Relationships Between Diffie-Hellman and
“Index Oracles”

Adam Young! and Moti Yung?

L Cigital, Inc.
ayoung@cigital.com
2 Dept. of Computer Science, Columbia University
moti@cs.columbia.edu

Abstract. The Computational Diffie-Hellman problem and its deci-
sional variant are at the heart of many cryptographic applications. Yet,
their exact computational power and their relationship to the Discrete
Logarithm problem and the Decision Diffie-Hellman problem (DDH) is
not fully understood in all settings. In order to extend the current un-
derstanding of the problem we introduce a new decision problem that
we call the Jacobi Discrete Logarithm problem. We argue that this is a
natural problem and we analyze it in groups in which Decision Diffie-
Hellman (DDH) is believed to be intractable. In short, the JDL problem
is to return the Jacobi symbol of the exponent x in g“. We show that
JDL is random self-reducible and that it lies in between the Computa-
tional Diffie-Hellman (CDH) problem and DDH. Our analysis involves
the notion of a powering oracle. Maurer and Wolf showed that a squaring
oracle that returns g“z on input g is actually equivalent to a DH oracle.
It is weaker in the sense that it can be posed as a specialized DH oracle
that need only respond correctly when v = v. In this paper we extend the
study of the relationships between Diffie-Hellman and oracles for prob-
lems which manipulate or give partial information about the index of
their input. We do so by presenting a reduction that shows that a pow-
ering oracle that responds with g“a mod p when given g“ mod p for an
unknown a that is poly-logarithmic in p, is equivalent to DH. Technically,
our reduction utilizes the inverse of a particular type of Vandermonde
matrix. This inverse matrix has recursively defined entries. Implications
for large values of a are also given.

Keywords: Diffie-Hellman (DH), Computational Diffie-Hellman, Deci-
sion Diffie-Hellman, Discrete-Log, Public Key Cryptography, Oracles,
Black-Box Reductions, JDL, LDL.

1 Introduction

The Diffie-Hellman key exchange [DH76] paved the way for public key cryptog-
raphy, and is based on the presumed intractability of the Computational Diffie-
Hellman problem. A multitude of cryptosystems and protocols depend on the
security of DH and its decision version. The ElGamal public key cryptosystem

C. Blundo and S. Cimato (Eds.): SON 2004, LNCS 3352, pp. 1632,]2005.
(© Springer-Verlag Berlin Heidelberg 2005

Relationships Between Diffie-Hellman and “Index Oracles” 17

[EIGR5] was the first discrete-log based cryptosystem and its semantic security
is based on the security of DDH. Also, an efficient cryptosystem which is secure
against chosen ciphertext attacks was proven secure under DDH [CS9§]. In ad-
dition, many key exchange protocols [MvOV99] as well as numerous deployed
protocols like IPSEC and SSL designs rely on DH.

The results in this paper are motivated by the following. In typical applica-
tions a cyclic group is chosen for which it is believed that solving the Discrete
Logarithm (DL) problem is intractable, and then algorithms based on the DH or
DDH problems are used within the group. The security therefore rests entirely
on the intractability of these problems and so a full understanding of them is
mandatory.

One approach to investigate the power of DH is by comparing it to the
Discrete Logarithm (or index finding) problem. Much progress has been made
in showing the equivalence between the DL problem and the CDH problem
[Bo8R,Ma94l MWO96]. Among other things, these developments show that DH
is equivalent to DL whenever Euler’s totient function applied to the order of G
results in a smooth number. The key idea behind these results is that a DH oracle
allows exponents to be multiplied, and thus enables modular exponentiation to
be computed in the exponent via a square-and-multiply algorithm. This paves
the way for utilizing the Pohlig-Hellman [PH78| algorithm in the exponent.

Other progress has been made by investigating the relationship between the
DH oracle and oracles for related problems. It has been shown that the Diffie-
Hellman problem is random self-reducible. Hence, it has been shown that given
an oracle that solves DH with non-negligible probability, an algorithm exists
that solves DH with overwhelming probability. Randomized algorithms which
succeed with overwhelming probability will be dubbed “perfect”, though clearly
they are not strictly perfect since for a randomly chosen input such an oracle fails
to give the correct answer with non-zero probability. Thus, the resulting perfect
algorithm is called PerfectDH (for Perfect-Diffie-Hellman). Another approach
to investigating the security of Diffie-Hellman using oracles is to analyze the
hardness of computing individual bits of the DH secret vs. computing the entire
DH secret. In [BV96] it was shown that an oracle that computes the O(y/Tog p)
uppermost (or lower-most) bits of the DH secret can be used to compute all
of the bits of the Diffie-Hellman secret. A third oracle result is the work of
[MW96L,[MWIS] where the notion of a squaring DH oracle was given. A squaring
DH oracle, like a DH oracle, takes as input a value (g%, g”) chosen uniformly at
random. However, unlike a DH oracle, on a successful call it returns ¢g“¥ only
when u = v. The squaring oracle therefore succeeds on far fewer inputs. It was
shown that this oracle is random self-reducible and is poly-time equivalent to
a]2f)H oracle. The solution 128 based on the observation that g("ﬂL”)2 divided by
¢" and then divided by ¢¥ yields ¢?>"“*. By taking the square root, the Diffie-
Hellman key ¢g“? is obtained.

This paper attempts to extend our understanding of CDH and DDH by
presenting a problem that gives partial information about the index. We call
it the “Jacobi Discrete Logarithm problem” (which is investigated in groups in

18 A. Young and M. Yung

which Decision Diffie-Hellman is believed to be intractable). On input g* the
partial information oracle returns the Jacobi character of the index u with non-
negligible advantage over guessing. It is shown that this new decision problem
resides between CDH and DDH.

In the case that the order of g is a prime ¢ this is the “Legendre Discrete
Logarithm problem.” Since the Legendre is computed using Euler’s criterion,
evaluating the Legendre in the exponent amounts to “powering” the exponent
(the “power” in this case is (¢ — 1)/2). This paper is therefore geared towards
the study of powering oracles.

We then investigate the notion of powering the exponent using small powers.
A reduction is given that shows that an oracle that takes g* as input and that
answers with ¢%" with non-negligible probability is equivalent to a DH oracle.
Here a is “an unknown constant” such that 1 < a € Z. The novelty here is a
reduction that uses a class of matrices with recursively defined entries. We also
discuss oacles as above that answer with a large power.

We note that in an independent earlier work, Kiltz extended the notion of
a squaring oracle [Ki01] and showed (among other things) that CDH is compu-
tationally equivalent to P-DH. Here P-DH is the problem of computing g¥(®*)
given g® and ¢ where P is a non-linear polynomial in ¢ and b. This work is re-
lated to our powering oracle results, though technically the works take somewhat
different paths.

2 Definitions

Denote by L(a/p) the Legendre symbol of a with respect to the prime p. Denote
by J(a/n) the Jacobi symbol of a with respect to the odd integer n. The notation
ordy(g) is used to denote the order of element g € Z,,. When working in Z,, the
notation log,(y) denotes x such that y = ¢” mod p. The notation Pr[E] is used
to denote the probability that event E occurs.

The computational Diffie-Hellman problem will now be reviewed. Let p be
prime, let g € Z,, be an element having order ¢, and let G be the group generated
by g. The value 7 = (p, ¢) encodes the group parameters. Finally, let ZG(-) denote
an instance generator. An instance generator for G is a randomized algorithm
that when given an integer n (in unary), runs in polynomial time in n and
outputs some random index 7 and a generator g of GG,. Observe that for each
n, the instance generator induces a distribution on the set of indices 7. Let
G = {G.} be a group family. For one of the reductions a slightly different group
parameter will be needed. Let 7" contain the information in 7 but also include
the “certified” group order, i.e. the factorization of q. The following definition of
Computational Diffie-Hellman (CDH) is from [Bon98].

Definition 1. A CDH algorithm A for G is a probabilistic polynomial time (in
|7|) algorithm satisfying, for some fized o > 0 and sufficiently large n:

1
Pr[A(r,g,9% ¢°) = g™] > -

Relationships Between Diffie-Hellman and “Index Oracles” 19

where g is a generator of G,. The probability is over the random choice of <T,g>
according to the distribution induced by TG(n), the random choice of a,b in the
range [1,|G|] and the random bits used by A. The group family G satisfies the
CDH assumption if there is no CDH algorithm for G.

Let PerfectDH(r,g,g% g°) be the same as A above except that it succeeds
with a probability that is overwhelming in a.. The Decision Diffie-Hellman prob-
lem is as follows.

Definition 2. A DDH algorithm A for G is a probabilistic poly-time algorithm
satisfying, for some fivred a > 0 and sufficiently large n:

|Pr[A(T,9,9% 9%, g°°) = true] — PrlA(r,g,9% ¢°, g°) = true]| > 1/n®

where g is a generator of G.. The probability is over the random choice of <T,g>
according to the distribution induced by TG(n), the random choice of a,b,c in
the range [1,|G .||, and the random bits used by A. The group family G satisfies
the DDH assumption if there is no DDH algorithm for G.

The perfect DDH problem is the same as A above except that it succeeds
with a probablity that is overwhelming in «. It was shown in Proposition 1 of
[St96] (see also [NR97]) that DDH and perfect DDH are equivalent in prime
order subgroups. An excellent overview of the Decision Diffie-Hellman problem
was given in [Bon98|. Elliptic curve groups where DDH is easy and CDH is still
believed to be hard were recently shown in [INO1].

3 The Jacobi Discrete Logarithm Problem

In this section a new computational problem is introduced called the Jacobi
Discrete Logarithm (JDL) problem. The following is the formal definition of the
Jacobi-Discrete-Log (JDL) problem. It is in the same vein as Section 2

Definition 3. A JDL algorithm A for G is a probabilistic poly-time algorithm
satisfying, for some fivred a > 0 and sufficiently large n:

PriA(r, g,9%) = J(a/q)] > 1/2 4+ 1/n*

where g is a generator of G.. The probability is over the random choice of <T, g>
according to the distribution induced by TG(n), the random choice of a in the
range [1,|G.|], and the random bits used by A. The group family G satisfies the
JDL assumption if there is no JDL algorithm for G.

The Perfect Jacobi-Discrete-Log (Perfect-JDL) problem is to do the same as
the above, but must succeed with overwhelming probability.

Clearly, when the order g of g is prime, the problem becomes that of comput-
ing the Legendre of the exponent (i.e., L(a/q)). By Euler’s Criterion, L(a/q) =
a*T mod q. Taking a = (¢ — 1)/2 we see that the investigation of this problem
is a natural extension to studying the aforementioned powering oracles.

For the remainder of this section n will be used to denote the order of g.
Hence, n = ordy(g) = pﬁl p?... plm. The smallest prime is pp, the next smallest
prime is po, etc.

20 A. Young and M. Yung

4 The JDL Assumption Implies the Perfect-CDH
Assumption

The fact that the JDL assumption implies the Perfect-CDH assumption is not
hard to see. The reduction algorithm uses an oracle that solves Perfect-CDH to
compute Euler’s Criterion (the Legendre symbol) in the exponent.

Observe that if we can compute J(z/p;) for 1 < i < m where y = g* mod p,
then we can compute J(z/n) in the standard fashion.

J(x/n) = T2, L(z/pi)"

Consider the following algorithm which assumes the existence of an oracle
Perfect-CDH which solves the Perfect Computational Diffie-Hellman problem.
Here y = ¢® mod p. The algorithm outputs ¢** mod p where a > 0. Let a >> b
denote the bit shift right operation, i.e., the operation of throwing away the b
least significant bits of a. For example, 0110 >> 1 = 011.

EXPSQMUL(T, q,y,a):

.let L = [loga(a)]

.set SQ[0] =y

.fori=0to L—1do:

choose r,r1,7m2 € Z,

t = Perfect-CDH(T, g", SQ[i]"", SQ[i]""2)
SQli+1] = tmm) ™" mod p
.lett=gand s=a

.fori=0to L—1do:

if (s mod 2) equals 1 then

10. choose r,r1,72 €r Z,

11. t = Perfect-CDH(r, g",t"™, SQ[i]""?)
12. t =trmr) ™ mod p

13. s=s5>>1

14. output ¢ and halt

A(T,9,9):

l.seta=1

2. for i =1 to m do:

3. if t; is odd then

4 compute w = n/p;

5 compute g; = g* mod p

6. compute 3’ = y* mod p, and let 3/ = g% mod p
7. compute b = EXPSQMUL(7,p;,y, (pi — 1)/2)
8
9.

o e O N N N

©

. if b # g; then set @ = —«
output o and halt

Step 7 is computed using the Perfect-CDH oracle to compute z/(Pi=1)/2 in
the exponent in a square-and-multiply fashion.

Relationships Between Diffie-Hellman and “Index Oracles” 21

Theorem 1. If all calls to Perfect-CDH succeed then A(t,g,y) = 1 iff
L(z/n) =1.

Proof. Assume that every call to Perfect-CDH succeeds. Clearly A computes the
Jacobi symbol in the standard fashion. Consider the operation of A when ¢; is
odd for prime p;. If it can be shown that b = g; iff L(x/p;) = 1 then we will be
done. Note that b = g; = 2/Pi~1/2 = 1 mod p; since g; was raised to w in step 5.
But, 2/ =1/2 = 1 mod p; = @ ~Y/2 = 1 mod p;, since z = 2’ mod p;. Finally,
from Euler’s Criterion it follows that z®~1/2 = 1 mod p; = L(z/p;) = 1.
To prove the converse, namely that L(z/p;) =1 = b = g;, the contrapositive
will be proven. In other words, it will be shown that b # g; = L(z/p;) = —1.
Clearly, b # ¢; implies that z/(»*~1/2 is not congruent to 1 modulo p;. But

the order of z'(Pi=1/2 mod p; is clearly 2 hence, 2/®~1/2 = —1 mod p,. But,
2®Pi=1/2 = 1 mod p; = =P ~V/2 = —1 mod p; since x = 2’ mod p;. From
Euler’s Criterion it follows that 2P:~1/2 = —1 mod p; = L(x/p;) = —1. O

Theorem 2. With probability greater than 1/2+ 1/n3?, A(r,g,y) = J(x/n).

Proof. It may be assumed that if one or more calls to Perfect-CDH fails then
A outputs the wrong answer. Clearly, the worst-case is when all prime powers
dividing n have a power of unity, since this is the case that requires the most in-
vocations of Perfect-CDH. In this case algorithm A makes at most k = [loga(n)]
calls to Perfect-CDH. Let 7 denote the probability that Perfect-CDH succeeds
on a random input. Hence, v, is overwhelming. It follows that 4 succeeds with
probability at least 1. It can be shown that this quantity is at least 1/2+1/n%?
for fixed ay and sufficiently large no. O

5 The Perfect-JDL Assumption Implies the JDL
Assumption

It is trivial to prove that the JDL assumption implies the Perfect-JDL assump-
tion. In this section the other direction will be proven. The basic idea is to
randomize the problem instance by exponentiating to a random value while tak-
ing into account the Jacobi symbol of this random vlaue. Let JDLAlg be an
oracle solving the JDL problem. Now, consider the following algorithm.

A(r,9, 1)

1. if \/n € Z output “1” and halt

2. for ¢ =1to L do

3. choose ry €r Z,,

4. compute xy = JDLAlg(t,g,y" mod p) and store J(r¢/n) * xy in list w
5. output the majority answer in list w and halt

Denote by property 1 the well known fact that J(ab/n) = J(a/n)J(b/n).

Theorem 3. With overwhelming probability, A(t,g,y) =1 iff J(x/n) = 1.

22 A. Young and M. Yung

Proof. If \/n € Z then the Jacobi symbol of all exponents for ¢ is unity. Hence,
step 1 always outputs the correct answer when it halts. It follows from prop-
erty 1 that J(logg(y™)/n) = J(re/n)J(logy(y)/n). By multiplying both sides by
J(r¢/n) it follows that J(logy(y)/n) = J(re/n)J(loge(y™)/n) for £ =1,2, ..., L.
Therefore, J(r¢/n) * z¢ is the Jacobi of log,(y) with fixed probability s; in it-
eration ¢ where s; > 1/2 + 1/n1“* (ineq. [1]) for some fixed oy and sufficiently
large n1. Observe that the loop in steps 2 through 4 constitutes a series of L
Bernoulli trials. Theorem 1 (Chernoff Bound - see Appendix @) therefore ap-
plies. Let y = s1L (eq. [2]) and take L/2 = (1 — §)p (eq. [3]). Here the ran-
dom variable X is a count of the number of successful trials. It follows that
PriX <L/2 < e~ (51L8%)/2 < o=((1/24+1/n1"1)L6*)/2 By combining inequality [1]
with equalities [2] and [3] it follows that § > 2/(n]* + 2). From this it can be
shown that Pr[X < L/2] < 2-L/(m**+2m) By taking L = (ny2% 42011)ny
the theorem is proved. O

An open problem is whether or not CDH and JDL are equivalent and whether
or not JDL and DDH are equivalent. The relationship between JDL and the bit
hardness of DH is also interesting.

6 The DDH Assumption Implies the Perfect-JDL
Assumption

We say that the group DDH assumption implies the Perfect-JDL assumption
since solving DDH is intractable only if solving Perfect-JDL is intractabl.

Observe that if 2 | ¢1,t2,...,t,; then the Jacobi symbol of all elements in
Z,, with respect to n is unity. A straightforward application of PerfectJDL will
therefore not always suffice to distinguish DDH triples from random triples. It is
not hard to see that as long as one of the ¢, is odd, J(z/n) = 1 with probability
1/2 for a randomly chosen z. Now, observe that n must be devoid of small prime
factors, otherwise DDH triples can be distinguished based on residuosity (e.g.,
if 2 | n then DDH is broken based on testing for quadratic residuosity which can
be done in poly-time). Hence, this implication applies to subgroups in which n
is odd and free of small prime factors (in many cases the group where DDH is
used is a prime order subgroup for a large prime).

Assume that an oracle PerfectJDL exists that solves the Perfect-JDL prob-
lem. Consider the following algorithm A which makes calls to PerfectJDL. It will
be shown that A solves the DDH problem. Since PerfectJDL exists iff an algo-
rithm solving JDL exists this proof will show that the DDH assumption implies
the JDL assumption. We remark that the reduction can be easily extended to
handle an order which is unknown. The problem instances can be transformed
into triples that are statistically indistinguishable from DDH triples/random 3-

! Here we adopt the language of “one assumption implies another assumption,” as in

Relationships Between Diffie-Hellman and “Index Oracles” 23

tuples (see [Bon98g| for this as well as the randomization technique that we use).
Let X =¢*, Y =g¢Y, and Z = g*.

A(T7 g? X’ K Z):

1. choose r,uy,us,v € Z,,

2. construct the triplet (2/,y,2") = (X™Vg™t, Y gz, ZTVY v X VU2 g1z)

3. compute s; = PerfectJDL(t,g",2'), ss = PerfectJDL(t,g",y'), and
s3 = PerfectJDL(1,g",2")

4. if s3 = s1 * $9 then output true else output false

Theorem 4. If 3 an algorithm Per fectJ DL solving Perfect-JDL then A breaks
DDH.

The above theorem can be seen from the following. The randomization of
the problem instance has the following propertyies. If the input 3-tuple is a DH
triple the (2/,y’,2) is a DH triple. If the input 3-tuple is not a DH triple then
(2,1, 2") is statisticallly indistinguishable from a random 3-tuple.

With overwhelming probability all three calls to A4 will succeed. So, when the
input tuple is not a DH triple it will be “caught” with probability close to 1/2.
This detection will arise when s3 # s1 % s5. When the input tuple is a DH triple
then with overwhelming probability s3 = s1 * ss.

Since the DDH assumption holds iff the Perfect DDH assumption holds, it
follows that any algorithm solving the JDL problem can be used as an oracle
to solve Perfect DDH. It has therefore been shown that the JDL problem lies in
between CDH and DDH. The potential equivalence of JDL and DDH is left as
an open problem.

7 Powering Oracles

In this section we give a reduction that shows that a powering oracle that re-
sponds with ¢“* mod p when given ¢g* mod p for an unknown a that is poly-
logarithmic in p is equivalent to DH. It is a special case of the prior independent
work of [Ki01]. Our approach involves the use of a special type of Vandermonde
matrix. The reduction explicitly utilizes the factorized inverse of this type of
Vandermonde matrix, an inverse matrix that has recursively defined entries. We
also consider the case of unknown a and a that is very large.

Let p be a large prime and let g be an element with order ¢. For the moment
we will consider the case that ¢ is prime. The following is a formal definition of
a powering oracle.

Definition 4. A PoweringDH, algorithm A for G is a probabilistic polynomial
time (in |7|) algorithm satisfying, for some fived a > 1, > 0, and sufficiently
large n:

24 A. Young and M. Yung

where g is a generator of G, and a is poly-logarithmic in p. The probability
is over the random choice of <T,g> according to the distribution induced by
IG(n), the random choice of u in the range [1,|G.|] and the random bits used
by A. The group family G satisfies the PoweringDH, assumption if there is no
PoweringDH, algorithm for G.

The oracle PerfectDH, is the same as PoweringDH, except that it suc-
ceeds with a probability that is overwhelming in a. It was shown by Maurer
and Wolf that PoweringDHs exists iff PerfectDHy exists. The following are
a few simple facts. The problem of computing s = ¢g*" given (1,9,9"*) when a
is known is random self-reducible. To see this, consider the following algorithm
M(-). First, M chooses r €g Z,. M then computes t = PoweringDH,(7,g,y").
Finally, M outputs ¢" ~ and halts. It is easy to see that a perfect powering
oracle for a exists provided a powering oracle for a exists that succeeds with
non-negligible probability.

A powering oracle for a can be implemented given a perfect DH oracle. To see
this, note that the DH oracle can be used to implement a square and multiply
algorithm in the exponent. For example, to implement a powering oracle with
a =5, the value

PerfectDH(T, g, Per fect DH(T, g, Per fect DH (7, 9,y,y),
PerfectDH(7,9,y,y)),y)

is computed, where y = g".

We will now motivate the general solution to the problem of showing that
PoweringDH < DH by considering powering oracles for a = 3,4. Observe that
(z+1)3 = 23+ 322 + 37 + 1. From this equation it is clear that if we have access
to a cubing oracle, we can isolate the 3z2 term. Since ¢ is prime, 3 has an inverse
mod ¢. So, 2% can be isolated. The goal is therefore to utilize the cubing oracle
to implement a squaring oracle.

PerfectDHy(7,9,9):

. compute t = PerfectDHs(7,g,yg mod p)
. compute t = t/(y>g) mod p

. compute t = t/Per fectDHs(T, g,y) mod p
. compute t = 3 mod p

. output ¢ and halt

T W N =

Since given a squaring oracle, we can implement a Diffie-Hellman oracle, the
above algorithm proves that given a cubing oracle we can break Diffie-Hellman.
Now consider a = 4. Again, the goal is to implement a squaring oracle given
PerfectDH,. The solution is based on the expansions (z + 1)* = 2* + 42° +
622 +4r+1 and (z—1)* = 2 —423+62% —42+1. Observe that (z+1)*+(z—1)* =
224 4+ 1222 + 2.

Relationships Between Diffie-Hellman and “Index Oracles” 25

PoweringDHs (T, g,y):

1. compute t = Per fect DH4(1, g,yg mod p)Per fect DH4(T, g,y/g mod p) mod p
2. compute t = t/(Perfect DHy(1,g,y))*> mod p

3. compute t = t/g% mod p

4. output a twelfth root of ¢ and halt

Given these two reductions it is only natural to ask whether or not there is
a general reduction for a > 2. This is in fact the case, as will be shown in the
sequel.

7.1 Inverse of the Vandermonde Matrix

In order to show that the reduction holds for larger values of a the form of the
inverse of a specific class of Vandermonde Matrices will be explored. Recall that
the following is an @ + 1 by a + 1 square matrix D(a + 1) called a Vandermonde
Matriz.

1t 2 - 1§
1ty 3 -+ 18

Ltagr thy o top

It is well known from Linear Algebra that the Determinant of the Vander-
monde Matrix is non-zero if all the ¢;’s are different [Gah9,[Me01] and hence that
it is non-singular. The inverse therefore exists, is unique, and can be found effi-
ciently via Gauss-Jordan. Given the inverse, the solution to the matrix equation
D(n)Z = b can be easily solved by matrix multiplication since D(n) 1 D(n)7 =
T = D(n)~'b. However, in this paper we will only be concerned with n by n

Vandermonde Matrices M (n) whose (i,) entry is i/ 1.
[M(n)]i; =" (1)

For example, the value [M(4)]3 2 equals 3 and the entire matrix for M (4) is
given below.

1111
124 8
139 27
141664

The reduction algorithm given in the sequel requires the use of the inverse
of such matrices. However, rather than having the reduction algorithm perform
Gaussian Elimination as a procedural step and rather than relying on the fact
that the matrix corresponds to an interpolation operation, we have opted to
utilize a recent elegant method. In [BBM02] it was shown how to factor M (n)~!
into two matrices in which only the rightmost matrix has recursively defined
entries.

26 A. Young and M. Yung

1

[M ()]~ = o)

V(n) V(n) =T(n)U(n)

Here U(n) has recursively defined entries. Thus, the authors give a recurrence
describing each entry in M (n)~!. Appendix A summarizes this approach. It also
shows, by fiat, that all of the entries in V(n) are integers for all n.

7.2 DH-Powering Equivalence When the Order is Prime

The goal in this section is to implement an algorithm that has access to a perfect
powering oracle, and that outputs g’”2 on input y = ¢*. It is assumed that ¢
is prime and that a is known where 2 < a € Z. These assumptions will be
relaxed in the next section. Using the Binomial Theorem and the inverse of
M (n) the general reduction can be given for a > 2. Recall that the Binomial
Theorem states that for a positive integer n, (z 4+ b)" = > _, (Z) zFbn=k. The
reduction uses PerfectDH,(-,-,-) as an oracle in an algorithm that computes
PoweringDHs(+, -, -).

The key idea behind the reduction is the following. The powering oracle is
used to compute (z + 1)%, (x 4+ 2)%,..., (x + a)® in the exponent. For instance,
g@ 3" = Perfect DH, (7, g, yg> mod p). Using the Binomial Theorem the form
of each of these binomial expansions can be found. For each power of = we can
define a new variable that is the power of z times the corresponding binomial
coefficient. It is then clear that under the new variables, the coefficients that
remain form M (a + 1).

PoweringDHs (T, g,y):

l.set z=gand I =1

2. for j=1toa+1do:

3 Vi(a+1)ao1y =051 T(a+ Dao1,6Ua+ 1),

4 bj = PerfectDH,(T, g,yz mod p)

5. I=10]""% nod p

6 z = zg mod p

7. compute r = a!w mod q

8. compute s = r~! mod ¢ using the Extended Euclidean Algorithm
9. output I° mod p and halt

Theorem25. If a > 2 and all calls to Per fectDH, succeed then PoweringD Ho
outputs g* .

Proof. The resulting values V(a+1)q—1,; for j =1,2,...,a+ 1 computed in step
3 are equal to the row in V(a+ 1) which is third from the bottom. The loop over
step 5 which computes I effectively multiplies a 1 x (a+1) matrix by an (a+1) x 1
matrix, which yields a single value in the exponent of ¢ in I. The difference is
that the elements in V(a+1),-1,; are in Z, and the elements by, ba, ..., bg41 are in
Z,. By performing exponentiation, matrix operations are effectively performed

in Z,. Using the Binomial Theorem and the fact that [M(n)]~! = ﬁV(n) it

Relationships Between Diffie-Hellman and “Index Oracles” 27

can be shown that resulting value in the exponent of g in I is a!(g)xz. Since it
was assumed that the order ¢ of g is prime, an inverse s of r = a! (;) mod q exists
and is unique. Hence, step 8 can be efficiently computed and correctly computes
the inverse of r. Since I° is output it follows that when all calls to PerfectDH,
succeed the resulting output value is g% . a

It is straightforward to compose PoweringDHs with Maurer and Wolf’s
squaring algorithm to yield the stated DH result. A small numerical example of
the above reduction is given in the next subsection to illustrate this algorithm.

7.3 Small Example of the Reduction

It is instructive to analyze an example for V' (n). The following is an example of
V(n) where n = 4. It is straightforward to verify that (3;V/(4))M(4) = I.

1-3 2-1]] 7-2 1 o0 9436 24 —6
0 3-6 2||-4 7-4 1| |-26 57-42 11
V=19 0 3.3/| 2.5 4-1/=| 9-24 216 (2)
00 0 1|/-1 3-3 1 13 -3 1

An example will go a long way to illustrate how and why the algorithm works.
Suppose we are given a cubing oracle. We would like to show how to use this
oracle to implement a squaring DH oracle, and hence an oracle solving compu-
tational DH. The loop over step 3 performs the following matrix multiplication.

03—62 =|—2657 —42 11| (3)

— N
L Ut N
w»-lk»lkH
H)—‘HD

The algorithm then computes I as shown below.

I = 93!39;2 _ gs!(g)af = b7 26057b3 42611 1mod p (4)
This is effectively the following matrix multiplication in the exponent.
(x
—2657—4211]E
(x

+ %
I 53 — 184 (5)
+4)

28 A. Young and M. Yung

7.4 Performance of the Reduction Algorithm

Theorem 6. If a is poly-logarithmic in p then PoweringDHs halts in time
polynomial in log p using a + 1 oracle calls to PerfectDH,.

Proof. Computing V' (a+1),_1,; in step 3 requires a+ 1 multiplications. The loop

1)

over step 3 therefore constitutes O(a?) operations. Since a = log2o (p, it follows

that this step constitutes a total of logQO @) p operations. The loop over steps 4
through 6 requires a + 1 calls to Per fectDH, requries a polynomial number of
operations in log p. Since a is poly-logarithmic in p, computing a! mod ¢ in step
7 requires a poly-logarithmic number of multiplications modulo ¢. From this it
is not hard to see that the running time is as claimed. a

The correct termination of the algorithm is based on the fact that the proba-
bility that Per fect D H, succeeds is y(«) which is overwhelming in some the secu-
rity parameter « (typically the size of the modulus p) and only fails with negligi-
ble probability. Since PoweringD Hs makes a+1 calls to the oracle Per fectDH,
it holds that since further a + 1 < p(a) where p(«) is a polynomial in « then
PoweringD Hy succeeds with non-negligible probability.

7.5 Generalizations

Note that if a is not known, a value for a for which Per fectDH, succeeds with
non-negligible probability can be determined. To see this note that we can invoke
the oracle with a randomly chosen index (exponent) x with known. The values
a=2,3,4,... and so on can be tested. It is not hard to see that this process runs
in time polynomial in log p. If a = 2, then Maurer and Wolf’s algorithm for a
squaring oracle is performed. Otherwise, our reduction is performed.

Now we will consider the same problem as in the previous section, but gen-
eralize it to allow the order of g to be composite. The value ¢ will still be used
to denote the order of g, but in this case ¢ may be composite. Provided that
ged(w, q) is not too large an algorithm can be used to compute g””2 mod p. Care
must be taken now since the existence of unique inverses modulo the composite

q is not guaranteed. Recall that the value g#'*2 = gal(;)gcz mod p is readily ob-
tained. By computing the r** root where r = a!(g) mod q, the answer is found.
The work of Scott Lindhurst can be used to analyze the cases in which we can
efficiently compute the r** root mod p [SLI7]. The following is Proposition 8
from his thesis.

Proposition 1. Given a cyclic group G and a degree r = O(log? |G|), we can
compute " roots in G deterministically (assuming we are given an " power

residue) using O(log? |G| log log |G|) group operations.

7.6 Equivalence to DH When the Power Is Large

Consider an oracle that on input g* mod p returns ¢°* * mod p with overwhelm-
ing probability. Here a > 1 and the order of g is the prime ¢ where ¢ divides p—1
evenly. When a is polylogarithmic in p this oracle is equivalent to Diffie-Hellman.

Relationships Between Diffie-Hellman and “Index Oracles” 29

To see this, observe that by applying the oracle twice in succession the value
m(q—n,)z 1(12—20.(1-*—(12

g =g is computed with overwhelming probability. Suppose that
x generates Z,. Then since ¢*> —2aq + a? divided by g — 1 results in a remainder

of a2 —2a+1 it follows that g=**~ ™ This yields a powering oracle for
a small exponent, which in this case is (a — 1)?, and this has been shown to be
equivalent to Diffie-Hellman. Suppose that = does not generate Z,. To handle
this issue it is possible to first randomize = using r to enable xr mod ¢ to be a
generator of Z, with non-negligible probability. This randomization factor can

(rz)(e—1?)T—(a—1>2

a)2 z(a
=9

be removed in the final result by computing (g

References

[BBMO02] C. Bender, D. Brody, B. Meister. Inverse of a Vandermonde Matrix. Preprint
2002 (downloaded from http://theory.ic.ac.uk/~brody/DCB/sa6.pdf).

[Bo88] B. Den Boer. Diffie-Hellman is as strong as discrete log for certain primes.
In Advances in Cryptology—Crypto ‘88, LNCS 403, pages 530-539, 1988.

[Bon98] D. Boneh. The Decision Diffie-Hellman Problem. In Third Algorithmic Num-
ber Theory Symposium, LNCS 1423, pages 48—63, 1998.

[BV96] D. Boneh, R. Venkatesan. Hardness of Computing the Most Significant
Bits of Secret Keys in Diffie-Hellman and Related Schemes. In Advances
i Cryptology— Crypto 96, pages 129-142, 1996.

[CS98] R. Cramer, V. Shoup. A practical public key crypto system provably se-
cure against adaptive chosen ciphertext attack. In Advances in Cryptology—
Crypto ’98, LNCS 1462, 1998.

[DH76] W. Diffie, M. Hellman. New Directions in Cryptography. In IEEE Transac-
tions on Information Theory, 22(6), pages 644654, 1976.

[EIG85] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology— Crypto 84, pages 10-18,
1985. Springer-Verlag.

[Ga59] F. R. Gantmacher. The Theory of Matrices vol. 1. AMS Chelsea Publishing,
1959.

[GKP] R. Graham, D. Knuth, O. Patashnik. Concrete Mathematics. Chapter 6 -
Special Numbers, Second Edition, Addison-Wesley, 1994.

[JNO1] A. Joux, K. Nguyen. Separating Decision Diffie-Hellman
from Diffie-Hellman in Cryptographic Groups. Available at
http://eprint.iacr.org/2001/003/.

[Ki01] E. Kiltz. A Tool Box of Cryptographic Functions Related to the Diffie-
Hellman Function. In Progress in Cryptology—Indocrypt '01, pages 339-350,
2001.

[Ma94] U. Maurer. Towards proving the equivalence of breaking the Diffie-Hellman
protocol and computing discrete logarithms. In Advances in Cryptology—
Crypto '94, pages 271-281, 1994. Springer-Verlag.

[Me01] Alfred J. Menezes. Combinatorics and Optimization 331 - Coding
Theory. Handout on Vandermonde Matrices. Downloaded by http from
www.cacr.math.uwaterloo.ca/~ajmeneze/co331/handouts/vandermonde.ps.

[MW96] U. Maurer, S. Wolf. Diffie-Hellman Oracles. In Advances in Cryptology—
Crypto '96, pages 268-282, 1996.

30 A. Young and M. Yung

[MW98] U. Maurer, S. Wolf. The Relationship Bewteen Breaking the Diffie-Hellman
Protocol and Computing Discrete Logarithms. In SIAM Journal of Comput-
ing, vol. 28, pages 1689-1721, 1999.

[MvOV99] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone. Handbook of Applied
Cryptography, CRC Press, 1999.

[NR97] M. Naor, O. Reingold. Number theoretic constructions of efficient pseudo
random functions. In Proceedings of the 38" Symposium on Foundations of
Computer Science—FOCS °97, pages 458-467.

[PH78] S. Pohlig, M. Hellman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. In IEEE Trans. on Information
Theory, vol. 24, no. 1, pages 106-110, 1978.

[SL97] Scott Lindhurst. Computing Roots in Finite Fields and Groups with
a Jaunt through sums of Digits. Doctoral Dissertation (advisor - Eric
Bach), Chapter 3 - Extensions of Shanks Algorithm, 1997 (downloaded from
http://members.aol.com/SokobanMac/scott/papers/papers.html).

[St96] M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology—
FEurocrypt "96, pages 190-199.

A Inverse of M(n)

We are interested in solving the matrix equation M(n)@ = b once and for all
by obtaining the solution for each element in M (n)~! for all n. Having such a
solution is advantageous since it removes the need to do elimination for each n.
Fortunately, one such solution which is recursive in nature was pointed out in
[BBM02]. We summarize these findings below.

1

[M(n)] ™" = O

V(n) (6)

The above relationship was shown, and it was noted that all of the entries in
V(n) are in Z. However, a clever direct way to build it (which our application
may benefit from) will be given explicitly here. The authors give the following
factorization of V'(n),

V(n) = T(n)U(n) (7)

where T'(n) is upper-triangular. The matrix U(n) is given by the following
inhomogeneous recursion relation.

[U(n)li; = [Un—1)]i—1,j-1 — [Un — Dim1,; + [W(n)]s,; (8)

If i — 1 =0 then [U(TL - 1)]1'71,]'71 = [U(TL - 1)]1‘*1,]’ = 0. Ifj — 1 =0 then
[U(n—1)};—1,;-1 = 0. Finally, if j = n then [U(n — 1)];—1; = 0. The following
are the initial values for the recursion relation.

U1) = 1] (9)

(10)

o= 19

Relationships Between Diffie-Hellman and “Index Oracles” 31

The matrix W (n) is given by the following equations when n > 2,

B ; (7’L o 1 J k+g k + 1)77, 1 n!
Wn)h.; = (=1) (n—H(G — 1) Jr; n—]+k — k)! (11)
Wl = -1y (12
[W(n);; =0 for i>2 (13)

The matrices T'(1),7(2),...,T(5) were given along with an explanation of
their general form. Below we give the closed form of each entry in T'(n). The
closed form equation for [T'(n)]; ; utilizes Stirling numbers of the first kind. We

adopt the notation n] of [GKP)] to represent these numbers.

k
0 ifi>j
—1)n-t i=1, j=n
T, = . =
(=1)7 (n e 1) { n—1 } otherwise
n—j n—j+t—1

Table 1. Stirling numbers of the first kind

1

1 1

2 3 1

6 | 11 | 6 1

| U W N~ O
(o] Newl Nen] Hen] Neol Henl N

120 (274 1225| 85 | 15 | 1

Theorem 7. All of the entries in V(n) are integers.

Proof. From () it follows that we need only show that all of the entries in
T(n) and all of the entries in U(n) are integers. It is well known that binomial
coefficients are contained in Z. It follows that every entry in T'(n) is an integer

32 A. Young and M. Yung

due to (I4). It remains to consider U(n). Since n —j =n — 1 — (j — 1) it follows
that (I2)) can be rewritten as,

Wy = (17 (")) (15)

j—1

Therefore, [IW(n)]2,; € Z. Note that this also shows that the term on the left
of () is always an integer. Finally, observe that in (I,

(=) (k+1)"tnl kg n—1f T
-G —hr - DR (16)
which is clearly always an integer. a

The solution to M(n)@ = b is therefore given by T = ﬁV(n)b where
V(n) has integer entries.

B Review of Chernoff Bounds

When n independent trials are conducted such that each trial results in success
with fixed probability p, the trials are called Bernoulli trials. When the prob-
ability of success is p; in each trial for 1 < ¢ < n the trails are called Poisson
trials. The following theorem is due to Chernoff.

Theorem 8. Let X1, Xo, ..., X, be independent Poisson trials such that, for 1 <
i <n, Pr[X; =1] = p;, where 0 < p; < 1. Then, for X =>"" | X;, p = E[X]
S pi,and 0 <6 <1,

Pr(X < (1—8)u) < e~ 69)/2,

	Introduction
	Definitions
	The Jacobi Discrete Logarithm Problem
	The JDL Assumption Implies the Perfect-CDH Assumption
	The Perfect-JDL Assumption Implies the JDL Assumption
	The DDH Assumption Implies the Perfect-JDL Assumption
	Powering Oracles
	Inverse of the Vandermonde Matrix
	DH-Powering Equivalence When the Order is Prime
	Small Example of the Reduction
	Performance of the Reduction Algorithm
	Generalizations
	Equivalence to DH When the Power Is Large

	Inverse of M(n)
	Review of Chernoff Bounds

