ).
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Theorem 4.1. [Moments and ACF of σ̃ and σ]
Let σ̃2∞ and σ2∞ have the stationary distributions of the volatility processes,
respectively.
(a) The kth moment of σ̃2∞ is finite if and only if ELk

1 < ∞, k ∈ N. In this
case, the kth cumulants of σ̃2∞ and L1 satisfy the relation

cum
σ̃2
∞,k

= k−1 cumL1,k.

In particular, Eσ̃2∞ = EL1, Var(σ̃2∞) = 2−1Var(L1). If EL21 < ∞, then the
autocovariance function of the stationary squared volatility process satisfies

cov(σ̃2t , σ̃
2
t+h) = 2−1Var(L1) e−αh, t, h ≥ 0. (4.2)

(b) The kth moment of σ2∞ is finite if and only if EL2k1 < ∞ and Ψ(k) < 0,
k ∈ N. In this case,

Eσ2k∞ = k!βk
k∏

l=1

1
−Ψ(l) . (4.3)

In particular, Eσ2∞ = β
−Ψ(1) , Var(σ

2
∞) = β2(2Ψ−1(1)Ψ−1(2) − Ψ−2(1)). If

EL41 < ∞ and Ψ(2) < ∞, then the autocovariance function of the stationary
squared volatility process satisfies

cov(σ2t , σ
2
t+h) = β2

(
2

Ψ(1)Ψ(2)
− 1
Ψ2(1)

)
e−|Ψ(1)|h , t, h ≥ 0 . (4.4)

Proof. (a) The existence of the moments of σ̃2∞ is a consequence of

ELk
1 ≤ ek E

(∫ 1

0

e−s dLs

)k

≤ ek E

(∫ ∞
0

e−s dLs

)k

(recall that Lt is a subordinator in the tilde setup) and

E

(∫ ∞
0

e−s dLs

)k

≤ E

( ∞∑
i=0

e−i(Li+1 − Li)

)k

=
∞∑

i1=0

. . .

∞∑
ik=0

e−i1−...−ikE ((Li1+1 − Li1) · · · (Lik+1 − Lik)) ,

and the latter is finite if ELk
1 <∞ by independence and identical distribution

of the increments Lij+1 − Lij . The relation between the cumulants (when
they exist) and the formula for the autocovariance function can be found
in [3], page 172.

The proof of (b) can be found in [22], Proposition 4.2 and Corollary 4.1.
For (4.3), see also Carmona, Petit and Yor [10], Proposition 3.3.
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Note that the moment condition EL2k1 and Ψ(k) < 0 for the COGARCH
volatility already imply the existence of a stationary version by Lemma 4.1(d).
The same is true for the Ornstein-Uhlenbeck process, since EL1 < ∞ is
equivalent to

∫∞
1
xΠL(dx) <∞, implying (3.2).

It should be noted that, for σ̃2∞, the existence of moments depends only
on the driving Lévy process (Lt)t≥0, while for σ2∞ it depends on the driving
Lévy process as well as on the parameters. This is highlighted in the following
Proposition, see [22], Proposition 4.3.

Proposition 4.1. [Dependence on parameters for moments of σ]
(a) For any Lévy process (Lt)t≥0 with nonzero Lévy measure such that∫

R
log(1 + y2)ΠL(dy) is finite, there exist parameters δ, λ ∈ (0, 1) for which

σ2∞ exists, but Eσ2∞ =∞.
(b) For any Lévy process (Lt)t≥0 such that EL2k1 < ∞ (k ∈ N) and for any
δ ∈ (0, 1) there exists λδ > 0 such that the limit variable σ2∞ exists with
Eσ2k∞ <∞ for any pair of parameters (δ, λ) such that 0 < λ ≤ λδ.

(c) Suppose 0 < δ < 1, λ > 0. Then for no Lévy process (Lt)t≥0 (with nonzero
Lévy measure) do the moments of all orders of σ2∞ exist. In particular, the
Laplace transform Ee−θσ

2
∞ of σ2∞ does not exist for any θ < 0.

Much of the analysis in [3] is based on the connection between the cumulant
functions of L1 and σ̃2∞. In [1], page 178, it is shown that

cum
σ̃2
∞
(θ) =

∫ ∞
0

cumL1(e
−sθ) ds, cumL1(θ) = θ

d
dθ

cum
σ̃2
∞
(θ)

(provided they exist), see also [5], page 282, where a similar relation for
the logarithms of the Laplace transforms is established. In contrast, for the
COGARCH volatility, a feasible expression for the cumulant transform or
the Laplace transform does not seem to be at hand. By Proposition 4.1, the
Laplace transform of σ2∞ does not exist in a (two-sided) neighborhood of the
origin. However, the Laplace transform of the random variable σ−2∞ exists in
a neighborhood of the origin and σ2∞ is determined by all its negative integer
moments. This was shown by Bertoin and Yor [7], Proposition 2, who also
give an expression for the negative integer moments.

4.2 The price process

In this section we investigate second order properties of the increments of the
price processes (G̃t)t≥0 and (Gt)t≥0. From Section 2 recall the notation

G̃
(r)
t := G̃t+r − G̃t, G

(r)
t := Gt+r −Gt, t ≥ 0, r > 0,

corresponding to logarithmic asset returns over time periods of length r. We
will work with the stationary version of the volatility process. By Theorem 3.2
this implies strict stationarity of the processes (G̃(r)t )t≥0 and (G

(r)
t )t≥0, respec-

tively.
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Theorem 4.2. [ACF of the price process]
Let r > 0 be a fixed constant, and let t ≥ 0.
(a) Let the price process (G̃t)t≥0 be defined by (2.4) for the stationary volatility
process (σ̃t)t≥0. Assume that EL21 <∞. Then

E(G̃(r)t ) = (µ+ bEL1)r,

Var(G̃(r)t ) = rEL1 + b2Var(L1)
(
r/α− (1− e−αr)/α2

)
.

If µ = b = 0, then
cov(G̃(r)t , G̃

(r)
t+h) = 0

for any h ≥ r. If additionally EL41 < ∞, then there is a strictly positive
constant C̃r (not depending on t) such that

cov((G̃(r)t )2, (G̃(r)t+h)
2) = C̃r e

−αh ∀ h ∈ rN.

(b) Let the COGARCH process (Gt)t≥0 be defined by (2.8) for the stationary
volatility process (σt)t≥0. Suppose (Lt)t≥0 is a quadratic pure jump process
(i.e. τ2L = 0 in (2.1)) with EL21 <∞, EL1 = 0, and that Ψ(1) < 0. Then for
any h ≥ r > 0,

E(G(r)t ) = 0,

E(G(r)t )2 =
βr

−Ψ(1)EL
2
1,

cov (G(r)t , G
(r)
t+h) = 0.

Assume further that EL41 < ∞ and Ψ(2) < 0. Then there is a non-negative
constant Cr (not depending on t) such that

cov((G(r)t )2, (G(r)t+h)
2) = Cr e

−|Ψ(1)|h ∀ h ≥ r.

Assume further that EL81 < ∞, ψ(4) < 0, that (Lt)t≥0 is of finite variation
and that

∫
R
x3ΠL(dx) = 0. Then Cr is strictly positive.

The proof of (a) can be found in Section 4 of [3], while the proof of (b) is
given in [22], Proposition 5.1.

Theorem 4.2 tells us that for both models the returns are uncorrelated,
while the squared returns are correlated. This agrees very much with empirical
findings. In both models, the autocorrelation function of the squared returns
decreases exponentially. Furthermore, we see that Var(G(r)t ) is linear in r,
while Var(G̃(r)t ) is asymptotically (affine) linear in r as r approaches 0 or ∞
(however, with different slopes for r → 0 and r →∞).

5 Distributional properties of the models

In this section we investigate further properties of the stationary distribution
of the volatility processes and the price processes.
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5.1 Self-decomposability

The distribution of a random variable Y is called self-decomposable if for any
c ∈ (0, 1) there exists a random variable Zc, independent of Y , such that

Y
D= cY + Zc.

Every self-decomposable distribution is infinitely divisible, and an infinitely
divisible distribution is self-decomposable if and only if its Lévy measure has
a Lévy density w, which can be represented as

w(x) =
k+(x)
x

1x>0 +
k−(|x|)
|x| 1x<0, x ∈ R, (5.1)

where k+ and k− are non-increasing non-negative functions on (0,∞). Not
only has the Lévy measure a density, but also the distribution itself has.
See Sato [24], Theorem 27.13, and Sections 15-17 there for examples and
properties of self-decomposable distributions. As a further example, the class
of generalized inverse Gaussian distributions is considered in [3].

The stationary distributions σ̃2∞ of the Ornstein–Uhlenbeck model of
Barndorff-Nielsen and Shephard [3] now have the nice property that they
are self-decomposable. Furthermore, as L varies over all subordinators, they
constitute the class of all possible self-decomposable distributions whose sup-
port is contained in [0,∞), see Sato [24], Example 17.10 and Theorem 24.10.
The correspondence between the Lévy density w of σ̃2∞ and the Lévy measure
ΠL of the driving Lévy process (Lt)t≥0 is given by

w(x) = x−1ΠL((x,∞)), x > 0, (5.2)

see [4], equation (4.17). Interestingly, the stationary distribution σ2∞ of the
COGARCH process is self-decomposable, too. This was communicated to us
by Samorodnitsky [27], who more generally showed that

∫∞
0
e−Xtdt is self-

decomposable for any spectrally negative Lévy process (Xt)t≥0 such that
Xt → +∞ a.s. We state this as a Theorem, and include Samorodnitsky’s
proof.

Theorem 5.1. The stationary distributions σ̃2∞ and σ2∞ of both the squared
volatility processes of the OU-process and the COGARCH process are self-
decomposable.

Proof. We only need to show the result for σ2∞. The process (Xt)t≥0 defined
in (2.6) is spectrally negative. Further, Xt → +∞ a.s. as t → ∞ as a conse-
quence of (3.4) (see [22], proof of Theorem 3.1). From this follows that the
stopping time Th, defined for arbitrary but fixed h > 0 by

Th := inf{t ≥ 0 : Xt = h},
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is almost surely finite. Let Ft be the σ-algebra generated by (Xs)0≤s≤t,
and consider the stopping time σ-algebra FTh

. Then by the strong Markov
property of Lévy processes, see Bertoin [6], Proposition 6 of Chapter I,
(XTh+t − XTh

)t≥0 is independent of FTh
and has the same distribution as

(Xt)t≥0. Writing

σ2∞
D= β

∫ ∞
0

e−Xtdt = β

∫ Th

0

e−Xtdt+ β

∫ ∞
Th

e−Xtdt =: Ah +Bh, say,

we see that Ah is FTh
-measurable and that

Bh = β

∫ ∞
Th

e−(Xt−Xh)e−XThdt = e−hβ

∫ ∞
Th

e−(Xt−XTh
)dt

is independent of Ah and has the same distribution as e−hσ2∞. Thus we have
for every h > 0,

σ2∞
D= Ah + e−hσ2∞

with Ah and σ2∞ being independent, showing that σ2∞ is self-decomposable.

The self-decomposability of σ2∞ is somewhat surprising, for
∫∞
0
e−Xtdt

does not even need to be infinitely divisible for every Lévy process Xt tending
to +∞ a.s. For example, if Xt = Nt+ct, t ≥ 0, with a Poisson process (Nt)t≥0
and a constant c > 0, then

0 ≤
∫ ∞
0

e−Xtdt =
∫ ∞
0

e−Nt−ctdt ≤
∫ ∞
0

e−ctdt = 1/c,

showing that
∫∞
0
e−Xtdt is not infinitely divisible as a bounded non-constant

random variable (see Sato [24], Corollary 24.4). This example was constructed
by Samorodnitsky [27].

As a self-decomposable distribution, σ2∞ has a density, l say. Moreover, if
EL21 < ∞, then l is infinitely many times differentiable on (β/(− log δ),∞)
and satisfies the integro-differential equation

((− log δ)x− β)l(x)

=
∫ x

β/(− log δ)
ΠL

(
{y ∈ R : |y| >

√
(
x

v
− 1)δ/λ}

)
l(v) dv, x >

β

− log δ
.

This follows from Proposition 2.1 of Carmona, Petit and Yor [10]. In Sec-
tion 5.3 we shall derive another property of σ2∞, showing that its distribution
has Pareto like tails under suitable conditions.

5.2 Conditional distributions and tail behaviour of the OU process

Since the price process (G̃t)t≥0 in the model of Barndorff-Nielsen and Shep-
hard [2, 3] is driven by a Brownian motion independent of the volatility, it
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is not surprising that conditional returns are normally distributed. More pre-
cisely, for t ≥ 0, r > 0, let G̃(r)t = G̃t+r − G̃t as in Section 2, and set

(σ̃2∗t )(r) :=
∫ t+r

t

σ̃2s ds,

i.e. the increments of length r of the integrated squared volatility. Then the
conditional distribution of G̃(r)t given (σ̃2∗t )(r) is normal, more precisely

G̃
(r)
t |(σ̃2∗t )(r) ∼ N(µr + b(σ̃2∗t )(r), (σ̃2∗t )(r)), (5.3)

see [3], page 170. This is one indication of the fundamental importance of the
integrated squared volatility in stochastic volatility models.

For the COGARCH process no easy expression for the returns of the price
process is known. However, if (Lt)t≥0 has Gaussian part τ2L, drift γL,0 and
finite Lévy measure coming from a compound Poisson process with jump
times T1 < T2 < . . . and jump distribution ρ = ΠL/ΠL(R), then from∆GTj

=
σTj

∆LTj
follows

∆GTj
|σTj

∼ ρ.

For the increments between two jumps, observe that (with (τ2LWs)s≥0 denoting
the Brownian motion component of (Lt)t≥0)

GTj+1− −GTj−

= ∆GTj
+GTj+1− −GTj

= σTj
∆LTj

+ γL,0

∫ Tj+1

Tj

σs ds+ τ2L

∫ Tj+1

Tj

σs dWs.

In particular, it can be seen that GTj+1− − GTj−, conditioned on Tj+1 − Tj ,
σTj

and ∆LTj
, is normally distributed.

The tail behaviour of σ̃2∞ in the OU model depends heavily on the driving
Lévy process (Lt)t≥0. Recall that the Lévy density of σ̃2∞ and the tail of the
Lévy measure of L1 are connected by the simple formula (5.2). Since any pos-
itive self-decomposable distribution can occur as σ̃2∞, this allows for many dif-
ferent tail behaviours. For example, if k+(x) in (5.1) is chosen to decrease like
x−κ as x→∞ where κ > 0, then limx→∞ x

κP (σ̃2∞ > x) = 1/κ, see Embrechts
and Goldie [14] or also Embrechts, Goldie and Veraverbeke [15] in this context.
On the other hand, if σ̃2∞ is generalized inverse Gaussian GIG(a1, a2, a3), then
it has a probability density given by f(x) = cxa1−1 exp{−a22x−1/2− a23x/2},
x > 0, with a positive constant c (see, e.g., [3], page 173), so it will not have
Pareto like tails unless a3 = 0.

For G̃t, from (5.3) it should be expected that the tail behaviour of
∫ t
0
σ̃2sds

carries somehow over to the tail behaviour of G̃t. In order to get insight into
the tail behaviour of

∫ t
0
σ̃2sds, Barndorff-Nielsen and Shephard [5], equation

(31), give a formula for the Lévy density v of
∫ t
0
σ̃2sds in terms of the Lévy
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density of L1 (provided L1 has a Lévy density; infinite divisibility of the in-
tegrated squared volatility can be seen from equation (4) in [5] and the fact
that the class of infinitely divisible distributions is closed under convolution
and weak convergence). In particular, if either L1 or σ̃2∞ is tempered sta-
ble or gamma distributed, it is shown that v(x) behaves asymptotically like
d1x
−d2 exp{−d3x} as x→∞, where d1, d3 > 0, d2 ∈ [1, 3), see [5], Table 3. In

particular, Pareto like tails of G̃t are not to be expected in these cases. This
is in contrast to the COGARCH process, as will be shown next.

5.3 Tail behaviour of the COGARCH process

We now concentrate on the tail behaviour of the COGARCH process, and
show that both the tail of the stationary volatility σ∞ as well as the tail of
Gt are Pareto like under weak assumptions, given in terms of the parameters
δ, λ and the driving Lévy process (Lt)t≥0. Recall the notion of Ψ(κ) from
Lemma 4.1. Also, for x ≥ 0, denote log+ x = log(max{x, 1}). Further, as in
Section 4, we assume λ > 0 throughout to avoid a deterministic volatility.

We start with the tail behaviour of σ2∞. It can be derived by a simple
transformation applied to Lemma 4 of Rivero [26]. For completeness, we shall
not deduce it from his result, but rather include a short proof along the lines
of [26].

Theorem 5.2. [Pareto tail behaviour of σ]
Suppose there is κ > 0 such that

E|L1|2κ log+ |L1| <∞ and Ψ(κ) = 0. (5.4)

Let (σ2t )t≥0 be the stationary version of the squared volatility process (which
exists by Lemma 4.1(d)). Then there is a constant C > 0 (which does not
depend on t) such that, for any t ≥ 0,

lim
x→∞

xκP (σ2t > x) = C. (5.5)

Proof. From (2.7) it is seen that the volatility process (σ2t )t≥0 satisfies

σ2t = e−Xt−σ20 + β

∫ t

0

eXs−Xt− ds, t > 0,

where σ20 is independent of
(
e−Xt− , β

∫ t
0
eXs−Xt− ds

)
by definition of the

COGARCH volatility. Thus (since σ20
D= σ2t

D= σ2∞) the stationary solution
σ2∞ satisfies for every t > 0 the distributional fixed point equation

σ2∞
D=Mtσ

2
∞ +Qt,

where σ2∞ is independent of (Mt, Qt) and
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Mt
D= e−Xt , Qt

D= β

∫ t

0

e−Xs ds.

The claim then follows from Theorem 4.1 in Goldie [18], once we have shown
that there is some t > 0 such that

(i) For no r > 0 is the law of −Xt concentrated on rZ
(ii)E|Mt|κ = 1
(iii)E|Mt|κ log+ |Mt| <∞
(iv)E|Qt|κ <∞.

To show (i), recall that (−Xs)s≥0 is a Lévy process of finite variation
with drift γ0,−X1 := γ0,−X = log δ, zero Gaussian component and non-zero
Lévy measure Π−X1 := Π−X being concentrated on (0,∞). The character-
istic triplet of the Lévy process (−Xs)s≥0 is the characteristic triplet of the
infinitely divisible distribution −X1. For fixed t, the characteristic triplet of
−Xt is t times the characteristic triplet of −X1. In particular, the drift and
Lévy measure of −Xt satisfy γ0,−Xt

= tγ0,−X1 and Π−Xt
= tΠ−X1 . Now let

r > 0. Then −Xt is supported on rZ if and only if −r−1Xt is supported on
Z, which is equivalent to −r−1Xt having drift γ0,−r−1Xt

in Z and its Lévy
measure being supported on Z, see Sato [24], Corollary 24.6. In terms of −Xt

this is equivalent to r−1t log δ ∈ Z and Π−Xt
being supported on rZ. Since

the supports of the Lévy measures Π−X1 and Π−Xt
are the same for every

t > 0, but since the drift terms differ by a factor t, there cannot exist positive
numbers r1 and r2 such that

r−11 log δ ∈ Z, supp (Π−X1) ⊂ r1Z, r−12
√
2 log δ ∈ Z and

supp (Π−X√
2
) ⊂ r2Z.

This gives (i), by chosing t either equal to 1 or to
√
2.

For (ii), note that

E|Mt|κ = exp{logEe−κXt} = exp{tΨ(κ)} = 1

by assumption. Furthermore, Emax(0,−Xt)e−κXt < ∞ if and only if∫
x>1

xeκxΠ−X(dx) < ∞, see Sato [24], Theorem 25.3. Using the fact that
ΠX is the image measure of ΠL under the transformation R → (−∞, 0],
y �→ − log(1 + (λ/δ)y2), this is equivalent to∫

|y|>
√
(e−1)δ/λ

(
1 +

λ

δ
y2
)κ

log
(
1 +

λ

δ
y2
)
ΠL(dy) <∞,

which again is equivalent to E|L1|2κ log+ L21 <∞, showing (iii).
From (3.6) follows −Xt ≥ t log δ. Thus Ee−κXt <∞ implies Eeκ|Xt| <∞,

giving E exp{κ sup0≤s≤t |Xs|} <∞, see Sato [24], Theorem 25.18. Claim (iv)
then follows from

E|Qt|κ = βκE

(∫ t

0

e−Xs ds
)κ

≤ (βt)κE exp{κ sup
0≤s≤t

|Xs|} <∞.
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A sufficient condition for (5.4) to hold is:

Proposition 5.1. [A sufficient condition]
Suppose that (3.4) holds. Let D := {d ∈ [0,∞) : E|L1|2d < ∞} and d0 :=
supD ∈ [0,∞]. Suppose that d0 �∈ D, or that there is θ0 > 0 such that
0 < Ψ(θ0) <∞. Then (5.4) holds.

Proof. Suppose d0 �∈ D. Then d0 > 0 and D is an interval containing [0, ε)
for some ε > 0. Lemma 4.1 shows that Ψ(d) is finite for d ∈ D, while
limd↗d0 Ψ(d) = Ψ(d0) = +∞. This follows by application of Fatou’s Lemma
to (4.1). Choose θ0 ∈ (0, d0) such that Ψ(θ0) > 0. Now Ψ is C1 on (0, θ0), and
it follows from (4.1) that

Ψ ′(d) = log δ +
∫

R

(
1 +

λ

δ
y2
)d

log
(
1 +

λ

δ
y2
)
ΠL(dy)

for 0 < d < d0. Letting d↘ 0, it follows that

lim
d↘0

Ψ ′(d) = log δ +
∫

R

log
(
1 +

λ

δ
y2
)
ΠL(dy) < 0

by (3.4). Since Ψ(0) = 0 and Ψ is continuous on [0, θ0), it follows that there
is θ1 > 0 such that Ψ(θ1) < 0, and hence there exists κ ∈ (θ1, θ0) such that
Ψ(κ) = 0. Since 0 < κ < θ0 < d0, finiteness of E|L1|2θ0 implies finiteness of
E|L1|2κ log+ |L1|.

If there is a θ0 > 0 such that 0 < Ψ(θ0) < ∞ then (4.1) shows that
E|L1|2θ0 <∞, so θ0 ∈ D. We then find κ > 0 such that Ψ(κ) = 0 as before.

Example 1. (a) Let 0 < δ < 1, λ > 0, and suppose that (3.4) holds. Then if all
moments of L1 exist, or if |L1| has a Pareto like tail, then σ2∞ has Pareto like
tail. This follows readily from Proposition 5.1 and Theorem 5.2. For example
when L1 is generalized inverse Gaussian GIG(a1, a2, a3) with a3 > 0 (see
Section 5.2), then all moments of L1 exist.
(b) Suppose that E|L1|2d <∞ for some d > 0. Then for every κ ∈ (0, d) there
exist δκ ∈ (0, 1) and λκ > 0 such that σ2∞ exists and has Pareto like tails. To
see this, define

δκ := λκ := exp
{
− 1
κ

∫
R

(
(1 + y2)κ − 1

)
ΠL(dy)

}
.

Then δκ ∈ (0, 1) and with these parameters, Ψ(κ) = 0. The claim then follows
from Theorem 5.2.

Our next aim is to show how the Pareto like tail of σ2∞ carries over to
a Pareto like tail of the distribution of Gt for the COGARCH process itself.
Before we start proving this, we need the following two lemmas. The first is
well known, but for convenience we outline a short proof. Note that no inde-
pendence assumptions are made. For the definition and properties of regularly
varying functions we refer to Bingham et al. [8], or also Feller [17].
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Lemma 5.1. Let Y and Z be random variables an a common probability space
such that Y has regularly varying right tail with index −κ < 0. Let d > κ and
suppose that E|Z|d <∞. Then

lim
x→∞

P (Y + Z > x)
P (Y > x)

= 1.

Proof. E|Z|d < ∞ implies limx→∞ x
d′
P (|Z| > x) = 0 for every d′ < d, so

limx→∞
P (|Z|>x)
P (Y >x) = 0. Then lim supx→∞

P (Y+Z>x)
P (Y >x) ≤ 1 follows from

P (Y + Z > x) ≤ P (Y > x(1− ε)) + P (Z > xε), x > 0, ε > 0.

To show lim infx→∞
P (Y+Z>x)
P (Y >x) ≥ 1, note that for arbitrary ε > 0,

P (Y +Z > x) ≥ P (Y > (1+ε)x,Z > −εx) ≥ P (Y > (1+ε)x)−P (Z ≤ −εx)),

so that

lim inf
x→∞

P (Y + Z > x)
P (Y > x)

≥ lim
n→∞

P (Y > (1 + ε)x)
P (Y > x)

− lim sup
x→∞

P (Z ≤ −εx)
P (Y > x)

= (1 + ε)−κ.

The following lemma seems intuitively clear. However, its proof requires
some technicalities.

Lemma 5.2. Let (Lt)t≥0 be a Lévy process of finite variation, and let Xt be

given by (2.6). Let θ > 0 and t0 > 0. Then P
(∫ t0
0
e−θXs− dLs > 0

)
> 0 if

and only if (−Lt)t≥0 is not a subordinator.

Proof. For simplicity in notation we assume θ = 1 throughout. It is clear that
if (−Lt)t≥0 is a subordinator, then P

(∫ t0
0
e−Xs− dLs > 0

)
= 0, so we only

have to prove the converse. So suppose that (Lt)t≥0, with Lévy measure ν and
drift γ0, is not the negative of a subordinator. Suppose first that ν|(0,∞) �= 0.
Then there are 0 < a < b <∞ such that ν|(a,b) > 0.

Let t0 > 0 be fixed. Let 0 < ε < min{1/2, a, t0} and k ∈ N0. Define the
sets B1,ε, B2,ε and B3,ε,k by

B1,ε :=

ω :
∑

0<s≤t0−ε
|∆Ls(ω)| < ε

 ,

B2,ε :=

ω :
∑

t0−ε<s≤t0,|∆Ls(ω)|≤a
|∆Ls(ω)| < ε

 ,

B3,ε,k := {ω : ∆Ls(ω) ∈ (a, b) happens for exactly k values of s in (t0 − ε, t0]}
∩ {ω : ∆Ls(ω) ∈ R \ [−a, b) never happens for s in (t0 − ε, t0]} .
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Since (Lt)t≥0 is of finite variation and ν(a, b) > 0, it follows that P (B1,ε) >
0, P (B2,ε) > 0 and P (B3,ε,k) > 0 (see Sato [24], Theorems 21.9 and 24.10).
Moreover, since (Ls)0≤s≤t0−ε and (Ls − Lt0−ε)s≥t0−ε are independent and
since for any Lévy process the occurence of large jumps is independent from
the occurence of small jumps, it follows that B1,ε, B2,ε and B3,ε,k are all
independent. In particular, for Bε,k := B1,ε ∩ B2,ε ∩ B3,ε,k it follows that
P (Bε,k) > 0.

From (2.6) follows, for any t > 0,

t log δ ≤ −Xt ≤
∑
0<s≤t

log
(
1 +

λ

δ
(∆Ls)2

)
.

In particular, on the set Bε,k,

−Xt ≤
λ

δ

∑
0<s≤t

(∆Ls)2 ≤
λ

δ

∑
0<s≤t0−ε

|∆Ls| ≤
λε

δ
≤ λ

δ
, 0 ≤ t ≤ t0 − ε,

−Xt ≤
∑
0<s≤t

log
(
1 +

λ

δ
(∆Ls)2

)
≤ λ

δ
+ k log

(
1 +

λ

δ
b2
)
, t0 − ε < t ≤ t0.

Setting c1 := et0 log δ and c2 := eλ/δ, we obtain for 0 < ε < min{1/2, a, t0}
and k ∈ N0 on the set Bε,k,

c1 ≤ e−Xs− ≤
{
c2, for s ≤ t0 − ε,

c2
(
1 + λ

δ b
2
)k
, for t0 − ε < s ≤ t0.

From this we derive on Bε,k the estimate∫ t0

0

e−Xs− dLs

=

 ∑
0<s≤t0−ε

+
∑

t0−ε<s≤t0,|∆Ls|≤a
+

∑
t0−ε<s≤t0,∆Ls∈(a,b)

 e−Xs−∆Ls

+γ0
∫ t0−ε

0

e−Xs− ds+ γ0

∫ t0

t0−ε
e−Xs− ds

≥ −c2ε− c2

(
1 +

λ

δ
b2
)k

ε+ kc1a− |γ0|c2t0 − |γ0|c2
(
1 +

λ

δ
b2
)k

ε.

Choosing k so large such that kc1a−|γ0|c2t0 > 0 and then ε sufficiently small,
the last estimate will be strictly positive and we obtain for such ε and k that∫ t0
0
e−Xs−(ω) dLs(ω) > 0 for ω ∈ Bε,k. Since P (Bε,k) > 0, the claim follows

for ν|(0,∞) �= 0.
Now suppose that ν|(0,∞) = 0. Since (−Lt)t≥0 is not a subordinator,

the drift γ0 of (Lt)t≥0 must be strictly positive. Define the set Dε,k as
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ω :
∑
0<s≤t0 |∆Ls(ω)| < ε

}
. Then P (Dε,k) > 0, and with c1 and c2 as before

it is the case that, on Dε,k,∫ t0

0

e−Xs− dLs =
∑

0<s≤t0

e−Xs−∆Ls + γ0

∫ t0

0

e−Xs− ds ≥ −c2ε+ γ0c1t0,

showing that P
(∫ t0
0
e−Xs− dLs > 0

)
> 0 when ε < γ0c1t0/c2.

The following theorem now gives the Pareto type tail behaviour of Gt.
We need slightly more stringent moment conditions than in Theorem 5.2, and
assume that the driving Lévy process is of finite variation.

Theorem 5.3. [Tail behaviour of G]
Suppose there is κ > 0 and d > 4κ such that

E|L1|d <∞ and Ψ(κ) = 0. (5.6)

Suppose further that (Lt)t≥0 is of finite variation. Let (σ2t )t≥0 be the stationary
version of the volatility process, and Gt =

∫ t
0
σs dLs the corresponding CO-

GARCH process. Then if (−Lt)t≥0 is not a subordinator, for every t > 0 there
exists a positive constant C1,t such that

lim
x→∞

x2κP (Gt > x) = C1,t,

and if (−Lt)t≥0 is a subordinator, then Gt ≤ 0 a.s. Similarly, if (Lt)t≥0 is
not a subordinator, then there exists C2,t > 0 such that

lim
x→∞

x2κP (Gt ≤ −x) = C2,t,

and if (Lt)t≥0 is a subordinator, then Gt ≥ 0 a.s.

Proof. For s ≤ t, define

As := e−Xs− , Bs := β

∫ s

0

eXu−Xs− du.

Then from (2.7)

σs =
√
Asσ20 +Bs =

√
Asσ0 +

Bs√
Asσ20 +Bs +

√
Asσ20

.

Defining

Yt := σ0

∫ t

0

√
As dLs, ζs :=

Bs√
Asσ20 +Bs +

√
Asσ20

, and

Zt :=
∫ t

0

ζs dLs,
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we obtain

Gt =
∫ t

0

σsdLs = Yt + Zt, t > 0.

From Theorem 5.2 we know that limx→∞ x
2κP (σ0 > x) = C for some

positive constant C. Suppose we show that there is an d′ > 2κ such that

E
∣∣∣∫ t0 √As dLs

∣∣∣d′

< ∞. Then a classical result of Breiman [9], using the in-

dependence of σ0 and
∫ t
0

√
As dLs, yields the existence of strictly positive

constants C1,t, C2,t such that

lim
x→∞

x2κP (Yt > x) = C1,t, lim
x→∞

x2κP (Yt ≤ −x) = C2,t, (5.7)

provided P
(∫ t
0

√
As dLs > 0

)
> 0 and P

(∫ t
0

√
As dLs < 0

)
> 0, respectively.

We shall verify the required moment condition with d′ := d/2. Note that∣∣∣∣∫ t

0

√
As dLs

∣∣∣∣ ≤ sup
0≤s≤t

e−Xs/2 ‖Lt‖TV,

where ‖Lt‖TV denotes the total variation of (Ls)0≤s≤t on [0, t], and we also
have that E sup0≤s≤t e−d

′Xs < ∞ since Ee−d
′X1 < ∞ (as in the proof of

Theorem 5.2), and that E‖Lt‖2d
′

TV is finite since E|L1|2d
′
is finite by assumption

(see Sato [24], Theorem 21.9); also, it follows from Hölder’s inequality that

E

(
sup
0≤s≤t

e−Xs/2‖Lt‖TV
)d′

≤
(
E sup
0≤s≤t

e−d
′Xs

)1/2 (
E‖Lt‖2d

′

TV

)1/2
<∞.

So the moment condition is established, with d′ = d/2 > 2κ.
To get an estimate for Zt, note that Xu ≤ −u log δ by (2.6), so that for

0 ≤ s ≤ t,

ζs ≤
√
Bs =

√
β
√
As

√∫ s

0

eXu du ≤
√
β
√
tδ−t

√
As.

This implies, with d′ as above,

E|Zt|d
′ ≤ βd

′/2td
′/2δ−d

′t/2E

∣∣∣∣ sup
0≤s≤t

e−Xs/2‖Lt‖TV
∣∣∣∣d

′

<∞,

as already shown. Now if P
(∫ t
0

√
As dLs > 0

)
> 0, i.e. (−Lt)t≥0 is not a

subordinator by Lemma 5.2, an application of Lemma 5.1 to (5.7) gives the
result. On the other hand, if P

(∫ t
0

√
As dLs > 0

)
= 0, i.e. if (−Lt)t≥0 is a

subordinator, then also Gt =
∫ t
0
σs dLs ≤ 0 a.s. The assertion for the left tail

behaviour of Gt follows similarly.



COGARCH versus Ornstein–Uhlenbeck models 417

Examples for the application of Theorem 5.3, similar to Example 1(a) in
the case when all moments of L1 exist, or Example 1(b) can be easily stated.
We conclude this section with the observation that with the same methods of
proof the tail behaviour of the integrated squared volatility can be determined.
Here, a weaker moment condition is sufficient:

Proposition 5.2. [Tail behaviour of the integrated squared volatility]
Let the conditions of Theorem 5.2 be satisfied. In addition assume that there
is d > 2κ such that E|L1|d <∞. Let (σ2t )t≥0 be the stationary version. Then,
for any t > 0 there is a constant Ct > 0 such that

lim
x→∞

xκP

(∫ t

0

σ2sds > x

)
= Ct.

6 Conclusion

We have compared the probabilistic properties of both the stochastic volatil-
ity model of Barndorff-Nielsen and Shephard and the COGARCH process.
Both volatility models are positive Markov processes, which exhibit jumps
and decrease exponentially between jumps. Although the log price process is
defined in terms of an independent Brownian motion for the OU model and
in terms of the same driving Lévy process for the COGARCH process, the
autocorrelation structure of the returns is similar for both processes. Further-
more, we have seen that the tail behaviour in the OU model depends heavily
on the driving Lévy process, while for the COGARCH model Pareto like tails
occur in most cases under weak regularity conditions.
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1 Introduction and main result

Let M = (Mt)t≥0 be a local martingale starting from zero and with paths in
the Skorohod space D[0,∞). We assume that it is defined on a stochastic basis
(Ω,F, (Ft)t≥0, P ) with usual conditions. We shall use the standard notation
Mloc for the class of local martingales and M2

loc Mc, M, M2 for its subclasses.
Recall that a adapted process X with paths in D[0,∞) defined on this

stochastic basis belongs to the class D if the family (Xτ , τ ∈ T ), where T is
the set of stopping times τ , is uniformly integrable.

Henceforth 4Mt := Mt − Mt−, 〈M〉t and [M,M ]t denote the jumps,
predictable quadratic variation and optional quadratic variation of M .

It is well-known (see, e.g., [9], [7] and references therein) that for any
M ∈ M2

loc:

〈M〉∞ <∞ a.s.⇒
{
[M,M ]∞ <∞ a.s.
lim
t→∞

Mt =M∞ ∈ R a.s.
(1.1)
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There are many other remarkable relations between M∞ and 〈M〉∞ (e.g.,
Burkholder–Gundy–Davis’s inequalities, law of large numbers for martingales,
etc.). For M ∈ M ∩D we have the Wald equality

EM∞ = 0,

which plays a fundamental role in many applications of the stochastic calculus.
Recall that the condition E〈M〉∞ < ∞ implies that M ∈ M2 and notice

that 〈M〉∞ <∞ �⇒M ∈ M. However, the condition 〈M〉∞ <∞, implying the
existence of the limit value M∞ (see, (1.1)), jointly with EM∞ = 0 ensures
M ∈ M. One may ask which condition on 〈M〉∞ can provide the equality
EM∞ = 0? A positive answer for M ∈ Mc

loc with 〈M〉∞ <∞ is known from
Novikov, [10], and Elworthy, Li and Yor, [2], under the additional assumption:
EeεM

+
∞ <∞ for sufficiently small ε > 0,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= 0.

More precisely, the following statement is valid.

Theorem. ([10]) Let M ∈ Mc
loc and 〈M〉∞ <∞. Assume supt>0EeεMt <∞

for some sufficiently small ε > 0. Then:

0 ≤ EM∞ ≤ EM+
∞ <∞,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
=

√
2
π
EM∞.

For related topics see Azéma, Gundy and Yor [1], Gundy [5], Galtchouk
and Novikov [6], Takaoka, [14], Peskir and Shiryaev [13], and Vondrac̆ek [15]).

The aim of this paper is to extend the statement of this Theorem for local
martingales with bounded jumps.

Theorem 1.1. Let M ∈ M2
loc, 〈M〉∞ <∞ and M+ ∈ D. Then

(i) M∞ = limt→∞Mt possesses the following properties:

0 ≤ EM∞ ≤ EM+
∞ <∞;

(ii) the uniform integrability of (|4Mt|)t>0 and (i) imply

lim
λ→∞

λP
(
sup
t≥0

M−t > λ
)
= EM∞;

(iii) |4M | ≤ K and EeεM∞ < ∞ for some K > 0 and sufficiently small
ε > 0 imply

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= lim

λ→∞
λP
(
[M,M ]1/2∞ > λ

)
=

√
2
π
EM∞.
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For M+ ∈ D, Theorem 1.1 gives necessary and sufficient conditions for
M ∈ M expressed in terms of supt≥0M

−
t , 〈M〉∞, and [M,M ]∞. Concerning

an effectiveness of these conditions see Jacod and Shiryaev [8].

Corollary 1.1. Under the assumptions of Theorem 1.1, the process M ∈ M

iff any of the following conditions hold:

lim
λ→∞

λP
(
sup
t≥0

M−t > λ
)
= 0,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= 0,

lim
λ→∞

λP
(
[M,M ]1/2∞ > λ

)
= 0.

The proofs of statements (i) and (ii) of Theorem 1.1 are obvious and
might even be known. The proof of (iii) exploits a combination of techniques:

“Stochastic exponential + Tauberian theorem”

used by Novikov in [11] and [12].
The necessary information on the stochastic exponential is gathered in

Section 2. The proof of Theorem 1.1 is given in Section 3. We mention also a
result, formulating in Theorem 3.1 (Section 3), presenting conditions alterna-
tive to |4M | ≤ K.

2 Stochastic exponential

We start with recalling necessary notions and objects (for details see, e.g., [9]
or [7]).

For any M ∈ M2
loc we have the decomposition M = M c + Md where

M c,Md ∈ M2
loc are continuous and purely discontinuous martingales, re-

spectively. Since 〈M〉 = 〈M c〉 + 〈Md〉, the assumption 〈M〉∞ < ∞ implies
〈M c〉∞ < ∞, 〈Md〉∞ < ∞. The jump process 4M ≡ 4Md generates the
integer-valued measure µ = µ(dt, dz) with µ((0, t] × A) =

∑
s≤t

I(4Ms ∈ A).

We denote by ν = ν(dt, dz) the compensator of µ. The condition |4M | ≤ K
guarantees the existence of a version ν such that ν(R+×{|z| > K}) = 0. This
version of ν is used in the sequel.

The purely discontinuous martingale Md can be represented as the Itô
integral with respect to µ− ν:

Md
t =

∫ t

0

∫
|z|≤K

z
(
µ(ds, dz)− ν(ds, dz)

)
.

Recall that
∫
|z|≤K zν({t}, dz) = 0 and, so that,
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〈Md〉t =
∫ t

0

∫
|z|≤K

z2ν(ds, dz) <∞, t > 0.

Hence, 〈M〉∞ < ∞ implies
∫∞
0

∫
|z|≤K z2ν(ds, dz) < ∞ and the existence of

the cumulant process (for λ ∈ R)

Gt(λ) =
∫ t

0

∫
|z|≤K

(
eλz − 1− λz

)
ν(ds, dz),

4Gt(λ) =
∫
|z|≤K

(
eλz − 1− λz

)
ν({t}, dz).

We emphasize that Gt(λ) increases in t ↑ to G∞(λ) := limt→∞Gt(λ) < ∞
and 4Gt(λ) ≥ 0.

The process

Et(λ) = exp
(λ2
2
〈M c〉t +Gt(λ)

) ∏
0<s≤t

(
1 +4Gs(λ)

)
e−*Gs(λ)

is called “stochastic exponential” for the martingale M . Since 4G(λ) ≥ 0,
the stochastic exponential is nonnegative. A remarkable property of Et(λ) is
that the process

zt(λ) = eλMt−logEt(λ) (2.1)

is a positive local martingale with respect to the filtration (Ft)t≥0. This prop-
erty is readily verified with the help of Itô’s formula applied to (2.1):

dzt(λ) = λzt(λ)dM c
t +
∫
|z|≤K

zt−(λ)

(
eλz − 1

)
1 +4Gt(λ)

(µ− ν)(dt, dz).

As any nonnegative local martingale, zt(λ) is also a supermartingale (see, e.g.,
Problem 1.4.4 in Liptser and Shiryaev [9]) and, therefore, has a finite limit at
infinity

z∞(λ) := lim
t→∞

zt(λ) ∈ R+

and Ezτ (λ) ≤ 1 for any stopping time τ . In particular, Ez∞ ≤ 1.

Proposition 2.1. Under the conditions from statement (iii) of Theorem 1.1
we have:

1) Ez∞(λ) = 1.
2) E∞(λ) = lim

t→∞
Et(λ) ∈ (0,∞).

Proof. 1) Let (τn) be a sequence of stopping times increasing to infinity and
such that (Mt∧τn)t≥0 and (zt∧τn(λ))t≥0 are uniformly integrable martingales
for any n. Then Ezτn(λ) ≡ 1. By Jensen’s inequality,

E
(
eλM

+
∞ |Fτn

)
≥ eλE(M

+
∞|Fτn ) ≥ eλM

+
τn ≥ zτn(λ).
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In other words, the martingale
(
zτn(λ),Fτn

)
n≥1 is majorized by the uniformly

integrable martingale
(
E
(
eλM

+
∞ |Fτn

)
,Fτn

)
n≥1, that is,

(
zτn(λ),Fτn

)
n≥1 is the

uniformly martingale itself. Consequently, 1 = limn→∞Ezτn(λ) = Ez∞(λ).

2) Notice that |M∞| <∞, E∞(λ) <∞ and z∞(λ) = eλM∞−logE∞(λ) imply
that

1 ≥ EI(E∞(λ) = 0)z∞(λ) ≥ NP (E∞(λ) = 0)

for any N > 0.
Hence, P (E∞(λ) = 0) = 0.

3 The proof of Theorem 1.1

3.1 The proof of (i) and (ii)

(i) Let (τn)n≥1 be an increasing sequence of stopping times with tending
to infinity and such that (Mτn)n≥1 ∈ M. Therefore, EM−τn−EM+

τn = 0, n ≥ 1.
ByM+ ∈ D, we have lim

n→∞
EM+

τn = EM+
∞ <∞. Further, by the Fatou lemma

limn→∞EM
−
τn ≥ EM−∞, so that EM

+
∞ − EM−∞ ≥ 0.

Hence, EM∞ = (EM+
∞ − EM−∞) ≥ 0.

(ii) Notice that {supt≥0M−t > λ} = {Sλ <∞}, where

Sλ = inf{t :M−t ≥ λ}, inf{∅} =∞.

Since (|4Mt|)t>0 is uniformly integrable process and M+ ∈ D, we have
(Mt∧Sλ

)t≥0 ∈ M, that is,

0 = EMSλ
= EM∞I{Sλ=∞} + EMSλ

I{Sλ<∞}.

We derive the desired statement from the relations

lim
λ→∞

EM∞I{Sλ=∞} = EM∞,

lim
λ→∞

EMSλ
I{Sλ<∞} = −λP

(
sup
t≥0

M−t > λ
)
.

(3.1)

By (i), EM−∞ ≤ EM+
∞ <∞. Consequently, M−∞ <∞ and, therefore, we have

limλ→∞ Sλ =∞. The first part of (3.1) is implied by the inequality∣∣EM∞I{Sλ=∞} − EM∞
∣∣ ≤ E|M∞|I{Sλ<∞}

and the Lebesgue dominated theorem. The second part in (3.1) follows from
MSλ

I{Sλ<∞} = −λI{Sλ<∞} + (MSλ
+ λ)I{Sλ<∞} since

E|MSλ
+ λ|I{Sλ<∞} ≤ E|4MSλ

|I{Sλ<∞} ≤ KP (Sλ <∞) −−−−→
λ→∞

0.
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3.2 Proof of (iii)

Auxiliary lemmas

Lemma 3.1. Under assumptions from the statement (iii) of Theorem 1.1,

lim
λ↓0

E
1
λ

(
1− e− logE∞(λ)

)
= EM∞.

Proof. With λ ≤ ε for ε involved in (iii), by Proposition 2.1 we have the
equality Ez∞(λ) = 1. Hence,

E
1
λ

(
1− e− logE∞(λ)

)
= E

1
λ

(
z∞(λ)− e− logE∞(λ)

)
= E

1
λ

(
eλM∞ − 1

)
e− logE∞(λ).

The required statement follows from the relations

lim
λ↓0

1
λ
e− logE∞(λ)

(
eλM∞ − 1

)
=M∞,

1
λ
e− logE∞(λ)

∣∣eλM∞ − 1
∣∣ ≤ eεM∞

and EeεM∞ <∞ by the Lebesgue dominated theorem.

Lemma 3.2. Under assumptions from the statement (iii) of Theorem 1.1,

lim
λ↓0

E
1
λ

(
1− e−

λ2
2 〈M〉∞

)
= EM∞.

Proof. According to Lemma 3.1, it suffices to show that

lim
λ↓0

E
1
λ

∣∣∣e− logE∞(λ) − e−
λ2
2 〈M〉∞

∣∣∣ = 0. (3.2)

The verification of (3.2) uses the following estimates: for some C > 0 and
sufficiently small λ > 0,

0 <
[
1− Cλ

]λ2
2
〈M〉∞ ≤ logE∞(λ) ≤

[
1 + Cλ

]λ2
2
〈M〉∞. (3.3)

The estimate from above is implied by log E∞(λ) ≤ λ2

2 〈M c〉∞ + G∞(λ)
and the property of ν(dt, dz) to be supported, in z, on [−K,K].

The estimate from below is determined in the following way. Denote by
Φ(λ,K) = 1− λKeλK and

Gc
∞(λ) =

∫ ∞
0

∫
|z|≤K

(
eλz − 1− λz

)
νc(dt, dz),
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where νc(dt, dz) := ν(dt, dz)− ν({t}, dz). Write

logE∞(λ) =
λ2

2
〈M c〉∞ +Gc

∞(λ) +
∑
t>0

log
(
1 +4Gt(λ)

)
≥ λ2

2
〈M c〉∞ + Φ(λ,K)

∫ ∞
0

∫
|z|≤K

λ2

2
z2νc(dt, dz)

+
∑
t>0

log

(
1 + Φ(λ,K)

∫
|z|≤K

λ2

2
z2ν({t}, dz)

)
.

(3.4)

We choose λ so small to keep 1 − λKeλK > 0 and estimate from below the
“
∑

t>0 log” in the last line of (3.4) by applying log(1 + x) ≥ x− 1
2x

2, x ≥ 0.
This gives the lower bound

∑
t>0

log

(
1 + Φ(λ,K)

∫
|z|≤K

λ2

2
z2ν({t}, dz)

)

≥ Φ(λ,K)
∫
|z|≤K

λ2

2
z2ν({t}, dz)− 1

2
Φ2(λ,K)

(∫
|z|≤K

λ2

2
z2ν({t}, dz)

)2
.

Taking into account ν({t}, |z| ≤ K) ≤ 1, by the Cauchy–Schwarz inequality
we find the upper bound (∫

|z|≤K

λ2

2
z2ν({t}, dz)

)2

≤ λ4

4

∫
|z|≤K

z4ν({t}, dz) ≤ λ4K2

4

∫
|z|≤K

z2ν({t}, dz)

providing the inequality

∑
t>0

log

(
1 + Φ(λ,K)

∫
|z|≤K

λ2

2
z2ν({t}, dz)

)

≥
(
Φ(λ,K)− λ2

8
K2Φ2(λ,K)

)∫
|z|≤K

λ2

2
z2ν({t}, dz).

We choose λ so small to keep

Φ(λ,K)− λ2

8
K2Φ2(λ,K) ≥ 1− λc > 0

for some constant c > 0.
Now, we may choose a positive constant C such that (3.3) is valid for both

the upper and lower bounds.
From (3.3), we derive that
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1
λ

∣∣∣e− logE∞(λ) − e−
λ2
2 〈M〉∞

∣∣∣ ≤ C
λ2

2
〈M〉∞e−

λ2
2 〈M〉∞ −−−→

λ→0
0.

and, due to xe−x ≤ e−1, it remains to apply the Lebesgue dominated theorem.

Lemma 3.3. Under assumptions from the statement (iii) of Theorem 1.1,

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
= ϑϑϑ⇔ lim

λ→∞
λP
(
[M,M ]1/2∞ > λ

)
= ϑϑϑ.

Proof. Obviously, the desired result holds true if

lim
λ→0

P
(
[M,M ]1/2∞ > λ

)
P
(
〈M〉1/2∞ > λ

) ≤ 1,

lim
λ→0

P
(
[M,M ]1/2∞ > λ

)
P
(
〈M〉1/2∞ > λ

) ≥ 1.

(3.5)

Denote L = [M,M ] − 〈M〉 and notice that [M,M ]∞ ≤ 〈M〉∞ + supt≥0 |Lt|.
By an obvious inequality (c+ d)1/2 ≤ c1/2 + d1/2, we obtain that

P
(
[M,M ]1/2∞ > λ

)
≤ P

(
[〈M〉∞ + sup

t≥0
|Lt|]1/2 > λ

)
≤ P

(
〈M〉1/2∞ + sup

t≥0
|Lt|1/2 > λ

)
≤ P

(
〈M〉1/2∞ > (1− a)λ

)
+ P

(
sup
t≥0

|Lt| > aλ
)
, a ∈ (0, 1).

With λa = (1− a)λ, the resulting bound can be rewritten as:

λP
(
[M,M ]1/2∞ > λ

)
≤ (1− a)−1λaP

(
〈M〉1/2∞ > λa

)
+ λP

(
sup
t≥0

|Lt|1/2 > aλ
)
.

(3.6)
Now, we evaluate from from above P

(
supt≥0 |Lt|1/2 > aλ

)
. A helpful tool

here is the inequality: for some C > 0, any stopping time τ and K being a
bound for |4M |,

E sup
t≤τ

|Lt|2 ≤ CK2E〈M〉τ . (3.7)

In order to establish (3.7), we use the following facts:
- L is the purely discontinuous local martingale with

[L,L]t =
∑
s≤t

(4Ls)2 =
∑
s≤t

(
(4Ms)2 −4〈M〉s

)2
=
∑
s≤t

(∫
|z|≤K

z2(µ({s}, dz)− ν({s}, dz)
)2

,

- 〈L〉t =
∫ t
0

∫
|z|≤K z4(ν(ds, dz)−

∑
s≤t

( ∫
|z|≤K z2ν({s}, dz)

)2
,



Tail Distributions of Supremum and Quadratic Variation 429

- 〈L〉t ≤
∫ t

0

∫
|z|≤K

z4ν(ds, dz) ≤ K2

∫ t

0

∫
|z|≤K

z2ν({ds, dz) ≤ K2〈M〉t,

- K2〈M〉 − 〈L〉 is the increasing process.
Now, we refer to the Burkholder–Gundy inequality (see, e.g., Theorem 1.9.7
in [9]): for any stopping time τ ,

E sup
t≤τ

|Lt|2 ≤ CE[L,L]τ .

Due to the relations E[L,L]τ = E〈L〉τ and K2〈M〉τ ≥ 〈L〉τ (recall that
K2〈M〉 ≥ 〈L〉), we have E〈L〉τ ≤ K2E〈M〉τ , that is, (3.7) is valid.

By (3.7) and the fact that 〈M〉 is a predictable process, the Lenglart–
Rebolledo inequality (see, e.g., Theorem 1.9.3 in [9]) is applicable (notice that
{supt≥0 |Lt|1/2 > aλ} ≡ {supt≥0 |Lt| > a2λ2}), so that,

P
(
sup
t≥0

|Lt|1/2 > aλ
)
≤ λ5/2

a4λ4
+ P

(
CK2〈M〉∞ > λ5/2

)
=
λ5/2

a4λ4
+ P

(
〈M〉1/2∞ > λ5/4/(C1/2K)

)
.

Hence, with r = 1/(C1/2K) and λr = rλ5/4,

λP
(
sup
t≤Tx

|Lt|1/2 > aλ
)
≤ 1
a4λ1/2

+
1

rλ1/4
λrP

(
〈M〉1/2∞ > λr

)
. (3.8)

Now, (3.6) and (3.8) imply the inequality

λP
(
[M,M ]1/2∞ > λ

)
≤ (1− a)−1λaP

(
〈M〉1/2∞ > λa

)
+

1
a4λ1/2

+
r

λ1/4
λrP

(
〈M〉1/2∞ > λr

)
.

If ϑϑϑ > 0, by

P
(
[M,M ]1/2∞ > λ

)
P
(
〈M〉1/2∞ > λ

) ≤
(1− a)−1λaP

(
〈M〉1/2∞ > λa

)
λP
(
〈M〉1/2∞ > λ

)
+

1
a4λ1/2 + r

λ1/4λrP
(
〈M〉1/2∞ > λr

)
λP
(
〈M〉1/2∞ > λ

) −−−−→
λ→∞

1
1− a

−−−→
a→0

1

and the first part from (3.5) is valid. The second part from (3.5) is established
similarly and we give only a sketch of the proof. The use of the bound

P
(
〈M〉1/2 > λ

)
≤ P

(
[M,M ]1/2 > (1− a)λ

)
+ P

(
sup
t≥0

|Lt| > aλ
)
, a ∈ (0, 1),
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implies that

P
(
[M,M ]〉1/2∞ > (1− a)λ

)
P
(
〈M〉1/2∞ > λ

) ≥ 1−
P
(
supt≥0 |Lt| > aλ

)
P
(
〈M〉1/2∞ > λ

)
and we get the result.

If ϑϑϑ = 0, we replace M by M + δM ′, where δ > 0 and M ′ ∈ Mc with
〈M ′〉∞ < ∞ possessing limλ→∞ λP

(
〈M ′〉1/2∞ > λ

)
= ϑ′ϑ′ϑ′ > 0, is independent

of M c. Therefore, by 〈M + δM ′〉 = 〈M〉+ δ2〈M ′〉, we have

lim
λ→∞

λP
(
〈M + δM ′〉1/2∞ > λ

)
= δ2ϑ′ϑ′ϑ′ > 0.

Hence, by using the result already proved, it holds

lim
λ→∞

λP
(
〈M + δM ′〉1/2∞ > λ

)
= δ2ϑ′ϑ′ϑ′

⇔ lim
λ→∞

λP
(
[M + δM ′,M + δM ′]1/2∞ > λ

)
= δ2ϑ′ϑ′ϑ′

and, by the arbitrariness of δ,

lim
λ→∞

λP
(
〈M > λ

)
= 0⇔ lim

λ→∞
λP
(
[M,M ]1/2∞ > λ

)
= 0.

Final part of the proof for (iii)

We refer to the Tauberian theorem.

Theorem. (Feller, [4], XIII.5, Example (c)) Let X be a nonnegative random
variable such that lim

λ↓0
1
λ

(
1− Ee−

λ2
2 X
)
∈ R.

Then, √
2
π
lim
λ↓0

1
λ

(
1− Ee−

λ2
2 X
)
= lim

λ→∞
λP (X1/2 > λ).

Letting X = 〈M〉∞, we find that√
2
π
lim
λ↓0

1
λ

(
1− Ee−

λ2
2 〈M〉∞

)
= lim

λ→∞
λP (〈M〉1/2∞ > λ),

while, by Lemmas 3.1, 3.2 and 3.3,

lim
λ↓0

1
λ

(
1− Ee−

λ2
2 〈M〉∞

)
=

√
2
π
EM∞,

lim
λ→∞

λP
(
[M,M ]1/2∞ > λ

)
=

√
2
π
EM∞.
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3.3 Supplement

The condition |4M | ≤ K might be too restrictive to be valid for serving some
examples. Following [10], we show that this condition can be replaced by one
seems to be more suitable for applications.

Theorem 3.1. Assume conditions for the statement (iii) of Theorem 1.1 are
valid except the boundedness |4M | ≤ K replaced by the two inequalities

λ2

2
〈M〉∞(1− |λ|ζ1)+ ≤ logE∞(λ) ≤

λ2

2
〈M〉∞(1 + |λ|ζ2) (3.9)

with sufficiently small λ > 0 and nonnegative integrable random variables
ζ1, ζ2.

Then

lim
λ→∞

λP
(
〈M〉1/2∞ > λ

)
=

√
2
π
EM∞.

Proof. Since (3.2) has to be verified only, by (3.9) we have

1
λ

∣∣∣e− logE∞(λ) − e−
λ2
2 〈M〉∞

∣∣∣ ≤ (ζ2 ∨ |1− (1− ζ1λ)+|
λ

)λ2
2
〈M〉∞e−

λ2
2 〈M〉∞

≤
(
ζ2 ∨ ζ1

)λ2
2
〈M〉∞e−

λ2
2 〈M〉∞ .

The right-hand side of this inequality converges to zero, as λ → 0, and is
bounded by e−1(ζ2∨ ζ1). So, (3.2) holds by the Lebesgue dominated theorem.
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1 Introduction

Consider a stochastic evolution equation

du(t) = (Au(t) + f(t))dt+ (Mu(t) + g(t))dW (t), (1.1)

where A and M are differential operators, and W is a noise process on a
stochastic basis F = (Ω,F , {Ft}t≥0,P). Traditionally, this equation is studied
under the following assumptions:

(i) The operator A is elliptic, the order of the operatorM is at most half the
order of A, and a special parabolicity condition holds.

(ii) The functions f and g are predictable with respect to the filtration
{Ft}t≥0, and the initial condition is F0-measurable.

(iii) The noise process W is sufficiently regular.

Under these assumptions, there exists a unique predictable solution u of
(1.1) such that u belongs to L2(Ω × (0, T );H) for T > 0 and a suitable
function space H (see, for example, Chapter 3 of [42]). Moreover, there are
examples showing that the parabolicity condition and the regularity of noise
are necessary to have a square integrable solution of (1.1).

The objective of the current paper is to study stochastic differential equa-
tions of the type (1.1) without making the above assumptions (i)–(iii). We
show that, with a suitable definition of the solution, solvability of the stochas-
tic equation is essentially equivalent to solvability of a deterministic evolution
equation dv = (Av + ϕ)dt for certain functions ϕ; the operator A does not
even have to be elliptic.

Generalized solutions have been introduced and studied for stochastic dif-
ferential equations, both ordinary and with partial derivatives, and definitions
of such solutions relied on various forms of the Wiener Chaos decomposition.
For stochastic ordinary differential equations, Krylov and Veretennikov [20]
used multiple Wiener integral expansion to study Itô diffusions with non-
smooth coefficients, and more recently, LeJan and Raimond [22] used a sim-
ilar approach in the construction of stochastic flows. Various versions of the
Wiener Chaos appear in a number of papers on nonlinear filtering and related
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topics [2, 25, 33, 39, 46, etc.] The book by Holden et al. [12] presents a sys-
tematic approach to the stochastic differential equations based on the white
noise theory. See also [10], [40] and the references therein.

For stochastic partial differential equations, most existing constructions
of the generalized solution rely on various modifications of the Fourier trans-
form in the infinite-dimensional Wiener Chaos space L2(W) = L2(Ω,FW

T ,P).
The two main modifications are known as the S-transform [10] and the Her-
mite transform [12]. The key elements in the development of the theory are
the spaces of the test functions and the corresponding distributions. Several
constructions of these spaces were suggested by Hida [10], Kondratiev [17],
and Nualart and Rozovskii [38]. Both S- and Hermite transforms establish
a bijection between the space of generalized random elements and a suitable
space of analytic functions. Using the S-transform, Mikulevicius and Rozovskii
[33] studied stochastic parabolic equations with non-smooth coefficients, while
Nualart and Rozovskii [38] and Potthoff et al. [40] constructed generalized so-
lutions for the equations driven by space-time white noise in more than one
spatial dimension. Many other types of equations have been studied, and the
book [12] provides a good overview of literature on the corresponding results.

In this paper, generalized solutions of (1.1) are defined in the spaces that
are even larger than of Hida or Kondratiev distributions. The Wiener Chaos
space is a separable Hilbert space with a Cameron–Martin basis [3]. The
elements of the space with a finite Fourier series expansion provide the nat-
ural collection of test functions D(L2(W)), an analog of the space D(Rd) of
smooth compactly supported functions on Rd. The corresponding space of
distributions D′(L2(W)) is the collection of generalized random elements rep-
resented by formal Fourier series. A generalized solution u = u(t, x) of (1.1)
is constructed as an element of D′(L2(W)) such that the generalized Fourier
coefficients satisfy a system of deterministic evolution equations, known as
the propagator. If the equation is linear the propagator is a lower-triangular
system. We call this solution a Wiener Chaos solution.

The propagator was first introduced by Mikulevicius and Rozovskii in
[32], and further studied in [25], as a numerical tool for solving the nonlinear
filtering problem. The propagator can also be derived for certain nonlinear
equations; in particular, it was used in [31, 34, 35] to study the stochastic
Navier–Stokes equation.

The propagator approach to defining the solution of (1.1) has two advan-
tages over the S-transform approach. First, the resulting construction is more
general: there are equations for which the Wiener Chaos solution is not in
the domain of the S-transform. Indeed, it is shown in Section 14 that, for
certain initial conditions, equation du = uxdWt has a Wiener Chaos solution
for which the S-transform is not defined. On the other hand, by Theorem 8.1
below, if the generalized solution of (1.1) can be defined using the S-transform,
then this solution is also a Wiener Chaos solution. Second, there is no problem
of inversion: the propagator provides a direct approach to studying the prop-



436 S. Lototsky and B. Rozovskii

erties of Wiener Chaos solution and computing both the sample trajectories
and statistical moments.

Let us emphasize also the following important features of the Wiener Chaos
approach:

• The Wiener Chaos solution is a strong solution in the probabilistic sense,
that is, it is uniquely determined by the coefficients, free terms, initial
condition, and the Wiener process.

• The solution exists under minimal regularity conditions on the coefficients
in the stochastic part of the equation and no special measurability restric-
tion on the input.

• The Wiener Chaos solution often serves as a convenient first step in the in-
vestigation of the traditional solutions or solutions in weighted stochastic
Sobolev spaces that are much smaller then the spaces of Hida or Kon-
dratiev distributions.

To better understand the connection between the Wiener Chaos solution
and other notions of the solution, recall that, traditionally, by a solution of a
stochastic equation we understand a random process or field satisfying the
equation for almost all elementary outcomes. This solution can be either
strong or weak in the probabilistic sense.

Probabilistically strong solution is constructed on a prescribed probability
space with a specific noise process. Existence of strong solutions requires cer-
tain regularity of the coefficients and the noise in the equation. The tools for
constructing strong solutions often come from the theory of the corresponding
deterministic equations.

Probabilistically weak solution includes not only the solution process but
also the stochastic basis and the noise process. This freedom to choose the
probability space and the noise process makes the conditions for existence of
weak solutions less restrictive than the similar conditions for strong solutions.
Weak solutions can be obtained either by considering the corresponding mar-
tingale problem or by constructing a suitable Hunt process using the theory
of the Dirichlet forms.

There exist equations that have neither weak nor strong solutions in the
traditional sense. An example is the bi-linear stochastic heat equation driven
by a multiplicative space-time white noise in two or more spatial dimensions:
the irregular nature of the noise prevents the existence of a random field that
would satisfy the equation for individual elementary outcomes. For such equa-
tions, the solution must be defined as a generalized random element satisfying
the equation after the randomness has been averaged out.

White noise theory provides one approach for constructing these gener-
alized solutions. The approach is similar to the Fourier integral method for
deterministic equations. The white noise solution is constructed on a special
white noise probability space by inverting an integral transform; the special
structure of the probability space is essential to carry out the inversion. We
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can therefore say that the white noise solution extends the notion of the prob-
abilistically weak solution. Still, this extension is not a true generalization:
when the equation satisfies the necessary regularity conditions, the connec-
tion between the white noise and the traditional weak solution is often not
clear.

The Wiener chaos approach provides the means for constructing a gener-
alized solution on a prescribed probability space. The Wiener Chaos solution
is a formal Fourier series in the corresponding Cameron–Martin basis. The
coefficients in the series are uniquely determined by the equation via the
propagator system. This representation provides a convenient way for com-
puting numerically the solution and its statistical moments. As a result, the
Wiener Chaos solution extends the notion of the probabilistically strong so-
lution. Unlike the white noise approach, this is a bona fide extension: when
the equation satisfies the necessary regularity conditions, the Wiener Chaos
solution coincides with the traditional strong solution.

After a general discussion of the Wiener Chaos space in Sections 4 and 5,
the Wiener Chaos solution for equation (1.1) and the main properties of the
solution are studied in Section 6. Several examples illustrate how the Wiener
Chaos solution provides a uniform treatment of various types of equations:
traditional parabolic, non-parabolic, and anticipating. In particular, for equa-
tions with non-predictable input, the Wiener Chaos solution corresponds to
the Skorohod integral interpretation of the equation. The initial solution space
D′(W) is too large to provide much of interesting information about the solu-
tion. Accordingly, Section 7 discusses various weighted Wiener Chaos spaces.
These weighted spaces provide the necessary connection between the Wiener
Chaos, white noise, and traditional solutions. This connection is studied in
Section 8. In Section 9, the Wiener Chaos solution is constructed for degener-
ate linear parabolic equations and new regularity results are obtained for the
solution. Probabilistic representation of the Wiener Chaos solution is studied
in Section 10, where a Feynmann–Kac type formula is derived. Sections 11
– 14 discuss the applications of the general results to particular equations:
the Zakai filtering equation, the stochastic transport equation, the stochastic
Navier–Stokes equation, and a first-order Itô SPDE.

The following notation will be in force throughout the paper: ∆ is the
Laplace operator, Di = ∂/∂xi, i = 1, . . . , d, and summation over the repeated
indices is assumed. The space of continuous functions is denoted by C, and
Hγ
2 , γ ∈ R, is the Sobolev space{
f :
∫

R

|f̂(y)|2(1 + |y|2)γdy <∞
}
, where f̂ is the Fourier transform of f.

2 Traditional Solutions of Linear Parabolic Equations

Below is a summary of the Hilbert space theory of linear stochastic parabolic
equations. The details can be found in the books [41] and [42]; see also [19].
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For a Hilbert space X, (·, ·)X and ‖ · ‖X denote the inner product and the
norm in X.

Definition 2.1 The triple (V,H, V ′) of Hilbert spaces is called normal if and
only if

1. V ↪→ H ↪→ V ′ and both embeddings V ↪→ H and H ↪→ V ′ are dense and
continuous;

2. The space V ′ is the dual of V relative to the inner product in H;
3. There exists a constant C > 0 such that |(h, v)H | ≤ C‖v‖V ‖h‖V ′ for all

v ∈ V and h ∈ H.

E.g., the Sobolev spaces (HP+γ
2 (Rd),HP

2(R
d),HP−γ

2 (Rd)), γ > 0, ] ∈ R, form
a normal triple.

Denote by 〈v′, v〉, v′ ∈ V ′, v ∈ V , the duality between V and V ′ relative
to the inner product in H. The properties of the normal triple imply that
|〈v′, v〉| ≤ C‖v‖V ‖v′‖V ′ , and, if v′ ∈ H and v ∈ V , then 〈v′, v〉 = (v′, v)H ;

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assump-
tions. In particular, the σ-algebras F and F0 are P-complete, and the filtration
{Ft}t≥0 is right-continuous; for details, see [23, Definition I.1.1]. We assume
that F is rich enough to carry a collection wk = wk(t), k ≥ 1, t ≥ 0, of
independent standard Wiener processes.

Given a normal triple (V,H, V ′) and a family of linear bounded operators
A(t) : V → V ′, Mk(t) : V → H, t ∈ [0, T ], consider the following equation:

u(t) = u0 +
∫ t

0

(Au(s) + f(s))ds+
∫ t

0

(Mku(s) + gk(s))dwk(s), t ∈ [0, T ],

(2.1)
where T < ∞ is fixed and non-random and the summation convention is in
force.

Assume that, for all v ∈ V ,∑
k≥1

‖Mk(t)v‖2H <∞, t ∈ [0, T ]. (2.2)

The input data u0, f , and gk are chosen so that

E

‖u0‖2H +
∫ T

0

‖f(t)‖2V ′dt+
∑
k≥1

∫ T

0

‖gk(t)‖2Hdt

 <∞, (2.3)

u0 is F0-measurable, and the processes f, gk are Ft-adapted, that is, f(t) and
each gk(t) are Ft-measurable for each t ≥ 0.

Definition 2.2 An Ft-adapted process u ∈ L2(F;L2((0, T );V )) is called a
traditional, or square-integrable, solution of equation (2.1) if, for every v ∈ V ,
there exists a measurable subset Ω′ of Ω with P(Ω′) = 1, such that the equality
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(u(t), v)H = (u0, v)H+
∫ t

0

〈Au(s)+f(s), v〉ds+
∑
k≥1

(Mku(s)+gk(s), v)Hdwk(s)

(2.4)
holds on Ω′ for all t ∈ [0, T ].

Existence and uniqueness of the traditional solution for (2.1) can be es-
tablished when the equation is parabolic.

Definition 2.3 Equation (2.1) is called strongly parabolic if there exists a
positive number ε and a real number C0 such that, for all v ∈ V and t ∈ [0, T ],

2〈A(t)v, v〉+
∑
k≥1

‖M(t)kv‖2H + ε‖v‖2V ≤ C0‖v‖2H . (2.5)

Equation (2.1) is called weakly parabolic (or degenerate parabolic) if con-
dition (2.5) holds with ε = 0.

Theorem 2.1. If (2.3) and (2.5) hold, then there exists a unique traditional
solution of (2.1). The solution process u is an element of the space

L2(F;L2((0, T );V ))
⋂
L2(F;C((0, T ),H))

and satisfies

E

(
sup
0<t<T

‖u(t)‖2H +
∫ T

0

‖u(t)‖2V dt
)

≤ C(C0, δ, T )E

‖u0‖2H +
∫ T

0

‖f(t)‖2V ′dt+
∑
k≥1

∫ T

0

‖gk(t)‖2Hdt

 .

(2.6)

Proof. This follows, for example, from Theorem 3.1.4 in [42].

A somewhat different solvability result holds for weakly parabolic equa-
tions [42, Section 3.2].

As an application of Theorem 2.1, consider the equation

du(t, x) = (aij(t, x)DiDju(t, x) + bi(t, x)Diu(t, x) + c(t, x)u(t, x) + f(t, x))dt
+ (σik(t, x)Diu(t, x) + νk(t, x)u(t, x) + gk(t, x))dwk(t)

(2.7)

with 0 < t ≤ T, x ∈ Rd, and initial condition u(0, x) = u0(x). Assume that

(CL1) The functions aij are bounded and Lipschitz continuous, the functions bi,
c, σik, and ν are bounded measurable.

(CL2) There exists a positive number ε > 0 such that

(2aij(x)− σik(x)σjk(x))yiyj ≥ ε|y|2, x, y ∈ Rd, t ∈ [0, T ].



440 S. Lototsky and B. Rozovskii

(CL3) There is a positive numberK such that, for all x ∈ Rd,
∑

k≥1 |νk(x)|2 ≤ K.

(CL4) The initial condition u0 ∈ L2(Ω;L2(Rd)) is F0-measurable, the processes
f ∈ L2(Ω × [0, T ];H−12 (Rd)) and gk ∈ L2(Ω × [0, T ];L2(Rd)) are Ft-
adapted, and

∑
k≥1
∫ T
0
E‖gk‖2L2(Rd)(t)dt <∞.

Theorem 2.2. Under assumptions (CL1)–(CL4), equation (2.7) has a unique
traditional solution

u ∈ L2(F;L2((0, T );H1
2 (R

d)))
⋂
L2(F;C((0, T ), L2(Rd))),

and the solution satisfies

E

(
sup
0<t<T

‖u‖2L2(Rd)(t) +
∫ T

0

‖u‖2H1
2 (R

d)(t)dt

)

≤ C(K, ε, T )E

‖u0‖2L2(Rd) +
∫ T

0

‖f‖2
H−1

2 (Rd)
(t)dt+

∑
k≥1

∫ T

0

‖gk‖2L2(Rd)(t)dt

 .

(2.8)

Proof. Apply Theorem 2.1 to the normal triple (H1
2 (R

d), L2(Rd),H−12 (Rd));
condition (2.5) in this case is equivalent to assumption (CL2). The details of
the proof are in [42, Section 4.1].

Condition (2.5) essentially means that the deterministic part of the equa-
tion dominates the stochastic part. Accordingly, there are two main ways to
violate (2.5):

1. The order of the operator M is more than half the order of the operator
A. The equation du = uxdw(t) is an example.

2. The value of
∑

k ‖Mk(t)v‖2H is too large. This value can be either finite,
as for the equation du(t, x) = uxx(t, x)dt + 5ux(t, x)dw(t), or infinite, as
for the equation

du(t, x) = ∆u(t, x)dt+σk(x)udwk, σk− CONS in L2(Rd), d ≥ 2. (2.9)

Indeed, it is shown in [38] that, for equation (2.9), we have∑
k≥1

‖Mk(t)v‖2H =∞

in every Sobolev space Hγ .

Without condition (2.5), analysis of equation (2.1) requires new technical
tools and a different notion of solution. The white noise theory provides one
possible collection of such tools.
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3 White Noise Solutions of Stochastic Parabolic
Equations

The central part of the white noise theory is the mathematical model for the
derivative of the Brownian motion. In particular, the Itô integral

∫ t
0
f(s)dw(s)

is replaced with the integral
∫ t
0
f(s) J Ẇ (s)ds, where Ẇ is the white noise

process and J is the Wick product. The white noise formulation is very dif-
ferent from the Hilbert space approach of the previous section, and requires
several new constructions. The book [10] is a general reference about the
white noise theory, while [12] presents the white noise analysis of stochastic
partial differential equations. Below is the summary of the main definitions
and results.

Denote by S = S(RP) the Schwartz space of rapidly decreasing functions
and by S ′ = S ′(RP), the Schwartz space of tempered distributions. For the
properties of the spaces S and S ′ see [43].

Definition 3.1 The white noise probability space is the triple

S = (S ′,B(S ′), µ),

where B(S ′) is the Borel σ-algebra of subsets of S ′, and µ is the normalized
Gaussian measure on B(S ′).

The measure µ is characterized by the property∫
S′
e
√
−1〈ω,ϕ〉dµ(ω) = e

− 1
2‖ϕ‖

2
L2(Rd) ,

where 〈ω, ϕ〉, ω ∈ S ′, ϕ ∈ S, is the duality between S and S ′. Existence of
this measure follows from the Bochner–Minlos theorem [12, Appendix A].

Let {ηk, k ≥ 1} be the Hermite basis in L2(RP), consisting of the normal-
ized eigenfunctions of the operator

Λ = −∆+ |x|2, x ∈ RP. (3.1)

Each ηk is an element of S [12, Section 2.2].
Consider the collection of multi-indices

J1 =
{
α = (αi, i ≥ 1) : αi ∈ {0, 1, 2, . . .},

∑
i

αi <∞
}
.

The set J1 is countable, and, for every α ∈ J , only finitely many of αi are
not equal to zero. For α ∈ J1, write α! =

∏
i αi! and define

ξα(ω) =
1√
α!

∏
i

Hαi
(〈ω, ηi〉), ω ∈ S ′, (3.2)

where 〈·, ·〉 is the duality between S and S ′, and
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Hn(t) = (−1)net2/2 d
n

dtn
e−t

2/2 (3.3)

is nth Hermite polynomial. In particular, H1(t) = 1, H1(t) = t, H2(t) = t2−1.
If, for example, α = (0, 2, 0, 1, 3, 0, 0, . . .) has three non-zero entries, then

ξα(ω) =
H2(〈ω, η2〉)

2!
· 〈ω, η4〉 ·

H3(〈ω, η5〉)
3!

.

Theorem 3.1. The collection {ξα, α ∈ J1} is an orthonormal basis in L2(S).

Proof. This is a version of the classical result of Cameron and Martin [3]. In
this particular form, the result is stated and proved in [12, Theorem 2.2.3].

By Theorem 3.1, every element ϕ of L2(S) is represented as a Fourier series
ϕ =

∑
α ϕαξα, where ϕα =

∫
S′ ϕ(ω)ξα(ω)dµ, and ‖ϕ‖2L2(S)

=
∑

α∈J1
|ϕα|2.

For α ∈ J1 and q ∈ R, we write

(2N)qα =
∏
j

(2j)qαj .

Definition 3.2 For ρ ∈ [0, 1] and q ≥ 0,

1. the space (S)ρ,q is the collection of elements ϕ from L2(S) such that

‖ϕ‖2ρ,q =
∑
α∈J1

(α!)ρ(2N)qα|ϕα|2 <∞;

2. the space (S)−ρ,−q is the closure of L2(S) relative to the norm

‖ϕ‖2−ρ,−q =
∑
α∈J1

(α!)−ρ(2N)−qα|ϕα|2; (3.4)

3. the space (S)ρ is the projective limit of (S)ρ,q as q changes over all non-
negative integers;

4. the space (S)−ρ is the inductive limit of (S)−ρ,−q as q changes over all
non-negative integers.

It follows that

• For each ρ ∈ [0, 1] and q ≥ 0, ((S)ρ,q, L2(S), (S)−ρ,−q) is a normal triple
of Hilbert spaces.

• The space (S)ρ is a Frechet space with topology generated by the countable
family of norms ‖·‖ρ,n, n = 0, 1, 2, . . ., and ϕ ∈ (S)ρ if and only if ϕ ∈ (S)ρ,q
for every q ≥ 0.

• The space (S)−ρ is the dual of (S)ρ and ϕ ∈ (S)−ρ if and only if ϕ ∈
(S)−ρ,−q for some q ≥ 0. Every element ϕ from (S)ρ is identified with a
formal sum

∑
α∈J1

ϕαξα such that (3.4) holds for some q ≥ 0.
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• For ρ ∈ (0, 1),

(S)1 ⊂ (S)ρ ⊂ (S)0 ⊂ L2(S) ⊂ (S)−0 ⊂ (S)−ρ ⊂ (S)−1,

with all inclusions strict.

The spaces (S)0 and (S)1 are known as the spaces of Hida and Kon-
dratiev test functions. The spaces (S)−0 and (S)−1 are known as the spaces
of Hida and Kondratiev distributions. Sometimes, the spaces (S)ρ and (S)−ρ,
0 < ρ ≤ 1, go under the name of Kondratiev test functions and Kondratiev
distributions, respectively.

Let h ∈ S and hk =
∫

R) h(x)ηk(x)dx. Since the asymptotics of nth eigen-
value of the operator Λ in (3.1) is n1/d [11, Chapter 21] and Λkh ∈ S for every
positive integer k, it follows that∑

k≥1
|hk|2kq <∞ (3.5)

for every q ∈ R.
For α ∈ J1 and hk as above, write hα =

∏
j(hj)

αj , and define the stochas-
tic exponential

E(h) =
∑
α∈J1

hα√
α!
ξα (3.6)

Lemma 3.1. The stochastic exponential E = E(h), h ∈ S, has the following
properties:

• E(h) ∈ (S)ρ, 0 < ρ < 1;
• For every q > 0, there exists δ > 0 such that E(h) ∈ (S)1,q as long as∑

k≥1 |hk|2 < δ.

Proof. Both properties are verified by direct calculation [12, Chapter 2].

Definition 3.3 The S-transform Sϕ(h) of an element ϕ =
∑

α∈J ϕαξα from
(S)−ρ is the number

Sϕ(h) =
∑
α∈J1

hα√
α!
ϕα, (3.7)

where h =
∑

k≥1 hkηk ∈ S and hα =
∏

j(hj)
αj .

The definition implies that if ϕ ∈ (S)−ρ,−q for some q ≥ 0, then Sϕ(h) =
〈ϕ, E(h)〉, where 〈·, ·〉 is the duality between (S)ρ,q and (S)−ρ,−q for suitable
q. Therefore, if ρ < 1, then Sϕ(h) is well-defined for all h ∈ S, and, if ρ = 1,
the Sϕ(h) is well-defined for h with sufficiently small L2(RP) norm. To give
a complete characterization of the S-transform, an additional construction is
necessary.

Let Uρ, 0 ≤ ρ < 1, be the collection of mappings F from S to the complex
numbers such that
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1. For every h1, h2 ∈ S, the function F (h1 + zh2) is an analytic function of
the complex variable z.

2. There exist positive numbers K1,K2 and an integer number n so that, for
all h ∈ S and all complex number z,

|F (zh)| ≤ K1 exp
(
K2‖Λnh‖

2
1−ρ

L2(Rd)
|z| 2

1−ρ

)
.

For ρ = 1, let U1 be the collection of mappings F from S to the complex
numbers such that

1′. There exist ε > 0 and a positive integer n such that, for all h1, h2 ∈ S with
‖Λnh1‖L2(R)) < ε, the function of a complex variable z �→ F (h1 + h2z) is
analytic at zero, and

2′. There is a constant K > 0 such that, for all h ∈ S with ‖Λnh‖L2(R)) < ε,
|F (h)| ≤ K.

Two mappings F,G with properties 1′ and 2′ are identified with the same
element of U1 if F = G on an open neighborhood of zero in S.

The following result holds.

Theorem 3.2. For every ρ ∈ [0, 1], the S-transform is a bijection from (S)−ρ
to Uρ.

In other words, for every ϕ ∈ (S)−ρ, the S-transform Sϕ is an element of Uρ,
and, for every F ∈ Uρ, there exists a unique ϕ ∈ (S)−ρ such that Sϕ = F .
This result is proved in [10] when ρ = 0, and in [17] when ρ = 1.

Definition 3.4 For ϕ and ψ from (S)−ρ, ρ ∈ [0, 1], the Wick product ϕ J ψ
is the unique element of (S)−ρ whose S-transform is Sϕ · Sψ.

If S−1 is the inverse S-transform, then

ϕ J ψ = S−1(Sϕ · Sψ),
Note that, by Theorem 3.2, the Wick product is well-defined, because the
space Uρ, ρ ∈ [0, 1] is closed under the point-wise multiplication. Theorem 3.2
also ensures the correctness of the following definition of the white noise.

Definition 3.5 The white noise Ẇ on RP is the unique element of (S)0 whose
S transform satisfies SẆ (h) = h.

Remark 3.1 If g ∈ Lp(S), p > 1, then g ∈ (S)−0 [12, Corollary 2.3.8], and the
Fourier transform

ĝ(h) =
∫
S′
exp
(√
−1〈ω, h〉

)
g(ω)dµ(ω)

is defined. Direct calculations [12, Section 2.9] show that, for those g,

Sg(
√
−1h) = ĝ(h) e

1
2‖h‖

2
L2(R)) .

As a result, the Wick product can be interpreted as a convolution on the
infinite-dimensional space (S)−ρ.
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In the study of stochastic parabolic equations, ] = d + 1, so that the
generic point from Rd+1 is written as (t, x), t ∈ R, x ∈ Rd. As was mentioned
earlier, the terms of the type fdW (t) become f JẆdt. The precise connection
between the Itô integral and Wick product is discussed, for example, in [12,
Section 2.5].

As an example, consider the following equation:

ut(t, x) = a(x)uxx(t, x) + b(x)ux(t, x) + ux(t, x) J Ẇ (t, x), 0 < t < T, x ∈ R,
(3.8)

with initial condition u(0, x) = u0(x). In (3.8),

(WN1) Ẇ is the white noise process on R2.
(WN2) The initial condition u0 and the coefficients a, b are bounded and have

continuous bounded derivatives up to second order.
(WN3) There exists a positive number ε such that a(x) ≥ ε, x ∈ R.
(WN4) The second-order derivative of a is uniformly Hölder continuous.

The equivalent Itô formulation of (3.8) is

du(t, x) = (a(x)uxx(t, x) + b(x)ux(t, x))dt+ ek(x)ux(t, x)dwk(x), (3.9)

where {ek, k ≥ 1} is the Hermite basis in L2(R).
WithMkv = ekvx, we see that condition (2.2) does not hold in any Sobolev

space Hγ
2 (R). In fact, no traditional solution exists in any normal triple of

Sobolev spaces. On the other hand, with a suitable definition of solution,
equation (3.8) is solvable in the space (S)−0 of Hida distributions.

Definition 3.6 A mapping u : Rd → (S)−ρ is called weakly differentiable
with respect to xi at a point x∗ ∈ RP if and only if there exists Ui(x∗) ∈ (S)−ρ
so that, for all ϕ ∈ (S)ρ, Di〈u(x), ϕ〉|x=x∗ = 〈Ui(x∗), ϕ〉. In that case, we
write Ui(x∗) = Diu(x∗).

Definition 3.7 A mapping u from [0, T ]×R to (S)−0 is called a white noise
solution of (3.8) if and only if

1. The weak derivatives ut, ux, and uxx exist, in the sense of Definition 3.6,
for all (t, x) ∈ (0, T )× R.

2. Equality (3.8) holds for all (t, x) ∈ (0, T )× Rd.
3. limt↓0 u(t, x) = u0(x) in the topology of (S)−0.

Theorem 3.3. Under assumptions (WN1)–(WN4), there exists a white noise
solution of (3.8). This solution is unique in the class of weakly measurable
mappings v from (0, T ) × R to (S)−0, for which there exists a non-negative
integer q and a positive number K such that∫ T

0

∫
R

‖v(t, x)‖−0,−qe−Kx2
dxdt <∞.
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Proof. Consider the S-transformed equation

Ft(t, x;h) = a(x)Fxx(t, x;h) + b(x)Fx(t, x;h) + Fx(t, x;h)h, (3.10)

0 < t < T, x ∈ R, h ∈ S(R), with initial condition F (0, x;h) = u0(x). This
a deterministic parabolic equation, and one can show, using the probabilistic
representation of F , that F, Ft, Fx, and Fxx belong to U0. Then the inverse
S-transform of F is a solution of (3.8), and the uniqueness follows from the
uniqueness for equation (3.10). The details of the proof are in [40], where a
similar equation is considered for x ∈ Rd.

Even though the initial condition in (3.8) is deterministic, there are no
measurability restrictions on u0 for the white noise solution to exist; see [12]
for more details.

With appropriate modifications, the white noise solution can be defined
for equations more general than (3.8). The solution F = F (t, x;h) of the
corresponding S-transformed equation determines the regularity of the white
noise solution [12, Section 4.1].

Two main advantages of the white noise approach over the Hilbert space
approach are:

1. No need for parabolicity condition.
2. No measurability restrictions on the input data.

Still, there are substantial limitations:

1. There seems to be little or no connection between the white noise solution
and the traditional solution. While the white noise solution can, in princi-
ple, be constructed for equation (2.7), this solution will be very different
from the traditional solution.

2. There are no clear ways of computing the solution numerically, even with
available representations of the Feynmann-Kac type [12, Chapter 4].

3. The white noise solution, being constructed on a special white noise prob-
ability space, is weak in the probabilistic sense. Path-wise uniqueness does
not apply to such solutions because of the ”averaging” nature of the so-
lution spaces.

4 Generalized Functions on the Wiener Chaos Space

The objective of this section is to introduce the space of generalized random
elements on an arbitrary stochastic basis.

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assump-
tions and Y , a separable Hilbert space with inner product (·, ·)Y and an or-
thonormal basis {yk, k ≥ 1}. On F and Y , consider a cylindrical Brownian
motion W , that is, a family of continuous Ft-adapted Gaussian martingales
Wy(t), y ∈ Y , such thatWy(0) = 0 and E(Wy1(t)Wy2(s)) = min(t, s)(y1, y2)Y .
In particular,
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wk(t) =Wyk(t), k ≥ 1, t ≥ 0, (4.1)

are independent standard Wiener processes on F.
Equivalently, instead of the process W , the starting point can be a system

of independent standard Wiener processes {wk, k ≥ 1} on F. Then, given
a separable Hilbert space Y with an orthonormal basis {yk, k ≥ 1}, the
corresponding cylindrical Brownian motion W is defined by

Wy(t) =
∑
k≥1

(y, yk)Y wk(t). (4.2)

Fix a non-random T ∈ (0,∞) and denote by FW
T the σ-algebra generated

by wk(t), k ≥ 1, t < T . Denote by L2(W) the collection of FW
T -measurable

square integrable random variables.
We now review construction of the Cameron–Martin basis in the Hilbert

space L2(W).
Let m = {mk, k ≥ 1} be an orthonormal basis in L2((0, T )) such that

each mk belongs to L∞((0, T )). Define the independent standard Gaussian
random variables

ξik =
∫ T

0

mi(s)dwk(s).

Consider the collection of multi-indices

J =
{
α = (αk

i , i, k ≥ 1) : αk
i ∈ {0, 1, 2, . . .},

∑
i,k

αk
i <∞

}
.

The set J is countable, and, for every α ∈ J , only finitely many of αk
i are

not equal to zero. The upper and lower indices in αk
i represent, respectively,

the space and time components of the noise process W . For α ∈ J , define

|α| =
∑
i,k

αk
i , α! =

∏
i,k

αk
i !,

and
ξα =

1√
α!

∏
i,k

Hαk
i
(ξik), (4.3)

where Hn is nth Hermite polynomial. For example, if

α =


0 1 0 3 0 0 · · ·
2 0 0 0 4 0 · · ·
0 0 0 0 0 0 · · ·
...
...
...
...
...
... · · ·


with four non-zero entries α12 = 1; α14 = 3; α21 = 2; α25 = 4, then

ξα = ξ2,1 ·
H3(ξ4,1)√

3!
· H2(ξ1,2)√

2!
· H4(ξ5,2)√

4!
.

There are two main differences between (3.2) and (4.3):
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1. The basis (4.3) is constructed on an arbitrary probability space.
2. In (4.3), there is a clear separation of the time and space components

of the noise, and explicit presence of the time-dependent functions mi

facilitates the analysis of evolution equations.

Definition 4.1 The space L2(W) is called the Wiener Chaos space. The N -th
Wiener Chaos is the linear subspace of L2(W), generated by ξα, |α| = N .

The following is another version of the classical results of Cameron and
Martin [3].

Theorem 4.1. The collection Ξ = {ξα, α ∈ J } is an orthonormal basis in
L2(W).

We refer to Ξ as the Cameron–Martin basis in L2(W). By Theorem 4.1, every
element v of L2(W) can be written as

v =
∑
α∈J

vαξα,

where vα = E(vξα).
We now define the space D(L2(W)) of test functions and the space

D′(L2(W);X) of X-valued generalized random elements.

Definition 4.2
(1) The space D(L2(W)) is the collection of elements from L2(W) that can

be written in the form
v =

∑
α∈Jv

vαξα

for some vα ∈ R and a finite subset Jv of J .
(2) A sequence vn converges to v in D(L2(W)) if and only if Jvn ⊆ Jv for all
n and lim

n→∞
|vn,α − vα| = 0 for all α.

Definition 4.3 For a linear topological space X define the space D′(L2(W);X)
of X-valued generalized random elements as the collection of continuous linear
maps from the linear topological space D(L2(W)) to X. Similarly, the elements
of D′(L2(W);L1((0, T );X)) are called X-valued generalized random processes.

The element u of D′(L2(W);X) can be identified with a formal Fourier series

u =
∑
α∈J

uαξα,

where uα ∈ X are the generalized Fourier coefficients of u. For such a series
and v ∈ D(L2(W)), we have

u(v) =
∑
α∈Jv

vαuα.
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Conversely, for u ∈ D′(L2(W);X), we define the formal Fourier series of u by
setting uα = u(ξα). If u ∈ L2(W), then u ∈ D′(L2(W);R) and u(v) = E(uv).

By Definition 4.3, a sequence {un, n ≥ 1} converges to u in D′(L2(W);X)
if and only if un(v) converges to u(v) in the topology of X for every v ∈ D(W).
In terms of generalized Fourier coefficients, this is equivalent to lim

n→∞
un,α = uα

in the topology of X for every α ∈ J .
The construction of the space D′(L2(W);X) can be extended to Hilbert

spaces other than L2(W). Let H be a real separable Hilbert space with an
orthonormal basis {ek, k ≥ 1}. Define the space

D(H) =
{
v ∈ H : v =

∑
k∈Jv

vkek, vk ∈ R, Jv − a finite subset of {1, 2, . . .}
}
.

By definition, vn converges to v in D(H) as n → ∞ if and only if Jvn ⊆ Jv

for all n and lim
n→∞

|vn,k − vk| = 0 for all k.

For a linear topological spaceX, D′(H;X) is the space of continuous linear
maps from D(H) to X. An element g of D′(H;X) can be identified with a
formal series

∑
k≥1 gk ⊗ ek such that gk = g(ek) ∈ X and, for v ∈ D(H),

g(v) =
∑

k∈Jv gkvk. If X = R and
∑

k≥1 g
2
k < ∞, then g =

∑
k≥1 gkek ∈

H and g(v) = (g, v)H , the inner product in H. The space X is naturally
imbedded into D′(H;X): if u ∈ X, then

∑
k≥1 u⊗ ek ∈ D′(H;X).

A sequence gn =
∑

k≥1 gn,k⊗ ek, n ≥ 1, converges to g =
∑

k≥1 gk⊗ ek in
D′(H;X) if and only if, for every k ≥ 1, lim

n→∞
gn,k = gk in the topology of X.

A collection {Lk, k ≥ 1} of linear operators from X1 to X2 naturally
defines a linear operator L from D′(H;X1) to D′(H;X2):

L

∑
k≥1

gk ⊗ ek

 =
∑
k≥1

Lk(gk)⊗ ek.

Similarly, a linear operator L : D′(H;X1) → D′(H;X2) can be identified
with a collection {Lk, k ≥ 1} of linear operators from X1 to X2 by setting
Lk(u) = L(u ⊗ ek). Introduction of spaces D′(H;X) and the corresponding
operators makes it possible to avoid conditions of the type (2.2).

5 The Malliavin Derivative and its Adjoint

In this section, we define an analog of the Itô stochastic integral for generalized
random processes.

All notations from the previous section will remain in force. In particular,
Y is a separable Hilbert space with a fixed orthonormal basis {yk, k ≥ 1},
and Ξ = {ξα, α ∈ J }, the Cameron–Martin basis in L2(W) defined in (4.3).

We start with a brief review of the Malliavin calculus [37].
The Malliavin derivative D is a continuous linear operator from
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L12(W) =
{
u ∈ L2(W) :

∑
α∈J

|α|u2α <∞
}

(5.1)

to L2 (W; (L2((0, T ))× Y )). In particular,

(Dξα)(t) =
∑
i,k

√
αk
i ξα−(i,k)mi(t)yk, (5.2)

where α−(i, k) is the multi-index with the components(
α−(i, k)

)l
j
=
{
max(αk

i − 1, 0), if i = j and k = l,
αl
j , otherwise.

Note that, for each t ∈ [0, T ], Dξα(t) ∈ D(L2(W)×Y ). Using (5.2), we extend
the operator D by linearity to the space D′(L2(W)):

D

(∑
α∈J

uαξα

)
=
∑
α∈J

uα∑
i,k

√
αk
i ξα−(i,k)mi(t)yk

 .

For the sake of completeness and to justify further definitions, let us es-
tablish connection between the Malliavin derivative and the stochastic Itô
integral.

If u is an arbitrary FW
t -adapted process from L2 (W;L2((0, T );Y )), then

u(t) =
∑

k≥1 uk(t)yk, where the random variable uk(t) is FW
t -measurable for

each t and k, and ∑
k≥1

∫ T

0

E|uk(t)|2dt <∞.

We define the stochastic Itô integral

U(t) =
∫ t

0

(u(s), dW (s))Y =
∑
k≥1

∫ t

0

uk(s)dwk(s). (5.3)

Note that U(t) is FW
t -measurable and E|U(t)|2 =

∑
k≥1
∫ t
0
E|uk(s)|2ds.

The next result establishes a connection between the Malliavin derivative
and the stochastic Itô integral.

Lemma 5.1. Suppose that u is an FW
t -adapted process from

L2 (W;L2((0, T );Y )), and define the process U according to (5.3). Then, for
every t ≤ T and α ∈ J ,

E(U(t)ξα) = E
∫ t

0

(u(s), (Dξα)(s))Y ds. (5.4)
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Proof. Define ξα(t) = E(ξα|FW
t ). It is known (see [33] or Remark 8.2 below)

that
dξα(t) =

∑
i,k

√
αk
i ξα−(i,k)(t)mi(t)dwk(t). (5.5)

Due to FW
t -measurability of uk(t), we have

uk,α(t) = E
(
uk(t)E(ξα|FW

t )
)
= E(uk(t)ξα(t)). (5.6)

The definition of U implies dU(t) =
∑

k≥1 uk(t)dwk(t), so that, by (5.5),
(5.6), and the Itô formula,

Uα(t) = E(U(t)ξα) =
∫ t

0

∑
i,k

√
αk
i uk,α−(i,k)(s)mi(s)ds. (5.7)

Together with (5.2), the last equality implies (5.4). Lemma 5.1 is proved.

Note that the coefficients uk,α of u ∈ L2(W;L2((0, T );H)) belong to
L2((0, T )). We therefore define uk,α,i =

∫ T
0
uk,α(t)mi(t)dt. Then, by (5.7),

Uα(T ) =
∑
i,k

√
αk
i uk,α−(i,k),i. (5.8)

Since U(T ) =
∑

α∈J Uα(T )ξα, we shift the summation index in (5.8) and
conclude that

U(T ) =
∑
α∈J

∑
i,k

√
αk
i + 1uk,α,iξα+(i,k), (5.9)

where (
α+(i, k)

)l
j
=
{
αk
i + 1, if i = j and k = l,
αl
j , otherwise. (5.10)

As a result, U(T ) = δ(u), where δ is the adjoint of the Malliavin deriva-
tive, also known as the Skorohod integral (called also the Skorohod–Hitsuda
integral); see [10], [37] or [38] for details.

Lemma 5.1 suggests the following definition.
For an FW

t -adapted process u from L2 (W;L2((0, T ))), let D∗ku be the
FW
t -adapted process from L2 (W;L2((0, T ))) such that

(D∗ku)α(t) =
∫ t

0

∑
i

√
αk
i uα−(i,k)(s)mi(s)ds. (5.11)

If u ∈ L2 (W;L2((0, T );Y )) is FW
t -adapted, then u is in the domain of the

operator δ and δ(uI(s < t)) =
∑

k≥1(D
∗
kuk)(t).

We now extend the operators D∗k to the generalized random processes. Let
X be a Banach space with norm ‖ · ‖X .
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Definition 5.1 If u is an X-valued generalized random process, then D∗ku is
the X-valued generalized random process such that

(D∗ku)α(t) =
∑
i

∫ t

0

uα−(i,k)(s)
√
αk
imi(s)ds. (5.12)

If g ∈ D′
(
Y ;D′ (L2(W);L1((0, T );X))

)
, then D∗g is the X-valued generalized

random process such that, for g =
∑

k≥1 gk⊗yk, gk ∈ D′(L2(W);L1((0, T );X)),

(D∗g)α(t) =
∑
k

(D∗kgk)α(t) =
∑
i,k

∫ t

0

gk,α−(i,k)(s)
√
αk
imi(s)ds. (5.13)

Using (5.2), we get a generalization of equality (5.4):

(D∗g)α(t) =
∫ t

0

g(Dξα(s))(s)ds. (5.14)

Indeed, by linearity,

gk

(√
αk
imi(s)ξα−(i,k)

)
(s) =

√
αk
imi(s)gk,α−(i,k))(s).

Theorem 5.1. If T <∞, then D∗k and D∗ are continuous linear operators.

Proof. It is enough to show that, if u, un ∈ D′
(
L2(FW

T );L1((0, T );X)
)
and

limn→∞ ‖uα−un,α‖L1((0,T );X) = 0 for every α ∈ J , then, for every k ≥ 1 and
α ∈ J ,

lim
n→∞

‖(D∗ku)α − (D∗kun)α‖L1((0,T );X) = 0.

Using (5.12), we find that

‖(D∗ku)α − (D∗kun)α‖X(t) ≤
∑
i

∫ T

0

√
αk
i ‖uα−(i,k) − un,α−(i,k)‖X(s)|mi(s)|ds.

Note that the sum contains finitely many terms. By assumption, |mi(t)| ≤ Ci,
and so

‖(D∗ku)α−(D∗kun)α‖L1((0,T );X)≤C(α)
∑
i

√
αk
i ‖uα−(i,k)−un,α−(i,k)‖L1((0,T );X).

Theorem 5.1 is proved.

6 The Wiener Chaos Solution and the Propagator

In this section we build on the ideas from [25] to introduce the Wiener Chaos
solution and the corresponding propagator for a general stochastic evolution
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equation. The notations from Sections 4 and 5 will remain in force. It will
be convenient to interpret the cylindrical Brownian motion W as a collection
{wk, k ≥ 1} of independent standard Wiener processes. As before, T ∈ (0,∞)
is fixed and non-random. Introduce the following objects:

• The Banach spaces A, X, and U such that U ⊆ X.
• Linear operators

A : L1((0, T );A)→ L1((0, T );X),
Mk : L1((0, T );A)→ L1((0, T );X).

• Generalized random processes f ∈ D′ (L2(W);L1((0, T );X)) and
gk ∈ D′ (L2(W);L1((0, T );X)) .

• The initial condition u0 ∈ D′ (L2(W);U).

Consider the deterministic equation

v(t) = v0 +
∫ t

0

(Av)(s)ds+
∫ t

0

ϕ(s)ds, (6.1)

where v0 ∈ U and ϕ ∈ L1((0, T );X).

Definition 6.1 A function v is called a w(A,X) solution of (6.1) if and only
if v ∈ L1((0, T );A) and equality (6.1) holds in the space L1((0, T );A).

Definition 6.2 An A-valued generalized random process u is called a w(A,X)
Wiener Chaos solution of the stochastic differential equation

du(t) = (Au(t)+f(t))dt+(Mku(t)+gk(t))dwk(t), t ≤ T, u|t=0 = u0, (6.2)

if and only if the equality

u(t) = u0 +
∫ t

0

(Au+ f)(s)ds+
∑
k≥1

(D∗k(Mku+ gk))(t) (6.3)

holds in D′ (L2(W);L1((0, T );X)).

Sometimes, to stress the dependence of the Wiener Chaos solution on the
terminal time T , the notation wT (A,X) will be used.

Equalities (6.3) (5.13) mean that, for every α ∈ J , the generalized Fourier
coefficient uα of u satisfies the equation

uα(t) = u0,α+
∫ t

0

(Au+ f)α(s)ds+
∫ t

0

∑
i,k

√
αk
i (Mku+ gk)α−(i,k)(s)mi(s)ds.

(6.4)

Definition 6.3 System (6.4) is called the propagator for equation (6.2).
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The propagator is a lower triangular system. Indeed, If α = (0), that is,
|α| = 0, then the corresponding equation in (6.4) becomes

u(0)(t) = u0,(0) +
∫ t

0

(Au(0)(s) + f(0)(s))ds. (6.5)

If α = (j]), that is, αP
j = 1 for some fixed j and ] and αk

i = 0 for all other
i, k ≥ 1, then the corresponding equation in (6.4) becomes

u(jP)(t) = u0,(jP) +
∫ t

0

(Au(jP)(s) + f(jP)(s))ds

+
∫ t

0

(Mku(0)(s) + gP,(0)(s))mj(s)ds.
(6.6)

Continuing in this way, we conclude that (6.4) can be solved by induction on
|α| as long as the corresponding deterministic equation (6.1) is solvable. The
precise result is as follows.

Theorem 6.1. If, for every v0 ∈ U and ϕ ∈ L1((0, T );X), equation (6.1) has
a unique w(A,X) solution v(t) = V (t, v0, ϕ), then equation (6.2) has a unique
w(A,X) Wiener Chaos solution such that

uα(t) = V (t, u0,α, fα) +
∑
i,k

√
αk
i V (t, 0,miMkuα−(i,k))

+
∑
i,k

√
αk
i V (t, 0,migk,α−(i,k)).

(6.7)

Proof. Using the assumptions of the theorem and linearity, we conclude that
(6.7) is the unique solution of (6.4).

To derive a more explicit formula for uα, we need some additional con-
structions. For every multi-index α with |α| = n, define the characteristic
set Kα of α as

Kα = {(iα1 , kα1 ), . . . , (iαn, kαn)},
iα1 ≤ iα2 ≤ . . . ≤ iαn, and if iαj = iαj+1, then k

α
j ≤ kαj+1. The first pair (i

α
1 , k

α
1 )

in Kα is the position numbers of the first nonzero element of α. The second
pair is the same as the first if the first nonzero element of α is greater than
one; otherwise, the second pair is the position numbers of the second nonzero
element of α and so on. As a result, if αk

i > 0, then exactly αk
i pairs in Kα

are equal to (i, k). For example, if

α =


0 1 0 2 3 0 0 · · ·
1 2 0 0 0 1 0 · · ·
0 0 0 0 0 0 0 · · ·
...
...
...
...
...
...
... · · ·


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with nonzero elements

α21 = α12 = α61 = 1, α22 = α14 = 2, α15 = 3,

then the characteristic set is

Kα={(1, 2), (2, 1), (2, 2), (2, 2), (4, 1), (4, 1), (5, 1), (5, 1), (5, 1), (6, 2)}.

Theorem 6.2. Assume that:

1. For every v0 ∈ U and ϕ ∈ L1((0, T );X), equation (6.1) has a unique
w(A,X) solution v(t) = V (t, v0, ϕ),

2. The input data in (6.4) satisfy gk = 0 and fα = u0,α = 0 if |α| > 0.

Let u(0)(t) = V (t, u0, 0) be the solution of (6.4) for |α| = 0. For α ∈ J with
|α| = n ≥ 1 and the characteristic set Kα, define functions Fn = Fn(t;α) by
induction as follows:

F 1(t;α) = V (t, 0,miMku(0)) if Kα = {(i, k)};

Fn(t;α) =
n∑

j=1

V (t, 0,mijMkjF
n−1(·;α−(ij , kj)))

if Kα = {(i1, k1), . . . , (in, kn)}.

(6.8)

Then
uα(t) =

1√
α!
Fn(t;α). (6.9)

Proof. If |α| = 1, then representation (6.9) follows from (6.6). For |α| > 1,
observe that:

• If ūα(t) =
√
α!uα and |α| ≥ 1, then (6.4) implies the relation

ū(t) =
∫ t

0

Aūα(s)ds+
∑
i,k

∫ t

0

αk
imi(s)Mkūα−(i,k)(s)ds.

• If Kα = {(i1, k1), . . . , (in, kn)}, then, for every j = 1, . . . , n, the character-
istic set Kα−(ij ,kj) of α

−(ij , kj) is obtained from Kα by removing the pair
(ij , kj).

• By the definition of the characteristic set,

∑
i,k

αk
imi(s)Mkūα−(i,k)(s) =

n∑
j=1

mij (s)Mkj ūα−(ij ,kj)(s).

As a result, representation (6.9) follows by induction on |α| using (6.7):
if |α| = n > 1, then
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ūα(t) =
n∑

j=1

V (t, 0,mijMkj ūα−(ij ,kj))

=
n∑

j=1

V (t, 0,mijMkjF
(n−1)(·;α−(ij , kj)) = Fn(t;α).

(6.10)

Theorem 6.2 is proved.

Corollary 6.1 Assume that the operator A is a generator of a strongly con-
tinuous semigroup Φ = Φt,s, t ≥ s ≥ 0, in some Hilbert space H such that
A ⊂ H, each Mk is a bounded operator from A to H, and the solution
V (t, 0, ϕ) of equation (6.1) is written as

V (t, 0, ϕ) =
∫ T

0

Φt,sϕ(s)ds, ϕ ∈ L2((0, T );H)). (6.11)

Denote by Pn the permutation group of {1, . . . , n}. If u(0) ∈ L2((0, T );H)),
then, for |α| = n > 1 with the characteristic set Kα = {(i1, k1), . . . , (in, kn)},
representation (6.9) becomes

uα(t) =
1√
α!

∑
σ∈Pn

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt,snMkσ(n) · · ·Φs2,s1Mkσ(1)u(0)(s1)miσ(n)(sn) · · ·miσ(1)(s1)ds1 . . . dsn.
(6.12)

Also,∑
|α|=n

uα(t)ξα =
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt,snMkn · · ·Φs2,s1

(
Mk1u(0) + gk1(s1)

)
dwk1(s1) · · · dwkn(sn), n ≥ 1,

(6.13)

and, for every Hilbert space X, the following energy equality holds:∑
|α|=n

‖uα(t)‖2X =
∞∑

k1,...,kn=1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt,snMkn · · ·Φs2,s1Mk1u(0)(s1)‖2Xds1 . . . dsn;
(6.14)

both sides in the last equality can be infinite. For n = 1, formulas (6.12) and
(6.14) become

u(ik)(t) =
∫ t

0

Φt,sMku(0)(s) mi(s)ds; (6.15)

∑
|α|=1

‖uα(t)‖2X =
∞∑
k=1

∫ t

0

‖Φt,sMku(0)(s)‖2Xds. (6.16)
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Proof. Using the semigroup representation (6.11), we conclude that (6.12) is
just an expanded version of (6.9).

Since {mi, i ≥ 1} is an orthonormal basis in L2(0, T ), equality (6.16)
follows from (6.15) and the Parcevall identity. Similarly, equality (6.14) will
follow from (6.12) after an application of an appropriate Parcevall’s identity.

To carry out the necessary arguments when |α| > 1, denote by J1 the
collection of one-dimensional multi-indices β = (β1, β2, . . .) such that each βi
is a non-negative integer and |β| =

∑
i≥1 βi <∞. Given a β ∈ J1 with |β| = n,

we define Kβ = {i1, . . . , in}, the characteristic set of β and the function

Eβ(s1, . . . , sn) =
1√
β!n!

∑
σ∈Pn

mi1(sσ(1)) · · ·min(sσ(n)). (6.17)

By construction, the collection {Eβ , β ∈ J1, |β| = n} is an orthonormal basis
in the subspace of symmetric functions in L2((0, T )n;X).

Next, we rewrite (6.12) in a symmetrized form. To make the notations
shorter, denote by s(n) the ordered set (s1, . . . , sn) and write dsn = ds1 . . . dsn.
Fix t ∈ (0, T ] and the set k(n) = {k1, . . . , kn} of the second components of the
characteristic set Kα. Define the symmetric function

G(t, k(n); s(n))

=
1√
n!

∑
σ∈Pn

Φt,sσ(n)Mkn · · ·Φsσ(2),sσ(1)Mk1u(0)(sσ(1))1sσ(1)<···<sσ(n)<t(s(n)).

(6.18)

Then (6.12) becomes

uα(t) =
∫
[0,T ]n

G(t, k(n); s(n))Eβ(α)(s(n))dsn, (6.19)

where the multi-indices α and β(α) are related via their characteristic sets: if

Kα = {(i1, k1), . . . , (in, kn)},

then
Kβ(α) = {i1, . . . , in}.

Equality (6.19) means that, for fixed k(n), the function uα is a Fourier coef-
ficient of the symmetric function G(t, k(n); s(n)) in the space L2((0, T )n;X).
Parcevall’s identity and summation over all possible k(n) yield the equality

∑
|α|=n

‖uα(t)‖2X =
1
n!

∞∑
k1,...,kn=1

∫
[0,T ]n

‖G(t, k(n); s(n))‖2Xdsn,

which, due to (6.18), is the same as (6.14).
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To prove equality (6.13), relating the Cameron–Martin and multiple Itô
integral expansions of the solution, we use the following result [13, Theorem
3.1]:

ξα =
1√
α!

∫ T

0

∫ sn

0

· · ·
∫ s2

0

Eβ(α)(s(n))dwk1(s1) · · · dwkn(sn);

see also [37, pp. 12–13]. Since the collection of all Eβ is an orthonormal basis,
equality (6.13) follows from (6.19) after summation over al k1, . . . , kn.

Corollary 6.1 is proved.

We now present several examples to illustrate the general results.

Example 6.1 Consider the following equation:

du(t, x) = (auxx(t, x) + f(t, x))dt+ (σux(t, x) + g(t, x))dw(t), x ∈ R, (6.20)

where a > 0, σ ∈ R, f ∈ L2((0, T );H−12 (R)), g ∈ L2((0, T );L2(R)), and
u|t=0 = u0 ∈ L2(R). By Theorem 2.2, if σ2 < 2a, then equation (6.20) has a
unique traditional solution u ∈ L2

(
W;L2((0, T );H1

2 (R))
)
.

By FW
t -measurability of u(t), we have

E(u(t)ξα) = E(u(t)E(ξα|FW
t )).

Using the relation (5.5) and the Itô formula, we find that uα satisfy

duα = a(uα)xxdt+
∑
i

√
αiσ(uα−(i))xmi(t)dt,

which is precisely the propagator for equation (6.20). In other words, in the
case 2a > σ2 the traditional solution of (6.20) coincides with the Wiener
Chaos solution.

On the other hand, the heat equation

v(t, x) = v0(x) +
∫ t

0

vxx(s, x)ds+
∫ t

0

ϕ(s, x)ds, v0 ∈ L2(R),

with ϕ ∈ L2((0, T );H−12 (R)) has a unique w(H1
2 (R),H

−1
2 (R)) solution. There-

fore, by Theorem 6.1, the unique w(H1
2 (R),H

−1
2 (R)) Wiener Chaos solution

of (6.20) exists for all σ ∈ R.

In the next example, the equation, although not parabolic, can be solved
explicitly.

Example 6.2 Consider the following equation:

du(t, x) = ux(t, x)dw(t), t > 0, x ∈ R; u(0, x) = x. (6.21)

Clearly, u(t, x) = x+ w(t) satisfies (6.21).
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To find the Wiener Chaos solution of (6.21), note that, with one-
dimensional Wiener process, αk

i = αi, and the propagator in this case becomes

uα(t, x) = xI(|α| = 0) +
∫ t

0

∑
i

√
αi(uα−(i)(s, x))xmi(s)ds.

Then uα = 0 if |α| > 1, and

u(t, x) = x+
∑
i≥1

ξi

∫ t

0

mi(s)ds = x+ w(t). (6.22)

Even though Theorem 6.1 does not apply, the above arguments show that
u(t, x) = x+ w(t) is the unique w(A,X) Wiener Chaos solution of (6.21) for
suitable spaces A and X, for example,

X =
{
f :
∫

R

(1 + x2)−2f2(x)dx <∞
}

and A = {f : f, f ′ ∈ X}.

Section 14 provides a more detailed analysis of equation (6.21).

If equation (6.2) is anticipating, that is, the initial condition is not de-
terministic and/or the free terms f, g are not FW

t -adapted, then the Wiener
Chaos solution generalizes the Skorohod integral interpretation of the equa-
tion.

Example 6.3 Consider the equation

du(t, x) =
1
2
uxx(t, x)dt+ ux(t, x)dw(t), x ∈ R, (6.23)

with initial condition u(0, x) = x2w(T ). Since w(T ) =
√
Tξ1, we find that

(uα)t(t, x) =
1
2
(uα)xx(t, x) +

∑
i

√
αimi(t)(uα−(i))x(t, x) (6.24)

with initial condition uα(0, x) =
√
Tx2I(|α| = 1, α1 = 1). By Theorem 6.1,

there exists a unique w(A,X) Wiener Chaos solution of (6.23) for suitable
spaces A and X. For example, we can take

X =
{
f :
∫

R

(1 + x2)−8f2(x)dx <∞
}

and A = {f : f, f ′, f ′′ ∈ X}.

System (6.24) can be solved explicitly. Indeed, uα ≡ 0 if |α| = 0 or |α| > 3 or
if α1 = 0. Otherwise, writing Mi(t) =

∫ t
0
mi(s)ds, we find:
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uα(t, x) = (t+ x2)
√
T , if |α| = 1, α1 = 1;

uα(t, x) = 2
√
2 xt, if |α| = 2, α1 = 2;

uα(t, x) = 2
√
T xMi(t), if |α| = 2, α1 = αi = 1, 1 < i;

uα(t, x) =

√
6
T
t2, if |α| = 3, α1 = 3;

uα(t, x) = 2
√
2T M1(t)Mi(t), if |α| = 3, α1 = 2, αi = 1, 1 < i;

uα(t, x) =
√
2T M2

i (t), if |α| = 3, α1 = 1, αi = 2, 1 < i;

uα(t, x) = 2
√
T Mi(t)Mj(t), if |α| = 3, α1 = αi = αj = 1, 1 < i < j.

Then

u(t, x) =
∑
α∈J

uαξα = w(T )w2(t)−2tw(t)+2(W (T )w(t)−t)x+x2w(T ) (6.25)

is the Wiener Chaos solution of (6.23). It can be verified using the properties
of the Skorohod integral [37] that the function u defined by (6.25) satisfies

u(t, x) = x2w(T ) +
1
2

∫ t

0

uxx(s, x)ds+
∫ t

0

ux(s, x)dw(s), t ∈ [0, T ], x ∈ R,

where the stochastic integral is in the sense of Skorohod.

7 Weighted Wiener Chaos Spaces and S-Transform

The space D′(L2(W);X) is too big to provide any reasonable information
about regularity of the Wiener Chaos solution. Introduction of weighted
Wiener chaos spaces makes it possible to resolve this difficulty.

As before, let Ξ = {ξα, α ∈ J } be the Cameron–Martin basis in L2(W),
and D(L2(W);X), the collection of finite linear combinations of ξα with co-
efficients in a Banach space X.

Definition 7.1 Given a collection {rα, α ∈ J } of positive numbers, the space
RL2(W;X) is the closure of D(L2(W);X) with respect to the norm

‖v‖2RL2(W;X)
:=
∑
α∈J

r2α‖vα‖2X .

The operator R defined by (Rv)α := rαvα is a linear homeomorphism
from RL2(W;X) to L2(W;X).

There are several special choices of the weight sequence R = {rα, α ∈ J }
and special notations for the corresponding weighted Wiener Chaos spaces.
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• If Q = {q1, q2, . . .} is a sequence of positive numbers, define

qα =
∏
i,k

q
αk
i

k .

The operator R, corresponding to rα = qα, is denotes by Q. The space
QL2(W;X) is denoted by L2,Q(W;X) and is called a Q-weighted Wiener
Chaos space. The significance of this choice of weights will be explained
shortly (see, in particular, Proposition 7.2).

• If
r2α = (α!)ρ

∏
i,k

(2ik)γα
k
i , ρ, γ ∈ R,

then the corresponding space RL2(W;X) is denoted by (S)ρ,γ(X). As
always, the argument X will be omitted if X = R. Note the analogy with
Definition 3.2.

The structure of weights in the spaces L2,Q and (S)ρ,γ is different, and
in general these two classes of spaces are not related. There exist generalized
random elements that belong to some L2,Q(W;X), but do not belong to any
(S)ρ,γ(X). For example, u =

∑
k≥1 e

k2
ξ1,k belongs to L2,Q(W) with qk =

e−2k
2
, but to no (S)ρ,γ , because the sum

∑
k≥1 e

2k2
(k!)ρ(2k)γ diverges for

every ρ, γ ∈ R. Similarly, there exist generalized random elements that belong
to some (S)ρ,γ(X), but to no L2,Q(W;X). For example, u =

∑
n≥1

√
n!ξ(n),

where (n) is the multi-index with α11 = n and αk
i = 0 elsewhere, belongs to

(S)−1,−1, but does not belong to any L2,Q(W), because the sum
∑

n≥1 q
nn!

diverges for every q > 0.
The next result is the space-time analog of Proposition 2.3.3 in [12].

Proposition 7.1 The sum ∑
α∈J

∏
i,k≥1

(2ik)−γα
k
i

converges if and only if γ > 1.

Proof. Note that

∑
α∈J

∏
i,k≥1

(2ik)−γα
k
i =

∏
i,k≥1

∑
n≥0

((2ik)−γ)n

 =
∏
i,k

1
(1− (2ik)−γ)

, γ > 0

(7.1)
The infinite product on the right of (7.1) converges if and only if each of the
sums

∑
i≥1 i

−γ ,
∑

k≥1 k
−γ converges, that is, if an only if γ > 1.

Corollary 7.1 For every u ∈ D′(W;X), there exists an operator R such that
Ru ∈ L2(W;X).
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Proof. Define

r2α =
1

1 + ‖uα‖2X

∏
i,k≥1

(2ik)−2α
k
i .

Then

‖Ru‖2L2(W;X)
=
∑
α∈J

‖uα‖2X
1 + ‖uα‖2X

∏
i,k≥1

(2ik)−2α
k
i ≤

∑
α∈J

∏
i,k≥1

(2ik)−2α
k
i <∞.

The importance of the operator Q in the study of stochastic equations
is due to the fact that the operator R maps a Wiener Chaos solution to a
Wiener Chaos solution if and only R = Q for some sequence Q. Indeed, direct
calculations show that the functions uα, α ∈ J , satisfy the propagator (6.4)
if and only if vα = (Ru)α satisfy the equation

vα(t) = (Ru0)α +
∫ t

0

(Av +Rf)α(s)ds

+
∫ t

0

∑
i,k

√
αk
i

ρα
ρα−(i,k)

(MkRu+Rgk)α−(i,k)(s)mi(s)ds.
(7.2)

Therefore, the operator R preserves the structure of the propagator if and
only if

ρα
ρα−(i,k)

= qk,

that is, ρα = qα for some sequence Q.
Below is the summary of the main properties of the operator Q.

Proposition 7.2

1. If qk ≤ q < 1 for all k ≥ 1, then L2,Q(W) ⊂ (S)0,−γ for some γ > 0.
2. If qk ≥ q > 1 for all k, then L2,Q(W) ⊂ Ln

2 (W) for all n ≥ 1, that is, the
elements of L2,Q(W) are infinitely differentiable in the Malliavin sense.

3. If u ∈ L2,Q(W;X) with generalized Fourier coefficients uα satisfying the
propagator (6.4), and v = Qu, then the corresponding system for the
generalized Fourier coefficients of v is

vα(t) = (Qu0)α +
∫ t

0

(Av +Qf)α(s)ds

+
∫ t

0

∑
i,k

√
αk
i (Mkv +Qgk)α−(i,k)(s)qkmi(s)ds.

(7.3)

4. The function u is a Wiener Chaos solution of

u(t) = u0 +
∫ t

0

(Au(s) + f(s))dt+
∫ t

0

(Mu(s) + g(s), dW (s))Y (7.4)
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if and only if v = Qu is a Wiener Chaos solution of

v(t) = (Qu)0 +
∫ t

0

(Av(s) +Qf(s))dt+
∫ t

0

(Mv(s) +Qg(s), dWQ(s))Y ,

(7.5)
where, for h ∈ Y , WQ

h (t) =
∑

k≥1(h, yk)Y qkwk(t).

The following examples demonstrate how the operator Q helps with the
analysis of various stochastic evolution equations.

Example 7.1 Consider the w(H1
2 (R),H

−1
2 (R)) Wiener Chaos solution u of

equation

du(t, x) = (auxx(t, x) + f(t, x))dt+ σux(t, x)dw(t), x ∈ R, (7.6)

with f ∈ L2(Ω × (0, T );H−12 (R)), g ∈ L2(Ω × (0, T );L2(R)), and the initial
data u|t=0 = u0 ∈ L2(R). Assume that σ > 0 and define the sequence Q such
that qk = q for all k ≥ 1 and q <

√
2a/σ. By Theorem 2.2, the equation

dv = (avxx + f)dt+ (qσux + g)dw

with v|t=0 = u0, has a unique traditional solution

v ∈ L2
(
W;L2((0, T );H1

2 (R))
)⋂

L2 (W;C((0, T );L2(R))) .

By Proposition 7.2, the w(H1
2 (R),H

−1
2 (R)) Wiener Chaos solution u of equa-

tion (7.6) satisfies u = Q−1v and

u ∈ L2,Q
(
W;L2((0, T );H1

2 (R))
)⋂

L2,Q (W;C((0, T );L2(R))) .

Note that if equation (7.6) is strongly parabolic, that is, 2a > σ2, then the
weight q can be taken bigger than one, and, according to the first statement
of Proposition 7.2, regularity of the solution is better than the one guaranteed
by Theorem 2.2.

Example 7.2 The Wiener Chaos solutions can be constructed for stochastic
ordinary differential equations. Consider, for example,

u(t) = 1 +
∫ t

0

∑
k≥1

u(s)dwk(s), (7.7)

which clearly does not have a traditional solution. On the other hand,
the unique w(R,R) Wiener Chaos solution of this equation belongs to
L2,Q (W;L2((0, T )) for every Q satisfying

∑
k q

2
k <∞. Indeed, for (7.7), equa-

tion (7.5) becomes

v(t) = 1 +
∫ t

0

∑
k

v(s)qkdwk(s).

If
∑

k q
2
k <∞, then the traditional solution of this equation exists and belongs

to L2 (W;L2((0, T ))).
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There exist equations for which the Wiener Chaos solution does not be-
long to any weighted Wiener chaos space L2,Q. An example is given below in
Section 14.

To define the S-transform, consider the following analog of the stochastic
exponential (3.6).

Lemma 7.1. If h ∈ D (L2((0, T );Y )) and

E(h) = exp

(∫ T

0

(h(t), dW (t))Y −
1
2

∫ T

0

‖h(t)‖2Y dt
)
,

then

• E(h) ∈ L2,Q(W) for every sequence Q.
• E(h) ∈ (S)ρ,γ for ρ ∈ [0, 1) and γ ≥ 0.
• E(h) ∈ (S)1,γ , γ ≥ 0, as long as ‖h‖2L2((0,T );Y )

is sufficiently small.

Proof. Recall that, if h ∈ D(L2((0, T );Y )), then h(t) =
∑

i,k∈Ih hk,imi(t)yk,
where Ih is a finite set. Direct computations show that

E(h) =
∏
i,k

∑
n≥0

Hn(ξik)
n!

(hk,i)n

 =
∑
α∈J

hα√
α!
ξα

where hα =
∏

i,k h
αk
i

k,i. In particular,

(E(h))α =
hα√
α!
. (7.8)

Consequently, for every sequence Q of positive numbers,

‖E(h)‖2L2,Q(W)
= exp

 ∑
i,k∈Ih

h2k,iq
2
k

 <∞. (7.9)

Similarly, for ρ ∈ [0, 1) and γ ≥ 0,

‖E(h)‖2(S)ρ,γ =
∑
α∈J

∏
i,k

((2ik)γhk,i)2α
k
i

(αk
i !)1−ρ

=
∏

i,k∈Ih

∑
n≥0

((2ik)γhk,i)2n

(n!)1−ρ

 <∞,

(7.10)
and, for ρ = 1,

‖E(h)‖2(S)1,γ =
∑
α∈J

∏
i,k

((2ik)γhk,i)2α
k
i =

∏
i,k∈Ih

∑
n≥0

((2ik)γhk,i)2n

 <∞,

(7.11)
if 2
(
max(m,n)∈Ih)(mn)

γ
)∑

i,k h
2
k,i < 1. Lemma 7.1 is proved.
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Remark 7.1 It is well-known (see, for example, [24, Proof of Theorem 5.5])
that the family {E(h), h ∈ D (L2((0, T );Y ))} is dense in L2(W) and conse-
quently in every L2,Q(W) and every (S)ρ,γ , −1 < ρ ≤ 1, γ ∈ R.

Definition 7.2 If u ∈ L2,Q(W;X) for some Q, or if u ∈
⋃

q≥0(S)−ρ,−γ(X),
0 ≤ ρ ≤ 1, then the deterministic function

Su(h) =
∑
α∈J

uαh
α

√
α!

∈ X (7.12)

is called the S-transform of u. Similarly, for g ∈ D′ (Y ;L2,Q(W;X)) the
S-transform Sg(h) ∈ D′(Y ;X) is defined by setting (Sg(h))k = (Sgk)(h).

Note that if u ∈ L2(W;X), then Su(h) = E(uE(h)). If u belongs to
L2,Q(W;X) or to

⋃
q≥0(S)−ρ,−γ(X), 0 ≤ ρ < 1, then Su(h) is defined for

all h ∈ D (L2((0, T );Y )) . If u ∈
⋃

γ≥0(S)−1,−γ(X), then Su(h) is defined
only for h sufficiently close to zero.

By Remark 7.1, an element u from L2,Q(W;X) or
⋃

γ≥0(S)−ρ,−γ(X), 0 ≤
ρ < 1, is uniquely determined by the collection of deterministic functions
Su(h), h ∈ D (L2((0, T );Y )) . Since E(h) > 0 for all h ∈ D (L2((0, T );Y )),
Remark 7.1 also suggests the following definition.

Definition 7.3 An element u from L2,Q(W) or
⋃

γ≥0(S)−ρ,−γ , 0 ≤ ρ < 1,
is called non-negative (u ≥ 0) if and only if the inequality Su(h) ≥ 0 holds
whatever is h ∈ D (L2((0, T );Y )).

The definition of the operator Q and Definition 7.3 imply the following
result.

Proposition 7.3 A generalized random element u from L2,Q(W) is non-
negative if and only if Qu ≥ 0.

For example, the solution of equation (7.7) is non-negative because

Qu(t) = exp

∑
k≥1

(qkwk(t)− (1/2)q2k)

 .

We conclude this section with one technical remark.
Definition 7.2 expresses the S-transform in terms of the generalized Fourier

coefficients. The following results makes it possible to recover generalized
Fourier coefficients from the corresponding S-transform.

Proposition 7.4 If u belongs to some L2,Q(W;X) or
⋃

γ≥0(S)−ρ,−γ(X) with
0 ≤ ρ ≤ 1, then

uα =
1√
α!

∏
i,k

∂α
k
i Su(h)

∂h
αk
i

k,i

∣∣∣∣∣∣
h=0

. (7.13)
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Proof. For each α ∈ J with K non-zero entries, equality (7.12) and Lemma
7.1 imply that the function Su(h), as a function of K variables hk,i, is analytic
in some neighborhood of zero. Then (7.13) follows after differentiation of the
series (7.12).

8 General Properties of the Wiener Chaos Solutions

Using notations and assumptions from Section 6, consider the linear evolution
equation

du(t) = (Au(t) + f(t))dt+ (Mu(t) + g(t), dW (t))Y , u|t=0 = u0. (8.1)

The objective of this section is to study how the Wiener Chaos compares with
the traditional and white noise solutions.

To make the presentation shorter, we shall call an X-valued generalized
random element S-admissible if and only if it belongs to L2,Q(FW ;X) for
some Q or to (S)ρ,q(X) for some ρ ∈ [−1, 1] and q ∈ R. It was shown in
Section 7 that, for every S-admissible u, the S-transform Su(h) is defined
when h =

∑
i,k hk,imiyk ∈ D(L2((0, T );Y )) and is an analytic function of

hk,i in some neighborhood of h = 0.
The next result describes the S-transform of the Wiener Chaos solution.

Theorem 8.1. Assume that:

1. There exists a unique w(A,X) Wiener Chaos solution u of (8.1) and u is
S-admissible.

2. For each t ∈ [0, T ], the linear operators A(t),Mk(t) are bounded from A
to X.

3. The generalized random elements u0, f, gk are S-admissible.

Then, for every h ∈ D(L2((0, T );Y )) with ‖h‖2L2((0,T );Y )
sufficiently small,

the function v = Su(h) is a w(A,X) solution of the deterministic equation

v(t) = Su0(h) +
∫ t

0

(
Av + Sf(h) + (Mkv + Sgk(h))hk

)
(s)ds. (8.2)

Proof. By assumption, Su(h) exists for suitable functions h. Then the S-
transformed equation (8.2) follows from the definition of the S-transform
(7.12) and the propagator equation (6.4) satisfied by the generalized Fourier
coefficients of u. Indeed, continuity of operator A implies

S(Au)(h) =
∑
α

hα√
α!
Auα = A

∑
α

hα√
α!
uα = A(Su(h)).
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Similarly,∑
α

hα√
α!

∑
i,k

√
αk
iMkuα−(i,k)mi =

∑
α

∑
i,k

hα
−(i,k)√

α−(i, k)!
Mkuα−(i,k)mihk,i

=
∑
i,k

(∑
α

hα√
α
Mkuα

)
mihk,i =Mk(Su(h))hk.

Computations for the other terms are similar. Theorem 8.1 is proved.

Remark 8.1 If h ∈ D(L2((0, T );Y )) and

Et(h) = exp
(∫ t

0

(h(s), dW (s))Y −
1
2

∫ t

0

‖h(t)‖2Y dt
)
, (8.3)

then, by the Itô formula,

dEt(h) = Et(h)(h(t), dW (t))Y . (8.4)

If u0 is deterministic, f and gk are FW
t -adapted, and u is a square-integrable

solution of (8.1), then equality (8.2) is obtained by multiplying equations (8.4)
and (8.1) according to the Itô formula and taking the expectation.

Remark 8.2 Rewriting (8.4) as

dEt(h) = Et(h)hk,imi(t)dwk(t)

and using the relations

Et(h) = E(ET (h)|FW
t ), ξα =

1√
α!

∏
i,k

∂α
k
i ET (h)
∂h

αk
i

k,i

∣∣∣∣∣∣
h=0

,

we arrive at representation (5.5) for E(ξα|FW
t ).

A partial converse of Theorem 8.1 is that, under some regularity conditions,
the Wiener Chaos solution can be recovered from the solution of the S-
transformed equation (8.2).

Theorem 8.2. Assume that the linear operators A(t), Mk(t), t ∈ [0, T ], are
bounded from A to X, the input data u0, f , gk are S-admissible, and, for
every h ∈ D(L2((0, T );Y )) with ‖h‖2L2((0,T );Y )

sufficiently small, there exists
a w(A,X) solution v = v(t;h) of equation (8.2). We write h = hk,imiyk and
consider v as a function of the variables hk,i. Assume that all the derivatives
of v at the point h = 0 exists, and, for α ∈ J , define

uα(t) =
1√
α!

∏
i,k

∂α
k
i v(t;h)

∂h
αk
i

k,i

∣∣∣∣∣∣
h=0

. (8.5)

Then the generalized random process u(t) =
∑

α∈J uα(t)ξα is a w(A,X)
Wiener Chaos solution of (8.1).
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Proof. Differentiation of (8.2) and application of Proposition 7.4 show that
the functions uα satisfy the propagator (6.4).

Remark 8.3 The central part in the construction of the white noise solution
of (8.1) is proving that the solution of (8.2) is an S-transform of a suitable
generalized random process. For many particular cases of equation (8.1), the
corresponding analysis is carried out in [10, 12, 33, 40]. The consequence of
Theorems 8.1 and 8.2 is that a white noise solution of (8.1), if exists, must
coincide with the Wiener Chaos solution.

The next theorem establishes the connection between the Wiener Chaos
solution and the traditional solution. Recall that the traditional, or square-
integrable, solution of (8.1) was introduced in Definition 2.2. Accordingly, the
notations from Section 2 will be used.

Theorem 8.3. Let (V,H, V ′) be a normal triple of Hilbert spaces. Take a
deterministic function u0 and FW

t -adapted random processes f and gk so that
(2.3) holds. Under these assumptions we have the following two statements.

1. An FW
t -adapted traditional solution of (8.1) is also a Wiener Chaos so-

lution.
2. If u is a w(V, V ′) Wiener Chaos solution of (8.1) such that

∑
α∈J

(∫ T

0

‖uα(t)‖2V dt+ sup
0≤t≤T

‖uα(t)‖2H

)
<∞, (8.6)

then u is an FW
t -adapted traditional solution of (8.1).

Proof. (1) If u = u(t) is an FW
t -adapted traditional solution, then

uα(t) = E(u(t)ξα) = E
(
u(t)E(ξα|FW

t )
)
= E(u(t)ξα(t)).

Then the propagator (6.4) for uα follows after applying the Itô formula to the
product u(t)ξα(t) and using (5.5).

(2) Assumption (8.6) implies that

u ∈ L2(Ω × (0, T );V )
⋂
L2(Ω;C((0, T );H)).

Then, by Theorem 8.1, for every ϕ ∈ V and h ∈ D((0, T );Y ), the S-transform
uh of u satisfies the equation

(uh(t), ϕ)H = (u0, ϕ)H +
∫ t

0

〈Auh(s), ϕ〉ds+
∫ t

0

〈f(s), ϕ〉ds

+
∑
α∈J

hα

α!

∑
i,k

∫ t

0

√
αk
imi(s)

(
(Mkuα−(i,k)(s), ϕ)H

+(gk(s), ϕ)HI(|α| = 1)
)
ds.
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If I(t) =
∫ t
0
(Mku(s), ϕ)Hdwk(s), then

E(I(t)ξα(t)) =
∫ t

0

∑
i,k

√
αk
imi(s)(Mkuα−(i,k)(s), ϕ)Hds. (8.7)

Similarly,

E

(
ξα(t)

∫ t

0

(gk(s), ϕ)Hdwk(s)
)
=
∑
i,k

∫ t

0

√
αk
imi(s)(gk(s), ϕ)HI(|α| = 1)ds.

Therefore,

∑
α∈J

hα

α!

∑
i,k

∫ t

0

√
αk
imi(s)(Mkuα−(i,k)(s), ϕ)Hds

= E
(
E(h)

∫ t

0

((Mku(s), ϕ)H + (gk(s), ϕ)H) dwk(s)
)
.

As a result,

E (E(h)(u(t), ϕ)H) = E (E(h)(u0, ϕ)H)

+ E
(
E(h)

∫ t

0

〈Au(s), ϕ〉ds
)
+ E

(
E(h)

∫ t

0

〈f(s), ϕ〉ds
)

+ E
(
E(h)

∫ t

0

((Mku(s), ϕ)H + (gk(s), ϕ)H) dwk(s)
)
.

(8.8)

Equality (8.8) and Remark 7.1 imply that, for each t and each ϕ, (2.4)
holds with probability one. Continuity of u implies that, for each ϕ, a sin-
gle probability-one set can be chosen for all t ∈ [0, T ]. Theorem 9.3 is proved.

9 Regularity of the Wiener Chaos Solution

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assumptions
and wk = wk(t), k ≥ 1, t ≥ 0, a collection of standard Wiener processes
on F. As in Section 2, let (V,H, V ′) be a normal triple of Hilbert spaces and
A(t) : V → V ′, Mk(t) : V → H, linear bounded operators; t ∈ [0, T ].

In this section we study the linear equation

u(t) = u0 +
∫ t

0

(Au(s) + f(s))ds+
∫ t

0

(Mku(s) + gk(s))dwk(s), t ≤ T, (9.1)

under the following assumptions:



470 S. Lototsky and B. Rozovskii

A1 There exist positive numbers C1 and δ such that

〈A(t)v, v〉+ δ‖v‖2V ≤ C1‖v‖2H , v ∈ V, t ∈ [0, T ]. (9.2)

A2 There exists a real number C2 such that

2〈A(t)v, v〉+
∑
k≥1

‖Mk(t)v‖2H ≤ C2‖v‖2H , v ∈ V, t ∈ [0, T ]. (9.3)

A3 The initial condition u0 is non-random and belongs to H; the process
f = f(t) is deterministic and

∫ T
0
‖f(t)‖2V ′dt < ∞; each gk = gk(t) is a

deterministic processes and
∑

k≥1
∫ T
0
‖gk(t)‖2Hdt <∞.

Note that condition (9.3) is weaker than (2.5). Traditional analysis of
equation (9.1) under (9.3) requires additional regularity assumptions on the
input data and additional Hilbert space constructions beyond the normal
triple [42, Section 3.2]. In particular, no existence of a traditional solution is
known under assumptions A1-A3, and the Wiener Chaos approach provides
new existence and regularity results for equation (9.1). A different version of
the following theorem is presented in [29].

Theorem 9.1. Under assumptions A1–A3, for every T > 0, equation (9.1)
has a unique w(V, V ′) Wiener Chaos solution. This solution u = u(t) has the
following properties:

1. There exists a weight sequence Q such that

u ∈ L2,Q(W;L2((0, T );V ))
⋂
L2,Q(W;C((0, T );H)).

2. For every t ≤ T , u(t) ∈ L2(Ω;H) and

E‖u(t)‖2H ≤ 3eC2t

‖u0‖2H + Cf

∫ t

0

‖f(s)‖2V ′ds+
∑
k≥1

∫ t

0

‖gk(s)‖2Hds

 ,

(9.4)
where the number C2 is from (9.3) and the positive number Cf depends
only on δ and C1 from (9.2).

3. For every t ≤ T ,

u(t) = u(0) +
∑
n≥1

∑
k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt,snMkn · · ·Φs2,s1

(
Mk1u(0) + gk1(s1)

)
dwk1(s1) · · · dwkn(sn),

(9.5)

where Φt,s is the semigroup of the operator A.
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Proof. Assumption A2 and the properties of the normal triple imply that
there exists a positive number C∗ such that∑

k≥1
‖Mk(t)v‖2H ≤ C∗‖v‖2V , v ∈ V, t ∈ [0, T ]. (9.6)

Define the sequence Q such that

qk =
(
µδ

C∗

)1/2
:= q, k ≥ 1, (9.7)

where µ ∈ (0, 2) and δ is from Assumption A1. Then, by Assumption A2,

2〈Av, v〉+
∑
k≥1

q2‖Mkv‖2H ≤ −(2− µ)δ‖v‖2V + C1‖v‖2H . (9.8)

It follows from Theorem 2.1 that equation

v(t) = u0 +
∫ t

0

(Av + f)(s)ds+
∑
k≥1

∫ t

0

q(Mkv + gk)(s)dwk(s) (9.9)

has a unique solution

v ∈ L2(W;L2((0, T );V ))
⋂
L2(W;C((0, T );H)).

Comparison of the propagators for equations (9.1) and (9.9) shows that u =
Q−1v is the unique w(V, V ′) solution of (9.1) and

u ∈ L2,Q(W;L2((0, T );V ))
⋂
L2,Q(W;C((0, T );H)). (9.10)

If C∗ < 2δ, then equation (9.1) is strongly parabolic and q > 1 is an
admissible choice of the weight. As a result, for strongly parabolic equations,
the result (9.10) is stronger than the conclusion of Theorem 2.1.

The proof of (9.4) is based on the analysis of the propagator

uα(t) = u0I(|α| = 0) +
∫ t

0

(
Auα(s) + f(s)I(|α| = 0)

)
ds

+
∫ t

0

∑
i,k

√
αk
i (Mkuα−(i,k)(s) + gk(s)I(|α| = 1))mi(s)ds.

(9.11)

We consider three particular cases: (1) f = gk = 0 (the homogeneous equa-
tion); (2) u0 = gk = 0; (3) u0 = f = 0. The general case will then follow by
linearity and the triangle inequality.

Let us denote by (Φt,s, t ≥ s ≥ 0) the semigroup generated by the oper-
ator A(t); Φt := Φt,0. One of the consequence of Theorem 2.1 is that, under
Assumption A1, this semigroup exists and is strongly continuous in H.
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Consider the homogeneous equation: f = gk = 0. By Corollary 6.1,

∑
|α|=n

‖uα(t)‖2H =
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

‖Φt,snMkn · · ·Φs2,s1Mk1Φs1u0‖2Hdsn,

(9.12)
where dsn = ds1 . . . dsn. Define Fn(t) =

∑
|α|=n ‖uα(t)‖2H , n ≥ 0. Direct

application of (9.3) shows that

d

dt
F0(t) ≤ C2F0(t)−

∑
k≥1

‖MkΦtu0‖2H . (9.13)

For n ≥ 1, equality (9.12) implies that

d

dt
Fn(t) =

∑
k1,...,kn≥1

∫ t

0

∫ sn−1

0

· · ·
∫ s2

0

‖MknΦt,sn−1 · · ·Mk1Φs1u0‖2Hdsn−1

+
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

〈AΦt,snMkn . . . Φs1u0, Φt,snMkn . . . Φs1u0〉dsn.

(9.14)

By (9.3),

∑
k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

〈AΦt,snMkn . . . Φs1u0, Φt,snMkn . . . Φs1u0〉dsn

≤ −
∑

k1,...,kn+1≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Mkn+1Φt,snMkn . . .Mk1Φs1u0‖2Hdsn

+C2
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt,snMkn . . .Mk1Φs1u0‖2Hdsn.

(9.15)

As a result, for n ≥ 1,

d

dt
Fn(t) ≤ C2Fn(t)

+
∑

k1,...,kn≥1

∫ t

0

∫ sn−1

0

. . .

∫ s2

0

‖MknΦt,sn−1Mkn−1 . . .Mk1Φs1u0‖2Hdsn−1

−
∑

k1,...,kn+1≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Mkn+1Φt,snMkn . . .Mk1Φs1u0‖2Hdsn.

(9.16)
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Consequently,

d

dt

N∑
n=0

∑
|α|=n

‖uα(t)‖2H ≤ C2

N∑
n=0

∑
|α|=n

‖uα(t)‖2H , (9.17)

so that, by the Gronwall inequality,

N∑
n=0

∑
|α|=n

‖uα(t)‖2H ≤ eC2t‖u0‖2H (9.18)

or
E‖u(t)‖2H ≤ eC2t‖u0‖2H . (9.19)

Next, let us assume that u0 = gk = 0. Then the propagator (9.11) becomes

uα(t) =
∫ t

0

(Auα(s)+ f(s)I(|α| = 0))ds+
∫ t

0

∑
i,k

√
αk
iMkuα−(i,k)(s)mi(s)ds.

(9.20)
Denote by u(0)(t) the solution corresponding to α = 0. Note that

‖u(0)(t)‖2H = 2
∫ t

0

〈Au(0)(s), u(0)(s)〉ds+ 2
∫ t

0

〈f(s), u(0)(s)〉ds

≤ C2

∫ t

0

‖u(0)(s)‖2Hds−
∫ t

0

∑
k≥1

‖Mku(0)(s)‖2Hds+ Cf

∫ t

0

‖f(s)‖2V ′ds.

By Corollary 6.1,∑
|α|=n

‖uα(t)‖2H =
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt,snMkn . . .Mk1u(0)(s1)‖2Hdsn

(9.21)
for n ≥ 1. Then, repeating the calculations (9.14)–(9.16), we conclude that

N∑
n=1

∑
|α|=n

‖uα(t)‖2H ≤ Cf

∫ t

0

‖f(s)‖2V ′ds+C2
∫ t

0

N∑
n=1

∑
|α|=n

‖uα(s)‖2Hds, (9.22)

and, by the Gronwall inequality,

E‖u(t)‖2H ≤ Cfe
C2t

∫ t

0

‖f(s)‖2V ′ds. (9.23)

Finally, let us assume that u0 = f = 0. Then the propagator (9.11) be-
comes

uα(t) =
∫ t

0

Auα(s)ds

+
∫ t

0

∑
i,k

√
αk
iMkuα−(i,k)(s) + gk(s)I(|α| = 1)

mi(s)ds.
(9.24)
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Even though uα(t) = 0 if α = 0, we have

u(ik) =
∫ t

0

Φt,sgk(s)mi(s)ds, (9.25)

and then the arguments from the proof of Corollary 6.1 apply, resulting in

∑
|α|=n

‖uα(t)‖2H =
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt,snMkn . . . Φs2,s1gk1(s1)‖2Hdsn

for n ≥ 1. Note that∑
|α|=1

‖uα(t)‖2H =
∑
k≥1

∫ t

0

‖gk(s)‖2Hds+ 2
∑
k≥1

∫ t

0

〈AΦt,sgk(s), Φt,sgk(s)〉ds.

Then, repeating the calculations (9.14)–(9.16), we conclude that

N∑
n=1

∑
|α|=n

‖uα(t)‖2H ≤
∑
k≥1

∫ t

0

‖gk(s)‖2Hds+ C2

∫ t

0

N∑
n=1

∑
|α|=n

‖uα(s)‖2Hds,

(9.26)
and, by the Gronwall inequality,

E‖u(t)‖2H ≤ eC2t
∑
k≥1

∫ t

0

‖gk(s)‖2Hds. (9.27)

To derive (9.4), it remains to combine (9.19), (9.23), and (9.27) with the
elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2).

Representation (9.5) of the Wiener Chaos solution as a sum of iterated Itô
integrals now follows from Corollary 6.1. Theorem 9.1 is proved.

Corollary 9.1 If
∑
α∈J

∫ T

0

‖uα(s)‖2V ds <∞, then
∑
α∈J

sup
0≤t≤T

‖uα(t)‖2H <∞.

Proof. The proof of Theorem 9.1 shows that it is sufficient to consider the
homogeneous equation. Then, by inequalities (9.15)–(9.16),

n1∑
P=n+1

∑
|α|=P

‖uα(t)‖2H =
n1∑

P=n+1

FP(t)

≤ eC2T
∑

k1,...,kn+1≥1

∫ T

0

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Mkn+1Φt,snMkn . . . Φs1u0‖2Hdsndt.

(9.28)

By Corollary 6.1,
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0

‖uα(s)‖2V ds

=
∑
n≥1

∑
k1,...,kn≥1

∫ T

0

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖MknΦt,snMkn . . . Φs1u0‖2V dsndt <∞.

(9.29)

As a result, (9.6) and (9.29) imply that

lim
n→∞

∫ T

0

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Mkn+1Φt,snMkn . . .Mk1Φs1u0‖2Hdsndt = 0,

which, by (9.28), implies uniform, with respect to t, convergence of the series∑
α∈J ‖uα(t)‖2H . Corollary 9.1 is proved.

Corollary 9.2 Let aij , bi, c, σik, νk be deterministic measurable functions of
(t, x) such that

|aij(t, x)|+ |bi(t, x)|+ |c(t, x)|+ |σik(t, x)|+ |νk(t, x)| ≤ K,

i, j = 1, . . . , d, k ≥ 1, x ∈ Rd, 0 ≤ t ≤ T ;(
aij(t, x)−

1
2
σik(t, x)σjk(t, x)

)
yiyj ≥ 0,

x, y ∈ Rd, 0 ≤ t ≤ T ; and∑
k≥1

|νk(t, x)|2 ≤ Cν <∞,

x ∈ Rd, 0 ≤ t ≤ T. Consider the equation

du = (Di(aijDju) + biDiu+ c u+ f)dt+ (σikDiu+ νku+ gk)dwk. (9.30)

Assume that the input data satisfy u0 ∈ L2(Rd), f ∈ L2((0, T );H−12 (Rd)),∑
k≥1 ‖gk‖2L2((0,T )×Rd) <∞, and there exists an ε > 0 such that

aij(t, x)yiyj ≥ ε|y|2, x, y ∈ Rd, 0 ≤ t ≤ T.

Then there exists a unique Wiener Chaos solution u = u(t, x) of (9.30). The
solution has the following regularity:

u(t, ·) ∈ L2(W;L2(Rd)), 0 ≤ t ≤ T, (9.31)

and

E‖u‖2L2(Rd)(t) ≤ C∗
(
‖u0‖2L2(Rd) + ‖f‖2

L2((0,T );H
−1
2 (Rd))

+
∑
k≥1

‖gk‖2L2((0,T )×Rd)

)
,

(9.32)

where the positive number C∗ depends only on Cν ,K, T, and ε.
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Remark 9.1
(1) If (2.5) holds instead of (9.3), then the proof of Theorem 9.1, in particular,
(9.15)–(9.16), shows that the term E‖u(t)‖2H in the left-hand-side of inequality
(9.4) can be replaced with

E

(
‖u(t)‖2H + ε

∫ t

0

‖u(s)‖2V ds
)
.

(2) If f = gk = 0 and the equation is fully degenerate, that is,

2〈A(t)v, v〉+
∑
k≥1

‖Mk(t)v‖2H = 0, t ∈ [0, T ],

then it is natural to expect conservation of energy. Once again, analysis of
(9.15)–(9.16) shows that equality

E‖u(t)‖2H = ‖u0‖2H

holds if and only if

lim
n→∞

∫ T

0

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Mkn+1Φt,snMkn . . .Mk1Φs1u0‖2Hdsndt = 0.

The proof of Corollary 9.1 shows that for the conservation of energy in a
fully degenerate homogeneous equation the condition E

∫ T
0
‖u(t)‖2V dt <∞ is

sufficient.

One of applications of the Wiener Chaos solution is new numerical methods
for solving the evolution equations. Indeed, an approximation of the solution
is obtained by truncating the sum

∑
α∈J uα(t)ξα. For the Zakai filtering equa-

tion, these numerical methods were studied in [25, 26, 27]; see also Section 11
below. The main question in the analysis is the rate of convergence, in n, of the
series

∑
n≥1
∑
|α|=n ‖u(t)‖2H . In general, this convergence can be arbitrarily

slow. For example, consider the equation

du =
1
2
uxxdt+ uxdw(t), t > 0, x ∈ R,

in the normal triple (H1
2 (R), L2(R),H

−1
2 (R)), with the initial condition

u|t=0 = u0 ∈ L2(R). It follows from (9.12) that

Fn(t) =
∑
|α|=n

‖u‖2L2(R)
(t) =

tn

n!

∫
R

|y|2ne−y2t|û0|2dy,

where û0 is the Fourier transform of u0. If

|û0(y)|2 =
1

(1 + |y|2)γ , γ > 1/2,



Wiener Chaos for Stochastic Equations 477

then the rate of decay of Fn(t) is close to n−(1+2γ)/2. Note that, in this ex-
ample, E‖u‖2L2(R)

(t) = ‖u0‖2L2(R)
.

An exponential convergence rate that is uniform in ‖u0‖2H is achieved un-
der strong parabolicity condition (2.5). An even faster factorial rate is achieved
when the operators Mk are bounded on H.

Theorem 9.2. Assume that there exist a positive number ε and a real number
C0 such that

2〈A(t)v, v〉+
∑
k≥1

‖Mk(t)v‖2H + ε‖v‖2V ≤ C0‖v‖2H , t ∈ [0, T ], v ∈ V.

Then there exists a positive number b such that, for all t ∈ [0, T ],

∑
|α|=n

‖uα(t)‖2H ≤ ‖u0‖2H
(1 + b)n

. (9.33)

If, in addition,
∑

k≥1 ‖Mk(t)ϕ‖2H ≤ C3‖ϕ‖2H , then∑
|α|=n

‖uα(t)‖2H ≤ (C3t)n

n!
eC1t‖u0‖2H . (9.34)

Proof. If C∗ is from (9.6) and b = ε/C∗, then the operators
√
1 + bMk satisfy

the inequality

2〈A(t)v, v〉+ (1 + b)
∑
k≥1

‖Mk(t)‖2H ≤ C0‖v‖2H .

By Theorem 9.1,

(1 + b)n
∑

k1,...,kn≥1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt,snMkn . . .Mk1Φs1u0‖2Hdsn ≤ ‖u0‖2H ,

and (9.33) follows.
To establish (9.34), note that, by (9.2),

‖Φtf‖2H ≤ eC1t‖f‖2H ,

and therefore the result follows from (9.12). Theorem 9.2 is proved.

The Wiener Chaos solution of (9.1) is not, in general, a solution of the
equation in the sense of Definition 2.2. Indeed, if u �∈ L2(Ω × (0, T );V ), then
the expressions 〈Au(s), ϕ〉 and (Mku(s), ϕ)H are not defined. On the other
hand, if there is a possibility to move the operatorsA andM from the solution
process u to the test function ϕ, then equation (9.1) admits a natural analog
of the traditional weak formulation (2.4).
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Theorem 9.3. In addition to A1–A3, assume that there exist operators
A∗(t), M∗

k(t) and a dense subset V0 of the space V such that:

1. A∗(t)(V0) ⊆ H, M∗
k(t)(V0) ⊆ H, t ∈ [0, T ].

2. For every v ∈ V , ϕ ∈ V0, and t ∈ [0, T ], 〈A(t)v, ϕ〉 = (v,A∗(t)ϕ)H ,
(Mk(t)v, ϕ)H = (v,M∗

k(t)ϕ)H .

If u = u(t) is the Wiener Chaos solution of (9.1), then, for every ϕ ∈ V0 and
every t ∈ [0, T ], the equality

(u(t), ϕ)H = (u0, ϕ)H +
∫ t

0

(u(s),A∗(s)ϕ)Hds+
∫ t

0

〈f(s), ϕ〉ds

+
∫ t

0

(u(s),M∗
k(s)ϕ)Hdwk(s) +

∫ t

0

(gk(s), ϕ)Hdwk(s)
(9.35)

holds in L2(W).

Proof. The arguments are identical to the proof of Theorem 8.3(2).

As was mentioned earlier, the Wiener Chaos solution can be constructed
for anticipating equations, that is, equations with FW

T -measurable input data.
With obvious modifications, inequality (9.4) holds if each of the input func-
tions u0, f , and gk in (9.1) is a finite linear combination of the basis elements
ξα. The following example demonstrates that inequality (9.4) is impossible for
a general anticipating equation.

Example 9.1 Let u = u(t, x) be a Wiener Chaos solution of an ordinary dif-
ferential equation

du = udw(t), t ≤ 1, (9.36)

with u0 =
∑

α∈J aαξα. For n ≥ 0, denote by (n) the multi-index with α1 = n
and αi = 0, i ≥ 2, and assume that a(n) > 0, n ≥ 0. Then

Eu2(1) ≥ C
∑
n≥0

e
√
na2(n). (9.37)

Indeed, the first column of propagator for α = (n) is u(0)(t) = a(0) and

u(n)(t) = a(n) +
√
n

∫ t

0

u(n−1)(s)ds,

so that

u(n)(t) =
n∑

k=0

√
n!√

(n− k)!k!

a(n−k)√
k!

tk.

Then u2(n)(1) ≥
∑n

k=0

(
n
k

)a2
(n−k)

k! and
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∑
n≥0

u2(n)(1) ≥
∑
n≥0

∑
k≥0

1
k!

(
n+ k

n

) a2(n).

Since ∑
k≥0

1
k!

(
n+ k

n

)
≥
∑
k≥0

nk

(k!)2
≥ Ce

√
n,

the result follows.

The consequence of Example 9.1 is that it is possible, in (9.1), to have
u0 ∈ Ln

2 (W;H) for every n, and still get E‖u(t)‖2H = +∞ for all t > 0.
More generally, the solution operator for (9.1) is not bounded on any L2,Q or
(S)−ρ,−γ . On the other hand, the following result holds.

Theorem 9.4. In addition to Assumptions A1, A2, let u0 be an element of
D′(W;H), f , an element of D′(W;L2((0, T ), V ′)), and each gk, an element
of D′(W;L2((0, T ),H)). Then the Wiener Chaos solution of equation (9.1)
satisfies√√√√∑

α∈J

‖uα(t)‖2H
α!

≤ C
∑
α∈J

1√
α!

(
‖u0α‖H +

(∫ t

0

‖fα(s)‖2V ′ds

)1/2

+

∑
k≥1

∫ t

0

‖gk,α(s)‖2Hds

1/2),
(9.38)

where C > 0 depends only on T and the numbers δ, C1, and C2 from (9.2)
and (9.3).

Proof. To simplify the presentation, assume that f = gk = 0. For fixed γ ∈ J ,
denote by u(t;ϕ; γ) theWiener Chaos solution of the equation (9.1) with initial
condition u(0;ϕ; γ) = ϕξγ . Denote by (0) the zero multi-index. The structure
of the propagator implies the following relation:

uα+γ(t;ϕ; γ)√
(α+ γ)!

=
uα

(
t; ϕ√

γ!
; (0)
)

√
α!

. (9.39)

Clearly, uα(t;ϕ; γ) = 0 if |α| < |γ|. If

‖v(t)‖2(S)−1,0(H)
=
∑
α∈J

‖vα(t)‖2H
α!

,

then, by linearity and the triangle inequality,

‖u(t)‖(S)−1,0(H) ≤
∑
γ∈J

‖u(t;u0γ ; γ)‖(S)−1,0(H).
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We also have by (9.39) and Theorem 9.1

‖u(t;u0γ ; γ)‖2(S)−1,0(H)
=
∥∥∥∥u(t; u0γ√

γ!
; (0)
)∥∥∥∥2

(S)−1,0(H)

≤ E
∥∥∥∥u(t; u0γ√

γ!
; (0)
)∥∥∥∥2

H

≤ eC2t
‖u0γ‖2H
γ!

.

Inequality (9.38) then follows. Theorem 9.4 is proved.

Remark 9.2 Using Proposition 7.1 and the Cauchy–Schwartz inequality,
(9.38) can be rewritten in a slightly weaker form to reveal continuity of the
solution operator for equation (9.1) from (S)−1,γ to (S)−1,0 for every γ > 1:

‖u(t)‖2(S)−1,0(H)
≤ C

(
‖u0‖2(S)−1,γ(H)

+
∫ t

0

‖f(s)‖2(S)−1,γ(V ′)ds

+
∑
k≥1

∫ t

0

‖gk(s)‖2(S)−1,γ(H)
ds

)
.

10 Probabilistic Representation of Wiener Chaos
Solutions

The general discussion so far has been dealing with the abstract evolution
equation

du = (Au+ f)dt+
∑
k≥1

(Mku+ gk)dwk.

By further specifying the operators A andMk, as well as the input data u0, f,
and gk, it is possible to get additional information about the Wiener Chaos
solution of the equation.

Definition 10.1 For r ∈ R, the space L2,(r) = L2,(r)(Rd) is the collection of
real-valued measurable functions such that f ∈ L2,(r) if and only if∫

Rd

|f(x)|2(1 + |x|2)rdx <∞.

The space H1
2,(r) = H1

2,(r)(R
d) is the collection of real-valued measurable func-

tions such that f ∈ H1
2,(r) if and only if f and all the first-order generalized

derivatives Dif of f belong to L2,(r).

It is known, for example, from Theorem 3.4.7 in [42], that L2,(r) is a Hilbert
space with the norm

‖f‖20,(r) =
∫

Rd

|f(x)|2(1 + |x|2)rdx,
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and H1
2,(r) is a Hilbert space with the norm

‖f‖1,(r) = ‖f‖0,(r) +
d∑

i=1

‖Dif‖0,(r).

Denote by H−12,(r) the dual of H
1
2,(r) with respect to the inner product in L2,(r).

Then (H1
2,(r), L2,(r),H

−1
2,(r)) is a normal triple of Hilbert spaces.

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assump-
tions and wk = wk(t), k ≥ 1, t ≥ 0, a collection of standard Wiener processes
on F. Consider the linear equation

du = (aijDiDju+ biDiu+ cu+ f)dt+ (σikDiu+ νku+ gk)dwk (10.1)

under the following assumptions:

B0 All coefficients, free terms, and the initial condition are non-random.
B1 The functions aij = aij(t, x) and their first-order derivatives with respect

to x are uniformly bounded in (t, x), and the matrix (aij) is uniformly
positive definite, that is, there exists δ > 0 such that, for all vectors
y ∈ Rd and all (t, x), aijyiyj ≥ δ|y|2.

B2 The functions bi = bi(t, x), c = c(t, x), and νk = νk(t, x) are measurable
and bounded in (t, x).

B3 The functions σik = σik(t, x) are continuous and bounded in (t, x).
B4 The functions f = f(t, x) and gk = gk(t, x) belong to L2((0, T );L2,(r)) for

some r ∈ R.
B5 The initial condition u0 = u0(x) belongs to L2,(r).

Under Assumptions B2–B4, there exists a sequence Q = {qk, k ≥ 1} of
positive numbers with the following properties:

P1 The matrix A with Aij = aij−(1/2)
∑

k≥1 qkσikσjk satisfies the inequality

Aij(t, x)yiyj ≥ 0,

x, y ∈ Rd, 0 ≤ t ≤ T .
P2 There exists a number C > 0 such that

∑
k≥1

(
sup
t,x

|qkνk(t, x)|2 +
∫ T

0

‖qkgk‖p0,(r)(t)dt
)
≤ C.

For the matrix A and each t, x, we have Aij(t, x) = σ̃ik(t, x)σ̃jk(t, x),
where the functions σ̃ik are bounded. This representation might not be unique;
see, for example, [7, Theorem III.2.2] or [44, Lemma 5.2.1]. Given any such
representation of A, consider the following backward Itô equation
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Xt,x,i (s) = xi +
∫ t

s

Bi (τ,Xt,x (τ)) dτ +
∑
k≥1

qkσik (τ,Xt,x (τ))
←−−
dwk (τ)

+
∫ t

s

σ̃ik (τ,Xt,x (τ))
←−
dw̃k (τ) ; s ∈ (0, t), t ∈ (0, T ], t− fixed,

(10.2)

where Bi = bi −
∑

k≥1 q
2
kσikνk and w̃k, k ≥ 1, are independent standard

Wiener processes on F that are independent of wk, k ≥ 1. This equation might
not have a strong solution, but does have a weak, or martingale, solution due
to Assumptions B1–B3 and properties P1 and P2 of the sequence Q; this
weak solution is unique in the sense of probability law [44, Theorem 7.2.1].

The following result is a variation of Theorem 4.1 in [29].

Theorem 10.1. Under assumptions B0–B5 equation (10.1) has a unique
w(H1

2,(r),H
−1
2,(r)) Wiener Chaos solution. If Q is a sequence with properties

P1 and P2, then the solution of (10.1) belongs to

L2,Q

(
W;L2((0, T );H1

2,(r))
)⋂

L2,Q
(
W;C((0, T );L2,(r))

)
and has the following representation:

u(t, x) = Q−1E
(∫ t

0

f(s,Xt,x(s))γ(t, s, x)ds

+
∑
k≥1

∫ t

0

qkgk(s,Xt,x(s))γ(t, s, x)
←−−
dwk(s) + u0(Xt,x(0))γ(t, 0, x)

∣∣∣FW
t

)
, t ≤ T,

(10.3)

where Xt,x(s) is a weak solution of (10.2), and

γ(t, s, x) = exp

(∫ t

s

c(τ,Xt,x(τ))dτ +
∑
k≥1

∫ t

s

qkνk(τ,Xt,x(τ))
←−−
dwk(τ)

− 1
2

∫ t

s

∑
k≥1

q2k|νk(τ,Xt,x(τ))|2dτ
)
.

(10.4)

Proof. It is enough to establish (10.3) when t = T . Consider the equation

dU = (aijDiDjU+biDiU+cU+f)dt+
∑
k≥1

(σikDiU+νkU+gk)qkdwk (10.5)

with initial condition U(0, x) = u0(x). Applying Theorem 2.1 in the normal
triple (H1

2,(r), L2,(r),H
−1
2,(r)), we conclude that there is a unique solution



Wiener Chaos for Stochastic Equations 483

U ∈ L2
(
W;L2((0, T );H1

2,(r))
)⋂

L2
(
W;C((0, T );L2,(r))

)
of this equation. By Proposition 7.2, the process u = Q−1U is the corre-
sponding Wiener Chaos solution of (10.1). To establish representation (10.3),
consider the S-transform Uh of U . According to Theorem 8.1, the function Uh

is the unique w(H1
2,(r),H

−1
2,(r)) solution of the equation

dUh = (aijDiDjUh+ biDiUh+ cUh+ f)dt+
∑
k≥1

(σikDiUh+ νkUh+ gk)qkhkdt

(10.6)
with initial condition Uh|t=0 = u0. We also define

Y (T, x) =
∫ T

0

f(s,XT,x(s))γ(T, s, x)ds

+
∑
k≥1

∫ T

0

gk(s,XT,x(s))γ(T, s)qk
←−−
dwk(s) + u0(XT,x(0))γ(T, 0, x).

(10.7)

By direct computation,

E
(
E
(
E(h)Y (T, x)|FW

T

))
= E (E(h)Y (T, x)) = E′Y (T, x),

where E′ is the expectation with respect to the measure dP′T = E(h)dPT and
PT is the restriction of P to FW

T .
To proceed, let us first assume that the input data u0, f , and gk are all

smooth functions with compact support. Then, applying the Feynmann–Kac
formula to the solution of equation (10.6) and using Girsanov’s theorem (see,
e.g., Theorems 3.5.1 and 5.7.6 in [15]), we conclude that Uh(T, x) = E′Y (T, x)
or

E
(
E(h)EY (t, x)|FW

T

)
= E (E (h)U(T, x)) .

By Remark 7.1, the last equality implies U (T, ·) = E
(
Y (T, ·)|FW

T

)
as elements

of L2
(
Ω;L2,(r)(Rd)

)
.

To remove the additional smoothness assumption on the input data, let
un0 , f

n, and gnk be sequences of smooth compactly supported functions such
that

lim
n→∞

(
‖u0 − un0‖2L2,(r)(Rd) +

∫ T

0

‖f − fn‖2L2,(r)(Rd)(t)dt

+
∑
k≥1

∫ T

0

q2k‖gk − gnk ‖2L2,(r)(Rd)(t)dt

)
= 0.

(10.8)

Denote by Un and Y n the corresponding objects defined by (10.5) and (10.7)
respectively. By Theorem 9.1, we have
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lim
n→∞

E‖U − Un‖2L2,(r)(Rd)(T ) = 0. (10.9)

To complete the proof, it remains to show that

lim
n→∞

E
∥∥∥E(Y (T, ·)− Y n(T, ·)

∣∣∣FW
T

)∥∥∥2
L2,(r)(Rd)

= 0. (10.10)

To this end, introduce a new probability measure

dP
′′

T = exp

(
2
∑
k≥1

∫ T

0

νk(s,X
Q
T,x(s))qk

←−−
dwk(s)

− 2
∫ T

0

∑
k≥1

q2k|νk(s,XQ
T,x(s))|2ds

)
dPT .

By Girsanov’s theorem, equation (10.2) can be rewritten as

XT,x,i (s) = xi +
∫ T

s

∑
k≥1

σik (τ,XT,x (τ))hk (τ) qkdτ

+
∫ t

s

(bi +
∑
k≥1

q2kσikνk) (τ,XT,x (τ)) dτ

+
∫ t

s

∑
k≥1

qkσik (τ,XT,x (τ))
←−−
dw′′k (τ) +

∫ t

s

σ̃ik (τ,XT,x (τ))
←−−
dw̃′′k (τ) ,

(10.11)

where w′′k and w̃′′k are independent Wiener processes with respect to the
measure P′′T . Denote by p(s, y|x) the corresponding distribution density of
XT,x(s) and write ](x) = (1+ |x|2)r. It then follows by the Hölder and Jensen
inequalities that

E

∥∥∥∥∥E
(∫ T

0

γ2(T, s, ·)(f − fn)(s,XT,·(s))ds
∣∣∣FW

T

)∥∥∥∥∥
2

L2,(r)(Rd)

≤ K1

∫
Rd

(∫ T

0

E
(
γ2(T, s, x)(f − fn)2(s,XT,x(s))

)
ds

)
](x)dx

≤ K2

∫
Rd

(∫ T

0

E′′(f − fn)2(s,XT,x(s))ds

)
](x)dx

= K2

∫
Rd

∫ T

0

∫
Rd

(f(s, y)− fn(s, y))2p(s, y|x)dy ds ](x)dx,

(10.12)

where the number K1 depends only on T , and the number K2 depends only
on T and sup(t,x) |c(t, x)| +

∑
k≥1 q

2
k sup(t,x) |νk(t, x)|2. Assumptions B0–B2

imply that there exist positive numbers K3 and K4 such that
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p(s, y|x) ≤ K3

(T − s)d/2
exp
(
−K4

|x− y|2
T − s

)
; (10.13)

see, for example, [6]. As a result,∫
Rd

p(s, y|x)](x)dx ≤ K5](y),

and ∫
Rd

∫ T

0

∫
Rd

(f(s, y)− fn(s, y))2p(s, y|x)dy ds ](x)dx

≤ K5

∫ T

0

‖f − fn‖2L2,(r)(Rd)(s)ds→ 0, n→∞,

(10.14)

where the number K5 depends only on K3,K4, T , and r.
Calculations similar to (10.12)–(10.14) show that

E
∥∥∥E(γ2(T, 0, ·)(u0 − un0 )(XT,·(0))

∣∣∣W)∥∥∥2
L2,(r)(Rd)

+ E

∥∥∥∥∥∥E
∫ T

0

∑
k≥1

(gk − gnk )(s,XT,·(s))γ(t, s, ·)qk
←−−
dwk(s)

∣∣∣W
∥∥∥∥∥∥

2

L2,(r)(Rd)

→ 0

(10.15)

as n → ∞. Then convergence (10.10) follows, which, together with (10.9),
implies that U (T, ·) = E

(
UQ(T, ·)|FW

T

)
as elements of L2

(
Ω;L2,(r)(Rd)

)
. It

remains to note that u = Q−1U . Theorem 10.1 is proved.

Given f ∈ L2,(r), we say that f ≥ 0 if and only if∫
Rd

f(x)ϕ(x)dx ≥ 0

for every non-negative ϕ ∈ C∞0 (Rd). Then Theorem 10.1 implies the following
result.

Corollary 10.1 In addition to Assumptions B0–B5, let u0 ≥ 0, f ≥ 0, and
gk = 0 for all k ≥ 1. Then u ≥ 0.

Proof. This follows from (10.3) and Proposition 7.3.

Example 10.1 (Krylov–Veretennikov formula)
Consider the equation

du = (aijDiDju+ biDiu) dt+
d∑

k=1

σikDiudwk, u (0, x) = u0 (x) . (10.16)
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Assume B0–B5 and suppose that aij(t, x) = 1
2σik(t, x)σjk(t, x). By Theorem

9.1, equation (10.16) has a unique Wiener chaos solution such that

E‖u‖2L2(Rd)(t) ≤ C∗‖u0‖2L2(Rd)

and

u (t, x) =
∞∑
n=1

∑
|α|=n

uα(t, x)ξα = u0 (x) +
∞∑
n=1

d∑
k1,...,kn=1

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt,snσjknDj · · ·Φs2,s1σik1DiΦs1,0u0(x)dwk1(s1) · · · dwkn(sn),
(10.17)

where Φt,s is the semigroup generated by the operator A = aijDiDju+biDiu.
On the other hand, in this case, Theorem 10.1 yields

u(t, x) = E

(
u0(Xt,x(0))

∣∣FW
t

)
,

where W = (w1, ..., wd) and

Xt,x,i (s) = xi +
∫ t

s

bi (τ,Xt,x (τ)) dτ +
d∑

k=1

σik (τ,Xt,x (τ))
←−−
dwk (τ) ,

s ∈ (0, t), t ∈ (0, T ], t− fixed.

(10.18)

Thus, we have arrived at the Krylov–Veretennikov formula [20, Theorem 4]

E
(
u0 (Xt,x (0)) |FW

t

)
= u0 (x) +

∞∑
n=1

d∑
k1,...,kn=1

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt,snσjknDj · · ·Φs2,s1σik1DiΦs1,0u0(x)dwk1(s1) · · · dwkn(sn).
(10.19)

11 Wiener Chaos and Nonlinear Filtering

In this section, we discuss some applications of the Wiener Chaos expansion
to numerical solution of the nonlinear filtering problem for diffusion processes;
the presentation is essentially based on [25].

Let (Ω,F ,P) be a complete probability space with independent standard
Wiener processes W = W (t) and V = V (t) of dimensions d1 and r respec-
tively. Let X0 be a random variable independent of W and V . In the diffu-
sion filtering model, the unobserved d-dimensional state (or signal) process
X = X(t) and the r-dimensional observation process Y = Y (t) are defined by
the stochastic ordinary differential equations
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dX(t) = b(X(t))dt+ σ(X(t))dW (t) + ρ(X(t))dV (t),
dY (t) = h(X(t))dt+ dV (t), 0 < t ≤ T ;
X(0) = X0, Y (0) = 0,

(11.1)

where b(x) ∈ Rd, σ(x) ∈ Rd×d1 , ρ(x) ∈ Rd×r, h(x) ∈ Rr.
Denote by Cn(Rd) the Banach space of bounded, n times continuously

differentiable functions on Rd with finite norm

‖f‖Cn(Rd) = sup
x∈Rd

|f(x)|+ max
1≤k≤n

sup
x∈Rd

|Dkf(x)|.

Assumption R1. The components of the functions σ and ρ are inC2(Rd),
the components of the functions b are in C1(R), the components of the func-
tion h are bounded measurable, and the random variable X0 has a density
u0.
Assumption R2. The matrix σσ∗ is uniformly positive definite: there

exists ε > 0 such that

d∑
i,j=1

d1∑
k=1

σik(x)σjk(x)yiyj ≥ ε|y|2, x, y ∈ Rd.

Under Assumption R1 system (11.1) has a unique strong solution [15,
Theorems 5.2.5 and 5.2.9]. Extra smoothness of the coefficients in assumption
R1 insure the existence of a convenient representation of the optimal filter.

If f is a scalar measurable function on Rd with supt≤T E|f(X(t))|2 < ∞,
then the filtering problem for (11.1) is to find the best mean square estimate
f̂t of f(X(t)), t ≤ T, given the observations Y (s), s ≤ t.

Denote by FY
t the σ-algebra generated by Y (s), s ≤ t. Then the properties

of the conditional expectation imply that the solution of the filtering problem
is

f̂t = E
(
f(X(t))|FY

t

)
.

To derive an alternative representation of f̂t, some additional constructions
will be necessary.

Define on (Ω,F) the probability measure dP̃ = Z−1T dP where

Zt = exp
{∫ t

0

h∗(X(s))dY (s)− 1
2

∫ t

0

|h(X(s))|2ds
}

(here and below, if ζ ∈ Rk, then ζ is a column vector, ζ∗ = (ζ1, . . . , ζk), and
|ζ|2 = ζ∗ζ). If the function h is bounded, then the measures P and P̃ are
equivalent. The expectation with respect to the measure P̃ will be denoted
by Ẽ.

The following properties of the measure P̃ are well known [14, 42]:
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P1. Under the measure P̃, the distributions of the Wiener process W and
the random variable X0 are unchanged, the observation process Y is a
standard Wiener process, and, for t ≤ T , the state process X satisfies:

dX(t) = b(X(t))dt+ σ(X(t))dW (t) + ρ(X(t)) (dY (t)− h(X(t))dt) ,
X(0) = X0.

P2. Under the measure P̃, the Wiener processes W and Y and the random
variable X0 are independent of one another.

P3. The optimal filter f̂t satisfies the relation

f̂t =
Ẽ
[
f(X(t))Zt|FY

t

]
Ẽ[Zt|FY

t ]
. (11.2)

Because of property P2 of the measure P̃ the filtering problem will be
studied on the probability space (Ω,F , P̃). In particular, we will consider
the stochastic basis F̃ = {Ω,F , {FY

t }0≤t≤T , P̃} and the Wiener Chaos space
L̃2(Y) of FY

T -measurable random variables η with Ẽ|η|2 <∞.
If the function h is bounded, then, by the Cauchy–Schwarz inequality,

E|η| ≤ C(h, T )
√
Ẽ|η|2, η ∈ L̃2(Y). (11.3)

Next, consider the partial differential operators

Lg(x) = 1
2

d∑
i,j=1

((σ(x)σ∗(x))ij + (ρ(x)ρ∗(x))ij)
∂2g(x)
∂xi∂xj

+
d∑

i=1

bi(x)
∂g(x)
∂xi

;

Mlg(x) = hl(x)g(x) +
d∑

i=1

ρil(x)
∂g(x)
∂xi

, l = 1, . . . , r;

and their adjoints

L∗g(x) = 1
2

d∑
i,j=1

∂2

∂xi∂xj
((σ(x)σ∗(x))ijg(x) + (ρ(x)ρ∗(x))ijg(x))

−
d∑

i=1

∂

∂xi
(bi(x)g(x)) ;

M∗
l g(x) = hl(x)g(x)−

d∑
i=1

∂

∂xi
(ρil(x)g(x)) , l = 1, . . . , r.

Note that, under the assumptions R1 and R2, the operators L,L∗ are
bounded from H1

2 (R
d) to H−12 (Rd), operators M,M∗ are bounded from

H1
2 (R

d) to L2(Rd), and
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2〈L∗v, v〉+
r∑

l=1

‖M∗
l v‖2L2(Rd)+ε‖v‖2H2

1 (R
d) ≤ C‖v‖2L2(Rd), v ∈ H1

2 (R
d), (11.4)

where 〈·, ·〉 is the duality between H1
2 (R

d) and H−12 (Rd). The following result
is well known [42, Theorem 6.2.1].

Proposition 11.1 In addition to Assumptions R1 and R1 suppose that the
initial density u0 belongs to L2(Rd). Then there is a random field u = u(t, x),
t ∈ [0, T ], x ∈ Rd, with the following properties:

1. u ∈ L̃2(Y;L2((0, T );H1
2 (R

d))) ∩ L̃2(Y;C([0, T ], L2(Rd))).
2. The function u(t, x) is a traditional solution of the stochastic partial

differential equation

du(t, x) = L∗u(t, x)dt+
r∑

l=1

M∗
l u(t, x)dYl(t), 0 < t ≤ T, x ∈ Rd;

u(0, x) = u0(x).
(11.5)

3. The equality

Ẽ
[
f(X(t))Zt|FY

t

]
=
∫

Rd

f(x)u(t, x)dx (11.6)

holds for all bounded measurable functions f .

The random field u = u(t, x) is called the unnormalized filtering density
(UFD) and the random variable ϕt[f ] = Ẽ

[
f(X(t))Zt|FY

t

]
, the unnormalized

optimal filter.
A number of authors studied the nonlinear filtering problem using the

multiple Itô integral version of the Wiener Chaos [2, 21, 39, 46, etc.]. In
what follows, we construct approximations of u and ϕt[f ] using the Cameron–
Martin version.

By Theorem 8.3,
u(t, x) =

∑
α∈J

uα(t, x)ξα, (11.7)

where

ξα =
1√
α!

∏
i,k

Hαk
i
(ξik), ξik =

∫ T

0

mi(t)dYk(t), k = 1, . . . , r; (11.8)

as before, Hn(·) is the Hermite polynomial (3.3) and mi ∈ m, an orthonormal
basis in L2((0, T )). The functions uα satisfy the corresponding propagator

∂

∂t
uα(t, x) = L∗uα(t, x)

+
∑
k,i

√
αk
iM∗

kuα−(i,k)(t, x)mi(t), t ≤ T, x ∈ Rd;

u(0, x) = u0(x)I(|α| = 0).

(11.9)
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Writing

fα(t) =
∫

Rd

f(x)uα(t, x)dx,

we also get a Wiener chaos expansion for the unnormalized optimal filter:

ϕt[f ] =
∑
α∈J

fα(t)ξα, t ∈ [0, T ]. (11.10)

For a positive integer N , define

uN (t, x) =
∑
|α|≤N

uα(t, x)ξα. (11.11)

Theorem 11.1. Under Assumptions R1 and R2, there exists a positive num-
ber ν, depending only on the functions h and ρ, such that

Ẽ‖u− uN‖2L2(Rd)(t) ≤
‖u0‖2L2(Rd)

ν(1 + ν)N
, t ∈ [0, T ]. (11.12)

If, in addition, ρ = 0, then there exists a real number C, depending only on
the functions b and σ, such that

Ẽ‖u− uN‖2L2(Rd)(t) ≤
(4h∞t)N+1

(N + 1)!
eCt‖u0‖2L2(Rd), t ∈ [0, T ], (11.13)

where h∞ = maxk=1,...,r supx |hk(x)|.

For positive integers N,n, define a set of multi-indices

J n
N = {α = (αk

i , k = 1, . . . , r, i = 1, . . . , n) : |α| ≤ N}.

and let
unN (t, x) =

∑
α∈Jn

N

uα(t, x)ξα. (11.14)

Unlike Theorem 11.1, to compute the approximation error in this case we
need to choose a special basis m — to do the error analysis for the Fourier
approximation in time. We also need extra regularity of the coefficients in the
state and observation equations — to have the semi-group generated by the
operator L∗ continuous not only in L2(Rd) but also in H2

2 (R
d). The resulting

error bound is presented below; the proof can be found in [25].

Theorem 11.2. Assume that

1. The basis m is the Fourier cosine basis

m1(t)=
1√
T
; mk(t)=

√
2
T
cos
(
π(k − 1)t

T

)
, k > 1; t ≤ T, (11.15)
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2. The components of the functions σ are in C4(Rd), the components of the
functions b are in C3(R), the components of the function h are in C2(Rd);
ρ = 0; u0 ∈ H2

2 (R
d).

Then there exist a positive number B1 and a real number B2, both depending
only on the functions b and σ such that

Ẽ‖u−unN‖2L2(Rd)(T )≤B1eB2T

(
(4h∞T )N+1

(N + 1)!
eCt‖u0‖2L2(Rd) +

T 3

n
‖u0‖2H2

2 (R
d)

)
,

(11.16)
where h∞ = maxk=1,...,r supx |hk(x)|.

12 Passive Scalar in a Gaussian Field

This section presents the results from [29] and [28] about the stochastic trans-
port equation.

The following viscous transport equation is used to describe the time evo-
lution of a scalar quantity θ in a given velocity field v:

θ̇(t, x) = ν∆θ(t, x)− v(t, x) · ∇θ(t, x) + f(t, x); x ∈ Rd, d > 1. (12.1)

The scalar θ is called passive because it does not affect the velocity field v.
We assume that v = v(t, x) ∈ Rd is an isotropic Gaussian vector field with

zero mean and covariance

E(vi(t, x)vj(s, y)) = δ(t− s)Cij(x− y),

where C = (Cij(x), i, j = 1, . . . , d) is a matrix-valued function such that C(0)
is a scalar matrix; with no loss of generality we will assume that C(0) = I,
the identity matrix.

It is known from [22, Section 10.1] that, for an isotropic Gaussian vector
field, the Fourier transform Ĉ = Ĉ(z) of the function C = C(x) is

Ĉ(y) =
A0

(1 + |y|2)(d+α)/2

(
a
yy∗

|y|2 +
b

d− 1

(
I − yyT

|y|2
))

, (12.2)

where y∗ is the row vector (y1, . . . , yd), y is the corresponding column vector,
|y|2 = y∗y; γ > 0, a ≥ 0, b ≥ 0, A0 > 0 are real numbers. Similar to [22], we
assume that 0 < γ < 2. This range of values of γ corresponds to a turbulent
velocity field v, also known as the generalized Kraichnan model [8]; the original
Kraichnan model [18] corresponds to a = 0. For small x, the asymptotics of
Cij(x) is (δij − cij |x|γ) [22, Section 10.2].

By direct computation (cf. [1]), the vector field v = (v1, . . . , vd) can be
written as

vi(t, x) = σik(x)ẇk(t), (12.3)
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where {σk, k ≥ 1} is an orthonormal basis in the space HC , the reproducing
kernel Hilbert space corresponding to the kernel function C. It is known from
[22] that HC is all or a part of the Sobolev space H(d+γ)/2(Rd;Rd).

If a > 0 and b > 0, then the matrix Ĉ is invertible and

HC =
{
f ∈ Rd :

∫
Rd

f̂∗(y)Ĉ−1(y)f̂(y)dy <∞
}
= H(d+γ)/2(Rd;Rd),

because ‖Ĉ(y)‖ ∼ (1 + |y|2)−(d+γ)/2.
If a > 0 and b = 0, then

HC =
{
f ∈ Rd :

∫
Rd

|f̂(y)|2(1 + |y|2)(d+γ)/2dy <∞; yy∗f̂(y) = |y|2f̂(y)
}
,

the subset of gradient fields in H(d+γ)/2(Rd;Rd), that is, the vector fields f
for which f̂(y) = yF̂ (y) for some scalar F ∈ H(d+γ+2)/2(Rd).

If a = 0 and b > 0, then

HC =
{
f ∈ Rd :

∫
Rd

|f̂(y)|2(1 + |y|2)(d+γ)/2dy <∞; y∗f̂(y) = 0
}
,

the subset of divergence-free fields in H(d+γ)/2(Rd;Rd).
By the embedding theorems, each σik is a bounded continuous function on

Rd; in fact, every σik is Hölder continuous of order γ/2. In addition, being an
element of the corresponding space HC , each σk is a gradient field if b = 0
and is divergence-free if a = 0.

Equation (12.1) becomes

dθ(t, x) = (ν∆θ(t, x) + f(t, x))dt−
∑
k

σk(x) · ∇θ(t, x)dwk(t). (12.4)

We summarize the above constructions in the following assumptions:

S1 There is a fixed stochastic basis F = (Ω,F , {Ft}t≥0,P) with the usual as-
sumptions and (wk(t), k ≥ 1, t ≥ 0) is a collection of independent standard
Wiener processes on F.

S2 For each k, the vector field σk is an element of the Sobolev space
H
(d+γ)/2
2 (Rd;Rd), 0 < γ < 2, d ≥ 2.

S3 For all x, y in Rd,
∑

k σ
i
k(x)σ

j
k(y) = Cij(x−y) such that the matrix-valued

function C = C(x) satisfies (12.2) and C(0) = I.
S4 The input data θ0, f are deterministic and satisfy

θ0 ∈ L2(Rd), f ∈ L2((0, T );H−12 (Rd));

ν > 0 is a real number.
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Theorem 12.1. Let Q be a sequence with qk = q <
√
2ν, k ≥ 1.

Under assumptions S1–S4, there exits a unique w(H1
2 (R

d),H−12 (Rd))
Wiener Chaos solution of (12.4). This solution is an FW

t -adapted process
and satisfies the inequality

‖θ‖2L2,Q(W;L2((0,T );H1
2 (R

d))) + ‖θ‖2L2,Q(W;C((0,T );L2(Rd)))

≤ C(ν, q, T )
(
‖θ0‖2L2(Rd) + ‖f‖2

L2((0,T );H
−1
2 (Rd))

)
.

Theorem 12.1 provides new information about the solution of equation
(12.1) for all values of ν > 0. Indeed, if

√
2ν > 1, then q > 1 is an admissible

choice of the weights, and, by Proposition 7.2(1), the solution θ has Malliavin
derivatives of every order. If

√
2ν ≤ 1, then equation (12.4) does not have a

square-integrable solution.
Note that if the weight is chosen such that q =

√
2ν, then equa-

tion (12.1) can still be analyzed using Theorem 9.1 in the normal triple
(H1

2 (R
d), L2(Rd),H−12 (Rd)).

If ν = 0, equation (12.4) must be interpreted in the sense of Stratonovich:

du(t, x) = f(t, x)dt− σk(x) · ∇θ(t, x) ◦ dwk(t). (12.5)

To simplify the presentation, we assume that f = 0. If (12.2) holds with a = 0,
then each σk is divergence free and (12.5) has an equivalent Itô form

dθ(t, x) =
1
2
∆θ(t, x)dt− σik(x)Diθ(t, x)dwk(t). (12.6)

Equation (12.6) is a model of non-viscous turbulent transport [5]. The prop-
agator for (12.6) is

∂

∂t
θα(t, x) =

1
2
∆θα(t, x)−

∑
i,k

√
αk
i σ

j
kDjθα−(i,k)(t, x)mi(t), t ≤ T, (12.7)

with initial condition θα(0, x) = θ0(x)I(|α| = 0).
The following result about solvability of (12.6) is proved in [29] and, in a

slightly weaker form, in [28].

Theorem 12.2. In addition to S1–S4, assume that each σk is divergence
free. Then there exits a unique w(H1

2 (R
d),H−12 (Rd)) Wiener Chaos solution

θ = θ(t, x) of (12.6). This solution has the following properties:
(A) For every ϕ ∈ C∞0 (Rd) and all t ∈ [0, T ], the equality

(θ, ϕ)(t) = (θ0, ϕ) +
1
2

∫ t

0

(θ,∆ϕ)(s)ds+
∫ t

0

(θ, σikDiϕ)dwk(s) (12.8)

holds in L2(FW
t ), where (·, ·) is the inner product in L2(Rd).

(B) If X = Xt,x is a weak solution of the equation



494 S. Lototsky and B. Rozovskii

Xt,x = x+
∫ t

0

σk (Xs,x) dwk (s) , (12.9)

then, for each t ∈ [0, T ],

θ (t, x) = E
(
θ0 (Xt,x) |FW

t

)
. (12.10)

(C) For 1 ≤ p < ∞ and r ∈ R, define Lp,(r)(Rd) as the Banach space of
measurable functions with the norm

‖f‖p
Lp,(r)(Rd)

=
∫

Rd

|f(x)|p(1 + |x|2)pr/2dx <∞.

Then there exits a number K depending only on p, r such that, for each t > 0,

E‖θ‖p
Lp,(r)(Rd)

(t) ≤ eKt‖θ0‖pLp,(r)(Rd)
. (12.11)

In particular, if r = 0, then K = 0.

It follows that, for all s, t and almost all x, y,

Eθ (t, x) = θα (t, x) I|α|=0,

Eθ (t, x) θ (s, y) =
∑
α∈J

θα (t, x) θα (s, y) .

If the initial condition θ0 belongs to L2(Rd) ∩ Lp(Rd) for p ≥ 3, then,
by (12.11), higher-order moments of θ exist. To obtain the expressions of the
higher-order moments in terms of the coefficients θα, we need some auxiliary
constructions.

For α, β ∈ J , define α+ β as the multi-index with components αk
i + βki .

Similarly, we define the multi-indices |α−β| and α∧β = min(α, β). We write
β ≤ α if and only if βki ≤ αk

i for all i, k ≥ 1. If β ≤ α, we define(
α

β

)
:=
∏
i,k

αk
i !

βki !(α
k
i − βki )!

.

Definition 12.1 We say that a triple of multi-indices (α, β, γ) is complete
and write (α, β, γ) ∈ 4 if all the entries of the multi-index α+β+ γ are even
numbers and |α− β| ≤ γ ≤ α+ β. For fixed α, β ∈ J , we write

4 (α) := {γ, µ ∈ J : (α, γ, µ) ∈ 4}

and
4(α, β) := {γ ∈ J : (α, β, γ) ∈ 4}.
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For (α, β, γ) ∈ 4, we define

Ψ (α, β, γ) :=
√
α!β!γ!

((
α− β + γ

2

)
!
(
β − α+ γ

2

)
!
(
α+ β − γ

2

)
!
)−1

.

(12.12)
Note that the triple (α, β, γ) is complete if and only if any permutation of
the triple (α, β, γ) is complete. Similarly, the value of Ψ (α, β, γ) is invariant
under permutation of the arguments.

We also define

C (γ, β, µ) :=
[(
γ + β − 2µ
γ − µ

)(
γ

µ

)(
β

µ

)]1/2
, µ ≤ γ ∧ β. (12.13)

It is readily checked that if f is a function on J , then for γ, β ∈ J ,∑
µ≤γ∧β

C (γ, β, p) f (γ + β − 2µ) =
∑

µ∈(γ,β)
f (µ)Φ (γ, β, µ) (12.14)

The next theorem presents the formulas for the third and fourth moments
of the solution of equation (12.6) in terms of the coefficients θα.

Theorem 12.3. In addition to S1–S4, assume that each σk is divergence-free
and the initial condition θ0 belongs to L2(Rd) ∩ L4(Rd). Then

Eθ(t, x)θ (t′, x′) θ(s, y) =
∑

(α,β,γ)∈*
Ψ (α, β, γ) θα(t, x)θβ(t′, x′)θγ (s, y)

(12.15)
and

Eθ(t, x)θ(t′, x′)θ (s, y) θ (s′, y′) (12.16)

=
∑

ρ∈*(α,β)∩*(γ,κ)
Ψ (α, β, ρ)Ψ (ρ, γ, κ) θα (t, x) θβ(t′, x′)θγ (s, y) θκ (s′, y′) .

Proof. It is known, [30], that

ξγξβ =
∑

µ≤γ∧β
C (γ, β, µ) ξγ+β−2µ. (12.17)

Let us consider the triple product ξαξβξγ . By (12.17),

Eξαξβξγ = E
∑

µ∈*(α,β)
ξγξµΨ (α, β, µ) =

{
Ψ (α, β, γ) , (α, β, γ) ∈ 4;
0, otherwise.

(12.18)
Equality (12.15) now follows.

To compute the fourth moment, note that



496 S. Lototsky and B. Rozovskii

ξαξβξγ =
∑

µ≤α∧β
C (α, β, µ) ξα+β−2µξγ

=
∑

µ≤α∧β
C (α, β, µ)

∑
ρ≤(α+β−2µ)∧γ

C (α+ β − 2µ, γ, ρ) ξα+β+γ−2µ−2ρ.

(12.19)

Repeated applications of (12.14) yield

ξαξβξγ =
∑

µ≤α∧β
C (α, β, µ)

∑
ρ∈*(α+β−2µ,γ)

ξρΨ (α+ β − 2µ, γ, ρ)

=
∑

µ∈*(α,β)

∑
ρ∈*(µ,γ)

Ψ (α, β, µ)Ψ (µ, γ, ρ) ξρ

Thus,

Eξαξβξγξκ =
∑

µ∈*(α,β)

∑
ρ∈*(µ,γ)

Ψ (α, β, µ)Ψ (µ, γ, ρ) I{µ=κ}

=
∑

ρ∈*(α,β)∩*(γ,κ)
Ψ (α, β, ρ)Ψ (ρ, γ, κ) .

Equality (12.16) now follows.

In the same way, one can get formulas for fifth- and higher-order moments.

Remark 12.1 Expressions (12.15) and (12.16) do not depend on the structure
of equation (12.6) and can be used to compute the third and fourth moments
of any random field with a known Cameron–Martin expansion. The interested
reader should keep in mind that the formulas for the moments of orders higher
then two should be interpreted with care. In fact, they represent the pseudo-
moments (for detail see [35]).

We now return to the analysis of the passive scalar equation (12.4). By
reducing the smoothness assumptions on σk, it is possible to consider velocity
fields v that are more turbulent than in the Kraichnan model, for example,

vi(t, x) =
∑
k≥0

σik(x)ẇk(t), (12.20)

where {σk, k ≥ 1} is an orthonormal basis in L2(Rd;Rd). With v as in (12.20),
the passive scalar equation (12.4) becomes

θ̇(t, x) = ν∆θ(t, x) + f(t, x)−∇θ(t, x) · Ẇ (t, x), (12.21)

where Ẇ = Ẇ (t, x) is a d-dimensional space-time white noise and the Itô sto-
chastic differential is used. Previously, such equations have been studied using
white noise approach in the space of Hida distributions [4, 40]. A summary of
the related results can be found in [12, Section 4.3].
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The Q-weighted Wiener chaos spaces allow us to state a result that is fully
analogous to Theorem 12.1. The proof is derived from Theorem 9.1; see [29]
for details.

Theorem 12.4. Suppose that ν > 0 is a real number, each |σik(x)| is a
bounded measurable function, and the input data are deterministic and satisfy
u0 ∈ L2(Rd), f ∈ L2

(
(0, T );H−12 (Rd)

)
.

Fix ε > 0 and let Q = {qk, k ≥ 1} be a sequence so that, for all x, y ∈ Rd,

2ν|y|2 −
∑
k≥1

q2kσ
i
k(x)σ

j
k(x)yiyj ≥ ε|y|2.

Then, for every T > 0, there exits a unique w(H1
2 (R

d),H−12 (Rd)) Wiener
Chaos solution θ of the equation

dθ(t, x) = (ν∆θ(t, x) + f(t, x))dt− σk(x) · ∇θ(t, x)dwk(t), (12.22)

The solution is an Ft-adapted process and satisfies the ineq21uality

‖θ‖2L2,Q(W;L2((0,T );H1
2 (R

d))) + ‖θ‖2L2,Q(W;C((0,T );L2(Rd)))

≤ C(ν, q, T )
(
‖θ0‖2L2(Rd) + ‖f‖2

L2((0,T );H
−1
2 (Rd))

)
.

If maxi supx |σik(x)| ≤ Ck, k ≥ 1, then a possible choice of Q is

qk = (δν)1/2/(d2kCk), 0 < δ < 2.

If σik(x)σ
j
k(x) ≤ Cσ <∞, i, j = 1, . . . , d, x ∈ Rd, then a possible choice of

Q is
qk = ε (2ν/(Cσd))

1/2
, 0 < ε < 1.

13 Stochastic Navier–Stokes Equation

In this section, we review the main facts about the stochastic Navier–Stokes
equation and indicate how the Wiener Chaos approach can be used in the
study of non-linear equations. Most of the results of this section come from
the two papers [35] and [31].

A priori, it is not clear in what sense the motion described by Kraichnan’s
velocity (see Section 12) might fit into the paradigm of Newtonian mechanics.
Accordingly, relating the Kraichnan velocity field v to classic fluid mechanics
naturally leads to the question whether we can compensate v (t, x) by a field
u (t, x) that is more regular with respect to the time variable, so that there is
a balance of momentum for the resulting field U (t, x) = u (t, x) + v (t, x) or,
equivalently, that the motion of a fluid particle in the velocity field U (t, x)
satisfies the Second Law of Newton.
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A positive answer to this question is given in [35], where it is shown that
the equation for the smooth component u = (u1, . . . , ud) of the velocity is
given by

dui = [ν∆ui − ujDju
i −DiP + fi]dt

+
(
gik −DiP̃k −Djσ

j
ku

i
)
dwk, i = 1, . . . , d, 0 < t ≤ T ;

divu = 0, u(0, x) = u0(x).

(13.1)

where wk, k ≥ 1 are independent standard Wiener processes on a sto-
chastic basis F, the functions σjk are given by (12.3), the known functions
f = (f1, . . . , fd), gk = (gik), i = i, . . . , d, k ≥ 1, are, respectively, the drift and
the diffusion components of the free force, and the unknown functions P , P̃k

are the drift and diffusion components of the pressure.

Remark 13.1 It is useful to study equation (13.1) for more general coefficients
σjk. So, in the future, σjk are not necessarily the same as in Section 12.

We make the following assumptions:

NS1 The functions σik = σik(t, x) are deterministic and measurable,

∑
k≥1

(
d∑

i=1

|σik(t, x)|2 + |Diσ
i
k(t, x)|2

)
≤ K,

and there exists ε > 0 such that, for all y ∈ Rd,

ν|y|2 − 1
2
σik(t, x)σ

j
k(t, x)yiyj ≥ ε|y|2, t ∈ [0, T ], x ∈ Rd.

NS2 The functions f i, gik are non-random and

d∑
i=1

‖f i‖2
L2((0,T );H

−1
2 (Rd))

+
∑
k≥1

‖gik‖2L2((0,T );L2(Rd))

 <∞.

Remark 13.2 In NS1, the derivatives Diσ
i
k are understood as Schwartz dis-

tributions, but it is assumed that div σ :=
∑d

i=1 ∂iσ
i is a bounded L2-valued

function. Obviously, the latter assumption holds in the important case when∑d
i=1 ∂iσ

i = 0.

Our next step is to use the divergence-free property of u to eliminate the
pressure P and P̃ from equation (13.1). For that, we need the decomposition
of L2(Rd;Rd) into potential and solenoidal components.

Write S(L2(Rd;Rd)) = {V ∈ L2(Rd;Rd) : div V = 0}. It is known (see
e.g. [16]) that
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L2(Rd;Rd) = G(L2(Rd;Rd))⊕S(L2(Rd;Rd)),

where G(L2(Rd;Rd)) is a Hilbert subspace orthogonal to S(L2(Rd;Rd)).
The functions G(V) and S(V) can be defined for V from any Sobolev

space Hγ
2 (R

d;Rd) and are usually referred to as the potential and the
divergence-free or solenoidal projections, respectively, of the vector field V.

Now let u be a solution of equation (13.1). Since div u = 0, we have

Di(ν∆ui − ujDju
i −DiP + f i) = 0; Di(σ

j
kDju

jui + gik −DiP̃k) = 0, k ≥ 1.

As a result,

DiP = G(ν∆ui−ujDju
i+f i); DiP̃k = G(σjkDju

i+ gik), i = 1, . . . , d, k ≥ 1.

So, instead of equation (13.1), we can and will consider its equivalent form for
the unknown vector u = (u1, . . . , ud):

du = S(ν∆u− ujDju+ f)dt+S(σjkDju+ gk)dwk, 0 < t ≤ T, (13.2)

with initial condition u|t=0 = u0.

Definition 13.1 An Ft-adapted random process u ∈ L2(Ω×[0, T ];H1
2 (R

d;Rd))
is called a solution of equation (13.2) if:

1. With probability one, the process u is weakly continuous in L2(Rd;Rd).
2. For every ϕ ∈ C∞0 (Rd,Rd) with div ϕ = 0 there exists a measurable set

Ω′ ⊂ Ω such that, for all t ∈ [0, T ], the equality

(ui, ϕi)(t) = (ui0, ϕ
i) +

∫ t

0

(
(νDju

i,Djϕ
i)(s) + 〈f i, ϕi〉(s)

)
ds∫ t

0

(
σjkDju

i + gi, ϕi)dwk(s)
(13.3)

holds on Ω′. In (13.3), (·, ·) is the inner product in L2(Rd) and 〈·, ·, 〉 is
the duality between H1

2 (R
d) and H−12 (Rd).

The following existence and uniqueness result is proved in [31].

Theorem 13.1. In addition to NS1 and NS2, assume that the initial con-
dition u0 is non-random and belongs to L2(Rd;Rd). Then there exist a sto-
chastic basis F = (Ω,F , {Ft}t≥0,P) with the usual assumptions, a collection
{wk, k ≥ 1} of independent standard Wiener processes on F, and a process u
such that u is a solution of (13.2) and

E

(
sup
s≤T

‖u(s)‖2L2(Rd;Rd) +
∫ T

0

‖∇u(s)‖2L2(Rd;Rd) ds

)
<∞.

If, in addition, d = 2, then the solution of (13.2) exists on any prescribed
stochastic basis, is strongly continuous in t, is FW

t -adapted, and is unique,
both path-wise and in distribution.
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When d ≥ 3, the existence of a strong solution as well as uniqueness (strong
or weak) for equation (13.2) are important open problems.

By the Cameron–Martin theorem,

u(t, x) =
∑
α∈J

uα(t, x)ξα.

If the solution of (13.2) is FW
t -adapted, then, using the Itô formula together

with relation (5.5) for the time evolution of E(ξα|FW
t ) and relation (12.17)

for the product of two elements of the Cameron–Martin basis, we can derive
the propagator system for coefficients uα [31, Theorem 3.2]:

Theorem 13.2. In addition to NS1 and NS2, assume that u0 ∈ L2(Rd;Rd)
and equation (13.2) has an FW

t -adapted solution u such that

sup
t≤T

E‖u‖2L2(Rd;Rd)(t) <∞. (13.4)

Then
u (t, x) =

∑
α∈J

uα (t, x) ξα, (13.5)

and the Hermite–Fourier coefficients uα(t, x) are L2(Rd;Rd)-valued weakly
continuous functions such that

sup
t≤T

∑
α∈J

‖uα‖2L2(Rd;Rd)(t) +
∫ T

0

∑
α∈J

‖∇uα‖2L2(Rd;Rd×d)(t) dt <∞. (13.6)

The functions uα (t, x) , α ∈ J , satisfy the (nonlinear) propagator

∂

∂t
uα = S

(
∆uα −

∑
γ,β∈∆(α)

Ψ (α, β, γ) (uγ ,∇uβ) + I{|α|=0}f

+
∑
j,k

√
αk
j

((
σk,∇

)
uα−(j,k) + I{|α|=1}gk

)
mj (t)

)
, 0 < t ≤ T ;

uα|t=0 = u0I{|α|=0};
(13.7)

recall that the numbers Ψ(α, β, γ) are defined in (12.12).

One of the questions in the theory of the Navier–Stokes equation is com-
putation of the mean value ū = Eu of the solution. The traditional approach
relies on the Reynolds equation for the mean

∂tū− ν∆ū+ ( u,∇) u = 0, (13.8)

which is not really an equation with respect to ū. Decoupling (13.8) has been
an area of active research: Reynolds approximations, coupled equations for the
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moments, Gaussian closures, and so on (see, e.g., [36], [45] and the references
therein)

Another way to compute ū (t, x) is to find the distribution of v (t, x) us-
ing the infinite-dimensional Kolmogorov equation associated with (13.2). The
complexity of this Kolmogorov equation is prohibitive for any realistic appli-
cation, at least for now.

The propagator provides a third way: expressing the mean and other sta-
tistical moments of u in terms of uα. Indeed, by Cameron–Martin Theorem,

Eu(t, x) = u0(t, x),

Eui(t, x)uj (s, y) =
∑
α∈J

uiα(t, x)u
j
α(s, y).

If exist, the third- and fourth-order moments can be computed using (12.15)
and (12.16).

The next theorem, proved in [31], shows that the existence of a solution
of the propagator (13.7) is not only necessary but, to some extent, sufficient
for the global existence of a probabilistically strong solution of the stochastic
Navier–Stokes equation (13.2).

Theorem 13.3. Let NS1 and NS2 hold and u0 ∈ L2(Rd;Rd). Assume that
the propagator (13.7) has a solution {uα (t, x) , α ∈ J } on the interval (0, T ]
such that, for every α, the process uα is weakly continuous in L2(Rd;Rd) and
the inequality

sup
t≤T

∑
α∈J

‖uα‖2L2(Rd;Rd)(t) +
∫ T

0

∑
α∈J

‖∇uα‖2L2(Rd;Rd×d)(t) dt <∞ (13.9)

holds. If the process
Ū (t, x) :=

∑
α∈J

uα (t, x) ξα (13.10)

is FW
t -adapted, then it is a solution of (13.2).
The process Ū satisfies

E

(
sup
s≤T

‖Ū(s)‖2L2(Rd;Rd) +
∫ T

0

‖∇Ū(s)‖2L2(Rd;Rd×d) ds

)
<∞

and, for every v ∈ L2(Rd;Rd), E
(
Ū,v

)
is a continuous function of t.

Since Ū is constructed on a prescribed stochastic basis and over a pre-
scribed time interval [0, T ], this solution of (13.2) is strong in the probabilistic
sense and is global in time. Being true in any space dimension d, Theorem 13.3
suggests another possible way to study equation (13.2) when d ≥ 3. Unlike the
propagator for the linear equation, the system (13.7) is not lower-triangular
and not solvable by induction, so the analysis of (13.7) is an open problem.
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14 First-Order Itô Equations

The objective of this section is to study the equation

du(t, x) = ux(t, x)dw(t), t > 0, x ∈ R, (14.1)

and its analog for x ∈ Rd.
Equation (14.1) was first encountered in Example 6.2; see also [9]. With a

non-random initial condition u(0, x) = ϕ(x), direct computations show that,
if exists, the Fourier transform û = û(t, y) of the solution must satisfy

dû(t, y) =
√
−1yû(t, y)dw(t), or û(t, y) = ϕ̂(y)e

√
−1yw(t)+ 1

2y
2t. (14.2)

The last equality shows that the properties of the solution essentially depend
on the initial condition, and, in general, the solution is not in L2(W).

The S-transformed equation, vt = h(t)vx, has a unique solution

v(t, x) = ϕ

(
x+

∫ t

0

h(s)ds
)
, h(t) =

N∑
i=1

himi(t).

The results of Section 3 imply that a white noise solution of the equation can
exist only if ϕ is a real analytic function. On the other hand, if ϕ is infinitely
differentiable, then, by Theorem 8.2, the Wiener Chaos solution exists and
can be recovered from v.

Theorem 14.1. Assume that the initial condition ϕ belongs to the Schwarz
space S = S(R) of tempered distributions. Then there exists a generalized
random process u = u(t, x), t ≥ 0, x ∈ R, such that, for every γ ∈ R and
T > 0, the process u is the unique w(Hγ

2 (R),H
γ−1
2 (R))Wiener Chaos solution

of equation (14.1).

Proof. The propagator for (14.1) is

uα(t, x) = ϕ(x)I(|α| = 0) +
∫ t

0

∑
i

√
αi(uα−(i)(s, x))xmi(s)ds. (14.3)

Even though Theorem 6.1 is not applicable, the system can be solved by
induction if ϕ is sufficiently smooth. Denote by Cϕ(k), k ≥ 0, the square of
the L2(R)-norm of the kth derivative of ϕ:

Cϕ(k) =
∫ +∞

−∞
|ϕ(k)(x)|2dx. (14.4)

By Corollary 6.1, for every k ≥ 0 and n ≥ 0,∑
|α|=k

‖(u(n)α )x‖2L2(R)
(t) =

tkCϕ(n+ k)
k!

. (14.5)

The statement of the theorem now follows.
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Remark 14.1 Once interpreted in a suitable sense, the Wiener Chaos solution
of (14.1) is FW

t -adapted and does not depend on the choice of the Cameron–
Martin basis in L2(W). Indeed, choose the weight sequence so that

r2α =
1

1 + Cϕ(|α|)
.

By (14.5), we have u ∈ RL2(W;L2(R)).
Next, define

ψN (x) =
1
π

sin(Nx)
x

.

Direct computations show that the Fourier transform of ψN is supported in
[−N,N ] and

∫
R
ψN (x)dx = 1. Consider equation (14.1) with initial condition

ϕN (x) =
∫

R

ϕ(x− y)ψN (y)dy.

By (14.2), this equation has a unique solution uN such that uN (t, ·) is in
L2(W;Hγ

2 (R)) for every t ≥ 0, γ ∈ R. Relation (14.5) and the definition of
uN imply that

lim
N→∞

∑
|α|=k

‖uα − uN,α‖2L2(R)
(t) = 0, t ≥ 0, k ≥ 0,

so that, by the Lebesgue dominated convergence theorem,

lim
N→∞

‖u− uN‖2RL2(W;L2(R))
(t) = 0, t ≥ 0.

In other words, the solution of the propagator (14.3) corresponding to any
basis m in L2((0, T )) is a limit inRL2(W;L2(R)) of the sequence {uN , N ≥ 1}
of FW

t -adapted processes.

The properties of the Wiener Chaos solution of (14.1) depend on the
growth rate of the numbers Cϕ(n). In particular,

• If Cϕ(n) ≤ Cn(n!)γ , C > 0, 0 ≤ γ < 1, then
u ∈ L2 (W;L2((0, T );Hn

2 (R))) for all T > 0 and every n ≥ 0.
• If Cϕ(n) ≤ Cnn!, C > 0, then

– for every n ≥ 0, there is a T > 0 such that u ∈ L2 (W;L2((0, T );Hn
2 (R))).

In other words, the square-integrable solution exists only for sufficiently
small T .

– for every n ≥ 0 and every T > 0, there exists a number δ ∈ (0, 1) such
that u ∈ L2,Q (W;L2((0, T );Hn

2 (R))) with Q = (δ, δ, δ, . . .).
• If the numbers Cϕ(n) grow as Cn(n!)1+ρ, ρ ≥ 0, then, for every T > 0,

there exists a number γ > 0 such that
u ∈ (S)−ρ,−γ (L2(W);L2((0, T );Hn

2 (R))). If ρ > 0, then this solution does
not belong to any L2,Q (W;L2((0, T );Hn

2 (R))). If ρ > 1, then this solution
does not have an S-transform.
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• If the numbers Cϕ(n) grow faster than Cn(n!)b for any b, C > 0, then the
Wiener Chaos solution of (14.1) does not belong to any
(S)−ρ,−γ (L2((0, T );Hn

2 (R))), ρ, γ > 0, or L2,Q (W;L2((0, T );Hn
2 (R))).

To construct a function ϕ with the required rate of growth of Cϕ(n),
consider

ϕ(x) =
∫ ∞
0

cos(xy)e−g(y)dy,

where g is a suitable positive, unbounded, even function. Note that, up to a
multiplicative constant, the Fourier transform of ϕ is e−g(y), and so Cϕ(n)
grows with n as

∫∞
0
|y|2ne−2g(y)dy.

A more general first-order equation can be considered:

du(t, x) = σik(t, x)Diu(t, x)dwk(t), t > 0, x ∈ Rd. (14.6)

Theorem 14.2. Assume that in equation (14.6) the initial condition u(0, x)
belongs to S(Rd) and each σik is infinitely differentiable with respect to x such
that sup(t,x) |Dnσik(t, x)| ≤ Cik(n), n ≥ 0. Then there exists a generalized
random process u = u(t, x), t ≥ 0, x ∈ Rd, such that, for every γ ∈ R

and T > 0, the process u is the unique w(Hγ
2 (R

d),Hγ−1
2 (Rd)) Wiener Chaos

solution of equation (14.1).

Proof. The arguments are identical to the proof of Theorem 14.1.

Note that the S-transformed equation (14.6) is vt = hkσikDiv and has
a unique solution if each σik is a Lipschitz continuous function of x. Still,
without additional smoothness, it is impossible to relate this solution to any
generalized random process.
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1 Introduction

Let (Ω,F , P ) be a probability space with filtration F = (Ft)t∈[0,T ]. We assume
that all local martingales with respect to F are continuous. Here T is a fixed
time horizon and F = FT .

Let M be a stable subspace of the space of square integrable martingales
H2. Its ordinary orthogonal M⊥ is a stable subspace of H2 and any element
of M is strongly orthogonal to any element of M⊥ (see, e.g., [4]).

We consider the following exponential equation

ET (m)
ET (m⊥)

= ceη, (1.1)

where η is a given FT -measurable random variable. Solution of equation (1.1)
is a triple (c,m,m⊥), where c is a constant, m ∈ M and m⊥ ∈ M⊥. Here
E(X) is the Doléans-Dade exponential of X.

∗Research supported by Grant INTAS 99 00559.
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IfM andM⊥ are stable subspaces of H2 generated by given local martin-
gales M and N , strongly orthogonal to each other, then equation (1.1) takes
the form

ET (
∫ .
0
ZsdMs)

ET (
∫ .
0
Z⊥s dNs)

= ceη (1.2)

and solution of (1.2) is a triple (c, Z, Z⊥), where Z and Z⊥ are predictableM
and N integrable processes, respectively. Equations of such type are arising
in mathematical finance. They are used to characterize the variance-optimal
martingale measure (see [1], [12], [13] for such characterizations and also [3]
and [14] for the definition of the variance-optimal martingale measure and
related results). Note that the exponential equation of the form (1.1) can also
be applied to the financial market models with infinitely many assets.

Our aim is to prove the existence of (unique) solution of equation (1.1)
in the class of BMO-martingales. The main statement of the paper is the
following:
Theorem 1. Let η ∈ L∞(FT ). Then there exists a unique triple

(c,m,m⊥), where c ∈ R+,m ∈ BMO ∩ M,m⊥ ∈ BMO ∩ M⊥, that sat-
isfies equation (1.1).

One can show that equation (1.1) is equivalent to the semimartingale back-
ward equation

Yt = Y0 − 〈L〉t + 〈L⊥〉t + Lt + L⊥t , YT =
1
2
η. (1.3)

We show that there exists a unique triple (Y,L, L⊥), where Y is a bounded
continuous semimartingale, L ∈ BMO ∩M, L⊥ ∈ BMO ∩M⊥, satisfying
equation (1.3). If the filtration F is generated by a multidimensional Brownian
motion W̃ = (W 1, ...,Wn) andM,M⊥ are stable subspaces of H2 generated
byW = (W 1, ...,W k),W⊥ = (W k+1, ...,Wn) respectively, then equation (1.3)
takes the form of the usual backward stochastic differential equation (BSDE)

Yt =
1
2
η +
∫ T

t

|Zs|2ds−
∫ T

t

|Z⊥s |2ds−
∫ T

t

ZsdWs −
∫ T

t

Z⊥s dW
⊥
s . (1.4)

The existence of a solution of equation (1.4) follows from the results of [9] and
[10], where the BSDEs with drivers satisfying the quadratic growth conditions
(and η ∈ L∞(FT )) were considered. To our knowledge, there are no general
results on BSDEs driven by martingales and including drivers with quadratic
growth. In [2] and [6] the well-posedness of BSDEs driven by martingales with
drivers satisfying global Lipschitz type conditions was established.

It is easy to see that if in front of square characteristics 〈L〉 and 〈L⊥〉 (of
equation (1.3)) we were have the identical signs, then such an equation would
admit an explicit solution. For example, a solution of the equation

Yt = Y0 − 〈L〉t − 〈L⊥〉t + Lt + L⊥t , YT =
1
2
η,
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(which corresponds to the exponential equation ET (m)ET (m⊥) = ceη) is the
triple (Y,L, L⊥):

Lt =
1
2

∫ t

0

1
E(eη|Fs)

dms(η), L⊥t =
1
2

∫ t

0

1
E(eη|Fs)

dm⊥s (η),

Yt = E

(
1
2
η + 〈L〉T − 〈L〉t + 〈L⊥〉T − 〈L⊥〉t

∣∣∣∣Ft

)
,

where the martingales m(η) and m⊥(η) are defined by the orthogonal decom-
position

E(eη|Ft) = Eeη +mt(η) +m⊥t (η), m(η) ∈M, m⊥(η) ∈M⊥.

Note that the problem to find the solution of equation (1.3) is caused here only
by opposite signs at the square characteristics of martingales L and L⊥ , but
the method of the proof of Theorem 1 can be extended for semimartingale
BSDEs with more general drivers (see, e.g., the remark at the end of the
paper). The paper [12] seems to be the first one where the theory of BMO-
martingales was used for BSDEs. For BSDEs similar to (1.3) it was shown that
the martingale part of any bounded solution Y of (1.3) belongs to the class
BMO. This fact shows, that it should be convenient to operate with BMO-
norms in order to prove the existence of solution for equation (1.3) or for
more general BSDEs with drivers satisfying the quadratic growth condition.
Using the BMO-norms for martingales L,L⊥ and the | · |∞-norm for the
semimartingale Y , we apply the contraction principle to show the existence
of a solution, first in case where the | · |L∞ -norm of η is sufficiently small and
then, applying a specific result (see Lemma 1) we construct a solution for an
arbitrary η ∈ L∞.

For all unexplained notations concerning the martingale theory used below
we refer to [7], [4] and [11]. About BMO-martingales see [5] or [8].

2 Proof of the Main Result

First let us introduce some notations.
We say that the process B strongly dominates the process A and write A ≺

B, if the difference B −A ∈ A+loc, i.e. B −A is a locally integrable increasing
process. We shall use also the notation ψ ·X for the stochastic integral with
respect to the semimartingale X. For the process of finite variation A we
denote by varts(A) the variation of A on the interval [s, t].

We use R∞ to denote the space of all adapted càdlàg processes Y such
that

|Y |∞ = |Y ∗T |L∞ <∞,

where Y ∗t = sups≤t |Ys|.
As stated before, we deal entirely with continuous local martingales and

for convenience we shall use the following definition of BMO-martingales.
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The square integrable martingale M belongs to the class BMO if there is
a constant C > 0 such that

E1/2(〈M〉T − 〈M〉τ |Fτ ) ≤ C, P -a.s.

for every stopping time τ . The smallest constant with this property (or +∞ if
it does not exist) is called the BMO-norm of M and is denoted by |M |BMO.
Since the class BMO depends on the underlying probability measure, we shall
use notation BMO(Q) if the measure Q is different from the basic probability
measure P .

Let N ∈ BMO and dQ = ET (N)dP . Then Q is a probability measure
equivalent to P by Theorem 2.3 of [8]. Denote by ψ = ψN (X) = 〈X,N〉 −X
the Girsanov transformation. It is well known (see [8]) that if N ∈ BMO, then
both H2 and BMO are invariant under the transformation ψ. LetM(Q) and
M⊥(Q) be the images of the mapping ψ for M and M⊥, respectively. Note
that M(Q) and M⊥(Q) are stable orthogonal subspaces of the space H2(Q)
of square integrable martingales with respect to Q.

In the sequel we shall need the following
Lemma 1. Suppose that there are m1,m

⊥
1 ∈ BMO, m1 ∈M,m⊥1 ∈M⊥

such that

ET (m1)
ET (m⊥1 )

= c1e
η1 . (1.5)

Let Q be a probability measure defined by

dQ = ET (m1 +m⊥1 )dP

and assume that there exist m2,m
⊥
2 ∈ BMO(Q), m2 ∈M(Q),m⊥2 ∈M⊥(Q)

such that

ET (m2)
ET (m⊥2 )

= c2e
η2 . (1.6)

Then there exists a solution of the equation

ET (m)
ET (m⊥)

= ceη1+η2 . (1.7)

Proof. Note that

dP

dQ
= E−1T (m1 +m⊥1 ) = ET (m̃1 + m̃⊥1 ),

where m̃1 = 〈m1〉 −m1 and m̃⊥1 = 〈m⊥1 〉 −m⊥1 ∈ BMO(Q).
By the Girsanov theorem m2 and m⊥2 are special semimartingales under

P with the decomposition
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m2 = m̂2 + 〈m2, m̃1〉, m⊥2 = m̂⊥2 + 〈m⊥2 , m̃⊥1 〉, (1.8)

where m̂2 = m2−〈m2, m̃1〉 and m̂⊥2 = m⊥2 −〈m⊥2 , m̃⊥1 〉 are BMO-martingales
under P according to Theorem 3.6 of [8].

It is evident that

〈m̂2,m1〉 = −〈m2, m̃1〉, 〈m̂⊥2 ,m⊥1 〉 = −〈m⊥2 , m̃⊥1 〉. (1.9)

Multiplying now equations (1.5) and (1.6), using the Yor formula and decom-
position (1.8) we obtain that

ET (m1 +m2 + 〈m̂2,m1〉)
ET (m⊥1 +m⊥2 + 〈m̂⊥2 ,m⊥1 〉)

= c1c2e
η1+η2 . (1.10)

By equality (1.9) and Theorem 3.6 of [8] m2 + 〈m̂2,m1〉 and m⊥2 + 〈m̂⊥2 ,m⊥1 〉
are BMO-martingales under P . It is easy to see that these martingales are
strongly orthogonal to each other. Thus, c = c1c2, m = m1 +m2 + 〈m̂2,m1〉
and m⊥ = m⊥1 +m⊥2 + 〈m̂⊥2 ,m⊥1 〉 satisfy equation (1.7). ��
The proof of Theorem 1.

Uniqueness. Let (c,m,m⊥) and (c′, l, l⊥) be two solutions of (1.1) from
the class BMO. Then (1.1) implies that

c′
ET (m)
ET (m⊥)

= c
ET (l)
ET (l⊥)

, (1.11)

and, by Yor’s formula,

c′ET (m+ l⊥) = cET (m⊥ + l). (1.12)

Since m + l⊥ and m⊥ + l are BMO-martingales, according to Theorem 2.3
of [8], E(m+ l⊥) and E(m⊥ + l) are uniformly integrable martingales. Hence,
equality (1.12) holds for any t ∈ [0, T ]. Therefore, c = c′ and m+ l⊥ = m⊥+ l.
Consequently, m = l and m⊥ = l⊥.

Existence. It is evident that equation (1.1) is equivalent to the following
martingale equation

− ln c′ − 1
2
〈m〉T +

1
2
〈m⊥〉T +mT −m⊥T = η. (1.13)

Denoting c′ = − 1
2 ln c, L = 1

2m,L
⊥ = − 1

2m
⊥ and ξ = 1

2η one can write this
equation as

c− 〈L〉T + 〈L⊥〉T + LT + L⊥T = ξ. (1.14)

This equation can also be written in the following equivalent semimartingale
form as a BSDE:

Yt = Y0 − 〈L+ L⊥, L− L⊥〉t + Lt + L⊥t , YT = ξ. (1.15)
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Let us show first that there exists a solution (c, L, L⊥) of equation (1.14) if
|ξ|∞ is small enough.

For brevity we shall use the notation 〈m〉tT = 〈m〉T − 〈m〉t for the incre-
ment of square characteristic 〈m〉 of a martingale m.

Let us consider the mapping

Lt + L⊥t = E(ξ + 〈l + l⊥, l − l⊥〉T |Ft) (1.16)
−E(ξ + 〈l + l⊥, l − l⊥〉T ),

Yt = E(ξ + 〈l + l⊥, l − l⊥〉tT |Ft), (1.17)

which transforms BMO-martingales l and l⊥ into a triple (Y,L, L⊥), where L
and L⊥ are BMO-martingales and Y is a semimartingale. Using |Y |∞-norms
for semimartingales and the BMO-norms for martingales, we shall show that
if the norm |ξ|∞ is sufficiently small, then there exists r > 0 such that the
mapping (1.16) is a contraction in the ball

Br = {(l, l⊥) : |l + l⊥|BMO ≤ r}.

Using the Itô formula for Y 2T − Y 2t and (1.16), (1.17) we have

Y 2t − Y 2T = −2
∫ T

t

Ysd(Ls + L⊥s )

+2
∫ T

t

Ysd〈l + l⊥, l − l⊥〉s − 〈L+ L⊥〉tT . (1.18)

Since ξ ∈ L∞, equations (1.16) and (1.17) imply that for any l, l⊥ ∈ BMO
the process Y is bounded and the processes L and L⊥ are square integrable
martingales. Therefore, the stochastic integral Y · (L + L⊥) is a martingale.
Taking conditional expectations in (1.18) we have

Y 2t + E(〈L+ L⊥〉tT |Ft) = E(ξ2|Ft) + 2E

(∫ T

t

Ysd〈l + l⊥, l − l⊥〉s
∣∣∣∣Ft

)
.

Since 〈l+l⊥, l−l⊥〉 ≺ 〈l+l⊥〉, using the elementary inequality 1
2a
2+2b2 ≥ 2ab,

we get that

Y 2t + E(〈L+ L⊥〉tT |Ft)
≤ |ξ|2∞ + 2|Y |∞E(〈l + l⊥〉tT |Ft)

≤ |ξ|2∞ +
1
2
|Y |2∞ + 2E2(〈l + l⊥〉tT |Ft)

≤ |ξ|2∞ +
1
2
|Y |2∞ + 2|l + l⊥|4BMO. (1.19)

From (1.19) we have

Y 2t ≤ |ξ|2∞ +
1
2
|Y |2∞ + 2|l + l⊥|4BMO;
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taking the | · |∞-norm of the left-hand side of this inequality we obtain the
bound

1
2
|Y |2∞ ≤ |ξ|2∞ + 2|l + l⊥|4BMO. (1.20)

From (1.19) we also have

E(〈L+ L⊥〉tT |Ft) ≤ |ξ|2∞ +
1
2
|Y |2∞ + 2|l + l⊥|4BMO.

Therefore, from (1.20) we obtain that

E(〈L+ L⊥〉tT |Ft) ≤ 2|ξ|2∞ + 4|l + l⊥|4BMO

and, hence,
|L+ L⊥|2BMO ≤ 2|ξ|2∞ + 4|l + l⊥|4BMO. (1.21)

If |ξ|∞ ≤ 1
4
√
2
then there exists r ≥ 0 that satisfies the inequality

2|ξ|2∞ + 4r4 ≤ r2 (1.22)

It is easy to see that for such r (i.e. for r satisfying inequality (1.22)), from
|l+ l⊥|BMO ≤ r it follows that |L+L⊥|BMO ≤ r. Indeed, if |l+ l⊥|BMO ≤ r then
from (1.21) we have

|L+ L⊥|2BMO ≤ 2|ξ|2∞ + 4r4,

which implies that |L+ L⊥|2BMO ≤ r2 because r satisfies inequality (1.22).
Now we shall show that the mapping (1.16) is a contraction on the ball

Br. Let Yi, Li, L
⊥
i , i = 1, 2, correspond to li, li by the transformation (1.16),

(1.17). Since Y1(T ) − Y2(T ) = 0, we obtain similarly to (1.19), by applying
the Ito formula to (Y1 − Y2)2 that

(Y1(t)− Y2(t))2 + E(〈L1 − L2 + L⊥1 − L2
⊥〉tT |Ft)

= 2E
(∫ T

t

(Y1(s)− Y2(s))

×d(〈l1 + l⊥1 , l1 − l⊥1 〉 − 〈l2 + l⊥2 , l2 − l⊥2 〉)
∣∣∣∣Ft

)
(1.23)

≤ 1
2
|Y1 − Y2|2∞

+2E2(varTt (〈l1 + l⊥1 , l1 − l⊥1 〉 − 〈l2 + l⊥2 , l2 − l⊥2 〉)|Ft).

Note that the process

〈l1 + l⊥1 , l1 − l⊥1 〉 − 〈l2 + l⊥2 , l2 − l⊥2 〉

coincides with the process

〈l1 + l⊥1 − l2 − l⊥2 , l1 − l⊥1 〉+ 〈l1 + l⊥1 − l2 − l⊥2 , l2 − l⊥2 〉.
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Using successively the elementary inequalities

varTt (A+B) ≤ varTt (A) + varTt (B),

(a+ b)2 ≤ 2(a2 + b2) and the Kunita–Watanabe inequality, we get that

E2(varTt (〈l1 + l⊥1 , l1 − l⊥1 〉 − 〈l2 + l⊥2 , l2 − l⊥2 〉)|Ft)
≤ 2E2(varTt 〈l1 + l⊥1 − l2 − l⊥2 , l1 − l⊥1 〉|Ft)
+2E2(varTt 〈l1 + l⊥1 − l2 − l⊥2 , l2 − l⊥2 〉|Ft)

≤ 2E(〈l1 − l⊥1 〉tT |Ft)E(〈ll + l⊥1 − l2 − l⊥2 〉tT |Ft)
+2E(〈l2 − l2

⊥〉tT |Ft)E(〈ll + l⊥1 − l2 − l⊥2 〉tT |Ft). (1.24)

Since for any l+ l⊥ ∈ Br we have the bound E(〈l− l⊥〉tT |Ft ≤ r2, we obtain
from (1.24) that for all l1 + l⊥1 , l2 + l⊥2 ∈ Br

E2(varTt (〈l1 + l⊥1 , l1 − l⊥1 〉 − 〈l2 + l⊥2 , l2 − l⊥2 〉)|Ft)
≤ 2E(〈l1 + l⊥1 − l2 − l⊥2 〉tT |Ft)

×[E(〈l1 − l⊥1 〉tT |Ft) + E(〈l2 − l2
⊥〉tT |Ft)]

≤ 4r2E(〈l1 + l⊥1 − l2 − l⊥2 〉tT |Ft)
≤ 4r2|l1 + l⊥1 − l2 − l⊥2 |2BMO. (1.25)

Inequalities (1.23) and (1.25) imply that for all l1 + l⊥1 , l2 + l⊥2 ∈ Br

(Y1(t)− Y2(t))2 + E(〈L1 − L2 + L⊥1 − L2
⊥〉tT |Ft)

≤ 1
2
|Y1 − Y2|2∞ + 8r2|l1 + l⊥1 − l2 − l⊥2 |2BMO. (1.26)

Using similar arguments as above (see equations (1.19) – (1.21) ) we obtain
that the estimate

|L1 − L2 + L⊥1 − L2
⊥|BMO ≤ 4r|l1 − l2 + l⊥1 − l⊥2 |BMO

holds. Finally, we remark that, if |ξ|∞ ≤ 1
6 and 1

32 ≤ r2 < 1
16 , then the

inequalities (1.22) and r < 1
4 are satisfied simultaneously. Thus, we obtain

that if |ξ|∞ is small enough (namely, if |ξ|∞ < 1
6 ), then the mapping (1.16) is

a contraction in Br and by the fixed point theorem there exists a unique pair
(L̃, L̃⊥) such that

L̃t + L̃⊥t = E(ξ + 〈L̃+ L̃⊥, L̃− L̃⊥〉T |Ft) (1.27)
−E(ξ + 〈L̃+ L̃⊥, L̃− L̃⊥〉T )

and
Yt = E(ξ + 〈L̃+ L̃⊥, L̃− L̃⊥〉tT |Ft).

Taking t = T in (1.27) we obtain that the triple (c, L̃, L̃⊥), where the constant
c = E(ξ + 〈L̃+ L̃⊥, L̃− L̃⊥〉T ), satisfies equation (1.14) and, hence, equation
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(1.1) admits a unique solution. Namely, if |ξ|∞ ≤ 1
6 then the BMO-norm of

the solution is less than 1
4 .

To get rid of the assumption that |ξ|∞ is sufficiently small, we shall use
Lemma 1. Let us take an integer n ≥ 1 such that the equation

ET (m)
ET (m⊥)

= c1e
1
n ξ (1.28)

admits a solution. Let dQ = ET (m1 +m⊥1 )dP , where (m1,m
⊥
1 ) ∈ BMO(P )

be a solution of (1.28). Since the norm |ξ|∞ is invariant with respect to an
equivalent change of measure and since the Girsanov transformation is an
isomorphism of BMO(P ) onto BMO(Q), similarly as above one can show
that there exists a pair m2,m

⊥
2 ∈ BMO(Q) that satisfies equation (1.28).

Therefore, by Lemma 1, there exists a solution of equation

ET (m)
ET (m⊥)

= c2e
2
n ξ. (1.29)

Using now Lemma 1 to equation (1.29) by induction we obtain that there
exists a solution of the equation (1.1) for an arbitrary ξ ∈ L∞. ��
Remark. By the same way one can show the solvability of the following,

more general, BSDE

Yt = Y0 +
∫ t

0

g(s)d〈L〉s +
∫ t

0

g⊥(s)〈L⊥〉s + Lt + L⊥t , YT = ξ,

for given bounded predictable processes g, g⊥ and ξ ∈ L∞(FT ).
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Dedication. The first time I met Prof. A. Shiryaev was in January 1977,
during a meeting dedicated to Control and Filtering theories, in Bonn. This
was a time when meeting a Soviet mathematician was some event! Among the
participants to that meeting, were, apart from A. Shiryaev, Prof. B. Grige-
lionis, and M. Yershov, who was by then just leaving Soviet Union in hard
circumstances. To this day, I vividly remember that A.S, M.Y. and myself
spent a full Sunday together, trying to solve a succession of problems raised
by A.S., who among other things, explained at length about Tsirel’son’s ex-
ample of a one-dimensional SDE, with path dependent drift, and no strong
solution ([32]; this motivated me to give - in [37] - a more direct proof than
the original one by Tsirel’son, see also [38], and Revuz and Yor [24] p. 392).
Each of my encounters with A.S. has had, roughly, the same flavor: A.S. would
present, with great enthusiasm, some recent or not so recent result, and ask
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me for some simple proof, extension, etc... I have often been hooked into that
game, which kept reminding me of one of my favorite pedagogical sentences
by J. Dixmier: When looking for the 50th time at a well-known proof of some
theorem, I would discover a new twist I had never thought of, which would cast
a new light on the matter. I hope that the following notes, which discuss some
facts about local martingales and their supremum processes, and are closely
related to the thesis subject of the first author, may also have some this “new
twist” character for some readers, and be enjoyed by Albert Shiryaev, on the
occasion of his 70th birthday.

Marc Yor

1 Introduction

In this article we focus on local martingales, functions of two-dimensional
processes, whose components are a continuous local martingale (Nt : t ≥ 0)
and its supremum N t = supu≤tNu, i.e. on local martingales of the form
(H(Nt, N t) : t ≥ 0), where H : R × R+ → R. We call functions H such that
(H(Nt, N t) : t ≥ 0) is a local martingale, (N,N)-harmonic functions. Some
examples of such local martingales are

F (N t)− f(N t)(N t −Nt), t ≥ 0, (1.1)

where F ∈ C1 and F ′ = f , introduced by Azéma and Yor [3]. We show that
(1.1) defines a local martingale for any Borel, locally integrable function f .
We conjecture that these are the only local martingales, that is that the only
(N,N)-harmonic functions are of the form H(x, y) = F (y)− f(y)(y−x)+C,
with f a locally integrable function, F (y) =

∫ y
0
f(u)du, and C a constant.

We explain, in an intuitive manner, how these local martingales, which we
call max-martingales, may be used to find the Azéma–Yor solution to the
Skorohod embedding problem. We then go on and develop, with the help of
these martingales, the well-known bounds on the law of the supremum of a
uniformly integrable martingale with a fixed terminal distribution. Using the
Lévy and Dambis–Dubins–Schwarz theorems, we reformulate the results in
terms of the absolute value |N | and the local time LN at 0, of the local mar-
tingale N . This leads to some new bounds on the law of the local time of a
uniformly integrable martingale with fixed terminal distribution. A recently
introduced and studied stochastic order, called the excess wealth order (see
Shaked and Shanthikumar [28]), plays a crucial role. We also point out that the
max-martingales appear naturally in some Brownian penalization problems.
Finally, we try to sketch a somewhat more general viewpoint linked with the
balayage formula. The organization of this paper is as follows. We start in Sec-
tion 3 with a discrete version of the balayage formula and show how to deduce
from it Doob’s maximal and Lp inequalities. In the subsequent Section 4, in
Theorem 4.1, we formulate the result about the harmonic functions of (N,N)
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and prove it in a regular case. Section 5 is devoted to some applications: it
contains three subsections concentrating respectively on the Skorohod embed-
ding problem, bounds on the laws of N and LN , and Brownian penalizations.
The last section contains a discussion of the balayage formula.

2 Notation

Throughout this paper (Nt : t ≥ 0) denotes a continuous local martingale
with N0 = 0 and 〈N〉∞ =∞ a.s., and N t = sups≤tNs denotes its maximum
process. We have adopted this notation so that there is no confusion with
stock-price processes, which are often denoted St. The local time at 0 of N is
denoted (LN

t : t ≥ 0). For processes either in discrete or in continuous time,
when we say that a process is a (sub/super) martingale without specifying
the filtration, we mean the natural filtration of the process.
B = (Bt : t ≥ 0) shall denote a one-dimensional Brownian motion, starting
from 0, and Bt = sups≤tBs. The natural filtration of B is denoted (Ft) and
is taken completed.
The indicator function is denoted 1. We use the notations a ∨ b = max{a, b}
and a ∧ b = min{a, b}. The positive part is given by x+ = x ∨ 0. For µ a
probability measure on R, µ(x) := µ([x,∞)) is its tail distribution function;
X ∼ µ means X has distribution µ.

3 Balayage in discrete time and some applications

We start with the discrete time setting, and present a simple idea, which
corresponds to balayage in continuous time, and which proves an efficient tool,
as it allows, for example, to obtain easily Doob’s maximal and Lp inequalities.
Let (Ω,F , (Fn)n∈N, P ) be a filtered probability space and (Yn : n ≥ 0) be some
real-valued adapted discrete stochastic process. Let (ϕn : n ≥ 0) be also an
adapted process, which further satisfies ϕn1Yn �=0 = ϕn−11Yn �=0, for all n ∈ N.
The last condition can be also formulated as “the process (ϕn) is constant on
excursions of (Yn) away from 0”.

Lemma 3.1. Let (Yn, ϕn) be as above, Y0 = 0. The following identities hold:

ϕnYn = ϕn−1Yn =
n∑

k=1

ϕk−1(Yk − Yk−1), n ≥ 1. (3.1)

Proof. The first equality is obvious as ϕnYn = ϕnYn1Yn �=0 = ϕn−1Yn, and the
second one is obtained by telescoping. ✷

To see how the above can be used, let us give some examples of pairs
(Yn, ϕn) involving in particular an adapted process Xn and its maximum Xn:

• Yn = Xn −Xn and ϕn = f(Xn), for some Borel function f ;
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• Yn = Xn, ϕn =
∑n

k=0 1Xk=0 (note that Yn = |Xn| works as well);
• Yn = X∗n−|Xn|, ϕn = f(X∗n), for some Borel function f , where the process

X∗n = maxk≤n |Xk|;
• Yn = Xn − Xn, ϕn = f

(∑n
k=1 1(Xk=X

k
)

)
, for some Borel function f ,

where Xn = |mink≤nXk|.
We now use the discrete balayage formula with the first of the above examples
to establish a useful supermartingale property.

Proposition 3.1. Let (Xn : n ∈ N) be a submartingale in its natural filtra-
tion (Fn), X0 = 0, and let f be some increasing, locally integrable, positive
function. Assume that Ef(Xn) < ∞ and EF (Xn) < ∞ for all n ∈ N, where
F (x) =

∫ x
0
f(s)ds. Then the process Sf

n = f(Xn)(Xn − Xn) − F (Xn) is a
(Fn)-supermartingale.

Proof. Since the pair (Xn −Xn, f(Xn)) satisfies the assumptions of Lemma
3.1, we have:

Sf
n =

n∑
k=1

f(Xk−1)(Xk −Xk −Xk−1 +Xk−1)− F (Xn)

=
n∑

k=1

f(Xk−1)(Xk −Xk−1)−
n∑

k=1

f(Xk−1)(Xk −Xk−1)−
∫ Xn

0

f(x)dx

=
n∑

k=1

∫ Xk

Xk−1

(
f(Xk−1)− f(x)

)
dx−

n∑
k=1

f(Xk−1)(Xk −Xk−1). (3.2)

Using (3.2), the fact that f is increasing, and (Xn) is a submartingale, we
obtain the supermartingale property for Sf

n. ✷

The above Proposition allows to recover Doob’s maximal and Lp inequal-
ities in a very easy way. Indeed, consider the function f(x) = 1x≥λ for some
λ > 0. Then the process Sf

n = S
(λ)
n = 1Xn≥λ(λ −Xn) is a supermartingale,

which yields Doob’s maximal inequality

λP
(
Xn ≥ λ

)
≤ E
[
1(Xn≥λ)Xn

]
. (3.3)

To obtain the Lp inequalities we consider the function f(x) = pxp−1 for
some p > 1, and we suppose that (Xn : n ≥ 0) is a positive submartingale
with EXp

n <∞. This implies, asX
p

n ≤
∑n

k=1X
p
k , that EX

p

n <∞. The process
Sf
n = S

(p)
n = (p − 1)(Xn)p − p(Xn)p−1Xn is then a supermartingale, which

yields

(p− 1)E
[
(Xn)p

]
≤ pE

[
(Xn)p−1Xn

]
and hence, applying Hölder’s ineq.,

E
[
(Xn)p

]
≤
( p

p− 1

)p
E
[
Xp

n

]
, which is Doob’s Lp ineq. (3.4)
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To our best knowledge, this small wrinkle about Doob’s inequalities for
positive submartingales involving supermartingales does not appear in any of
the books on discrete martingales, such as Neveu [17], Garsia [12] or Williams
[36]. We point out also, that our method allows to obtain other variants of
Doob’s inequalities, such as L logL inequalities, etc.

4 The Markov process ((Bt, Bt) : t ≥ 0) and its
harmonic functions

In the rest of the paper we will focus on the continuous-time setup. It follows
immediately from the strong Markov property of B, or rather the indepen-
dence of its increments, that for s < t, and f : R×R+ → R+ a Borel function,
one has:

E
[
f(Bt, Bt)

∣∣∣Fs

]
= Ẽ
[
f
(
Bs + B̃t−s, Bs ∨ sup

u≤t−s
(Bs + B̃u)

)]
, (4.1)

where on the RHS, the notation Ẽ indicates integration with respect to func-
tionals of the Brownian motion (B̃u : u ≥ 0), which is assumed to be inde-
pendent of (Bt : t ≥ 0).

In particular, the two-dimensional process ((Bt, Bt) : t ≥ 0) is a nice
Markov process, hence a strong Markov process, and its semigroup can be
computed explicitly thanks to the well-known, and classical formula:

P
(
Bt ∈ dx,Bt ∈ dy

)
=
( 2
πt3

)1/2
(2y − x) exp

(
− (2y − x)2

2t

)
1(y≥x+)dxdy.

We are now interested in a description of the harmonic functions H of
(B,B) that is of Borel functions such that (H(Bt, Bt) : t ≥ 0) is a local
martingale. Note that this question is rather natural and interesting since
H is (B,B)-harmonic if and only if, thanks to the Dambis–Dubins–Schwarz
theorem, for any continuous local martingale (Nt : t ≥ 0), H is also (N,N)-
harmonic. The following proposition is an extension of Proposition 4.7 in
Revuz and Yor [24].

Theorem 4.1. Let N = (Nt : t ≥ 0) be a continuous local martingale with
〈N〉∞ =∞ a.s., f a Borel, locally integrable function, and H defined through

H(x, y) = F (y)− f(y)(y − x) + C, (4.2)

where C is a constant and F (y) =
∫ y
0
f(s)ds. Then, the following holds:

H(Nt, N t) = F (N t)− f(N t)(N t−Nt)+C
∫ t

0

f(Ns)dNs+C, t ≥ 0, (4.3)

and (H(Nt, N t) : t ≥ 0) is a local martingale.
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Remarks. Local martingales of the form (4.3) were first introduced by Azéma
and Yor [3] and used to solve the Skorohod embedding problem (cf. Sec-
tion 5.1 below). In the light of the above theorem, we will call them max-
martingales and the functions given in (4.2) will be called MM-harmonic
functions (max-martingale harmonic) or (N,N)-harmonic. Note the resem-
blance of (4.3) with the discrete time process Sf

n given in Proposition 3.1.
It is known (see Revuz and Yor [24, Prop. VI.4.7]) that if H ∈ C2,1 then the
reverse statement holds. That is, if H is (N,N)-harmonic then there exists
a continuous function f such that (4.2) holds. We present below a proof of
this fact. We conjecture that the same holds true if we only suppose that H
finely-continuous3.
Proof. As mentioned above, thanks to the Dambis–Dubins–Schwarz theorem,
it suffices to prove the theorem for N = B. We first recall how to prove the
converse of the theorem for the regular case. We assume that H ∈ C2,1, with
obvious notation, and that H is (B,B)-harmonic. We denote by H ′x and H ′y
the partial derivatives of H in the first and the second argument respectively,
and H ′′x2 the second derivative of H in the first argument. Without loss of
generality, we assume that H(0, 0) = 0. Under the present assumptions we
can apply Itô’s formula to obtain:

H(Bt, Bt) =
∫ t

0

H ′x(Bs, Bs)dBs +
∫ t

0

H ′y(Bs, Bs)dBs +
1
2

∫ t

0

H ′′x2(Bs, Bs)ds,

where we used the fact that Bs = Bs, dBs-a.s. Now, since H(Bt, Bt) is a local
martingale, the above identity holds if and only if:

H ′y(Bs, Bs)dBs +
1
2
H ′′x2(Bs, Bs)ds = 0, s ≥ 0. (4.4)

The random measures dBs and ds are mutually singular since we have dBs =
1(Bs−Bs=0)

dBs and ds = d〈B〉s = 1(Bs−Bs �=0)d〈B〉s. Equation (4.4) holds
therefore if and only if

H ′y(y, y) = 0 and H ′′x2(x, y) = 0. (4.5)

The second condition implies that H(x, y) = f(y)x + g(y) and the first one
then gives f ′(y)y+g′(y) = 0. Thus, g(y) = −

∫ y
0
uf ′(u)du =

∫ y
0
f(u)du−f(y)y.

This yields formula (4.2).
Furthermore, the above reasoning grants us that the formula (4.3) holds

for f of class C1. As C1 is dense in the class of locally integrable functions (in
an appropriate norm), if we can show that the quantities given in (4.3) are
well defined and finite for any locally integrable f on [0,∞), then the formula
(4.3) extends to such functions through monotone class theorems. For f a
locally integrable function, F (x) is well defined and finite, so all we need to

3This conjecture is proved in Obl̂ój [19].
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show is that
∫ t
0
f(Bs)dBs is well defined and finite a.s. This is equivalent to∫ t

0

(
f(Bs)

)2
ds <∞ a.s., which we now show.

Write Tx = inf{t ≥ 0 : Bt = x} for the first hitting time of x, which is a

well defined, a.s. finite, stopping time. Thus
∫ t
0

(
f(Bs)

)2
ds < ∞ a.s., if and

only if, for all x > 0,
∫ Tx

0

(
f(Bs)

)2
ds <∞. However, the last integral can be

rewritten as∫ Tx

0

ds
(
f(Bs)

)2
=
∑

0≤u≤x

∫ Tu

Tu−

ds
(
f(Bs)

)2
=
∑

0≤u≤x
f2(u)

(
Tu − Tu−

)
=
∫ x

0

f2(u)dTu. (4.6)

Now it suffices to note that (see Ex. III.4.5 in Revuz and Yor [24])

E
[
exp
(
− 1

2

∫ x

0

f2(u)dTu
)]

= exp
(
−
∫ x

0

|f(u)|du
)
, (4.7)

to see that the last integral in (4.6) is finite if and only if
∫ x
0
|f(u)|du < ∞,

which is precisely our hypothesis on f .
Note that the function H given by (4.2) is locally integrable as both func-

tions x→ f(x) and x→ xf(x) are locally integrable. ✷

Lévy’s theorem guarantees that the processes ((Bt, Bt) : t ≥ 0) and
((Lt − |Bt|, Lt) : t ≥ 0) have the same distribution, where Lt denotes local
time at 0 of B. Theorem 4.1 yields therefore also a complete description of
(L, |B|)-harmonic functions, which again through Dambis–Dubins–Schwarz
theorem, extends to any local continuous martingale. We have the following

Corollary 4.1. Let N = (Nt : t ≥ 0) be a continuous local martingale with
〈N〉∞ = ∞ a.s., and LN = (LN

t : t ≥ 0) its local time at 0. Let g a Borel,
locally integrable function, and H be defined through

H(x, y) = G(y)− g(y)x+ C, (4.8)

where C is a constant and G(y) =
∫ y
0
g(s)ds. Then, the following holds:

H(|Nt|, LN
t ) = G(LN

t )−g(LN
t )|Nt|+C = −

∫ t

0

g(LN
s )sgn (Ns) dNs+C, t ≥ 0,

(4.9)
and (H(|Nt|, LN

t ) : t ≥ 0) is a local martingale.

5 Some appearances of the MM-harmonic functions

We now present some easy applications of the martingales described in the
previous section. (Nt : t ≥ 0) denotes always a continuous local martingale
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with 〈N〉∞ = ∞ a.s. We will show an intuitive way to obtain a solution to
the Skorohod embedding problem, as given by Azéma and Yor [3]. We will
also discuss relations between the law of NT and the conditional law of NT

knowingNT , for some stopping time T . In the second subsection we will derive
well-known bounds on the law of NT , when the law of NT is fixed. We will
then continue in the same vein and describe the law of LN

T , when the law of
|NT | is fixed. We will end with a discussion of penalization of Brownian motion
with a function of its supremum and some absolute continuity relations.

5.1 On the Skorohod embedding problem

The classical Skorohod embedding problem can be formulated as follows: for
a given centered probability measure µ, find a stopping time T such that
NT ∼ µ and (Nt∧T : t ≥ 0) is a uniformly integrable martingale. Numerous
solutions to this problem are known; for an extensive survey see Obl̀ój [18].
Here we make a remark about the solution given by Azéma and Yor in [3].
Namely we point out how one can arrive intuitively to this solution using the
max-martingales (4.3). Naturally, this might be extracted from the original
paper, but it may not be so obvious to do so.

The basic observation is that the max-martingales allow to express the law
of the terminal value of N , that is NT , in terms of the conditional distribution
of NT given NT . One then constructs a stopping time which actually binds
both terminal values through a function and sees that the function can be
obtained in terms of the target measure µ.

Proposition 5.1 (Vallois [35]). Let T be a stopping time, such that the
stopped process (Nt∧T : t ≥ 0) is a uniformly integrable martingale. Write ν
for the law of NT and suppose that ν is equivalent to the Lebesgue measure
on its interval support [0, b], b ≤ ∞. Then the law of NT is given by:

P
(
NT ≥ y

)
= exp

(
−
∫ y

0

ds

s− ϕ(s)

)
, 0 ≤ y ≤ b, (5.1)

where ϕ(x) = E[NT |NT = x], i.e. E[NTh(NT )] = E[ϕ(NT )h(NT )], for any
positive Borel function h.

Remark. Note that the above formula in the special case when NT = ϕ(NT )
a.s., and actually in the more general context of time-homogeneous diffusions,
was obtained already by Lehoczky [16]. Vallois [35] studied this issues in detail
and has some more general formulae.
Proof. Suppose first that ENT < ∞. With the help of the max-martingales
for any f : R+ → R, bounded with compact support, we get that

E
[
F (NT )− f(NT )(NT −NT )

]
= 0.

Upon conditioning with respect to NT we obtain:
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E
[
F (NT )− f(NT )(NT − ϕ(NT ))

]
= 0. (5.2)

We can rewrite the above as a differential equation involving ν ∼ NT , which
yields (5.1).
When ENT is possibly infinite we can stop conveniently and pass to the limit.
More precisely, let Rn = inf{t : N t = n} and ϕn(x) = E[NT∧Rn

|NT∧Rn
= x],

x ≤ n. A refinement of the argumentation above shows that for any x < n,
P (NT∧Rn

≥ x) = exp{−
∫ x
0
ds/(s − ϕn(s))}. Observe however that for any

0 ≤ x < n, P(NT∧Rn
≥ x) = P(NT ≥ x) and ϕn(x) = ϕ(x). In consequence,

letting n→∞, we see that (5.1) holds for all x > 0. ✷

Let us define the Azéma–Yor stopping time, as suggested above, through
Tϕ = inf{t ≥ 0 : Nt = ϕ(N t)}, for some strictly increasing, continuous
function ϕ : R+ → R. Obviously NTϕ

= ϕ(NTϕ
). We look for a function

ϕ = ϕµ such that NTϕµ
∼ µ. To this end, we take x in the support of µ and

write

µ(x) = P(NTϕµ
≥ x) = ν(ϕ−1µ (x)) = exp

(
−
∫ ϕ−1

µ (x)

0

ds

s− ϕµ(s)

)
,

which may be considered as an equation on ϕµ in terms of µ. Solving this
equation, one obtains

ϕ−1µ (x) = Ψµ(x) =
1

µ(x)

∫
[x,∞)

s dµ(s), (5.3)

the Hardy–Littlewood maximal function, or barycentre function, of µ.

Proposition 5.2 (Azéma–Yor [3]). Let µ be a centered probability measure.
Define the function Ψµ through (5.3) for x such that µ(x) ∈ (0, 1) and put
Ψµ(x) = 0 for x such that µ(x) = 1, Ψµ(x) = x for x such that µ(x) = 0.
Then the stopping time Tµ := inf{t ≥ 0 : N t ≥ Ψµ(Nt)} satisfies NTµ

∼ µ
and (Nt∧Tµ

: t ≥ 0) is a uniformly integrable martingale.

The arguments presented above contain the principal ideas behind the Azéma–
Yor solution to the Skorohod embedding problem. Naturally, they work well
for measures with positive density on R. A complete proof of Proposition 5.2
requires some rigorous arguments involving, for example, a limit procedure,
but this can be done, as shown by Michel Pierre [23].

We now develop a link between formula (5.1) and work of Rogers [25].
Let us carry out some formal computations. Write ρ for the law of the couple
(NT , NT −NT ) ∈ R+ ×R+, and ν for its first marginal (as above). Differen-
tiating (5.1) we find

dν(y) = − ν(y)dy
y − ϕ(y)

, hence

ν(y)dy = (y − ϕ(y))dν(y), which we rewrite in terms of ρ(∫∫
(y,∞)×R+

ρ(ds, dx)
)
dz =

∫
(0,∞)

zρ(ds, dz). (5.4)
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The last condition appears in Rogers [25] and is shown to be equivalent to the
existence of a continuous, uniformly integrable martingale (Nt∧T : t ≥ 0) such
that (NT , NT −NT ) ∼ ρ. Our formulation in (5.1) is less general, as it is not
valid when the law of BT has atoms. However, when it is valid, it provides an
intuitive reading of (5.4).

To close this section, we point out that arguments similar to the ones
presented above, can be developed to obtain a solution to the Skorohod em-
bedding problem for |N | based on LN : it suffices to use the martingales given
by (4.9) instead of those given by (4.3). For a probability measure m on R+,
define the dual Hardy–Littlewood function (see Obl̀ój and Yor [20]) through

ψm(x) =
∫
[0,x]

y

m(y)
dm(y), for x such that m(x) ∈ (0, 1), (5.5)

and put ψm(x) = 0 for x such that m(x−) = 1 and ψm(x) = ∞ for x such
that m(x+) = 0.

Proposition 5.3 (Vallois [33], ObPlój and Yor [20]). Let m be a non-
atomic probability measure on R+ and define the function ψm through (5.5).
Let ϕm(y) = inf{x ≥ 0 : ψm > y} be the right inverse of ψm. Then the
stopping time Tm := inf{t > 0 : |N |t = ϕm(LN

t )} satisfies |N |Tm ∼ m.
Furthermore, (Nt∧Tm : t ≥ 0) is a uniformly integrable martingale if and only
if
∫∞
0
xdm(x) <∞.

The theorem is valid for probability measures with atoms upon proper exten-
sion of the definition of ψµ. We note that the law of LN

Tm is given through

P(LN
Tm ≥ x) = exp

(
−
∫ x
0

ds
ϕm(s)

)
(cf. (5.4) in [20]). An easy analogue of

Proposition 5.1, is that this formula is also true for general stopping time
T , such that the law of LT has a density, with the function ϕm replaced by
ϕ(x) = E

[
|NT |

∣∣LN
T = x

]
.

5.2 Bounds on the laws of NT and LN
T

We present a classical bound on the law of NT , which was first obtained by
Blackwell and Dubins [4] and Dubins and Gilat [7] (see also Azéma and Yor
[2], Kertz and Rösler [14] and Hobson [13]).

Proposition 5.4. Let µ be a centered probability measure and T a stopping
time, such that NT ∼ µ and (Nt∧T : t ≥ 0) is a uniformly integrable martin-
gale. Then the following bound is true:

P(NT ≥ λ) ≤ P(NTµ
≥ λ) = µ(Ψ−1µ (λ)), λ ≥ 0, (5.6)

where Tµ is given in Proposition 5.2, Ψµ is displayed in (5.3) and its inverse
is taken right-continuous.
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In other words, for the partial order given by tails domination, the law of
NT is bounded by the image of µ through the Hardy–Littlewood maximal
function (5.3).
Proof. Suppose for simplicity that µ has a positive density, which is equiv-
alent to Ψµ being continuous and strictly increasing. We consider the max-
martingale (4.3) for f(x) = 1(x≥λ), for some fixed λ > 0, and apply the
optional stopping theorem. We obtain:

λP (NT ≥ λ) = E
[
NT1(NT≥λ)

]
, (5.7)

that is Doob’s maximal equality for continuous-time martingales. Let p :=
P(NT ≥ λ). As NT ∼ µ, then the RHS is smaller than E[NT1(NT≥µ−1(p))]
which, by definition in (5.3), is equal to pΨµ(µ−1(p)). We obtain therefore:

λP(NT ≥ λ) = λp ≤ E
[
NT1(NT≥µ−1(p))

]
= pΨµ

(
µ−1(p)

)
, hence

λ ≤ Ψµ

(
µ−1(p)

)
, thus

p ≤ µ
(
Ψ−1µ (λ)

)
since µ is decreasing. (5.8)

To end the proof is suffice to note that P(BTµ
≥ λ) = µ(Ψ−1µ (λ)), which is

obvious from the definition of Tµ. ✷

Investigation of similar quantities with NT replaced by T is also possible.
Numerous authors studied the limit

√
λP(T ≥ λ). It goes back to Azéma,

Gundy and Yor [1] with more recent works by Elworthy, Li and Yor [10] and
Peskir and Shiryaev [21]4.

Integrating (5.6) one obtains bounds on the expectation of NT . Another
bound on ENT can be obtained using the max-martingales. Take f(x) = 2x,
then by (4.3) the process N2

t −2N tNt = (N t−Nt)2−N2
t is a local martingale.

For a stopping time T with E〈N〉T <∞, we have then E(NT −NT )2 = EN2
T ,

which yields:

ENT = E(NT −NT ) ≤
√
E(NT −NT )2 =

√
EN2

T

√
E〈N〉T . (5.9)

The inequality ENT ≤
√
E〈N〉T extends to any stopping time, through the

monotone convergence theorem. This inequality was generalized for Bessel
processes by Dubins, Shepp and Shiryaev [9] and for Brownian motion with
drift by Peskir and Shiryaev [22]. These problems are also in close relation with
the so-called Russian options developed mainly by L. Shepp and A. Shiryaev
[29, 30, 31].

More elaborate arguments, using optimal stopping, yield:

E
[
sup
s≤T

|Ns|
]
≤
√
2E〈N〉T , (5.10)

4See also the note by Liptser and Novikov in this volume.
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as shown in Dubins and Schwarz [8]. We also learned from L. Dubins [6] that

E
[
sup
s≤T

Ns − inf
s≤T

Ns

]
≤
√
3E〈N〉T , (5.11)

and in (5.9), (5.10) and (5.11) the constants are optimal.
Bounds on the law of the local time similar to (5.6) were studied in detail

by Vallois [34]. He showed that the law of the local time of a uniformly in-
tegrable continuous martingale with a fixed terminal distribution is bounded
from above and below in the convex order. Vallois [34] also gave explicit con-
structions which realize the upper and lower bounds.
We derive now a complement to the study of Vallois [34]. Namely, we examine
the possible laws of the local time, when the distribution of the absolute value
of the terminal value of a martingale is fixed. We follow the same approach
as above, only starting with the martingales given in Corollary 4.1.

Proposition 5.5. Let m be a probability on R+ with
∫∞
0
xdm(x) < ∞, and

let T be a stopping time, such that |NT | ∼ m and (Nt∧T : t ≥ 0) is a uniformly
integrable martingale. Denote ρT the law of LN

T . Then the following bound is
true

E
[(
LN
T − ρ−1T (p)

)+]
≤ E
[(
LN
Tm − ρ−1Tm(p∗)

)+]
, p ∈ [0, 1], (5.12)

where Tm is given in Proposition 5.3, the inverses ρ−1· are taken left-
continuous and p∗ = m

(
m−1(p)

)
≥ p.

Remarks. It follows from (5.14) in our proof that the RHS of (5.12) is inde-
pendent of N and equal to

∫∞
m−1(p)

xdm(x).
For m with no atoms, p∗ ≡ p. In other words, for m with no atoms, we have
ρT N ρT

m

, where ρT
m

is the image of m through the dual Hardy–Littlewood
function ψm, and “N” indicates the excess wealth order, defined through

ρ1 N ρ2 ⇔ ∀p ∈ [0, 1]
∫
[ρ1

−1(p),∞)
xdρ1(x) ≤

∫
[ρ2

−1(p),∞)
xdρ2(x). (5.13)

We point out that the excess wealth order, was introduced recently by
Shaked and Shanthikumar in [28] (it is also called the right-spread or-
der, cf. Fernandez-Ponce et al. [11]) and studied in Kochar et al. [15], and
the above justifies some further investigation. Since in our case we have
ELT = ELTm =

∫∞
0
xdm(x), the excess wealth order is equivalent to the

TTT and NBUE orders and implies the convex order (see Kochar et al. [15]).

We recall that Vallois [34] showed that when the law of NT is fixed,
NT ∼ µ, then the law of LT is bounded in the convex ordering of proba-
bility measures and he gave an explicit construction of the stopping time Tµ

V

which realizes the upper bound. If we associate with m its symmetric exten-
sion on R defined via µm(x) = m(x)/2, x ≥ 0, then we have NTm ∼ µm and
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our stopping time Tm coincides with the stopping time of Vallois, Tm = Tµm

V .
However, typically, there exist many measures µ on R such that if X ∼ µ then
|X| ∼ m. In consequence, our result which states that under |NT | ∼ m, Tm

maximizes the law of LT in the excess wealth order and hence in the convex
order, complements the result of Vallois [34].
Proof. Our proof relies on the martingales given in (4.9). Assertion (5.12) is
trivial for p = 1. It holds also for p = 0, as it just means that ELN

T = ELN
Tm ,

which is true, as both quantities are equal to
∫∞
0
xdm(x). This follows from

the fact that (LN
t − |Nt| : t ≥ 0) is a local martingale and ELN

T∧Rn
↗ ELT

by monotone convergence, and E|NT∧Rn
| → E|NT | by uniform integrability

of (NT∧t : t ≥ 0), where Rn is a localizing sequence for LN − |N |.
Take p ∈ (0, 1), z = ρ−1T (p) and put g(x) = 1(x>z). Using the optional

stopping theorem for the martingale in (4.9), we obtain:

E
[(
LN
T − z

)+]
= E
[
|NT |1(LN

T
>z)

]
, hence (5.14)

E
[(
LN
T − z

)+]
≤ E
[
|NT |1(|NT |≥m−1(p))

]
= E
[
|NTm |1(ϕm(LN

Tm )≥m−1(p))

]
= E
[
|NTm |1(LN

Tm≥ρ−1
Tm (p∗))

]
= E
[(
LN
Tm − ρ−1Tm(p∗)

)+]
,

which ends the proof. ✷

5.3 Penalizations of Brownian motion with a function of its
supremum

We sketch here yet another instance, where the MM-harmonic functions play
a natural role.

Let f : R+ → R+ denote a probability density on R+, and consider the
family of probabilities (Wf

t : t ≥ 0) on Ω = C(R+,R), where Xt(ω) = ω(t),
and Fs = σ(Xu : u ≤ s), F∞ =

∨
s≥0 Fs, which are defined by:

Wf
t =

f(Xt)

EW

[
f(Xt)

] ·W, (5.15)

where W denotes the Wiener measure. Roynette, Vallois and Yor [27, 26]
show that

Wf
t

(w)−−−→
t→∞

Wf
∞, i.e.: ∀s > 0, ∀Γs ∈ Fs, W

f
t (Γs) −−−→

t→∞
Wf
∞(Γs), (5.16)

where the probabilityWf
∞ may be described as follows: for s > 0 and Γs ∈ Fs,

Wf
∞(Γs) = EW

(
1Γs

Sf
s ), where

Sf
s = 1− F (Xs) + f(Xs)(Xs −Xs) = 1−

∫ s

0

f(Xu)dXu. (5.17)
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We recognize instantly in the process Sf the max-martingale given by
(4.3). Another description ofWf

∞ is that, under this measure the process Xt

satisfies:

Xt = Xf
t −

∫ t

0

f(Xu)du
1− F (Xu) + f(Xu)(Xu −Xu)

, (5.18)

where Xf is a Wf
∞-Brownian motion, and F (x) =

∫ x
0
f(u)du. Naturally, we

see the max-martingales (4.3) intervene again. Further descriptions of Wf
∞

are given in Roynette, Vallois and Yor [26].

6 A more general viewpoint: the balayage formula

To end this paper, we propose a slightly more general viewpoint on results
mentioned sofar. In order to present the (B,B)-harmonic functions (4.2), we
relied on Itô’s formula. However, it is possible to obtain these functions (and
the corresponding martingales) as a consequence of the so-called balayage
formula (see, e.g. Revuz and Yor [24] pp. 260-264 and a series of papers in
[5]).

Let (Σt : t ≥ 0) denote a continuous semimartingale, with Σ0 = 0, and
define gt = sup{s ≤ t : Σs = 0}, dt = inf{s > t : Σs = 0}. Then, the
balayage formula is: for any locally bounded predictable process (ku : u ≥ 0),
one has:

kgtΣt =
∫ t

0

kgsdΣs, t ≥ 0. (6.1)

The intuitive meaning of this formula is that a “global multiplication” of Σ
over its excursions away from 0 coincides with the stochastic integral of the
multiplicator with respect to (dΣs). As applications, we give some examples:

• for Σt = N t − Nt and ku = f(Nu), f a locally integrable function, (6.1)
reads f(N t)(N t −Nt) =

∫ t
0
f(Ns)d(Ns −Ns), which yields (4.3);

• for Σt = Nt and ku = f(LN
u ), f a locally integrable function, we obtain

f(LN
t )Nt =

∫ t
0
f(LN

s )dNs;
• for Σt = |N |t and ku = f(LN

u ), f a locally integrable function,
we obtain f(LN

t )|Nt| =
∫ t
0
f(LN

s )d|Ns|. This in turn is equal to∫ t
0
f(LN

s )sgn(Ns)dNs − F (LN
t ) by Itô–Tanaka’s formula, and so we ob-

tain (4.9).

7 Closing remarks

Max-martingales, or max-harmonic functions, described in (4.2) and (4.3),
occur in a number of studies of either Brownian motion, or martingales. They
often lead to simple calculations, and/or formulae, mainly due to the (obvious,
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but crucial) fact that dN t is carried by {t : Nt = N t}. This has been used
again and again by a number of researchers, e.g: Hobson and co-workers, and,
of course, Albert Shiryaev and co-workers. We tried to present in this article
several such instances. More generally, this leads to a “first order stochastic
calculus”, as in Section 6, which is quite elementary in comparison with Itô’s
second order calculus.
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Summary. We derive an integral representation for the fundamental solution of
the Kolmogorov forward equation

ft = −((1+µx)f)x + (ν x2f)xx

associated with the Shiryaev process X solving the linear SDE

dXt = (1+µXt) dt+ σXt dBt

where µ ∈ IR, ν = σ2/2 > 0 and B is a standard Brownian motion. The method of
proof is based upon deriving and inverting a Laplace transform. Basic properties of
X needed in the proof are reviewed.

Key words: Shiryaev process, Kolmogorov forward equation, integral of geometric
Brownian motion, parabolic partial differential equation, Laplace transform, conflu-
ent hypergeometric function, modified Bessel function, Hartman–Watson distribu-
tion, Hankel’s contour integral.
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1 Introduction

We consider the Kolmogorov forward equation:

ft = −((1+µx)f)x + (ν x2f)xx (1.1)

associated with the Shiryaev process X = (Xt)t≥0 solving:
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dXt = (1+µXt) dt+ σXt dBt (1.2)

with X0 = x0 in IR where µ ∈ IR, ν = σ2/2 > 0 and B = (Bt)t≥0 is a
standard Brownian motion. The problem of finding the fundamental solution
f = f(t, x) of (1.1) appears naturally in a number of fields (most notably in
sequential analysis and financial mathematics).

The unique (strong) solution of (1.2) is given by:

Xt = Yt

(
x0 +

∫ t

0

1
Ys

ds

)
(1.3)

where Y = (Yt)t≥0 is a geometric Brownian motion solving:

dYt = µYt dt+ σYt dBt (1.4)

with Y0 = 1. The unique (strong) solution of (1.4) is given by:

Yt = exp
(
σBt + (µ−ν)t

)
. (1.5)

Inserting (1.5) into (1.3) one obtains an explicit representation of X in terms
of B.

From this representation and the invariance of B on time reversal one sees
that the following identity in law is satisfied:

Xt
law=
∫ t

0

Ys ds (1.6)

when x0 = 0. This shows that the problem of finding the fundamental solution
of (1.1) when x0 = 0 is equivalent to the problem of finding the distribution of
the random variable

∫ t
0
Ys ds. The latter problem has been intensively studied

in the last 10-15 years (see [20], [4], [15] and the references therein) but none
of these approaches attempts to tackle the forward equation (1.1) directly (see
[14] for numerical results of a related approach).

The purpose of the present paper is to search for the fundamental so-
lution of (1.1) by simple probabilistic and analytic means (cf. [5]). It will
be seen below that this approach readily leads to the Laplace transform of
t �→

∫ x
0
f(t, y) dy expressed in terms of confluent hypergeometric functions

(modified Bessel functions) providing a link to the Hartman-Watson distrib-
ution [9]. The problem thus reduces to inverting the Laplace transform. This
can be done using Hankel’s contour integrals for these functions (cf. [19]) lead-
ing to representations of the solution in terms of single or double integrals.
For simplicity and comparison we only treat a particular case of the equation
(1.1) in complete detail. A treatment of other cases is briefly indicated and it
is hoped that their study will be continued.

A disadvantage of the previous inversion approach is that the analytic
expressions obtained are numerically unstable for small t. This fact was ob-
served independently by several authors (see e.g. [2]). While this may not be
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such a big drawback for applications to Asian options of European type (cf.
[3]), in the case of Asian options of American type such a numerical stability
becomes fundamentally important (see [13]). A similar need for stable analytic
expressions arises in quickest detection problems (sequential analysis) when
the horizon is finite (see [8]). Further research of the Kolmogorov–Shiryaev
equation (1.1) thus appears to be necessary.

The stochastic differential equation (1.2) has been derived by Shiryaev
[16, Eq. (9)] in the context of quickest detection problems (sequential analy-
sis). These problems play a prominent role in diverse applications ranging
from quality control in industry to structural analysis of DNA in medicine.
Applications in financial data analysis (detection of arbitrage) are recently
discussed in [17]. The Kolmogorov backward and forward equation (of which
(1.1) is a particular case) have been derived in [11]. In the physical literature
the forward equation is often referred to as the Fokker–Planck equation (cf.
[7], [12]).

2 The Shiryaev process

In this section we present basic properties of the Shiryaev process X solving
(1.2). Note that the initial point x0 of X belongs to IR and may be negative
as well.

1. The Shiryaev process X is a strong Markov process with continuous
sample paths (a diffusion process). The drift of X is given by µ(x) = 1− µx
and the diffusion coefficient of X is given by σ(x) = σx. Recall that µ ∈ IR
and ν = σ2/2 > 0.

2. Since σ(0) = 0 we see that the state space of X splits into (−∞, 0] and
[0,∞). From the representation (1.3) it is evident that:

The point 0 is an entrance boundary point for [0,∞). (2.1)

Likewise it will be formally verified below that:

The point 0 is an exit boundary point for (−∞, 0]. (2.2)

3. The scale function of X is given by:

s(x) =
∫ x

1

z−µ/ν e1/νz dz for x > 0 (2.3)

s(x) =
∫ 1

−x
z−µ/ν e−1/νz dz for x < 0. (2.4)

Hence s(0+) = −∞ always, and s(∞) = ∞ if and only if µ ≤ ν. This shows
that X is recurrent in [0,∞) if and only if µ ≤ ν. Note also that s(−∞) = −∞
if and only if µ ≤ ν, and s(0−) <∞ always. This shows that X exists (−∞, 0]
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almost surely at 0 if and only if µ ≤ ν. We also see that X can never be
recurrent in (−∞, 0].

4. The speed measure of X is given by:

m(dx) = ν−1 x−2+µ/ν e−1/νx dx for x > 0 (2.5)

m(dx) = ν−1 (−x)−2+µ/ν e−1/νx dx for x < 0. (2.6)

Since
∫∞
0
m(dx) = νµ/ν Γ (1−µ/ν) < ∞ if and only if µ < ν, it follows that

X has an invariant density function on [0,∞) given by:

f(x) =
1

ν1−µ/ν Γ (1−µ/ν)
1

x2−µ/ν
e−1/νx for x > 0 (2.7)

if and only if µ < ν. Noting that
∫ 0
−∞m(dx) =∞ we see that X cannot have

an invariant density function on (−∞, 0] as already indicated above.
5. By the law of iterated logarithm for B one easily sees that

∫∞
0
Ys ds <∞

almost surely if and only if µ < ν. Hence when µ < ν we find using (1.3) and
(1.6) that:

Xt
d−→
∫ ∞
0

Ys ds (2.8)

as t→∞ where the density function of
∫∞
0
Ys ds is given by (2.7) above.

Likewise one sees that
∫∞
0
(1/Ys) ds <∞ almost surely if and only if µ > ν.

Hence when µ > ν we find using (1.3) that:

Xt → +∞ if x0 +
∫∞
0
(1/Ys) ds > 0 (2.9)

Xt → −∞ if x0 +
∫∞
0
(1/Ys) ds < 0 (2.10)

as t→∞. The probabilities of the latter two events can readily be computed
upon noting that the density function of

∫∞
0
(1/Ys) ds is given by:

g(x) =
1

νµ/ν−1 Γ (µ/ν−1)
1

xµ/ν
e−1/νx for x > 0 (2.11)

when µ > ν. This follows from the identity in law stated after (2.8) above
with a new drift µ̂ = 2ν − µ and a new Brownian motion B̂ = −B. Another
way to compute these probabilities is to make use of the scale function in
(2.4). This gives that the probability of the event in (2.9) equals one minus
the probability of the event in (2.10) which, in turn, is equal to the ratio
(S(0−)−S(x0))/(S(0−)−S(−∞)).

Finally, when µ = ν thenX is recurrent in [0,∞) no matter if x0 is positive
or negative. Recall that X hits zero almost surely if x0 < 0 never returning
to zero again.

6. A formal verification of (2.1) and (2.2) can be made upon invoking
the standard boundary classification for one-dimensional diffusions (cf. [6]).
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Firstly, since m′ ∈ L1((0,∞)) and sm′ ∈ L1((0,∞)) but s′ /∈ L1((0,∞))
we see that (2.1) follows. Secondly, since m′ /∈ L1((−∞, 0)) and s′m ∈
L1((−∞, 0)) we see that (2.2) follows as claimed.

7. We will conclude this section by deriving boundary conditions which will
be used in the next section. For this, let F denote the transition distribution
function of X, and let f denote the transition density function of X. Since X
is a time-homogeneous Markov process, it is no restriction to assume that the
initial time point equals zero. We thus have:

F (0, x0; t, x) = P(Xt ≤ x | X0 = x0) (2.12)

f(0, x0; t, x) = Fx(0, x0; t, x). (2.13)

In the sequel we will only study the case when x0 ≥ 0. From the facts
exposed above we then know that the state space of X equals [0,∞) and
that X can only start at 0 and never arrive at it (recall (2.1) above). Hence
the following boundary conditions at 0 are in agreement with what we would
expect to hold:

f(0, x0; t, 0+) = 0 (2.14)

fx(0, x0; t, 0+) = 0. (2.15)

In fact, all higher derivatives of f with respect to x satisfy the same zero
condition, but we will only make use of the conditions (2.14) and (2.15) below.

8. A formal proof of (2.14) and (2.15) is simple. Denote Xt from (1.3) by
Xx0

t to indicate its dependence on x0, note that Xx0
t > 0, and set Z = 1/Xx0

t .
Then for any p > 0 given and fixed we find by the Markov inequality that:

F (0, x0; t, h) = P(Xt ≤ h | X0 = x0) = P(Xx0
t ≤ h) (2.16)

= P(Z ≥ 1/h) = P(Zp ≥ 1/hp) ≤ hp E(Zp)

where E(Zp) <∞ by the well-known properties of B. From (2.16) we see that:

F (0, x0; t, h) = O(hp) (2.17)

as h → h0 for h0 ≥ 0 whenever p > 0 is given and fixed. Taking p = 3 and
using (2.17) one finds that (2.14) and (2.15) hold as claimed.

3 The fundamental solution

In this section we study the problem of finding the fundamental solution of
the Kolmogorov–Shiryaev equation (1.1). For simplicity we will only examine
the case when x0 ≥ 0 (cf. Section 2). By the fundamental solution we thus
mean a non-negative solution f = f(t, x) for t > 0 and x > 0, satisfying∫∞
0
f(t, x) dx = 1 for each t > 0, and f(t, x) → δ(x−x0) weakly as t ↓ 0

(where δ denotes the Dirac delta function).
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1. Recall that X solving (1.2) is time-homogeneous so that there is no
restriction to assume that the initial time point equals zero. We will moreover
suppress the dependence on 0 and x0 in (2.12) and (2.13) and simply write:

F (t, x) = P(Xt ≤ x | X0 = x0) (3.1)

f(t, x) = Fx(t, x). (3.2)

Standard Markovian arguments (cf. [11]) imply that the transition density
function (3.2) solves the equation (1.1), and thus the initial problem is equiv-
alent to the problem of finding the transition density function (3.2).

2. Let us set:
g = −(1+µx)f + (ν x2f)x. (3.3)

Then (1.1) can be written as:
ft = gx. (3.4)

In view of taking the Laplace transform with respect to t and making use of
the initial condition for t = 0 we shall integrate both sides of (3.4) from 0 to
x upon using that:

F (t, x) =
∫ x

0

f(t, y) dy. (3.5)

Since g(t, 0+) = 0 by (2.14) and (2.15) this gives:

Ft = g(t, x)− g(t, 0+) = g(t, x) = −(1+µx)f + (ν x2f)x (3.6)

= −(1+µx)Fx + (ν x2Fx)x = ((2ν−µ)x−1)Fx + ν x2Fxx.

Setting α = 2ν−µ we see that (3.6) reads:

Ft = (αx−1)Fx + ν x2Fxx. (3.7)

3. To simplify technicalities we will assume that x0 = 0 in the sequel. Then
F satisfies the following initial condition:

F (0, x) = 1 (3.8)

for all x ≥ 0. Moreover, since Xt remains positive almost surely for all t > 0,
we see that F satisfy the following boundary conditions:

F (t, 0+) = 0 (3.9)

F (t,∞) = 1 (3.10)

for all t > 0.
4. Taking the Laplace transform in (3.7) with respect to t upon setting:

F̄ (λ, x) =
∫ ∞
0

e−λtF (t, x) dt (3.11)
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we obtain the following ordinary differential equation:

λF̄ − F (0, x) = (αx−1)F̄x + ν x2F̄xx. (3.12)

(Note that by taking the Laplace transform with respect to x, we would
arrive instead to a new second-order partial differential equation. This is in
sharp contrast with the equation studied in [5] where one has x instead of
x2 in (1.1) which makes such a transform profitable since the new partial
differential equation is of the first order.) Making use of (3.8) we see that the
equation (3.12) reads:

ν x2F̄xx + (αx−1)F̄x − λF̄ = −1. (3.13)

By (3.9) and (3.10) we obtain the following boundary conditions:

F̄ (λ, 0+) = 0 (3.14)

F̄ (λ,∞) = 1/λ. (3.15)

5. Note that a particular solution of the equation (3.13) is given by
F̄ ≡ 1/λ. To find the general solution we need to consider the homogeneous
equation which reads:

x2y′′ + (Ax+B)y′ + C y = 0 (3.16)

where A = α/ν = 2−µ/ν, B = −1/ν and C = −λ/ν. A standard substitution
for this equation (cf. (2.188) in [10, p. 447]) is given by:

y(x) = (1/xp) z(B/x). (3.17)

Inserting (3.17) into (3.16) one finds that z = z(x) solves the Kummer equa-
tion:

xz′′ + (b− x)z′ − ax = 0 (3.18)

where a and b are given by:

a = p (3.19)

b = 2(p+1)−A (3.20)

and p > 0 solves the quadratic equation:

p2 + (1−A)p+ C = 0. (3.21)

Solving (3.21) we find that:

a =
1
2

(
1− µ

ν
+

√(
1− µ

ν

)2
+

4λ
ν

)
(3.22)

b = 1 +

√(
1− µ

ν

)2
+

4λ
ν
. (3.23)
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6. Two linearly independent solutions of the Kummer equation (3.18) are
the confluent hypergeometric function of the first kind :

M(a, b, x) = 1 +
a

b
x+

a(a+1)
b(b+1)

x2

2!
+ · · · (3.24)

and the confluent hypergeometric function of the second kind U(a, b, x). (We
refer to [1, pp. 504-510] for basic properties of these functions.) Summarizing
the preceding facts about (3.16) and (3.17) it follows that the equation (3.13)
has the general solution given by:

F̄ (λ, x) = C1 x
−aM(a, b,−1/νx) + C2 x

−a U(a, b,−1/νx) + 1/λ. (3.25)

7. Letting x→∞ and using that x−aM(a, b,−1/νx)→ 0 it follows from
(3.15) that we may take C2 = 0. Using the known relation (cf. (13.1.5) in [1,
p. 504]):

xaM(a, b,−x) = Γ (b)
Γ (b−a)

(
1 +O(x−1)

)
(3.26)

as x→∞, we find that:

x−aM(a, b,−1/νx)→ νa
Γ (b)

Γ (b−a) (3.27)

as x ↓ 0. Hence by (3.14) we get:

C1 = − Γ (b−a)
λ νaΓ (b)

. (3.28)

Inserting this into (3.25) upon recalling that C2 = 0, we obtain the following
closed-form expression for the Laplace transform (3.11) above:

F̄ (λ, x) =
1
λ

(
1− Γ (b−a)

Γ (b)
(νx)−aM(a, b,−1/νx)

)
(3.29)

where a = a(λ) and b = b(λ) are given by (3.22) and (3.23) respectively.
8. By the inversion formula we have:

F (t, x) =
1
2πi

∫ c+i∞

c−i∞
etzF̄ (z, x) dz (3.30)

for any c > 0 given and fixed. The initial problem is thus reduced to com-
puting the complex integral (3.30). The representation (3.29) possesses a rich
structure which opens various ways to tackle the inversion problem. Some of
these possibilities will now be addressed.

9. By the convolution theorem we see that:

F (t, x) = 1−
∫ t

0

G(s, x) ds (3.31)
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where the Laplace transform of s �→ G(s, x) is given by:

Ḡ(λ, x) =
∫ ∞
0

e−λsG(s, x) ds =
Γ (b−a)
Γ (b)

(νx)−aM(a, b,−1/νx) (3.32)

upon recalling that a = a(λ) and b = b(λ) are given by (3.22) and (3.23)
respectively. The problem thus reduces to inverting the Laplace transform on
the right-hand side of (3.32).

10. Consider the case when µ = 0 and ν = 1/2 i.e. σ = 1. Then from (3.22)
and (3.23) we see that a = (1/2)(1+

√
1+8λ) and b = 2a so that:

Ḡ(λ, x) =
Γ (a)
Γ (2a)

(x/2)−aM(a, 2a,−2/x). (3.33)

Using the well-known relation (cf. (13.6.3) in [1, p. 509]):

M(p+1/2, 2p+1, 2z) = Γ (1+p) ez (z/2)−p Ip(z) (3.34)

where Ip(z) is the modified Bessel function of the first kind (cf. [1, pp. 374-
385]), together with the fact that (−z)−p Ip(−z) = z−p Ip(z) (see (9.6.10) in
[1, p. 375]), and the duplication formula for the gamma function (cf. (6.1.18)
in [1, p. 256]):

Γ (2z) = (2π)−1/2 22z−1/2 Γ (z)Γ (z+1/2) (3.35)

we find that the following identity holds:

Γ (a)
Γ (2a)

(x/2)−aM(a, 2a,−2/x) =
√

2π
x
e−1/x Ia−1/2(1/x). (3.36)

Inserting this expression into (3.32) we find that:

Ḡ(λ, x) =

√
2π
x
e−1/x I√

1/4+2λ
(1/x). (3.37)

This provides a link to the Hartman–Watson distribution (cf. [9]).
Since by (3.37) the Laplace transform of s �→ e−s/4G(s, x) equals

√
2π/x

e−1/x I√2λ (1/x), denoting by L−1λ [ · ] the inverse Laplace transform in the
argument λ, we see that:

G(s, x) =

√
2π
x
es/4−1/x L−1λ

[
I√2λ (1/x)

]
(s). (3.38)

Using the classic Hankel’s contour integral (see [18, Chapter XVII] for more
details):

I√2λ (y) =
1
2πi

∫
C

ey cosh(z)−(
√
2λ)z dz (3.39)
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for y > 0 and the well-known identity L−1λ [e−(
√
2λ)x](t) = (2πt3)−1/2 x e−x

2/2t

it is possible to perform the inversion in (3.38) by expressing the result in
terms of a single integral (cf. [19, pp. 86-87]):

L−1λ

[
I√2λ (y)

]
(s) =

y eπ
2/2s

√
2π3s

∫ ∞
0

e−z
2/2s−y cosh(z) sinh(z) sin

(
πz
s

)
dz. (3.40)

Inserting (3.40) into (3.38) and then (3.38) back into (3.31) we obtain the
following expression for the distribution function (3.1) above:

F (t, x) = 1−
∫ t

0

es/4+π2/2s−1/x

π
√
s x3/2

(3.41)∫ ∞
0

e−z
2/2s−(1/x) cosh(z) sinh(z) sin

(
πz
s

)
dz ds

when µ = 0 and ν = 1/2. Clearly the formula (3.41) extends along the same
lines to the case of general ν > 0 when µ = 0.

11. In the case of general µ ∈ IR and ν > 0 we may proceed differently
from (3.34) and exploit the following integral representation (cf. (13.2.1) in [1,
p. 505]):

Γ (b−a)Γ (a)
Γ (b)

M(a, b, z) =
∫ 1

0

ezr ra−1 (1−r)b−a−1 dr. (3.42)

Hence the right-hand side of (3.32) reads:

Ḡ(λ, x) =
(νx)−a

Γ (a)

∫ 1

0

e−r/νx ra−1 (1−r)b−a−1 dr. (3.43)

To handle the term 1/Γ (a) recall the Hankel’s contour integral (cf. (6.1.4) in
[1, p. 255]):

1
Γ (a)

=
1
2πi

∫
C

ezz−a dz (3.44)

where the path of integration C starts at −∞ on the real axis, circles the origin
in the anticlockwise direction, and returns to the starting point. Inserting
(3.44) into (3.43) and recalling (3.22) and (3.23) we find that:

Ḡ(λ, x) = (νx)µ/2ν−1/2
∫ 1

0

e−r/νx r−µ/2ν−1/2 (1−r)µ/2ν−1/2H(r) dr (3.45)

where the function H(r) = H(λ, x, µ, ν, r) is given by:

H(r) =
1
2πi

∫
C

ezzµ/2ν−1/2 (3.46)

exp
(
− log

(
ν xz

r(1−r)

)√
1
4
(1−µ/ν)2 + λ/ν

)
dz.
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Recalling the well-known identity:

L−1λ

[
e−w

√
α+βλ

]
(t) =

√
β w e−αt/β−βw

2/4t

2
√
πt3

(3.47)

that is valid for all complex numbers w = w1+ iw2 such that Re(w) = w1 > 0
and Re(w2) = w21 −w22 > 0, letting z = reiϕ in (3.46) and choosing C not too
close to the origin in the sense that r ≥ R where R > 0 is taken large enough,
we see that it is possible to perform the inversion in (3.45) by expressing the
result in terms of a double integral. A more systematic study of the expressions
obtained appears worthy of further consideration.
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Summary. This paper studies the problem of a company which expands its sto-
chastic production capacity in irreversible investments by purchasing capital at a
given price. The profit production function is of a very general form satisfying min-
imal standard assumptions. The objective of the company is to find optimal pro-
duction decisions to maximize its expected total net profit in an infinite horizon.
The resulting dynamic programming principle is a singular stochastic control prob-
lem. The value function is analyzed in great detail relying on viscosity solutions of
the associated Bellman variational inequality: we state several general properties
and in particular regularity results on the value function. We provide a complete
solution with explicit expressions of the value function and the optimal control: the
firm invests in capital so as to maintain its capacity above a certain threshold. This
boundary can be computed quite explicitly.

Key words: singular stochastic control, viscosity solutions, Skorohod problem, ir-
reversible investment, production.

Mathematics Subject Classification (2000): 93E20, 60G40, 91B28

1 Introduction

This paper focuses on the problem of a company which wants to expand its
stochastic production capacity. The investments in capital for expanding the
capacity are irreversible in the sense that the company cannot recover the
investment by reducing the capacity. In addition, there is a transaction cost
for purchasing capital. We refer to the book by Dixit and Pindick (1994) for
a review where such problems occur. There are several papers in the litera-
ture dealing with irreversible investments models. For instance, Kobila (1993)
consider a model with deterministic capacity in an uncertain market and with-
out transaction costs on buying capital. Recently, Chiarolla and Haussmann
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(2003) studied an irreversible investment model in a finite horizon and ob-
tained an explicit solution for a power type production function.

We consider a concave production function of very general form, satisfying
minimal standard assumptions. The buying capital decision is modelled by a
singular control. This allows for instantaneous purchase of capital of arbitrary
large amounts and various other sorts of behavior. The company’s objective is
to maximize the expected net production profit over an infinite horizon, with
choice of control of its buying. The resulting dynamic programming principle
leads to a singular stochastic control problem. There is by now a number of
papers on singular controls related to financial problems, see, e.g., Davis and
Norman (1990) and Jeanblanc-Picqué and Shiryaev (1995).

We solve mathematically this problem by a viscosity solution approach.
This contrasts with the classical approach on investment models where the
principal activity is to construct by ad hoc methods a solution to the
Hamilton–Jacobi–Bellman equation, and validate the optimality of the so-
lution by a verification theorem argument for smooth functions. We, on the
other hand, start by studying and deriving the general properties via the dy-
namic programming principle and viscosity arguments. Using the concavity
property of the value function, we prove that it satisfies in fact the HJB in
the classical C2-sense. Similar approach is done in the paper by Shreve and
Soner (1994) for optimal consumption models with transaction costs.

The rest of the paper goes as follows. In the next section, we give a math-
ematical formulation of the problem. We analyze and derive some general
properties of the value function in Section 3. By means of viscosity solutions
arguments, we state in Section 4 the C2-smoothness of the value function
that satisfies then in a classical sense the associated HJB equation. Section 5
is devoted to the explicit construction of the solution to this singular control
problem and the optimal control.

2 Formulation of the problem

Let (Ω,F , P ) be a complete probability space equipped with a filtra-
tion (Ft)t≥0 satisfying the usual conditions, and carrying a standard one-
dimensional Brownian motion W .

We consider a firm producing some output from stochastic capacity pro-
duction Kt and possibly also from other inputs. The firm can buy capital
at any time t at constant price p > 0. The production rate process is then
described by a control L ∈ A, set of right-continuous with left-hand limits
adapted processes, nonnegative and nondecreasing, with L0− = 0. Here, Lt

represents the cumulative purchase of capital until time t. Given the initial
capital k ≥ 0, and control L ∈ A, the firm’s capacity production evolves
according to the linear SDE

dKt = Kt (−δdt+ γdWt) + dLt, K0− = k. (2.1)
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Here δ ≥ 0 is the depreciation rate of the capacity production and γ > 0
represents its volatility.

The instantaneous operating profit of the firm is a function Π(Kt) of
the capacity production. The production profit function Π is assumed to be
continuous on R+, nondecreasing, concave and C1 on (0,∞), with Π(0) = 0
and satisfying the standing usual Inada conditions :

Π ′(0+) := lim
k↓0

Π ′(k) = ∞ and Π ′(∞) := lim
k→∞

Π ′(k) = 0. (2.2)

We define the Fenchel–Legendre transform of Π, which is finite on (0,∞)
under the Inada conditions:

Π̃(z) := sup
k≥0

[Π(k)− kz] < ∞, ∀z > 0. (2.3)

A typical example arising from the Cobb–Douglas production function leads
to a profit function of the form

Π(k) = Ckα, with C > 0, 0 < α < 1. (2.4)

The firm’s objective is to maximize the expected profit on the infinite time
horizon

J(k, L) = E

[∫ ∞
0

e−rt (Π(Kt)dt − pdLt)
]

(2.5)

over all controls L ∈ A. Here r > 0 is a fixed positive discount factor. Without
loss of generality, one may consider the strategies L in A for which

E

[∫ ∞
0

e−rtdLt

]
<∞, (2.6)

Accordingly, we define the value function

v(k) = sup
L∈A

J(k, L), k ≥ 0. (2.7)

Notice that since J(k, 0) ≥ 0, the value function v takes value in [0,∞].

3 Some properties of the value function

Problem (2.7) is a singular stochastic control problem and its associated
Hamilton–Jacobi–Bellman equation is

min {rv − Lv −Π , −v′ + p} = 0, (3.1)

where L is the second order operator
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Lϕ =
1
2
γ2k2ϕ′′ − δkϕ′

for any C2-function ϕ.
We first state a standard comparison theorem, which says that any smooth

function, being a supersolution of the HJB equation (3.1), dominates v.
To this end, we first recall in our context how Itô’s formula for càdlàg

semimartingales (see, e.g., [8]) is written. Let ϕ ∈ C2(0,∞) and let τ be a
finite stopping time, k > 0 and L ∈ A. Then, we have:

e−rτϕ(Kτ ) = ϕ(k) +
∫ τ

0

e−rt (−rϕ+ Lϕ) (Kt)dt +
∫ τ

0

e−rtγKtϕ
′(Kt)dWt

+
∫ τ

0

e−rtϕ′(Kt)dLc
t +

∑
0≤t≤τ

e−rt [ϕ(Kt)− ϕ(Kt−)] , (3.2)

where

Lc
t = Lt −

∑
0≤s≤t

∆Ls,

is the continuous part of L.

Proposition 3.1. Let ϕ be a nonnegative C2-function which is a supersolu-
tion on (0,∞) to (3.1), i.e.:

min {rϕ− Lϕ−Π(k) , −ϕ′ + p} ≥ 0, k > 0. (3.3)

Then,

v(k) ≤ ϕ(k), ∀k > 0.

Proof. For L ∈ A define the stopping time τn = inf{t ≥ 0 : Kt ≥ n} ∧n
and apply Itô’s formula (3.2) between 0 and τn. Then, taking expectation and
noting that the integrand in the stochastic integral is bounded on [0, τn), we
get that

E
[
e−rτnϕ(Kτn)

]
= ϕ(k) + E

[∫ τn

0

e−rt (−rϕ+ Lϕ) (Kt)dt
]

+ E

[∫ τn

0

e−rtϕ′(Kt)dLc
t

]
+ E

 ∑
0≤t≤τn

e−rt [ϕ(Kt)− ϕ(Kt−)]

 .
Since ϕ′ ≤ p, and Kt − Kt− = ∆Lt, the mean-value theorem implies that

ϕ(Kt)− ϕ(Kt−) ≤ p∆Lt.
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Using again the inequality ϕ′ ≤ p in the integrals with respect to dLc and
taking into account that −rϕ+ Lϕ ≤ −Π, we obtain:

E
[
e−rτnϕ(Kτn)

]
≤ ϕ(k) − E

[∫ τn

0

e−rtΠ(Kt)dt
]

+ E

[∫ τn

0

e−rtpdLc
t

]
+ E

 ∑
0≤t≤τn

e−rtp∆Lt


= ϕ(k) − E

[∫ τn

0

e−rtΠ(Kt)dt
]
+ E

[∫ τn

0

e−rtpdLt

]
,

and so

E

[∫ τn

0

e−rt (Π(Kt)dt− pdLt)
]
+ E

[
e−rτnϕ(Kτn)

]
≤ ϕ(k).

Since ϕ is nonnegative,

ϕ(k) ≥ E

[∫ τn

0

e−rtΠ(Kt)dt
]
− E

[∫ ∞
0

e−rtpdLt

]
.

Applying Fatou’s lemma we get that

E

[∫ ∞
0

e−rt (Π(Kt)dt− pdLt)
]
≤ ϕ(k),

and so, finally, v(k) ≤ ϕ(k) from the arbitrariness of L. ✷

We now give some properties on the value function v.

Lemma 3.1. For all k ≥ 0 and l ≥ 0, we have:

v(k) ≥ −pl + v(k + l). (3.4)

Proof. For L ∈ A we consider the control L̃ with L̃0− = 0 and L̃t = Lt+ l, for
t ≥ 0. Let K̃ be the solution of (2.1) with the control L̃ and initial condition
K̃0− = k. Then, K̃t = Kt + l for t ≥ 0, and so L̃ ∈ A. Thus,

v(k) ≥ J(k, L̃) = E

[∫ ∞
0

e−rt
(
Π(K̃t)dt− pdL̃t

)]
= J(k + l, L)− pl.

We obtain the required result from the arbitrariness of L. ✷

Moreover, recalling the standing assumption (2.3), we have:

Lemma 3.2. The value function v is finite and for any q ∈ [0, p]

0 ≤ v(k) ≤ Π̃((r + δ)q)
r

+ kq, k ≥ 0. (3.5)
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Proof. The zero lower bound has been already noticed in Section 2. To prove
the upper bound, consider for q ∈ [0, p] the nonnegative function

ϕ(k) = kq +
Π̃((r + δ)q)

r
.

Then, ϕ′ ≤ p and

rϕ− Lϕ−Π = Π̃((r + δ)q) + (r + δ)kq −Π(k) ≥ 0, ∀ k ≥ 0,

by definition of Π̃ in (2.3). This implies that the nonnegative function ϕ is a
super-solution to (3.1), and we conclude with Proposition 3.1. ✷

Lemma 3.3. a) The value function v is nondecreasing, concave and contin-
uous on (0,∞).

b) We have the inequalities: 0 ≤ v(0+) ≤ Π̃((r+δ)p)
r .

Proof. a) The nondecreasing monotonicity of v follows from the nondecreas-
ing property of the process K with respect to the initial condition k given an
admissible control L, and from the nondecreasing monotonicity of Π.

The proof of concavity of v is standard: it is established by considering
convex combinations of initial states and controls and using the linearity of
dynamics (2.1) and concavity of Π.

b) The limit v(0+) exists from the nondecreasing property of v. By taking
q = p in the inequality of Lemma 3.2, we obtain the required estimation on
this limit. ✷

Since v is concave on (0,∞), it admits a right derivative v′+(k) and a left
derivative v′−(k) at any k > 0, and v′+(k) ≤ v′−(k). Moreover, inequality (3.4)
shows that

v′−(k) ≤ p, ∀k > 0. (3.6)

We then define the so-called no-transaction region :

NT =
{
k > 0 : v′−(k) < p

}
.

Lemma 3.4. There exists kb ∈ [0,∞] such that:

NT = (kb,∞), (3.7)

v is differentiable on (0, kb) and

v′(k) = p on B = (0, kb). (3.8)

Proof. Put kb = inf{k ≥ 0 : v′+(k) < p}. Then p ≤ v′+(k) ≤ v′−(k) if k < kb.
Together with (3.6), this proves (3.8). Finally, the concavity of v shows (3.7).
✷

Remark 3.1.We shall see later that 0 < kb <∞, and the optimal strategy for
the firm consists in doing nothing when it is in the region NT = (kb,∞), and
in buying capital when it is below kb in order to reach the threshold kb. The
region B = (0, kb) will be then called the buy region.
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4 Viscosity solutions and regularity of the value function

The concept of viscosity solutions is known to be a general power tool for
characterizing the value function of a stochastic control problem, see, e.g., [4].
It is based on the dynamic programming principle which we now recall in our
context.

Dynamic programming principle: Assume that v is continuous on (0,∞).
Then for all k > 0, we have

v(k) = sup
L∈A

E

[∫ θ

0

e−rt (Π(Kt)dt− pdLt) + e−rθv(Kθ)1θ<∞

]
, (4.1)

where θ = θ(L) is any stopping time, possibly depending on the control L ∈
A. The precise meaning of this assertion is:

v(k) = sup
L∈A

sup
τ∈T

E

[∫ θ

0

e−rt (Π(Kt)dt− pdLt) + e−rθv(Kθ)1θ<∞

]

= sup
L∈A

inf
τ∈T

E

[∫ θ

0

e−rt (Π(Kt)dt− pdLt) + e−rθv(Kθ)1θ<∞

]
.

Here T denotes the set of stopping times in [0,∞]. The DPP is frequently used
in this form in the literature. However, many proofs cannot be considered as
rigorous. Clearly, DPP holds for the case where Ω is a path space. However,
it is difficult to give a precise reference which covers the situation we consider
here. We use this result for granted and left the detailed discussion of this
issue for further studies.

We recall the definition of viscosity solutions for a PDE of the form

F (x, v,Dxv,D
2
xxv) = 0, x ∈ O, (4.2)

where O is an open subset in Rn and F is a continuous function and nonin-
creasing in its last argument (with respect to the order of symmetric matrices).

Definition 1. Let v be a continuous function on O. We say that v is a vis-
cosity solution to (4.2) on O if it is
(i) a viscosity supersolution to (4.2) on O: for any x0 ∈ O and any C2-
function ϕ in a neighborhood of x0 such that x0 is a local minimum of v − ϕ
and (v − ϕ)(x0) = 0, we have:

F (x0, ϕ(x0),Dxϕ(x0),D2
xxϕ(x0)) ≥ 0;

(ii) a viscosity subsolution to (4.2) on O: for any x0 ∈ O and any C2-function
ϕ in a neighborhood of x0 such that x0 is a local maximum of v − ϕ and
(v − ϕ)(x0) = 0, we have:

F (x0, ϕ(x0),Dxϕ(x0),D2
xxϕ(x0)) ≤ 0.
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Theorem 4.1. The value function v is a continuous viscosity solution of the
Hamilton–Jacobi–Bellman equation (3.1) on (0,∞).

Proof. The argument is based on the dynamic programming principle and
Itô’s formula. It is standard, but somewhat technical in this singular control
context. We give it in the appendix. ✷

Based on the property that the value function is a concave viscosity solu-
tion of the HJB equation, we can now prove that it belongs to C2.

Theorem 4.2. The value function v is a classical C2-solution on (0,∞) to
the Hamilton–Jacobi–Bellman equation

min {rv − Lv −Π(k) , −v′(k) + p} = 0, k > 0.

Proof. Step 1. We first prove that v is a C1-function on (0,∞). Since v is
concave, the left and right derivatives v′−(k) and v

′
+(k) exist for any k > 0 and

v′+(k) ≤ v′−(k). We argue by contradiction and suppose that v′+(k0) < v′−(k0)
for some k0 > 0. Fix some q in (v′+(k0), v

′
−(k0)) and consider the function

ϕε(k) = v(k0) + q(k − k0)−
1
2ε
(k − k0)2,

with ε > 0. Then k0 is a local maximum of (v − ϕε) with ϕε(k0) = v(k0).
Since ϕ′ε(k0) = q < p by (3.6) and ϕ′′ε (k0) = 1/ε, the subsolution property for
v to (3.1):

min {rϕ(k0)− Lϕ(k0)−Π(k0) , −ϕ′(k0) + p} ≤ 0,

implies that we must have the inequality

rϕ(k0) + δk0q +
1
ε
−Π(k0) ≤ 0. (4.3)

With ε sufficiently small, this leads to a contradiction and, hence, proves that
v′+(k0) = v′−(k0).

Step 2. By Lemma 3.4, v belongs to C2 on (0, kb) and satisfies v′(k) = p,
k ∈ (0, kb). From Step 1, we have NT = (kb,∞) = {k > 0 : v′(k) < p}. We
now check that v is a viscosity solution of :

rv − Lv −Π = 0, on (kb,∞). (4.4)

Let k0 ∈ (kb,∞) and ϕ be a C2-function on (kb,∞) such that k0 is a local
maximum of v − ϕ, with (v − ϕ)(k0) = 0. Since ϕ′(k0) = v′(k0) < p, the
subsolution property for v to (3.1):

min {rϕ(k0)− Lϕ(k0)−Π(k0) , −ϕ′(k0) + p} ≤ 0,

implies the inequality
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rϕ(k0)− Lϕ(k0)−Π(k0) ≤ 0.

Thus, v is a viscosity subsolution of (4.4) on (kb,∞). The proof of the vis-
cosity supersolution property is similar. Now for arbitrary k1 ≤ k2 ∈ (kb,∞),
consider the Dirichlet boundary problem

rV − LV −Π(k) = 0, on (k1, k2), (4.5)
V (k1) = v(k1), V (k2) = v(k2). (4.6)

Classical results provide the existence and uniqueness of a C2-function V on
(k1, k2) which is a solution to (4.5)-(4.6). In particular, this smooth function
V is a viscosity solution of (4.4) on (k1, k2). From standard uniqueness results
on viscosity solutions (here for a linear PDE in a bounded domain), we deduce
that v = V on (k1, k2). From the arbitrariness of k1, k2, it follows that v is in
C2 on (kb,∞) and satisfies (4.4) in the classical sense.

Step 3. It remains to prove the C2-condition at kb in the case 0 < kb <∞.
Let k ∈ (0, kb). Since v is in C2 on (0, kb) with v′(k) = p, the supersolution
property for v to (3.1) applied at the point k and the test function ϕ = v:

min {rϕ(k)− Lϕ(k)−Π(k) , −ϕ′(k) + p} ≥ 0,

implies that v satisfies (in the classical sense) the inequality:

rv(k)− Lv(k)−Π(k) ≥ 0, 0 < k < kb.

The derivative of v being constant equal to p on (0, kb), this yields:

rv(k) + δkp−Π(k) ≥ 0, 0 < k < kb,

and, therefore,

rv(kb) + δkbp−Π(kb) ≥ 0. (4.7)

On the other hand, from the C1-smooth fit at kb, we have by sending k
downwards to kb into (4.4):

rv(kb) + δkbp−Π(kb) =
1
2
γ2k2bv

′′(k+b ). (4.8)

From the concavity of v, the right-hand side of (4.8) is nonpositive, and this
fact, combined with (4.7), implies that v′′(k+b ) = 0. This proves that v is C2

at kb with v′′(kb) = 0. ✷

5 Solution of the optimization problem

5.1 Some preliminary results on an ODE

We recall some useful results on the second order linear differential equation
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rv − Lv −Π = 0. (5.1)

arising from the HJB equation (3.1).
It is well-known that the general solution to the ODE (5.1) with Π = 0 is

given by the formula

V̂ (k) = Akm +Bkn,

where

m =
δ

γ2
+

1
2
−

√(
δ

γ2
+

1
2

)2
+

2r
γ2
, < 0

n =
δ

γ2
+

1
2

+

√(
δ

γ2
+

1
2

)2
+

2r
γ2

> 1

are the roots of

1
2
γ2m(m− 1) + δm− r = 0.

Moreover, the ODE (5.1) admits a twice continuously differentiable particular
solution on (0,∞) given, accordingly, e.g. [6], by the formula

V̂0(k) = J(k, 0) = E

[∫ ∞
0

e−rtΠ(K̂k
t )dt

]
,

where K̂k is the solution to the linear SDE

dK̂t = K̂t (−δdt+ γdWt) , K̂0 = k.

In other words, V̂0 is the expected profit corresponding to the zero control L
= 0.

Remark 5.1. The function V̂0 can be expressed analytically as

V̂0(k) = knG1(k) + kmG2(k),

with

G1(k) =
2

γ2(n−m)

∫ ∞
k

s−n−1Π(s)ds, k > 0,

G2(k) =
2

γ2(n−m)

∫ k

0

s−m−1Π(s)ds, k > 0.

Under assumption (2.2), the limiting behavior of the derivative V̂ ′0 as k
tends to zero and infinity is described as follows.
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Lemma 5.1.

V̂ ′0(0
+) := lim

k↓0
V̂ ′0(k) = ∞ and V̂ ′0(∞) := lim

k→∞
V̂ ′0(k) = 0.

Proof. We rewrite V̂0 as

V̂0(k) = E

[∫ ∞
0

e−rtΠ(kYt)dt
]
, k > 0,

where Yt = e−δtMt, andM is the martingaleMt = exp(γWt− γ2

2 t). It is easily
checked by the Lebesgue theorem that one can differentiate the expression of
V̂0 inside the expectation and the integral so that its derivative is given by
the equality

V̂ ′0(k) = E

[∫ ∞
0

e−rtYtΠ
′(kYt)dt

]
, k > 0.

Using the positivity and nonincreasing monotonicity of Π ′, we may apply
the monotone convergence theorem as k tends to zero and obtain from the
Inada condition Π ′(0+) = ∞ that limk↓0 V̂

′
0(k) = ∞. On the other hand, we

may also apply the dominated convergence theorem as k tends to infinity and
obtain from the other Inada condition Π ′(∞) = 0 that limk→∞ V̂ ′0(k) = 0. ✷

5.2 Explicit form of the value function

Lemma 5.2. The buying threshold satisfies the inequalities

0 < kb <∞.

Proof. We first check that kb > 0. If it is not the case, the buying region is
empty, and we would have from Lemma 3.4 and Theorem 4.2 that

rv − Lv −Π = 0, k > 0.

Hence, v would be of the form

v(k) = Akm +Bkn + V̂0(k), k > 0.

Since m < 0 and |v(0+)| < ∞, this implies that A = 0. Now, since n > 1, we
get that v′(0+) = V̂ ′0(0

+) = ∞, a contradiction with the bound v′(k) ≤ p for
all k > 0.

We also have kb < ∞. Otherwise, v would be on the form

v(k) = kp+ v(0+), ∀ k > 0.

This contradicts to the growth condition (3.5). ✷

We can now explicitly determine the value function v.
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Theorem 5.1. The value function v has the following structure:

v(k) =
{

kp+ v(0+), k ≤ kb,

Akm + V̂0(k), kb < k,
(5.2)

where the three constants v(0+), A and kb are determined by the continuity,
C1- and C2-smooth fit conditions at kb:

Akmb + V̂0(kb) = kbp+ v(0+), (5.3)
mAkm−1b + V̂ ′0(kb) = p, (5.4)

m(m− 1)Akm−2b + V̂ ′′0 (kb) = 0. (5.5)

Proof.We already know from Lemma 3.4 that on the interval (0, kb), which is
nonempty by Lemma 5.2, v has the structure described in (5.2). Moreover, on
(kb,∞), the derivative v′ < p in virtue of Lemma 3.4. Therefore, by Theorem
4.2, v satisfies the equation rv−Lv−Π = 0, and so, according to Subsection
5.1, it is of the form

v(k) = Akm +Bkn + V̂0(k), k > kb.

Since m < 0, n > 1, V̂ ′0(k)→ 0 as k →∞, and ≤ v′(k) ≤ p, we must have
necessarily B = 0, and so v has the form written in (5.2). Finally, the three
conditions resulting from the continuity, C1- and C2-smooth fit conditions at
kb determine the constants A, kb and v(0+). ✷

Remark 5.2. By the viscosity solutions method adopted here we know the
existence of a triple (v(0+), A, kb) ∈ R+ ×R× (0,∞) which is solution to the
system of equations (5.3)-(5.4)-(5.5). Indeed, this results from the continuity,
C1- and C2-properties of v at kb that we proved to hold a priori. This contrasts
with the classical verification approach where one tries to find a C2-solution
to (3.1), so of the form

ṽ(k) =
{

kp+ ṽ(0+), k ≤ k̃b,

Ãkm + V̂0(k), k̃b < k,
(5.6)

and, hence, to prove the existence of a triple (ṽ(0+), Ã, k̃b) ∈ R+×R× (0,∞)
which is a solution to (5.3)-(5.4)-(5.5). By a verification argument, one then
shows that ṽ = v proving a posteriori the C2-property of v.

On the other hand, it is easily seen that we have uniqueness of a solution
(v̂(0+), A, kb) ∈ R+ × R × (0,∞) to the system of equations (5.3) – (5.5).
Indeed, otherwise we could find another smooth C2-function ṽ of the form
(5.6), with the linear growth condition, and solving (3.1). This contradicts
the standard uniqueness results for PDE (3.1).

Remark 5.3. The value function v satisfies in (kb,∞) the second order ODE
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rv(k) + δkv′(k)− 1
2
γ2k2v′′(k)−Π(k) = 0, k ∈ (kb,∞).

From the continuity and C1- and C2-conditions of v at kb, i.e. the relations
v(kb) = kbp+ v(0+), v′(kb) = p and v′′(kb) = 0, we then deduce that

(r + δ)kbp+ rv(0+) = Π(kb). (5.7)

Remark 5.4. Computation of v
From a computational viewpoint, the constants A, kb, v(0+) can be determined
as follows. From equations (5.4)-(5.5), we obtain an equation for kb and express
A in terms of kb :

F (kb) := (1−m)V̂ ′0(kb) + kbV̂
′′
0 (kb) = p(1−m), (5.8)

A =
k1−mb

m

(
p− V̂ ′0(kb)

)
. (5.9)

The value v(0+) is then computed from relation (5.3) or, equivalently, (5.7).
Note that a straightforward calculation provides the explicit expression of F :

F (k) = n(n−m)kn−1G1(k)−
2
γ2
Π(k)
k

, k > 0.

Example 1. Special case of the power profit function
We consider the case where Π is the Cobb–Douglas profit function, and we
assume, without loss of generality, that Π(k) = kα with 0 < α < 1. Then

V̂0(k) = Ckα, with C =
1

r + αδ + γ2

2 α(1− α)
.

Then, from (5.8), kb is explicitly written as :

kb =
(

p(1−m)
αC(α−m)

) 1
α−1

.

5.3 Optimal control

We recall the following well-known Skorohod lemma, see, e.g., [7].

Lemma 5.3. For any initial state k ≥ 0 and given a boundary kb ≥ 0, there
exist unique càdlàg adapted processes K∗ and nondecreasing processes L∗ sat-
isfying the following Skorohod problem S(k, kb) :

dK∗t = K∗t (−δdt+ γdWt) + dL∗t , t ≥ 0, K∗0− = k, (5.10)
K∗t ∈ [kb,∞) a.e., t ≥ 0, (5.11)∫ ∞
0

1K∗
u>kbdL

∗
u = 0. (5.12)

Moreover, if k ≥ kb, then L∗ is continuous. When k < kb, L∗0 = kb − k, and
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K∗0 = kb.

Remark 5.5. The solution K∗ to the above equations is a reflected diffusion at
the boundary kb and the process L∗ is the local time of K∗ at kb. Condition
(5.12) means that L∗ increases only when K∗ hits the boundary kb. It is
also known that the r-potential of L∗ is finite, i.e. E

[∫∞
0
e−rtdL∗t

]
< ∞, see

Chapter X in [9], so that

E

[∫ ∞
0

e−rtK∗t dt

]
<∞. (5.13)

Theorem 5.2. For k ≥ 0, let (K∗, L∗) be the solution to the Skorohod problem
S(k, kb). Then

v(k) = J(k, L∗), k ≥ 0.

Proof. 1) We first consider the case where k ≥ kb. Then, the processes K∗,
L∗ are continuous. In view of (5.11) and Theorem 4.2, we have

rv(K∗t )− Lv(K∗t )−Π(K∗t ) = 0, a.e. t ≥ 0.

By applying Itô’s formula to e−rtv(K∗t ) between 0 and T , we thus get:

E
[
e−rT v(K∗T )

]
=

v(k)− E

[∫ T

0

e−rtΠ(K∗t )dt

]
+ E

[∫ T

0

e−rtv′(K∗t )dL
∗
t

]
. (5.14)

(Notice that the stochastic integral appearing in the Itô formula has zero
expectation because of (5.13)). Now, in view of (5.12), we have

E

[∫ T

0

e−rtv′(K∗t )dL
∗
t

]
= E

[∫ T

0

e−rtv′(K∗t )1K∗
t =kbdL

∗
t

]

= E

[∫ T

0

e−rtpdL∗t

]
,

since v′(kb) = p. Plugging into (5.14) yields:

v(k) = E
[
e−rT v(K∗T )

]
+ E

[∫ T

0

e−rtΠ(K∗t )dt

]
− E

[∫ T

0

e−rtpdL∗t

]
. (5.15)

From (5.13), we have that limT→∞ E[e−rTK∗T ] = 0. Since v satisfies a linear
growth condition in k, this implies that also

lim
T→∞

E[e−rT v(K∗T )] = 0.
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By sending T to infinity into (5.15), we obtain, by the dominated convergence
theorem, the required result:

v(k) = J(k, L∗) = E

[∫ ∞
0

e−rt (Π(K∗t )− pdL∗t )
]
.

2) If k < kb, and since then L∗0 = k − kb, we have:

J(k, L∗) = J(kb, L∗)− p(k − kb)
= v(kb)− p(k − kb) = v(k),

by recalling that v′ = p on (0, kb). ✷

Conclusion. The main results of this paper in Theorems 5.1 and 5.2
provide a complete and explicit solution to our irreversible investment under
uncertainty. They mathematically formulate the economic intuition that a
company will invest in buying capital in order to maintain its production
capacity above a threshold kb, which can be computed quite explicitly.

Appendix : Proof of Theorem 4.1

(i) Viscosity supersolution property.

Fix k0 > 0 and C2-function ϕ such that v(k0) = ϕ(k0) and ϕ(k) ≤ v(k) for
all k in a neighborhood B̄ε(k0) = [k0− ε, k0+ ε] of k0 (0 < ε < k0). Consider
the admissible control L ∈ A defined by

Lt =
{
0, t = 0
η, t ≥ 0,

where 0 ≤ η < ε. Define the exit time τε = inf{t ≥ 0 : Kt /∈ B̄ε(x0)}. Here K
is the capacity production starting from k0 and controlled by L above. Notice
that K has at most one jump at t = 0 and is continuous on (0, τε]. By the
dynamic programming principle (4.1) with θ = τε ∧ h, h > 0, we have :

ϕ(k0) = v(k0) ≥ E

[∫ τε∧h

0

e−rt(Π(Kt)dt− pdLt) + e−r(τε∧h)v(Kτε∧h)

]

≥ E

[∫ τε∧h

0

e−rt(Π(Kt)dt− pdLt) + e−r(τε∧h)ϕ(Kτε∧h)

]
. (5.16)

Applying Itô’s formula to the process e−rtϕ(Kt) between 0 and τε ∧ h, and
taking the expectation, we obtain similarly as in the proof of Proposition 3.1
by noting also that dLc

t = 0:
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E[e−r(τε∧h)ϕ(Kτε∧h)] = ϕ(k0) + E

[∫ τε∧h

0

e−rt (−rϕ+ Lϕ) (Kt)dt

]

+ E

 ∑
0≤t≤τε∧h

e−rt [ϕ(Kt)− ϕ(Kt−)]

 . (5.17)

Combining relations (5.16) and (5.17), we see that

E

[∫ τε∧h

0

e−rt (rϕ− Lϕ−Π) (Kt)dt

]
+ E

[∫ τε∧h

0

e−rtpdLt

]

− E

 ∑
0≤t≤τε∧h

e−rt [ϕ(Kt)− ϕ(Kt−)]

 ≥ 0. (5.18)

_ Taking first η = 0, i.e. L = 0, we see that K is continuous, and only
the first term in the left-hand side of (5.18) is non zero. By dividing the
above inequality by h with h→ 0, we conclude by the dominated convergence
theorem:

rϕ(k0)− Lϕ(k0)−Π(k0) ≥ 0. (5.19)

_ Now, by taking η > 0 in (5.18), and noting that L and K jump only at
t = 0 with the jump size η, we get that

E

[∫ τε∧h

0

e−rt (rϕ− Lϕ−Π) (Kt)dt

]
+ pη − ϕ(k0 + η) + ϕ(k0) ≥ 0.

(5.20)

Taking h → 0, then dividing by η and letting η → 0, we obtain the inequality

p− ϕ′(k0) ≥ 0. (5.21)

This proves the required viscosity supersolution property:

min {rϕ(k0)− Lϕ(k0)−Π(k0),−ϕ′(k0) + p} ≥ 0. (5.22)

(ii) Viscosity sub-solution property.
We prove this part by contradiction. Suppose the claim is not true. Then,
there is k0 > 0, ε ∈ (0, k0), a ϕ C2-function with ϕ(k0) = v(k0) and ϕ ≥ v in
B̄ε(k0) = [k0 − ε, k0 + ε], and ν > 0 such that for all k ∈ B̄ε(k0) we have:

rϕ(k)− Lϕ(k)−Π(k) ≥ δ, (5.23)
ϕ′(k) ≤ p− ν. (5.24)
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For a control L ∈ A, consider the exit time τε = inf{t ≥ 0 : Kt /∈ B̄ε(x0)}.
(Here K is the capacity production starting from k0 and controlled by L). By
applying Itô’s formula to e−rtϕ(Kt), we get :

E
[
e−rτεϕ(Kτ−

ε
)
]
= ϕ(k0) + E

[∫ τε

0

e−rt (−rϕ+ Lϕ) (Kt)dt
]

+ E

[∫ τε

0

e−rtϕ′(Kt)dLc
t

]

+ E

 ∑
0≤t<τε

e−rt [ϕ(Kt)− ϕ(Kt−)]

 . (5.25)

Notice that for all t ∈ [0, τε), Kt ∈ B̄ε(k0). Then, from Taylor’s formula and
(5.24), noting that ∆Kt = ∆Lt, we obtain for t ∈ [0, τε):

ϕ(Kt)− ϕ(Kt−) = ∆Kt

∫ 1

0

ϕ′(Kt + z∆Kt)dz

≤ (p− ν)∆Lt. (5.26)

Due to relations (5.23) – (5.26), we thus obtain:

E
[
e−rτεϕ(Kτ−

ε
)
]

≤ ϕ(k0) + E

[∫ τε

0

e−rt (−Π − ν) (Kt)dt
]

+ E

[∫ τ−
ε

0

e−rt(p− ν)dLt

]

= ϕ(k0) + E

[∫ τε

0

e−rt (−Π(Kt)dt+ pdLt)
]
− E

[
e−rτεp∆Lτε

]
−ν
{
E

[∫ τε

0

e−rtdt

]
+ E

[∫ τ−
ε

0

e−rtdLt

]}
. (5.27)

Notice that while Kτ−
ε
∈ B̄ε(k0), Kτε is either on the boundary ∂Bε(k0) or

out of B̄ε(k0). However, there is some random variable α taking values in [0, 1]
such that

kα := Kτ−
ε
+ α∆Kτε

= Kτ−
ε
+ α∆Lτε ∈ ∂B̄ε(k0) = {k0 − ε, k0 + ε}.

Then, similarly as in (5.26), we have :

ϕ(kα)− ϕ(Kτ−
ε
) ≤ α(p− ν)∆Lτε . (5.28)

Notice that Kτε = kα + (1− α)∆Lτε , and so from Lemma 3.1 we have:
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v(kα) ≥ −p(1− α)∆Lτε + v(Kτε). (5.29)

Recalling that ϕ(kα) ≥ v(kα), inequalities (5.28), (5.29) imply:

ϕ(Kτ−
ε
) ≥ v(Kτε)− (p− αν)∆Lτε .

Plugging the last inequality into (5.27) and recalling that ϕ(k0) = v(k0), we
obtain:

v(k0) ≥ E

[∫ τε

0

e−rt (Π(Kt)dt− pdLt) + v(Kτε)
]

+ ν

{
E

[∫ τε

0

e−rtdt

]
+ E

[∫ τ−
ε

0

e−rtdLt

]
+ E

[
e−rτεα∆Lτε

]}
. (5.30)

_ We now claim that there is a constant g0 > 0 such that for all L ∈ A :

E

[∫ τε

0

e−rtdt

]
+ E

[∫ τ−
ε

0

e−rtdLt

]
+ E

[
e−rτεα∆Lτε

]
≥ g0. (5.31)

Indeed, one can always find some constant G0 > 0 such that the C2-function

ψ(k) = G0((k − k0)2 − ε2),

satisfies the relations

min {rψ − Lψ + 1, 1− |ψ|} ≥ 0, on B̄ε(k0),
ψ = 0, on ∂B̄ε(k0).

For instance, we can choose:

G0 = min
{

1
rε2 + 2εδ(k0 + ε) + γ2(k0 + ε)2

,
1
2ε

}
> 0.

By applying again Itô’s lemma, we get that

E
[
e−rτεψ(Kτ−

ε
)
]
≤ ψ(k0) + E

[∫ τε

0

e−rtdt

]
+ E

[∫ τ−
ε

0

e−rtdLt

]
(5.32)

Since ψ′(k) ≥ −1, we have:

ψ(Kτ−
ε
)− ψ(kα) ≥ −

(
Kτ−

ε
− kα

)
= α∆Lτε ≥ 0.

Plugging into (5.32) yields:

E

[∫ τε

0

e−rtdt

]
+ E

[∫ τ−
ε

0

e−rtdLt

]
≥ E

[
e−rτεψ(kα)

]
− ψ(k0) = −ψ(k0) = G0ε

2. (5.33)
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Hence, the claim (5.31) holds with g0 = G0ε
2.

_ Finally, by taking supremum over all (L,M) ∈ A in (5.30), and invoking
the dynamic programming principle (4.1), we have that v(k0) ≥ v(k0) + νg0,
which is the required contradiction.
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Summary. We consider the problem which informally can be described as follows.
Initially a finite set of independent trials is available. If a Decision Maker (DM)
chooses to test a specific trial she receives a reward, and with some probability, the
process of testing is terminated or the tested trial becomes unavailable but some
random finite set (possibly empty) of new independent trials is added to the set of
initial trials, and so on. The total number of potential trials is finite. A DM knows
the rewards and transition probabilities depending on the trials. On each step she
can either quit (i.e. stop the process of testing), or continue. Her goal is to select
an order to test trials and an quitting (stopping) time to maximize the expected
total reward. We simplify and generalize some results obtained earlier for similar
problems, we prove that an index can be assigned to each possible trial and an
optimal strategy uses on each step the trial with maximal index between available
ones. We present a recursive procedure with a transparent interpretation to calculate
the index. We discuss the connection between introduced index and Gittins index.

Key words: Markov decision process, graph, Gittins index, priority rules.

Mathematics Subject Classification (2000): 90B36, 90C40, 62L05

1 Introduction

The goal of this paper is twofold. First, to generalize the main result and to
simplify the proof of the paper by Denardo et al. [3]. In that paper a model of
R&D projects is considered. Each stage of a project in the model is represented
by an edge of a directed forest. To activate an edge e one needs to pay a certain
amount r(e). Each activated edge can pass or fail. The successful completion of
a path from a root to a leaf brings certain reward and terminates the activity.
In case of failure all edges which follow the failed edge become unavailable. The
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goal is to maximize the expected reward. The optimal strategy in the model
is an index strategy. Each time one should use an edge with the highest value
of the index among the available indices. An index for an edge is specified
only by the parameters of the directed tree above this edge. We consider more
general model where an optimal strategy is also an index strategy. The notion
of the index in both papers is a generalization of the corresponding notion in
the model, which we call below a binary elementary (BE) model, studied in
early sixties in Mitten (1960) [9].

The second goal of our paper is to show that the index described above
is a generalization of the well-known Gittins index (GI). Thus GI, beside the
original papers of Gittins [6] and Gittins and Jones [7], has the second root
of its origin in the mentioned paper by Mitten [9]. It seems that the proper
credit never was given to Mitten and his model.

The strategies of the type, when for selecting an action on each stage it
suffices to solve much simpler problem, for example the one-step optimization
problem, are called myopic or greedy. They are very popular and intensively
studied though in contrast to model above they usually are not optimal. We
call a strategy a Priority Rule (PR) if an index is calculated for each action
and an action with the highest value of index among available is selected.

The myopic strategies form a nucleus of developed later so called Multi-
armed Bandit (MAB) Theory (for independent (!) arms) (see Gittins [6], Whit-
tle [15], and Berry and Fristedt [1]), where the corresponding strategy is called
Gittins index strategy.

The Gittins index, denoted by G(x), where x is a state of Markov chain,
plays an important role in theory of MAB with independent arms but it also
appears in other problems like the optimal replacement problems. The main
result of this theory states that if there are a finite number of independent
MC and a decision maker at each moment can engage (test) one of these MC
while all other remain frozen then the optimal strategy is to test MC whose
state xj at this moment has the largest value Gj(xj), where Gj(xj) is the
value of GI of MC j at state xj .

Note also that the same term Multi-armed bandit problem is used also
in the classical papers by R. Bellman [2], D. Feldman [4] as well as in the
book of Presman and Sonin [10] and in some sections of the book by Berry
and Fristedt where arms are dependent, i.e. a trial of one arm provides an
information about the parameters of other arms also. In this case a myopic
Gittins index strategy is not optimal in general.

The traditional Gittins index G(x) for a Markov chain (MC) is defined as
the maximal value of a discounted expected reward per expected discounted
length of a cycle starting from x, i.e.

G(x) = sup
τ

Ex

∑τ−1
n=o β

nr(Zn)

Ex

∑τ−1
n=o β

n
, (1.1)

where β is a discount factor, 0 < β < 1, τ is a stopping time, τ ≥ 1, r(·) is a
reward function, and Zn is the state of Markov chain at time n.
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Note, that as usual in the theory of Markov Decision Processes, one can
consider the discount factor β as a probability of survival of a MC at each
step. Formally one can introduce an absorbing state and to introduce new
probabilities such that the probability of transition to an absorbing state is
equal to 1−β and all other transition probabilities are multiplied by the factor
β. Then the denominator in formula (1.1) multiplied by (1 − β) is equal to
the probability of absorption during the time interval (0, τ),

Qτ (x) = 1− Exβ
τ . (1.2)

In our paper we will consider the specific Markov decision process on a
forest with one absorption state, when probability of absorption q(A) depends
on chosen action A. We introduce notion of index for control actions as follows.
For fixed strategy π with stopping time τ and control process (Ai), with
A0 = e, we consider the reward Rπ(e), and the probability of absorption
Qπ(e). Following the footsteps of Mitten [9], Granot and Zuckerman [8] and
Denardo et al. [3], we define the index

α(e) = sup
Rπ(e)
Qπ(e)

, (1.3)

where supremum is taken over some set of strategies.
Note that the reward Rπ(e) can be represented in the form

Rπ(e) = Eπ

[
τ−1∑
i=0

r(Ai)

]
= Ẽπ

τ−1∑
i=0

r(Ai)
i−1∏
j=0

(1− q(Aj))

 ,
where Ẽ denote the expectation with respect to corresponding Markov chain
without absorbing state. The probability of absorption Qπ(e) can be repre-
sented in the same way with q(·) instead of r(·). In case q(Ai) = 1− β for all
i, the denominator in (1.3) coincides with (1.2). So, (1.3) generalizes (1.1) to
the case of Markov decision process with probability of absorption depending
on the current state.

In the sequel we consider only the case of finite forest but most of the
results can be extended to the case of an infinite forest with some extra con-
ditions.

The plan of our paper is as follows. In Section 2 and 3 we consider cor-
respondingly the BE-model and the model studied in Denardo et al. [3]. In
Section 4 we formulate our model and present the main result. In Section 5
we discuss main ideas of the proofs. In Section 6 we present and prove some
auxiliary results leaving the proof of one lemma to the Appendix (Section 9).
In Section 6 we give the proof of the main result. In Section 8 we present an
algorithm for calculating the index. In Section 9 we discuss connection with
Gittins index and some open problems.
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2 A binary elementary (BE) model of independent trials

Suppose that there is a finite set of independent Bernoulli trials e1, e2, ..., em,
with two possible outcomes in each trial, “continuation” with probability pi, in
the i-th trial, and “termination”, with probability qi. A decision maker (DM)
can choose an order in which to conduct (test) the trials. Each trial can be
tested only once. The test of the i-th trial brings a reward ri, and in the case of
“continuation” she may continue testing or quit. In the case of “termination”
the testing has to be terminated. The goal of DM is to select the optimal order
to maximize the expected total reward. Such formulation is equivalent to a
formulation where DM has to pay an amount ci in advance, obtains ai with
probability pi, and bi with probability qi, and ri = −ci + aipi + biqi.

This problem is a reformulation of a “least cost testing sequencing” prob-
lem solved independently by a few authors in 1960 (see Mitten [9]). We call
it BE-model (Binary Elementary model). A rather simple proof shows that
the optimal strategy has a remarkably simple structure and is based on an
index α calculated for each trial ei, α(ei) equal to expected profit divided by
probability of termination, i.e.

α(ei) =
ri
qi
. (2.1)

The optimal strategy has the following form: test the trials with positive
index in the order of decreasing. If all trials must be tested then all they should
be tested in the above order. Mitten analyzed the model when ci < 0, ai = 0,
and bi > 0 but this makes no difference for the analysis of the problem.

3 Independent trials on a forest, binary forest (BF)
model

A model described above was generalized by Granot and Zuckerman [8] in
the context of multi-stage R&D models. That paper has many interesting
developments but contrary to their claim the Theorem 1 in their paper can
be obtained from the Mitten result by transforming semi-Markov discounting
into absorption probabilities.

This model in turn was recently generalized in a paper by Denardo et al.
[3]. The latter model can be described briefly as follows.

At initial moment a set of independent trials with two possible outcomes
are available. For some of trials the nature of two outcomes is the same as
in BE model - “continuation” and “termination”. For other trials for both
of outcomes one can continue but differently. to pone of outcomes leads to
a possibility to continue the process of testing. In the case of one outcome a
“continuation” is the same as above, but the second of outcomes adds to the
set of available trial a set of new trials, some of them with a similar feature and
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so on, and so on. Each trial e of the second kind and all trials that “follow” e
in one or more steps can be represented by edges of a directed tree T (e). A tree
corresponding to the trial of the first kind consists of one edge. The total set
of potentially available trials is finite and is represented by a union of directed
trees, i.e. by a directed forest F0. The trials of the first kind correspond to
the leaves of this forest, i.e. to the edges such that no edges follows. All other
edges are called stems. The initially available edges are called the roots of F0.

If edge e is tested (used) it can pass with some probability or fail with
complimentary probability. These events are independent of similar events for
other edges. If an edge e “fails” than e and all edges that follow e are not
available any more, but other available edges can be tested. If a stem e passed
then it becomes unavailable but all edges that immediately follow e are added
to the set of available edges. If a leaf e passed then the testing has to be
terminated. An edge e′ can be tested only once and only if all edges on the
path from one of the roots of F0 to e′ “passed” before. The reward on stems
(costs) are negative, positive rewards (prizes) are available only on leaves,
i.e. on edges such that no edge follows. The testing can be conducted till the
termination, when a prize is obtained, i.e. a leaf is reached and “passed”, or
till the moment when DM decides to quit, i.e. to stop testing. The goal of a
DM is to maximize the expected value of either linear or exponential function
of the profit (total reward) over all possible strategies to test edges. We call
this model BF-model (Binary Forest model) since the result of each trial has
two outcomes.

The main result of paper [3] is that the optimal strategy is based again on

an index generalizing (2.1). This index α(e) is defined as α(e) = sup
π

Rπ(e)
Qπ(e)

,

where Rπ(e) and Qπ(e) are correspondingly the expected total reward and the
probability of termination (to obtain a prize) in linear case and corresponding
function in exponential case. Supremum is taken over some class of strategies,
which authors call “candidates”. The authors also noted that their problem
can be described in terms of so called MAB processes and their index is similar
to the Gittins index.

We gratefully acknowledge the possibility to read the manuscript of [3]
before its publication.

The proof of the main theorem in [3] is complicated and long. Responding
to their hope “that someone will devise a simpler proof than theirs” we ob-
tained in the linear case a different, shorter and more transparent inductive
proof of this important and interesting result. We found also that our proof
covers also more general situation when:

1) a binary result of testing of an edge (a trial) can be replaced by a
finite number of outcomes in the spirit of general theory of Markov Decision
Processes (MDP);

2) two separate functions, the prize function b(e) > 0 for leaves and the
cost function c(e) < 0 for all other edges are replaced by a general reward
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function r(e), which can take any finite values (positive, negative or zero) for
any edge;

3) the termination when a prize is obtained, is replaced by a possibility of
termination with probability depending on the trial tested at any stage.

The last possibility implies also that the discounting with coefficient β, 0 <
β < 1 can be considered as a special case of our model since it is equivalent
to a termination with a fixed probability 1− β.

We will consider only the linear function of the profit.
Note also that the optimal strategy in BF-model takes the form of a series

of “depth first” searches of paths to leaves. In our model this property is not
true generally due to generalization 2.

In the MAB literature the term arm is usually understood as a stochastic
process which can be engaged again and again. In the BE, BF models and
the model presented below each edge can be used only once so we prefer not
to use the term arm at all.

4 Multiple forest (MF) model: formulation and results

We present our model in a standard frame of Markov Decision Processes
(MDP). A MDP model is given (see e.g. Feinberg and Schwartz [5]) by a
tuple M = (S,A(x), p(y|x, a), L), where S is a state space, x ∈ S represents
a state of a system under consideration, A(x) is a set of actions a available
at state x, p(y|x, a) is a probability that the next state is y if at state x an
action a was chosen (transition operator), and L is a functional defined on
the trajectories of a system.

By hn = (x0, a0, x1, . . . , xn−1, an−1, xn) we denote a trajectory of length
n, n ≤ ∞, h∞ = h. A general (randomized) strategy π in MDP is a se-
quence πn(·|hn), n = 0, 1, 2, ... of distributions on action set A(xn) possibly
depending on the whole past history. An initial state x and a strategy π de-
fine a measure Pπ

x in the space of infinite trajectories, i.e. the distribution of
the state-action process (Xn, An), Xn(h) = xn, An(h) = an, n = 0, 1, . . .. We
denote by Eπ

x the corresponding expectation. If a distribution πn(·|hn) is a
function π(xn) with values in A(xn), a strategy π is a stationary (nonran-
domized) strategy. A stationary strategy π defines the transition probabilities
p(y|x, π(x)) for the (homogeneous) Markov chain (Xn) describing the evo-
lution of the system. The goal of the DM is to maximize the expected total
reward Rπ(x) = Eπ

xL = Eπ
x

∑∞
i=0 r(Xi, Ai). From the general theory of MDP

it follows that for such a functional it suffices to consider only the station-
ary strategies. The value function R(x) = supπ Rπ(x) satisfies the Bellman

(optimality) equation R(x) = sup
a∈A(x)

[
r(x, a) +

∑
y

p(y|x, a)R(y)
]
.

Let some initial forest F0 be given. We say that edge e′ follows e, if e is
on a unique path from a root of a tree to e′. Denote by N(e) the edges from



Gittins Index Theorem for Randomly Evolving Graphs 573

T (e) that immediately follow e. Leaves are edges such that no edge follows.
Other edges are stems.

The state space S = {x} in MF-model consists of absorbing state x∗,
empty set ∅, and all subsets of edges of F0 which do not contain any two
edges such that one follows other, i.e. if e, e′ ∈ x for some x and e �= e′ then
T (e)

⋂
T (e′) = ∅.

The action set A(x) = x ∪ {e∗} for x �= x∗, A(x∗) = e∗, where e∗ is a quit
action, i.e. at each stage a DM can test any of edges in x or select an action
e∗ which at the next moment moves a system to x∗.

The following parameters are defined for every edge e: 1) a number
q(e), 0 ≤ q(e) ≤ 1, 2) for each subset D of the set N(e) (including empty
set and the full set N(e)) a number pD(e) ≥ 0 such that

∑
D⊂N(e) pD(e) =

1− q(e), 3) a reward r(e) such that r(e∗) = 0.
The meaning of these parameters is as follows. Edges correspond to trials.

If edge e is tested, it becomes unavailable, and with probability q(e) the system
moves to the absorbing state x∗, and with probability pD(e) all edges from
the set D are added to the set of edges available for testing.

Formally, the transitional probabilities have the following form: p(x∗|x, e∗)
= 1; if e �= e∗ then p(y|x, e) = pD(e) for y = {x \ e}∪D and p(x∗|x, e) = q(e).
Note that the independence of arms (edges e) is manifested by the property
that p(y|x, e) depends only on e ∈ x, and does not depend on other e′ from x,
and that the “coordinates” of a new state y for edges e′ �= e remain the same.

Given an initial state x and strategy π, the goal is to maximize the expected

total reward, Rπ(x) = Eπ
x

∞∑
i=0

r(Ai), where Ai is the edge tested at moment i.

Main Problem A: Given an initial state x, maximize Rπ(x) over all
strategies.

Main Problem B: Given an initial state x, maximize Rπ(x) over all
strategies such that a quit action e∗ is available only if x = ∅, or x = x∗.

As we mentioned, the general theory of MDP implies that for these prob-
lem the stationary nonrandomized strategies form a sufficient class. Still,
stationary strategies may have rather complicated structure. For example,
a strategy can test edge e if edges e, e′, and e′′ are available and test edge e′

if only edges e, and e′ are available. We can expect that the optimal strategy
will be among stationary strategies having the following simpler structure.

Let us consider an ordered list of different edges π = (e1, ..., ek). We shall
say that ei is senior than ej for π if ei is listed earlier i.e. if i < j. We
shall denote {π} = {e1, ..., ek}, i.e. the set of elements of π. List π defines a
(nonrandomized) stationary strategy, which we denote also π, as follows: if
there is no available edges, i.e. if x∩ {π} = ∅, then π(x) = e∗, otherwise π(x)
equals to the most senior element in x∩{π}. Such strategy is called a priority
rule (PR).



574 I. Sonin and E. Presman

Note that if ei is senior than ej , it does not imply that edge ei for a
particular history will be used earlier then ej . It may happens because ei may
be not available when ej is already available. More than that, it is possible
that two different lists define the same PR because the same states have
positive probabilities and both lists define the same order for each state that
has positive probability.
Example. Consider the forest given on Fig.1.

a10= -2

9 10 11 12 13 14 15
a9=8 a11=11

a12= -4 a13=1 a14=3 a15= -3

a4=6 a7=2

3 4 5 7
a3=6.4 a5= -1 a6 =9 a8=10

a1ª5.05 a2=4

1 2

6 8

Fig. 1. Example of a forest with γ(i) = αi.

Edges 1 - 3, 5, 7 are stems, N(1) = {3, 4, 5}, N(2) = {6, 7, 8}, N(3) =
{9, 10, 11}, N(5) = {12, 13}, N(7) = {14, 55}. Edges 4, 6, 8 - 15 are leafs, so
that N(j) = ∅ for j = 4, 6, 8 − 15. p{3,4}(1) > 0, p{5}(1) > 0, p{6,7}(2) > 0,
p{8}(2) > 0, p{9,10}(3) > 0, p{11}(3) > 0, p{12,13}(5) > 0, p{14}(7) > 0,
p{15}(7) > 0, p∅(j) > 0 for all j = 1, . . . , 15, pD(j) = 0 for all other subsets
of N(j), j = 1, 2, 3, 5, 7. Let π0 = (11, 8, 6, 9, 3, 4, 1, 2, 14, 7, 13, 5, 10, 15, 12).
Although 11, 8, 6, 3, 9 are senior then 1 for π0, DM will use 1 earlier than
these edges because at the initial state {1, 2} edge 1 is senior among available.
All trajectories of maximal length corresponding to π0 and having positive
probabilities are given on Fig.2. In each state an exit action e∗ is also available
so there are also shortened trajectories. In Fig. 2 edges in states are listed in
the order of seniority in π0.
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{14,5} {5}

{6,7,5} {7,5} {5,15} {13,15,12} {13,15,12}

{2,5} {5} {13,12} {15,12} {15,12}

{8,5} {5} {13,12} {12} {12} {12} {12}

{5} {13,12} {12}

{2} {6,7} {7} {14} ∆ ∆ ∆ ∆ ∆

{8} {15} {15}{7}

{1,2} ∆ ∆ ∆ {8} {14} {15}

{8} {6,7} {7} {14} {10}

{4,2} {2} {6,7} {10} {10} {14,10} {15}

{3,4,2} {11,4,2} {4,2} {2} {8,10} {7,10} {10,15}

{9,4,2,10} {4,2,10} {2,10} {6,7,10}

x0 x1 x2 x3 x4 x7x6x5 x8 x9

Fig. 2. Possible trajectories of maximal length corresponding to π0

It follows from Fig. 2 that a list π1 = (6, 8, 9, 3, 11, 4, 1, 7, 2, 14, 10, 5, 13, 15,
12) defines the same PR as π0.

Each PR can also be specified as follows. Let γ = γ(e) be a function
defined on edges from F0. Then by definition an edge e is senior than e′ if
γ(e) > γ(e′). For simplicity we assume that if e, e′ ∈ x for some state x and
e �= e′ then γ(e) �= γ(e′). In opposite case we assume that from the very
beginning all edges are numbered and for the edges with equal values of γ(·)
a senior is with greater initial number. We call a strategy π a (γ, c)-PR if
{π} = {e : γ(e) ≥ c}. In other words π assigns to use each time the edge with
highest value of γ(e) among all available with values greater or equal to c,
and use e∗ if there is no available edges with γ(e) ≥ c. The value c is called a
cutoff value.

Below in Section 8 we consider concrete values of p, q and r for all edges
in the Example. We show that the PR π0 is an optimal strategy in problem
B and it corresponds in particular to γ(i) = αi, where αi are given in Fig 1,
α11 = 11, α8 = 10, α6 = 9, α9 = 8, α3 = 6.4, α4 = 6, α1 ≈ 5, 05, α2 = 4,
α14 = 3, α7 = 2, α13 = 1, α5 = −1, α10 = −2, α15 = −3, α12 = −4.

Denote the class of all PRs by Π.
For any x ∈ S, x �= ∅ or x∗ let us define F (x) =

⋃
e∈x T (e). Given x ∈ S

and π ∈ Π let us define

Fπ(x) =
{
e : Pπ

x {An = e} > 0 for some n ≥ 0
}
. (4.1)
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Note that Fπ(x) is also a forest, but some of its leaves can be stems for
the initial forest F0. If x = {e} then Fπ(e) is a tree and we will denote it
Tπ(e). Here and in what follows we use the same notation for a forest F and
for the set of edges of F. We say that π ∈ Π(x) if {π} = Fπ(x). Given x ∈ S
and π ∈ Π we always can assume that π ∈ Π(x) eliminating “inaccessible”
edges, i.e. such e ∈ {π} that Pπ

x {An = e} = 0 for all n. If x = {e}, i.e. x
consists only of one edge, we use notation e instead of {e}, for example we
write Π(e), Rπ(e), Pπ

e and so on. Therefore if π is a (γ, c)-PR and π ∈ Π(e)
it means that {π} contains only those edges e′ with γ(e′) ≥ c which are
accessible from e.

For example, PR π2 = (1, 3, 10) in Fig. 1 defines the same PR as π3 =
(1, 3, 10, 12) but only π2 ∈ Π(x) for x = (1, 2).

On a set of trajectories h = (x0, e0, x1, . . . , ) let us define a stopping time
τ∗ = τ∗(h) = min(n : An = e∗ or Xn = x∗). Since forest F0 is finite and
any PR uses quit action e∗ if there is no available actions, we always have
Pπ
x {Aτ∗ = e∗ or Xτ∗ = x∗} = 1, for any x ∈ S and π ∈ Π(x). Thus τ∗ can

be described as a random time when either the system runs out of edges in
Fπ(x), and therefore at this moment an action e∗ was chosen (a quit moment),
or at a previous moment some edge e �= e∗ from Fπ(x) was chosen and
the transition to x∗ has occurred now (at a termination moment). For the
sake of brevity we call τ∗ an exit time. Since r(e∗) = 0, we have obviously
Rπ(x) = Eπ

x

∑τ∗−1
i=0 r(Ai). For any initial state x and PR π let us define

Qπ(x) = Pπ
x {Xτ∗ = x∗}, απ(x) =

Rπ(x)
Qπ(x)

, (4.2)

where απ(x) = −∞ if Qπ(x) = 0.
Note that the probability of final absorption, i.e. limn P

π
x (Xn = x∗) equals

to 1 for any PR π. The value Qπ(x) is the probability of termination, i.e.
probability of transition to x∗ without using a quit action e∗. Thus Qπ(x) ≥ 0
and −∞ ≤ απ(x) ≤ ∞.

Now we define index α(e) for all e. As it was done in [3], we could define
it α(e) = supπ Rπ(e)/Qπ(e) over all π ∈ Π(e), but it is more convenient to
specify α(e) recursively as follows. For any leaf e we set α(e) = r(e)/q(e) if
q(e) > 0. If q(e) = r(e) = 0 then we set α(e) = 0. If q(e) > 0, r(e) > 0 or
r(e) < 0 we set α(e) = +∞ (or −∞ correspondingly. For stems we define
α(e) as follows. If α(·) is not defined for e but is defined for all other elements
of T (e) we set α(e) = supc απc , where πc ≡ πc(e) is a PR which first tests e
and after that uses (α, c) -PR from Π(N(e)). Let us denote by π∗(e) the PR
where α(e) is attained. We also will call such PR α -optimizer.

Auxiliary Problem C(e): For an edge e to find π∗(e) and α(e).

Later we present an algorithm to calculate α(e). It requires no more than
n2 operations.

To slightly simplify our proofs sometimes we will assume
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A uniqueness assumptions U: α(e) �= 0 for all e, and if e �= e′ then
α(e) �= α(e′).

Theorem 1. (a) An (α, 0)-PR is an optimal strategy in the Main Problem
A;

(b) an (α,−∞)-PR is an optimal strategy in the Main Problem B ;
(c) an (α, α(e))-PR π, π ∈ Π(e) is an optimal strategy in the Auxiliary

Problem C (e).
Under the assumption U the optimal strategies in (a), (b), and (c) are

unique.

If assumption U is not true we can modify the notion of α-PR so that
statements (a)-(c) of Theorem 1 will still hold.

5 One simple idea and three elementary situations

In this section we describe heuristically the key elements of the proof. There
are different proofs of Gittins result (see an interesting paper [14]) but it seems
none of them can be immediately applied to our case. At the same time our
solution is based on a simple key idea, though its implementation in the case
of a random forest is technically cumbersome, and will be presented in the
next section. We describe this idea using as illustrations three elementary sit-
uations, which can be described as three elementary forests. For the simplicity
we will assume that all rewards are positive so a quit action is not at all.

The first situation (a) describes in fact the simplest case of Mitten ele-
mentary model when there are two interchangeable actions a1 and a2. If used,
an action ai brings a reward ri and after that with probability qi the other
action becomes unavailable (the process is terminated), with complimentary
probability decision process may continue. This situation can be described
by a forest consisting of two trees {e1} and {e2}. We must compare two PR
πij , i, j = 1, 2, i �= j with corresponding expected rewards Rij . In this case
it is optimal to use first an action with highest index αi = ri/qi. This state-
ment can be checked easily algebraically, but we prefer to demonstrate this as
follows.

First, note that the corresponding probability of termination is the same
for the both orderings, i.e. we have

Q12 = q1 + (1− q1)q2 = q2 + (1− q2)q1 = Q21. (5.1)

This important property in a general situation is proved in Lemma 1 in Section
6. This property implies that to maximize Rij is the same as to maximize
αij = Rij/Qij . Let us consider

α12 =
r1 + (1− q1)r2
q1 + (1− q1)q2

=
α1q1 + α2(1− q1)q2
q1 + (1− q1)q2

. (5.2)



578 I. Sonin and E. Presman

It is easy to see that this is a formula for a center of gravity of two
masses q1 and (1 − q1)q2 located on a horizontal axis with coordinates α1
and α2. The formula for α21 corresponds to a center of gravity for masses
(1 − q2)q1 and q2 with the same coordinates α1 and α2. Since the sum of
masses is the same for both cases, the center of gravity will have higher value
when larger mass will be placed into higher position, i.e.

α12 > α21 iff α1 > α2. (5.3)

We described situation (a) for two actions but this case implies also that
the similar statement is true for any m interchangeable actions, i.e. for BE
model. This property for a general situation corresponds to Corollary 2, pre-
sented at Section 6.

It is important to observe that the reasoning above does not depend on
whether each actions ai is really one time action or consists of a series of
actions. In the latter case we must calculate corresponding quantities R and
Q for the whole series.

Let us explain heuristically how the index α(e) should be calculated for
the situation (b), when some action is followed by a set of actions, i.e. when a
forest consists of a tree T1 = {e0, e1, e2, ..., em}, whereN(e0) = {e1, e2, ..., em},
N(ei) = ∅, i = 1, ...,m, and p0 := pN(e0)(e0) = 1− q(e0)−p∅(e0). The indices
for the leaves of this tree, αi := α(ei), i = 1, 2, ..,m are known, α(ei) = ri/qi,
where ri := r(ei), qi := q(ei). Without loss of generality we assume that edges
are numbered in such a way that α1 > α2 > ... > αm.

According to definition, to find α(e0) we have to choose k∗, possibly equal
to zero, that maximizes αk = Rk/Qk, where Rk and Qk are the reward and
termination probability for a PR πk = (e0, e1, e2, ..., ek). Using the notation
β0 = r0/q0, we obtain

αk =
r0 + r1p0 + r2p0p1 + . . .+ rk

∏k−1
i=0 pi

q0 + q1p0 + q2p0p1 + . . .+ qk
∏k−1

i=0 pi
=
β0m0 + α1m1 + . . .+ αkmk

m0 +m1 + . . .+mk
,

(5.4)
where m0 = q0, mi = (p0 · · · pi−1)qi, i = 1, ..., k. Thus expression αk also
represents a position of a center of gravity for a system of masses and to
find the value k which brings the maximum value to (5.4) we can use the
following
Proposition 1. Suppose that mi are the masses and αi the positions of

these masses on the real line, i = 0, 1, 2, ..., N, and α1 > α2 > ... > αN .
Suppose that our goal is to select a subset Jmax of a set {0, 1, ..., N} which
contains a subset J0 = {0} and has the largest possible center of gravity.
Then

a) Jmax can be obtained by adding sequentially masses m1,m2, · · · , to a
set J0 = {0} till the center of gravity of a system Jk = {0, 1, ..., k} will stop
to increase;

b) Jmax = {0} ∪ {i : α∗ < αi}, where α∗ is the center of gravity of Jmax.
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If there are αi = α∗ then Jmax is not unique in an obvious way.
Note that both points of Proposition 1 describe the optimal set: b) de-

scribes it in inexplicit form, since α∗ is not known yet, and a) describes it
algorithmically and allows one to calculate α(e0) in situation b) sequentially
step by step.

The proof of Proposition 1 follows from the elementary properties of pro-
portions. (A similar statement was used in a paper by Sonin [11]).

The simplest version of situation b) for m = 1 gives

α1 > β0 iff α1 > β0. (5.5)

The proof of Theorem 1 in Section 7 is based on the induction with re-
spect to the number of edges, and on Lemma 1, which corresponds to (5.1),
Corollary 1, which corresponds to (5.3), and Corollary 2, which corresponds to
(5.5). These statements are more general than (5.1), (5.3), (5.5) because each
action in Lemma and corollaries consists of some series of actions and after
application some action (which corresponds to some PR) the system transits
to a random set and the choice of the next action depends on this set.

To illustrate this fact and an algorithm of calculation of α(e) consider the
more complicated situation c), when in situation b) one of leaves e1, e2, ..., em,
let say an edge e3, is replaced by a tree T (e3). Then the first two steps of our
procedure of maximization of center of gravity will be the same. Suppose that
the value of α(e3) is achieved on some PR π = (e3, v1, ..., vk) and α(e3) =
R3/Q3. Then in formula (5.4) the value r3 should be replaced byR3 = α(e3)Q3
and correspondingly the mass m3 will be also modified. After that the set
N(e3) will be added to the set of available edges, where N(e3) is the set
of elements of T (e3) which does not belong to π, but follows immediately
elements of π. By the property of α optimizer, all elements of N(e3) have the
values of index less then α(e3), and on the next step we will choose an edge
with maximal value of α in enlarged set of available edges.

6 Auxiliary results

To prove Theorem 1 we introduce some new notations and prove some auxil-
iary statements.

Let π1 and π2 are PR and π1 ∈ Π(x). Let us define a new PR from Π(x) -
we denote it π = (π1, π2) - which uses first all available edges from π1 and after
that switches to π2, i.e. all edges in the list π1 are defined now as senior than
all edges in π2. The list π can be obtained as follows. First, list all elements
of π1 in their order and after that list those elements of π2 - in their order -
which does not belong to π1 and which are accessible from x. We call PR π2
a continuation of π1. The similar meaning has notation π = (π1, π2, π3) and
so on.
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Remark 1. Let π be a (γ, c)-PR and π1 be a (γ, c1)-PR, where c1 > c.
Then obviously π can be represented as π = (π1, π2), where π2 is a (γ, c)-PR.

For a PR π = (π1, π2) let us define a random time σ = min(n : Xn = x∗
or An ∈ {π2}), i.e. a time of termination or first usage of edges from π2. For
the sake of brevity we call time σ a time of switching from π1 to π2.
Remark 2. Note that for any trajectory σ ≤ τ∗, but at the same time

Pπ1
x {Xτ∗ = y} = Pπ

x {Xσ = y} for any y. Equivalently, a moment of termi-
nation for π1 is a moment of switching from π1 to π2 in π.

Using strong Markov property and the total probabilities formula it is easy
to obtain for a π = (π1, π2)

Rπ(x) = Eπ1
x

[
σ−1∑
i=0

ri +Rπ2(Xσ)

]
= Rπ1(x)+

∑
y

Pπ1
x (Xσ = y)Rπ2(y). (6.1)

Lemma 1. If π1, π2 ∈ Π(x) and {π1} = {π2}, then

Pπ1
x {Xτ∗ = y} = Pπ2

x {Xτ∗ = y} (6.2)

for all y ∈ S, and, in particular, for y = x∗, i.e. Qπ1(x) = Qπ2(x).

This lemma is an analog of the simple statement that for a set of inde-
pendent trials the probability of at least one success does not depend on the
order in which these trials are tested. We prove this lemma in an Appendix.

Let us call PRs π1 and π2 disjoint if π1 ∈ Π(x1), π2 ∈ Π(x2), and F (x1)∩
F (x2) = ∅.

Let π1 ∈ Π(x1) and π2 ∈ Π(x2) are disjoint and π ∈ Π. Then for any x,
x1∪x2 ⊂ x we can define PRs π12 = (π1, π2, π) and π21 = (π2, π1, π) such that
both belong to Π(x). Where no confusion is possible we will use shorthand
notations Rπi(x) = Ri, Q

πi(x) = Qi, α
πi(x) = αi and so on.

Lemma 2. Consider two PRs πij = (πi, πj , π) ∈ Π(x), i, j = 1, 2, i �= j,
where π1, π2 are disjoint, and πi ∈ Π(xi). Then for any x, x1 ∪ x2 ⊂ x

Rij = Ri + diRj +R, (6.3)

where di = 1−Qi, and the term R is the same for both π12 and π21.
Proof. Given PR πij = (πi, πj , π) let us define σi as the switching moment

from (πi, πj) to π. Since π1 and π2 are disjoint we have {(π1, π2)} = {(π2, π1)}
and therefore by Lemma 1 the distributions Pπij

x {Xσi
= y} coincide. Hence,

according to (6.1) the term R is the same for both π12 and π21. The equality
in Lemma 3 follows from formula (6.1) applied to the moments τi of switching
from πi to (πj , π) and the fact that for disjoint PRs the second factor of each
term in the sum

∑
y P

πi
x (Xτi = y)Rπ(y) is the same for all y such that y �= x∗

and Pπi
x (Xτi = y) �= 0.

Notice that any equality for R always implies similar a equality for Q
because Qπ = Rπ if all rewards r(e) are put equal r(e) = q(e). Indeed,
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let us consider a reward function r′(e, x) defined by r′(ei, xi+1) = 1 if
ei �= e∗, xi+1 = x∗, and r′(ei, xi+1) = 0 otherwise. Then for such func-
tion we have Qπ(x) = Rπ(x). It remains to note that averaging of such r′

gives r(ei) = q(ei).
Therefore, we have an equality similar to (6.3) for Q, and hence

αij =
αiQi + αjdiQj +R

Qi + diQj +Q
. (6.4)

Corollary 1. If under assumptions of Lemma 2 α1 > α2 then α12 > α21
(and therefore R12 > R21).

Proof. The assertion follows from (6.3) and (6.4), using the obvious equal-
ity Q1 + (1−Q1)Q2 = Q2 + (1−Q2)Q1.

The next lemma shows how the “isolated tail” of a PR π contributes to
the value of Rπ. If π ∈ Π(x) we will omit sometimes the dependence on x of
R, Q and α.
Lemma 3. Let π1 ∈ Π(x), π2 ∈ Π(e), e /∈ {π1}, π = (π1, π2). Then

Rπ(x) = Rπ1(x) + d1R
π2(e), (6.5)

where d1 = Pπ1
x {e ∈ Xσ}.

Proof follows directly from the second equality in (6.1) and the relations
Rπ2(y) = Rπ2(e) for e ∈ y, and Rπ2(y) = 0 if Xσ = y and e /∈ y. Note that
the assumption π2 ∈ Π(e) is crucial for validity of (6.5).

According to our remark after Lemma 2, Lemma 3 implies that the formula
similar to (6.1) (with replacement R by Q) holds for Qπ, and hence we have

απ =
R1 + d1R2
Q1 + d1Q2

=
α1Q1 + α2d1Q2
Q1 + d1Q2

. (6.6)

Formula (6.6) and elementary properties of proportions imply
Corollary 2. Under the assumptions of Lemma 3 either απ1 = απ2 = απ

or
min{απ1 , απ2} < απ < max{απ1 , απ2}. (6.7)

7 Proof of Theorem 1

We prove theorem 1 by induction on the number k of edges in the forest F (x)
of an initial state x. We denote by |C| the number of elements in a finite set C.
For k = 1 the theorem is trivial. Suppose it is proved for all x with |F (x)| ≤ k,
and suppose an initial state is x with |F (x)| = k + 1. We consider separately
two cases: (A) when |x| > 1, and (B) when |x| = 1. In both cases we will use a
well-known Bellman Optimality Principle, a corollary of a Bellman equation
for the expected total reward: i f π is an optimal strategy (for the problem A
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or B) for an initial state x, then after the first step it remains optimal for all
states that follow x. We prove theorem under the Uniqueness assumption U.
The proof for the general case is similar.

Case (A). In this case point (c) of the theorem is trivial since each |T (e)| ≤
k for each e ∈ F (x) so, it remains to prove (a) and (b). For any e ∈ x
let π0 be an α-PR (with cutoff value c = 0 in Problem A and cutoff value
c = −∞ in Problem B). According to the induction assumption it is an
optimal PR for any state in F (x)\e. So, if π is optimal on F (x), and applies
e on the first step, by Optimality Principle, PR (e, π0) is also optimal. Let
α1 = α(e1) = maxe∈x α(e). Let us show that π = (e, π0) is not optimal if
α = α(e) < α1.

Using the description of π0 by point (a) of Theorem 1 and Remark 1 we
have π = (e, ν1, π1, ν), where ν1 is an α-PR defined on a set T (e)\e with cutoff
value c1 = mine′∈T (e)\e {e′ : α(e′) > α1} > α1; PR π1 is an α-PR with cutoff
value c = α1, and ν is a continuation of α-PR (with cutoff value c(ν) = 0 in
Problem A and cutoff value c = −∞ in Problem B). Note that it is possible
that ν1 = ∅. According to the definitions of α-PR and the value c1, all edges
used by π1 belong to T (e1).

Note that PRs π1 and π2 = (e, ν1) are disjoint because they are defined on
different trees T (e1) and T (e), and that απ2(e) ≤ α = α(e) because PR (e, ν1)
can be different than πe which gives a solution to the Auxiliary Problem. Let
us show that PR ϕ = (π1, π2, ν) is better than π = (e, ν1, π1, ν) = (π2, π1, ν).
According to the induction assumption απ1(e1) = α1, so απ1(e1) = α1 > α ≥
απ2(e). Applying Corollary 1 to π1 and π2 we obtain that Rϕ > Rπ, i.e. π is
not an optimal strategy. It means that an optimal strategy either coincides
with (e1, π0) or appoints to quit from the very beginning.

Case (B). In this case x consists only of one edge and we denote it e0. The
first step for any policy is defined uniquely and the resulting state has a forest
with no more than k edges, so by the Optimality Principle the points (a) and
(b) of the Theorem are trivial but point (c) is trivial for all edges except e0.

Let πe0 = (e0, ν), where πe0 be a solution of an Auxiliary Problem for e0,
α-PR ν ∈ Π(N(e0)) and c is a corresponding cutoff value. Let us show that

1) if e ∈ F ν(e0), then α(e) ≥ α(e0),
2) if e /∈ F ν(e0) and e ∈ N(e′) for some e′ which is a leaf of F ν(e0) then

α(e) < α(e0).
This will prove that c can be taken equal to α(e0), i.e. satisfying point (c).
Suppose that 1) is not true and e ∈ F ν(e0) is such that α(e) < α(e′)

for all e′ ∈ F ν(e0), and α(e) < α(e0.) By the definition of (α, α(e))-PR all
edges that can be used in ν after e belong to T (e). So, PR (e0, ν) can be
represented in a form π = (π1, π2) where π2 ∈ Π(e) is an α-PR. Consequently
απ2(e) ≤ α(e) < α(e0) = α(e0,ν). But Lemma 3 and Corollary 2 applied to PR
(e0, ν) = (π1, π2) imply that α(e0,ν) < απ1 . This contradicts to the definition
of π(e0).
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Suppose that 2) is not true and we select e ∈ N(e′) such that e′ is a leaf of
F ν(e0), α(e) > α(e0) and e is the smallest among such e. Let π2 is (α, α(e))
-PR, π2 ∈ Π(e). Consider PR π = (π1, π2), where π1 = (e0, ν). Then π is a
PR with c = α(e). Applying Lemma 1 and Corollary 2 to PR π and using that
απ1(e0) = α(e0) < α(e) = απ2(e) we obtain that α(π) > απ1 . This contradicts
to the definition of π1.

8 A recursive algorithm to calculate α(e) and π∗(e)

To formulate the algorithm we first consider the structure of (α, c)-PR πc ∈
Π(x) for an initial state x. Recall that for any PR π and initial state x we can
consider Rπ(x), Qπ(x), Fπ(x) (or Tπ(e) if x consists of one edge e) (see (4.1)).
We will consider also Nπ(x) = N(Fπ(x)), where N(F ) for any subforest of
initial forest F0 denotes the set of all edges that follow immediately “leafs”
of F , i.e. the set of all edges that do not belong to F , but follow immediately
elements of F . For any D ⊂ Nπ(x) (including empty set) we will consider also
the probability pπD(x) = Pπ

x {Xτ∗ = D}, i.e. the probability that our decision
to quit was taken at the state D.
Proposition 2. For any x ∈ S there exist a natural number k(x), non-

increasing (decreasing in case of Assumption U) numbers ck = ck(x), with
c0 = +∞, and edges gk = gk(x) ∈ F (x), k = 0, 1, · · · , k(x), such that for
(α, c)-PR πc ∈ Π(x)

πc = πck for ck+1 < c ≤ ck, ck+1 = α(gk),

πck+1 = (πck , π∗(gk)), for 0 ≤ k < k(x); πc = πck(x) for c ≤ ck(x),
(8.1)

where π∗(gk) is α-optimizer of gk. Using indices “k” and “*” instead of index
π for π = πck and π = π∗ correspondingly we get: π0(x) = (∅), R0(x) = 0,
Q0(x) = 0, F 0(x) = (∅), N0(x) = x, p0x(x) = 1 and if Nk(x) �= ∅ then

F k+1(x) = F k(x)
⋃
T∗(gk), (8.2)

Nk+1(x) =
(
Nk(x) \ gk

)⋃
N∗(gk), (8.3)

Rk+1(x) = Rk(x) +R∗(gk)
∑

D: gk∈D⊂Nk(x),

pkD(x), (8.4)

Qk+1(x) = Qk(x) +Q∗(gk)
∑

D: gk∈D⊂Nk(x)

pkD(x). (8.5)

If D ⊂ Nk+1(x) then there exist unique D1 ⊂ Nk(x)\{gk} and D2 ⊂ N∗(gk)
such that D = D1

⋃
D2, and

if D1 = ∅,D2 �= ∅, then pk+1D (x) = pk{gk}(x)p
∗
D2
(gk), (8.6)
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if D2 = ∅, then pk+1D (x) = pkD1
(x) + pk{gk}

⋃
D1
(x)p∗∅(gk), (8.7)

if D1 �= ∅,D2 �= ∅, then pk+1D (x) = pk{gk}
⋃

D1
(x)p∗D2

(gk). (8.8)

Proof. For the sake of simplicity we will prove Proposition 2 under Assump-
tion U. The changes for the general case is straightforward. Let for some k ≥ 0
we know ck, πck , Rk(x), Qk(x), F k(x), Nk(x), and pkD(x) for any D ⊂ Nk(x).
The set Nk(x) corresponds to all potentially available edges after application
of πck . If Nk(x) = ∅ then k = k(x) and evidently we obtain the last equal-
ity in (8.1). If Nk(x) = ∅ then according to the definition of (α, c)-PR, all
elements of Nk(x) have the value of α less or equal to ck. Consider the edge
in Nk(x) with maximal value of α and denote it gk. Denote ck+1 = α(gk).
Since there is no edges in Nk(x) with ck+1 < α(e) < ck we have proved the
first equality in (8.1). According to Remark 1 πck+1(x) = (πck , π2), where
π2 ∈ Π(gk) is (α, α(gk))-PR. according to statement c) of Theorem 1 this PR
coincides with π∗(gk). It proves third equality in (8.1) and equalities (8.2),
(8.3. Equalities (8.4)-(8.8) are the results of application of total probability
formula. It completes the proof of Proposition 2.

Note that if α(e) is known for all e ∈ F (x) then Proposition 2 gives the
algorithm for calculation of optimal value of functional in Main Problems A
and B. In case of Problem B it coincides with Rk(x)(x), and in case of Problem
A it coincides with Rk0(x), where k0 = inf{k : α(gk−1) > 0}.

Now we can formulate algorithm for finding α(e). Recall that we defined
α(e) as r(e)/q(e) for leaves, and if α(e′) is defined for all e′ ∈ T (e)\e then as a
maximum of Rπc(e)/Qπc(e) over c, where πc ≡ πc(e) is a PR which first tests
e and after that uses (α, c) -PR from Π(N(e)). It is evident that Proposition 2
is valid also for πc(e) with initial values c0 = +∞, π0(e) = (e), R0(e) = r(e),
Q0(e) = q(e), α0(e) = R0(e)/Q0(e), T 0(e) = {e}, N0(e) = N(e), p0D(e) =
pD(e) for all D ⊂ N0(e). Define αk(e) = Rk(e)/Qk(e). According to Corollary
2 (see also Proposition 1 and (5.5)) there exists k∗ = k∗(e) such that αk(e)
increases for k < k∗ and decreases for k > k∗ and k∗ = inf{k : α(gk) ≤ αk}.
It means that for finding α(e) we need to conduct calculations (8.4)-(8.8)
sequentially from k = 0 till the time when α(gk) < αk and set α(e) = αk∗ .

Note that if e ∈ π∗(e′) for some e′, then we do not need to remember all
data for e. We need remember only the data for e′.

Consider now example 1 with
q(1) = 0.2, p∅(1) = 0.1 p{3,4}(1) = 0.4, p{5}(1) = 0.3, r(1) = 0.8;
q(2) = 0.08, p∅(2) = 0.17, p{6,7}(2) = 0.5, p{8}(2) = 0.25, r(2) = 0.1;
q(3) = 0.1, p∅(3) = 0.24, p3,{9,10}(3) = 0.5, p{11}(3) = 0.16, r3 = 0.2;
q(4) = 0.3, p∅(4) = 0.7, r(4) = 1.8; q(6) = 0.04, p∅(6) = 0.96, r(6) =

0.36;
q(5) = 0.24, p∅(5) = 0.71, p{12,13}(5) = 0.05, r(5) = −0.3;
q(7) = 0.05, p∅(7) = 0.45, p{14}(7) = 0.5, p{15}(7) = 0.3, r(7) = 0.05;
q(8) = 0.08, p∅(8) = 0.92, r(8) = 0.8; q(9) = 0.09, p∅(9) = 0.91,

r(9) = 0, 72;
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q(10) = 0.7, p∅(10) = 0.3, r(10) = −1.4; q(11) = 0.5, p∅(11) = 0.5,
r(11) = 5.5;

q(12) = 0.2, p∅(12) = 0.8, r(12) = −0.8; q(13) = 0.6, p∅(13) = 0.4,
r(13) = 0.6;

q(14) = 0.01, p∅(14) = 0.99, r(14) = 0.3; q(15) = 0.4, p∅(15) = 0.6,
r(15) = −1.2.

For leaves we have:

α(4) =
r(4)
q(4)

= 6, α(6) =
r(6)
q(6)

= 9, α(8) =
r(8)
q(8)

= 10, α(9) =
r(9)
q(9)

= 8,

α(10) =
r(10)
q(10)

= −2, α(11) = r(11)
q(11)

= 11, α(12) =
r(12)
q(12)

= −4,

α(13) =
r(13)
q(13)

= 1, α(14) =
r(14)
q(14)

= 3, α(15) =
r(15)
q(15)

= −3.

To calculate values of α for stems we use the algorithm.

α0(3) =
r(3)
q(3)

= 2. Since N(3) = {9, 10, 11} and α(11) = 11 > α(9) = 8 >

α0(3) > α(10) = −2, we set g0(3) = 11. Since N(11) = ∅ we have from (8.3)-
(8.5): N1(3) = {9, 10}, R1(3) = r(3)+p{11}(3)r(11) = 0.2+0.16∗5.5 = 1.08,
Q13 = q3+p3,{11}q11 = 0.1+0.16∗0.5 = 0.18. Using (8.7) we get: p1{9,10}(3) =
p{9,10}(3) = 0.5, p1∅(3) = p∅(3) + p{g}(3)p∗∅(11) = 0.24 + 0.16 ∗ 0.5 = 0.32,

α1(3) =
R1(3)
Q1(3)

=
1.08
0.18

= 6.

Since N1(3) = {9, 10} and α(9) = 8 > α1(3) > α(10) = −2, we set g1 = 9.
Since N(9) = ∅ we have from (8.3)-(8.5): N2(3) = {10}, R2(3) = R1(3) +
p1{9,10}(3)r(9) = 1.08 + 0.5 ∗ 0.72 = 1.44, Q2(3) = Q1(3) + p1{9,10}(3)q(9) =
0.18 + 0.5 ∗ 0.09 = 0.225. Using (8.7) we get: p2{10}(3) = p1{9,10}(3)p∅(9) =

0.5 ∗ 0.91 = 0.455, p2∅(3) = p1∅(3) = 0.32, α2(3) =
R2(3)
Q2(3)

=
1.44
0.225

= 6.4.

Since N2(3) = {10} and α(10) = −2 < α2(3) = 6.4 we have: π∗(3) =
π8(3) = (3, 11, 9), N∗(3) = N2(3) = {10}, R∗(3) = R2(3) = 1, 44, Q∗(3) =
Q2(3) = 0.225, p∗{10}(3) = p2{10}(3) = 0.455, p∗∅(3) = p2∅(3) = 0.32, α(3) =
α2(3) = 6.4.

Calculations for the edges 5,7,1, and 2 are absolutely analogous and we
omit them. This calculations give:

π∗(5) = π1(5) = (5, 13), N∗(5) = {12}, R∗(5) = −0.27, Q∗(5) = 0.27,
p∗{12}(5) = 0.02, p∗∅(5) = 0.71, α(5) = −1;

π∗(7) = π3(7) = (7, 14), N∗(7) = {15}, R∗(7) = 0.2, Q∗(7) = 0.1,
p∗{15}(7) = 0.3, p∗∅(7) = 0.6, α(7) = 2;
π∗(1) = π6.4(1) = (1, 3, 11, 9, 4), N∗(1) = {5, 10}, R∗(1) = 1, 934, Q∗(1) =

0.383, p∗{10}(1) = 0.1274, p∗{5}(1) = 0.3, p∗∅(1) = 0.1896, α(1) =≈ 5.05;
π∗(2) = π9(2) = (2, 8, 6), N∗(2) = {7}, R∗(2) = 0, 48, Q∗(2) = 0.12,

p∗{7}(2) = 0.48, p∗∅(2) = 0.4, α(2) = 4.
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9 Connection with the Gittins index and concluding
remarks

Now we outline how to obtain the proof of the celebrated Gittins result from
Theorem 1. Suppose that there is a fixed number m of finite Markov chains
with transition probabilities pk(i, j), j = 1, 2, ...,m, and a discount factor
β, 0 < β < 1. Each time a DM can engage one of these MC and a reward
rk(i) is obtained if k-th MC was engaged at state i. Without loss of gen-
erality these MCs have common state space S = {1, 2, ..., N} and we can
describe the possible transitions of these MCs using infinite forest F0 which
consists of m trees T1, ..., Tm. The set N(e) = {e1, ..., eN} and partitions of
N(e) = {e1} ∪ {e2} ∪ ...{eN} are the same for each e ∈ F0. The probability
p(Nj) for an edge ei ∈ Tk is equal to βpk(i, j), and q(e) = (1−β), i.e. we use a
standard way to replace a discount by a transition to an absorbing state. The
reward r(e) = rk(i) if e = ei ∈ Tk. We can prove that for any given ε > 0 we
can specify n sufficiently large so that the value function for an initial problem
and a problem with finite forest Fn will be different less than in ε. For such
finite forest we can apply Theorem 1 where the optimality of PR based on
indices all αn(e) was established. It can be proved also that if if e = ei ∈ Tk
then limn→∞ αn(e) = αk(i), where αk(i) is the value of the classical Gittins
index (GI) for the k-th MC at state i. This proves the optimality of PR based
on GI.

Note also that the value of GI will be obtained as a limit. At the same
time there are algorithms that calculate GI for finite case in a finite number
of steps, e.g in [13]. A new recursive algorithm to calculate GI even in a more
general model is proposed in [12].

Not also that the idea of an infinite forest can be applied to the case of
a countable state space under assumption e.g. that the ratio r(e)/q(e), e ∈ F
is bounded by a constant c. Note that this assumption holds for the classical
Gittins case if Markov chain is finite or r(e) is bounded if it is countable.

10 Appendix

Proof of Lemma 1. We prove lemma 1 by induction on n = |{π}|. For n = 1
lemma is trivial. For n = 2 we have {πi} = {e1, e2}. If x contains only one
of these edges then both PRs use this edge on the first step and the other
one on the second, so they coincide. Let ei ∈ x for i = 1, 2, then there are
two possible PRs, π1 = (e1, e2), and π2 = (e1, e2). From the definition of
transition probabilities Pπi

x {Xτ∗ = y} > 0 only if either y = x∗, or y has a
form ykQ = ((x \ (e1, e2)) ∪Nk(e1) ∪NQ(e1)) for some 0 ≤ k ≤ j(e1), 0 ≤
Q ≤ j(e2), and Pπi

x {xτ∗ = yiQ} = pi(e1)pQ(e2) for i = 1, 2. For y = x∗ we
have Pπi

x {xτ∗ = x∗} = 1 −
∑

y �=e∗
Pπ1
x {xτ∗ = y} for i = 1, 2. This completes

the proof of Lemma 1 for the case |{π}| = 2.
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Suppose now that (6.2) is proved for n = k, k ≥ 2, and |{πi}| = k + 1.
Given x ∈ S, denote ei the senior edge among edges in x for a PR πi. Then
each πi can be represented as πi = (ei, νi), where νi is a continuation of πi and
|{ν1}| = k. Note that if e1 = e2 then {ν1} = {ν2} and lemma 1 holds because
the first step for both PRs will be the same and after the first step we can
apply an induction assumption to PRs νi. Suppose that e1 �= e2. Then let us
introduce two new PRs π′1 = (e1, e2, ν) and π′2 = (e2, e1, ν), where ν is a PR
with {ν} = {π} \ {e1, e2}. For two pairs of PRs; π1 and π′1, and for π2 and π′2
lemma 1 holds because each pair has the same first edge and we discussed this
case earlier. Thus we have to show that Lemma 1 holds for a pair of PRs π′1
and π′2. This pair of PRs is different only for the first two steps but according
to our proof for the case of n = 2 the distributions of X2 coincide. After that
we can apply an induction assumption. This completes the proof of Lemma 1.
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Warsaw, Poland.
stettner@impan.gov.pl

Summary. We consider an investor whose preferences are described by a concave
nondecreasing function U : (0,∞) → R and prove that in an arbitrage-free discrete-
time market model there is a strategy attaining the supremum of expected utility
at the terminal date provided that this supremum is finite.
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1 Introduction and main result

In this paper we study the existence of optimal portfolios for maximizing
expected utility of the terminal wealth. His or her preferences are described
by a concave nondecreasing function U : (0,∞) → R, trading dates occur at
discrete time instants.

Recently, [8, 9] have treated the same problem, concentrating rather on the
construction of pricing operators using optimal strategies. In this paper we
apply the machinery which was developed in [7] for utility functions U : R→ R

and establish the existence of optimal strategies under minimal conditions (U
is concave nondecreasing, absence of arbitrage, the value function is finite).
This general theorem has already been anticipated in Section 3.1 of [3] where
the authors proved it for a one-step model and nonnegative price process.
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A usual setting for discrete-time market models is considered: a probability
space (Ω,F , P ); a filtration (Ft)0≤t≤T such that F0 contains P -null sets and
a d-dimensional adapted process (St)0≤t≤T describing the prices of d risky
assets in a given economy.

It is implicitly assumed that investors also dispose of a risk-free asset
S0t := 1, 0 ≤ t ≤ T ; hence trading strategies can be arbitrary d-dimensional
predictable processes (ϕt)1≤t≤T , where ϕi

t denotes the investor’s holding in
asset i at time t. Predictability means that ϕt is Ft−1-measurable, i.e. the
portfolio is chosen before new prices St are revealed. Let Φ denote the family
of all predictable trading strategies.

The value of a portfolio ϕ starting from initial capital c is given by

V c,ϕ
t = c+

t∑
i=1

〈ϕi,∆Si〉,

where 〈·, ·〉 denotes scalar product in Rd, ∆Si := Si − Si−1 and c > 0.
Introduce for each t = 1, ..., T a random subset Dt(ω) of Rd: the affine hull

of the support of the (regular) conditional distribution of ∆St given Ft−1, see
Proposition 4.1.

In this paper we impose the following (fairly natural) trading constraint:
portfolio value should not become negative. Define for c > 0 the set of admis-
sible trading strategies as

A(c) := {ϕ ∈ Φ : V c,ϕ
t ≥ 0 a.s., 0 ≤ t ≤ T}. (1.1)

In what follows, Ξt will denote the set of Ft-measurable d-dimensional
random variables. When a date t is fixed, ϕt is called admissible for the initial
capital x if ϕt ∈ Ξx

t−1, where

Ξx
t := {ξ ∈ Ξt : x+ 〈ξ,∆St+1〉 ≥ 0 a.s.}, x ∈ [0,∞).

Define for any Ft-measurable nonnegative random variable H

Ξt(H) := {ξ ∈ Ξt : H + 〈ξ,∆St+1〉 ≥ 0 a.s.},

and also

Ξ̃t := {ξ ∈ Ξt : |ξ(ω)| = 1, ξ(ω) ∈ Dt+1(ω) a.s.}.

Assumption 1.1 U : (0,∞)→ R is a concave nondecreasing function.

We extend U by continuity to zero (U(0) = U(0+) may be −∞) and set
U(x) = −∞, x < 0. By convention, U ′(x) denotes the left-hand derivative of
U at x; U+ is the positive part of U .

We are dealing with maximizing the expected utility of the terminal
wealth:

EU(V c,ϕ
T )→ max, ϕ ∈ A(c). (1.2)
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So as to have a well-posed problem the following absence of arbitrage (NA)
property will be imposed:

(NA) ∀c > 0 ∀ϕ ∈ A(c) (V c,ϕ
T ≥ c a.s. =⇒ V c,ϕ

T = c a.s.). (1.3)

Theorem 1.1. Let Assumption 1.1 hold and let S satisfy (1.3). Suppose that
the expectations in the definition below exist (though might take the value −∞)

u(c) := sup
ϕ∈A(c)

EU(V c,ϕ
T ), (1.4)

and
u(c) <∞ for all c ∈ (0,∞). (1.5)

Then for each c ∈ (0,∞) there exists a strategy ϕ∗(c) satisfying

u(c) = EU(V c,ϕ∗(c)
T ),

moreover one has ϕ∗t (c) ∈ Dt a.s.

We will present the proof of Theorem 1.1 in Sections 2 and 3. A possible
extension (Theorem 3.1) to random utility functions is sketched in Remarks
2.2 and 3.1.

Remark 1.1. In fact, it is sufficient to suppose that there exists c > 0 such
that u(c) < ∞. In this case Lemma 2.2 entails that for any strategy ϕ and
any λ ≥ 1 we have the bound

U+(V λc,ϕ
T ) ≤ 2λ[U+(V c,ϕ/λ

T ) + U(2)],

with the right-hand side having a finite expectation as u(c) <∞. This means
that for any c′ > c the expectations in the definition (1.4) of u(c′) exist. It is
easy to see that u(·) is concave, hence if we had u(c′) = ∞ for some c′ > c
then

u (c/2) = u(αc′ + (1− α)c/4) ≥ αu(c′) + (1− α)u(c/4) =∞,

where α ∈ (0, 1) is a suitable number. But this is impossible, as by monotonic-
ity

u (c/2) ≤ u(c) <∞.

Remark 1.2. Theorem 1.1 fails to be true in general semimartingale models.
As it was shown by counterexamples of [6], in the continuous-time case certain
additional properties have to be imposed on U to guarantee the existence of
optimal strategies.

We mention a uniqueness result whose proof is omitted as it is identical
to that of Theorem 2.8 in [7].
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Theorem 1.2. If U is strictly concave then there is a unique optimal strategy
ϕ∗ satisfying

ϕ∗t ∈ Dt a.s.

We will need an alternative characterization of (NA), see the Proposition
below. This statement is implicit in Theorem 3 of [4], where it is shown that
absence of arbitrage is equivalent to the fact that the origin lies in the relative
interior of the convex hull of the support of conditional distribution of ∆St
given Ft−1. We make this more explicit and “quantitative”:

Proposition 1.1. Under (NA) the set Dt(ω) is a linear subspace of Rd, al-
most surely. The (NA) condition implies the existence of Ft-measurable ran-
dom variables βt, κt > 0, 0 ≤ t ≤ T − 1, such that for any p ∈ Ξ̃t

P (〈p,∆St+1〉 < −βt|Ft) ≥ κt (1.6)

almost surely.

Proof. The “standard” absence of arbitrage property is the following

(NA’) ∀ϕ ∈ Φ (V 0,ϕT ≥ 0 a.s.⇒ V 0,ϕT = 0 a.s.)

It follows from Theorem 3 of [4] and Proposition 3.3 of [7] that if (NA’) holds
then Dt is a linear subspace and (1.6) holds. So it suffices to establish that
(NA) and (NA’) are equivalent. The (NA’) condition trivially implies (NA)
since if we had a ϕ violating (NA) we would immediately get

V 0,ϕT = V c,ϕ
T − c ≥ 0, P (V 0,ϕT > 0) > 0,

which contradicts (NA’). The other direction is also clear: if there is ϕ such
that (NA’) fails then we know from the implication (b) ⇒ (a) of Theorem 3
in [4] that there is ψ such that V 0,ψt ≥ 0, 0 ≤ t ≤ T and P (V 0,ψT > 0) > 0.
For such a strategy

V c,ψ
t ≥ c a.s., 0 ≤ t ≤ T, P (V c,ψ

T > c) > 0,

so ψ ∈ A(c) and (NA) is violated.

2 Optimal strategy in the one-step case

Let V : [0,∞) × Ω → R ∪ {−∞} be a function such that for almost all ω,
V (·, ω) is a nondecreasing continuous concave function, V (x, ω) is finite for
x ∈ (0,∞) and V (x, ·) is F-measurable for any fixed x. Let H ⊂ F be a
σ-algebra containing P -null sets. Let Y be a d-dimensional random variable.
Denote by Ξ the family of H-measurable d-dimensional random variables. Put
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Ξ̃ := {ξ ∈ Ξ : |ξ(ω)| = 1, ξ(ω) ∈ D(ω) a.s.},
Ξx := {ξ ∈ Ξ : x+ 〈ξ, Y 〉 ≥ 0 a.s.}, x ∈ [0,∞),

here D denotes the smallest affine subspace containing the support of the
conditional distribution of Y with respect to H (see Section 4). We suppose
that D is actually a linear subspace a.s. and that

P (〈p, Y 〉 < −δ|H) ≥ κ, for all p ∈ Ξ̃, (2.1)

with some H-measurable random variables κ, δ > 0.
Introduce also

ΞH := {ξ ∈ Ξ : H + 〈ξ, Y 〉 ≥ 0 a.s.},

for each H-measurable nonnegative random variable H.
This setting will be applied in Section 3 with H = Ft−1, D = Dt, and

Y = ∆St; V will be the supremum of conditional expected utility if trading
begins at time t.

Assume that
V (1) ≥ 0 a.s. (2.2)

and for all x ∈ [0,∞)

ess. sup
ξ∈Ξx

E(V (x+ 〈ξ, Y 〉)|H) <∞ a.s. (2.3)

We need some preparatory results.

Proposition 2.1. Let ξ ∈ Ξx be fixed. There exists a version of

y → E(V (y + 〈ξ, Y 〉)|H), y ≥ x,

such that it is a nondecreasing upper semicontinuous concave function (per-
haps taking the value −∞), for almost all ω.

Proof. Fix a version of F (q, ω) := E(V (q+ 〈ξ, Y 〉)|H) for q ∈ Q+. The follow-
ing inequalities hold almost surely for any pairs q1 ≤ q2 of rational numbers:

F (q1) ≤ F (q2), F (
q1 + q2

2
) ≥ F (q1) + F (q2)

2
.

Let us fix a P -zero set N such that outside this set the above inequalities
hold. Fix y ∈ [x,∞) and take rationals qn ↘ y. The monotone convergence
theorem yields

F (y+) = lim
n
F (qn) = lim

n
E(V (qn + 〈ξ, Y 〉)|H) =

E(V (y + 〈ξ, Y 〉)|H), a.s.

showing that the right-continuous pathwise extension of F is as required.
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Remark 2.1. If E(V (x+ 〈ξ, Y 〉)|H) is almost surely finite then, by concavity,
we get an almost surely continuous version from the above proposition.

Proposition 2.2. Let x > 0, ξ ∈ Ξx. Let ξ̂(ω) be the orthogonal projection
of ξ(ω) on the subspace D(ω). Then ξ̂ ∈ Ξx. Furthermore,

E(V (x+ 〈ξ̂, Y 〉)|H) = E(V (x+ 〈ξ, Y 〉)|H),

almost everywhere.

Proof. To check that
x+ 〈ξ̂, Y 〉 ≥ 0 a.s. (2.4)

we proceed as follows: take a regular version µ(dx, ω) of P (Y ∈ dx|H). Notice
that for almost all ω:

supp µ(·, ω) ⊂ D(ω), µ({y : x+ 〈ξ(ω), y〉 ≥ 0}, ω) = 1,

so necessarily
µ({y : x+ 〈ξ̂(ω), y〉 ≥ 0}, ω) = 1,

which shows (2.4). For the rest of this technical proof we refer to Proposition
4.6 of [7].

Lemma 2.1. Let us fix x0 > 0. There exists a H-measurable random variable
K = K(x0) > 0 such that for any x ≤ x0 and ξ ∈ Ξx satisfying ξ ∈ D we
have |ξ| ≤ K almost surely.

Proof. Indeed, we know from (2.1) that if |ξ| > x0/δ then necessarily for any
x ≤ x0

P (x+ 〈ξ, Y 〉 < 0|H) ≥ κ > 0,

which means that ξ /∈ Ξx, hence we may set K := x0/δ.

When showing the existence of an optimal strategy we will use a Fatou-
lemma argument for which we need the two lemmata below.

Lemma 2.2. Let V : (0,∞) → R be a concave nondecreasing function such
that V (1) ≥ 0. Then for all x > 0 and λ ≥ 1

V +(λx) ≤ 2λ[V +(x) + V (2)].

Proof. First let us suppose x ≥ 2. In this case

V +(λx) = V (λx) ≤ V (x) + V ′(x)(λx− x) ≤

V (x) +
V (x)− V (1)

x− 1
x(λ− 1) ≤ V (x) + 2(λ− 1)(V (x)− V (1)) ≤

2λV (x),
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where we used the concavity and the inequalities x ≥ 2 and V (x) ≥ V (1) ≥ 0.
For x < 2 by monotonicity

V +(λx) ≤ V (2λ) ≤ 2λV (2).

Putting these estimations together, we get, for any x > 0, that

V +(λx) ≤ 2λmax{V (2), V +(x)} ≤ 2λ[V +(x) + V (2)],

as desired.

Lemma 2.3. Fix x > 0. There exists a nonnegative random variable L such
that for any ξ ∈ Ξx, ξ ∈ D

V +(x+ 〈ξ, Y 〉) ≤ L, E(L|H) <∞ a.s. (2.5)

Proof. Take the random set M(ω, x) of Proposition 4.2 and its linear span
R(ω, x), see Proposition 4.3. It suffices to carry out the majoration separately
on the sets

Ak := {ω : dim R(ω) = k} ∈ H, 0 ≤ k ≤ d,

i.e. finding Lk such that

V +(x+ 〈ξ, Y 〉)IAk
≤ Lk, E(Lk|H) <∞.

The case k = 0 being trivial we may and will suppose that dim R = m ≥ 1
is a fixed constant. Let the Rd-valued random variables ζj , 1 ≤ j ≤ m, be
such that they form a (random) orthonormal bases of R, almost surely. Define
W := {−1,+1}m and introduce the vectors

θi :=
m∑
j=1

i(j)ζj , i ∈W.

It is clear from Lemma 2.1 that M(x) is contained in the m-dimensional cube
with edges Kθi, i ∈ W , almost surely. As a linear function defined on a
polyhedral set attains its maximum on the extreme points, we immediately
have for all selectors ξ ∈M(x), i.e. for any ξ ∈ Ξx, ξ ∈ D

x+ 〈ξ, Y 〉 ≤
∨
i∈W

(x+K〈θi, Y 〉) a.s.

So by monotonicity

V (x+ 〈ξ, Y 〉) ≤
∨
i∈W

V (x+K〈θi, Y 〉) a.s.

Thus,
V +(x+ 〈ξ, Y 〉) ≤

∑
i∈W

V +(x+K〈θi, Y 〉) a.s. (2.6)
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The relative interior ri M is also a random set by Proposition 4.3. Let ρ be
an H-measurable selector of ri M . Then the projection on Ω of each set

Bi := {(ω, a) ∈ Ω × (0, 1] : ρ+ a(Kθi − ρ) ∈M(x)} ∈ H⊗B((0, 1]), i ∈W,

is of full measure. Hence Bi admit H-measurable selectors ψi. Now Lemma
2.2 implies that

V +(x+K〈θi, Y 〉) = V +(x+ 〈ρ, Y 〉+ 〈Kθi − ρ, Y 〉) ≤ (2.7)

2
1
ψi
[V +(ψi(x+ 〈ρ, Y 〉) + ψi〈Kθi − ρ, Y 〉) + V (2)] ≤

2
ψi
[V +(x+ 〈ρ, Y 〉+ 〈ψi(Kθi − ρ), Y 〉) + V (2)], i ∈W.

where we used Lemma 2.2, monotonicity of V , ψi ≤ 1 and ρ ∈ Ξx. Define

L := 2
∑
i∈W

1
ψi
[V +(x+ 〈ρ, Y 〉+ 〈ψi(Kθi − ρ), Y 〉) + V (2)].

As ψi is chosen in such a manner that

ρ+ ψi(Kθi − ρ) ∈M(x), i ∈W,

we have, using (2.3)

E(L|H) = 2
∑
i∈W

1
ψi
E(V +(x+ 〈ρ, Y 〉+ 〈ψi(Kθi − ρ), Y 〉)|H)+

+2m+1E(V (2)|H) <∞.

The bounds (2.6) and (2.7) imply (2.5).

Now a regular version of the essential supremum is shown to exist.

Proposition 2.3. There is a function G : [0,∞) × Ω → R ∪ {−∞} which is
a version of

ess. sup
ξ∈Ξx

E(V (x+ 〈ξ, Y 〉)|H)

for each fixed x ∈ [0,∞); nondecreasing, concave, continuous on [0,∞) and
finite valued for x ∈ (0,∞), for almost all ω.

Proof. Take a version G(q, ω) of the essential supremum, for q ∈ Q+. As
0 ∈ Ξx for all x, E(V (x + 〈ξ, Y 〉)|H) is almost surely finite-valued for each
x ∈ (0,∞). Outside a P -null set the monotonicity and convexity relations

G(q1) ≤ G(q2), if q1 ≤ q2, G

(
1
2
(q1 + q2)

)
≥ G(q1) +G(q2)

2
, q1, q2 ∈ Q+,
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hold, hence on a set of probability one we may extend G by monotonicity to
a nondecreasing concave function on (0,∞) which is finite-valued (and hence
continuous).

Take any x ∈ (0,∞) and two sequences of rationals qn ↗ x, rn ↘ x. As
for y ≤ z the relation Ξy ⊆ Ξz holds, we get that

ess. sup
ξ∈Ξx

E(V (x+ 〈ξ, Y 〉)|H) ≥ lim sup
n

G(qn) = G(x),

ess. sup
ξ∈Ξx

E(V (x+ 〈ξ, Y 〉)|H) ≤ lim inf
n

G(rn) = G(x),

showing that G(x) is a version of the essential supremum for each x ∈ (0,∞).
By construction G(0) is a version of the essential supremum at x = 0, so it
remains to check the continuity of G at zero, i.e. the equality

lim
l→∞

ess. sup
ξ∈Ξ1/l

E(V (1/l + 〈ξ, Y 〉)|H) = ess. sup
ξ∈Ξ0

E(V (〈ξ, Y 〉)|H). (2.8)

The limit exists by monotonicity on a set of probability one and certainly
greater than or equal to the right-hand side above. The particular structure
of the family whose essential supremum is taken guarantees that for each l ∈ N
there exists ηl ∈ Ξ1/l such that

|ess. sup
ξ∈Ξ1/l

E(V (1/l + 〈ξ, Y 〉)|H)− E(V (1/l + 〈ηl, Y 〉)|H)| ≤ 1/l a.s.

We may supppose ηl ∈ D by Proposition 2.2. Then Lemmata 2.1 and 4.1
imply that a random subsequence ηlk exists such that ηlk → η̃ a.s., as k →∞
and η̃ ∈ ∩x>0Ξ

x = Ξ0. The continuity of V , Lemma 2.3 and the Fatou lemma
guarantee that

lim
k→∞

E(V (1/lk + 〈ηlk , Y 〉)|H) ≤ E(V (〈η̃, Y 〉)|H) ≤ ess. sup
ξ∈Ξ0

E(V (〈ξ, Y 〉)|H),

hence assertion (2.8) follows.

We construct a sequence of strategies converging to the optimal value for
all x ∈ (0,∞).

Lemma 2.4. There exist B(R+)⊗H-measurable functions ξn(x, ω) and suit-
able versions Gn(x, ω) of

E(V (x+ 〈ξn(x), Y 〉)|H),

such that outside a fixed P -null set we have for all x ∈ (0,∞)

lim
n→∞

Gn(x) = G(x), (2.9)

and the limit is attained in a nondecreasing way.
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Proof. It suffices to prove this for x ∈ [1, 2); in an analogous way we get
sequences ξn for all the intervals [n, n+1), [1/(n+1), 1/n), n ∈ N, and then
by ”pasting together” we finally get an approximation along all the positive
axis.

Fix a version G(·, ω) of the essential supremum given by Proposition 2.3.
First notice that, for fixed x ∈ (0,∞), the family of functions

E(V (x+ 〈ξ, Y 〉)|H), ξ ∈ Ξx, (2.10)

is directed upwards, so there is a sequence ηn(x) ∈ Ξx such that

lim
n→∞

↑ E(V (x+ 〈ηn(x), Y 〉)|H) = ess. sup
ξ∈Ξx

E(V (x+ 〈ξ, Y 〉)|H),

almost surely. Let us fix such a sequence for each dyadic rational q ∈ [1, 2).
Now set

ξ0(x, ω) := 0.

Let us suppose that ξ0, . . . , ξn−1 have been defined, as well as ξn(x, ω) for
x ∈ [1, 1 + k/2n) for some 0 ≤ k ≤ 2n − 1. If k = 0 we set ξn(x, ω) := κ0n for
x ∈ [1, 1 + 1/2n), where κ0n is chosen such that

E(V (1 + 〈κ0n, Y 〉)|H)
≥ E (V (1 + 〈ξn−1(1), Y 〉) |H) ∨ E (V (1 + 〈ηn(1), Y 〉) |H) .

If 1 ≤ k ≤ 2n − 1 we set

ξn(x, ω) := κkn(ω), x ∈
[
1 +

k

2n
, 1 +

k + 1
2n

)
,

where κkn ∈ Ξ1+k/2n is chosen in such a way that almost everywhere

E(V (1 + k/2n + 〈κkn, Y 〉)|H) ≥ ukn ∨ vkn ∨ wk
n. (2.11)

Here we use the notations

ukn := E

(
V

(
1 +

k

2n
+
〈
ξn

(
1 +

k − 1
2n

)
, Y

〉) ∣∣∣H) ,
vkn := E

(
V

(
1 +

k

2n
+
〈
ηn

(
1 +

k

2n

)
, Y

〉) ∣∣∣H) ,
wk
n := E

(
V

(
1 +

k

2n
+
〈
ξn−1

(
1 +

k

2n

)
, Y

〉) ∣∣∣H) .
This is possible, as the family (2.10) is directed upwards and Ξy ⊆ Ξz for
y ≤ z. The latter fact implies also that actually κkn ∈ Ξy for y from the
interval [1 + k/2n, 1 + (k + 1)/2n), so ξn(x) ∈ Ξx for all x ∈ [1, 2).

Using Propositions 2.1 and 2.3 as well as (2.11) it is easy to see that there
is a P -null set N such that outside this set G(·, ω) is continuous and suitable
versions Gn(·, ω) of
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E(V (x+ 〈ξn(x), Y 〉)|H)(ω)
are nondecreasing and continuous on subintervals of the form [1 + k/2n, 1 +
(k + 1)/2n), 0 ≤ k ≤ 2n − 1, for all n ∈ N. By the definitions of ηn(x) and
ξn(x) we see immediately that (outside another P -null set N ′) for all dyadic
rationals q ∈ [1, 2)

G(q) = lim
n→∞

↑ Gn(q).

Consequently, outside N ∪N ′ the sequence Gn(x) is nondecreasing in n, for
all x ∈ [1, 2). For any x ∈ [1, 2) and dyadic rationals q1 < x < q2,

Gn(q1) ≤ Gn(x) ≤ Gn(q2)

outside N , so necessarily

G(q1) ≤ lim inf
n

Gn(x) ≤ lim sup
n

Gn(x) ≤ G(q2),

outside N ∪ N ′. The function G being continuous at x, we get almost sure
convergence to G in all points x ∈ [1, 2).

The following lemma contains the actual construction of the one-step op-
timal strategy.

Lemma 2.5. There exists a B(R+)⊗H-measurable function ξ̃(x, ω) such that
for each x ∈ (0,∞)

E(V (x+ 〈ξ̃(x), Y 〉)|H) = ess. sup
ξ∈Ξx

E(V (x+ 〈ξ, Y 〉)|H).

Proof. It suffices to prove this, e.g., when x ∈ [1, 2), then one can ”paste
together” the optimal strategy for x ∈ (0,∞). We take an approximating
sequence ξn as provided by Lemma 2.4, then change to the projections ξ̂n
figuring in Proposition 2.2. Using Proposition 2.1 and the structure of the
approximating sequence one can see that Gn is a version of

E(V (x+ 〈ξ̂n, Y 〉)|H),

and almost surely

E(V (x+ 〈ξ̂n, Y 〉)|H)→ G(x), for all x ∈ [1, 2).

Then take x0 := 2 and apply Lemma 2.1. It follows that, almost surely,

|ξ̂n(x)| ≤ K(x0), for all x ∈ [1, 2).

Now use Lemma 4.1 to find a random subsequence η̃k := ξ̂nk
of ξ̂n con-

verging to some ξ̃. Apply the Fatou lemma (we shall justify its use in a while):

E(V (x+ 〈ξ̃(x), Y 〉)|H) ≥ lim sup
k→∞

E(V (x+ 〈η̃k(x), Y 〉)|H).
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By the structure of the random subsequence in Proposition 4.1

E(V (x+ 〈η̃k(x), Y 〉)|H) ≥ E(V (x+ 〈ξnk
(x), Y 〉)|H),

so the construction of the approximating sequence in Lemma 2.4 implies that
for all x

E(V (x+ 〈ξ̃(x), Y 〉)|H) ≥ G(x) a.s.

hence by the definition of G

E(V (x+ 〈ξ̃(x), Y 〉)|H) = G(x) a.s.

It remains to check that we were allowed to invoke the Fatou lemma. This
follows from Lemma 2.3, the random variable L figuring there is a suitable
majorant.

Proposition 2.4. The ξ̃ constructed in the proof of Lemma 2.5 is such that
ξ̃(H) ∈ ΞH and

G(H) = E(V (H + 〈ξ̃(H), Y 〉)|H) = ess. sup
ξ∈ΞH

E(V (H + 〈ξ, Y 〉)|H) a.s.,

for any H-measurable [0,∞)-valued random variable H; here G is the function
constructed in Proposition 2.3.

Proof. By the piecewise constant structure of the approximating sequence of
Lemma 2.4 we have that

P (∀x ∀n x+ 〈ξ̂n(x, ω), Y 〉 ≥ 0) = 1.

Random subsequences do not change this, so

P (∀x x+ 〈ξ̃(x, ω), Y 〉 ≥ 0) = 1,

which implies that ξ̃(H) ∈ ΞH .
For the proof of “≤” in the first equality we refer to Proposition 4.10 of

[7]. The left-hand side of the second equality is clearly not greater than the
right-hand side, so we need only to show that for fixed ξ ∈ ΞH we have:

G(H,ω) ≥ E(V (H + 〈ξ, Y 〉)|H) a.s. (2.12)

For step functionsH (2.12) is clearly true. Now for generalH take a decreasing
step-function approximation Hn of H. Then ξ ∈ ΞH ⊆ ΞHn for all n, hence

G(Hn) ≥ E(V (Hn + 〈ξ, Y 〉)|H) a.s.,

the left-hand side converges by path regularity of G, the right-hand side by
monotone convergence, so (2.12) is proved.
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Remark 2.2. Results of the present section may be extended to a slightly more
general setting. We briefly sum up the major modifications.

Let V : [0,∞) × Ω → R ∪ {−∞} be a function such that V (x, ·) is F-
measurable for each x and for almost all ω the function V (·, ω) is nondecreas-
ing, concave and upper semicontinuous. Put

Θ(ω) := 0 ∨ sup{q ∈ Q+ : V (q, ω) = −∞}.
Assume that Θ is a bounded random variable and introduce the random
variable

θ := ess. inf{X : σ(X) ⊂ H, ∃ϕ ∈ Ξ s.t. X + 〈ϕ, Y 〉 ≥ Θ a.s.}.
Redefine ΞH for each H-measurable H ≥ θ as

ΞH := {ξ ∈ Ξ : H + 〈ξ, Y 〉 ≥ Θ a.s.}.
Replace (2.3) by

∀x ∈ [0,∞) ess. sup
ξ∈Ξθ+x

E(V (x+ 〈ξ, Y 〉)|H) <∞

and (2.2) by
V (F ) ≥ 0, (2.13)

where F > 0 is some constant. Otherwise let the notations and hypotheses at
the beginning of this section be valid.

One needs to construct regular versions of

y → E(V (θ + y + 〈ξ, Y 〉)|H), y ≥ x,

for ξ ∈ Ξθ+x in Proposition 2.1.
Proposition 2.2 and Lemma 2.1 remain almost unchanged except for re-

placing Ξx by Ξx+θ. The estimation of Lemma 2.2 is slightly modified due to
(2.13), Lemma 2.3 remains practically the same.

Instead of Proposition 2.3 one has to establish the following:
Proposition 2.5. There is a function G : [0,∞)×Ω → R∪ {−∞} such that
G(θ + y) is a version of

ess. sup
ξ∈Ξθ+y

E(V (θ + y + 〈ξ, Y 〉)|H)

for each fixed y ∈ [0,∞); G(x, ω) = −∞ if x < θ(ω), G(·, ω) is a nondecreas-
ing, concave, continuous function on [θ(ω),∞) and finite-valued on (θ(ω),∞),
for almost all ω.

In Lemma 2.4 the approximating sequence should be constructed on the
random interval (θ,∞). Then along the same arguments we finally get:

Proposition 2.6. There exists a B(R) ⊗ H-measurable function ξ̃ such that
for any H-measurable random variable H ≥ θ we have ξ̃(H) ∈ ΞH and

G(H) = E(V (H + 〈ξ̃(H), Y 〉)|H) = ess. sup
ξ∈ΞH

E(V (H + 〈ξ, Y 〉)|H),

almost surely.
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3 Dynamic programming

From now on we suppose that

U(1) = 0. (3.1)

This is to assure (2.2), which plays a role in Lemma 2.2. Obviously there is no
loss of generality here: by adding a constant to the utility function one may
always have (3.1) without changing the optimal strategy.

Define by recursion the following random functions. The existence of the
conditional expectations will be shown in Proposition 3.1 below. Set

UT (x, ω) := U(x), x ∈ [0,∞), ω ∈ Ω, (3.2)

and, for t < T ,

Ut(x, ω) := ess. sup
ξ∈Ξx

t

E(Ut+1(x+ 〈ξ,∆St+1〉)|Ft)(ω), x ∈ [0,∞), ω ∈ Ω;

(3.3)
later on we shall omit the dependence on ω in notations. Set Ut(x) := −∞,
x < 0.

Proposition 3.1. The functions Ut, 0 ≤ t ≤ T , have versions which are
almost surely nondecreasing, concave and continuous on [0,∞), finite-valued
on (0,∞) and

Ut(1) ≥ 0, 0 ≤ t ≤ T, (3.4)
ess. sup

ξ∈Ξx
t−1

E(Ut(x+ 〈ξ,∆St〉)|Ft−1) <∞, x ∈ [0,∞), 1 ≤ t ≤ T, (3.5)

where the expectations are well-defined. There exist B(R+) ⊗ Ft-measurable
functions ξ̃t+1, 0 ≤ t ≤ T − 1, such that for all x ∈ (0,∞)

Ut(x, ω) = E(Ut+1(x+ 〈ξ̃t+1(x),∆St+1〉)|Ft). (3.6)

Proof. Going backwards from T to 0, we apply Lemma 2.5 with V := Ut,
H = Ft−1, D := Dt, Y := ∆St.

We need to verify the conditions of Section 2: D is a random subspace by
Propositions 1.1 and 4.1; (2.1) follows from (1.6); (2.2) and (2.3) will come
from (3.4) and (3.5). We will check (3.4) and (3.5) in a little while.

Expectations exist by (2.3), a good version for Ut is provided by Proposi-
tion 2.3. Denote the resulting ξ̃ of Lemma 2.5 by ξ̃t, 1 ≤ t ≤ T ; it certainly
satisfies (3.6).

It remains to establish (3.4) and (3.5). The first statement is true, since

Ut(x) ≥ E(Ut+1(x)|Ft) ≥ · · · ≥ E(UT (x)|Ft) = U(x), (3.7)

and U(1) = 0 by Assumption 1.1. As to the second statement, it holds for
t = T by (1.5). For t = T − 1 consider
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UT−1(x+ 〈ξ,∆ST−1〉) =
E(UT (x+ 〈ξ,∆ST−1〉+ 〈ξ̃T−1(x+ 〈ξ,∆ST−1〉),∆ST 〉)|FT−1),

so the statement holds by (1.5) again. For other values of t the notation gets
more and more complicated but the same argument applies.

Now set ϕ∗1(c) := ξ̃1(c) and define recursively:

ϕ∗t+1(c) := ξ̃t+1(c+
t∑

j=1

〈ϕ∗j ,∆Sj〉), 1 ≤ t ≤ T − 1.

Joint measurability of ξ̃t assures that ϕ∗ = ϕ∗(c) is a predictable process
with respect to the given filtration.

Proposition 3.2. We have ϕ∗ ∈ A(c) and for any strategy ϕ ∈ A(c)

E(U(V c,ϕ
T )|F0) ≤ E(U(V c,ϕ∗

T )|F0) = U0(c). (3.8)

Proof. Notice that ϕ∗t ∈ Ξt−1(V
c,ϕ∗

t−1 ), so ϕ∗ ∈ A(c). Remembering UT = U
and using Proposition 2.4, we may rewrite the right-hand side of (3.8) as
follows:

E(UT (V
c,ϕ∗

T )|F0) = E(E(UT (V
c,ϕ∗

T−1 + 〈ϕ∗T ,∆ST 〉)|FT−1)|F0) =
= E(UT−1(V

c,ϕ∗

T−1 )|F0).

Continuing the procedure, we finally arrive at ϕ∗ ∈ A(c) and

E(U(V c,ϕ∗

T )|F0) = E(U1(V
c,ϕ∗

1 )|F0) = E(U1(c+ 〈ϕ∗1,∆S1〉)|F0) = U0(c).
(3.9)

We remark that all conditional expectations below exist by Proposition 3.1.
By the definition of UT−1 and ϕ ∈ A(c) one has ϕT ∈ ΞT−1(V

c,ϕ
T−1) and

E(UT (V
c,ϕ
T )|FT−1) = E(UT (V

c,ϕ
T−1 + 〈ϕT ,∆ST 〉)|FT−1) ≤ UT−1(V

c,ϕ
T−1) a.s.

Iterate the same argument and obtain

E(U(V c,ϕ
T )|F0) ≤ U0(c) a.s. (3.10)

Putting (3.9) and (3.10) together, one gets exactly (3.8).

Proof (of Theorem 1.1). Proposition 3.2 shows that u(c) = EU0(c) and the
ϕ∗ constructed in the last two sections is a maximizer such that ϕ∗t ∈ Dt.

Remark 3.1.We indicate how Theorem 1.1 can be generalized. Let B ≥ 0 be a
bounded random variable, interpreted as a contingent claim. Define recursively
the superhedging prices as follows:
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πT (B) := B,

πt(B) := ess. inf{X : σ(X) ⊂ Ft, ∃ϕ ∈ Ξt X + 〈ϕ,∆St+1〉 ≥ πt+1(B) a.s.},
for 0 ≤ t ≤ T − 1.

Define for c > π0(B)

A(B, c) := {ϕ ∈ Φ : V c,ϕ
t ≥ πt(B) a.s., 0 ≤ t ≤ T},

and redefine for each Ft-measurable H ≥ πt(B)

Ξt(H) := {ξ ∈ Ξt : H + 〈ξ,∆St+1〉 ≥ πt+1(B) a.s.}
Theorem 3.1. Suppose that the conditions of Theorem 1.1 hold and F0 is
trivial. Then for all c > π0(B)

u(B, c) := sup
ϕ∈A(B,c)

EU(V c,ϕ
T −B) <∞, (3.11)

and there exists ϕ∗(c) ∈ A(B, c) such that

u(B, c) = EU(V c,ϕ∗(c)
T −B).

Proof. As F0 is trivial, π0(B) is a constant; (3.11) follows from (1.5) and the
boundedness of B. Since B is bounded, by Assumption 1.1 there exists F > 0
such that UT (F ) ≥ 0, and this will remain true for each Ut by (3.7).

Replace (3.2) by

UT (x, ω) := U(x−B(ω)), x ≥ B(ω), UT (x, ω) = −∞, x < B(ω),

set for y ∈ [0,∞)

Ut(πt(B) + y, ω) := ess. sup
ξ∈Ξt(πt(B)+y)

E(Ut+1(πt(B) + y + 〈ξ,∆St+1〉)|Ft),

and
Ut(x, ω) = −∞, x < πt(B)(ω),

instead of (3.3) and follow the argument of this section. Use the extended
setting of section 2 as explained in Remark 2.2. Apparently, Θ, θ will corre-
spond to πt+1(B), πt(B) in the backward induction. The rest of the argument
is essentially unchanged.

4 Auxiliary results

We shall often rely on the measurable selection theorem, see III. 70-73 of [2].
Let H ⊂ F be a σ-algebra containing P -null sets. An H-measurable random
set or measurable multifunction A is an element of H ⊗ B(Rd), where B(Rd)
denotes the Borel sets of Rd. A random affine subspace A is an H-measurable
random set such that A(ω) is an affine subspace of Rd for each ω.

Let Y be a d-dimensional random variable and µ(·, ω) := P (Y ∈ ·|H) a
regular version of its conditional distribution. Let D(ω) be the smallest affine
subspace of Rd containing the support of µ(·, ω).



On the Existence of Optimal Portfolios 605

Proposition 4.1. D is an H-measurable random affine subspace.

Proof. We begin by showing that supp µ(·, ω) or, equivalently, its complement
suppCµ(·, ω) is a random set. Let G be a countable base for the topology of
Rd. Then

suppCµ(·, ω) :=
⋃
{G ∈ G : µ(G,ω) = 0},

which proves the assertion. Actually, Z(ω) := conv(suppµ(·, ω)) is a random
set, where conv(·) denotes closed convex hull, this follows from Theorem III.
40 on p. 87 of [1].

Take a measurable selector ν(ω) of Z(ω); Z − Z contains the origin in its
relative interior and[⋃

n∈N

{nz : z ∈ Z(ω)− Z(ω)}
]
+ ν(ω),

equals D(ω), which proves the proposition.

Proposition 4.2. Fix x > 0. There existsM(x) ∈ H⊗B(Rd) which is convex,
compact (a.s.) and

ξ ∈ Ξx and ξ ∈ D a.s. ⇐⇒ ξ ∈M(x) a.s.

Proof. Take a sequence of H-measurable random variables σi such that for
almost all ω the sequence σi(ω), i ∈ N, is dense in suppµ(·, ω). Such a sequence
exists by Theorem III. 22 on p. 74 of [1]. Define the convex closed random set

M̃(x) :=
⋂
i∈N

{(ω, p) : x+ 〈p, σi(ω)〉 ≥ 0}.

The following series of equivalences is clear:

ξ ∈ Ξx ⇐⇒ P (x+ 〈ξ, Y 〉 ≥ 0) = 1 ⇐⇒ P (x+ 〈ξ, Y 〉 ≥ 0|H) = 1, a.s.

⇐⇒ µ({y ∈ Rd : x+ 〈ξ(ω), y〉 ≥ 0}, ω) = 1 a.s. ⇐⇒
{y ∈ Rd : x+ 〈ξ(ω), y〉 ≥ 0} ⊇ suppµ(·, ω) a.s. ⇐⇒

{y ∈ Rd : x+ 〈ξ(ω), y〉 ≥ 0}σi(ω) a.s., i ∈ N,

and this last one means precisely ξ ∈ M̃(x) a.s. Define M(x) := M̃(x) ∩ D.
The argument of Lemma 2.1 implies that M(x) is compact, almost surely, so
M(x) is as desired.

Let ri M(x, ω) denote the relative interior of M(x, ω) and let R = R(x, ω)
denote the linear span of M(x, ω).

Proposition 4.3. Both ri M(x) and R(x) are H-measurable random sets.
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Proof. The set M −M contains zero in its relative interior, hence

R =
⋃
n∈N

{nz : z ∈M −M}

and this is indeed a random set. Take H-measurable random variables
ζi(ω), 1 ≤ i ≤ d, which are orthogonal and generate R(x) (some of them
might be 0), this follows easily from the measurable selection theorem. The
function

[dim R(x)](ω) :=
d∑

j=1

I{ζj �=0}(ω)

is H-measurable. It suffices to prove the proposition separately on the events

{ω : dim R(x, ω) = m} ∈ H,

for each m ≤ d. The case m = 0 is trivial, so we suppose, without loss of
generality, that dim R(x, ω) = m ≥ 1 for a fixed m. We may assume that
ζi(ω), 1 ≤ i ≤ m is an orthonormed basis of R(x, ω).

The interior points are precisely those, around which a little cube can
be drawn in R(x) which still belongs to M(x). As M(x) is convex, this is
equivalent to the fact that the edges of that cube belong to M(x). Hence

ri M(x) =
⋃
n∈N

(ω, p) : p+ 1
n

m∑
j=0

i(j)ζj(ω) ∈M(ω, x), ∀i ∈ {−1,+1}m
 ,

which is clearly a measurable multifunction.

Lemma 4.1. Let a, b ∈ R, a < b. Let ηn : [a, b] × Ω → Rd be a sequence of
B([a, b])⊗H-measurable functions such that for almost all ω

∀x lim inf
n→∞

|ηn(x, ω)| <∞.

Then there is a sequence nk of B([a, b]) ⊗ H-measurable N-valued functions,
nk < nk+1, k ∈ N, such that η̃k(x, ω) := ηnk

(x, ω) converges for all x to
some η̃(x, ω) as k →∞, for almost all ω. To put it more concisely, there is a
convergent random subsequence.

Proof. This is just a variant of Lemma 2 in [5].

5 Conclusions

Finally, we present a concrete model class where there exists an optimal in-
vestment strategy. Let W denote the family of random variables with finite
moments of all orders.
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Proposition 5.1. Let U satisfy Assumption 1.1. Let |St| ∈ W, 0 ≤ t ≤ T ,
and supppose that (1.6) holds with 1/βt ∈ W, 0 ≤ t ≤ T −1. Then (1.5) holds
and the assertion of Theorem 1.1 is true.

Proof. For notational simplicity let ξ∆St denote scalar product. We shall show
by backward induction that there exists Jt ∈ W such that

Ut(x) ≤ Jtx <∞, x ∈ (0,∞), 0 ≤ t ≤ T.

Indeed, for t = T this is true with JT := U ′(1). Now suppose that this
statement has been established for s ≥ t+ 1. Proposition 2.2 and Lemma 2.1
imply that

ess. sup
ξ∈Ξx

t

E(Ut+1(x+ ξ∆St+1)|Ft) = ess. sup
ξ∈Ξx

t ,ξ∈Dt+1

E(Ut+1(x+ ξ∆St+1)|Ft)

≤ E(Ut+1(x+ |∆St+1|x/βt)|Ft) ≤ E(Jt+1x+ Jt+1x|∆St+1|/βt|Ft),

so we may set Jt := E(Jt+1(1 + |∆St+1|/βt)|Ft). Finally we arrive at the
bound U0(x) ≤ J almost surely, where J ∈ W so we get for all x > 0

u(x) = EU0(x) <∞,

i.e. (1.5) holds true. The proof of Theorem 1.1 shows that there exists an
optimal ϕ∗.

Remark 5.1. The previous proposition applies, in particular, when βt = β is a
deterministic constant. The hypothesis that (1.6) holds with deterministic β
is called uniform no-arbitrage condition. This assumption has been introduced
in [8].

Remark 5.2. One may consider concave nondecreasing functions U : R → R.
Under (NA), (1.5) and additional hypotheses on U there exists an optimal
strategy in Φ, see [7]. We may also look at “tame” portfolios, i.e. ϕ such that
there exists a ∈ R satisfying

V c,ϕ
t ≥ a a.s., 0 ≤ t ≤ T. (5.1)

Theorem 1.1 of the present paper immediately implies that (under (NA) and
(1.5)) there exists an optimal strategy among ϕ satisfying (5.1) with a fixed a.
It is an intriguing question under what kind of conditions there is an optimal
control among all tame strategies.

References

1. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lec-
ture Notes in Mathematics, 580, Springer, Berlin, 1977.
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1 Introduction

The main goal of this paper is to present a unified recursive approach to the
following two related but nevertheless different problems.

Problem 1. Find the solution f of the discrete Poisson equation

f = c+ Pf, (1.1)

where Pf(x) =
∑

y p(x, y)f(y) is the averaging operator, defined by a transi-
tion matrix P , and c is a given function defined on a countable or finite state
space X.

Problem 2. Solve the problem of optimal stopping (OS) for a Markov
chain (MC) with an immediate reward (one-step cost) function c and a ter-
minal reward function g. This means to describe an optimal strategy (or
ε-optimal strategies if there is no optimal strategy), and to find the value
function v, which is the minimal solution of the corresponding Bellman (op-
timality) equation
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v = max(g, c+ Pv). (1.2)

The main tool to study these problems in this article is the recursive algo-
rithm for Problem 2, which we call the Elimination algorithm (EA), described
in the papers [12] and [13] by the author (see also [11]). We present EA here in
a modified form, and we prove also a new important Lemma 3. We limit our
presentation to the case of a finite state space though one of the advantages
of our approach is that in many cases it can be applied also to the countable
state space. This algorithm is better understood in the context of a group
of algorithms which are based on a similar idea and can be called the State
Reduction algorithms. We will refer to this idea as the State Reduction (SR)
approach. Problem 1 was analyzed on the basis of this approach in Sheskin
(1999) [8], see also the references there to the earlier works of Kohlas (1986)
and Heyman and Reeves (1989).

Note, that formally, Problem 1 can be considered as a special case of
Problem 2 when g(x) = −∞ but we will treat them separately. We start with
Problem 2.

The author would like to thank Robert Anderson who read the first version
of this paper and made valuable comments.

2 Optimal stopping of a MC

The optimal stopping problem (OSP) is one of the most developed and exten-
sively studied fields of stochastic control. There are two different approaches
to OSP, usually called “the martingale theory of OSP of general stochastic se-
quences (processes)” (formulated by Snell) and “the OSP of Markov chains”.
The first one is is exposed in the well-known monograph by Chow, Robbins
and Sigmund (1971) [2] (see also the book of T. Ferguson on his website for
a modern presentation). The second approach is due to Albert Shiryaev is
presented in his classical books (1969, 1978), [9], [10]. (See also Dynkin and
Yushkevich (1969), [4]). There are also dozens of books and monographs with
chapters or sections on OSP, see, e.g. [1], [7], and more than a thousand pa-
pers on this topic. These two approaches basically represent nonstationary
and stationary (nonhomogeneous versus homogeneous) situations and though
formally they are equivalent, the second approach is more transparent for
study and discussion.

Formally, OSP of MC is specified by a tuple M = (X,P, c, g, β), where
X is a finite (countable) state space, P = {p(x, y)} is a transition matrix,
c(x) is a one step-cost function, g(x) is a terminal reward function, and β is a
discount factor, 0 < β ≤ 1.We call such a model an OS model. A tuple without
the terminal reward, M = (X,P, c, β), we call a reward model, and a tuple
M = (X,P ), we call a Markov model. A Markov chain (MC) from a family of
MCs defined by a Markov model is denoted by (Zn). The probability measure
and the expectation for the Markov chain with initial point x are denoted by
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Px and Ex, respectively. The value function v(x) for an OS model is defined
as v(x) = supτ≥0Ex[

∑τ−1
i=0 β

ic(Zi) + βτg(Zτ )], where the sup is taken over
all stopping times τ ≤ ∞. If τ =∞ with positive probability we assume that
g(Z∞) = 0.

It is well-known that the discounted case can be treated as not discounted
if an absorbing point x∗ and new transition probabilities are introduced:
pβ(x, y) = βp(x, y) for x, y ∈ X, pβ(x, x∗) = 1 − β, pβ(x∗, x∗) = 1. In other
words, with probability β the Markov chain ”survives” and with complimen-
tary probability it transits to an absorbing state x∗. Further we will assume
that this transformation is made and we skip the superscript β. More than
that, all subsequent results are valid if the constant β is replaced by a function
β(x), 0 ≤ β(x) ≤ 1, the probability of ”survival”, β(x) = Px(Z1 �= x∗). We
will also assume that c(x∗) = g(x∗) = 0.

Let Pf(x) be the averaging operator and let Ff(x) = c(x)+Pf(x) be the
reward operator. If G ⊆ X, let us denote by τG the moment of the first visit
to G, i.e., τG = min(n ≥ 0 : xn ∈ G). The following statement is the main
result for OSP with finite and countable X.

Theorem 1. (Shiryaev, [9]) (a) The value function v(x) is the minimal
solution of Bellman (optimality) equation (2), i.e. the minimal function sat-
isfying the inequalities v(x) ≥ g(x), v(x) ≥ Fv(x) for all x ∈ X;

(b) v(x) = limn vn(x), where vn(x) is the value function for the OSP on
a finite time interval of length n;

(c) for any ε > 0 the random time τε = min{n ≥ 0 : g(Zn) ≥ v(Zn)−ε)},
is an ε-optimal stopping time;

(d) if Px(τ0 < ∞) = 1 then τ0 = min{n ≥ 0 : g(Zn) = v(Zn)} is an
optimal stopping time;

(e) if the state space X is finite then set S = {x : g(x) = v(x)} is not
empty and τ0 is an optimal stopping time.

The classical tools to solve the OSP of a MC are: the direct solution of
the Bellman equation, which is possible only for very specific MCs; the value
iteration method based on the equality v(x) = limn vn(x), mentioned in the
item (b) of Theorem 1; and for finite X, the value function v(x) can be found
as the solution of a linear programming problem. See also the paper of Davis
and Karatzas [3].

The Elimination Algorithm (EA) solves the finite space OS problem in
no more than |X| steps, and allows us also to find the distribution of MC
at the moment of stopping in the optimal stopping set S, and the expected
number of visits to other states before stopping. Using the EA we also can
prove in a new and shorter way Theorem 1. As a byproduct we also obtain a
new recursive way to solve the Poisson equation. It works also for many OSP
with countable X.

Before describing the EA in Section 4, in the next section we describe a
more general framework of the State Reduction (SR) approach. This is a brief
version of a section from ([13]).
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3 Recursive calculation of the MC characteristics and
the SR approach

Let M1 = (X1, P1) be a Markov model and let D ⊂ X1, X2 = X1 \ D.
Let (Zn) be a Markov chain specified by the model M1 with the starting
point x ∈ X2. We introduce the sequence of Markov times τ0, τ1, ..., τn, ..., the
moments of zero, first, and so on, visits of (Zn) to the set X2 = X1 \D, i.e.
τ0 = 0, τn+1 = min{k > τn : Zk ∈ (X1\D)}, 0 < τ1 < ... Let us consider
the random sequence Yn = Zτn , n = 0, 1, 2, ... For the sake of brevity we
assume that τn <∞ for all n = 0, 1, 2, ... with probability one. Otherwise we
can complement X2 by an additional absorbing point x∗ and correspondingly
modify the transition probabilities participating in Lemma 1. Let us denote
by u1(z, ·) the distribution of the Markov chain (Zn) for the initial model M1

at the moment τ1 of the first visit to set X2 (the first exit from D) starting
at z ∈ D. The strong Markov property and standard probabilistic reasoning
imply the following basic lemma of the SR approach:

Lemma 1. (Kolmogorov, Doeblin) (a) The random sequence (Yn) is a
Markov chain in a model M2 = (X2, P2), where

(b) the transition matrix P2 = {p2(x, y)} is given by the formula

p2(x, y) = p1(x, y) +
∑
z∈D

p1(x, z)u1(z, y), (x, y ∈ X2). (3.1)

Part (a) is immediately implied by the strong Markov property for (Zn), while
the proof of (b) is straightforward. Formula (3.1) can be represented in the
matrix form (see, e.g., [6]). If the matrix P1 is decomposed as

P1 =
[
Q1 T1
R1 P

′
1

]
, (3.2)

where sub-stochastic matrix Q1 describes the transitions inside of D,P ′1 de-
scribes the transitions inside of X2 and so on, then

P2 = P ′1 +R1U1 = P ′1 +R1N1T1. (3.3)

In this formula U1 is the matrix of distribution of an MC at the moment of
the first exit from D (exit probabilities matrix), and N1 is the fundamental
matrix for the sub-stochastic matrix Q1, i.e.

N1 =
∞∑
n=0

Qn
1 = (I −Q1)−1, (3.4)

where I is the |D| × |D| identity matrix. Formula (3.4) implies obviously:

N1 = I +Q1N1 = I +N1Q1. (3.5)
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Both equalities in (3.5) have relatively simple probabilistic interpretations.
The first is almost trivial statement while the second recalls the words of Kai
Lai Chung ”Last exit is a deeper concept than first entrance”.

Given the set D, the matrices N1 and U1 are related by the equality

U1 = N1T1. (3.6)

We call model M2 the X2-reduced model of M1. For the sake of brevity
we will call two such models adjacent. An important case is when the set D
consists of one not absorbing point z. In this case formula (3.1) obviously
takes the form

p2(x, ·) = p1(x, ·) + p1(x, z)n1(z)p1(z, ·), (x ∈ X2), (3.7)

where n1(z) = 1/(1− p1(z, z)).

According to this formula, each row-vector of the new stochastic matrix
P2 is a linear combination of two rows of P1 (with the z-column deleted). For
a given row of P2, these two rows are the corresponding row of P1 and the zth

row of P1. This transformation corresponds formally to a step of the Gaussian
elimination method for solving a linear system.

If an initial Markov model M1 = (X1, P1), is finite, |X1| = k, and only
one point is eliminated at each step, then a sequence of stochastic matrices
(Pn), n = 2, ..., k, can be calculated recursively on the basis of formula (3.7), in
which the subscripts ”1” and ”2” are replaced by ”n” and ”n+1” respectively.

This sequence provides an opportunity to calculate many characteristics
of the initial Markov modelM1 recursively starting from some reduced model
Ms, 1 < s ≤ k. For this goal one needs also a relationship between a charac-
teristic in a reduced model and a model with one more point. Sometimes this
relationship is obvious or simple, sometimes it has a complicated structure.

The EA algorithm for the problem of optimal stopping (OS) of a Markov
chain was developed independently of other SR algorithms and shares with
them the common idea of elimination. It also has very distinct specific fea-
tures. The number of points to be eliminated and the order in which they are
eliminated depend on some auxiliary procedure, and the value function of the
problem is recovered on the second stage.

For the problem of OS it is natural to try to find not only the optimal
stopping set but as well the distribution of the stopping moment and the
distribution of a MC at the moment of stopping. The next lemma provides
tools for the sequential calculation of these characteristic.

Lemma 2. (Lemma 3 in ([13])). Let the models M1,M2 be defined as in
Lemma 1 and let G ⊂ X2 = X1 \ D,. Let ui(x, ·) be the distribution of the
Markov chain (Zn) for the model Mi at the moment of the first visit to G in
the model Mi, i = 1, 2, and let mi(x, v) be the mean time spent at point v
till such a visit with an initial point x ∈ X2 \G. Then for any x ∈ X2
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u1(x, y) = u2(x, y), y ∈ G, (3.8)
m1(x, v) = m2(x, v), v ∈ X2 \G. (3.9)

4 The Elimination Algorithm

The Elimination algorithm for the OSP of a MC is based on the three following
facts.
1. Though in the OSP it may be difficult to find the states where it is

optimal to stop, it is easy to find a state (states) where it is optimal not to
stop. Obviously, it is optimal to stop at z if g(z) ≥ c(z)+Pv(z) ≡ Fv(z), but
v is unknown until the problem is solved. On the other hand, it is optimal
not to stop at z if g(z) < Fg(z), i.e. the expected reward of doing one more
step is larger than the reward from stopping. (Generally, it is optimal not to
stop at any state where the expected reward of doing some, perhaps random
number of steps, is larger than the reward from stopping).
2. After we have found states (state) which are not in the optimal stop-

ping set, we can eliminate them and recalculate the transition matrix using
(3.7) if one state is eliminated or (3.1) if a larger subset of the state space
is eliminated. According to Lemma 2 this will keep the distributions at the
moments of visits to any subset of the remaining states the same and the
excluded states do not matter since it is not optimal to stop there. After that
in the reduced model we can repeat the first step and so on.
3. Finally, though if g(z) ≥ Fg(z) at a particular point z, we can not make

a conclusion about whether this point belongs to the stopping set or not, but
if this inequality is true for all points in the state space then we have the
following well-known statement:

Proposition 1. Let M = (X,P, g) be an optimal stopping problem, and
g(x) ≥ Fg(x) for all x ∈ X. Then X is the optimal stopping set in the problem
M, and v(x) = g(x) for all x ∈ X.

Proposition 1 follows immediately from Theorem 1 because the function
g(x) in this case is its own excessive majorant.

The formal justification of the transition from the initial model M1 to the
reduced modelM2 is given by Theorem 2 below. This theorem was formulated
by the author in [11] and its proof was given in [12] when c(x) = 0 for all
x. Here we prove this theorem in a shorter way and for any c(x) but, for
simplicity, only for the case of finite X.

Let us introduce a transformation of the cost function c1(x) (or any func-
tion f(x)) defined on X1 into the cost function c2(x) defined on X2, under
the transition from model M1 to model M2.

Given the set D ⊂ X1, let τ be the moment of the first return to X2, i.e.
τ = min(n ≥ 1 : Zn ∈ X2). Then given a function c1(x) defined on X1 let us
define the function c2(x) on X2 by the formula
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c2(x) = Ex

τ−1∑
n=0

c1(Zn) = c1(x) +
∑
z∈D

p1(x, z)
∑
w∈D

n(z, w)c1(w). (4.1)

In other words, the new function c2(x) represents the expected cost (re-
ward) gained by MC starting from the point x ∈ X2 up to the moment of first
return to X2. For a function f(x) defined on X1 and a set B ⊂ X1 we denote
by fB the column-vector function reduced to the set B. Then formula (4.1)
can be written in the matrix form as

c2 = c1,X2 +R1N1c1,D. (4.2)

If the set D = {z} then the function c1(x) is transformed as follows:

c2(x) = c1(x) + p1(x, z)n1(z)c1(z), x ∈ X2. (4.3)

Remark 1. This formula was obtained earlier in Sheskin (1999).

Theorem 2. (Elimination theorem, [12]). Let M1 = (X1, P1, c1, g) be an
OS model, D ⊆ C1 = {z ∈ X1 : g(z) < F1g(z)}. Consider an OS model
M2 = (X2, F2, c2, g) with X2 = X1 \ D, p2(x, y) defined by (3.3), and c2
defined by (4.2). Let S be the optimal stopping set in M2. Then:

a) S is the optimal stopping set in M1 also;
b) v1(x) = v2(x) ≡ v(x) for all x ∈ X2, and for all z ∈ D

v(z) = E1,z[
τ−1∑
n=0

c1(Zn) + v(Zτ )] =
∑
w∈D

n1(z, w)c1(w) +
∑
y∈X2

u1(z, y)v(y),

(4.4)
where u1(z, ·) is the distribution of MC at the moment τ of the first visit
to X2, and N1 = {n1(z, w) : z, w ∈ D} is the fundamental matrix for the
sub-stochastic matrix Q1.

Remark 2. With (3.6) formula (4.4) can be written in the matrix form
as

vD = N1[c1,D + T1vX2 ]. (4.5)

If set D = {z} then formula (4.4) can be written as

v1(z) = n1(z)[c1(z) +
∑
y∈X2

p1(z, y)v(y)]. (4.6)

The EA algorithm can be described as a sequence of steps where each
time a subset of states, that do not belong to the stopping set, is eliminated
until the stopping set is achieved. The selection of these steps in the countable
case is dictated by the structure of the problem and the convenience of the
calculation of matrices U. The algorithm has an especially simple structure if
the state space is finite, and if each time only one state is eliminated.
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Let M1 = (X1, P1, g) be an OSP with finite X1 = {x1, ..., xk} and P1
be a corresponding averaging operator. The implementation of the EA con-
sists of two stages: reduction and backward stages. The first stage, consists
of sequential application of two basic steps. The first is to calculate the dif-
ferences g(xi) − F1g(xi), i = 1, 2, ..., k, until the first state occurs where this
difference is negative. If all differences are nonnegative then by Proposition 1,
g(x) = v(x) for all x and X1 is a stopping set. Otherwise there is a state, let
say z, where g(z) < F1g(z). This implies (by (1.2)) that g(z) < v(z) and hence
z is not in the stopping set. Then we apply the second basic step of EA: we
consider the new, “reduced” model of OSPM2 = (X2, P2, c2, g) with state set
X2 = X1\{z} and transition probabilities p2(x, y), x, y ∈ X2, recalculated by
(3.3). By Theorem 2 this will guarantee that the stopping set in the reduced
model M2 coincides with optimal stopping set in the initial model M1.

Now we repeat both steps in the model M2, i.e. check the differences
g(x) − F2g(x) for x ∈ X2, where F2 is the averaging operator for stochastic
matrix P2, and so on. Obviously, in no more than k steps we shall come to the
model Mm = (Xm, Pm, cm, g), where g (x) − Fmg(x) ≥ 0 for all x ∈ Xm and
therefore Xm is a stopping set in this and in all previous models, including
the initial model M1.

Finally, by reversing the elimination algorithm we can calculate recursively
the values of v(x) for all x ∈ X1, using sequentially formula (4.4) or (4.6),
starting from the equalities v(x) = g(x) for x ∈ S = Xm, where m is the
number of iterations where the reduction stage of the algorithm stops.

In the next section we obtain some useful formulas relating g(·) − Fig(·)
in two adjacent models (Lemma 3). After that we prove Theorems 3 and 4
that serve as a basis for the recursive solution of the Poisson and Bellman
equations and give an opportunity to prove easily Theorems 1 and 2.

5 Recursive solution of the Poisson equation

First we prove Lemma 3 which was not described in the original version of
EA.

Lemma 3. Let M1 and M2 be two adjacent models with state spaces X1
and X2 = X1 \D, where D ⊆ X1, Pi and Fi, i = 1, 2 be the corresponding
averaging and reward operators, where the functions c1 and c2 are related
by (4.2), matrices R1, T1 are as in (3.2) and matrix N1 is the fundamental
matrix for Q1. Let f be the function defined on X1. Then

(f − P2f)X2 = (f − P1f)X2 +R1N1(f − P1f)D, (5.1)

fD = N1[T1fX2 + (f − P1f)D]. (5.2)

A formula similar to (5.1) holds if the operators Pi are replaced by the
operators Fi, i.e.
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(f − F2f)X2 = (f − F1f)X2 +R1N1(f − F1f)D. (5.3)

Remark 3. If the set D = {z}, these formulas take the form (x ∈ X2):

(f − P2f)(x) = (f − P1f)(x) + p1(x, z)n1(z)(f − P1f)(z), (5.4)

f(z) = n1(z)(
∑
y∈X2

p1(z, y)f(y) + f(z)− P1f(z)), (5.5)

(f − F2f)(x) = (f − F1f)(x) + p1(x, z)n1(z)(f − F1f)(z). (5.6)

Proof. Using (3.3) we have for x ∈ X2

P2fX2 = (P ′1 +R1N1T1)fX2 .

Subtracting and adding from the right-hand side R1fD and using (see (3.2))
the trivial equality P1fX2 = R1fD + P ′1fX2 we obtain that

−P2fX2 = −(P1f)X2 +R1[IfD +N1(−T1fX2 +Q1fD −Q1fD]. (5.7)

Formula (3.2) implies that

(P1f)D = Q1f
′
D + T1fX2 . (5.8)

Using this equality, the equality I +N1Q1 = N1 (see (3.5)), and adding f(x)
to both sides of (5.7) we obtain (5.1).

To prove (5.2) note that the equality (5.8) implies that

(I −Q1)fD = T1fX2 + (f − P1f)D. (5.9)

Multiplying both sides of this formula by N = (I −Q)−1 we obtain (5.2).
Using the equality f − Pif = f − Fif + ci, formula (4.2) and the trivial

identity (f + g)B = fB + gB , valid for any B, we immediately obtain (5.3).

Remark 4. Formula (5.6) helps also to organize the recursive steps of the
EA in a more efficient way.

Now we can prove Theorem 3.

Theorem 3. Let M1 and M2 be two adjacent models with state spaces X1
and X2 = X1 \D, where D ⊆ X1, with corresponding averaging operators P1
and P2, and matrices R1, T1, N1. Let c1 be a function defined on X1 = X2∪D,
and c2 be the function defined on X2 by formula (4.2). Then:

(a) if a function f satisfies the equation

f = c1 + P1f ≡ F1f (5.10)

on X1 then its restriction to X2 satisfies the equation

f = c2 + P2f ≡ F2f (5.11)
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and the restrictions fX2 and fD are related by the formula (see (5.2))

fD = N1(T1fX2 + c1,D); (5.12)

(b) if a function f satisfies the equation (5.11) on X2 and at the points
z ∈ D satisfies the equality (5.12) then f satisfies the equation (5.10) on X1.

Proof. Property (a) follows from (5.3) applied to f that satisfying (5.10).
To prove (b) note that (5.12) implies the equality

N−11 fD = T1fX2 + c1,D.

Since N−11 = I − Q1, using (5.8) we obtain that fD = (P1f)D + c1,D , i.e. f
satisfies the equation (5.10) on D. This equality, (5.3), and (5.11) imply (5.10)
on X2. Thus (5.10) holds for all x ∈ X1.
Remark 5. If the set D = {z} then formula (5.12) takes the form

f(z) = n1(z)
[ ∑
y∈X2

p1(z, y)f(y) + c1(z)
]
. (5.13)

Despite its simplicity Theorem 3 immediately provides a new recursive
algorithm to solve the Poisson equation (1.1). Given the equation (5.10), let
us consider a sequence of models Mi = (Xi, Pi, ci), i = 1, ..., k, where Pi and
ci are obtained from P1 and c1 sequentially using correspondingly (3.7) and
(4.2). Then f can be calculated by formula (5.13), i.e.

f(xi) = ni(xi
[ ∑
y∈Xi+1

pi(xi, y)f(y) + c(xi)
]
. (5.14)

Example 1. Let X1 = {1, 2, 3} and transition probabilities are given by
the matrix P1 below. Then the invariant distribution π(1) = 12

35 , π(2) =
14
35

and π(3) = 9
35 . Function c1(x) must satisfy (c, π) = 0, and is defined up to

a constant factor so we can take c1(1) = 3, c1(2) = 2, and c1(3) = − 64
9 . By

eliminating the state 1 we obtain the transition matrix P2 and the function
c2 with c2(2) = 2 + 1

4
3
23 = 25

8 , and c2(3) = − 64
9 + 1

2
3
23 = − 175

36 . Then P3 =
{1}, c3(3) = 0 and we can select f(3) equal to any constant, e.g., f(3) = 0.
Applying formula (5.14) for n = 2, we obtain f(2) = 8

3
25
8 = 25

3 . Applying
formula (5.14) again for n = 1, we obtain f(1) = 3

2 [
1
3
25
3 + 3] = 26

3 . Note that
function f is defined up to an additive constant c. To normalize f, i.e. to make
f satisfy (f, π) = 0, we can set f(1) = 26

3 + c, f(2) = 25
3 + c, f(3) = c and to

find c = − 662
105 . Then, finally f(1) =

248
105 , f(2) =

213
105 , and f(3) = − 662

105 .

P1 =

1
3

1
3

1
3

1
4

1
2

1
4

1
2

1
3

1
6

, P2 =

5
8

3
8

7
12

5
12

.
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6 Recursive solution of the Bellman equation

Now we return to the OSP models Mi = (Xi, Pi, ci, g). First we obtain

Theorem 4. Let M1 and M2 be two adjacent models with state spaces X1
and X2 = X1 \D, where D ⊂ C1 = {z : g(z) ≤ F1g(z)} with corresponding
averaging operators P1 and P2, and matrices R1, T1, N1. Then:

(a) if a function f is a (minimal) solution of the Bellman equation

f = max(g, c1 + P1f) ≡ max(g, F1f) (6.1)

on X1 then its restriction to X2 is a (minimal) solution of the Bellman equa-
tion

f = max(g, c2 + P2f) ≡ max(g, F2f), (6.2)

on X2, f = c1 + P1f on D, and the restrictions fX2 and fD are related by
formula (5.12).

(b) if a function f is a (minimal) solution of Bellman equation (6.2) and
it is defined on D by formula (5.12) then f is a (minimal) solution of (6.1).

Proof. If a function f satisfies (6.1) then f ≥ g and therefore F1f ≥ F1g.
Combined with the assumption that D ⊂ C1, this implies that f = F1f ≥ g
on D, i.e. (f − F1f)D = 0. Hence by (5.3) (f − F1f)X2 = (f − F2f)X2 and
F1f = F2f on X2. Therefore max(g, F1f) = max(g, F2f), i.e. f satisfies (6.2)
on X2 also.

Now, suppose that a function f satisfies (6.2) and is defined on D by
formula (5.12). This function by Lemma 3 satisfies (5.2). Comparing (5.2)
and (5.12) we obtain (f − P1f)D = c1,D. Therefore by (5.3) we have the
equality (f − F1f)X2 = (f − F2f)X2 and thus max(g, F1f) = max(g, F2f),
and f ≥ g on X2. Applying formula (5.2) to functions g and f, we obtain
that

gD = N1[T1gX2 + (g − P1g)D, fD = N1[T1fX2 + (f − P1f)D. (6.3)

Since (f−P1f)D = c1,D and g ≤ f on X2, formula (6.3) implies that gD ≤ fD
and thus f = max(g, F1f) = F1f) on D. We proved earlier that f satisfies
(6.1) on X2. The assertion (b) is proved.

Suppose that f1 is the minimal solution of (6.1) and f2 is a solution of
(6.2). As we proved in (b), the function f2 can be extended to X1 to be a
solution for (6.1). Then f1 ≤ f2.

For c ≡ 0, Theorem 2 was proved in Sonin (1999) using Lemma 2. Here
we give a proof in the general case for finite X differently, using the fact that
the value function satisfies the Bellman equation.

It is sufficient to note now that the value function v2 for the model
M2 is the minimal solution of the Bellman equation (6.2). Therefore, by
the claim (b) of Theorem 4, the function v1 equal to v2 on X2 and de-
fined at z by formula (5.13) will be the minimal solution for (6.1) and
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hence the value function for model M1. By the assumption of Theorem 2
at point z we have the inequalities g(z) < F1g(z) ≤ F1v1(z), and hence
v1(z) = max(g(z), F1(v1(z)) = F1(v1(z) > g(z). Therefore the optimal stop-
ping sets Si = {x : vi(z) = g} coincide for both models.

The recursive algorithm to solve the Bellman equation is basically the
same as the EA for the OS problem and coincides with the algorithm to solve
the Poisson equation on its backward stage, i.e both use the same formula
(5.13). The reason for that is the fact that outside of the optimal stopping
set the Bellman equation takes the form v = c + Pv, i.e. coincides with the
Poisson equation.

Example 2. Let X1 = {1, 2, 3}, the transition probabilities are given
by the matrix P0, P0 = P1 from an Example 1, the cost function c(x) is:
c1(1) = 1, c1(2) = −.5, c1(3) = .5, the terminal reward function g(x) is:
g(1) = −1, g(2) = 2, g(3) = 3.5, and the discount factor β = .9.We introduce
an absorbing state x∗ with c1(x∗) = g(x∗) = 0 and then the transition matrix
becomes the matrix P1. On the first step we consider g(x)− F1g(x) ≡ g(x)−
(c1(x)+P1g(x)) and obtain that g(1)−F1g(1) = −3.35 < 0 and therefore the
state 1 can be eliminated. After this elimination we obtain (approximately) the
transition matrix P2, and function c2, c2(2) = −.18, and c2(3) = 1.14. After
the second step we obtain that g(2)−F2g(2) = −.04 < 0 and therefore state 2
can be eliminated. After this elimination we obtain (approximately) transition
matrix P3, and function c3(3) = .95. In this model g(3) − F3g(3) = .13 > 0
and therefore the optimal stopping set S in this and two previous models is
S = {3, x∗}, and v(3) = g(3) = 3.5. Now applying formula (5.13) for i = 2, we
obtain that v(2) = 1

.46 [.32(3.5)− .18] = 2.043. Applying formula (5.13) again
for i = 1, we obtain that v(1) = 1

.7 [.3(2.043) + .3(3.5) + 1] = 3.804.

P0 =

1
3

1
3

1
3

1
4

1
2

1
4

1
2

1
3

1
6

, P1 =

.3 .3 .3 .1

.225 .45 .225 .1

.45 .3 .15 .1

0 0 0 1

,

P2 =
.54 .32 .13

.50 .34 .16

0 0 1

, P3 =
.69 .31

0 1

Note that for other values of parameters in this example, it may be optimal
not to stop at all, i.e. wait until the MC will enter the absorbing state.

Remark 6. In addition to Problems 1 and 2, the EA can also serve as a ba-
sis for the recursive algorithm with a transparent probabilistic interpretation
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that allows the calculation of the Gittins index γ(x), ([14]). For a MC start-
ing from x, this index can be defined as the maximum expected discounted
reward per expected discounted unit of time

γ(x) = sup
τ>0

Ex

∑τ−1
n=o β

nc(Zn)

Ex

∑τ−1
n=o β

n
, (6.4)

where β be a discount factor, 0 < β < 1, and τ is a stopping time.
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1 Introduction

In the line of main subjects of this anniversary volume, we start with a fi-
nancial motivation. It is well-known that financial time series exhibit such
features as heavy tail distributions and long memory, see, [1]. There is an im-
portant practical problem of adequate mathematical modelling which captures
these properties. To these aim, it is quite common now to describe the price
processes by so-called non-Markov models (though usually they are, simply,
components of Markov processes) but one may find within Markov models
suitable candidates as well. A study of ergodic Markov processes with polyno-
mially decaying mixing coefficients and invariant measures with polynomial
tails may contribute to understanding of the observed phenomena and their
modelling, see, e.g., references [15, 16, 4]. For a class of ergodic Markov diffu-
sion processes polynomial upper bounds for the strong mixing coefficient (and
also for some other types) are known ([15, 16, 4]). A natural question arises:
are they sharp? Our aim here is to show, under reasonable assumptions, that
the answer is positive. We establish here appropriate lower bounds, showing,
in particular, the “long memory” property for the processes having the drift
coefficient b with b(x) ∼ |x|−psignx as |x| → ∞ for p ∈]0, 1[. This shows

∗This work was supported by the RFBR grant 02-01-0444.
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that the price behavior with the mentioned features can be modelled in the
framework of Markov processes.

A general introduction to the theory of mixing coefficients can be found
in the survey on diffusion approximation [17]. The lower mixing bounds for
a class of discrete-time Markov models obtained in [2] indicate that one may
expect similar results also for diffusion models. The bounds in [2] are “nearly
optimal” in the exponential and sub-exponential cases. The lower bounds
obtained in the present paper are“nearly optimal” in all cases.

The paper is organized as follows. In Section 2 we recall known results on
upper bounds while Section 3 deals with lower ones.

2 Upper mixing bounds

We consider the process X = (Xt)t≥0 satisfying the one-dimensional SDE

dXt = b(Xt) dt+ dWt, X0 = x, (2.1)

where W is a Wiener process and b is a bounded Borel function.
Let p ∈ [0, 1]. We associate with the function b the following two coeffi-

cients, r = rp and r′ = r′p, r ≤ r′, characterizing its behavior at infinity:

r = − lim sup
|x|→∞

b(x)
x

|x|1−p , r′ = − lim inf
|x|→∞

b(x)
x

|x|1−p .

Recall the definition of α and β mixing coefficients:

αx(t) := sup
s≥0

sup
A∈FX

≤s
, B∈FX

≥s+t

|P (AB)− P (A)P (B)|; (2.2)

βx(t) := sup
s≥0

E ess sup
B∈FX

≥s+t

|P (B|FX
s )− P (B)|; (2.3)

notice that always αx(t) ≤ βx(t).
In the proposition below we put together results from [14], [15], [16], [4]

(weaker bounds can be found in [8]).

Proposition 2.1. Suppose that rp ∈]0,∞[. Then, depending upon p, we have
the upper bounds for the function βx(t):

βx(t) ≤



C(1 + |x|m)(1 + t)−k, p = 1︸ ︷︷ ︸
(see [15, 16])

;

C exp
(
C|x|a − ct

1−p
1+p−ν

)
, 0 < p < 1︸ ︷︷ ︸

(see [4])

;

C exp(C|x| − λt), p = 0︸ ︷︷ ︸
(see [14])

,

(2.4)
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where the constants involved in the above inequalities are as follows:
(1) for any k < r − 3

2 , ∃C,m > 0; the bound holds if r > 3/2;
(2) for any ν, a > 0 such that (1− p)− ν(1 + p) < a < 1− p, ∃ C, c > 0;
(3) ∃C, λ > 0.

3 Lower mixing bounds

Theorem 3.1. Suppose that 0 < r ≤ r′ <∞. Then, for all x and sufficiently
large t ≥ t(x),

αx(t) ≥


C ′t−k

′
, p = 1 and k′ > r′ − 1/2;

C ′ exp
(
−c′t

(1−p)
(1+p)−ν

)
, 0 < p < 1, ν > 0;

exp(−λ′t), p = 0,

(3.1)

where the constants are related as in Proposition 2.1.

Proof. Case p = 1. It suffices to show that for any open set U containing zero
and any ν > 0 there exist c, c′ such that for sufficiently large values t

lim sup
s→∞

|P (Xt+s ∈ U, |Xs| > tν)−P (Xt+s ∈ U)P (|Xs| > tν)| ≥ c′t−k
′
(3.2)

with k′ = (1 + ν)(r′ − 3
2 ) and tν := ct(1+ν)/2.

Now we give arguments valid for all variants of the parameter p. Assume
that r > 1

2 . By ergodicity, we have

P (Xt+s ∈ U)→ µ(U) > 0, t→∞, (3.3)

where µ is the invariant measure of X, see, e.g., [8], [16].
Assume for a moment that

lim sup
t→∞

P (Xt+s ∈ U | |Xs| > tν) ≤ µ(U)/2. (3.4)

Then, for sufficiently large t,

|P (Xt+s ∈ U, |Xs| > tν)− P (Xt+s ∈ U)P (|Xs| > tν)| ≥ P (Xs > tν)µ(U)/3.

Therefore, the desired assertion will follow from the bound

lim inf
s→∞

P (|Xs| > tν) = µ(|y| > tν) ≥ c′t−k
′
, (3.5)

where k′ = (1 + ν)(r′ − 3
2 ) and c

′ > 0 is a constant.
Now we give step-by-step arguments.
1. Verification of (3.5). By virtue of the step 2 below, we may apply

the “weak” comparison theorem for |Xs| and |Zs|, where Z solves the SDE
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dZt = b̄(Zt)dt+ dWt, Z0 = |x|. (3.6)

We consider a continuous function b̄(z) having the following structure:

b̄(z) =


−(‖b‖B + 1) sign z, |z| < M − 1,

−r′′ |z|−psign z, |z| ≥M,
(3.7)

where sign 0 := 0, the constant r′′ > r′ is close to r′ and M is such that

b(z)
z

|z|1−p ≥ −r′′, |z| ≥M.

Obviously, for any z �= 0, there is a neighborhood U(z) such that

inf
z′∈U(z)

b(z′) sign z′ > sup
z′∈U(z)

b̄(z′) sign z′.

Since b̄(z)sign z is an even function, we also have

inf
z′∈U(z)

b(±z′) sign(±z′) > sup
z′∈U(z)

b̄(z′) sign z′. (3.8)

2. Verification of (3.9). For any v > 0,

µ(|y| ≥ v) ≥ µZ(|y| ≥ v), (3.9)

where µZ is the invariant distribution of Z. In order to check this, it is sufficient
to show that for any x

P (|Xt| ≥ v) ≥ P (|zt| ≥ v) (3.10)

and then let t→∞. To prove the above bound, take δ ∈]0, v[ and put

hδ(z) :=


1, |z| ≥ v,
δ−1(z − v + δ), v − δ < |z| < v,
0, |z| ≤ v − δ.

The function hδ(z) approaches the indicator function 1{|z|≥v} as δ → 0.
Let Zz,s = (Zz,s

t )t≥s denote the solution of the SDE (3.6) with the initial
condition z at the time s. The function

u(s, z) := Ehδ(Z
z,s
t ), 0 ≤ s ≤ t,

solves the Cauchy problem

us + (1/2)uzz + b̄(z)uz = 0, u(t, z) = hδ(z),

in the space
(⋂

p>1

⋂
c>0W

1,2
p,loc[c, t]

) ⋂
Cb[0, t], where W

1,2
p,loc and Cb are the

corresponding Sobolev space and the space of continuous bounded functions
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respectively. The initial data is the trace at s = t of a continuous function∗.
The solution existence and uniqueness in this space is known from [13] (see
also [6]). Moreover, the Itô formula can be applied to u(s, |Xs|) and u(s, Zs)
(see, [5], Ch. 2).

Using the Itô formula for u(s, Zs) and u(s0 + s, Zz,s0
s0+s) we find that

u(0, z) = Ezhδ(zt), u(s0, z) = Ehδ(Z
z,s0
t ).

3. Note that uz(s, z) ≥ 0 for z > 0. Indeed, we can represent u via the
solution of an SDE with reflection at zero and non-sticky boundary conditions:

u(s, z) = Ezhδ(Ẑt−s),

where

Ẑt = z +
∫ t

0

b̄(Ẑs) ds+Wt + ϕ̂t, (3.11)

the function ϕ̂ is continuous and monotone non-decreasing, and

Ẑ ≥ 0, ϕ̂t =
∫ t

0

1{Ẑs=0} dϕ̂s, E

∫ t

0

1{Ẑs=0} ds = 0.

The problem (3.11) admits a unique strong solution, [12], coinciding with |Z|
in law. The latter fact holds since |Z| itself solves the same SDE with the
Wiener process W̄t =

∫ t
0
signZs dWs (cf. [9]), that is

|Zt| = z +
∫ t

0

b̄(Zs) signZs ds+ W̄s + ϕ̄t

with the similar non-sticky boundary conditions, and because the pathwise
uniqueness provides the uniqueness in distribution.
4. Taking into account the above-mentioned (strong) existence and unique-

ness as well as the pathwise comparison theorem (see, e.g., [10]) we obtain that
for any z > z′ ≥ 0

Ẑz
t ≥ Ẑz′

t .

More precisely, two paths Ẑz
· and Ẑ

z′

· , meeting at some stopping time, coincide
afterwards forever. Hence, the events {ẑzt < ẑz

′

t } are P -null. In particular,
Ehδ(Ẑz

t−s) ≥ Ehδ(Ẑz′

t−s). Differentiating u(s, z) ≥ u(s, z′) in z, we find that
for any s ≥ 0 and z > 0,

uz(s, z) ≥ 0. (3.12)

Recall that b(z) > b̄(z) for z > 0. By the embedding theorems, see, e.g., [6],
Ch. 3, the function uz is continuous. Putting

∗The function hδ is continuous; this choice allows us to avoid difficulties concern-
ing discontinuity of initial data.
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L =
∂

∂s
+

1
2
∂2

∂z2
+ b(z)

∂

∂z
,

we notice that
Lu ≥ 0, u(t, z) = hδ(z),

in the Sobolev sense.
5. Using the Itô formula and Krylov integral bound, [5], Ch. 2, we get that

u(t, Zt) = u(0, z) +
∫ t

0

Lu(s, Zs) ds+
∫ t

0

uz(s, Zs) dWs

≥ u(0, z) +
∫ t

0

uz(s, Zs) dWs.

We deduce from here, with an eventual use of the standard localization pro-
cedure (see, e.g. [7], Ch. 1), that

Ezu(t, zt) ≥ u(0, z). (3.13)

Obviously, Exhδ(Xt) ≥ Ezhδ(zt) is an equivalent form of (3.13). Letting δ ↓ 0,
with z = |x|, we find that P (|Xt| ≥ v) ≥ P (|zt| ≥ v) and, hence, for the
invariant distribution we also have the inequality

µ(|y| ≥ tν) ≥ µZ(|y| ≥ tν).

6. The invariant distribution density of Z solves the Chapman–Kolmogorov
stationary equation, p′′(z)/2 − (b(z)p(z))′ = 0. In particular, for |z| ≥ M we
have p(z) = C|z|−2r′′ . Hence, for sufficiently large t,

µZ(|y| ≥ tν) =
∫

1{|z|>ct(1+ν)/2}p(z) dz = c′t−(r
′′−1/2)(1+ν).

7. Verification of (3.4). By the Markov property,

P (Xt+s ∈ U | Xs > tν) =
E (1(Xs > tν)P (Xt+s ∈ U |Xs))

P (Xs > tν)
(3.14)

≤ sup
x>tν

P (Xt ∈ U).

Now, in order to prove (3.4), it is sufficient to check that for large c > 0

sup
x>tν

P (Xt ∈ U)→ 0, t→∞, (3.15)

and, similarly, sup
x<−tν

P (Xt ∈ U)→ 0.

Take x > tν and put Yv := Xv −Wv, v ≥ 0. Define the event

Da =
{
sup
s≤t

|Ws| ≤ at(1+ν)/2

}
.
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Clearly, P (Da)→ 1 as t→∞ whatever is a > 0.
We choose a deterministic function Ȳ such that Ȳt > M + at(1+ν)/2 and

Xt ≥ Ȳt − at(1+ν)/2 on Da. In particular, this provides that Xt > M on Da.
Since P (Da)→ 1 as t→ 0, this implies (3.15).
8. Let Ȳ = (Ȳv)v∈[0,t] be the solution of the differential equation

˙̄Yv = − r′′

Ȳv − at(1+ν)/2
, Y0 = tν = ct(1+ν)/2.

It is readily verified that

Ȳt = t(1+ν)/2

[(
(c− a)2 − r′′t−ν

)1/2
+ a

]
.

It is clear that for c > a and sufficiently large t

min
v≤t

Ȳv = Ȳt > M + at(1+ν)/2. (3.16)

9. On the set Da, the bound Yv + at(1+ν)/2 ≥ Yv +Wv holds. If Xv ≥M ,
or, equivalently, Yv ≥M −Wv, we have that

Ẏv = b(Xv) > − r′′

Xv
= − r′′

Yv +Wv
≥ − r′′

Yv − at(1+ν)/2
. (3.17)

So, for any v such that Yv ≥ Ȳv > at(1+ν)/2, we find that

Ẏv > − r′′

Yv − at(1+ν)/2
≥ − r′′

Ȳv − at(1+ν)/2
= ˙̄Yv.

Owing to Y0 > Ȳ0, the comparison theorem provides the inequality

Y ≥ Ȳ on the set Da.

Hence, due to (3.16), we obtain the bound minv≤t Yv > M+at(1+ν)/2. Finally,

Xt ≥ Yt − at(1+ν)/2 > M on the set Da.

Hence, P (Da; |Xt| ≤M) = 0 and, therefore,

sup
x>tν

P (|Xt| ≤M) ≤ P0(Dc
a)→ 0, t→∞.

A similar reasoning is used for x < −tν = −ct(1+ν)/2. ��
Case p = 0. The above argument again goes well but some constants and

functions are different and we give here appropriate calculations. In particular,
constants c, c′ have to be chosen such that for all sufficiently large t
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lim sup
s→∞

|P (Xt+s ∈ U, |Xs| > ct)− P (Xt+s ∈ U)P (|Xs| > ct)| ≥ c′e−λ
′t.

(3.18)
With such c, c′ and λ′ > cr′/2, we verify that for sufficiently large t

lim inf
s→∞

P (|Xs| > ct) = µ(|y| > ct) ≥ c′e−λ
′t (3.19)

and, for sufficiently large s,

lim sup
t→∞

P (Xt+s ∈ U | |Xs| > ct) ≤ µ(U)/2. (3.20)

For sufficiently large t, the latter bound provides that

|P (Xt+s ∈ U, |Xs| > ct)− P (Xt+s ∈ U)P (|Xs| > ct)| ≥ P (|Xs| > ct)µ(U)/3

implying (3.18).
1. Verification of (3.19). By virtue of the pathwise comparison theorem,

|X| ≥ |Z| and, hence, µ(y ≥ ct) ≥ µZ(y ≥ ct).
2. The invariant distribution density of Z solves the Chapman–Kolmogorov

equation: p(z) = C exp(−r′′|z|/2), |z| ≥M . Thus,

µZ(|y| > ct) = Ce−λ
′t, ∀t > 0.

3. Verification of (3.20). Similar to (3.14), it suffices to show that for c
large enough

sup
x>ct

P (Xt ∈ U)→ 0, t→∞. (3.21)

The case x < −ct is treated similarly.
We put

Da :=
{
sup
s≤t

|Ws| ≤ at

}
, t ≥ 1,

and notice that P (Da)→ 0 as t→∞. Put Yv := Xv −Wv, v ≥ 0. Then, for
|Xv| > M , we have Ẏv > −r′′. The function Ȳv = ct− r′′v solves the equation
˙̄Yv = −r′′ with Ȳ0 = ct. Hence,

min
v≤t

Ȳv = (c− r′′)t.

The deterministic comparison theorem provides, on Da, the bound Yv ≥ Ȳv
for v ≤ t. Therefore, Yt ≥ (c− r′′) t, on Da and, hence, on this set we have
Xt ≥ (c− r′′ − a) t.

Thus, for c > a+ r′′ and x > ct, we have P (Da; |Xt| ≤M) = 0 for t large
enough and, thereby, supx>ct P (|Xt| ≤M) ≤ P0(Dc

a)→ 0 as t→∞. ��
Case 0 < p < 1. Again, constants c, c′, C ′ have to be found such that for

all sufficiently large t
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lim sup
s→∞

|P (Xt+s ∈ U, |Xs| > tν,p)− P (Xt+s ∈ U)Pz(|Xs| > tν,p)|

≥ C ′ exp
(
−c′t

(1−p)
(1+p)+ν(1+p)

)
(3.22)

where tν,p := ct
1

1+p+ν .
As previously, the problem is reduced to a verification that

lim inf
s→∞

P (|Xs| > tν,p) = µ (|y| > tν,p) ≥ C ′ exp
(
−c′t

(1−p)
(1+p)+ν(1+p))

)
(3.23)

and
lim sup
t→∞

P (Xt+s ∈ U | |Xs| > tν,p) ≤ µ(U)/2. (3.24)

1. Verification of (3.23). By the comparison theorem, |X| ≥ |Z| and,
hence,

µ (|Xs| ≥ tν,p) ≥ µZ (|y| ≥ tν,p) .

The invariant distribution density of Z reads as

p(z) = C exp(−c|z|1−p), |z| ≥M.

2. Verification of (3.24). It is sufficient to establish that

sup
|x|>tν,p

P (Xs ∈ U)→ 0, t→∞. (3.25)

Put Yv = Xv −Wv, v ≥ 0, and define the set

Da =
{
sup
s≤t

|Ws| ≤ at
1

1+p+ν

}
.

Then P (Dc
a)→ 0, as t→∞, and, for large t,

µ(|y| > tν,p) ≥
∫

1[tν,p,tν,p+1]Ce
−cz1−p

dz ≥ C exp(−ct
1−p
1+p+ν(1+p)).

3. For r′′ > r′ and an appropriate M > 0 we have on Da the inequality

Ẏv > − r′′(
Yv − at

1
1+p+ν

)p .
Let Ȳ = (Ȳv)v∈[0,t] solve the differential equation (with c > 0):

˙̄Yv = − r′′(
Ȳv − at

1
1+p+ν

)p , Ȳ0 = tν,p = ct
1

1+p+ν .

Then, for sufficiently large t, we have that
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Ȳt = t
1

1+p+ν
(
(c− a)1+p − r′′t−ν(1+p)/(1 + p)

) 1
1+p

+ at
1

1+p+ν .

By the deterministic comparison theorem, Yv ≥ Ȳv for v ≤ t on the set Da.
Therefore,

Xt ≥ t
1

1+p+ν
(
(c− a)1+p − r′′t−ν(1+p)/(1 + p)

) 1
1+p

.

Thus, P (Da; |Xt| ≤M) = 0 for c > a, large t, and x > tν,p and, so that,

sup
x>tν,p

P (|Xt| ≤M) ≤ P0(Dc
a)→ 0, t→∞.

A similarly proof serves the case x < −tν,p. ��
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