
8. More Applications

Here we have collected several applications of linear programming, and in
particular, of the duality theorem. They are slightly more advanced than
those in Chapters 2 and 3, but we have tried to keep everything very con-
crete and as elementary as possible, and we hope that even a mathematically
inexperienced reader will have no problems enjoying these small gems.

8.1 Zero-Sum Games

The Colonel Blotto game. Colonel Blotto and his opponent are preparing
for a battle over three mountain passes. Each of them commands five regi-
ments. The one who sends more regiments to a pass occupies it, but when the
same number of regiments meet, there will be a draw. Finally, the one who
occupies more passes than the other wins the battle, with a draw occurring
if both occupy the same number of passes.

Given that all three passes have very similar characteristics, the strate-
gies independently pursued by both Colonel Blotto and his opponent are
the following: First they partition their five regiments into three groups. For
example, the partition (0, 1, 4) means that one pass will be attacked by 4 reg-
iments, another pass by 1 regiment, and one pass will not be attacked at all.
Then, the groups are assigned to the passes randomly; that is, each of the
3! = 6 possible assignments of groups to passes is equally likely.

The partitions of Colonel Blotto and his opponent determine winning
probabilities for both of them (in general, these do not add up to one because
of possible draws). Both Colonel Blotto and his opponent want to bias the
difference of these probabilities in their direction as much as possible. How
should they choose their partitions?

This is an instance of a finite two-player zero-sum game. In such a
game, each of the two players has a finite set of possible strategies (in our
case, the partitions), and each pair of opposing strategies leads to a payoff
known to both players. In our case, we define the payoff as Colonel Blotto’s
winning probability minus the opponent’s winning probability. Whatever one
of the players wins, the other player loses, and this explains the term zero-
sum game. To some extent, it has become a part of common vocabulary.

132 8. More Applications

When we number the strategies 1, 2, . . . , m for the first player and
1, 2, . . . , n for the second player, the payoffs can be recorded in the form
of an m × n payoff matrix. In the Colonel Blotto game, the payoff matrix
looks as follows, with the rows corresponding to the strategies of Colonel
Blotto and the columns to the strategies of the opponent.

(0, 0, 5) (0, 1, 4) (0, 2, 3) (1, 1, 3) (1, 2, 2)

(0, 0, 5) 0 − 1
3 − 1

3 −1 −1

(0, 1, 4) 1
3 0 0 − 1

3 − 2
3

(0, 2, 3) 1
3 0 0 0 1

3

(1, 1, 3) 1 1
3 0 0 − 1

3

(1, 2, 2) 1 2
3 − 1

3
1
3 0

For example, when Colonel Blotto chooses (0, 1, 4) and his opponent
chooses (0, 0, 5), then Colonel Blotto wins (actually, without fighting) if and
only if his two nonempty groups arrive at the two passes left unattended by
his opponent. The probability for this to happen is 1

3 . With probability 2
3 ,

there will be a draw, so the difference of the winning probabilities is 1
3−0 = 1

3 .
Not knowing what the opponent is going to do, Colonel Blotto might want

to choose a strategy that guarantees the highest payoff in the worst case. The
only candidate for such a strategy is (0, 2, 3): No matter what the opponent
does, Colonel Blotto will get a payoff of at least 0 with this strategy, while all
other strategies lead to negative payoff in the worst case. (Anticipating that
a spy of the opponent might find out about his plans, he must reckon that
the worst case will actually happen. The whole game is not a particularly
cheerful matter anyway.) In terms of the payoff matrix, Colonel Blotto looks
at the minimum in each row, and he chooses a row where this minimum is
the largest possible.

Similarly, the opponent wants to choose a strategy that guarantees the
lowest payoff (for Colonel Blotto) in the worst case. It turns out that (0, 2, 3)
is also the unique such choice for the opponent, because it guarantees that
Colonel Blotto will receive payoff at most 0, while all other strategies allow
him to achieve a positive payoff if he happens to guess or spy out the op-
ponent’s strategy. In terms of the payoff matrix, the opponent looks at the
maximum in each column, and he chooses a column where this maximum is
the smallest possible.

We note that if both Colonel Blotto and his opponent play the strategies
selected as above, they both see their worst expectations come true, exactly
those on which they pessimistically based their choice of strategy. Seeing the
worst case happen might shatter hopes for a better outcome of the battle,
but on the other hand, it is a relief. After the battle has been fought, neither
Colonel Blotto nor his opponent will have to regret their choice: Even if both

8.1 Zero-Sum Games 133

had known the other’s strategy in advance, neither of them would have had
an incentive to change his own strategy.

This is an interesting feature of this game: The strategy selected by
Colonel Blotto and the strategy selected by his opponent as above are best
responses against one another. In terms of the payoff matrix, the entry 0 in
the row ((0, 2, 3) and column (0, 2, 3)) is a “saddle point”; it is a minimum
in its row and a maximum in its column. A pair of strategies that are best
responses against one another is called a Nash equilibrium of the game.
As we will see next, not every game has a Nash equilibrium in this sense.

The Rock-Paper-Scissors game. Alice and Bob independently choose a
hand gesture indicating either a rock, a piece of paper, or a pair of scissors.
If both players choose the same gesture, the game is a draw, and otherwise,
there is a cyclic pattern: Scissors beats paper (by cutting it), paper beats
rock (by wrapping it up), rock beats scissors (by making it blunt). Assuming
that the payoff to Alice is 1 if she wins, 0 if there is a draw, and −1 if she
loses, the payoff matrix is

rock paper scissors
rock 0 −1 1
paper 1 0 −1
scissors −1 1 0

This game has no Nash equilibrium in the sense explained above. No entry of
the payoff matrix is a minimum in its row and a maximum in its column at
the same time. In more human terms, after every game, the player who lost
may regret not to have played the gesture that would have beaten the gesture
of the winner (and both may regret in the case of a draw). It is impossible for
both players to fix strategies that are best responses each against the other.

But when we generalize the notion of a strategy, there is a way for both
players to avoid regret. Both should decide randomly, selecting each of the
gestures with probability 1/3. Even this strategy may lose, of course, but still
there is no reason for regret, since with the same probability 1/3, it could
have won, and the fact that it didn’t is not a fault of the strategy but just
bad luck. Indeed, in this way both Alice and Bob can guarantee that their
payoff is 0 in expectation, and it is easy to see that neither of them can do
better by unilaterally switching to a different behavior. We say that we have
a mixed Nash equilibrium of the game (formally defined below).

A surprising fact is that every zero-sum game has a mixed Nash equilib-
rium. It turns out that such an equilibrium “solves” the game in the sense
that it tells us (or rather, both of the two players) how to play the game
optimally. As we will see in examples, the random decisions that are involved
in a mixed Nash equilibrium need not give each of the possible strategies
the same probability, as was the case in the very simple Rock-Paper-Scissors
game. However, we will prove that suitable probability distributions always
exist and, moreover, that they can be computed using linear programming.

134 8. More Applications

Existence and computation of a mixed Nash equilibrium. Let us
repeat the setup of zero-sum games in a more formal manner. We have two
players, and we stick to calling them Alice and Bob. Alice has a set of m
pure strategies at her disposal, while Bob has a set of n pure strategies (we
assume that m, n ≥ 1).

Then there is an m×n payoff matrix M of real numbers such that mij is
Alice’s gain (and Bob’s loss) when Alice’s ith pure strategy is played against
Bob’s jth pure strategy. For concreteness, we may think of Bob having to
pay emij to Alice. Of course, the situation is symmetric in that mij might
be negative, in which case Alice has to pay e−mij to Bob.

A mixed strategy of a player is a probability distribution over his or
her set of pure strategies. We encode a mixed strategy of Alice by an m-
dimensional vector of probabilities

x = (x1, . . . , xm),

m∑

i=1

xi = 1, x ≥ 0,

and a mixed strategy of Bob by an n-dimensional vector of probabilities

y = (y1, . . . , yn),

n∑

j=1

yj = 1, y ≥ 0.

So a mixed strategy is not a particular case of a pure strategy; in the Rock-
Paper-Scissors game, Alice has three possible pure strategies (rock, paper,
and scissors), but infinitely many possible mixed strategies: She can choose
any three nonnegative real numbers x1, x2, x3 with x1 + x2 + x3 = 1, and
play rock with probability x1, paper with probability x2, and scissors with
probability x3. Each such triple (x1, x2, x3) specifies a mixed strategy.

Given mixed strategies x and y of Alice and Bob, the expected payoff
(expected gain of Alice) when x is played against y is

∑

i,j

mij Prob
x,y

[Alice plays i,Bob plays j]

=
∑

i,j mij Probx[Alice plays i] · Proby[Bob plays j]

=
∑

i,j mijxiyj

= xT My.

Now we are going to formalize the tenet of Colonel Blotto: “Prepare for
the worst.” When Alice considers playing some mixed strategy x, she expects
Bob to play a best response against x: a strategy y that minimizes her
expected payoff xT My. Similarly, for given y, Bob expects Alice to play a
strategy x that maximizes xT My.

For a fixed matrix M , these worst-case payoffs are captured by the fol-
lowing two functions:

8.1 Zero-Sum Games 135

β(x) = min
y

xT My, α(y) = max
x

xT My.

So β(x) is the best (smallest) expected payoff that Bob can achieve against
Alice’s mixed strategy x, and similarly, α(y) is the best (largest) expected
payoff that Alice can achieve against Bob’s y. It may also be worth noting
that y0 is Bob’s best response against some x exactly if xT My0 = β(x) (the
symmetric statement for Alice is left to the reader).

Let us note that β and α are well-defined functions, since we are opti-
mizing over compact sets. For β, say, the set of all x representing probability
distributions is an (m−1)-dimensional simplex in Rm, and hence indeed com-
pact.

8.1.1 Definition. A pair (x̃, ỹ) of mixed strategies is a mixed Nash equi-
librium of the game if x̃ is a best response against ỹ and ỹ is a best response
against x̃ (the adjective “mixed” is often omitted); in formulas, this can be
expressed as

β(x̃) = x̃T M ỹ = α(ỹ).

In the Colonel Blotto game, we have even found a (pure) Nash
equilibrium (a pair of pure strategies that are best responses against
each other). However, the strategies themselves involved random de-
cisions. We regard these decisions as “hard-wired” into the strategies
and the payoff matrix.

Alternatively, we can consider each fixed assignment of regiments
to passes as a pure strategy. Then we have a considerably larger payoff
matrix, and there is no pure Nash equilibrium. Rather, we have a
mixed Nash equilibrium. In practical terms it amounts to the same
thing as the strategies described in the previous interpretation of the
game, namely, dividing the regiments in groups of 3, 2, and 0, and
sending one group to each pass at random.

These are two different views (models) of the same game, and we
are free to investigate either one, although one may be more convenient
or more realistic than the other.

Let us say that Alice’s mixed strategy x̃ is worst-case optimal if β(x̃) =
maxx β(x). That is, Alice expects Bob to play his best response against every
mixed strategy of hers, and she chooses a mixed strategy x̃ that maximizes her
expected payoff under this (pessimistic) assumption. Similarly, Bob’s mixed
strategy ỹ is worst-case optimal if α(ỹ) = miny α(y).

The next simple lemma shows, among other things, that in order to attain
a Nash equilibrium, both players must play worst-case optimal strategies.

8.1.2 Lemma.

(i) We have maxx β(x) ≤ miny α(y). Actually, for every two mixed strategies
x and y we have β(x) ≤ xT My ≤ α(y).

136 8. More Applications

(ii) If the pair (x̃, ỹ) of mixed strategies forms a mixed Nash equilibrium,
then both x̃ and ỹ are worst-case optimal.

(iii) If mixed strategies x̃ and ỹ satisfy β(x̃) = α(ỹ), then they form a mixed
Nash equilibrium.

Proof. It is an amusing mental exercise to try to “see” the claims of the
lemma by thinking informally about players and games. But a formal proof
is routine, which is a nice demonstration of the power of mathematical for-
malism.

The first sentence in (i) follows from the second one, which in turn is an
immediate consequence of the definitions of α and β.

In (ii), for any x we have β(x) ≤ α(ỹ) by (i), and since β(x̃) = α(ỹ), we
obtain β(x) ≤ β(x̃). Thus x̃ is worst-case optimal, and a symmetric argument
shows the worst-case optimality of ỹ. This proves (ii).

As for (iii), if β(x̃) = α(ỹ), then by (i) we have β(x̃) = x̃T M ỹ = α(ỹ),
and hence (x̃, ỹ) is a mixed Nash equilibrium. The lemma is proved. �

Here is the main result of this section:

8.1.3 Theorem (Minimax theorem for zero-sum games). For every
zero-sum game, worst-case optimal mixed strategies for both players exist
and can be efficiently computed by linear programming. If x̃ is a worst-
case optimal mixed strategy of Alice and ỹ is a worst-case optimal mixed
strategy of Bob, then (x̃, ỹ) is a mixed Nash equilibrium, and the number
β(x̃) = x̃T M ỹ = α(ỹ) is the same for all possible worst-case optimal mixed
strategies x̃ and ỹ.

The value x̃T M ỹ, the expected payoff in any Nash equilibrium, is called
the value of the game. Together with Lemma 8.1.2(ii), we get that (x̃, ỹ)
forms a mixed Nash equilibrium if and only if both x̃ and ỹ are worst-case
optimal.

This theorem, in a sense, tells us everything about playing zero-sum
games. In particular, “Prepare for the worst” is indeed the best policy (for
nontrivial reasons!). If Alice plays a worst-case optimal mixed strategy, her
expected payoff is always at least the value of the game, no matter what strat-
egy Bob chooses. Moreover, if Bob is well informed and plays a worst-case
optimal mixed strategy, then Alice cannot secure an expected payoff larger
than the value of the game, no matter what strategy she chooses. So there
are no secrets and no psychology involved; both players can as well declare
their mixed strategies in advance, and nothing changes.

Of course, if there are many rounds of the game and Alice suspects
that Bob hasn’t learned his lesson and doesn’t play optimally, she
can begin to contemplate how she could exploit this. Then psychology

8.1 Zero-Sum Games 137

does come into play. However, by trying strategies that are not worst-
case optimal, she is taking a risk, since she also gives Bob a chance to
exploit her.

It remains to explain the name “minimax theorem.” If we consider the
equality β(x̃) = α(ỹ) and use the definitions of β, α, and of worst-case opti-
mality of x̃ and ỹ, we arrive at

max
x

min
y

xT My = min
y

max
x

xT My,

and this is the explanation we offer.
The relation of Theorem 8.1.3 to Lemma 8.1.2(i) is similar to the relation

of the duality theorem of linear programming to the weak duality theorem.
And indeed, we are going to use the duality theorem in the proof of Theo-
rem 8.1.3 in a substantial way.

Proof of Theorem 8.1.3. We first show how worst-case optimal mixed
strategies x̃ for Alice and ỹ for Bob can be found by linear programming.
Then we prove that the desired equality β(x̃) = α(ỹ) holds.

We begin by noticing that Bob’s best response to a fixed mixed strategy
x of Alice can be found by solving a linear program. That is, β(x), with x
a concrete vector of m numbers, is the optimal value of the following linear
program in the variables y1, . . . , yn:

Minimize xT My
subject to

∑n
j=1 yj = 1

y ≥ 0.
(8.1)

So we can evaluate β(x). But for finding a worst-case optimal strategy of
Alice we need to maximize β. Unfortunately, β(x) is not a linear function, so
we cannot directly formulate the maximization of β(x) as a linear program.
Fortunately, we can circumvent this issue by using linear programming dual-
ity.

Using the dualization recipe from Section 6.2, we write down the dual of
(8.1):

Maximize x0

subject to MT x− 1x0 ≥ 0

(this is a nice exercise in dualization). This dual linear program has only
one variable x0, since x1, . . . , xm are still regarded as fixed numbers. By the
duality theorem, the optimal value of the dual linear program is the same as
that of the primal, namely, β(x).

In order to maximize β(x) over all mixed strategies x of Alice, we set up
a new linear program that optically looks exactly like the previous one, but
in which x1, . . . , xm are regarded as variables (this works only because the
constraints happen to be linear in x0, x1, . . . , xm):

138 8. More Applications

Maximize x0

subject to MT x− 1x0 ≥ 0∑m
i=1 xi = 1

x ≥ 0.

(8.2)

If (x̃0, x̃) denotes an optimal solution of this linear program, we have by
construction

x̃0 = β(x̃) = max
x

β(x). (8.3)

In a symmetric fashion, we can derive a linear program for solving Bob’s
task of computing a best strategy ỹ. We obtain the problem

minimize y0

subject to My − 1y0 ≤ 0∑n
j=1 yj = 1

y ≥ 0

(8.4)

in the variables y0, y1, . . . , yn. Now an optimal solution (ỹ0, ỹ) satisfies

ỹ0 = α(ỹ) = min
y

α(y). (8.5)

So both x̃ and ỹ are worst-case optimal strategies (and conversely, worst-
case optimal strategies provide optimal solutions of the respective linear pro-
grams).

The punchline is that the two linear programs (8.2) and (8.4) are dual
to each other! Again, the dualization recipe shows this. It follows that both
programs have the same optimum value x̃0 = ỹ0. Hence β(x̃) = α(ỹ) and
(x̃, ỹ) is a Nash equilibrium by Lemma 8.1.2(iii). �

Rock-Paper-Scissors revisited. To kill the time between their rare public
appearances, Santa Claus and the Easter Bunny play the rock-paper-scissors
game against each other. The Easter Bunny, however, cannot indicate a pair
of scissors with his paw and is therefore limited to two pure strategies. The
payoff matrix in this variant is

rock paper
rock 0 −1
paper 1 0
scissors −1 1

We already see that Santa Claus should never play rock: For any possible
gesture of the Easter Bunny, paper is a better strategy.

Let us apply the machinery we have just developed to find optimal mixed
strategies for Santa Claus and the Easter Bunny. Recall that Santa Claus
has to solve the linear program (8.2) to find the probability distribution
x̃ = (x̃1, x̃2, x̃3) that determines his optimal strategy. At the same time, he
will compute the game value x̃0, his expected gain.

8.1 Zero-Sum Games 139

The linear program is

maximize x0

subject to x2 − x3 − x0 ≥ 0
− x1 + x3 − x0 ≥ 0

x1 + x2 + x3 = 1
x1, x2, x3 ≥ 0.

A (unique) optimal solution is (x̃0, x̃1, x̃2, x̃3) = (1
3 , 0, 2

3 , 1
3).

The Easter Bunny’s problem (8.4) is

minimize y0

subject to − y2 − y0 ≤ 0
y1 − y0 ≤ 0

− y1 + y2 − y0 ≤ 0
y1 + y2 = 1

y1, y2 ≥ 0.

A (unique) optimal solution is (ỹ0, ỹ1, ỹ2) = (1
3 , 1

3 , 2
3).

Let us summarize: If both play optimally, Santa Claus wins 1
3 on average

(this is a scientific explanation of why Santa Claus can afford to bring more
presents!). Both play paper with probability 2

3 . With the remaining proba-
bility 1

3 , Santa Claus plays scissors, while the Easter Bunny plays rock. This
result is a simple but still nontrivial application of zero-sum game theory.

In retrospect, the original rock-paper-scissors game might ap-
pear rather boring, but this is relative: There is a World RPS So-
ciety (http://www.worldrps.com/) that holds an annual rock-paper-
scissors world championship and sells a book on how to play the game.

Choosing numbers. Here is another game, which actually seems fun to play
and in which the optimal mixed strategies are not at all obvious. Each of the
two players independently writes down an integer between 1 and 6. Then the
numbers are compared. If they are equal, the game is a draw. If the numbers
differ by one, the player with the smaller number gets e 2 from the one with
the larger number. If the two numbers differ by two or more, the player with
the larger number gets e 1 from the one with the smaller number. We want
to challenge the reader to compute the optimal mixed strategies for this game
(by symmetry, they are the same for both players).

The Colonel Blotto game was apparently first considered by the
mathematician Émile Borel in 1921 (he also served as a French minis-
ter of the navy, although only for several months). It can be considered
for any number of regiments; for 6 regiments, there is still a Nash equi-
librium defined by a pair of pure strategies, but for 7 regiments (this is

140 8. More Applications

the case stated in Borel’s original paper) it becomes necessary to mix.
Borel’s paper does not mention the name “Colonel Blotto”; this name
appears in Hubert Phillips’s Week-end Problems Book, a collection of
puzzles from 1933.

In his paper, Borel considers symmetric games in general. A sym-
metric game is defined by a payoff matrix M with MT = −M . Borel
erroneously states that if the number n of strategies is sufficiently
large, one can construct symmetric games in which each player can
secure a positive expected payoff, knowing the other player’s mixed
strategy. He concludes that playing zero-sum games requires psychol-
ogy, on top of mathematics.

It was only in 1926 that John von Neumann, not knowing about
Borel’s work and its pessimistic conclusion, formally established The-
orem 8.1.3.

Bimatrix games. An important generalization of finite zero-sum
games is bimatrix games, in which both Alice and Bob want to max-
imize the payoff with respect to a payoff matrix of their own, A for
Alice, and B for Bob (in the zero-sum case, A = −B). A bimatrix
game also has at least one mixed Nash equilibrium: a pair of strate-
gies x̃, ỹ that are best responses against each other, meaning that
x̃T Aỹ = maxx xT Aỹ and x̃T Bỹ = maxy x̃T By. We encourage the
reader to find a mixed Nash equilibrium in the following variant of
the modified rock-paper-scissors game played by Santa Claus and the
Easter Bunny: As before, the loser pays e 1 to the winner, but in case
of a draw, each player donates e 0.50 to charity.

The problem of finding a Nash equilibrium in a bimatrix game
cannot be formulated as a linear program, and no polynomial-time
algorithm is known for it. On the other hand, a Nash equilibrium can
be computed by a variant of the simplex method, called the Lemke–
Howson algorithm (but possibly with exponentially many pivot steps).

In general, Nash equilibria in bimatrix games are not as satisfactory
as in zero-sum games, and there is no such thing as “the” game value.
We know that in a Nash equilibrium, no player has an incentive to
unilaterally switch to a different behavior. Yet, it may happen that
both can increase their payoff by switching simultaneously, a situation
that obviously cannot occur in a zero-sum game. This means that
the Nash equilibrium was not optimal from the point of view of social
welfare, and no player has a real desire of being in this particular Nash
equilibrium. It may even happen that all Nash equilibria are of this
suboptimal nature. Here is an example.

At each of the two department stores in town, All the Best Deals
and Buyer’s Paradise, the respective owner needs to decide whether to
launch an advertisement campaign for the upcoming Christmas sale. If
one store runs a campaign while the competitor doesn’t, the expected

8.1 Zero-Sum Games 141

extra revenue obtained from customers switching their preferred store
(e 50,000, say) and new customers (e 10,000) easily outweighs the
cost of the campaign (e 20,000). If, on the other hand, both stores
advertise, let us assume that the campaigns more or less neutralize
themselves, with extra revenue coming only from new customers in an
almost saturated market (e 8,000 for each of the stores).

Listing the net revenues aij , bij as pairs, in units of e 1, 000, we
obtain the following matrix, with rows corresponding to the strategies
of All the Best Deals, and columns to Buyer’s Paradise.

advertise don’t advertise
advertise (−12,−12) (40,−50)
don’t advertise (−50, 40) (0, 0)

If the store owners were friends, they might agree on running no
campaign in order to save money (they’d better keep this agreement
private in order to avoid a price-fixing charge). But if they do not
communicate or mistrust each other, rational behavior will force both
of them to waste money on campaigns. To see this, put yourself in the
position of one of the store owners. Assuming that your competitor
will not advertise, you definitely want to advertise in order to profit
from the extra revenue. Assuming that the other store will advertise,
you must advertise as well, in order not to lose customers. This means
that you will advertise in any case. We say that the strategy “adver-
tise” strictly dominates the strategy “don’t advertise,” so it would be
irrational to play the latter.

Because the other store owner reaches the same conclusion, there
will be two almost useless campaigns in the end. In fact, the pair of
strategies (advertise, advertise) is the unique Nash equilibrium of the
game (mixing does not help), but it is suboptimal with respect to
social welfare.

In general bimatrix games, the players might not be able to reach
the social optimum through rational reasoning, even if this optimum
corresponds to an equilibrium of the game. This is probably the most
serious deficiency of bimatrix games as models of real-world situations.
An example is the battle of the sexes. A couple wants to go out at
night. He prefers the boxing match, while she prefers the opera, but
both prefer going together over going alone. If both are to decide
independently where to go, there is no rational way of reaching a
social optimum (namely both going out together, no matter where).

When the advertisement game is played repeatedly (after all, there
is a Christmas sale every year), the situation changes. In the long run,
wasting money every year is such a bad prospect that the following
more cooperative behavior makes sense: In the first year, refrain from
advertising, and in later years just do what the competitor did the

142 8. More Applications

year before. This strategy is known as TIT FOR TAT. If both stores
adopt this policy, they will never waste money on campaigns; but even
if one store deviates from it, there is no possibility of exploiting the
competitor in the long run. It is easy to see that after a possible first
loss, the one playing TIT FOR TAT can “pay” for any further loss,
due to a previous loss of the competitor.

The Prisoner’s Dilemma. The advertisement game is a variation of
the well-known prisoner’s dilemma, in which two convicts charged
with a crime committed together are independently offered (somewhat
unethical) plea bargains; if both stay silent, a lack of evidence will lead
to only minor punishment. If each testifies against the other, there will
be some bearable punishment. But if—and this is the unethical part—
exactly one of the two testifies against the other, the betrayer will be
rewarded and set free, while the one that remains silent will receive
a heavy penalty. As before, rational behavior will force both convicts
to testify against each other, even if they had nothing to do with the
crime.

A popular introduction to the questions surrounding the prisoner’s
dilemma is

W. Poundstone: Prisoner’s Dilemma: John von Neumann,
Game Theory, and the Puzzle of the Bomb, Doubleday, New
York 1992

(and the 1964 Stanley Kubrick movie Dr. Strangelove or: How I
Learned to Stop Worrying and Love the Bomb might also widen one’s
horizons in this context).

A general introduction to game theory is

J. Bewersdorff: Luck, Logic, and White Lies, AK Peters,
Wellesley 2004.

This book also contains the references to the work by Borel and von
Neumann that we have mentioned above.

8.2 Matchings and Vertex Covers in Bipartite

Graphs

Let us return to the job assignment problem from Section 3.2. There, the
human resources manager of a company was confronted with the problem of
filling seven positions with seven employees, where every employee has a score
(reflecting qualification) for each position he or she is willing to accept. We
found that the manager can use linear programming to find an assignment
of employees to positions (a perfect matching) that maximizes the sum of

8.2 Matchings and Vertex Covers in Bipartite Graphs 143

scores. We have also promised to show how the manager can fill the positions
optimally if there are more employees than positions.

Here we will first disregard the scores and ask under what conditions
the task has any solution at all, that is, whether there is any assignment of
positions to employees such that every employee gets a position she or he is
willing to accept and each position is filled. We know that we can decide this
by linear programming (we just invent some arbitrary scores, say all scores
100), but here we ask for a mathematical condition.

For example, let us consider the graph from Section 3.2 but slightly mod-
ified (some of the people changed their minds):

A B C D E F G

q r s t u v w

There is no assignment filling all positions in this situation. This is not imme-
diately obvious, but it becomes obvious once we look at the set {r, s, t, u, w}
of jobs (marked). Indeed, the set of people willing to take any of these 5
jobs is {C, D, E, G}. This is only 4 people, and so they cannot be assigned
to 5 different jobs.

The next theorem, known as Hall’s theorem or the marriage theorem,
states that if no assignment exists, we can always find such a simple “reason”:
a subset of k jobs such that the total number of employees willing to take
any of them is smaller than k.

Before we formally state and prove this theorem, in the language of bi-
partite graphs, we need to recall the notions of maximum matching (Section
3.2) and minimum vertex cover (Section 3.3).

A matching in a graph G = (V, E) is a set E′ ⊆ E of edges with the
property that each vertex is incident to at most one edge in E′. A matching
is maximum if it has the largest number of edges among all matchings in G.

A vertex cover of G = (V, E) is a set V ′ ⊆ V of vertices with the property
that each edge is incident to at least one vertex in V ′. A vertex cover is
minimum if it has the smallest number of vertices among all vertex covers
of G.

Hall’s theorem gives necessary and sufficient conditions for the existence
of a best possible matching in a bipartite graph, namely a matching that
covers all vertices in one class of the vertex bipartition.

144 8. More Applications

8.2.1 Theorem (Hall’s theorem). Let G = (V, E) be a bipartite graph
with bipartition V = X

.
∪ Y . For a set T ⊆ X , we define the neighborhood

N(T) ⊆ Y of T as the set

N(T) = {w ∈ Y : {v, w} ∈ E for some v ∈ T}.

If for every T ⊆ X , |N(T)| ≥ |T | holds, then G has a matching that covers
all vertices in X .

Actually, we derive the following statement, from which Hall’s theorem
easily follows.

8.2.2 Theorem (König’s theorem). Let G = (V, E) be a bipartite graph.
Then the size of a maximum matching in G equals the size of a minimum
vertex cover of G.

We prove this theorem using the duality of linear programming. There
are also combinatorial proofs, and they are actually simpler than the proof
offered here. There are at least two reasons in favor of the proof via duality:
First, it is a simple example illustrating a powerful general technique. And
second, it gives more than just König’s theorem. It shows that a maximum
matching, as well as a minimum vertex cover, in a bipartite graph can be
computed by linear programming. Moreover, the method can be extended to
computing a maximum-weight matching in a bipartite graph with weights on
the edges.

Let us first see how Hall’s theorem follows from König’s theorem.

Proof of Theorem 8.2.1. Let G = (X
.
∪ Y, E) be a bipartite graph with

|N(T)| ≥ |T | for all T ⊆ X . We will show that any minimum vertex cover
of G has size n1 = |X |. König’s theorem then implies that G has a matching
of size n1, and this matching obviously covers X .

For contradiction, suppose that there is a vertex cover C with k vertices
from X and fewer than n1−k vertices from Y , for some k. The set T = X \C
has size n1 − k and satisfies |N(T)| ≥ n1 − k by the assumption. But this
implies that there is a vertex w ∈ N(T) that is not in C ∩ Y . Since this
vertex has some neighbor v ∈ T , the edge {v, w} is not covered by C, a
contradiction. �

Totally unimodular matrices. A matrix A is called totally unimodular
if every square submatrix of A (obtained from A by deleting some rows and
some columns) has determinant 0, 1, or −1. We note that, in particular, the
entries of A can be only 0, −1, and +1.

Such matrices are interesting since an integer program with a totally uni-
modular constraint matrix is easy to solve—it suffices to solve its LP relax-
ation, as we will show in Lemma 8.2.4 below. Let us start with a preparatory
step.

8.2 Matchings and Vertex Covers in Bipartite Graphs 145

8.2.3 Lemma. Let A be a totally unimodular matrix, and consider the ma-
trix Ā obtained from A by appending a unit vector ei as a new last column.
Then Ā is totally unimodular as well.

Proof. Let us fix an � × � submatrix Q of Ā. If Q is a submatrix of A,
then det(Q) ∈ {−1, 0, 1} by total unimodularity of A. Otherwise, we pick
the column � of Q that corresponds to the newly added column in Ā, and
we compute det(Q) according to the Laplace expansion on this column. We
recall that

det(Q) =

�∑

i=1

(−1)i+�qi� det(Qi�),

where Qi� is the matrix resulting from Q by removing row i and column �.
By construction, the �th column may be 0 (and we get det(Q) = 0), or there
is exactly one nonzero entry qk� = 1. In that case,

det(Q) = (−1)k+� det(Qk�) ∈ {−1, 0, 1},

since Qk� is a submatrix of A. �

The following lemma is the basis of using linear programming for solving
integer programs with totally unimodular matrices.

8.2.4 Lemma. Let us consider a linear program with n nonnegative vari-
ables and m inequalities of the form

maximize cT x
subject to Ax ≤ b

x ≥ 0,

where b ∈ Zm. If A is totally unimodular, and if the linear program has an
optimal solution, then it also has an integral optimal solution x∗ ∈ Zn.

Proof. We first transform the linear program into equational form. The
resulting system of equality constraints is Āx = b, with Ā = (A | Im) and
x ∈ Rn+m. Then we solve the problem using the simplex method. Let x∗

be an optimal basic feasible solution, associated with the feasible basis B ⊆
{1, 2, . . . , n + m}. Then we know that the nonzero entries of x∗ are given by

x∗
B = Ā−1

B b;

see Section 5.5.
By Cramer’s rule, the entries of Ā−1

B can be written as rational numbers
with common denominator det(ĀB). The matrix ĀB is a square submatrix
of Ā, where Ā is totally unimodular (by repeated application of Lemma 8.2.3).
Since ĀB is nonsingular, we get det(ĀB) ∈ {−1, 1}, and the integrality of x∗

follows. �

146 8. More Applications

Incidence matrices of bipartite graphs. Here is the link between total
unimodularity and König’s theorem. Let G = (X

.
∪ Y, E) be a bipartite graph

with n vertices v1, . . . , vn and m edges e1, . . . , em. The incidence matrix
of G is the matrix A ∈ Rn×m defined by

aij =

{
1 if vi ∈ ej

0 otherwise.

8.2.5 Lemma. Let G = (X
.
∪ Y, E) be a bipartite graph. The incidence

matrix A of G is totally unimodular.

Proof. We need to prove that every �×� submatrix Q of A has determinant
0 or ±1, and we proceed by induction on �. The case � = 1 is immediate,
since the entries of an incidence matrix are only 0’s and 1’s.

Now we consider � > 1 and an �×� submatrix Q. Since the columns
of Q correspond to edges, each column of Q has at most two nonzero entries
(which are 1). If there is a column with only zero entries, we get det(Q) = 0,
and if there is a column with only one nonzero entry, we can expand the
determinant on this column (as in the proof of Lemma 8.2.3) and get that
up to sign, det(Q) equals the determinant of an (�−1)×(�−1) submatrix Q′.
By induction, det(Q′) ∈ {−1, 0, 1}, so the same holds for Q.

Finally, if every column of Q contains precisely two 1’s, we claim that
det(Q) = 0. To see this, we observe that the sum of all rows of Q correspond-
ing to vertices in X is the row vector (1, . . . , 1), since for each column of Q,
exactly one of its two 1’s comes from a vertex in X . For the same reason, we
get (1, . . . , 1) by summing up the rows for vertices in Y , and it follows that
the rows of Q are linearly dependent. �

Now we are ready to prove König’s theorem.

Proof of Theorem 8.2.2. We first consider the integer program

maximize
∑m

j=1 xj

subject to Ax ≤ 1
x ≥ 0
x ∈ Zm,

where A is the incidence matrix of G. In this integer program, the row of A
corresponding to vertex vi induces the constraint

∑

j:ej�vi

xj ≤ 1.

This implies that xj ∈ {0, 1} for all j, and that the edges ej with x̃j = 1 in
an optimal solution x̃ form a maximum matching in G.

Next we consider the integer program

8.2 Matchings and Vertex Covers in Bipartite Graphs 147

minimize
∑n

i=1 yi

subject to AT y ≥ 1
y ≥ 0
y ∈ Zn,

where A is as before the incidence matrix of G. In this integer program, the
row of AT corresponding to edge ej induces the constraint

∑

i:vi∈ej

yi ≥ 1.

This implies that in any optimal solution ỹ we have ỹi ∈ {0, 1} for all i, since
any larger value could be decreased to 1. But then the vertices vi with ỹi = 1
in an optimal solution ỹ form a minimum vertex cover of G.

To summarize, the optimum value of the first integer program is the size
of a maximum matching in G, and the optimum value of the second integer
program is the size of a minimum vertex cover in G.

In both integer programs, we may now drop the integrality constraints
without affecting the optimum values: A, and therefore also AT , are totally
unimodular by Lemma 8.2.5, and so Lemma 8.2.4 applies. But the resulting
linear programs are dual to each other; the duality theorem thus shows that
their optimal values are equal, and this proves Theorem 8.2.2. �

It remains to explain the algorithmic implications of the proof (namely,
how a maximum matching and a minimum vertex cover can actually be
computed). To get a maximum matching, we simply need to find an integral
optimal solution of the first linear program. When we use the simplex method
to solve the linear program, we get this for free; see the proof of Lemma 8.2.4
and, in particular, the claim toward the end of its proof. Otherwise, we can
apply Theorem 4.2.3(ii) to construct a basic feasible solution from any given
optimal solution, and this basic feasible solution will be integral. A minimum
vertex cover is obtained from the second (dual) linear program in the same
fashion.

The previous arguments show more: Given edge weights w1, . . . , wm, any
optimal solution of the integer program

maximize
∑m

j=1 wjxj

subject to Ax ≤ 1
x ≥ 0
x ∈ Zm

corresponds to a maximum-weight matching in G. Since we can, as before,
relax the integrality constraints without affecting the optimum value, an inte-
gral optimal solution of the relaxation can be found, and it yields a maximum-
weight matching in G. This solves the optimal job assignment problem if there
are more employees than jobs.

148 8. More Applications

The fact that a linear program with totally unimodular constraint
matrix and integral right-hand side has an integral optimal solution
implies something much stronger: Since every vertex of the feasible
region is optimal for some objective function (see Section 4.4), we
know that all vertices of the feasible region are integral. We say that
the feasible region forms an integral polyhedron.

Such integrality results together with linear programming duality
can yield interesting and powerful minimax theorems. König’s theorem
is one such example. Another classical minimax theorem that can be
proved along these lines is the max-flow-min-cut theorem.

To state this theorem, we consider a network modeled by a directed
graph G = (V, E) with edge capacities we. In Section 2.2, we have
interpreted them as maximum transfer rates of data links. Given two
designated vertices, the source s and the sink t, the maximum flow
value is the maximum rate at which data can flow from s to t through
the network.

The minimum cut value, on the other hand, is the minimum total
capacity of any set of data links whose breakdown disconnects t from s.

The max-flow-min-cut theorem states that the maximum flow
value is equal to the minimum cut value. One of several proofs writes
both values as optimal values of linear programs that are dual to each
other.

When we consider matchings and vertex covers in general (not nec-
essarily bipartite) graphs, the situation changes: Total unimodularity
no longer applies, and the “duality” between the two concepts disap-
pears.

In fact, the problem of finding a minimum vertex cover in a gen-
eral graph is computationally difficult (NP-hard); see Section 3.3.
A maximum-weight matching, on the other hand, can still be com-
puted in polynomial time for general graphs, although this result is
by no means trivial. Behind the scenes, there is again an integrality
result, based on the notion of total dual integrality; see the glossary.

8.3 Machine Scheduling

In the back office of the copy shop Copy & Paste, the operator is confronted
with n copy jobs submitted by customers the night before. For processing
them, she has m photocopying machines with different features at her dis-
posal. For all i, j, the operator quickly estimates how long it would take the
ith machine to process the jth job, and she makes a table of the resulting
running times, like this:

8.3 Machine Scheduling 149

Single
B&W

Duplex
B&W

Duplex
Color

Master’s thesis, 90 pages
two-sided, 10 B&W copies

— 45 min 60 min

All the Best Deals flyer, 1 page
one-sided, 10,000 B&W copies

2h 45 min 4h 10 min 5h 30 min

Buyer’s Paradise flyer, 1 page
one-sided, 10,000 B&W copies

2h 45 min 4h 10 min 5h 30 min

Obituary, 2 pages
two-sided, 100 B&W copies

— 2 min 3 min

Party platform, 10 pages
two-sided, 5,000 color copies

— — 3h 30 min

Since the operator can go home as soon as all jobs have been processed,
her goal is to find an assignment of jobs to machines (a schedule) such that
the makespan—the time needed to finish all jobs—is minimized. In our
example, this is not hard to figure out: For the party platform, there is no
choice between machines. We can also observe that it is advantageous to
use both B&W machines for processing the two flyers, no matter where the
thesis and the obituary go. Given this, the makespan is at least 4h 55 min if
the thesis is processed on the Duplex B&W machine, so it is better put on
the color machine to achieve the optimum makespan of 4h 30 min (with the
obituary running on the B&W machine).

In general, finding the optimum makespan is computationally difficult
(NP-hard). The obvious approach of trying all possible schedules is of course
not a solution for a larger number n of jobs. What we show in this section is
that the operator can quickly compute a schedule whose makespan is at most
twice as long as the optimum makespan. All she needs for that are some linear
programming skills. (To really appreciate this result, one shouldn’t think of
a problem with 5 jobs but with thousands of jobs.)

We should emphasize that in this scheduling problem the jobs are consid-
ered indivisible, and so each job must be processed on a single machine. This,
in a sense, is what makes the problem difficult. As we will soon see, an opti-
mal “fractional schedule,” where a single job could be divided among several
machines in arbitrary ratios, can be found efficiently by linear programming.

Two integer programs for the scheduling problem. Let us identify
the m machines with the set M := {1, . . . , m} and the n jobs with the set
J := {m + 1, . . . , m + n}.

Let dij denote the running time of job j ∈ J on machine i ∈ M . We
assume dij > 0. To simplify notation, we also assume that any machine
can process any job: An infeasible assignment of job j to machine i can be
modeled by a large running time dij = K. If K is larger than the sum of all
“real” running times, the optimal schedule will avoid infeasible assignments,
given that there is a feasible schedule at all.

150 8. More Applications

With these notions, the following integer program in the variables t and
xij , i ∈ M, j ∈ J computes an assignment of jobs to machines that minimizes
the makespan:

Minimize t
subject to

∑
i∈M xij = 1 for all j ∈ J∑

j∈J dijxij ≤ t for all i ∈ M

xij ≥ 0 for all i ∈ M, j ∈ J
xij ∈ Z for all i ∈ M, j ∈ J.

Under the integrality constraints, the conditions
∑

i∈M xij = 1 and
xij ≥ 0 imply that xij ∈ {0, 1} for all i, j. With the interpretation that
xij = 1 if job j is assigned to machine i, and xij = 0 otherwise, the first
n equations stipulate that each job is assigned to exactly one machine. The
next m inequalities make sure that no machine needs more time than t to
finish all jobs assigned to it. Minimizing t leads to equality for at least one of
the machines, so the best t is indeed the makespan of an optimal schedule.

As we have already seen in Section 3.3 (the minimum vertex cover prob-
lem), solving the LP relaxation obtained from an integer program by deleting
the integrality constraints can be a very useful step toward an approximate
solution of the original problem. In our case, this approach needs an ad-
ditional twist: We will relax another integer program, obtained by adding
redundant constraints to the program above. After dropping integrality, the
added constraints are no longer redundant and lead to a better LP relaxation.

Let topt be the makespan of an optimal schedule. If dij > topt, then we
know that job j cannot run on machine i in any optimal schedule, so we
may add the constraint xij = 0 to the integer program without affecting its
validity. More generally, if T is any upper bound on topt, we can write down
the following integer program, which has the same optimal solutions as the
original one:

Minimize t
subject to

∑
i∈M xij = 1 for all j ∈ J∑

j∈J dijxij ≤ t for all i ∈ M

xij ≥ 0 for all i ∈ M, j ∈ J
xij = 0 for all i ∈ M, j ∈ J with dij > T
xij ∈ Z for all i ∈ M, j ∈ J.

But we do not know topt, so what is the value of T we use for the relax-
ation? There is no need to specify this right here; for the time being, you can
imagine that we set T = maxij dij , a value that will definitely work, because
it makes our second integer program coincide with the first one.

A good schedule from the LP relaxation. As already indicated, the
first step is to solve the LP relaxation, denoted by LPR(T), of our second
integer program:

8.3 Machine Scheduling 151

Minimize t
subject to

∑
i∈M xij = 1 for all j ∈ J∑

j∈J dijxij ≤ t for all i ∈ M

xij ≥ 0 for all i ∈ M, j ∈ J
xij = 0 for all i ∈ M, j ∈ J with dij > T.

In contrast to the vertex cover application, we cannot work with any optimal
solution of the relaxation, though: We need a basic feasible optimal solution;
see Section 4.2. To be more precise, we rely on the following property of a
basic feasible solution; see Theorem 4.2.3.

8.3.1 Assumption. The columns of the constraint matrix A corresponding
to the nonzero variables x∗

ij in the optimal solution of LPR(T) are linearly
independent.

As usual, the nonnegativity constraints xij ≥ 0 do not show up in A. In
case the simplex method is used to solve the relaxation, such a solution comes
for free (the column of A corresponding to t could then actually be added
to the set of columns in the assumption, but this is not needed). Otherwise,
we can easily construct a solution satisfying the assumption from any given
optimal solution, according to the recipe in the proof of Theorem 4.2.3.

At this point the reader may wonder why we would want to use an
algorithm different from the simplex method here, in particular when
we are searching for a basic feasible optimal solution. The reason is of
theoretical nature: We want to prove that a schedule whose makespan
is at most twice the optimum can be found in polynomial time. As we
have pointed out in the introductory part of Chapter 7, the simplex
method is not known to run in polynomial time for any pivot rule,
and for most pivot rules it simply does not run in polynomial time.
For the theoretical result we want, we had therefore better use one
of the polynomial-time methods for solving linear programs, sketched
in Chapter 7. For practical purposes, the simplex method will do, of
course.

In general terms, what we are trying to develop here is a poly-
nomial-time approximation algorithm for an NP-hard problem. Since
complexity theory indicates that we will not be able to solve the prob-
lem exactly within reasonable time bounds, it is quite natural to ask
for an approximate solution that can be obtained in polynomial time.
The quality of an approximate solution is typically measured by the
approximation factor, the ratio between the value of the approximate
solution and the value of an optimal solution. In our approximation
algorithm for the scheduling problem, this factor will be at most 2.

Let us fix the values t∗ and x∗
ij of the variables in some optimal solution

of the LP relaxation. We now consider the bipartite graph G = (M ∪ J, E),
with

152 8. More Applications

E = {{i, j} ⊆ M ∪ J | x∗
ij > 0}.

For an arbitrary optimal solution, this graph could easily be a (boring) com-
plete bipartite graph, but under Assumption 8.3.1 it becomes more interest-
ing.

8.3.2 Lemma. In any subgraph of G (obtained by deleting edges, or vertices
with their incident edges), the number of edges is at most the number of
vertices.

The graph G for m = 4 machines and n = 6 jobs might look like this, for
example:

M

J

G

Proof. Let A be the constraint matrix of the LP relaxation. It has one row
for each machine, one for each job, and one for each runtime dij exceeding T .
The columns of A corresponding to the nonzero variables x∗

ij (equivalently,
to the edges of G) are linearly independent by our assumption.

Now we consider any subgraph of G, with vertex set M ′∪J ′ ⊆ M ∪J and
edge set E′ ⊆ E. Let A′ be the submatrix obtained from A by restricting to
rows corresponding to M ′ ∪ J ′, and to columns corresponding to E′.
Claim. The columns of A′ are linearly independent.

To see this, we first observe that the columns of A corresponding
to E′ are linearly independent, simply because E′ ⊆ E. Any variable
xij , {i, j} ∈ E′, occurs in the inequality for machine i ∈ M ′ and in
the equation for job j ∈ J ′, but in no other equation, since x∗

ij > 0
implies dij ≤ T . This means that the columns of A corresponding
to E′ have zero entries in all rows except for those corresponding to
machines or jobs in M ′ ∪ J ′. Hence, these columns remain linearly
independent even when we restrict them to the rows corresponding
to M ′ ∪ J ′.

By the claim, we have |E′| ≤ |M ′ ∪ J ′|, and this is the statement of the
lemma. �

This structural result about G allows us to find a good schedule.

8.3.3 Lemma. Let T ≥ 0 be such that the LP relaxation LPR(T) is feasible,
and suppose that a feasible solution is given that satisfies Assumption 8.3.1
and has value t = t∗. Then we can efficiently construct a schedule of makespan
at most t∗ + T .

8.3 Machine Scheduling 153

Proof. We need to assign each job to some machine. We begin with the
jobs j that have degree one in the graph G, and we assign each such j to its
unique neighbor i. By the construction of G and the equation

∑
i∈M xij = 1,

we have x∗
ij = 1 in this case. If machine i has been assigned a set Si of jobs

in this way, it can process these jobs in time

∑

j∈Si

dij =
∑

j∈Si

dijx
∗
ij ≤

∑

j∈J

dijx
∗
ij ≤ t∗.

So each machine can handle the jobs assigned by this partial schedule in
time t∗.

Next we remove all assigned jobs and their incident edges from G. This
leaves us with a subgraph G′ = (M ∪ J ′, E′). In G′, all vertices of degree one
are machines. In the example depicted above, two jobs have degree one, and
their deletion results in the following subgraph G′:

M

J ′

G′

We will show that we can find a matching in G′ that covers all the remain-
ing jobs. If we assign the jobs according to this matching, every machine gets
at most one additional job, and this job can be processed in time at most T
by the construction of our second integer program. Therefore, the resulting
full schedule has makespan at most t∗ + T .

It remains to construct the matching. To this end, we use Hall’s theorem
from Section 8.2. According to this theorem, a matching exists if for every
subset J ′′ ⊆ J ′ of jobs, its neighborhood (the set of all machines connected
to at least one job in J ′′) has size at least |J ′′|.

To check this condition, we let J ′′ ⊆ J ′ be such a subset of jobs and N(J ′′)
its neighborhood. If e is the number of edges in the subgraph of G′ induced
by J ′′ ∪N(J ′′), then Lemma 8.3.2 guarantees that e ≤ |J ′′ ∪N(J ′′)|. On the
other hand, since every job has at least two neighbors, we have e ≥ 2|J ′′|,
and this shows that |N(J ′′)| ≥ |J ′′|.

Although this proof is nonconstructive, we can easily find the matching
(once we know that it exists) by linear programming as in Section 8.2, or by
other known polynomial-time methods. �

There is a direct way of constructing the matching in the proof of
Lemma 8.3.3 that relies neither on Halls’s theorem nor on general (bi-
partite) matching algorithms. It goes as follows: Lemma 8.3.2 implies
that each connected component of G′ is either a tree, or a tree with
one extra edge connecting two of its vertices. In the latter case, the

154 8. More Applications

component has exactly one cycle of even length, because G′ is bipar-
tite. Therefore, we can match all jobs occurring on cycles, and after
removing the vertices of all cycles, we are left with a subgraph G′′, all
of whose connected components are trees, with at most one vertex per
tree being a former neighbor of a cycle vertex. It follows that in every
tree of G′′, at most one vertex can be a job of degree one, since all
other degree-one vertices already had degree one in G′ and are there-
fore machines.

The matching of the remaining jobs is easy. We root any tree in
G′′ at its unique job of degree one (or at any vertex if there is no such
job), and we match every job to one of its children in the rooted tree.
For this, we observe that there cannot be an isolated job in G′′: Since
a job in G′′ was on no cycle in G′, the removal of cycles can affect only
one of the at least two neighbors of the job in G′.

For our running example, here is a complete assignment of jobs to ma-
chines obtained from the described procedure:

M

J

G

Choosing the parameter T . How good is the bound we get from the pre-
vious lemma? We will assume that t∗ is the value of an optimal basic feasible
solution of the LP relaxation with parameter T . Then t∗ is a lower bound
for the optimum makespan topt, so this part of the bound looks promising.
But when we recall that T must be an upper bound for topt in order for our
second integer program to be valid, it seems that we would have to choose
T = topt to get makespan at most 2topt. But this cannot be done, since we
have argued above that it is hard to compute topt (and if it were easy, there
would be no need for an approximate solution anyway).

Luckily, there is a way out. Reading Lemma 8.3.3 carefully, we see that
T only needs to be chosen so that the LP relaxation LPR(T) is feasible, and
there is no need for the second integer program to be feasible.

If LPR(T) is feasible, Lemma 8.3.3 allows us to construct a schedule with
makespan at most t∗+T , so the best T is the one that minimizes t∗+T subject
to LPR(T) being feasible. Since t∗ depends on T , we make this explicit now
by writing t∗ = t∗(T). If LPR(T) is infeasible, we set t∗(T) = ∞.

How to find the best T . We seek a point T ∗ in which the function f(T) =
t∗(T) + T attains a minimum.

First we observe that t∗(T) is a step function as in the following picture:

8.3 Machine Scheduling 155

T

t̃(T)

t̃(T) = ∞

here

d35 d24 d27 . . . max dij

Indeed, let us start with the value T = maxij dij , and let us decrease T
continuously. The value of t∗(T) may change (jump up) only immediately
after moments when a new constraint of the form xij = 0 appears in LPR(T),
and this happens only for T = dij . Between these values the function t∗(T)
stays constant.

Consequently, the function f(T) = t∗(T) + T is linearly increasing on
each interval between two consecutive dij ’s, and the minimum is attained at
some dij . So we can compute the minimum, and the desired best value T ∗,
by solving at most mn linear programs of the form LPR(T), with T ranging
over all dij . Under our convention that t∗(T) = ∞ if LPR(T) is infeasible,
the minimum will be attained at a value T ∗ with LPR(T ∗) feasible.

8.3.4 Theorem. Let T ∗ be the value of T that minimizes t∗(T) + T . With
T = T ∗, the algorithm in the proof of Lemma 8.3.3 computes a schedule of
makespan at most 2topt.

Proof. We know that for T = topt, the second integer program is feasible and
has optimum value topt. Hence LPR(topt) is feasible as well and its optimum
value can be only smaller: t∗(topt) ≤ topt. We thus have

t∗(T ∗) + T ∗ = minT

(
t∗(T) + T

)

≤ t∗(topt) + topt

≤ 2topt.

�

The 2-approximation algorithm for the scheduling problem is
adapted from the paper

J. K. Lenstra, D. B. Shmoys, É. Tardos: Approximation algo-
rithms for scheduling unrelated parallel machines, Mathemat-
ical Programming 46(1990), pages 259–271.

156 8. More Applications

The paper also proves that it is NP-hard to approximate the optimum
makespan with a factor less than 3

2 .
Aiming at simplicity, we have presented a somewhat inefficient

version of the algorithm. A considerably faster version, with the same
approximation guarantee, can be obtained if we do not minimize the
function T �→ t∗(T) + T , but instead we only look for the smallest T
with t∗(T) ≤ T . Such a value of T still guarantees t∗(T) + T ≤ 2topt,
but it can be found by binary search over the sorted sequence of the dij .
In this way, it suffices to solve LPR(T) for O(log mn) values of T ,
instead of mn values as in our presentation. See the paper quoted
above for details.

8.4 Upper Bounds for Codes

Error-correcting codes. Let us consider a DVD player that has a remote
control unit with 16 keys. Whenever one of the keys is pressed, the unit needs
to communicate this event to the player.

A natural option would be to send a 4-bit sequence: Since there are 24 =
16 different 4-bit sequences (referred to as “words” in this context), a 4-bit
sequence is an economical way of communicating one of 16 possibilities.

However, let us suppose that the transmission of bits from the remote
control to the player is not quite reliable, and that each of the transmitted
bits can be received incorrectly with some small probability, say 0.005. Then
we expect that about 2% of the commands are received incorrectly, which
can be regarded as a rather serious flaw of the device.

One possibility of improvement is to triple each of the four transmitted
bits. That is, instead of a 4-bit word abcd the unit sends the 12-bit word
aaabbbcccddd. Now a transmission error in a single bit can be recognized
and corrected. For example, if the sequence 111001000111 is received, and
if we assume that at most one bit was received erroneously, it is clear that
111000000111 must have been sent. Thus the original 4-bit sequence was
1001. Of course, it might be that actually two or more bits are wrong, and
then the original sequence is not reconstructed correctly, but this has much
lower probability. Namely, if we assume that the errors in different bits are
independent and occur with probability 0.005 (which may or may not be
realistic, depending on the technical specifications), then the probability of
two or more errors in a 12-bit sequence is approximately 0.16%. This is a
significant improvement in reliability. However, the price to pay is transmit-
ting three times as many bits, which presumably exhausts the battery of the
remote control much faster.

A significantly better solution to this problem was discovered by Richard
Hamming in the 1950s (obviously not in the context of DVD players). In

8.4 Upper Bounds for Codes 157

order to distinguish 16 possibilities, we send one of the following 7-bit words:
0000000, 0001011, 0010101, 0011110, 0100110, 0101101, 0110011, 0111000,
1000111, 1001100, 1010010, 1011001, 1100001, 1101010, 1110100, 1111111. It
can be checked that every two of these words differ in at least 3 bits. (This
fact can be checked by brute force, but it is also a consequence of an elegant
general theory, which we do not treat here.) Therefore, if one error occurs in
the transmission, the sequence that was sent can be reconstructed uniquely.
Hence the capability of correcting any single-bit error is retained, but the
number of transmitted bits is reduced to slightly more than half compared
to the previous approach.

A similar problem can be investigated for other settings of the parameters
as well. In general, we want to communicate one of N possibilities, we do it
by transmitting an n-bit word, and we want that any at most r errors can
be corrected.

This problem has an enormous theoretical and practical significance. Our
example with a DVD player was simple-minded, but error-correcting codes
play a role in any technology involving transmission or storage of information,
from computer disks and cell phones to deep-space probes. We now introduce
some common terminology related to error-correcting codes.

Terminology. The Hamming distance of two words w,w′ ∈ {0, 1}n is the
number of bits in which w differs from w′:

dH(w,w′) := |{j ∈ {1, . . . , n} : wj �= w′
j}|.

The Hamming distance can be interpreted as the number of errors “neces-
sary” to transform w into w′. The weight of w ∈ {0, 1}n is the number of
1’s in w:

|w| := |{j ∈ {1, . . . , n} : wj = 1}|.

Finally, for w,w′ ∈ {0, 1}n, we define their sum modulo 2 as the word

w ⊕ w′ = ((w1 + w′
1)mod 2, . . . , (wn + w′

n)mod 2) ∈ {0, 1}n.

These three notions are interrelated by the formula

dH(w,w′) = |w ⊕ w′|. (8.6)

In the last of the solutions to the DVD-player problem discussed above,
the crucial object was the set C = {0000000, 0001011, 0010101, 0011110,
0100110, 0101101, 0110011, 0111000, 1000111, 1001100, 1010010, 1011001,
1100001, 1101010, 1110100, 1111111} of 7-bit words in which every two dis-
tinct words had Hamming distance at least 3. In coding theory, any subset
C ⊆ {0, 1}n is called a code. (This may sound strange, since under a code one
usually imagines some kind of method or procedure for coding, but in the
theory of error-correcting codes one has to get used to this terminology.) For
correcting errors, the crucial parameter is the distance of the code:

158 8. More Applications

8.4.1 Definition. A code C ⊆ {0, 1}n has distance d if dH(w,w′) ≥ d
for any two distinct words w,w′ in C. For n, d ≥ 0, let A(n, d) denote the
maximum cardinality of a code C ⊆ {0, 1}n with distance d.

We claim that a code C can correct any at most r errors if and only if it has
distance at least 2r + 1. Indeed, on the one hand, if C contained two distinct
words w′,w′′ that differ in at most 2r bits, we consider any word w resulting
from w′ by flipping exactly half of the bits (rounded down) that distinguish
w′ from w′′. When the word w is received, there is no way to tell which of
the words w′ and w′′ was intended. On the other hand, if any two distinct
code words differ by at least 2r +1 bits, then for any word w ∈ {0, 1}n there
is at most one code word from which w can be obtained through r or fewer
errors, and this must be the word that was sent when w is received.

Given the number n of bits we can afford to transmit and the number
r of errors we need to be able to correct, we want a code C ⊆ {0, 1}n with
distance at least 2r + 1 and with |C| as large as possible, since the number
of words in the code corresponds to the amount of information that we can
transmit. Thus determining or estimating A(n, d), the maximum possible size
of a code C ⊆ {0, 1}n with distance d, is one of the main problems of coding
theory.

The problem of finding the largest codes for given n and r can in principle
be solved by complete enumeration: We can go through all possible subsets of
{0, 1}n and output the largest one that gives a code with distance d. However,
this method becomes practically infeasible already for very small n. It turns
out that the problem, for arbitrary n and d, is computationally difficult (NP-
hard). Starting from very moderate values of n and d, the maximum code
sizes are not exactly known, except for few lucky cases. Tightening the known
upper and lower bounds on maximum sizes of error-correcting codes is the
topic of ongoing research in coding theory.

In this section we present a technique for proving upper bounds based
on linear programming. When this technique was introduced by Philippe
Delsarte in 1973, it provided upper bounds of unprecedented quality.

Special cases. For all n, we have A(n, 1) = 2n, because any code has dis-
tance 1. The case d = 2 is slightly more interesting. By choosing C as the set
of all words of even weight, we see that A(n, 2) ≥ 2n−1. But we actually have
A(n, 2) = 2n−1, since it is easy to show by induction that every code with
more than 2n−1 words contains two words of Hamming distance 1.

Given the simplicity of the cases d = 1, 2, it may come as a surprise that
already for d = 3, little is known. This is the setup for error-correcting codes
with one error allowed. Exact values of A(n, 3) have been determined only
up to n ≤ 16; for n = 17, for example, the known bounds are

5312 ≤ A(17, 3) ≤ 6552.

8.4 Upper Bounds for Codes 159

The sphere-packing bound. For any n and d, a simple upper bound
on A(n, d) can be obtained by a volume argument. Let us motivate this
with a real-life analogy. The local grocery is exhibiting a large glass box
filled with peas, and the person to make the most accurate estimate
of the number of peas in the box wins a prize. Without any counting,
you can conclude that the number of peas is bounded above by the
volume of the box divided by the volume of a single pea (assuming
that all the peas have the same volume).

The same kind of argument can be used for the number A(n, d),
where we may assume in our application that d = 2r + 1 is odd. Let
us fix any code C of distance d. Now we think of the set {0, 1}n as the
glass box, and of the |C| Hamming balls

B(w, r) := {w′ ∈ {0, 1}n : dH(w,w′) ≤ r}, w ∈ C,

as the peas. Since the code has distance 2r+1, all these Hamming balls
are disjoint and correspond in our analogy to peas. Consequently, their
number cannot be larger than the total number of words (the volume
of the box) divided by the number of words in a single Hamming ball
(the volume of a pea). The number of words at Hamming distance
exactly i from w is

(
n
i

)
. This implies

|B(w, r)| =

r∑

i=0

(
n

i

)
,

and the following upper bound on A(n, 2r + 1) is obtained.

8.4.2 Lemma (Sphere-packing bound).For all n and r,

A(n, 2r + 1) ≤
⌊

2n

∑r
i=0

(
n
i

)
⌋

.

For example, the sphere-packing bound gives A(7, 3) ≤ 16 (and so
the Hamming code in our initial example is optimal), and

A(17, 3) ≤ �131072/18� = 7281.

In the following theorem, which is the main result of this section, an upper
bound on A(n, d) is expressed as an optimum of a certain linear program.

8.4.3 Theorem (The Delsarte bound). For integers n, i, t with 0 ≤ i,
t ≤ n, let us put

Kt(n, i) =

min(i,t)∑

j=0

(−1)j

(
i

j

)(
n − i

t − j

)
.

160 8. More Applications

Then for every n and d, A(n, d) is bounded above by the optimum value of
the following linear program in variables x0, x1, . . . , xn:

Maximize x0 + x1 + · · · + xn

subject to x0 = 1
xi = 0, i = 1, 2, . . . , d − 1∑n

i=0 Kt(n, i) · xi ≥ 0, t = 1, 2, . . . , n
x0, x1, . . . , xn ≥ 0.

Example. Using the sphere packing bound, we have previously found
A(17, 3) ≤ 7281. To compute the Delsarte bound, we solve the linear program
in the theorem (after eliminating x0, x1, x2, which are actually constants, we
have 15 nonnegative variables and 17 constraints). The optimum value is
6553 3

5 , which implies A(17, 3) ≤ 6553. The current best upper bound is 6552,
an improvement by only 1!

Toward an explanation. The proof of the Delsarte bound will proceed as
follows. With every subset C ⊆ {0, 1}n we associate nonnegative real quan-
tities x̃0, x̃1, . . . , x̃n such that |C| = x̃0 + · · · + x̃n. Then we will show that
whenever C is a code with distance d, the x̃i constitute a feasible solution of
the linear program in the theorem. It follows that the maximum of the linear
program is at least as large as the size of any existing code C with distance d
(but of course, it may be larger, since a feasible solution does not necessarily
corresponds to a code).

Given C ⊆ {0, 1}n, the x̃i are defined by

x̃i =
1

|C| ·
∣∣∣{(w,w′) ∈ C2 : dH(w,w′) = i}

∣∣∣, i = 0, . . . , n.

Thus, x̃i is the number of ordered pairs of code words with Hamming dis-
tance i, divided by the total number of code words. Since any of the |C|2
ordered pairs contributes to exactly one of the x̃i, we have

x̃0 + x̃1 + · · · + x̃n = |C|.

Some of the constraints in the linear program in Theorem 8.4.3 are now
easy to understand. We clearly have x̃0 = 1, since every w ∈ C has distance 0
only to itself. The equations x̃1 = 0 through x̃d−1 = 0 hold by the assumption
that C has distance d; that is, there are no pairs of code words with Hamming
distance between 1 and d−1. Interestingly, this is the only place in the proof
of the Delsarte bound where the assumption of C being a code with distance d
is used.

The remaining set of constraints is considerably harder to derive, and it
lacks a really intuitive explanation. Thus, to prove Theorem 8.4.3, we have
to establish the following.

8.4.4 Proposition. Let C ⊆ {0, 1}n be an arbitrary set, let x̃i = x̃i(C) be
defined as above, and let t ∈ {1, 2, . . . , n}. Then we have the inequality

8.4 Upper Bounds for Codes 161

n∑

i=0

Kt(n, i) · x̃i ≥ 0.

In the next lemma, I ⊆ {1, 2, . . . , n} is a set of indices, and we write
dI

H(w,w′) for the number of indices i ∈ I with wi �= w′
i (thus, the components

outside I are ignored).

8.4.5 Lemma. Let I ⊆ {1, 2, . . . , n} be a set of indices, and let C ⊆ {0, 1}n.
Then the number of pairs (w,w′) ∈ C2 with dI

H(w,w′) even is at least as large
as the number of pairs (w,w′) ∈ C2 with dI

H(w,w′) odd. (In probabilistic
terms, if we choose w,w′ ∈ C independently at random, then the probability
that they differ in an even number of positions from I is at least as large as
the probability that they differ in an odd number of positions from I.)

Proof. Let us write |w|I = |{i ∈ I : wi = 1}|, and let us set

E = {w ∈ C : |w|I is even}, O = {w ∈ C : |w|I is odd}.

From the equation dI
H(w,w′) = |w ⊕ w′|I , we see that if dI

H(w,w′) is even,
then |w|I and |w′|I have the same parity, and so w and w′ are both in E
or both in O. On the other hand, for dI

H(w,w′) odd, one of w, w′ lies in
E and the other one in O. So the assertion of the lemma is equivalent to
|E|2 + |O|2 ≥ 2 · |E| · |O|, which follows by expanding (|E| − |O|)2 ≥ 0. �

8.4.6 Corollary. For every C ⊆ {0, 1}n and every v ∈ {0, 1}n we have

∑

(w,w′)∈C2

(−1)(w⊕w′)T v ≥ 0.

Proof. This is just another way of writing the statement of Lemma 8.4.5.
Indeed, if we set I = {i : vi = 1}, then (w ⊕ w′)T v = dI

H(w,w′), and
hence the sum in the corollary is exactly the number of pairs (w,w′) with
dI

H(w,w′) even minus the number of pairs with dI
H(w,w′) odd.

The corollary also has a quick algebraic proof, which some readers may
prefer. It suffices to note that (w⊕w′)T v has the same parity as (w+w′)T v
(addition modulo 2 was replaced by ordinary addition of integers), and so

∑

(w,w′)∈C2

(−1)(w⊕w′)T v =
∑

(w,w′)∈C2

(−1)(w+w′)T v

=
∑

(w,w′)∈C2

(−1)w
T v · (−1)w

′T v

=

(∑

w∈C
(−1)w

T v

)2

≥ 0.

�

162 8. More Applications

Proof of Proposition 8.4.4. To prove the tth inequality in the proposition,
i.e.,

∑n
i=0 Kt(n, i) · x̃i ≥ 0, we sum the inequality in Corollary 8.4.6 over all

v ∈ {0, 1}n of weight t. Interchanging the summation order, we obtain

0 ≤
∑

(w,w′)∈C2

∑

v∈{0,1}n: |v|=t

(−1)(w⊕w′)T v.

To understand this last expression, let us fix u = w ⊕ w′ and write S(u) =∑
v∈{0,1}n: |v|=t(−1)u

T v. In this sum, the v with uT v = j are counted with

sign (−1)j . How many v of weight t and with uT v = j are there? Let i =
|u| = dH(w,w′) be the number of 1’s in u. In order to form such a v, we
need to put j ones in positions where u has 1’s and t − j ones in positions
where u has 0’s. Hence the number of these v is

(
i
j

)(
n−i
t−j

)
, and

S(u) =

min(i,t)∑

j=0

(−1)j

(
i

j

)(
n − i

t − j

)
,

which we recognize as Kt(n, i). So we have

0 ≤
∑

(w,w′)∈C2

Kt(n, dH(w,w′)),

and it remains to note that the number of times Kt(n, i) appears in this
sum is |C| · x̃i. This finishes the proof of Proposition 8.4.4 and thus also of
Theorem 8.4.3. �

A small strengthening of the Delsarte bound. We have seen
that Theorem 8.4.3 yields A(17, 3) ≤ 6553. We show how the inequal-
ities in the theorem can be slightly strengthened using a parity argu-
ment, which leads to the best known upper bound A(17, 3) ≤ 6552.
Similar tricks can improve the Delsarte bound in some other cases as
well, but the improvements are usually minor.

For contradiction let us suppose that n = 17 and there is a code
C ⊆ {0, 1}n of distance 3 with |C| = 6553. The size of C is odd, and we
note that for every code of odd size and every t, the last inequality in
the proof of Corollary 8.4.6 can be strengthened to

(∑

w∈C
(−1)w

T v

)2

≥ 1,

since an odd number of values from {−1, 1} cannot sum to zero. If we
propagate this improvement through the proof of Proposition 8.4.4,
we arrive at the following inequality for the x̃i:

8.4 Upper Bounds for Codes 163

n∑

i=0

Kt(n, i) · x̃i ≥
(
n
t

)

|C| .

Since in our particular case we suppose |C| = 6553, we can replace
the constraints

∑n
i=0 Kt(n, i) · xi ≥ 0, t = 1, 2, . . . , n, in the linear

program in Theorem 8.4.3 by
∑n

i=0 Kt(n, i) · xi ≥
(
n
t

)
/6553, and the

x̃i defined by our C remain a feasible solution. However, the optimum
of this modified linear program is only 6552 3

5 , which contradicts the
assumption |C| = 6553. This proves A(17, 3) ≤ 6552.

The paper

M. R. Best, A. E.Brouwer, F. J.MacWilliams, A. M. Odlyzko,
and N. J.A. Sloane: Bounds for binary codes of length less
than 25, IEEE Trans. Inform. Theory 24 (1978), pages 81–
93.

describes this particular strengthening of the Delsarte bound and some
similar approaches. A continually updated table of the best known
bounds for A(n, d) for small n and d is maintained by Andries Brouwer
at

http://www.win.tue.nl/~aeb/codes/binary-1.html.

The Delsarte bound explained. The result in Theorem 8.4.3 goes
back to the thesis of Philippe Delsarte:

P. Delsarte: An algebraic approach to the association schemes
of coding theory, Philips Res. Repts. Suppl. 10 (1973).

Here we sketch Delsarte’s original proof. At a comparable level of
detail, his proof is more involved than the ad hoc proof above (from
the paper by Best et al.). On the other hand, Delsarte’s proof is more
systematic, and even more importantly, it can be extended to prove a
stronger result, which we mention below.

For i ∈ {0, . . . , n}, let Mi be the 2n × 2n matrix defined by1

(Mi)v,w =

{
1 if dH(v,w) = i
0 otherwise.

The set of matrices of the form

n∑

i=0

yiMi, y0, . . . , yn ∈ R,

is known to be closed under addition and scalar multiplication (this is
clear), and under matrix multiplication (this has to be shown). A set

1 We assume that rows and columns are indexed by the words from {0, 1}n.

164 8. More Applications

of matrices closed under these operations is called a matrix algebra.
In our case, one speaks of the Bose–Mesner algebra of the Ham-
ming association scheme. The matrix multiplication turns out to
be commutative on this algebra, and this is known to imply a strong
condition: The Mi have a common diagonalization, meaning that there
is an orthogonal matrix U with UT MiU diagonal for all i.

Once we know this, it is a matter of patience to find such a ma-
trix U . For example, the matrix U defined by

Uv,w =
1

2n/2
(−1)v

T w

will do. First we have to check (this is easy) that this matrix is indeed
orthogonal, meaning that UT U = In.

For the entries of UT MiU , we can derive the formula

(UT MiU)v,w =
1

2n

∑

(u,u′)∈({0,1}n)2

dH(u,u′)=i

(−1)u
T v+u′T w.

We claim that this sum evaluates to 0 whenever v �= w; this will imply
that UT MiU is indeed a diagonal matrix. To prove the claim, we let
j be any index for which vj �= wj . In the sum, we can then pair up the
terms for (u,u′) and (u ⊕ ej ,u

′ ⊕ ej), with ej being the word with a
1 exactly at position j. This pairing covers all terms of the sum, and
paired-up terms are easily seen to cancel each other. (If you didn’t
believe UT U = In, this can be shown with an even simpler pairing
argument along these lines.)

On the diagonal, we get

(UT MiU)w,w =
1

2n

∑

(u,u′)∈({0,1}n)2

dH(u,u′)=i

(−1)(u⊕u′)T w

=
∑

v∈{0,1}n

|v|=i

(−1)v
T w = Ki(n, |w|)

(for the last equality see the proof of Proposition 8.4.4) since any v of
weight i can be written in the form v = u ⊕ u′ in 2n different ways,
one for each u ∈ {0, 1}n.

Next, let us fix a code C and look at a specific matrix in the Bose–
Mesner algebra. For this, we define the values

ỹi =
|{(w,w′) ∈ C2 : dH(w,w′) = i}|

2n
(

n
i

) , i = 0, . . . , n.

8.4 Upper Bounds for Codes 165

We note that ỹi is the probability that a randomly chosen pair of
words with Hamming distance i is a pair of code words. Moreover,
ỹi is related to our earlier quantity x̃i via

ỹi =
|C|

2n
(

n
i

) x̃i. (8.7)

Here comes Delsarte’s main insight.

8.4.7 Lemma. The matrix M̃ =
∑n

i=0 ỹiMi is positive semidefinite.

Proof. We first observe that

M̃v,w = ỹi, (8.8)

where i = dH(v,w). We will express M̃ as a positive linear combi-
nation of matrices that are obviously positive semidefinite. We start
with the matrix XC defined by

XC
v,w =

{
1 if (v,w) ∈ C2

0 otherwise.

This matrix is positive semidefinite, since it can be written in the form

XC = xC(xC)T ,

where xC is the characteristic vector of C:

xC
w :=

{
1 if w ∈ C
0 otherwise.

Let Π be the automorphism group of {0, 1}n, consisting of the
n!2n bijections that permute indices and swap 0’s with 1’s at selected
positions. With τ chosen uniformly at random from Π, we obtain2

Prob
[
(v,w) ∈ τ(C)2

]
=

1

|Π|
∑

π∈Π

[
(v,w) ∈ π(C)2

]

=
1

|Π|
∑

π∈Π

Xπ(C)
v,w .

On the other hand,

Prob
[
(v,w) ∈ τ(C)2

]
= Prob

[
(τ−1(v), τ−1(w)) ∈ C2

]
= ỹi,

since τ−1 is easily shown to map (v,w) to a random pair of words
with Hamming distance i.

2 The indicator variable [P] of a statement P has value 1 if P holds and 0 otherwise.

166 8. More Applications

Using (8.8), this shows that

M̃ =
1

|Π|
∑

π∈Π

Xπ(C)

is a positive linear combination of positive semidefinite matrices and
is therefore positive semidefinite itself. The lemma is proved. �

After diagonalization of M̃ by the matrix U , the statement of
Lemma 8.4.7 can equivalently be written as

n∑

i=0

ỹi(U
T MiU)w,w =

n∑

i=0

ỹiKi(n, |w|) ≥ 0, w ∈ {0, 1}n.

This is true since diagonalization preserves the property of being posi-
tive semidefinite, which for diagonal matrices is equivalent to nonneg-
ativity of all diagonal entries.

Taking into account the relation (8.7) between the ỹi and our orig-
inal x̃i, this implies the following inequalities for any code C.

n∑

i=0

x̃i
Ki(n, t)(

n
i

) ≥ 0, t = 1, . . . , n. (8.9)

Observing that (
t
j

)(
n−t
i−j

)
(
n
i

) =

(
i
j

)(
n−i
t−j

)
(
n
t

) ,

we get (cf. the definition of Kt in Theorem 8.4.3)

Ki(n, t)(
n
i

) =
Kt(n, i)(

n
t

) .

Under this equation, the inequalities in (8.9) are equivalent to those
in Proposition 8.4.4 and we recover the Delsarte bound.

Beyond the Delsarte bound. Alexander Schrijver generalized Del-
sarte’s approach and improved the upper bounds on A(n, d) signifi-
cantly in many cases:

A. Schrijver: New code upper bounds from the Terwilliger al-
gebra and semidefinite programming, IEEE Trans. Inform.
Theory 51 (2005), pages 2859–2866.

His work uses semidefinite programming instead of linear program-
ming.

8.5 Sparse Solutions of Linear Systems 167

8.5 Sparse Solutions of Linear Systems

A coding problem. We begin with discussing error-correcting codes again,
but this time we want to send a sequence w ∈ Rk of k real numbers. Or
rather not we, but a deep-space probe which needs to transmit its priceless
measurements represented by w back to Earth. We want to make sure that
all components of w can be recovered correctly even if some fraction, say 8%,
of the transmitted numbers are corrupted, due to random errors or even
maliciously (imagine that the secret Brotherhood for Promoting the Only
Truth can somehow tamper with the signal slightly in order to document the
presence of supernatural phenomena in outer space). We admit gross errors;
that is, if the number 3.1415 is sent and it gets corrupted, it can be received
as 2152.66, or 3.1425, or −1011, or any other real number.

Here is a way of encoding w: We choose a suitable number n > k and a
suitable n×k encoding matrix Q of rank k, and we send the vector z = Qw ∈
Rn. Because of the errors, the received vector is not z but z̃ = z + x, where
x ∈ Rn is a vector with at most r = �0.08n� nonzero components. We ask,
under what conditions on Q can z be recovered from z̃?

Somewhat counterintuitively, we will concentrate on the task of finding
the “error vector” x. Indeed, once we know x, we can compute w by solving
the system of linear equations Qw = z = z̃−x. The solution, if one exists, is
unique, since we assume that Q has rank k and hence the mapping w �→ Qw
is injective.

Sparse solutions of underdetermined linear systems. In order to
compute x, we first reformulate the recovery problem. Let m = n−k and let A
be an m×n matrix such that AQ = 0. That is, considering the k-dimensional
linear subspace of Rn generated by the columns of Q, the rows of A form
a basis of its orthogonal complement. The following picture illustrates the
dimensions of the matrices:

Qn

k

AT

AQ = 0

m

︸ ︷︷ ︸
n

In the recovery problem we have z̃ = Qw + x. Multiplying both sides by A
from the left, we obtain Az̃ = AQw+Ax = Ax. Setting b = Az̃, we thus get
that the unknown x has to satisfy the system of linear equations Ax = b.
We have m = n − k equations and n > m unknowns; the system is under-
determined and it has infinitely many solutions. In general, not all of these
solutions can appear as an error vector in the decoding problem (we note that

168 8. More Applications

the multiplication by A above is not necessarily an equivalent transformation
and so it may give rise to spurious solutions). However, we seek a solution x
with the extra property |supp(x)| ≤ r, where we introduce the notation

supp(x) = {i ∈ {1, 2, . . . , n} : xi �= 0}.

As we will see, under suitable conditions relating n, m, r and A, such a sparse
solution of Ax = b turns out to be unique (and thus it has to be the desired
error vector), and it can be computed efficiently by linear programming!

Let us summarize the resulting problem once again:

Sparse solution of underdetermined system of linear equations

Given an m×n matrix A with m < n, a vector b ∈ Rm, and an integer r,
find an x ∈ Rn such that

Ax = b and |supp(x)| ≤ r (8.10)

if one exists.

The coding problem above is only one among several important practical
problems leading to the computation of sparse solutions of underdetermined
systems. We will mention other applications at the end of this section. From
now on, we call any x satisfying (8.10) a sparse solution to Ax = b. (Warn-
ing: This shouldn’t be confused with solutions of sparse systems of equations,
which is an even more popular topic in numerical mathematics and scientific
computing.)

A linear algebra view. There is a simple necessary and sufficient condition
guaranteeing that there is at most one sparse solution of Ax = b.

8.5.1 Observation. With n, m, r fixed, the following two conditions on an
m×n matrix A are equivalent:

(i) The system Ax = b has at most one sparse solution x for every b.
(ii) Every 2r or fewer columns of A are linearly independent.

Proof. To prove the (more interesting) implication (ii)⇒(i), let us assume
that x′ and x′′ are two different sparse solutions of Ax = b. Then y = x′ −
x′′ �= 0 has at most 2r nonzero components and satisfies Ay = Ax′−Ax′′ = 0,
and hence it defines a linear dependence of at most 2r columns of A.

To prove (i)⇒(ii), we essentially reverse the above argument. Supposing
that there exists nonzero y ∈ Rn with Ay = 0 and |supp(y)| ≤ 2r, we write
y = x′ − x′′, where both x′ and x′′ have at most r nonzero components. For
example, x′ may agree with y in the first �|supp(y)|/2� nonzero components
and have 0’s elsewhere, and x′′ = x′−y has the remaining at most r nonzero
components of y with opposite sign. We set b = Ax′, so that x′ is a sparse

8.5 Sparse Solutions of Linear Systems 169

solution of Ax = b, and we note that x′′ is another sparse solution since
Ax′′ = Ax′ − Ay = Ax′ = b. �

Let us note that (ii) implies that, in particular, m ≥ 2r. On the other
hand, if we choose a “random” 2r×n matrix A, we almost surely have every
2r columns linearly independent.3 So in the coding problem, if we set n so
that n = k + 2r, choose A randomly, and let the columns of Q form a basis
of the orthogonal complement of the row space of A, we seem to be done—a
random A has almost surely every 2r columns linearly independent, and in
such case, assuming that no more than r errors occurred, the sparse error
vector x is always determined uniquely, and so is the original message w.

Efficiency? But a major question remains—how can we find the unknown
sparse solution x? Unfortunately, it turns out that the problem of computing
a sparse solution of Ax = b is difficult (NP-hard) in general, even for A
satisfying the conditions of Observation 8.5.1.

Since the problem of finding a sparse solution of Ax = b is important
and computationally difficult, several heuristic methods have been proposed
for solving it at least approximately and at least in some cases. One of them,
described next, turned out to be considerably more powerful than the others.

Basis pursuit. A sparse solution x is “small” in the sense of having few
nonzero components. The idea is to look for x that is “small” in another
sense that is easier to deal with, namely, with small |x1| + |x2| + · · · + |xn|.
The last quantity is commonly denoted by ‖x‖1 and called the �1-norm of x
(while ‖x‖ = ‖x‖2 =

√
x2

1 + · · · + x2
n is the usual Euclidean norm, which can

also be called the �2-norm).4 We thus arrive at the following optimization
problem (usually called basis pursuit in the literature):

Minimize ‖x‖1 subject to x ∈ Rn and Ax = b. (BP)

3 In this book we don’t want to assume or introduce the knowledge required to
state and prove this claim rigorously. Instead, we offer the following semiformal
argument relying on a famous but nontrivial theorem. The condition of linear
independence of every 2r columns can be reformulated as det(AI) �= 0 for every
2r-element I ⊂ {1, 2, . . . , n}. Now for I fixed, det(AI) is a polynomial of degree
2r in the 2rn entries of A (it really depends only on 4r2 entries but never mind),
and the set of the matrices A with det(AI) = 0 is the zero set of this polynomial in
R2rn. The zero set of any nonzero polynomial is very “thin”; by Sard’s theorem,
it has Lebesgue measure 0. Hence the matrices A with det(AI) = 0 for at least
one I correspond to points in R2nr lying on the union of

`
n
2r

´
zero sets, each of

measure 0, and altogether they have measure 0. Therefore, such matrices appear
with zero probability in any “reasonable” continuous distribution on matrices,
for example, if the entries of A are chosen independently and uniformly from the
interval [−1, 1].

4 The letter � here can be traced back to the surname of Henri Lebesgue, the
founder of modern integration theory. A certain space of integrable functions on
[0, 1] is denoted by L1(0, 1) in his honor, and �1 is a “pocket version” of this
space consisting of countable sequences instead of functions.

170 8. More Applications

By a trick we have learned in Section 2.4, this problem can be reformulated
as a linear program:

Minimize u1 + u2 + · · · + un

subject to Ax = b
−u ≤ x ≤ u
x,u ∈ Rn, u ≥ 0.

(BP′)

To check the equivalence of (BP) and (BP′), we just note that in an optimal
solution of (BP′) we have ui = |xi| for every i.

The basis pursuit approach to finding a sparse solution of Ax = b thus
consists in computing an optimal solution x∗ of (BP) by linear programming,
and hoping that, with some luck, this x∗ might also be the sparse solution
or at least close to it.

At first sight it is not clear why basis pursuit should have any chance of
finding a sparse solution. After all, the desired sparse solution might have a
few huge components, while x∗, a minimizer of the �1-norm, might have all
components nonzero but tiny.

Surprisingly, experiments have revealed that basis pursuit actually per-
forms excellently, and it usually finds the sparse solution exactly even in con-
ditions that don’t look very favorable. Later these findings were confirmed
by rather precise theoretical results. Here we state the following particular
case of such results:

8.5.2 Theorem (Guaranteed success of basis pursuit). Let

m = �0.75n�,

and let A be a random m×n matrix, where each entry is drawn from the
standard normal distribution N(0, 1) and the entries are mutually indepen-
dent.5 Then with probability at least 1 − e−cm, where c > 0 is a positive
constant, the matrix A has the following property:

If b ∈ Rm is such that the system Ax = b has a solution x̃ with at
most r = �0.08n� nonzero components, then x̃ is a unique optimal
solution of (BP).

For brevity, we call a matrix A with the property as in the theorem BP-
exact (more precisely, we should say “BP-exact for r,” where r specifies the
maximum number of nonzero components). For a BP-exact matrix A we can

5 We recall that the distribution N(0, 1) has density given by the Gaussian “bell

curve” 1√
2π

e−x2/2. How can we generate a random number with this distribution?

This is implemented in many software packages, and methods for doing it can
be found, for instance, in

D. Knuth: The Art of Computer Programming, Vol. 2: Seminumerical Al-
gorithms, Addison-Wesley, Reading, Massachusetts, 1973.

8.5 Sparse Solutions of Linear Systems 171

thus find a sparse solution of Ax = b exactly and efficiently, by solving the
linear program (BP′).

Returning to the coding problem from the beginning of the section, we
immediately obtain the following statement:

8.5.3 Corollary. Let k be a sufficiently large integer, let us set n = 4k,
m = 3k, let a random m×n matrix A be generated as in Theorem 8.5.2,
and let Q be an n×k matrix of rank k with AQ = 0 (in other words, the
column space of Q is the orthogonal complement of the row space of A).
Then the following holds with probability overwhelmingly close to 1: If Q is
used as a coding matrix to transmit a vector w ∈ Rk, by sending the vector
z = Qw ∈ Rn, then even if any at most 8% of the entries of z are corrupted,
we can still reconstruct w exactly and efficiently, by solving the appropriate
instance of (BP′).

Drawing the elements of A from the standard normal distribution
is not the only known way of generating a BP-exact matrix. Results
similar to Theorem 8.5.2, perhaps with worse constants, can be proved
by known techniques for random matrices with other distributions.
The perhaps simplest such distribution is obtained by choosing each
entry to be +1 or −1, each with probability 1

2 (and again with all
entries mutually independent).

A somewhat unpleasant feature of Theorem 8.5.2 and of similar
results is that they provide a BP-exact matrix only with high proba-
bility. No efficient method for verifying that a given matrix is BP-exact
is known at present, and so we cannot be absolutely sure. In practice
this is not really a problem, since the probability of failure (i.e., of
generating a matrix that is not BP-exact) can be made very small by
choosing the parameters appropriately, much smaller than the proba-
bility of sudden death of all people in the team that wants to compute
the sparse solution, for instance. Still, it would be nice to have explicit
constructions of BP-exact matrices with good parameters.

Random errors. In our coding problem, we allow for completely
arbitrary (even malicious) errors; all we need is that there aren’t too
many errors. However, in practice one may often assume that the er-
rors occur at random positions, and we want to be able to decode
correctly only with high probability, that is, for most (say 99.999%)
of the

(
n
r

)
possible locations of the r errors. It turns out that consid-

erably stronger numerical bounds can be obtained in this setting: For
example, Theorem 8.5.2 tells us that for m = �0.75n� and k = n−m,
we are guaranteed to fix any 0.08n errors with high probability, but it
turns out that we can also fix most of the possible r-tuples of errors for
r as large as 0.36n! For a precise statement see the paper of Donoho
quoted near the end of the section.

172 8. More Applications

Geometric meaning of BP-exactness. Known proofs of Theorem 8.5.2 or
similar results use a good deal of geometric probability and high-dimensional
geometry, knowledge which we want neither to assume nor to introduce in
this book. We thus have to omit a proof. Instead, we present an appealing
geometric characterization of BP-exact matrices, which is a starting point of
existing proofs.

For its statement we need to recall the crosspolytope, a convex polytope
already mentioned in Section 4.3. We will denote the n-dimensional crosspoly-
tope by Bn

1 , which should suggest that it is the unit ball of the �1-norm:

Bn
1 = {x ∈ Rn : ‖x‖1 ≤ 1}.

8.5.4 Lemma (Reformulation of BP-exactness). Let A be an m×n ma-
trix, m < n, let r ≤ m, and let L = {x ∈ Rn : Ax = 0} be the kernel (null
space) of A. Then A is BP-exact for r if and only if the following holds: For
every z ∈ Rn with ‖z‖1 = 1 (i. e., z is a boundary point of the crosspolytope)
and |supp(z)| ≤ r, the affine subspace L+z intersects the crosspolytope only
at z; that is, (L + z) ∩ Bn

1 = {z}.

Let us discuss an example with n = 3, m = 2, and r = 1, about the
only sensible setting for which one can draw a picture. If the considered
2×3 matrix A has full rank, which we may assume, then the kernel L is a
one-dimensional linear subspace of R3, that is, a line passing through the
origin. The points z coming into consideration have at most r = 1 nonzero
coordinate, and they lie on the boundary of the regular octahedron B3

1 , and
hence they are precisely the 6 vertices of B3

1 :

x1

x2

x3

L

The line L through the origin is drawn thick, and the condition in the lemma
says that each of the 6 translates of L to the vertices should only touch the

8.5 Sparse Solutions of Linear Systems 173

crosspolytope. Another way of visualizing this is to look at the projection of
B3

1 to the plane orthogonal to L. Each of the translates of L is projected to a
point, and the crosspolytope is projected to a convex polygon. The condition
then means that all the 6 vertices should appear on the boundary in the
projection, as in the left picture below,

while the right picture corresponds to a bad L (the condition is violated at
the two vertices marked by dots that lie inside the projection). In general,
of course, L is not a line but a k-dimensional linear subspace of Rn, and the
considered points z are not only vertices of Bn

1 , but they can lie in all (r−1)-
dimensional faces of Bn

1 . Indeed, we note that the points z on the surface of
Bn

1 with at most r nonzero components are exactly the points of the union
of all (r−1)-dimensional faces, omitting the easy proof of this fact (but look
at least at the case n = 3, r = 2).

Proof of Lemma 8.5.4. First we assume that A is BP-exact, we consider
a point z with ‖z‖1 = 1 and |supp(z)| ≤ r, and we set b = Az. Then the
system Ax = b has a sparse solution, namely z, and hence z has to be the
unique point among all solutions of Ax = b that minimize the �1-norm.
Noting that the set of all solutions of Ax = b is exactly the affine subspace
L + z, we get that z is the only point in L + z with �1-norm at most 1. That
is, (L + z) ∩ Bn

1 = {z} as claimed.
Conversely, we assume that L satisfies the condition in the lemma and we

consider b ∈ Rm. Let us suppose that the system Ax = b has a solution x̃
with at most r nonzero components. If x̃ = 0, then b = 0, and clearly, 0 is
also the only optimum of (BP). For x̃ �= 0, we set z = x̃

‖x̃‖1

. Then ‖z‖1 = 1

and |supp(z)| ≤ r, and so by the assumption, z is the only point in L + z of
�1-norm at most 1. By rescaling we get that x̃ is the only point in L + x̃ of
�1-norm at most ‖x̃‖1, and since L + x̃ is the set of all solutions of Ax = b,
we get that A is BP-exact. �

Intuition for BP-exactness. We don’t have means for proving
Theorem 8.5.2, but now, using the lemma just proved, we can at least
try to convey some intuition as to why a claim like Theorem 8.5.2 is
plausible, and what kind of calculations are needed to prove it.

The kernel L of a random matrix A defines a random k-dimensional
subspace6 of Rn, where k = n−m. For proving Theorem 8.5.2, we need

6 The question, “What is a random k-dimensional subspace?” is a subtle one. For
us, the simplest way out is to define a random k-dimensional subspace as the

174 8. More Applications

to verify that L is good for every boundary point z of the crosspolytope
with |supp(z)| ≤ r, where we say that L is good for z if (L+z)∩Bn

1 =
{z}.

For z as above, let us define a convex cone Cz = {t(x − z) : t ≥
0, x ∈ Bn

1 }. Geometrically, we take the cone generated by all rays
emanating from z and intersecting the crosspolytope in a point other
than z, and we translate the cone so that z is moved to the origin.
Then L good for z means exactly that L ∩ Cz = {0}.

The points z on the boundary with at most r nonzero coordi-
nates fill out exactly the union of all (r−1)-dimensional faces of the
crosspolytope. Let F be one of these faces. It can be checked that the
cone Cz is the same for all z in the relative interior of F , so we can
define the cone CF associated with the face F (the reader may want
to consider some examples for the 3-dimensional regular octahedron).
Moreover, if y is a boundary point of F , then Cy ⊆ CF , and so if L
is good for some point in the relative interior of F , then it is good for
all points of F including the boundary.

Let pF denote the probability that a random L is bad (i.e., not
good) for some z ∈ F . Then the probability that L is bad for any
z at all is no more than

∑
F pF , where the sum is over all (r−1)-

dimensional faces of the crosspolytope.
It is not too difficult to see that the number of (r−1)-dimensional

faces is
(
n
r

)
2r, and that the cones CF of all of these faces are congruent

(they differ only by rotation around the origin). Therefore, all pF equal
the same number p = p(n, k, r), and the probability of L bad for at
least one z is at most

(
n
r

)
2rp. If we manage to show, for some values

of n, k, and r, that the expression
(
n
r

)
2rp is much smaller than 1,

then we can conclude that a random matrix A is BP-exact with high
probability.

Estimating p(n, k, r) is a nontrivial task; its difficulty heavily de-
pends on the accuracy we want to attain. Getting an estimate that is
more or less accurate including numerical constants, such as is needed
to prove Theorem 8.5.2, is quite challenging. On the other hand, if we
don’t care about numerical constants so much and want just a rough
asymptotic result, standard methods from high-dimensional convexity
theory lead to the goal much faster.

kernel of a random m×n matrix with independent normal entries as in Theo-
rem 8.5.2. Fortunately, this turns out to be equivalent to the usual (and “right”)
definition, which is as follows. One fixes a particular k-dimensional subspace R0,
say the span of the first k vectors of the standard basis, and defines a random
subspace as a random rotation of R0. This may not sound like great progress,
since we have just used the equally problematic-looking notion of random rota-
tion. But the group SO(n) of all rotations in Rn around the origin is a compact
group and hence it has a unique invariant probability measure (Haar measure),
which defines “random rotation” satisfactorily and uniquely.

8.5 Sparse Solutions of Linear Systems 175

Here we conclude this very rough outline of the argument with
a few words on why one should expect p(n, k, r) to be very small
for k and r much smaller than n. Roughly speaking, this is because
for n large, the n-dimensional crosspolytope is a very lean and spiky
body, and the cones CF are very narrow for low-dimensional faces F .
Hence a random subspace L of not too large dimension is very likely to
avoid CF . As a very simplified example of this phenomenon, we may
consider k = r = 1. Then F is a vertex and CF is easily described. As
a manageable exercise, the reader may try to estimate the fraction of
the unit sphere centered at 0 that is covered by CF ; this quantity is
exactly half of the probability p(n, 1, 1) that a random line through 0
intersects CF nontrivially.

References. Basis pursuit was introduced in

S. Chen, D. L. Donoho, and M. A. Saunders: Atomic decom-
position by basis pursuit, SIAM J. Scientific Computing 20,
1(1999) 33–61.

A classical approach to finding a “good” solution of an underdeter-
mined system Ax = b would be to minimize ‖x‖2, rather than ‖x‖1

(a “least squares” or “generalized inverse” method), which typically
yields a solution with many nonzero components and is much less suc-
cessful in applications such as the decoding problem. Basis pursuit,
by minimizing the �1-norm instead, yields a basic solution with only
a few nonzero components.

Interestingly, several groups of researchers independently arrived
at the concept of BP-exactness and obtained the following general
version of Theorem 8.5.2: For every constant α ∈ (0, 1) there exists
β = β(α) > 0 such that a random �αn�×n matrix A is BP-exact for
r = �βn� with probability exponentially close to 1. Combined results
of two of these groups can be found in

E. J.Candès, M. Rudelson, T. Tao, and R. Vershynin: Error
correction via linear programming, Proc. 46th IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2005,
pages 295–308.

A third independent proof was given by Donoho. Later, and by yet an-
other method, he obtained the strongest known quantitative bounds,
including those in Theorem 8.5.2 (the previously mentioned proofs
yield a much smaller constant for α = 0.75 than 0.08). Among his
several papers on the subject we cite

D. Donoho: High-dimensional centrally symmetric polytopes
with neighborliness proportional to dimension, Discrete and
Computational Geometry 35(2006), 617–652,

176 8. More Applications

where he establishes a connection to the classical theory of convex
polytopes using a result in the spirit of Lemma 8.5.4 and the remarks
following it (but more elaborate). Through this connection he obtained
an interesting upper bound on β(α). For example, in the setting of
Theorem 8.5.2, there exists no �0.75n�×n BP-exact matrix at all with
r > 0.25n (assuming n large). Additional upper bounds, essentially
showing the existence results for BP-matrices in the above papers to
be asymptotically optimal, were proved by

N. Linial and I. Novik: How neighborly can a centrally sym-
metric polytope be?, Discr. Comput. Geom., in press.

We remark that our notation is a compromise among the notations
of the papers quoted above and doesn’t follow any of them exactly,
and that the term “BP-exact” is ours.

More applications of sparse solutions of underdetermined
systems. The problem of computing a sparse solution of a system of
linear equations arises in signal processing. The signal considered may
be a recording of a sound, a measurement of seismic waves, a picture
taken by a digital camera, or any of a number of other things. A clas-
sical method of analyzing signals is Fourier analysis, which from a
linear-algebraic point of view means expressing a given periodic func-
tion in a basis consisting of the functions 1, cosx, sinx, cos 2x, sin 2x,
cos 3x, sin 3x,. . . (the closely related cosine transform is used in the
JPEG encoding of digital pictures). These functions are linearly inde-
pendent, and so the expression (Fourier series) is unique. In the more
recent wavelet analysis7 one typically has a larger collection of basic
functions, the wavelets, which can be of various kinds, depending on
the particular application. They are no longer linearly independent,
and hence there are many different ways of representing a given signal
as a linear combination of wavelets. So one looks for a representa-
tion satisfying some additional criteria, and sparsity (small number of
nonzero coefficients) is a very natural criterion: It leads to an economic
(compressed) representation, and sometimes it may also help in ana-
lyzing or filtering the signal. For example, let us imagine that there is
a smooth signal that has a nice representation by sine and cosine func-
tions, and then an impulsive noise made of “spike” functions is added
to it. We let the basic functions be sines and cosines and suitable spike
functions, and by computing a sparse representation in such a basis
we can often isolate the noise component very well, something that
the classical Fourier analysis cannot do. Thus, we naturally arrive at
computing sparse solutions of underdetermined linear systems.

Another source is computer tomography (CT), where one has an
unknown vector x (each xi is the density of some small area of tissue,

7 Indeed, the newer picture encoding standard JPEG 2000 employs wavelets.

8.6 Transversals of d-Intervals 177

say), and the CT scanner measures various linear combinations of
the xi, corresponding to rays through the tissue in various directions.
Sometimes there are reasons to expect that only a small number of
the pixels will have values xi different from the background level, and
when we want to reconstruct x from the scan, we again ask for a
sparse solution of a linear system. (More realistically, although less
intuitively, we don’t expect a small number of nonzero pixels, but
rather a small number of significantly nonzero coefficients in a suitable
wavelet representation.)

8.6 Transversals of d-Intervals

This section describes an application of the duality theorem in discrete geom-
etry and combinatorics. We begin with a particular geometric result. Then
we discuss concepts appearing in the proof in a more general context.

Helly’s and Gallai’s theorems. First let I = {I1, I2, . . . , In} be a family of
closed intervals on the real line such that every two of the intervals intersect.
It is easily seen that there exists a point common to all of the intervals in I:
Indeed, the rightmost among the left endpoints of the Ii is such a point.
In more detail, writing Ii = [ai, bi] and setting a = max{a1, . . . , an}, we
necessarily have ai ≤ a ≤ bi for all i, since ai ≤ a is immediate from the
definition of a, and if we had a > bi for some i, then Ii = [ai, bi] would be
disjoint from the interval beginning with a.

The statement just proved is a special (one-dimensional) case of a beau-
tiful and important theorem of Helly: If C1, C2, . . . , Cn are convex sets in Rd

such that any at most d + 1 of them have a point in common, then there is a
point common to all of the Ci. We will not prove this result; it is mentioned
as a background against which the forthcoming results can be better appre-
ciated.

It is easily seen that in general we cannot replace d + 1 by any smaller
number in Helly’s theorem. For example, in the plane, the assumption of
Helly’s theorem requires every three of the sets to have a common point,
and pairwise intersections are not enough. To see this, we consider n lines in
general position. They are convex sets, every two of them intersect, but no
three have a common point.

Let us now consider planar convex sets of a special kind, namely, cir-
cular disks. One can easily draw three disks such that every two inter-
sect, but no point is common to all three. However, there is a theorem
(Gallai’s) for pairwise intersecting disks in the spirit of Helly’s theorem: If
D = {D1, D2, . . . , Dn} is a family of disks in the plane in which every two
disks intersect, then there exist 4 points such that each Di contains at least

178 8. More Applications

one of them. With the (best possible) constant 4 this is a quite difficult the-
orem, but it is not too hard to prove a similar theorem with 4 replaced by
some large constant. The reader is invited to solve this as a puzzle.

A set of points as in the theorem that intersects every member of D is
called a transversal of D (sometimes one also speaks of piercing or stab-
bing D by a small number of points). Thus pairwise intersecting disks in
the plane always have a 4-point transversal, and Helly’s theorem asserts that
(d + 1)-wise intersecting convex sets in Rd have a one-point transversal.

What conditions on a family of sets guarantee that it has a small
transversal? This fairly general question subsumes many interesting particu-
lar problems and it has been the subject of much research. Here we consider
a one-dimensional situation. At the beginning of the section we dealt with a
family of intervals, and now we admit intervals with some bounded number
of “holes.”

Transversals for pairwise intersecting d-intervals. For an integer
d ≥ 1, a d-interval is defined as the union of d closed intervals on the
real line. The following picture shows three pairwise intersecting 2-intervals
(drawn solid, dashed, and dash-dotted, respectively) with no point common
to all three:

Thus, we cannot expect a one-point transversal for pairwise intersecting d-
intervals. But the following theorem shows the existence of a transversal
whose size depends only on d:

8.6.1 Theorem. Let J be a finite family of d-intervals such that J1∩J2 �= ∅
for every J1, J2 ∈ J . Then J has a transversal of size 2d2; that is, there exist
2d2 points such that each d-interval of J contains at least one of them.

At first sight it is not obvious that there is any bound at all for the
size of the transversal that depends only on d. This was first proved
in 1970, with a bound exponential in d, in

A. Gyárfás, J. Lehel: A Helly-type problem in trees, in Combi-
natorial Theory and its Applications, P. Erdős, A. Rényi, and
V.T. Sós, editors, North-Holland, Amsterdam, 1970, pages
571–584.

The best bound known at present is d2, and it has been established
using algebraic topology in

T. Kaiser: Transversals of d-intervals, Discrete Comput.
Geom. 18(1997) 195–203.

We are going to prove a bound that is worse by a factor of 2, but the
proof presented here is much simpler. It comes from

8.6 Transversals of d-Intervals 179

N. Alon: Piercing d-intervals, Discrete Comput. Geom.
19(1998) 333–334,

following a general method developed in

N. Alon, D. Kleitman: Piercing convex sets and the Hadwiger–
Debrunner (p, q)-problem, Adv. Math. 96(1992) 103–112.

It is also known that the bound cannot be improved below a constant

multiple of d2

log d ; see

J. Matoušek: Lower bounds on the transversal numbers of d-
intervals, Discrete Comput. Geom. 26(2001) 283–287.

Working toward a proof of the theorem, we first show that in a family of
pairwise intersecting d-intervals, some point has to be contained in “many”
members of the family. For reasons that will become apparent later, we for-
mulate it for a finite sequence of d-intervals, so that repetitions are allowed.

8.6.2 Lemma. Let J1, J2, . . . , Jn be d-intervals such that Ji ∩ Jj �= ∅ for all
i, j ∈ {1, 2, . . . , n}. Then there is an endpoint of some Ji that is contained in
at least n/2d of the d-intervals.

Proof. Let T be the set of all ordered triples (p, i, j) such that p is one of
the at most d left endpoints of Ji, and p ∈ Jj . We want to bound the size
of T from below. Let us fix i ≤ j for a moment. Let p be the leftmost point of
the (nonempty) intersection Ji ∩ Jj . Clearly, p is a left endpoint of Ji or Jj ,
and thus T contains one of the triples (p, i, j) or (p, j, i). So every pair i, j,
i ≤ j, contributes at least one member of T , and thus |T | ≥

(
n
2

)
+ n ≥ n2/2.

Since there are at most dn possible values for the pair (p, i), it follows that
there exist p0 and i0 such that (p0, i0, j) ∈ T for at least (n2/2)/dn = n/2d
values of j. This means that p0 is contained in at least n/2d of the Jj . �

Next, we show that for every family of pairwise intersecting d-intervals
we can distribute weights on the endpoints such that every d-interval has
relatively large weight (compared to the total weight of all points).

8.6.3 Lemma. Let J be a finite family of pairwise intersecting d-intervals,
and let P denote the set of endpoints of the d-intervals in J . Then there are
nonnegative real numbers xp, p ∈ P , such that

∑

p∈J∩P

xp ≥ 1 for every J ∈ J , and

∑

p∈P

xp ≤ 2d.

180 8. More Applications

Before proving the lemma, let us see how it implies Theorem 8.6.1. Given
J and the weights as in the lemma, we will choose a set X ⊆ P such that
|X | ≤ 2d2, and each of the |X | + 1 open intervals into which X divides the
real axis contains points of P of total weight less than 1/d. Such an X can
be selected from P by a simple left-to-right scan: Let p1 < p2 < · · · < pm be
the points of P . We consider them one by one in this order, and we include
pi into X whenever

∑
j: p�<pj≤pi

xpj
≥ 1

d , where p� is the last point already

included in X (and we formally put p� = −∞ if no point has yet been included
in X). It is clear that none of the open intervals determined by X contains
weight 1/d or larger, and the bound on the size of X follows easily, using that
the total weight of all points of P is at most 2d.

We claim that X is a transversal of J . Indeed, considering a J ∈ J , at
least one of the d components of J is an interval containing points of P of
total weight at least 1/d, and so it contains a point of X .

Proof of Lemma 8.6.3 by duality. We formulate the problem of choosing
the weights xp as a linear program with variables xp, p ∈ P :

Minimize
∑

p∈P xp

subject to
∑

p∈J∩P xp ≥ 1 for every J ∈ J ,

x ≥ 0.

The linear program is certainly feasible; for instance, xp = 1 for all p is a
feasible solution. We would like to show that the optimum is at most 2d.

Using the dualization recipe from Section 6.2, we find that the dual linear
program has variables yJ , J ∈ J , and it looks as follows:

Maximize
∑

J∈J yJ

subject to
∑

J: p∈J∩P yJ ≤ 1 for every p ∈ P ,

y ≥ 0.

The dual linear program is feasible, too, since y = 0 is feasible. Then by the
duality theorem both the primal and the dual linear programs have optimal
solutions, x∗ and y∗, respectively, that yield the same value of the objective
functions.

We may assume that y∗ is rational: Indeed, we may take it to be a basic
feasible solution, and all basic feasible solutions are rational since all coeffi-
cients of the linear program are rational.

We now have some rational weight y∗
J for every J ∈ J such that no point

of P is contained in d-intervals of total weight exceeding 1, and we want to
show that the total weight of all J ∈ J cannot be larger than 2d.

Lemma 8.6.2 tells us that if all the d-intervals had the same weight, then
there would be a point contained in d-intervals of weight at least W/2d, where
W is the total weight of all d-intervals. Our weights need not all be equal,
but we will pass to the case of equal weights by replicating each d-interval a
suitable number of times.

8.6 Transversals of d-Intervals 181

Let D be a common denominator of all the rational numbers y∗
J , J ∈ J ,

and let y∗
J = rJ

D , with rJ integral. Let (J1, J2, . . . , Jn) be a sequence that
includes each d-interval J ∈ J exactly rJ times (thus n =

∑
J∈J rJ). By

Lemma 8.6.2 there is a point p ∈ P contained in at least n/2d members of
the sequence, which means that

∑

J∈J : p∈J

rJ ≥ n

2d
=

1

2d

∑

J∈J
rJ .

Dividing both sides by the common denominator D and multiplying by 2d
gives

2d ·
∑

J∈J : p∈J

y∗
J ≥

∑

J∈J
y∗

J .

Since y∗ is a feasible solution of the dual linear program, the left-hand side is
at most 2d, and so

∑
J∈J y∗

J ≤ 2d. This concludes the proof of Lemma 8.6.3
as well as of Theorem 8.6.1. �

Transversal number and matching number. Let us now look
at some of the concepts appearing in the proof of Theorem 8.6.1 in
a general context. Let V be an arbitrary finite set, and let F be a
system of subsets of V .

A set X ⊆ V is called a transversal of F if F ∩ X �= ∅ for every
F ∈ F . The transversal number τ(F) is the minimum possible
number of elements of a transversal of F .

Determining or estimating the transversal number of a given set
system is an important basic problem in combinatorics and combina-
torial optimization, including many other problems as special cases.
For example, if we consider a graph G = (V, E), and view the edges
as two-element subsets of V , then a transversal of E is exactly what
was called a vertex cover in Section 3.3.

Another useful notion is the matching number of F , denoted
by ν(F) and defined as the maximum number of sets in a subsystem
M ⊆ F such that no two distinct sets F1, F2 ∈ M intersect (such an
M is called a matching).

It is easily seen that ν(F) ≤ τ(F) for every F : If F has matching
number k, then F contains k pairwise disjoint sets; thus, we need at
least k points to get a transversal of F .

For the graph example, ν(E) is exactly the number of edges in a
maximum matching. This is also where the name “matching number”
comes from.

The condition in Theorem 8.6.1 that every two d-intervals in J
intersect can be rephrased as ν(J) = 1. More generally, ν(F) ≤ k
means that among every k + 1 members of F we can find two that
intersect. There is a more general version of Theorem 8.6.1 stating

182 8. More Applications

that τ(J) ≤ 2d2ν(J) for every finite family of d-intervals. The proof
is very similar to the one shown for Theorem 8.6.1, except that the
analogue of Lemma 8.6.2 needs the well-known Turán’s theorem from
graph theory.

Fractional transversals and matchings. In the proof of Theo-
rem 8.6.1 we have implicitly used another parameter of a set system,
which always lies between ν(F) and τ(F) and which, unlike τ(F) and
ν(F), is efficiently computable. This new parameter can be introduced
in two seemingly different ways, which turn out to be equivalent by
the duality theorem of linear programming.

A fractional transversal of F is any feasible solution x to the
linear program

minimize
∑

v∈V xv

subject to
∑

v∈F xv ≥ 1 for every F ∈ F ,
x ≥ 0.

So in a fractional transversal one can take, say, one-third of one point
and two-thirds of another, but for each set, the fractions for points
in that set must add up to at least 1, one full point. The fractional
transversal number τ∗(F) is the optimal value of the objective func-
tion, i.e., the minimum possible total weight of a fractional transversal.

Every transversal T corresponds to a fractional transversal, given
by xv = 1 if v ∈ T and xv = 0 otherwise, and thus τ∗(F) ≤ τ(F) for
every F .

A fractional matching for F is any feasible solution y to the
linear program

maximize
∑

yF

subject to
∑

F : v∈F yF ≤ 1 for every v ∈ V ,
y ≥ 0,

and the optimal value of the objective function is the fractional match-
ing number ν∗(F).

Every matching M yields a fractional matching (we put yF = 1
for F ∈ M and yF = 0 otherwise). Thus, ν(F) ≤ ν∗(F).

Since the linear programs for τ∗ and for ν∗ are dual to each other,
we always have ν∗(F) = τ∗(F), and altogether we have the chain of
inequalities

ν(F) ≤ ν∗(F) = τ∗(F) ≤ τ(F).

We remark that if F is the set of edges of a bipartite graph, then
König’s theorem (Theorem 8.2.2) asserts exactly that ν(F) = τ(F).
On the other hand, if F is the edge set of a triangle (that is, F =
{{1, 2}, {1, 3}, {2, 3}}), then ν(F) = 1 < ν∗(F) = 3

2 < τ(F) = 2.
The proof of Theorem 8.6.1 can now be viewed as follows: First one

proves that ν∗(J) ≤ 2d for every family of d-intervals with ν(J) = 1,

8.6 Transversals of d-Intervals 183

and then one shows that τ(J) ≤ d · τ∗(J). This proof scheme turned
out to be very powerful and it works in many other cases as well.

Fractional concepts. Besides the fractional matching and transver-
sal numbers, many other “fractional” quantities appear in combina-
torics and combinatorial optimization. The general recipe is to take
some useful integer-valued parameter Q of a graph, say, reformulate
its definition as an integer program, and introduce a “fractional Q” as
the optimum value of a suitable LP relaxation of the integer program.
In many cases such a fractional Q is useful for studying or approxi-
mating the original Q. The book

E. R. Scheinerman and D. H. Ullman: Fractional Graph The-
ory, John Wiley & Sons, New York 1997,

nicely presents such developments. Let us conclude this section by
quoting an example from that book. We consider five committees,
numbered 1,2,. . . ,5, such that 1 and 2 have a common member, and
so have 2 and 3, 3 and 4, 4 and 5, and 5 and 1, while any other pair
of committees is disjoint. A one-hour meeting should be scheduled for
each committee, and meetings of committees with a common member
must not overlap. What is the length of the shortest time interval in
which all the five meetings can be scheduled?

It seems that a 3-hour schedule like the one below should be opti-
mal:

12:00 13:00 14:00 15:00

1 2

3 4

5

However, if one of the committees is willing to break its meeting into
two half-hour parts, then a shorter schedule is possible:

12:00 13:00 14:00 14:30

1

2

3 4

5

3

The first schedule corresponds to a proper coloring of the conflict graph

184 8. More Applications

1

2

34

5

by three colors, while the second schedule corresponds to a fractional
coloring of the same graph, with value 2.5.

8.7 Smallest Balls and Convex Programming

The smallest ball problem. We are given points p1, . . . ,pn ∈ Rd, and we
want to find a ball of the smallest radius that contains all the points.8

This looks similar to some of the geometric optimization problems that we
have addressed in Chapter 2, such as the problem of placing a largest possible
disk inside a convex polygon. For the smallest ball problem, however, there
is no simple trick that lets us write the problem as a linear program.

We will see that it can be formulated as a convex quadratic program,
which is in many respects the next best thing to a linear program. There
are efficient solvers for convex quadratic programs, based on interior point
methods or on simplex-type methods, and so this formulation can be used
for computing a smallest enclosing ball in practice.

We will also derive from this formulation that the smallest enclosing ball
always exists, and it is determined uniquely. (This is intuitively very plausible;
think of a shrinking rubber ball.) In the course of the proof, we will establish

8 In the plane this is sometimes referred to as the smallest bomb problem, but we
prefer not to elaborate this association into a real-life story.

8.7 Smallest Balls and Convex Programming 185

a powerful criterion for optimality of a feasible solution of a convex program,
known (in a much more general context) as the Karush–Kuhn–Tucker condi-
tions. These conditions are of outstanding theoretical value, and they are the
basis of efficient solution methods for many classes of optimization problems,
including convex quadratic programming. The reader might still wonder, how
does all of this relate to linear programming? We will use the duality theorem
of linear programming to derive the Karush–Kuhn–Tucker conditions.

We begin by introducing convex programming, and we will return to the
smallest enclosing ball problem later.

A short introduction to convex programming. Let us recall that an
n-variate function f : Rn → R is convex if

f
(
(1 − t)x + ty

)
≤ (1 − t)f(x) + tf(y)

for all x,y ∈ Rn and all t ∈ [0, 1]. Geometrically, the segment connecting the
points (x, f(x)) and (y, f(y)) in Rn+1 never goes below the graph of f .

A convex program is the problem of minimizing a convex function in n
variables subject to linear equality and inequality constraints.9

The following picture illustrates a 2-dimensional convex programming
problem, with a planar feasible region given by four inequality constraints:

minimum

feasible

region

We note that the minimum need not occur at a vertex of the feasible region.
Moreover, an optimal solution need not exist even if the convex function f(x)
is bounded from below; an example is the problem of minimizing e−x subject
to x ≥ 0. We should also remark that, as is possible in linear programming,
we cannot change minimization to maximization, since for f convex, −f is
typically not convex (unless f is linear). Actually, maximizing a convex func-
tion subject to linear constraints is a computationally difficult (NP-hard)
problem.

9 Some sources allow other types of convex constraints in a convex program, but
we don’t need this here.

186 8. More Applications

Here we will consider convex programs in equational form:

Minimize f(x)
subject to Ax = b

x ≥ 0,
(8.11)

where A ∈ Rm×n, b ∈ Rm, and f : Rn → R is a convex function.
In order to use calculus, we also assume that f is differentiable, with

continuous partial derivatives. In this situation, the inequality

f(x) ≥ f(z) + ∇f(z)(x − z) (8.12)

holds for all x, z ∈ Rn, and this is an alternative characterization of convexity.
We recall that

∇f(z) =

(
∂

∂x1
f(x)|x=z, . . . ,

∂

∂xn
f(x)|x=z

)

is the gradient (vector of partial derivatives) of f at z. Thus ∇f(z)(x − z) is
the scalar product of the row vector ∇f(z) with the column vector x− z.

Geometrically, the inequality says that the epigraph of f lies above all of
its tangential hyperplanes. This has the following easy consequence.

8.7.1 Fact. Let C ⊆ Rn be a convex set and f : Rn → R a differentiable
convex function. A vector x∗ minimizes f(x) over C if and only if

∇f(x∗)(x − x∗) ≥ 0 for all x ∈ C.

Proof. First we prove that the inequality implies optimality of x∗. Using
(8.12), ∇f(x∗)(x − x∗) ≥ 0 implies f(x) ≥ f(x∗), so if the former holds for
all x ∈ C, x∗ is a minimizer of f over C.

For the other direction, let us assume that x∗ is a minimizer and that
x ∈ C. We consider the convex combination

x(t) := x∗ + t(x − x∗) ∈ C, t ∈ [0, 1],

and we observe that

∂

∂t
f(x(t))|t=0 = lim

t→0

f(x(t)) − f(x∗)
t

≥ 0

must hold, for otherwise, f(x(t)) < f(x∗) for some small t. On the other
hand, we have

∂

∂t
f(x(t))|t=0 = ∇f(x∗)(x − x∗),

by the chain rule. This completes the proof. �

Next we formulate and prove the promised optimality criterion for convex
programming.

8.7 Smallest Balls and Convex Programming 187

8.7.2 Proposition (Karush–Kuhn–Tucker conditions). Let us con-
sider the convex program

minimize f(x)
subject to Ax = b

x ≥ 0

with f convex and differentiable, with continuous partial derivatives. A fea-
sible solution x∗ ∈ Rn is optimal if and only if there is a vector ỹ ∈ Rm such
that for all j ∈ {1, . . . , n},

∇f(x∗)j + ỹT aj

{
= 0 if x∗

j > 0
≥ 0 otherwise.

Here aj is the jth column of A.
The components of ỹ are called the Karush–Kuhn–Tucker multipli-

ers.

Proof. First we assume that there is a vector ỹ with the above properties,
and we let x be any feasible solution to the convex program. Then we get

(
∇f(x∗) + ỹT A

)
x∗ = 0,(

∇f(x∗) + ỹT A
)
x ≥ 0.

Subtracting the first equation from the second, the contributions of ỹT A
cancel (since Ax = b = Ax∗ by the feasibility of x and x∗), and we conclude
that

∇f(x∗)(x − x∗) ≥ 0.

Since this holds for all feasible solutions x, the solution x∗ is optimal by
Fact 8.7.1.

Conversely, let x∗ be optimal, and let us set cT = −∇f(x∗). By Fact 8.7.1
we have cT (x − x∗) ≤ 0 for all feasible solutions x, meaning that x∗ is an
optimal solution of the linear program

maximize cT x
subject to Ax = b

x ≥ 0.

According to the dualization recipe (Section 6.2), its dual is the linear pro-
gram

minimize bTy
subject to ATy ≥ c,

and the duality theorem implies that it has an optimal solution ỹ satisfying

bT ỹ = cT x∗. (8.13)

188 8. More Applications

Since ỹ is a feasible solution of the dual linear program, we have ỹT aj ≥ cj

for all j, and (8.13) implies

(ỹT A − cT)x∗ = bT ỹ − cT x∗ = 0.

So we have ∇f(x∗)j+ỹT aj = −cj+ỹT aj ≥ 0, with equality whenever x∗
j > 0.

Therefore, we have found the desired multipliers ỹ. �

The fact that there is dualization for everyone implies Karush–Kuhn–
Tucker conditions for everyone. We encourage the reader to work out the
details, and we mention only one special case here: A feasible solution x∗ of
the convex programming problem

minimize f(x)
subject to Ax = b

is optimal if and only if there exists a vector ỹ such that

∇f(x∗) + ỹT A = 0T .

In this special case, the components of ỹ are called Lagrange multipliers
and can be obtained from x∗ through Gaussian elimination (also see Sec-
tion 7.2, where the method of Lagrange multipliers is briefly described in a
more general setting). If, in addition, f is a quadratic function, its gradient
is linear, so the minimization problem itself (finding an optimal x∗ with a
matching y) can be solved through Gaussian elimination. For example, the
problem of fitting a line by the method of least squares, mentioned in Sec-
tion 2.4, is of this easy type, because its bivariate quadratic objective function
(2.1) is convex.

Smallest enclosing ball as a convex program. In order to show that
the smallest enclosing ball of a point set can be extracted from the solution
of a suitable convex quadratic program, we use the Karush–Kuhn–Tucker
conditions and the following geometric fact, which is interesting by itself.

8.7.3 Lemma. Let S = {s1, . . . , sk} ⊆ Rd be a set of points on the boundary
of a ball B with center s∗ ∈ Rd. Then the following two statements are
equivalent.

(i) B is the unique smallest enclosing ball of S.
(ii) For every u ∈ Rd, there is an index j ∈ {1, 2, . . . , k} such that

uT (sj − s∗) ≤ 0.

It is a simple exercise to show that (ii) can be reexpressed as fol-
lows: There is no hyperplane that strictly separates S from s∗. From
the Farkas lemma (Section 6.4), one can in turn derive the follow-
ing equivalent formulation: The point s∗ is in the convex hull of the

8.7 Smallest Balls and Convex Programming 189

points S. We thus have a simple geometric condition that character-
izes smallest enclosing balls in terms of their boundary points. From
the geometric intuition in the plane, this is quite plausible: If s∗ is in
the convex hull of S, then s∗ cannot be moved without making the
distance to at least one point larger. But if s∗ is separated from S
by a hyperplane, then moving s∗ toward this hyperplane results in an
enclosing ball of smaller radius. The direction u of movement satisfies
uT (sj − s∗) > 0 for all j.

s1

s1

s2
s2

s3

s3

u

s∗s∗
s

Proof. We start by analyzing the distance between a point sj ∈ S and a
potential ball center s �= s∗. Let r be the radius of the ball B. Given s �= s∗,
we can uniquely write it in the form

s = s∗ + tu,

where u is a vector of length 1 and t > 0. For j = 1, 2, . . . , k we get

(sj − s)T (sj − s) = (sj − s∗ − tu)T (sj − s∗ − tu)

= (sj − s∗)T (sj − s∗) + t2uT u− 2tuT (sj − s∗)
= r2 + t2 − 2tuT (sj − s∗).

Given α ∈ R and sufficiently small t > 0, we have t2 − 2tα > 0 if and only if
α ≤ 0. This shows that (for sufficiently small t)

(sj − s)T (sj − s) > r2 ⇔ uT (sj − s∗) ≤ 0, (8.14)

where the implication “⇐” holds for all t > 0.
This equivalence implies the two directions of the lemma. For (i)⇒(ii), we

argue as follows: Since s∗ is the unique point with distance at most r from
all points in S, we know that for every u with ‖u‖ = 1 and for all t > 0,
the point s = s∗ + tu has distance more than r to one of the points in S.
By the implication “⇒” of (8.14), there is some j with uT (sj − s∗) ≤ 0. To
show (ii)⇒(i), let us consider any point s of the form s∗ + tu �= s∗. Since
there is an index j with uT (sj − s∗) ≤ 0, implication “⇐” of (8.14) shows

190 8. More Applications

that s has distance more than r to some point in S. It follows that B is the
unique smallest enclosing ball of S. �

Now we can state and prove the main result.

8.7.4 Theorem. Let p1, . . . ,pn be points in Rd, and let Q be the d × n
matrix whose jth column is formed by the d coordinates of the point pj . Let
us consider the optimization problem

minimize xT QT Qx −
∑n

j=1 xjp
T
j pj

subject to
∑n

j=1 xj = 1

x ≥ 0

(8.15)

in the variables x1, . . . , xn. Then the objective function f(x) := xT QT Qx −∑n
j=1 xjp

T
j pj is convex, and the following statements hold.

(i) Problem (8.15) has an optimal solution x∗.
(ii) There exists a point p∗ such that p∗ = Qx∗ holds for every optimal

solution x∗. Moreover, the ball with center p∗ and squared radius −f(x∗)
is the unique ball of smallest radius containing P .

Proof. The matrix QT Q is positive semidefinite, and from this the convexity
of f is easy to verify (we leave it as an exercise).

The feasible region of program (8.15) is a compact set (actually, a sim-
plex), and we are minimizing a continuous function over it. Consequently,
there exists an optimal solution x∗. In order to apply the Karush–Kuhn–
Tucker conditions, we need the gradient of the objective function:

∇f(x) = 2xT QT Q − (pT
1 p1,p

T
2 p2, . . . ,p

T
npn).

The program has only one equality constraint. With p∗ = Qx∗ =
∑n

j=1 x∗
jpj ,

Proposition 8.7.2 tells us that we find a 1-dimensional vector ỹ = (µ) such
that

2pT
j p∗ − pT

j pj + µ

{
= 0 if x∗

j > 0
≥ 0 otherwise.

(8.16)

Subtracting p∗Tp∗ from both sides and multiplying by −1 yields

‖pj − p∗‖2

{
= µ + p∗Tp∗ if x∗

j > 0

≤ µ + p∗Tp∗ otherwise.

This means that p∗ is the center of a ball of radius r =
√

µ + p∗T p∗
that contains all points from P and has the points pj with x∗

j > 0 on the
boundary. From (8.16) and x ≥ 0 we also get

µ =

n∑

j=1

x∗
jµ =

n∑

j=1

x∗
jp

T
j pj − 2

n∑

j=1

x∗
jp

T
j p∗ =

n∑

j=1

x∗
jp

T
j pj − 2p∗Tp∗,

8.7 Smallest Balls and Convex Programming 191

and r2 =
∑n

j=1 x∗
jp

T
j pj − p∗T p∗ = −f(x∗) follows.

It remains to prove that there can be no other ball of radius at most r
that contains all points from P (this also shows that p∗ does not depend on
the choice of x∗).

We define F = {j ∈ {1, 2, . . . , n} : x∗
j > 0} and apply Lemma 8.7.3 with

s∗ = p∗ and
S = {pj : j ∈ F}.

We already know that these points are on the boundary of a ball B of radius
r around p∗ =

∑
j∈F x∗

jpj . Using
∑

j∈F x∗
j = 1, we get that the following

holds for all vectors u:

∑

j∈F

x∗
ju

T (pj − p∗) = uT

(∑

j∈F

x∗
jpj −

∑

j∈F

x∗
jp

∗
)

= uT (p∗ − p∗) = 0.

It follows that there must be some j ∈ F with uT (pj − p∗) ≤ 0. By Lemma
8.7.3, B is the unique smallest enclosing ball of S ⊆ P , and this implies that
B is the unique smallest enclosing ball of P as well. �

A recent book on the topics of this section is

S. Boyd and L. Vandenberghe: Convex Optimization, Cam-
bridge University Press, Cambridge 2004.

