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Abstract. In this paper, we study the new class step-wise Triangular
Schemes (STS) of public key cryptosystems (PKC) based on multivar-
iate quadratic polynomials. In these schemes, we have m the number of
equations, n the number of variables, L the number of steps/layers, r
the number of equations/variables per step, and q the size of the un-
derlying field. We present two attacks on the STS class by exploiting
the chain of the kernels of the private key polynomials. The first at-
tack is an inversion attack which computes the message/signature for
given ciphertext/message in O(mn3Lqr +n2Lrqr), the second is a struc-
tural attack which recovers an equivalent version of the secret key in
O(mn3Lqr +mn4) operations. Since the legitimate user has workload qr

for decrypting/computing a signature, the attacks presented in this paper
are very efficient. As an application, we show that two special instances
of STS, namely RSE(2)PKC and RSSE(2)PKC, recently proposed by
Kasahara and Sakai, are insecure.

1 Introduction

1.1 PKC Schemes Based on Multivariate Quadratic Equations

In the last two decades, several public key cryptoschemes (PKC) have been
proposed which use Multivariate Quadratic equations (MQ) over a finite field
F. A typical multivariate PKC public key P has the structure S ◦ P ′ ◦ T . Here,
S ∈ GLn(F) and T ∈ GLm(F) represent two linear transformations over the
finite field F. The system P ′ of m central equations in n variables of degree
2 is constructed with a trapdoor in order to speed up the decryption process.
The secret key of the system consists of the triple (S,P ′, T ). Depending on the
structure of P ′, these schemes can be divided into several classes: e.g., the initial
polynomial substitution scheme from Fell and Diffie [8], C∗ schemes [17], HFE-
like schemes [19, 6] or unbalanced oil-vinegar schemes [14]. All of them rely on the
fact that the MQ-problem, i.e., finding a solution x ∈ F

n for a given system P is
computationally difficult, namely NP-complete (cf [9–p. 251] and [20–App.] for
a detailed proof). Also decomposing P into T,P ′, S — called the Isomorphism
of Polynomials Problem — is considered to be a hard problem if S,P ′, T do not
have a special structure [21].
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In this paper, we concentrate on a special sub-class of MQ-schemes, namely
schemes which have a triangular structure for their central equations P ′ — tri-
angular schemes for short. This idea is due to Shamir [22] who developed such
schemes (Birational Permutations) over large finite rings. To guard against spe-
cial types of attacks, he removed some initial equations. Goubin et al. specialised
the approach from [22] to the case of small finite fields, denoted TPM schemes
(Triangle Plus Minus, [10]). They add to Shamir’s construction some equations
in the last step (“Plus” modification) and fall in a similar class as the scheme
described in this paper (cf Fig. 2).
We now consider a further generalisation of the Birational Permutation and TPM
family. These schemes are called STS (step-wise triangular schemes), which differ
from the TPM class by allowing a “step” of more than one variable/equation
in the triangular structure (cf Fig. 1 for regular STS). The step-width (number
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Fig. 1. Central Equations p′
i in a Regular STS Scheme

of new variables) and the step-height (number of new equations) is controlled
by the parameter r. For Birational Permutations and TPM, the parameter r is
fixed to 1. Therefore, they are a special case of STS (cf Sect. 1.2). The main
part of this paper consists of the description of two very efficient attacks on STS
schemes. They break STS in O(mn3Lqr +mn4) and O(mn3Lqr +n2Lrqr) — for
m the number of equations, n the number of variables, L the number of layers,
q the size of the ground field F, and r the step-width/step-hight. The attacks
are mainly based on the fact that the kernels of the private central polynomials
p′

i form a descending chain of subspaces (cf Sect. 2.1). As the recently proposed
schemes RSE(2)PKC and RSSE(2)PKC by Kasahara and Sakai belong to the
STS family (cf Sect. 3), both schemes are covered by these attacks and thus
highly insecure. As an application of the attacks described in this paper, we
broke the challenge for RSE(2)PKC (cf Sect. 3.2).
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1.2 Step-Wise Triangular Systems

A step-wise triangular scheme is defined over a finite field F with q := |F| ele-
ments and prime characteristic char(F). Over this field, we define multivariate
quadratic polynomials

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
∑

1≤j≤n

βi,jxj + αi , (1)

for 1 ≤ i ≤ m and αi, βi,j , γi,j,k ∈ F (constant, linear, and quadratic terms).
These polynomials form the public key as a system of equations P :=(p1, . . . , pm).
The plaintext x ∈ F

n is transformed to the ciphertext y ∈ F
m as

yi := pi(x1, . . . , xn) with 1 ≤ i ≤ m .

The decryption, i.e., the inversion of this mapping, uses a trapdoor (cf Fig. 2).
This trapdoor consists of two linear transformations S ∈ GLn(F), T ∈ GLm(F)
and central equations as outlined in Fig. 1. The public equations P are con-
structed as a composition of P := T ◦ P ′ ◦ S where P ′ has a special triangular
structure (cf Fig. 1). The two linear transformations may be seen as invertible
matrices, we hence have S ∈ F

n×n and T ∈ F
m×m, respectively. In our de-

scription, we always use a prime (′) for denoting the secret central part of the
system.

input x

�
x = (x1, . . . , xn)

�
private: S

x′

�
private: P ′

y′

�
private: T

output y �

public:
P = (p1, . . . , pn)

Fig. 2.MQ-trapdoor (S,P ′, T ) in STS

Let r1, . . . , rL be L integers such that r1 + · · ·+ rL = n, the number of variables,
and m1, . . . ,mL ∈ N such that m1 + · · · + mL = m, the number of equations.
Here L ∈ N denotes the number of layers or steps in the scheme, rl represents
the number of new variables (step-width) and ml the number of equations (step-
height), both in step l for 1 ≤ l ≤ L. In a general step-wise Triangular Scheme
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(gSTS), the ml private quadratic polynomials of each layer l, contain only the
variables x′

k with k ≤ ∑l
j=1 rj , i.e., only the variables defined in all previous

steps plus rl new ones. The overall shape of the private polynomials leads to the
name step-wise Triangular Scheme (STS).

When not mentioned otherwise, we concentrate on regular STS schemes (rSTS
or STS for short) in this paper. For regular STS schemes we set r1 = · · · = rN =
m1 = · · · = mL, which we denote by r. Moreover, L = m/r andm = n. Note that
the attacks we propose are also valid for the general STS schemes (cf Sect. 4.1).
The structure of a regular STS has been outlined in fig. 1 and 2.

As we see in Fig. 1, there are exactly r new variables in an rSTS for each
layer. This way one can compute an x for a given vector y with qr attempts in
each step. But as the legitimate user has a workload growing exponentially in r,
this value has to be small in order to obtain a scheme of practical interest. The
parameter r plays an important role for the complexity of our attack.

In order to decrypt a given ciphertext y, we need to invert the following

steps: x S→ x′ P′
→ y′ T→ y. While S, T are bijections and also easy to invert,

this is not so obvious for the central equations P ′. In particular, these central
equations may not form a bijection. Adding redundancy to the original message
x or transmitting some additional redundancy, e.g., in form of its hash-value
h := H(x) where H(·) denotes a cryptographically secure hash function (e.g.,
see [18]), allows to pick the correct message x for a given input y. For a signature
scheme, we do not need this redundancy as it is enough to obtain one x ∈ F

n

such that P(x) = y for a given y; in most cases, this will be the hash of a longer
message. As this point is not important for our attack, we refer to [19, 12] for a
broader discussion of this problem.

Remark: As already pointed out in the introduction, the Birational Permuta-
tion Schemes of Shamir are regular STS schemes with r = 1. However, they are
not defined over a (small) finite field but over a (large) finite ring. The TPM
class of Goubin and Courtois coincides with STS for the parameters r1 = u,
mL = v, m1 = · · · = mL−1 = r2 = · · · = rL = 1, i.e., we remove u ∈ N initial
layers, add v ∈ N polynomials in the last step, and have exactly one new variable
at all intermediate levels. As STS, this class is not defined over a ring but over
a field.

Shamir’s scheme was broken shortly after its publication in [2, 23, 3]. The TPM
scheme of Goubin and Courtois has been broken in the paper that proposed it
[10]. In fact, the aim of their construction was to show that Moh’s TTM con-
struction is weak. While we dwell on the basic ideas of the above attacks, it is
necessary to extend them as they are not directly applicable to STS. In partic-
ular, Kasahara and Sakai conclude (cf [13–Sect. 4.3.III] and [12–Sect. 4.1.III])
that their constructions are secure against all known attacks — in particular,
mentioning [10]. Although this observation is true, we will show in Sect. 2 that
it is possible to generalise these attacks in a way that STS and consequently
RSE(2)PKC and RSSE(2)PKC are covered by them, too.
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1.3 Organisation

This paper is organised as follows: after this introduction, we move on to a
cryptanalysis of regular STS schemes, showing both an inversion and a struc-
tural attack in Sect. 2. The following section deals with special instances like
RSE(2)PKC and RSSE(2)PKC. In Sect. 4, we generalise STS. This paper con-
cludes with Sect. 5.

2 Cryptanalysis

We now present two different types of attacks on STS. In the inversion attack (cf
Sect. 2.3), we recover for given ciphertext y the corresponding message x. In the
structural attack (cf Sect. 2.4), we build a linear equivalent version of the private
key, denoted (S̃, P̃ ′, T̃ ). Using (S̃, P̃ ′, T̃ ), the attacker is in the same position as
the legitimate user for deciphering a given message y or forging a signature on
it. For both attacks, we first need some observations on kernels.

2.1 Chain of Kernels

Let pi be a public key polynomial. For characteristic �= 2, we can uniquely express
its homogeneous quadratic parts in a symmetric matrix Pi ∈ F

n×n. We show
this with a toy-example with three variables:⎛

⎝γ1,1
γ1,2
2

γ1,3
2γ1,2

2 γ2,2
γ2,3
2γ1,3

2
γ2,3
2 γ3,3

⎞
⎠ ,

where the γi,j represent the quadratic coefficients of xixj from the public poly-
nomials as defined in (1). So, instead of evaluating the quadratic parts of pi by
the vector x, we may also perform xPix

t as matrix-vector multiplications (here
t denotes transposition). As division by 2 is not defined for characteristic 2, we
use the form Pi := Li + Lt

i for lower triangular matrices Li instead to obtain
unique symmetric matrices. This way, we loose the quadratic coefficients γi,i of
the public polynomials. However, in characteristic 2, these quadratic terms are
linear and we can therefore ignore them. To the knowledge of the authors, the
above observation has been initially reported in [14] and is there credited to Don
Coppersmith.

The private key polynomials p′
i may also be represented in the above matrix

form. Following the notation outlined in the previous section, we denote the
corresponding matrices P ′

i . Obviously, the rank of each such matrix depends on
its layer l. The matrices P ′

i have a rank of rl in each layer l for 1 ≤ l ≤ L and
we have

ker′
l = {a′ ∈ F

n| a′
1 = . . . = a′

rl = 0}
as common kernels of the matrices P ′

i for (l − 1)r < i ≤ lr. As these kernels
are hidden by the linear transformation S, we also mark them with a prime ′.
Moreover, we denote by a′

i ∈ F for 1 ≤ i ≤ n the coefficients of the vectors
a′ ∈ F

n.
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We now study the effect of the linear transformation S, i.e., the change of vari-
ables. As we have p̂i := p′

i ◦S and x′ = S(x), we obtain P̂i := SP ′
iS

t in terms of
the corresponding matrices. As S is invertible, we have Rank(P̂i) = Rank(P ′

i )
and

kerl = {a′S−1 | a′ ∈ F
n ∧ a′

1 = . . . = a′
rl = 0} (2)

for the kernels of P̂i for (l − 1)r < i ≤ lr and an unknown matrix S. Moreover,

ker′
L ⊂ . . . ⊂ ker′

1 and consequently kerL ⊂ . . . ⊂ ker1 .

With the notation T = (τi,j)1≤i,j≤m, each individual public key matrix Pi can
be expressed by

Pi =
m∑

j=1

τi,j [SP ′
iS

t] =
m∑

j=1

τi,jP̂i .

The problem of finding the transformation T−1 and thus T has therefore been
reduced to finding a linear combination of the public key (in matrix notation)
which has a specific rank. In the following two subsections, we describe two
algorithms which can be used for this purpose.

2.2 Recovering the Transformation T

Attacking the High-Rank Side. We start with an attack on the high-rank
side (cf the algorithm in Fig. 3). The overall idea of this algorithm is to exploit
the step-structure of STS. To do so, we observe that a correct random guess of a
row-vector in T−1 will lead to a condition on the rank of the linear combination of
the corresponding public key equations — expressed in matrix notation. More
formally and also to verify the correctness of this algorithm, we consider the
vector spaces

Jl := {b′T−1 | b′ ∈ F
m ∧ b′lr+1 = . . . = b′m = 0} for 1 ≤ l ≤ L . (3)

Obviously, they form a descending chain of subspaces and each of them has
dimension m − lr. Therefore, when picking a random element v ∈R Jl+1, we
have a probability of q−r that the expression v ∈ Jl holds. In addition, we have
two efficient methods (matrixCheck or polynomialCheck, respectively) to check
whether v ∈ Jl or v /∈ Jl. First, we concentrate on matrixCheck:

matrixCheck(P1, . . . , Pm, v, l) returns true iff Rank(
m∑

i=1

viPi) ≤ lr .

For the sake of the argument, we look at the problem in the T−1-space, i.e.,
after the linear transformation T−1 has been applied. Using the notation from
(3), we consider vectors b′ instead of v. Hence we have

M :=
m∑

i=1

b′iP̂i =
rl∑

i=1

b′i
(
SP ′

iS
t
)

= S

(
rl∑

i=1

b′iP
′
i

)
St .



300 C. Wolf, A. Braeken, and B. Preneel

Observing the step-wise structure of the private key polynomials p′
i we conclude

that the Rank(M) ≤ lr. This yields the result.
The expected running time of the algorithm from Fig. 3 is therefore bounded
by O(mn3Lqr): by picking at most cmqr vectors for each layer (c being a small
constant, e.g., 10), we can compute the vector spaces J1, . . . , JL with very high
probability. Checking the matrix condition costs an additional factor of n3 as
we are processing matrices from F

n×n. In comparison, the running time of the
other steps of the algorithm are negligible.

procedure highRankAttack(P)
Input: P: system of public equations
Output: T̃ : an equivalent copy of the transformation T
Pi ← computeMatrix(pi); JL ← F

m

for l← L− 1 downto 1 do
Jl ← {0}
repeat

v ∈R Jl+1

if matrixCheck(P1, . . . , Pm, v, l) ∨ polynomialCheck(p1, . . . , pm, v, l) then
Jl∪ ← {v}

until Dimension(Jl)
?= lr

J̃ ← Jl+1 ∩ Jl

for i← 1 to r do
RowVector(T̂ , lr + i) ← BasisVector(J̃ , i)

endfor
return T̃ ← T̂ −1

endproc

Fig. 3. High-Rank Algorithm for Computing the Transformation T̃ for a Given System
of Equations

In characteristic 2 we may apply Dickson’s theorem instead to check directly for
a given polynomial if it may be reduced to a form with less variables (procedure
polynomialCheck). Unfortunately, the proof is a bit lengthy, we therefore refer
to [16–Sec. 15.2, Thm. 4] for both the theorem and its proof. An algorithmic
version of it can be found in [4–Sec. 3.2]. The time complexity of this algorithm
is there estimated to be O(n3). Therefore, the overall complexity of the above
algorithm remains the same: O(mn3Lqr).

Remark: In both cases, we will not be able to recover the original transformation
T but the inverse of a linear equivalent copy of it, denoted T̂ for the inverse and
T̃ for the linear equivalent of T . In fact, we will recover versions of T in which
the rows of T̃ are linear combinations of the rows of T within the same layer.

Attacking the Low-Rank Side. Instead of obtaining an equivalent copy of the
transformation T directly, we can also exploit the fact that the kernels Ki := keri

(cf (2)) form a descending chain — starting with the large kernel ker1. This
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algorithm (cf Fig. 4) is a little more subtle as it makes use of two different
observations. The first one is that the kernels keri form a descending chain.

procedure lowRankAttack(P)
Input: P: system of public equations
Output: T̃ : an equivalent copy of the transformation T
Pi ← computeMatrix(pi); K0 ← F

n; J0 ← {0}
for l← L downto 1 do

repeat
w ∈R Kl−1

Jl ← SolutionSpace(
∑m

i=1 vi(wPi) = 0) for an unknown v ∈ F
m

until Dimension(Jl)
?= lr.

J̃ ← Jl ∩ Jl−1

for i← 1 to r do
t̂← BasisVector(J̃ , i); RowVector(T̂ , lr + i) ← t̂; P̂(l−1)r+i ←

∑m
j=1 t̂jPj

Kl ← Kernel(Plr)
endfor
return T̃ ← T̂ −1

endproc

Fig. 4. Low-Rank Algorithm for Computing the Transformation T̃ for a Given System
of Equations

Therefore, setting ker0 := F
n, the statement w ∈ kerl is true with probability q−r

for all w ∈R kerl−1 and 1 ≤ l ≤ L. Second, the linear equation
∑m

i=1 vi(wPi) = 0
has qlr solutions for unknown v ∈ F

m if and only if the vector w is in the kernel
kerl. With J̃ := Jl ∩Jl−1 where Jl−1 denotes the complement of the vector space
Jl−1, we obtain dimension r for J̃ which yields r new linearly independent rows
of the matrix T−1. The algorithm will therefore terminate with a correct solution
T̃ after O(Ln3qr) steps on average. Thus it outperforms the algorithm from the
previous section by a factor of m. As for the previous algorithm, we will not
recover the original transformation T but an equally useful variant of it.
Remark: Specialised versions of the algorithms from fig. 3 and 4 can be found
in [10] for the case of schemes with step-width 1 of the intermediate layers.

2.3 Inversion Attack

In the previous section, we discussed two different approaches to recover a linear
transformation T̃ for given public key equations. In this section, we will use T̃
and the polynomials p̂i := T̃−1 ◦ pi to solve the problem y = P(x) for a given
vector y ∈ F

m, i.e., for the MQ-problem. We do so by computing a successive
affine approximation of x, cf Fig. 5. This algorithm exploits the fact that the
kernels Ki := keri for 1 ≤ i ≤ L have the form kerl = {a′S−1 | a′ ∈ F

n ∧ a′
1 =

. . . = a′
rl = 0}. Setting K0 := F

n we have

K̃l = Kl−1 ∩Kl = {a′S−1 | a′ ∈ F
n ∧a′

1 = . . . = a′
(l−1)r = a′

lr+1 = . . . = a′
n = 0}
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for 1 ≤ l ≤ L. Using this observation, we can “switch on” groups of r (hidden)
variables x′ and therefore manipulate the output of the polynomials p̂i layer by
layer. This is possible although we do not know the actual value of the secret
matrix S. As the polynomial system P̂ inherits the layer structure of the original
private polynomial system P ′, the solutions form a chain of affine subspaces
x+ < Kl > — where Kl has dimension n − rl in step l. Therefore, we learn
r log2 q bits about the vector x for each level of recursion.

procedure inversionAttack(P, T̃ , K1, . . . , KL, y)
Input: P: system of public equations, T̃ : linear transformation,

K1, . . . , KL: descending chain of kernels, y: target-value
Output: X: a set of solutions for the problem y = P(x)

procedure recursivePart(x, l)
if l > L then return {x}
K̃ ← Kl−1 ∩Kl; X ← ∅
for w ∈ K̃ do

if (p̂i(x + w) ?= ỹi : (l − 1)r < i ≤ lr) then X ∪ ← recursivePart(x + w, l)
return X

endproc

p̂i ← pi ◦ T̃ −1 : 1 ≤ i ≤ m

ỹ ← yT̃ −1; K0 ← F
n

return recursivePart(0,1)
endproc

Fig. 5. Inversion Attack for y = P(x) and Given T̃

With this inversion attack, we are now in a similar position as the legitimate user:
at each level, we have to try cqr possible vectors and to evaluate r polynomials
p̂i — each step costing O(rn2). In case the STS is not a bijection, we may need
to branch — but this is the same situation as for the legitimate user. The only
additional overhead is the computation of the complement of vector spaces and
to intersect them. Both can be done in O(n2). Assuming that P is a bijection,
one application of this inversion attack has time-complexity O(n2Lrqr).

2.4 Structural Attack

The starting point of the structural attack (cf Fig. 6) is the same as for the inver-
sion attack, namely ker1 ⊃ . . . ⊃ kerL. As we have computed the transformation
T̃ in the previous step, we are able to compute the system of equations P̂, the
corresponding matrices P̂l and therefore their kernels for each layer l : 1 ≤ l ≤ L.
Due to its internal structure, the vector space K̃ := Kl−1 ∩ Kl consists of ex-
actly r row-vectors of S̃−1. We recover them in the for loop. As soon as we have
recovered S̃, we apply it to the intermediate system of equations P̂ , yielding P̃’,
an equivalent copy of the private key polynomials.
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In terms of complexity, the second step of the structural attack is dominant:
we need to evaluate m polynomials with O(n2) quadratic terms each. As each
quadratic term has two variables, this costs O(n2) for each term. The overall
time complexity is therefore O(mn4). So depending on the value qr, either the
structural or the inversion attack has a lower asymptotic running time as the
constants are in the same range.

procedure structuralAttack(P̂, K1, . . . , KL)
Input: P̂: system of equations; K1, . . . , KL: descending chain of kernels
Output: S̃: an equivalent copy of the secret transformation S

P̃ ′: an equivalent copy of the private key polynomials
K0 ← F

n

for l ←1 to L do
K̃ ← Kl−1 ∩Kl

RowVector(Ŝ, (l − 1)r + i) ←BasisVector(K̃, i) : 1 ≤ i ≤ r

S̃ ← Ŝ−1

p̃′
i ← p̂i ◦ S̃−1 : 1 ≤ i ≤ m

return S̃, P̃ ′

endproc

Fig. 6. Structural Attack for a Given Sequence of Kernels ker1, . . . , kerL

3 Special Instances of STS

In this section, we show that the two schemes RSE(2)PKC [13] and RSSE(2)PKC
[12], recently proposed by Kasahara and Sakai, are special instances of STS
— and will therefore fall for the attacks discussed in the previous section. In
particular, we were able to break the challenge proposed in [13–Sect. 6] using an
inversion attack (cf Sect. 2.3) in both cases.

3.1 RSSE(2)PKC

In RSSE(2)PKC, the private polynomials p′
i for 1 ≤ i ≤ r have a special form,

namely

p′
(l−1)r+i(x

′) := φl,i(x′
(l−1)r+1, . . . , x

′
lr) + ψl,i(x′

1, . . . , x
′
(l−1)r) for 1 ≤ l ≤ L ,

where φl,i and ψl,i are random quadratic polynomials over F in r and (l − 1)r
variables, respectively. In both cases, the constant part is omitted. To simplify
programming, the linear terms βxi are considered to be quadratic terms βx2

i ,
for all i ∈ {1, . . . , n}. This may be done as RSSE(2)PKC is defined over GF(2)
and we hence have x2 = x for all x ∈ GF(2).
We observe that this special construction of the private key polynomials does
not affect our attack. In particular, the maximum rank for the corresponding
matrices P ′

i stays the same, namely lr for each layer. Unfortunately, for small
values of r (in particular, 2 ≤ r ≤ 4), there is a high probability that two
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polynomials φl,i, φl,j for i �= j have the same coefficients: for r = 2, there is only
one non-linear coefficient, for r = 3, there are only 3, and for r = 4, we obtain
6. The corresponding probabilities are therefore 2−1, 2−3 and 2−6, respectively,
that the polynomials φl,i, φl,j share the same quadratic coefficients. In a linear
combination of these two polynomials, the rank of the corresponding matrix will
therefore drop by r. This change defeats the lowRank algorithm from Fig. 4 as it
only uses the matrix representation of the public key polynomials pi. That way,
it will not only find solutions of the layer l, but also for such linear combinations.
To attack RSSE(2)PKC, it is therefore advisable to use the highRank algorithm
from Fig. 3 in connection with Dickson’s theorem (cf Sect. 2.2).

3.2 RSE(2)PKC

The system RSE(2)PKC is a special case of RSSE(2)PKC: the polynomials φl,i

are required to be step-wise bijections, i.e., we have (φl,1, . . . , φl,r) : F
r
2 → F

r
2

is a bijection for all l ∈ {1, . . . , N}. This way, the whole system P becomes a
bijection and it is possible to recover the solution x step by step without any
ambiguity. As being a bijection is a rather strong requirement for a system of
multivariate polynomials, the problem described in the previous section becomes
more severe as we have far less choices for the coefficients in the quadratic terms.
Still, using the high-rank rather than the low-rank attack should overcome this
problem.
In [13–Sect. 3.2], the authors suggest r ≤ 10 for their scheme which leads to
qr = 210. Therefore, we expect all attacks from the previous section to be efficient
against these schemes.

Challenges. In [13–Sect. 6], Kasahara and Sakai propose two challenges with
the following parameters: F = GF(2), n = 100 and r = 4, 5. Using a (highly
unoptimised) Magma [1] programme, we were able to break this challenge in a
few hours on an AMD Athlon XP 2000+. For our attack, we implemented the
inversion attack against the low-rank side (cf sect. 2.2 and 2.3). As pointed out
earlier, the attack should have been more efficient using an attack against the
high-rank side in combination with Dickson’s theorem (cf Sect. 2.2). In particu-
lar, we computed the solution x for the given value y. The two solutions are (in
vector-notation, starting with x1 at the left):

– r = 4: (0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1
1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1),

– r = 5: (1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1
0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1).

These results have been confirmed by Kasahara and Sakai [11].
Apart from the attacks presented in this paper, we also want to point out
that the generic birthday attack for signature schemes applies against the pa-
rameter choice q = 2 and n = 100. In this case, the workload becomes only
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O(250). As Kasahara and Sakai do not use special constructions as, e.g., Feistel-
Patarin-Networks [5], the generic birthday attack applies against RSE(2)PKC,
RSSE(2)PKC, and also the hybrid type construction from the following section.

3.3 Hybrid Type Construction

In [12–Sect. 4.2], Kasahara and Sakai propose a so-called “hybrid type con-
struction” to enhance the security of RSSE(2)PKC. To simplify explanation,
we restrict to the case with two branches as this is sufficient to point out its
vulnerability to the attacks described in this paper.
In this case, the private polynomials p′

i are partitioned into two sets: the polyno-
mials p′

1, . . . , p
′
m/2 are constructed as for RSSE(2)PKC (see above). However, the

construction of the other polynomials now involves a third type of polynomial,
denoted σ. For L/2 < l ≤ L and 1 ≤ i ≤ r we have:

p′
lr+i(x

′) := φl,i(x′
(l−1)r+1, . . . , x

′
lr)+ψl,i(x′

1, . . . , x
′
(l−1)r)+σlr+i(x′

1, . . . , x
′
(L/2)) .

As for φl,i and ψl,i, the polynomials σlr+i are quadratic polynomials with ran-
domly chosen coefficients and no constant term α. All of them depend on the
first L/2 variables only. Therefore, the overall structure of the private polyno-
mials p′

i in terms of the rank of their matrix representation P ′
i does not change

and the attacks of this paper are still applicable.

4 Extensions of STS and Their Vulnerabilities

4.1 General Step-Wise Triangular Systems

As outlined in Sect. 1.2, regular STS may be generalised by different step-
sizes and also different number of equations in each individual level, denoted
r1, . . . , rL ∈ N and m1, . . . ,mL ∈ N, respectively. Moreover, we may consider
these L-tuples as part of the private key; only their sums n and m are public.
However, the internal structure of the private key keeps the same, in particular,
we still obtain the chain of kernels of the private key polynomials. The only part
of the attack we have to be careful about are the values r1 and mL, i.e., the
number of variables in the first layer and the number of equations in the last
layer. If the first is too large, the attack at the low-rank side is no longer effective
while a high value of the latter may preclude the attack from the high-rank side.
Using gSTS for a signature scheme allows us r1 
 m1. However, in this case
we may not allow rL � mL as this leads to a highly overdetermined system
of equations — which has only very few solutions on average. The situation is
reverse for encryption schemes. Here, we may have rL � mL but not r1 
 m1.
As the system has a solution for y = P(x) by construction, a large value of mL

does not provide a problem here. Unfortunately, we are not able to find it back
if the value for r1 and consequently qr1 is too large.

Therefore, gSTS will either fall to an attack from the high-rank or from the
low-rank side. In both cases the construction is insecure. We want to point out
that gSTS is a generalisation of the Triangular Plus-Minus (TPM) construction.
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In particular, we relax the condition that there is only one new variable and one
new equation at each intermediate level (cf Sect. 1.2).

4.2 Affine Transformations

In an attempt to strengthen gSTS, we investigate the replacement of the linear
transformations S, T by affine ones, i.e., to include additional vectors vs ∈ F

n

and vt ∈ F
m.

Consider two affine transformations S ∈ AGLn(F) and T ∈ AGLm(F). Then
there exists a unique, invertible matrix MS ∈ F

n×n (resp. MT ∈ F
m×m) and an

unique vector vs ∈ F
n (resp. vt ∈ F

m) which describes the affine transformation
S (resp. T ) by S(x) = MSx+ vs where x ∈ F

n is an input vector (resp. T (x) =
MTx + vt for x ∈ F

m). Moreover, we can rewrite the affine transformation S
as S(x) = (x + vs) ◦ (MSx) where x denotes the output of MSx. In addition,
we can rewrite the affine transformation T as T (x) = (MT x̂) ◦ (x + M−1

T vt),
where x̂ denotes the output of x + M−1

T vt. As MT is an invertible matrix, the
matrix M−1

T ∈ F
m×m exists and is unique. We now express the public key as a

composition of the private key

P = T ◦ P ′ ◦ S
= [(MT x̂) ◦ (x̃+M−1

T vt)] ◦ P ′ ◦ [(x+ vs) ◦ (MSx)]

where x̃ is the output of P ′ ◦ [(x′ + vs) ◦ (MSx)] and x̂ is the output of (x̃ +
M−1

T vt) ◦ P ′ ◦ [(x′ + vs) ◦ (MSx)]. We have

P = (MT x̂) ◦ [(x̃+M−1
T vt) ◦ P ′ ◦ (x+ vs)] ◦ (MSx)

= (MT x̂) ◦ P ′′ ◦ (MSx)

for some system of equations P ′′. As both (x+ vs) and (x̃+M−1
T vt) are trans-

formations of degree 1, they do not change the overall degree of P ′′, i.e., as P ′

consists of equations of degree 2 at most, so will P ′′. In addition, due to its
construction, (MS ,P ′′,MT ) forms a private key for the public key P and the
layer-structure of STS is not affected by these two operations.
Therefore, we can conclude that the use of affine instead of linear transformations
does not enhance the overall security of STS. In fact, we are able to draw a similar
conclusion for all such systems — as long as it is possible to replace the equation
P ′ by an equation of similar shape. The corresponding observation for HFE has
been made by Toli [24].

4.3 Degree Larger Than 2

In [13] and [12], Kasahara and Sakai generalise their construction to the schemes
RSE(d)PKC and RSSE(d)PKC where d ∈ N denotes the degree of the public
polynomials and d ≥ 2. In their construction, terms of all degrees 1, . . . , d appear
in the public polynomials, e.g., linear and quadratic terms in RSSE(2)PKC and
RSE(2)PKC (cf sect. 3.2 and 3.1). Therefore, we may apply the structural attack
using the degree 2 terms in RSSE(d)PKC for d > 2, consequently retrieving the
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transformations S̃ and T̃ , and then the corresponding private polynomials in the
larger degree d. Similar, we may apply the inversion attack.
This construction is therefore not more secure. In addition, it leads to a much
larger public key: the number of terms grows in O(mnd) for d > 2.

4.4 Highly Overdetermined Schemes

When the scheme has more equations than variables, i.e., for m > n, we need to
adapt the algorithm LowRankAttack (cf Section 2.2). Instead of picking one vector
in each layer,we need to considerλ :=

⌈
m
n

⌉
vectors v1, . . . , vλ ∈ F

n simultaneously.
Now we have to solve the system of equations

∑m
i=0 v

j
i (wPi) = 0 for j ∈ {1, . . . , λ}

in order to have enough information for recovering the rows of T̃ . As for the case
m ≤ n, this system of linear equations has qlr solutions if and only if all vectors
v1, . . . , vλ are in the kernel kerl. Consequently, the complexity for the LowRankAt-
tack increases exponentially with λ and is equal toO(mn3Lqλr). In practice we will
have small values forλ as highly overdetermined systems of quadratic equations are
easy to solve [4].

5 Conclusion

In this paper, we have generalised the systems TPM, RSE(2)PKC, and RSSE(2)
PKC to the step-wise triangular system (STS). In particular, we allow “steps”
which contain more than one new variable (restriction in TPM) and give the
private key polynomials p′

i more flexibility than in RSE(2)PKC or RSSE(2)PKC.
We have presented two different types of attacks against the STS schemes: an
inversion attack with complexity O(mn3Lqr + n2Lrqr) and a structural attack
with complexity O(mn3Lqr +mn4). As the value of qr has to be chosen rather
small to derive a practical scheme, we conclude that STS is broken for all prac-
tical values (TPM uses 2 here while RSE(2)PKC and RSSE(2)PKC allow 1024
as maximal value). This is a new result for the special cases RSE(2)PKC and
RSSE(2)PKC which have been considered to be secure against rank-attacks by
their inventors. In particular, we were able to compute the solutions for the
challenges proposed by Kasahara and Sakai (cf Sect. 3.2).
We have demonstrated that the existing generalisations of STS are either inse-
cure or impractical. At present, it does not seem likely that there will ever be
secure versions of STS schemes. In particular, we see no way of avoiding both the
large kernel at one end and the small kernel at the other end — leave alone the
chain of kernels — and still obtaining a scheme which may be used in practice
for either encryption or signing.
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