
4. Theory of Linear Programming:

First Steps

4.1 Equational Form

In the introductory chapter we explained how each linear program can be
converted to the form

maximize cT x subject to Ax ≤ b.

But the simplex method requires a different form, which is usually called the
standard form in the literature. In this book we introduce a less common,
but more descriptive term equational form. It looks like this:

Equational form of a linear program:

Maximize cT x
subject to Ax = b

x ≥ 0.

As usual, x is the vector of variables, A is a given m×n matrix, c ∈ Rn,
b ∈ Rm are given vectors, and 0 is the zero vector, in this case with n
components.

The constraints are thus partly equations, and partly inequalities of a
very special form xj ≥ 0, j = 1, 2, . . . , n, called nonnegativity constraints.
(Warning: Although we call this form equational, it contains inequalities as
well, and these must not be forgotten!)

Let us emphasize that all variables in the equational form have to satisfy
the nonnegativity constraints.

In problems encountered in practice we often have nonnegativity con-
straints automatically, since many quantities, such as the amount of con-
sumed cucumber, cannot be negative.

Transformation of an arbitrary linear program to equational form.
We illustrate such a transformation for the linear program

maximize 3x1 − 2x2

subject to 2x1 − x2 ≤ 4
x1 + 3x2 ≥ 5
x2 ≥ 0.
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We proceed as follows:

1. In order to convert the inequality 2x1 − x2 ≤ 4 to an equation, we in-
troduce a new variable x3, together with the nonnegativity constraint
x3 ≥ 0, and we replace the considered inequality by the equation
2x1 − x2 + x3 = 4. The auxiliary variable x3, which won’t appear any-
where else in the transformed linear program, represents the difference
between the right-hand side and the left-hand side of the inequality. Such
an auxiliary variable is called a slack variable.

2. For the next inequality x1 + 3x2 ≥ 5 we first multiply by −1, which
reverses the direction of the inequality. Then we introduce another slack
variable x4 with the nonnegativity constraint x4 ≥ 0, and we replace the
inequality by the equation −x1 − 3x2 + x4 = −5.

3. We are not finished yet: The variable x1 in the original linear program
is allowed to attain both positive and negative values. We introduce two
new, nonnegative, variables y1 and z1, y1 ≥ 0, z1 ≥ 0, and we substitute
for x1 the difference y1−z1 everywhere. The variable x1 itself disappears.

The resulting equational form of our linear program is

maximize 3y1 − 3z1 − 2x2

subject to 2y1 − 2z1 − x2 + x3 = 4
−y1 + z1 − 3x2 + x4 = −5
y1 ≥ 0, z1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

So as to comply with the conventions of the equational form in full, we should
now rename the variables to x1, x2, . . . , x5.

The presented procedure converts an arbitrary linear program with n vari-
ables and m constraints into a linear program in equational form with at most
m + 2n variables and m equations (and, of course, nonnegativity constraints
for all variables).

Geometry of a linear program in equational form. Let us consider a
linear program in equational form:

Maximize cT x subject to Ax = b, x ≥ 0.

As is derived in linear algebra, the set of all solutions of the system Ax = b
is an affine subspace F of the space Rn. Hence the set of all feasible solutions
of the linear program is the intersection of F with the nonnegative orthant,
which is the set of all points in Rn with all coordinates nonnegative.1 The
following picture illustrates the geometry of feasible solutions for a linear
program with n = 3 variables and m = 1 equation, namely, the equation
x1 + x2 + x3 = 1:

1 In the plane (n = 2) this set is called the nonnegative quadrant, in R3 it is the
nonnegative octant, and the name orthant is used for an arbitrary dimension.
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x1

x3

x2

0

The set of all solutions of Ax = b
(a plane)

The set of all feasible solutions
(a triangle)

(In interesting cases we usually have more than 3 variables and no picture
can be drawn.)

A preliminary cleanup. Now we will be talking about solutions of the
system Ax = b. By this we mean arbitrary real solutions, whose components
may be positive, negative, or zero. So this is not the same as feasible solutions
of the considered linear program, since a feasible solution has to satisfy Ax =
b and have all components nonnegative.

If we change the system Ax = b by some transformation that preserves
the set of solutions, such as a row operation in Gaussian elimination, it influ-
ences neither feasible solutions nor optimal solutions of the linear program.
This will be amply used in the simplex method.

Assumption: We will consider only linear programs in equational form
such that

• the system of equations Ax = b has at least one solution, and
• the rows of the matrix A are linearly independent.

As an explanation of this assumption we need to recall a few facts from
linear algebra. Checking whether the system Ax = b has a solution is easy
by Gaussian elimination, and if there is no solution, the considered linear
program has no feasible solution either, and we can thus disregard it.

If the system Ax = b has a solution and if some row of A is a linear
combination of the other rows, then the corresponding equation is redundant
and it can be deleted from the system without changing the set of solutions.
We may thus assume that the matrix A has m linearly independent rows and
(therefore) rank m.
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4.2 Basic Feasible Solutions

Among all feasible solutions of a linear program, a privileged status is granted
to so-called basic feasible solutions. In this section we will consider them only
for linear programs in equational form. Let us look again at the picture of
the set of feasible solutions for a linear program with n = 3, m = 1:

x1

x3

x2

0

p
q

r

Among the feasible solutions p, q, and r only r is basic. Expressed geomet-
rically and very informally, a basic feasible solution is a tip (corner, spike) of
the set of feasible solutions. We will formulate this kind of geometric descrip-
tion of a basic feasible solution later (see Theorem 4.4.1).

The definition that we present next turns out to be equivalent, but it
looks rather different. It requires that, very roughly speaking, a basic feasible
solution have sufficiently many zero components. Before stating it we intro-
duce a new piece of notation.

In this section A is always a matrix with m rows and n columns (n ≥ m),
of rank m. For a subset B ⊆ {1, 2, . . . , n} we let AB denote the matrix
consisting of the columns of A whose indices belong to B. For instance, for

A =

(
1 5 3 4 6
0 1 3 5 6

)
and B = {2, 4} we have AB =

(
5 4
1 5

)
.

We will use a similar notation for vectors; e.g., for x = (3, 5, 7, 9, 11) and
B = {2, 4} we have xB = (5, 9).

Now we are ready to state a formal definition.

A basic feasible solution of the linear program

maximize cT x subject to Ax = b and x ≥ 0

is a feasible solution x ∈ Rn for which there exists an m-element set
B ⊆ {1, 2, . . . , n} such that

• the (square) matrix AB is nonsingular, i.e., the columns indexed by
B are linearly independent, and

• xj = 0 for all j �∈ B.

4. Theory of Linear Programming: First Steps
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For example, x = (0, 2, 0, 1, 0) is a basic feasible solution for

A =

(
1 5 3 4 6
0 1 3 5 6

)
, b = (14, 7)

with B = {2, 4}.
If such a B is fixed, we call the variables xj with j ∈ B the basic vari-

ables, while the remaining variables are called nonbasic. We can thus briefly
say that all nonbasic variables are zero in a basic feasible solution.

Let us note that the definition doesn’t consider the vector c at all, and so
basic feasible solutions depend solely on A and b.

For some considerations it is convenient to reformulate the definition of a
basic feasible solution a little.

4.2.1 Lemma. A feasible solution x of a linear program in equational form
is basic if and only if the columns of the matrix AK are linearly independent,
where K = {j ∈ {1, 2, . . . , n} : xj > 0}.

Proof. One of the implications is obvious: If x is a basic feasible solution
and B is the corresponding m-element set as in the definition, then K ⊆ B
and thus the columns of the matrix AK are linearly independent.

Conversely, let x be feasible and such that the columns of AK are linearly
independent. If |K| = m, then we can simply take B = K. Otherwise, for
|K| < m, we extend K to an m-element set B by adding m−|K| more indices
so that the columns of AB are linearly independent. This is a standard fact
of linear algebra, which can be verified using the algorithm described next.

We initially set the current B to K, and repeat the following step: If A
has a column that is not in the linear span of the columns of AB, we add the
index of such a column to B. As soon as this step is no longer possible, that
is, all columns of A are in the linear span of the columns of B, it is easily seen
that the columns of AB constitute a basis of the column space of A. Since
A has rank m, we have |B| = m as needed. �

4.2.2 Proposition. A basic feasible solution is uniquely determined by the
set B. That is, for every m-element set B ⊆ {1, 2, . . . , n} with AB nonsingular
there exists at most one feasible solution x ∈ Rn with xj = 0 for all j �∈ B.

Let us stress right away that a single basic feasible solution may be ob-
tained from many different sets B.

Proof of Proposition 4.2.2. For x to be feasible we must have Ax = b.
The left-hand side can be rewritten to Ax = ABxB + ANxN , where N =
{1, 2, . . . , n} \ B. For x to be a basic feasible solution, the vector xN of
nonbasic variables must equal 0, and thus the vector xB of basic variables
satisfies ABxB = b. And here we use the fact that AB is a nonsingular square
matrix: The system ABxB = b has exactly one solution x̃B. If all components
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of x̃B are nonnegative, then we have exactly one basic feasible solution for
the considered B (we amend x̃B by zeros), and otherwise, we have none. �

We introduce the following terminology: We call an m-element set B ⊆
{1, 2, . . . , n} with AB nonsingular a basis.2 If, moreover, B determines a
basic feasible solution, or in other words, if the unique solution of the system
ABxB = b is nonnegative, then we call B a feasible basis.

The following theorem deals with the existence of optimal solutions, and
moreover, it shows that it suffices to look for them solely among basic feasible
solutions.

4.2.3 Theorem. Let us consider a linear program in equational form

maximize cT x subject to Ax = b,x ≥ 0.

(i) (“Optimal solutions may fail to exist only for obvious reasons.”) If there is
at least one feasible solution and the objective function is bounded from
above on the set of all feasible solutions, then there exists an optimal
solution.

(ii) If an optimal solution exists, then there is a basic feasible solution that
is optimal.

A proof is not necessary for further reading and we defer it to the end
of this section. The theorem also follows from the correctness of the simplex
method, which will be discussed in the next chapter.

The theorem just stated implies a finite, although entirely impractical,
algorithm for solving linear programs in equational form. We consider all m-
element subsets B ⊆ {1, 2, . . . , n} one by one, and for each of them we check
whether it is a feasible basis, by solving a system of linear equations (we
obtain at most one basic feasible solution for each B by Proposition 4.2.2).
Then we calculate the maximum of the objective function over all basic fea-
sible solutions found in this way.

Strictly speaking, this algorithm doesn’t work if the objective function is
unbounded. Formulating a variant of the algorithm that functions properly
even in this case, i.e., it reports that the linear program is unbounded, we leave
as an exercise. Soon we will discuss the considerably more efficient simplex
method, and there we show in detail how to deal with unboundedness.

We have to consider
(

n
m

)
sets B in the above algorithm.3 For example,

for n = 2m, the function
(
2m
m

)
grows roughly like 4m, i.e., exponentially, and

this is too much even for moderately large m.

2 This is a shortcut. The index set B itself is not a basis in the sense of linear
algebra, of course. Rather the set of columns of the matrix AB constitutes a
basis of the column space of A.

3 We recall that the binomial coefficient
`

n
m

´
= n!

m!(n−m)!
counts the number of

m-element subsets of an n-element set.

4. Theory of Linear Programming: First Steps
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As we will see in Chapter 5, the simplex method also goes through basic
feasible solutions, but in a more clever way. It walks from one to another while
improving the value of the objective function all the time, until it reaches an
optimal solution.

Let us summarize the main findings of this section.

A linear program in equational form has finitely many basic feasible
solutions, and if it is feasible and bounded, then at least one of the basic
feasible solutions is optimal.

Consequently, any linear program that is feasible and bounded has an
optimal solution.

Proof of Theorem 4.2.3. We will use some steps that will reappear in the
simplex method in a more elaborate form, and so the present proof is a kind
of preparation. We prove the following statement:

If the objective function of a linear program in equational form is
bounded above, then for every feasible solution x0 there exists a
basic feasible solution x̃ with the same or larger value of the objective
function; i.e., cT x̃ ≥ cT x0.

How does this imply the theorem? If the linear program is feasible and
bounded, then according to the statement, for every feasible solution there
is a basic feasible solution with the same or larger objective function. Since
there are only finitely many basic feasible solutions, some of them have to
give the maximum value of the objective function, which means that they
are optimal. We thus get both (i) and (ii) at once.

In order to prove the statement, let us consider an arbitrary feasible solu-
tion x0. Among all feasible solutions x with cT x ≥ cT x0 we choose one that
has the largest possible number of zero components, and we call it x̃ (it need
not be determined uniquely). We define an index set

K = {j ∈ {1, 2, . . . , n} : x̃j > 0}.

If the columns of the matrix AK are linearly independent, then x̃ is a basic
feasible solution as in the statement, by Lemma 4.2.1, and we are done.

So let us suppose that the columns of AK are linearly dependent, which
means that there is a nonzero |K|-component vector v such that AKv = 0.
We extend v by zeros in positions outside K to an n-component vector w
(so wK = v and Aw = AKv = 0).

Let us assume for a moment that w satisfies the following two conditions
(we will show later why we can assume this):

(i) cT w ≥ 0.
(ii) There exists j ∈ K with wj < 0.
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For a real number t ≥ 0 let us consider the vector x(t) = x̃ + tw. We show
that for some suitable t1 > 0 the vector x(t1) is a feasible solution with
more zero components than x̃. At the same time, cTx(t1) = cT x̃ + t1c

T w ≥
cT x0 + t1c

T w ≥ cT x0, and so we get a contradiction to the assumption that
x̃ has the largest possible number of zero components.

We have Ax(t) = b for all t since Ax(t) = Ax̃ + tAw = Ax̃ = b, because
x̃ is feasible. Moreover, for t = 0 the vector x(0) = x̃ has all components from
K strictly positive and all other components zero. For the jth component of
x(t) we have x(t)j = x̃j + twj , and if wj < 0 as in condition (ii), we get
x(t)j < 0 for all sufficiently large t > 0. If we begin with t = 0 and let t grow,
then those x(t)j with wj < 0 are decreasing, and at a certain moment t̃ the
first of these decreasing components reaches 0. At this moment, obviously,
x(t̃) still has all components nonnegative, and thus it is feasible, but it has
at least one extra zero component compared to x̃. This, as we have already
noted, is a contradiction.

Now what do we do if the vector w fails to satisfy condition (i) or (ii)?
If cT w = 0, then (i) holds and (ii) can be recovered by changing the sign
of w (since w �= 0). So we assume cT w �= 0, and again after a possible
sign change we can achieve cTw > 0 and thus (i). Now if (ii) fails, we must
have w ≥ 0. But this means that x(t) = x̃ + tw ≥ 0 for all t ≥ 0, and
hence all such x(t) are feasible. The value of the objective function for x(t)
is cTx(t) = cT x̃ + tcT w, and it tends to infinity as t → ∞. Hence the linear
program is unbounded. This concludes the proof. �

4.3 ABC of Convexity and Convex Polyhedra

Convexity is one of the fundamental notions in all mathematics, and in the
theory of linear programming it is encountered very naturally. Here we recall
the definition and present some of the most basic notions and results, which,
at the very least, help in gaining a better intuition about linear programming.

On the other hand, linear programming can be presented without these
notions, and in concise courses there is usually no time for such material.
Accordingly, this section and the next are meant as extending material, and
the rest of the book should mostly be accessible without them.

A set X ⊆ Rn is convex if for every two points x,y ∈ X it also contains
the segment xy. Expressed differently, for every x,y ∈ X and every
t ∈ [0, 1] we have tx + (1−t)y ∈ X .

A word of explanation might be in order: tx + (1−t)y is the point on the
segment xy at distance t from y and distance 1−t from x, if we take the
length of the segment as unit distance.

Here are a few examples of convex and nonconvex sets in the plane:

4. Theory of Linear Programming: First Steps
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nonconvex convex

The convex set at the bottom right in this picture, a stadium, is worth re-
membering, since often it is a counterexample to statements about convex
sets that may look obvious at first sight but are false.

In calculus one works mainly with convex functions. Both notions, convex
sets and convex functions, are closely related: For instance, a real function
f : R → R is convex if and only if its epigraph, i.e., the set {(x, y) ∈ R2 : y ≥
f(x)}, is a convex set in the plane. In general, a function f : X → R is called
convex if for every x,y ∈ X and every t ∈ [0, 1] we have

f(tx + (1−t)y) ≤ tf(x) + (1−t)f(y).

The function is called strictly convex if the inequality is strict for all x �= y.

Convex hull and convex combinations. It is easily seen that the inter-
section of an arbitrary collection of convex sets is again a convex set. This
allows us to define the convex hull.

Let X ⊂ Rn be a set. The convex hull of X is the intersection of all
convex sets that contain X . Thus it is the smallest convex set containing X ,
in the sense that any convex set containing X also contains its convex hull.

X

the convex hull of X

This is not a very constructive definition. The convex hull can also be
described using convex combinations, in a way similar to the description of
the linear span of a set of vectors using linear combinations. Let x1,x2, . . . ,xm

be points in Rn. Every point of the form

t1x1 + t2x2 + · · · + tmxm, where t1, t2, . . . , tm ≥ 0 and

m∑

i=1

ti = 1,

is called a convex combination of x1,x2, . . . ,xm. A convex combination is
thus a particular kind of a linear combination, in which the coefficients are
nonnegative and sum to 1.
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Convex combinations of two points x and y are of the form tx+(1−t)y, t ∈
[0, 1], and as we said after the definition of a convex set, they fill exactly the
segment xy. It is easy but instructive to show that all convex combinations
of three points x,y, z fill exactly the triangle xyz (unless the points are
collinear, that is).

4.3.1 Lemma. The convex hull C of a set X ⊆ Rn equals the set

C̃ =

{ m∑

i=1

tixi : m ≥ 1,x1, . . . ,xm ∈ X, t1, . . . , tm ≥ 0,

m∑

i=1

ti = 1

}

of all convex combinations of finitely many points of X .

Proof. First we prove by induction on m that each convex combination has
to lie in the convex hull C. For m = 1 it is obvious and for m = 2 it follows
directly from the convexity of C.

Let m ≥ 3 and let x = t1x1 + · · · + tmxm be a convex combination of
points of X . If tm = 1, then we have x = xm ∈ C. For tm < 1 let us put
t′i = ti/(1 − tm), i = 1, 2, . . . , m − 1. Then x′ = t′1x1 + · · · + t′m−1xm−1 is
a convex combination of the points x1, . . . ,xm−1 (the t′i sum to 1), and by
the inductive hypothesis x′ ∈ C. So x = (1 − tm)x′ + tmxm is a convex
combination of two points of the (convex) set C and as such it also lies in C.

We have thus proved C̃ ⊆ C. For the reverse inclusion it suffices to prove
that C̃ is convex, that is, to verify that whenever x,y ∈ C̃ are two convex
combinations and t ∈ (0, 1), then tx+(1− t)y is again a convex combination.
This is straightforward and we take the liberty of omitting further details.

�

Convex sets encountered in the theory of linear programming are of a
special type and they are called convex polyhedra.

Hyperplanes, half-spaces, polyhedra. We recall that a hyperplane
in Rn is an affine subspace of dimension n−1. In other words, it is the set of
all solutions of a single linear equation of the form

a1x1 + a2x2 + · · · + anxn = b,

where a1, a2, . . . , an are not all 0. Hyperplanes in R2 are lines and hyperplanes
in R3 are ordinary planes.

A hyperplane divides Rn into two half-spaces and it constitutes their
common boundary. For the hyperplane with equation a1x1 + a2x2 + · · · +
anxn = b, the two half-spaces have the following analytic expression:

{
x ∈ Rn : a1x1 + a2x2 + · · · + anxn ≤ b

}

and {
x ∈ Rn : a1x1 + a2x2 + · · · + anxn ≥ b

}
.

More exactly, these are closed half-spaces that contain their boundary.

4. Theory of Linear Programming: First Steps
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A convex polyhedron is an intersection of finitely many closed half-
spaces in Rn.

A half-space is obviously convex, and hence an intersection of half-spaces
is convex as well. Thus convex polyhedra bear the attribute convex by right.

A disk in the plane is a convex set, but it is not a convex polyhedron
(because, roughly speaking, a convex polyhedron has to be “edgy”. . . but
try proving this formally).

A half-space is the set of all solutions of a single linear inequality (with
at least one nonzero coefficient of some variable xj). The set of all solutions
of a system of finitely many linear inequalities, a.k.a. the set of all feasible
solutions of a linear program, is geometrically the intersection of finitely many
half-spaces, alias a convex polyhedron. (We should perhaps also mention that
a hyperplane is the intersection of two half-spaces, and so the constraints can
be both inequalities and equations.)

Let us note that a convex polyhedron can be unbounded, since, for ex-
ample, a single half-space is also a convex polyhedron. A bounded convex
polyhedron, i.e. one that can be placed inside some large enough ball, is
called a convex polytope.

The dimension of a convex polyhedron P ⊆ Rn is the smallest dimension
of an affine subspace containing P . Equivalently, it is the largest d for which
P contains points x0,x1, . . . ,xd such that the d-tuple of vectors (x1−x0,x2−
x0, . . . ,xd − x0) is linearly independent.

The empty set is also a convex polyhedron, and its dimension is usually
defined as −1.

All convex polygons in the plane are two-dimensional convex polyhe-
dra. Several types of three-dimensional convex polyhedra are taught at high
schools and decorate mathematical cabinets, such as cubes, boxes, pyramids,
or even regular dodecahedra, which can also be met as desktop calendars.
Simple examples of convex polyhedra of an arbitrary dimension n are:

• The n-dimensional cube [−1, 1]n, which can be written as the intersec-
tion of 2n half-spaces (which ones?):

n = 1 n = 2 n = 3
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• the n-dimensional crosspolytope {x ∈ Rn : |x1|+ |x2|+ · · ·+ |xn| ≤ 1}:

n = 1 n = 2 n = 3

For n = 3 we get the regular octahedron. For expressing the n-dimensional
crosspolytope as an intersection of half-spaces we need 2n half-spaces (can
you find them?).

• The regular n-dimensional simplex

n = 1 n = 2 n = 3

can be defined in a quite simple and nice way as a subset of Rn+1:

{x ∈ Rn+1 : x1, x2, . . . , xn+1 ≥ 0, x1 + x2 + · · · + xn+1 = 1}.

We note that this is exactly the set of all feasible solutions of the linear
program with the single equation x1 + x2 + · · · + xn+1 = 1 and non-
negativity constraints;4 see the picture in Section 4.1. In general, any
n-dimensional convex polytope bounded by n+1 hyperplanes is called a
simplex.

Many interesting examples of convex polyhedra are obtained as sets of feasible
solutions of natural linear programs. For example, the LP relaxation of the
problem of maximum-weight matching (Section 3.2) for a complete bipartite
graph leads to the Birkhoff polytope. Geometric properties of such polyhedra

4 On the other hand, the set of feasible solutions of a linear program in equational
form certainly isn’t always a simplex! The simplex method is so named for a
rather complicated reason, related to an alternative geometric view of a linear
program in equational form, different from the one discussed in this book. Ac-
cording to this view, the m-tuple of numbers in the jth column of the matrix A
together with the number cj is interpreted as a point in Rm+1. Then the simplex
method can be interpreted as a walk through certain simplices with vertices at
these points. It was this view that gave Dantzig faith in the simplex method and
convinced him that it made sense to study it.

4. Theory of Linear Programming: First Steps
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are often related to properties of combinatorial objects and to solutions of
combinatorial optimization problems in an interesting way. A nice book about
convex polyhedra is

G. M. Ziegler: Lectures on Polytopes, Springer-Verlag, Heidelberg,
1994 (corrected 2nd edition 1998).

The book

B. Grünbaum: Convex Polytopes, second edition prepared by Volker
Kaibel, Victor Klee, and Günter Ziegler, Springer-Verlag, Heidelberg,
2003

is a new edition of a 1967 classics, with extensive updates on the material
covered in the original book.

4.4 Vertices and Basic Feasible Solutions

A vertex of a convex polyhedron can be thought of as a “tip” or “spike.” For
instance, a three-dimensional cube has 8 vertices, and a regular octahedron
has 6 vertices.

Mathematically, a vertex is defined as a point where some linear function
attains a unique maximum. Thus a point v is called a vertex of a convex
polyhedron P ⊂ Rn if v ∈ P and there exists a nonzero vector c ∈ Rn

such that cT v > cT y for all y ∈ P \ {v}. Geometrically it means that the
hyperplane {x ∈ Rn : cT x = cTv} touches the polyhedron P exactly at v.

c

cT x = cT v

v

Three-dimensional polyhedra have not only vertices, but also edges
and faces. A general polyhedron P ⊆ Rn of dimension n can have
vertices, edges, 2-dimensional faces, 3-dimensional faces, up to (n−1)-
dimensional faces. They are defined as follows: A subset F ⊆ P is a
k-dimensional face of a convex polyhedron P if F has dimension k
and there exist a nonzero vector c ∈ Rn and a number z ∈ R such that
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cT x = z for all x ∈ F and cT x < z for all x ∈ P \ F . In other words,
there exists a hyperplane that touches P exactly at F . Since such an
F is the intersection of a hyperplane with a convex polyhedron, it is
a convex polyhedron itself, and its dimension is thus well defined. An
edge is a 1-dimensional face and a vertex is a 0-dimensional face.

Now we prove that vertices of a convex polyhedron and basic feasible
solutions of a linear program are the same concept.

4.4.1 Theorem. Let P be the set of all feasible solutions of a linear program
in equational form (so P is a convex polyhedron). Then the following two
conditions for a point v ∈ P are equivalent:

(i) v is a vertex of the polyhedron P .
(ii) v is a basic feasible solution of the linear program.

Proof. The implication (i)⇒(ii) follows immediately from Theorem 4.2.3
(with c being the vector defining v). It remains to prove (ii)⇒(i).

Let us consider a basic feasible solution v with a feasible basis B, and let
us define a vector c̃ ∈ Rn by c̃j = 0 for j ∈ B and c̃j = −1 otherwise. We have
c̃T v = 0, and c̃T x ≤ 0 for any x ≥ 0, and hence v maximizes the objective
function c̃T x. Moreover, c̃T x < 0 whenever x has a nonzero component
outside B. But by Proposition 4.2.2, v is the only feasible solution with all
nonzero components in B, and therefore v is the only point of P maximizing
c̃T x. �

Basic feasible solutions for arbitrary linear programs. A sim-
ilar theorem is valid for an arbitrary linear program, not only for one
in equational form. We will not prove it here, but we at least say what
a basic feasible solution is for a general linear program:

4.4.2 Definition. A basic feasible solution of a linear program
with n variables is a feasible solution for which some n linearly inde-
pendent constraints hold with equality.

A constraint that is an equation always has to be satisfied with
equality, while an inequality constraint may be satisfied either with
equality or with a strict inequality. The nonnegativity constraints
satisfied with equality are also counted. The linear independence of
constraints means that the vectors of the coefficients of the vari-
ables are linearly independent. For example, for n = 4, the constraint
3x1 + 5x3 − 7x4 ≤ 10 has the corresponding vector (3, 0, 5,−7).

As is known from linear algebra, a system of n linearly independent
linear equations in n variables has exactly one solution. Hence, if x is
a basic feasible solution and it satisfies some n linearly independent
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constraints with equality, then it is the only point in Rn that satisfies
these n constraints with equality. Geometrically speaking, the con-
straints satisfied with equality determine hyperplanes, x lies on some
n of them, and these n hyperplanes meet in a single point.

The definition of a basic feasible solution for the equational form
looks quite different, but in fact, it is a special case of the new defini-
tion, as we now indicate. For a linear program in equational form we
have m linearly independent equations always satisfied with equality,
and so it remains to satisfy with equality some n − m of the non-
negativity constraints, and these must be linearly independent with
the equations. The coefficient vector of the nonnegativity constraint
xj ≥ 0 is ej , with 1 at position j and with zeros elsewhere. If x is a ba-
sic feasible solution according to the new definition, then there exists
a set N ⊆ {1, 2, . . . , n} of size n−m such that xj = 0 for all j ∈ N and
the rows of the matrix A together with the vectors (ej : j ∈ N) con-
stitute a linearly independent collection. This happens exactly if the
matrix AB has linearly independent rows, where B = {1, 2, . . . , n}\N ,
and we are back at the definition of a basic feasible solution for the
equational form.

For a general linear program none of the optimal solutions have to
be basic, as is illustrated by the linear program

maximize x1 + x2 subject to x1 + x2 ≤ 1.

This contrasts with the situation for the equational form (cf. Theo-
rem 4.2.3) and it is one of the advantages of the equational form.

Vertices and extremal points. The intuitive notion of a “tip” of
a convex set can be viewed mathematically in at least two ways. One
of them is captured by the above definition of a vertex of a convex
polyhedron: A tip is a point for which some linear function attains a
unique maximum. The other one leads to a definition talking about
points that cannot be “generated by segments.” These are called ex-
tremal points; thus a point x is an extremal point of a convex set
C ⊆ Rn if x ∈ C and there are no two points y, z ∈ C different from x
such that x lies on the segment yz.

For a convex polyhedron it is not difficult to show that the extremal
points are exactly the vertices. Hence we have yet another equivalent
description of a basic feasible solution.

A convex polytope is the convex hull of its vertices. A gen-
eral convex polyhedron need not have any vertices at all—consider
a half-space. However, a convex polytope P , i.e., a bounded convex
polyhedron, always has vertices, and even more is true: P equals the
convex hull of the set of its vertices. This may look intuitively obvi-
ous from examples in dimensions 2 and 3, but a proof is nontrivial
(Ziegler’s book cited in the previous section calls this the “Main The-
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orem” of polytope theory). Consequently, every convex polytope can
be represented either as the intersection of finitely many half-spaces
or as the convex hull of finitely many points.
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