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Abstract. Measures of quantity of information have been studied ex-
tensively for more than fifty years. The seminal work on information
theory is by Shannon [67]. This work, based on probability theory, can
be used in a logical setting when the worlds are the possible events. This
work is also the basis of Lozinskii’s work [48] for defining the quantity of
information of a formula (or knowledgebase) in propositional logic. But
this definition is not suitable when the knowledgebase is inconsistent. In
this case, it has no classical model, so we have no “event” to count. This
is a shortcoming since in practical applications (e.g. databases) it often
happens that the knowledgebase is not consistent. And it is definitely
not true that all inconsistent knowledgebases contain the same (null)
amount of information, as given by the “classical information theory”.
As explored for several years in the paraconsistent logic community, two
inconsistent knowledgebases can lead to very different conclusions, show-
ing that they do not convey the same information. There has been some
recent interest in this issue, with some interesting proposals. Though a
general approach for information theory in (possibly inconsistent) logi-
cal knowledgebases is missing. Another related measure is the measure
of contradiction. It is usual in classical logic to use a binary measure
of contradiction: a knowledgebase is either consistent or inconsistent.
This dichotomy is obvious when the only deductive tool is classical in-
ference, since inconsistent knowledgebases are of no use. But there are
now a number of logics developed to draw non-trivial conclusions from
an inconsistent knowledgebase. So this dichotomy is not sufficient to de-
scribe the amount of contradiction of a knowledgebase, one needs more
fine-grained measures. Some interesting proposals have been made for
this. The main aim of this paper is to review the measures of infor-
mation and contradiction, and to study some potential practical appli-
cations. This has significant potential in developing intelligent systems
that can be tolerant to inconsistencies when reasoning with real-world
knowledge.
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1 Introduction

Traditionally the consensus of opinion in the computer science community is
that inconsistency is undesirable. Many believe that databases, knowledgebases,
and software specifications, should be completely free of inconsistency, and try
to eradicate inconsistency from them by any means possible. Others address
inconsistency by isolating it, and perhaps resolving it locally. All seem to agree,
however, that data of the form q and ¬q, for any proposition q cannot exist
together, and that the conflict must be resolved somehow.

This view is too simplistic for developing robust intelligent systems, and
furthermore, it fails to use the benefits of inconsistency in intelligent activities.
Inconsistency in information is the norm in the real-world, and so should be
formalized and used, rather than always rejected [23].

There are cases where q and ¬q can be perfectly acceptable together and
hence need not be resolved. Consider for example an income tax database where
contradictory information on a taxpayer can be useful evidence in a fraud inves-
tigation. Maybe the taxpayer has completed one form that states the taxpayer
has 6 children (and hence get the tax benefits for that) and completed another
that states the taxpayer has 0 children. In other cases, q and ¬q serve as a useful
trigger for various logical actions. Inconsistency is useful in directing reasoning,
and instigating the natural processes of argumentation, information seeking,
multi-agent interaction, knowledge acquisition and refinement, adaptation, and
learning.

Of course, there are inconsistencies that do need to be resolved. But, the de-
cision to resolve, and the approach to resolution, needs to be context-sensitive.
There is also the question of when to resolve inconsistencies. Immediate res-
olution of inconsistencies can result in the loss of valuable information if an
arbitrary choice is made on what to reject. Consider for example the require-
ments capture stage in software engineering. Here premature resolution can force
an arbitary decision to be made without the choice being properly considered.
This can therefore overly constrain the requirements capture process.

Similarly when working with distributed databases, it cannot be expected
that there are no conflicts between the databases. Conflicts in this case can have
different meanings. It can sometimes denote an error in some database, in which
case we can simply use a database repair. But more often conflicts will denote
deeper disagreement between sets of databases, with no easy repair. So, in this
case, resolution of all conflicts is not the solution, since we need to keep track
of the conflict. The straighforward reason is that “having no information about
some fact” or “having contradictory information about some fact” cannot be
regarded as having the same epistemic status. After a repair of a set of databases,
either we forget all information about the facts in conflict, or we decide what
is the correct answer (among the conflicting ones). But, for the user (human or
software), it is not the same thing to receive an answer “the fact A is true” or
“the fact A seems to be true, but there is a conflict about it”. Such answers,
needed in high-level reasoning systems, require us to not resolve the conflicts
(see for example [12]).
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The call for robust, and intelligent, systems, has led to an increased interest
in inconsistency tolerance in computer science. The central position is that the
collapse of classical logic in cases of inconsistency should be circumvented. In
other words, we need to suspend the axiom of absurdity (ex falso quodlibet) for
many kinds of reasoning. A number of useful proposals have been made in the
field of paraconsistent logics (see for example [28, 13]).

In addition, we need strategies for analysing inconsistent information. This
need has in part driven the approach of argumentation systems which compare
pros and cons for potential conclusions from conflicting information (for reviews
see [58, 14]). Also important are strategies for isolating inconsistency and for
taking appropriate actions, including resolution actions. This calls for uncer-
tainty reasoning and meta-level reasoning. Furthermore, the cognitive activities
involved in reasoning with inconsistent information need to be directly related
to the kind of inconsistency. So, in general, we see the need for inconsistency
tolerance giving rise to a range of technologies for inconsistency management.
These in turn call for richer ways of describing and comparing conflicts.

Comparing heterogeneous sources often involves comparing conflicts. Sup-
pose we are dealing with a group of clinicians advising on some patient, a group
of witnesses of some incident, or a set of newspaper reports covering some event.
These are all situations where we expect some degree of inconsistency in the
information. Suppose that the information by each source i is represented by
the set Φi. Each source may provide information that conflicts with the domain
knowledge Ψ . Let us represent Φi ∪Ψ by ∆i for each source i. Now, we may want
to know whether one source is more inconsistent than another — so whether ∆i

is more inconsistent that ∆j — and in particular determine which is the least
inconsistent of the sources and so identify a minimal ∆i in this inconsistency
ordering. We may then view this minimal knowledgebase as the least problem-
atical or most reliable source of information. This point is close to the notion of
verisimilitude, as initiated by Popper [57, 44, 63].

When an autonomous system works with a set of information, beliefs, knowl-
edge, preferences, ... expressed in a logical form (we will talk about pieces of
information in the following instead of always specifying information, belief,
knowledge, preferences), the notion of informational content of a piece of infor-
mation and the notion of amount of contradiction are of crucial interest. Effec-
tively, in many high-level reasoning tasks one needs to know what is the amount
of information conveyed by a piece of information and/or what is the amount
of contradiction involved with this piece of information. This is particularly im-
portant in complex information about the real world where inconsistencies are
hard to avoid.

While information measures enable us to say how “valuable” a piece of in-
formation is by showing how precise it is, contradiction measures enable us to
say how “unvaluable” a piece of information is by showing how conflicting it is.
As joint/conditional information measures are useful to define a notion of perti-
nence of a new piece of information with respect to an old one (or more generally
for a set of information), joint/conditional contradiction measures can be useful
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to define a notion of conflict between pieces of information, that can be useful
for many applications. These two measures are to a large extent independent of
one another, but needed in numerous applications, for instance:

– In diagnosis, some initial assumptions stating that each component works
normally are made; those assumptions may conflict with actual observations.
Measuring the conflict of the resulting base may be a good indication about
how hard it will be to identify the faulty components.

– In belief revision, when an agent receives a new piece of information which
contradicts her previous beliefs, evaluating how much this information is
conflicting with the previous beliefs can be useful to decide whether the
agent accepts or rejects the new piece of information.

– In belief merging, degrees of information and contradiction can be the basis
on which one can decide whether to take account or not of the information
being conveyed by an agent. If the degree of contradiction of the information
given by an agent is high, it may be relevant to reject the information, since
there is some significant evidence that the source is not reliable; however,
this must be balanced by the quantity of information furnished by the agent,
especially when she also gives some important and uncontroversial pieces of
information.

One of the applications discussed above concerns the problem of iterated
belief revision. The problem of belief revision is to incorporate a new piece of
information which is more reliable than (and conflicting with) the old beliefs of
the agent. This problem has received a nice answer in the work of Alchourron,
Gardenfors, Makinson [1] in the one-step case. But when one wants to iterate
revision (i.e. to generalize it to the n-step case), there are numerous problems
and no definitive answer has been reached in the purely qualitative case [16, 22].
Using a partially quantitative framework, some proposals have given interesting
results (see e.g. [69, 68]). Here “partially quantitative” means that the incoming
piece of information needs to be labelled by a degree of confidence denoting how
strongly we believe it. The problem in this framework is to justify the use of such
a degree, what does it mean exactly and where does it come from. So if one can
define composite measures, from the information measure and the contradiction
measure, then one can define several policies for the agent (we can figure out an
agent who accepts a new piece of information only if it brings more information
than contradiction, etc). We can then use the “partially quantitative” framework
to derive revision operators with a nice behaviour. In this setting, since the degree
attached to the incoming information is not a given data, but computed directly
from the incoming information and the agent policy (behaviour with respect
to information and contradiction, encoded by a composite measure) then the
problem of the justification of the meaning of the degrees is avoided.

Another related application is the use of degrees of conflict and information
to the problem of belief merging. Given a set of agents with conflicting beliefs,
the problem of belief merging is to know how to define the beliefs of the group.
A natural way to define the result of the merging is to see the group as a set of
agents involved in a game (this can be intuitively explained as a modelisation of
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a human meeting), and look for winning coalitions of agents. An example of a
definition of coalition can be a set of agent with consistent beliefs (or minimal
conflicting ones) and a maximal joint degree of information. Then for deter-
mining the winning coalition we can look at the degree of conflict and define
the winning coalition as the one which is minimally conflicting with the others.
Other interesting strategies can be defined as well.

These two examples show that the conjoint use of degree of information
and contradiction can open a huge scope of research. The two given examples
are actually original approaches to revision and fusion. Similar examples can
be found for other reasoning tasks. This highlights the fact that we need to
develop and study degrees of contradiction and degrees of information in logical
frameworks to be able to carry out correctly those reasoning tasks.

We cover in the next section some preliminary definitions for notation, and
then in the following section we discuss some key dimensions for measuring in-
consistent information. In the subsequent five sections, we consider five key ap-
proaches to measuring inconsistent information: Consistency-based analysis that
focuses on the consistent and inconsistent subsets of a knowledgebase in Section
4; Information theoretic analysis that is an adaptation of Shannon’s information
measure in Section 5; Probabilistic semantic analysis that assumes a probability
distribution over a set of formulae in Section 6; Epistemic actions analysis that
measures the degree of information in a knowledgebase in terms of the number
of actions required to identify the truth value of each atomic proposition and the
degree of contradiction in a knowledgebase in terms of the number of actions
needed to render the knowledgebase consistent in Section 7; and in Section 8
model-theoretic analyses that are based on evaluating a knowledgebase in terms
of three or four valued models that permit an “inconsistent” truth value. We fol-
low this range of approaches with a section covering two potential applications
areas, namely multi-agent negotiation and analysis of heterogeneous sources of
information. Finally, we discuss what has been achieved so far in this subject,
and some possible research issues.

2 Preliminaries

For a set X, let ℘(X) be the power set of X. Let LPSi be a language composed
from a set of atoms PS and a set of logical connectives and let �i ⊆ ℘(LPSi) ×
LPSi denote the consequence relation for that language. Let ∆ ⊆ LPSi be a
knowledgebase and let α ∈ LPSi be a formula. Let |=i be a satisfaction relation
for LPSi, let Modelsi(∆) = {M | M |=i α for all α ∈ ∆} be the set of models
for ∆ in some logic i and let Wi be the set of models for the language LPSi. Let
Consequencesi(∆) = {α | ∆ �i α}.

For classical logic, we drop the subscript. So � is the classical consequence
relation and LPS is the usual set of classical formulae formed from a set of
atoms and the usual logical connectives using the usual inductive definition.
If LPS is a set of first-order formulae, then each variable in each formula is
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in the scope of a universal or existential quantifier as usual. For ∆ ⊆ LPS ,
Consequences(∆) = {α | ∆ � α}.

When it is not ambiguous we will not write the subscript PS, so we will
simply write Li for LPSi, and L for LPS .

If Γ ∈ ℘(L), then Atoms(Γ ) returns the set of atom symbols used in Γ .

Definition 1. Let ∆ be a knowledgebase and let � be the classical consequence
relation.

CON(∆) = {Π ⊆ ∆|Π �� ⊥}
INC(∆) = {Π ⊆ ∆|Π � ⊥}
MC(∆) = {Π ∈ CON(∆)|∀Φ ∈ CON(∆)Π �⊂ Φ}
MI(∆) = {Π ∈ INC(∆)|∀Φ ∈ INC(∆)Φ �⊂ Π}
FREE(∆) =

⋂
MC(∆)

Hence MC(∆) is the set of maximally consistent subsets of ∆; MI(∆) is the
set of minimally inconsistent subsets of ∆; and FREE(∆) is the set of information
that all maximally consistent subsets of ∆ have in common. We also have the
following relationship.

FREE(∆) =
⋂

MC(∆) = ∆−
⋃

MI(∆)

Example 1. Let ∆ = {α,¬α, α → β,¬α → β, γ}. So MC(∆) = {Φ1, Φ2}, where
Φ1 = {α, α → β,¬α → β, γ}, and Φ2 = {¬α, α → β,¬α → β, γ}. From
this, FREE(∆)=

⋂
MC(∆)={α → β,¬α → β, γ}, and MI(∆) = {Ψ}, where Ψ

= {α,¬α}.

We can consider a maximally consistent subset of a database as capturing a
“plausible” or “coherent” view on the database. For this reason, the set MC(∆)
is important in many of the definitions presented in Section 4. Furthermore, we
consider FREE(∆), which is equal to

⋂
MC(∆), as capturing all the “uncontro-

versial” information in ∆. In contrast, we consider the set
⋃

MI(∆) as capturing
all the “problematical” data in ∆.

3 Dimensions of Measuring Inconsistency

To move beyond classifying a set of formulae using a binary classification (of
consistent or inconsistent), we need to consider some of the dimensions we have
available for measuring inconsistency.

First, there are many ways of defining inconsistency. It is a logical concept.
But, there are different ways that we can view it in a language and the reasoning
with that language. Inconsistency can also be viewed in the semantics. We start
by considering five ways of describing inconsistency that all apply to classical
logic. In classical logic, all these definitions of inconsistency coincide (i.e. when
�i is the classical consequence relation and Modelsi(∆) is the set of classical
models of ∆).
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Inconsistency as Explosive Reasoning. Explosive reasoning is reasoning that
allows the derivation of every formula of the language in case of inconsis-
tency. In other words, if Consequencesi(∆) = Li, then ∆ is inconsistent.

Inconsistency as Conflicting Inferences. The knowledgebase ∆ is inconsis-
tent when there is the inference of both ∆ �i α and ∆ �i ¬α for some α ∈ Li.

Inconsistency as Inference of a Contradiction Formulae. If the contra-
diction formula, denoted ⊥, is an atom in Li, it can be treated in the proof
theory �i as logically equivalent to any inconsistent formula. So if ∆ �i ⊥,
then∆ is inconsistent. In classical logic any inconsistent formula is equivalent
to any other inconsistent formula. So in an infinite classical logic language,
there is an infinite number of inconsistent formulae.

Inconsistency as Trivial Reasoning. A trivial inference is an inference α
from a knowledgebase ∆ such that α is not a tautology and Atoms(∆) ∩
Atoms({α}) = ∅. So if ∆ �i α and α is a trivial inference then ∆ is inconsis-
tent by trivial reasoning from �i.

Inconsistency as a Lack of a Model. If Modelsi(∆) = ∅, then ∆ is incon-
sistent. The motivation for this is that a model is a possible coherent view
of the world involving ∆. So if there is no such view, then ∆ is regarded
as inconsistent. This definition holds for numerous logics including classical
logic.

The first description of inconsistency, i.e. “inconsistency as explosive reason-
ing”, is a stronger definition than any of “inconsistency as inference of a con-
tradiction formulae”, “inconsistency as conflicting inferences”, or “inconsistency
as trivial reasoning”, in the sense that an inconsistency by the first definition,
is an inconsistency by the other three. Whilst the above five descriptions ap-
ply to classical logic, there are many other logics for which one or more of the
above descriptions apply. Below we consider two further descriptions that apply
to some logics, though neither apply to classical logic.

Inconsistency as an Inconsistent Truth Value. Let B be an inconsistent
truth value. Let α ∈ ∆. If for all models of ∆, α is assigned B, then α
is inconsistent, and hence ∆ is inconsistent. Whilst this does not hold for
classical logic, many-valued logics, and hence many-valued models, can be
used to evaluate a set of classical formulae (see for example [6, 29]).

Inconsistency as Delineated Falsity. Instead of a single falsity symbol, we
can adopt numerous falsity sumbols of the form ⊥k and defined as αk → ⊥k

for some αk (for a brief review see [10]). This notion of inconsistency does
not have the same status as the ones above. It introduces several levels of
inconsistency, whereas all the other definitions above only give a dichotomy
inconsistent/consistent. Note that those different levels of inconsistency can
be related to the ones obtained in possibilistic logic, where the formulae
deduced at a level above the inconsistency level are still safe consequences
of the base, despite the presence of an inconsistency [19, 20, 8].

When we have more complex information as input, we can state several other
candidate definitions for inconsistency. This extra information may be a set
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of plans, constraints, norms, properties, etc. Inconsistency can then be viewed
operationally. Some kinds of operational definitions include:

Inconsistency as Unrealisability. If ∆ is a plan or specification for some-
thing, and it is unrealisable, then ∆ is inconsistent (perhaps in the context
of the environment for the plan or specification);

Inconsistency as Rule Violation. If some rule is violated, then the agent,
process, entity, etc. that caused the violation is inconsistent.

Inconsistency as Violation of Normality. If in a set, most of the elements
have some property X, then the elements of the set that do not have this
property, are inconsistent with respect to X.

It is interesting to note that these last three types of inconsistency, de-
fined in terms of two distinct types of information — a knowledgebase plus
constraints/plans/norms/properties — can be either more or less demanding
than by the “classical” one. If the constraints/plans/norms/properties give some
domain of interest, then the base will be considered inconsistent only if there
is a conflict on the domain. In other words, we can have a conflict on vari-
ables/formulae outside of the domain without the conflict being considered in-
consistent by these definitions. In this case it is less demanding than the classical
definition. Conversely when the constraints/plans/norms/properties give what
can be regarded as a situation of “unrealisability”: For example, if the three
atoms a, b and c cannot all be true at the same time, and so the base {a,b,c} is
classically consistent but it is not consistent for “unrealisability”.

All these ten different definitions for inconsistency offer different features
of a logic that can be analysed. In this review, we can see that not all these
possibilities have been considered yet.

Having selected a definition for inconsistency, together with a language and
an underlying logic, there are a number of dimensions that we may wish to
consider in a framework for analysing inconsistent knowledgebases in that logic.
We consider some of these dimensions below.

Atomic Inconsistency. To be able to measure inconsistency, we need a formal-
isation of an atomic inconsistency: An indivisable and discrete representation
of contradictory information. There are a number of choices depending on
whether we want to take a semantic or syntactic approach, and on which
underlying logic we use. The main options are to put the atomicity either
on formulae or on the propositional letters. So the options we will consider
here are (1) minimal inconsistent subset of formulae and (2) a propositional
letter assigned with an inconsistent truth value. Another possibility which
we do not consider further in this review is regarding each delineated falsity
as an atomic inconsistency.

Number of Inconsistencies. Once we have a notion of atomic inconsistency,
we can count them. Increasing the number of inconsistencies in a knowledge-
base may or may not be a factor that increases the measure of inconsistency
for that knowledgebase.
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Size of Inconsistency. Once we have a notion of atomic inconsistency, we can
consider the size of each atomic inconsistency, since they are not necessarily
the same size. Suppose we use “minimal inconsistent subset” as the defini-
tion for an atomic inconsistency. Suppose also that ∆1 and ∆2 are minimal
inconsistent subsets of some knowledgebase ∆, and |∆1| ≤ |∆2| holds, then
∆2 is a bigger inconsistency than ∆1. This is only one way we may choose
to evaluate the size of an inconsistency. Increasing the size of inconsistency
may or may not be a factor that increase the measure of inconsistency.

Degree of Information. Measuring the amount of information in a message
or source is well established with proposals such as Shannon’s information
theory. In the usual applications of Shannon’s information theory, incon-
sistent information contains no information. This coincides with a classical
logic perspective of inconsistency (i.e. there are no models of inconsistent
information, and as a result it represents no information). However, informa-
tion about the real-world frequently, or normally, incorporates inconsistency,
and yet it is still informative. So the intuition that inconsistent information
contains useful information, leads to proposals for measuring the degree of
information in the context of inconsistency.

Further dimensions that we may consider include the following two. The
first of these could be described as a composite measure, using both degree of
information and degree of contradiction, and the second of these requires further
(meta-level) information.

Ratio of Information to Noise. When considering inconsistent information,
if there is a relatively large amount of information when compared with the
amount of inconsistency, then that source is likely to be more acceptable than
a source that has a relatively low amount of information when compared with
the amount of inconsistency.

Significance of Inconsistency. As an illustration of the need to evaluate sig-
nificance, consider two news reports on a World Cup match, where the first
report says that Brazil beat Germany 2-0, and the second report says that
Germany beat Brazil 2-0. This is clearly a significant inconsistency. Now
consider two news reports on the same football match, where the first re-
port says that the referee was Pierluigi Collina and the second report says
that the referee was Ubaldo Aquino. This inconsistency would normally be
regarded as relatively insignificant.

Amongst the five approaches to measuring inconsistent information in this
review, namely consistency-based analysis, information-theoretic analysis, anal-
ysis of probabilistic semantic, analysis of epistemic actions, and model-theoretic
analysis, we see these dimensions drawn out.
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4 Consistency-Based Analyses

One of the most obvious strategies for handling inconsistency in a knowledgebase
is to reason with consistent subsets of the knowledgebase. This is closely related
to the approach of removing information from the knowledgebase that is causing
an inconsistency (see for example [52, 7, 21]).

To measure the information, and the degree of inconsistency, we can take
cardinality of the ∆ and MI(∆) sets as the basis of an analysis. We can use this
for the following ratio that captures the relative incompatibility of the formulae
in the knowledgebase.

Definition 2. The incompatibility ratio for a knowledgebase ∆ ⊆ LPS is
defined as follows.

|MI(∆)|
|∆|

Example 2. Let ∆ = {α,¬α, β,¬β, γ, δ, γ ∧ δ}
|MI(∆)|

|∆| =
2
7

Whilst this ratio provides an abstraction of the conflicts in the information
in ∆, it says nothing about the relative size of the minimal inconsistent subsets,
or the overlaps between members of MI(∆). Also the syntax sensitivity can be
problematical.

Example 3. Let ∆1 = {α ∧ β,¬α ∧ ¬β} and ∆2 = {α ∧ ¬α, β ∧ ¬β}.

|MI(∆1)|
|∆1| =

1
2

|MI(∆2)|
|∆2| =

2
2

These shortcomings in part stem from this measure being insufficiently fine
grained. To address this, we will now review an approach based on scoring func-
tions that provides a deeper consistency-based analysis of the inconsistencies
arising in a set of formulae.

For a knowledgebase ∆, a scoring function S is from ℘(∆) into the natural
numbers defined so that S(Γ ) gives the number of minimally inconsistent subsets
of ∆ that would be eliminated if the subset Γ was removed from ∆ [34]. This
characterization offers an alternative means for articulating, in general terms, the
nature of inconsistency in a set of formulae. Knowledgebases can be compared
using their scoring functions giving an ordering relation over databases that can
be described as “more conflicting than”.

Definition 3. Let ∆ ⊆ LPS. Let S be the scoring function for ∆ defined as
follows, where S : ℘(∆) �→ N and Γ ∈ ℘(∆)

S(Γ ) = |MI(∆)| − |MI(∆− Γ )|
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The scoring function for a database is an abstraction of the information we
have about the database, and it says much about the inconsistencies arising in
the database.

Example 4. Let ∆ = {α,¬α, β ∧ ¬β}, where S is the scoring function for ∆,
defined as follows:

S({α}) = 1 S({¬α}) = 1 S({β ∧ ¬β}) = 1
S({α,¬α}) = 1 S({α, β ∧ ¬β}) = 2 S({¬α, β ∧ ¬β}) = 2

S({α,¬α, β ∧ ¬β}) = 2

Example 5. Let ∆ = {α ∧ ¬α, β, γ}, where S is the scoring function for ∆,
defined as follows:

S({α ∧ ¬α}) = 1 S({β}) = 0 S({γ}) = 0
S({α ∧ ¬α, β}) = 1 S({α ∧ ¬α, γ}) = 1 S({β, γ}) = 0

S({α ∧ ¬α, β, γ}) = 1

We can make a few simple observations regarding scoring functions. Where S
is the scoring function for ∆, S(∪MI(∆)) = S(∆) = |MI(∆)| and S(FREE(∆)) =
0. Also from the scoring function for a database ∆, it is straightforward to
calculate the cardinality of FREE(∆) and ∪MI(∆). However, there is no simple
way for determining the cardinality of the set of maximally consistent subsets
of a database directly from the scoring function for the database.

Proposition 1. Let ≤ be the usual ordering relation over N. For Γi, Γj ∈ ℘(∆),
where S is the scoring function for ∆,

S(Γi ∩ Γj) ≤ min({S(Γi), S(Γj)})

max({S(Γi), S(Γj)}) ≤ S(Γi ∪ Γj)

Note, S(Γi) + S(Γj) ≤ S(Γi ∪ Γj) does not necessarily hold as illustrated
below.

Example 6. Let S be the scoring function for ∆, and let Γ1 = {¬α, α ∧ β},
and let Γ2 = {β, α ∧ ¬β}, and let ∆ = Γ1 ∪ Γ2. So S(Γ1) = S(Γ2) = 3, but
S(Γ1 ∪ Γ2) = 4.

We can compare databases using the scoring function for each database. For
this we define score orderings.

Definition 4. A score ordering, denoted ≤, is defined as follows1. Assume
∆i and ∆j are of the same cardinality and Si is the scoring function for ∆i,

1 Note, we are now using the ≤ symbol for the usual ordering over the natural numbers
and as defined here for an ordering over score functions. Hopefully, this overloading
of the symbol will not cause confusion.
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and Sj is the scoring function for ∆j. Si ≤ Sj holds iff there is a bijection
f : ℘(∆i) �→ ℘(∆j) such that the following condition is satisfied:

∀Γ ∈ ℘(∆i), Si(Γ ) ≤ Sj(f(Γ ))

Note, Si < Sj iff Si ≤ Sj and Sj �≤ Si. Also, Si � Sj iff Si ≤ Sj and Sj ≤ Si.
We say ∆j is more inconsistent than ∆i iff Si ≤ Sj.

Example 7. Let ∆1 = {α,¬α} and ∆2 = {α, β ∧ ¬β}. Let S1 be the scoring
function for ∆1 and S2 be the scoring function for ∆2, and so S2 < S1.

S1({α}) = 1 S2({α}) = 0
S1({¬α}) = 1 S2({β ∧ ¬β}) = 1
S1({α,¬α}) = 1 S2({α, β ∧ ¬β}) = 1

Example 8. Consider ∆1 = {α∧¬α, β, γ} and ∆2 = {α∧¬α, β ∧¬β, δ}. If S1 is
the scoring function for ∆1, and S2 is the scoring function for ∆2, then S1 < S2.

We can consider scoring functions as giving information about the overlaps
of the minimally inconsistent subsets. For example, for ∆i and ∆j , if |∆i| =
|∆j | and |MI(∆i)| = |MI(∆j)| and Si ≤ Sj then the inconsistencies are more
overlapping in ∆j . In other words, more of the formulae are in more minimally
inconsistent subsets. In case we want to compare sets of different cardinality, we
can add dummy propositions to the smaller set to make it the same size as the
larger set. These dummy propositions are literals that do not appear elsewhere
and so can be assumed to not be in any of the minimally inconsistent subsets of
the database.

For each n ∈ N, the score ordering ≤ over knowledgebases is reflexive and
transitive, but not antisymmetric. The following result shows in part how a
score ordering can be viewed as an aggregation of parameters including the
relative number of minimally inconsistent formulae and the relative number of
free formulae.

Proposition 2. If |∆i| = |∆j |, and Si is the scoring function for ∆i, and Sj is
the scoring function for ∆j, then

Si ≤ Sj implies |MI(∆i)| ≤ |MI(∆j)|
Si ≤ Sj implies |FREE(∆i)| ≥ |FREE(∆j)|

Note, the converse does not hold.

With the same assumptions as those for Proposition 2, we do not get that
Si ≤ Sj implies |MC(∆i)| ≤ |MC(∆j)| or that it implies |MC(∆i)| ≥ |MC(∆j)|.
This is captured in the following example.

Example 9. Consider∆1 = {α, β} and∆2 = {α,¬α}. So S1 ≤ S2 and |MC(∆1)| ≤
|MC(∆2)|. Now consider ∆3 = {α,¬α} and ∆4 = {β ∧ ¬β, γ ∧ ¬γ}. So S3 ≤ S4
and |MC(∆3)| ≥ |MC(∆4)|.
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Clearly, scoring functions are syntax sensitive in the sense that we may have
two knowledgebase ∆1 and ∆2 where Consequences(∆1) = Consequences(∆2)
and S1 is the scoring function for ∆1 and S2 is the scoring function for ∆2, but
S1(∆1) �= S2(∆2). Scoring functions may also be regarded as being prone to
semantic insensitivity. To illustrate semantic insensitivity, consider the following
two examples.

Example 10. Consider ∆1 and ∆2 below. Let S1 be the scoring function for ∆1
and S2 be the scoring function for ∆2.

∆1 = {α,¬α}
∆2 = {α ∧ β,¬α ∧ β}

Here, S1 � S2 and so the scoring functions do not differentiate∆1 and∆2. Yet
it could be argued that semantically ∆2 implies more (such as if paraconsistent
logic inference were used) than ∆1.

Example 11. Consider ∆1 and ∆2 below. Let S1 be the scoring function for ∆1
and S2 be the scoring function for ∆2.

∆1 = {α ∧ β ∧ γ, α ∧ ¬β ∧ γ,¬α ∧ β ∧ ¬γ}
∆2 = {α ∧ β ∧ γ, α ∧ ¬β ∧ γ,¬α ∧ β ∧ γ}

Here, the formulae in ∆1 and ∆2 are pairwise inconsistent, and the resulting
scoring functions are such that S1 � S2. It may be argued that ∆2 is less
inconsistent than ∆1 since all formulae in ∆2 agree on γ.

In response to the arguments raised in Example 10 and 11, we believe that
this kind of semantic insensitivity is useful in some applications. We believe that
when a connective is used, it is used with some intent. So for example, whilst α∧β
and α, β are semantically equivalent, we may need to differentiate them also.
This intent depends on the applications area, but to illustrate in negotiation,
consider a strategy for weakening the preferences (represented by a set of classical
formulae) of an agent is take a subset of the preferences. So if an agent starts
with {α ∧ β} as its preferences then the only possible weakening (using the ⊆
relation) is {}. Whereas if the agent starts with {α, β} then weakenings also
include {α} and {β}. In this application, the preference α ∧ β is intended to
mean that α∧β must occur together, and so if the preference α is dropped then
so is the preference β.

In fact, this question is related to the status of the “comma” connective. In
classical logic (in the consistent case) {α∧β} and {α, β} are logically equivalent.
That shows that the comma in the second knowledgebase has exactly the same
meaning as a conjunction. But as soon as the knowledgebase is not consistent, a
lot of approaches give a different meaning to the comma and to the conjunction.
As explained above, this can be sensible if the ∧ connective means that the
conjuncts must absolutly occur together, whereas it is not the case with the
comma. This difference can be very intuitive, but it is not mandatory. And this
choice leads to different approaches.
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The general conclusion we draw from this discussion is that the syntax sensi-
tivity, and the semantic insensitivity, found in scoring functions is useful in some
applications.

5 Information Theoretic Analyses

First we consider how information theory can be used to measure the information
content of propositional formulae [70].

Table 1. A 3 × 3 grid denoting 9 possible locations for an object

β1 β2 β3

α1 × ×
α2

α3

Example 12. Let φ be a formula in the classical language composed of the follow-
ing propositional letters {α1, α2, α3, β1, β2, β3}. Now consider that φ represents
the location of an object where there are 9 possible positions in a 3 × 3 grid
(cf. Table 1). Information can be collected on the position in the grid. Now if
we receive two messages: The first states that the position is α1 and the second
states that the position is ¬β2. From these two statements, we can conclude that
the position is α1 ∧ (β1 ∨ β3). This is represented by the × symbol in Table 1.

The basic idea behind Shannon’s measure of information is that informa-
tion eliminates possibilities. The more unlikely a piece of information, the more
information is conveyed when that piece of information is asserted.

Definition 5. Let φ be a piece of information, and let P (φ) be the probability
of φ occuring. Shannon’s information measure I is

I(φ) = −logP (φ)

We can illustrate the use of Shannon’s Information measure by the following
example.

Example 13. Returning to Example 12, we can use the 3×3 grid as a probability
space and we can assume a uniform distribution over this space (i.e. each position
in the grid is equally probable). Using Definition 5 for φ = α1 and φ′ = α1 ∧¬β2,
we get

I(φ) = −log 3
9

= 0.48 I(φ′) = −log 2
9

= 0.65

Information theory can be used to measure the information content of sets
of consistent formulae. The information in a set Γ , composed from n different
atom symbols, is the logarithm of the number of models (2n) divided by the
number of models of Γ [48]. This idea can be traced back to Kemeny [35] and
Hintikka [27], so we will call this measure the Kemeny and Hintikka measure of
information.
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Definition 6. Let Γ be a consistent set of formulae, let n be the number of
atoms in the language LPSi, and let Models(Γ ) denote the collection of models
for Γ . The information value of Γ is defined by the following equation.

I(Γ ) = log2
2n

|Models(Γ )|
Rewriting this equation, we get the following.

I(Γ ) = n− log2|Models(Γ )|
Notice that with this definition, if the set of formulae Γ is inconsistent, then

the measure of information does not work. To address this, Lozinskii extends this
approach to measure the information content of sets of inconsistent formulae.
The information in a set Γ , composed from n different atom symbols, is the
logarithm of the number of models (2n) divided by the number of models for the
maximum consistent subsets of Γ .

Definition 7. Let Γ be a consistent set of formulae, let n be the number of
atoms in the language LPSi, and let MC(Γ ) be the set of maximally consistent
subsets of Γ (see Definition 1). For each ∆ ∈ MC(Γ ), if M(∆) is the collection
of models of ∆, then the collection of quasi-models is defined by

U(Γ ) =
⋃

{Models(∆) | ∆ ∈ MC(Γ )}
The information value of Γ is defined by the following equation

Il(Γ ) = n− log2|U(Γ )|
This measure increases with additions of consistent information and decreases

with additions of inconsistent information.

Example 14. For ∆ = {α∨β, α∨ ¬β,¬α∧ γ}, Γ = ∆∪ {¬γ}, and Γ ′ = ∆∪ {δ}
Il(Γ ) < Il(∆) Il(Γ ′) > Il(∆)

However, the approach is syntax sensitive, in the sense discussed in Section
4, as illustrated by the following example.

Example 15. For ∆ = {α∨ β, α∨ ¬β,¬α∧ γ}, and ∆′ = {α∨ β, α∨ ¬β,¬α, γ},
but Il(∆′) < Il(∆).

To address this syntax sensitivity, a normal form can be used for application
of Lozinskii’s measure. One proposal is to rewrite all formulae into conjunctive
normal form, and then exhaustively apply conjunction elimination and resolution
[70]. Returning to Example 15, if we use this normal form of the knowledgebases,
then they have the same result using Lozinskii’s measure.

It should be noted, whether or not we use a normal form, this information-
theoretic approach does not provide a direct evaluation of inconsistency since for
example, the value for {α} is the same as for {α,¬α, β}. As a result, we stress
this approach provides a measure of information that may be inconsistent rather
than a measure of the inconsistencies in the information.

An interesting application of Lozinskii’s measure is in a form of belief revision
[50].
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6 Analysis of Probabilistic Semantics

There is an inconsistency analysis framework, with a probabilistic semantics,
that assigns a measure of consistency in the range [0, 1] for each set of propo-
sitional formulae [37, 39]. For a set of formulae that contains a formula that is
contradictory (logically equivalent to falsity), the measure of consistency is 0.
For a set of formulae that is consistent, the measure of consistency is 1.

For any set of formulae, the measure of consistency is directly proportional
to the size of the minimal inconsistent subsets. This conceptualizes the intuition
that the more formulae required to obtain an inconsistency, the more tolerable
the set becomes. Since, any formula equivalent to falsity causes that set to have
a measure of consistency of 0, the framework collapses a number of interesting,
different kinds of knowledgebase, to the same value. In this sense, the framework
is less-fined grained than the other measures presented in the next sections in
the propositional case.

On the other hand this measure is the only one among those presented here
that takes into account the number of formulae required to lead to the inconsis-
tency.

It is also possible to define two information measures based on the measure
of consistency [39].

6.1 Probabilistic Measure of Consistency

First one needs to define a probability function over formulae:

Definition 8. A probability function on L is a function P : L → [0, 1] s.t. :

– if |= α, then P (α) = 1
– if |= ¬(α ∧ β), then P (α ∨ β) = P (α) + P (β)

See [55] for more details on this definition. In the finite case, this defini-
tion gives a probability distribution on interpertations, and the probablity of a
formula is the sum of the probabilities of its models2.

Then the measure of consistency is defined as [37] :

Definition 9. Let ∆ be a knowledgebase.

– ∆ is η−consistent (0 ≤ η ≤ 1) if there exists a probability function P such
that P (α) ≥ η for all α ∈ ∆.

– ∆ is maximally η−consistent if η is maximal (i.e. if γ > η then ∆ is not
γ−consistent).

So the notion of maximally η−consistency can be used as a measure of con-
tradiction. This is a direct formalisation of the fact that the more formulae are

2 It can be also defined, like in[37, 39], in terms of the logical formulae corresponding
to the models of the knowledgebase (maximally coherent conjunction of literals of
L).
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required to produced the inconsistency, the less the inconsistency is important.
As easily seen, in a finite setting, a knowledgebase ∆ is 0−consistent if and only
if there is a contradictory formula (i.e. a formula logically equivalent to falsity)
in it. And ∆ is 1−consistent if and only if the knowledgebase is consistent. Let
us see some examples to illustrate the non-extremal cases:

Example 16. ∆ = {a, b,¬a ∨ ¬b} is maximally 2
3−consistent. ∆ = {a ∧ b,¬a ∧

¬b, a∧¬b} is maximally 1
3−consistent, whereas each of its subsets of cardinality

2 is maximally 1
2−consistent.

For minimal inconsistent sets of formulae, computing the probabilistic mea-
sure of consistency is easy.

Proposition 3. If Γ ∈ MI(∆), then Γ is maximally |Γ |−1
|Γ | −consistent.

For a general knowledgebase, there is no direct way to compute it. But a
lower bound can be stated:

Proposition 4. If ∆ is finite and Γ ⊆ ∆ is a smallest minimally inconsistent
subset of ∆, then ∆ is |Γ |−1

|∆| −consistent.

In fact, as underlined in [37], it can be computed using the simplex method.

6.2 Probabilistic Measures of Information

From this probabilistic measure of consistency, one can define two probabilistic
measures of information [39]. Let us first give some definitions:

Definition 10. Let ∆ be a knowledgebase.

– A probability function P is Pareto optimal for ∆ if there is no probability
function P ∗ such that P ∗(α) ≥ P (α) for all α ∈ ∆ and P ∗(β) > P (β) for
one β ∈ ∆.

– A probability function P is ∆−consistent if ∆ is maximally η−consistent
and P (α) ≥ η for all α ∈ ∆.

– A probability function P is Rawls optimal for ∆ if it ∆−consistent and
Pareto optimal for ∆.

Definition 11. Let us note respectively R∆ and V∆, the set of Rawls optimal
probability functions for ∆ and the set of ∆−consistent probability functions.

Proposition 5. Let ∆ be a knowledge base. A probability function is Pareto/Rawls
optimal only if P (α) = 1 for all α ∈ FREE(∆).

The entropy [67] of a probability function P is defined as

H(P ) = −
∑

ω∈W
P (ω) log2 P (ω)

Let X be a set of probabiliy functions, then ME(X) is a random maximum
entropy function fromX. Then the two probabilistic measures of information are:
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Definition 12. Let ∆ be a knowledgebase.

– IL
k1(∆) = |L| −H(ME(R∆))

– IL
k2(∆) = |L| −H(ME(V∆))

These two definitions are two direct generalization of Kemeny and Hintikka
measure of information (see definition 6) that do not trivialize to 0 when the
knowledgebase is not consistent.

In terms of this probabilistic semantics the information measure of Kemeny
and Hintikka of a knowledgebase is the size of the language minus the entropy of
the probabilistic function that has a maximum entropy while giving a probability
1 to all of the formulae of the knowledgebase.

This view trivializes when the knowledgebase is not consistent, since, in this
case, it is not possible to give a probability 1 to all the formulae of the knowledge-
base. The two definitions proposed in Definition 12 are the two more intuitive
modifications of this intuition to fit the inconsistent case. The second one (IL

k2)
takes the maximum entropy probabilistic function that maximizes the minimum
probability of the formulae of the knowledgebase. The first one (IL

k1) takes the
maximum entropy probabilistic function that gives a probability 1 to the maxi-
mum of formulae of the knowledgebase (the free formulae of the knowledgebase)
and a maximum probability to each of the other formulae of the knowledgebase.
So, in both cases, the requirement of giving probability 1 to all the formulae of
the knowledgebase, is “minimally” changed.

Let us see what those measures give on some simple example.

Example 17. ∆ = {a, b, c,¬a∧¬b}.∆ is maximally 1
2−consistent. As FREE(∆) =

{c}, for the first information measure, the probabilistic function must satisfy
P (c) = 1. The only probability distribution on interpretations that is Rawls
optimal is P ({¬a,¬b, c}) = 1

2 and P ({a, b, c}) = 1
2 . So IL

k1(∆) = 2. For the second
information measure, we only consider ∆−consistent probabilistic functions, and
the one of maximum entropy is the one that gives a probability of 1

4 to all of
{¬a,¬b, c}, {¬a,¬b,¬c}, {a, b, c} and {a, b,¬c}. So IL

k2(∆) = 1. Note that on
this example Lozinskii’s measure of information gives IL

l (∆) = 2.

Knight advocates the superiority of those two measures on the one proposed
by Lozinskii, since they take into account the knowledgebase as a whole (i.e.
all the formulae of the knowledgebase), whereas Lozinskii’s, which is based on
maximal consistent subsets, takes into account only some subsets of the knowl-
edgebase.

Indeed, the two approaches (Lozinskii and Knight) give significant different
results on some illustrating case. See the following example.

Example 18. Let α be a non-tautological consistent formula, and let∆ = {α,¬α}.
Then IL

l (∆) = 0 for all α. But, this is not the case for Knight’s measures of
information. Since they are based on a probability distribution on interpetations
and on maximum entropy, the result depends on the number of interpretations
in α and its negation.
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For example if α is a conjunction of atoms α = a1 ∧ . . .∧ ak. Then for k = 1,
then IL

k1(∆) = IL
k2(∆) = 0, for k = n, then IL

k1(∆) = IL
k2(∆) = |L|− 1

2 − 1
2 log2

1
n .

So IL
k1 and IL

k2 increase with the number of conjuncts.

To know what behaviour is the more intuitive one is not an easy task. We
think that both behaviours have pro and cons.

But both approaches are highly syntax sensitive, in particular, they make a
distinction between {a∧b} and {a, b}. This is not the case with some of the other
approaches presented in the rest of this paper. Let us see this on the following
example:

Example 19. Let ∆ = {a, b,¬a∨ ¬b} and ∆′ = {a∧ b,¬a∨ ¬b}. Then IL
k1(∆) =

IL
k2(∆) = 0.42 and IL

l (∆) = 1. While IL
k1(∆

′) = IL
k2(∆

′) = 0.21 and IL
l (∆) = 0.

Note that Lozinskii’s approach is immune to the presence of a contradictory
formula (i.e. adding a contradictory formula to a knowledgebase does not change
the measure of information). IL

k1(∆) is dependent to the addition of contradictory
formulae: adding a contradictory formulae decreases the measure of information.
So it seems that this measure melds together information and contradiction.
Whereas IL

k2(∆) trivializes as soon as the knowledgebase contains a contradictory
formula.

Note that the three measures by Lozinskii and Knight trivialize as soon as
the knowledgebase contains only one formula that is contradictory. This is not
the case with the measures presented in the following sections.

7 Analysis of Epistemic Actions

An alternative approach to quantifying degrees of information and contradiction
in propositional logic is based on a framework of “epistemic actions” [40]. Each
epistemic action (called also test) reduces inconsistency and/or gains informa-
tion. The degree of information in a knowledgebase is based on the number (or
the cost) of actions needed to identify the truth value of each atomic proposition:
The lower the cost, the more information is contained in the base. The degree of
contradiction in a knowledgebase is based on the number (or the cost) of actions
needed to render the knowledgebase classically consistent. Both measurements
are dependent on the language, logic, and tests used.

So this framework does not define a unique measure of contradiction (and
information), but a wide familly of such measures. Since instantiating the pa-
rameters of the framework allows to define different measures. The main param-
eter is the underlying logic. Each propositional logic that satisfies some basic
requirements can be used here, leading to different definitions of measures of
contradiction (and measures of information). Another important parameter is
the available epistemic actions (called tests in the following). Specifying the set
of available tests, allows us to make a distinction between atoms/formulae. It
can for example be used to state that only some atoms are of interest (i.e. con-
tradiction or lack of information on the remaining atoms is not important), or
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that some atoms/formulae are more important (or more difficult to test) than
other ones. We will present here only the measures of contradiction, see [40] for
more details and for the definition of the corresponding measures of information.

One of the aim of this approach is to be able to say something on a single
contradictory formula. Another way to express this idea is to say that in this
approach the connector ∧ is the same as the comma connective (i.e. {α, β}
must be considered exactly as {α ∧ β}). So in this section we will consider that
the knowledgebase is a single formula (since, with the above hypothesis, we
can take equivalently the formula that is the conjunction of all formulae of the
knowledgebase).

So this approach needs an underlying propositional logic LPSi that is required
to have the following components :

1. A consequence relation |=i on LPSi × LPSi.
2. An acceptance function Ai ⊆ LPSi × LPSi: Ai(∆,α) means that given the

knowledgebase ∆, α is accepted as true information (we say that ∆ accepts
α). By default, acceptance is defined by: Ai(∆,α) iff (∆ |=i α and ∆ �|=i ¬α).
We say that ∆ is informative about α iff exactly one of Ai(∆,α) or Ai(∆,¬α)
holds, and that ∆ is fully informative iff for any α ∈ LPSi, ∆ is informative
about α.

3. A contradiction indicator Ci ⊆ LPSi × LPSi: if Ci(∆,α) holds, then we say
that ∆ is contradictory about α. By default, we define Ci(∆,α) iff (∆ |=i α
and ∆ |=i ¬α). ∆ is said to be contradiction-free iff for every α ∈ LPSi, we
do not have Ci(∆,α).

4. A weak revision operator � : LPSi × LPSi → LPSi: ∆ � α represents the
new knowledgebase obtained once taking account of the observation α into
the knowledgebase ∆. For the sake of generality, we are not very demanding
about �. The only requirement is that ∆ � α |=i α, which expresses that
our tests are assumed reliable (each test outcome must be true in the actual
world). In the following we will simply refer to these operators as revision
operators (omitting the weak).

Let us now define the set of tests (a test is an action that allows to truthfully
know the truth value of a formula) that will be allowed to be used for computing
the measure of contradiction.

Definition 13. A test context CLP Si
(w.r.t. LPSi) is a pair 〈T, c〉 where T is a

finite set of tests and c is a cost function from T to N∗ (the set of strictly positive
integers). The outcome to any test tα ∈ T is one of α, ¬α, where α ∈ LPSi. We
say that tα is the3 test about α . A context is said to be :

– standard iff ∀tα ∈ T , we have c(tα) = 1 (every test has a unit cost).
– universal iff for every α ∈ LPSi, there is a test tα ∈ T .
– atomic iff the testable formulae are exactly the atoms of the language (tx ∈ T

iff x ∈ PS).

3 It is assumed, without loss of generality, that at most one test tα of T is about α for
each α ∈ LPSi.
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Definition 14. Given a test context CLP Si
, a test plan π is a finite binary tree;

each of its non-terminal nodes is labelled with a test action tα; the left and right
arcs leaving every non-terminal node labelled with tα are respectively labelled
with the outcomes α and ¬α. An (outcome) trajectory 〈o1, . . . , on〉 with respect
to π is the sequence of test outcomes on a branch of π. The cost of a trajectory
〈o1, . . . , on〉 with respect to π is defined as

∑n
i=1 c(tαi

), where each tαi
is the test

labelling the node of π reached by following the path 〈o1, . . . , oi−1〉 from the root
of π.

Test plans are the basic tool used to determinate the tests needed to remove
the inconsistency. It is the number (or more generally the cost) of the tests
needed that will give the measure of contradiction for a knowledgebase.

Definition 15. Let π be a test plan and ∆ the initial knowledgebase.

– The application of π on ∆ is the tree apply(π,∆), isomorphic to π, whose
nodes are labelled with knowledgebases defined inductively as follows:

• the root ε of apply(π,∆) is labelled with ∆(ε) = ∆;
• let n be a node of apply(π,∆), labelled with the knowledgebase ∆(n),

whose corresponding node in π is non-terminal and labelled with tα; then
n has two children in apply(π,∆), labelled respectively with ∆(n)�α and
∆(n) � ¬α.

– π purifies α given ∆ iff for every terminal node n of apply(π,∆), ∆(n) is
not contradictory about α (i.e., not CL(∆(n), α)).

– π (fully) purifies ∆ iff it eliminates all contradictions in ∆, i.e., iff for any
terminal node n of apply(π,∆), ∆(n) is contradiction-free.

The degree of contradiction of ∆ measures the minimal effort necessary to
purify ∆.

Note that, clearly enough, it can be the case that there is no plan to purify
a formula (if the test context is not atomic and not universal).

Definition 16. Let us define the cost c(π) of a test plan π as the maximum of
the costs of its trajectories. Then the degree of contradiction of ∆ is defined by
dC(∆) = min({c(π) | π purifies ∆}). When no plan purifies ∆, we let dC(∆) =
+∞.

In the previous definition, we actually define pessimistic degrees of contra-
diction (because the cost of a plan is defined as the maximum cost among its
trajectories); this principle, consisting in assuming the worst outcome, is known
in decision theory as Wald criterion. Other criteria could be used instead, such
as the optimistic criterion obtained by replacing max by min. Also interesting,
the criterion obtained by first using max and then min for tie-breaking, or the
leximax criterion, allow for a better discrimination than the pure pessimistic
criterion.

The interest of this framework is that we can define different degrees of
contradiction, depending of the chosen underlying logic. We will only give an
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example of such instanciation here for illustrating the definition (see [40] for
other examples).

We focus here on the LPm logic as defined in [59]. This choice is mainly
motivated by the fact that this logic is simple enough and has an inference
relation that coincides with classical entailment whenever the knowledgebase is
classically consistent (this feature is not shared by many paraconsistent logics).

– The language of LPm is built up from the connectives ∧, ∨, ¬, → and the
constants �, ⊥.

– An interpretation ω for LPm maps each atom to one of the three “truth
values” false, both, true, the third truth value both meaning intuitively
“both true and false”. 3PS is the set of all interpretations for LPm. “Truth
values” are ordered as follows: false <t both <t true.

• M(�) = true, M(⊥) = false
•M(¬α) = both iff M(α) = both
M(¬α) = true iff M(α) = false

• M(α ∧ β) = min≤t(M(α),M(β))
• M(α ∨ β) = max≤t(M(α),M(β))

• M(α → β) =
{
true if M(α) = false
M(β) otherwise

– The set of models of a formula α is ModelsLP (α) = {M ∈ 3PS | M(α) ∈
{true, both}}.
Define M ! = {x ∈ PS | M(x) = both}.
Then min(ModelsLP (α)) = {M ∈ ModelsLP (α) | �M ′ ∈ ModelsLP (α) s.t. M ′! ⊂
M !}.
The consequence relation is defined by ∆ |=LPm α iff min(ModelsLP (∆)) ⊆
ModelsLP (α).

– The definitions ofALPm(∆,α) and CLPm(∆,α) are those by default; CLPm(∆,α)
holds only if ∆ has no classical model.

We have also to define the revision operator. Actually, the issue of revision in
paraconsistent logic has never been considered so far. Expansion is not satisfac-
tory as a revision operator for LPm because it does not enable the purification
task when ∆ has no classical model ω (i.e., such that ω(x) �= both for each
x ∈ PS), whatever the test context. Among the many possible choices, we have
considered the following revision operator, defined model-theoretically (for the
sake of brevity, we characterize only its restriction to the case the revision for-
mula α is a literal l).

Let force(M, l) be the interpretation of 3PS defined by (for every literal l = x
or ¬x):{

force(M,x)(x) = true
∀y ∈ PS, y �= x, force(M,x)(y) = M(y){
force(M,¬x)(x) = false
∀y ∈ PS, y �= x, force(M,x)(y) = M(y)

Then the revision operator is defined by:

ModelsLP (∆ � l) =
{{M |= ∆ | M(l) = true} if this set is non-empty,

{force(M, l) | M |= ∆ and M(l) = both}, otherwise.
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Example 20. Given the standard atomic test context, we have:

– dC({�}) = 0
– dC({a}) = 0
– dC({a ∧ b}) = 0
– dC({a ∧ b ∧ ¬a}) = 1
– dC({a ∧ b ∧ ¬a ∧ ¬b}) = 2

Let us see the result on a more complex example:

a ∧ (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ ¬a)

�
�

���

a
�

�
���

¬a

a ∧ b ∧ (¬b ∨ c) ∧ ¬c

�
�

���

c
�

�
���

¬c

¬a ∧ (¬b ∨ c)

a ∧ b ∧ c a ∧ b ∧ ¬b ∧ c

�
�

���

b
�

�
���

¬b

a ∧ b ∧ ¬c a ∧ ¬b ∧ ¬c

Fig. 1. Degree of contradiction in LPm

Example 21. Let us consider the base ∆ = {a∧ (¬a∨ b) ∧ (¬b∨ c) ∧ (¬c∨ ¬a)}.
Figure 1 reports a plan of minimal cost (given the standard atomic context)
which purifies ∆. So the degree of contradiction of ∆ is 3.

Note that what we define here is a measure of contradiction. To obtain a mea-
sure of coherence, as in the other sections, it is enough to define IL

klm(LPm)
(∆) =

|L| − dC(∆) while considering the standard atomic test context.

Proposition 6. Every knowledgebase that has a model ∈ 3PS has a finite degree
of contradiction given any atomic or universal test context.

Another example of instantiation with a paraconsistent logic can be obtained
by taking the QC logic (see Section 8.2) as underlying logic. The revision operator
in this case is the same one than for LPm.

So this approach is highly configurable (underlying logic, test context), lead-
ing to several different particular measures of contradiction. It is less syntax-
sensitive than the approaches in the previous sections, since a set of formulae
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is considered exactly as the conjunction of those formulae. This can be an ad-
vantage or a drawback, depending on the intended application. But the main
advantage is that it does not trivialize when facing a single contradictory for-
mula.

8 Model-Theoretic Analyses

Arguably, the most important logical language to analyse is that of classical logic.
So far in this review we have considered a variety of approaches. Syntactic analy-
sis is an obvious starting point for use with classical formulae. Useful alternatives
for analysing classical formulae, which we have considered in previous sections,
are based on information theory analysis, probability theory, and epistemic ac-
tions. Another alternative, which we consider in this section, is model-theoretic
analysis. In this, inconsistent information is analysed in terms of the models of
the information. Obviously this is not possible using classical models, because
there is no model of a set of inconsistent formulae. To address this, we can use
a three or four valued semantics, where one of the truth values denotes “incon-
sistency”. In this section, we briefly consider an approach based on three-valued
logic, and then review a framework based on quasi-classical logic which uses a
four-valued semantics. Both of them can be used with a set of classical formulae.

8.1 Analysis of Three-Valued Models

In the proposal for three-valued models by [47], and a similar proposal by [26], a
3-interpretation is a truth assignment into {true,false} that does not map both
a literal and its complement into false. This is extended to clauses so that a
3-interpretation satisfies a clause if and only if it satisfies some of the literals in
the clause.

Example 22. For the set of formulae {α,¬α ∨ ¬β, β}, there are three 3-inter-
pretations that satisfy: (X1) α,¬α, β are true and ¬β is false; (X2) α, β,¬β
are true and ¬α is false; and (X3) α,¬α, β,¬β are true.

As shown by Grant [26], the 3-interpretations for a set of formulae can be
analysed to obtained a degree of inconsistency. For this, the functions CCount and
ICount are introduced. For a 3 interpretation X, CCount(X) gives the number
of atoms in X for which either the atom or its complement is assigned false,
and ICount(X) gives the number of atoms in X for which both the atom and its
complement are assigned true. So CCount gives the number of atoms that are
regarded as consistent, and ICount gives the number of atoms that are regarded
as inconsistent, for X. In addition, LCount gives the total number of literals that
are assigned by X. So LCount(X) = CCount(X) + (2 × ICount(X)).

Definition 17. The degree of inconsistency for a 3-interpretation X (in the
finite case) is the ratio

IncG(X) =
CCount(X)
LCount(X)
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Example 23. So, on the previous example, we have IncG(X1) = 1/3, IncG(X2) =
1/3 and IncG(X3) = 0.

This definition has been generalized by Grant to deal with countable 3-
interpretations, and to take into account the domain for the 3-interpretations.
A problem with the proposal is that it takes into account “too many mod-
els”. Consider the small knowledgebase in Example 22 for which there are three
3-interpretations. With quasi-classical (QC) logic reviewed in the next subsec-
tion, only the third 3-interpretation would be considered a model. The intuition
behind this is that if we consider disjunctive syllogism, or equivalently, the reso-
lution proof rule, as being applicable here, then neither the first 3-interpretation
nor the second 3-interpretation would be valid models for this set of formulae.

As we shall see below, QC logic has a more constrained semantics and proof
theory resulting in a “more appropriate” selection of models, and as a conse-
quence, a measure of consistency can be defined with some useful properties.
However, when we consider analysing first-order QC models, we will see how
Grant’s degree of inconsistency can also be harnessed.

8.2 Analysis of Quasi-classical Models

Quasi-classical (QC) logic, a form of paraconsistent logic can be used as the basis
of a framework, to measure inconsistency [31, 32, 33]. In this, each inconsistent
set of formulae is reflected in the quasi-classical models for the set, and then the
inconsistency is measured in the models.

Review of Propositional QC Logic. We review the propositional version of
quasi-classical logic (QC Logic) [9, 29]. The language of propositional QC logic
is that of classical propositional logic.

Let α be an atom, and let ∼ be a complementation operation such that ∼α
is ¬α and ∼(¬α) is α. The ∼ operator is not part of the object language, but it
makes some definitions clearer.

Definition 18. Let α1∨..∨αn be a clause that includes a disjunct αi and n > 1.
The focus of α1 ∨ .. ∨ αn by αi, denoted ⊗(α1 ∨ .. ∨ αn, αi), is defined as the
clause obtained by removing αi from α1 ∨ .. ∨ αn.

Example 24. Let α ∨ β ∨ γ be a clause where α, β, and γ are literals. Hence,
⊗(α ∨ β ∨ γ, β) = α ∨ γ.

Focus is used to capture a form of resolution in the semantics of QC logic. A
model in QC logic is a form of Herbrand model.

Definition 19. Let A be a set of atoms. Let O = {+α | α ∈ A}∪{−α | α ∈ A}
be the set of objects defined as follows, where +α is a positive object, and −α is
a negative object. We call any X ∈ ℘(O) a QC model. So X can contain both
+α and −α for some atom α.
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For each atom α ∈ L, and each X ∈ ℘(O), +α ∈ X means that in X there
is a reason for the belief α and −α ∈ X means that in X there is a reason
for the belief ¬α. This effectively gives us a four-valued semantics. Though for
non-atomic formulae the semantics, defined next, is significantly different to [6].

Definition 20. Let |=s be a satisfiability relation called strong satisfaction.
For a model X, we define |=s as follows, where α1, ..., αn are literals in L, n > 1,
and α is a literal in L.

X |=s α iff there is a reason for the belief α in X

X |=s α1 ∨ ... ∨ αn

iff [X |=s α1 or ... or X |=s αn]
and ∀i s.t. 1 ≤ i ≤ n

[X |=s∼αi implies X |=s ⊗(α1 ∨ ... ∨ αn, αi)]

For α, β, γ ∈ L, we extend the definition as follows,

X |=s α ∧ β iff X |=s α and X |=s β
X |=s ¬¬α ∨ γ iff X |=s α ∨ γ
X |=s ¬(α ∧ β) ∨ γ iff X |=s ¬α ∨ ¬β ∨ γ
X |=s ¬(α ∨ β) ∨ γ iff X |=s (¬α ∧ ¬β) ∨ γ
X |=s α ∨ (β ∧ γ) iff X |=s (α ∨ β) ∧ (α ∨ γ)
X |=s α ∧ (β ∨ γ) iff X |=s (α ∧ β) ∨ (α ∧ γ)

Definition 21. For X ∈ ℘(O) and ∆ ∈ ℘(L), let X |=s ∆ denote that X |=s α
holds for every α in ∆. Let QC(∆) = {X ∈ ℘(O) | X |=s ∆} be the set of QC
models for ∆.

A key feature of the QC semantics is that there is a model for any formula,
and for any set of formulae.

Example 25. Let ∆ = {¬α ∨ ¬β ∨ γ,¬α ∨ γ,¬γ}, where α, β, γ ∈ A, and let X
= {−α,−β,−γ}. So X |=s ¬α, X |=s ¬β and X |=s ¬γ. Also, X |=s∼γ. Hence,
X |=s ¬α ∨ γ, and X |=s ¬α ∨ ¬β, and so, X |=s ¬α ∨ ¬β ∨ γ. Hence every
formula in ∆ is strongly satisfiable in X.

Strong satisfaction is used to define a notion of entailment for QC logic. There
is also a natural deduction proof theory for propositional QC logic [29] and a
semantic tableau version for first-order QC logic [30]. Entailment for QC logic
for propositional CNF formulae is coNP-complete, and via a linear time transfor-
mation these formulae can be handled using classical logic theorem provers [53].

The definitions for QC models and for strong satisfaction provide us with the
basic concepts for measuring inconsistency. QC logic exhibits the nice feature
that no attention needs to be paid to a special form that the formulae in a set of
premises should have. This is in contrast with other paraconsistent logics where
two formulae identical by definition of a connective in classical logic may not
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yield the same set of conclusions. For example, in QC logic, β is entailed by both
{(¬α → β),¬α} and {α∨β,¬α} and γ is entailed by {γ ∧¬γ} and {γ,¬γ}. QC
logic is much better behaved in this respect than other paraconsistent logics such
as Cω [17], and consistency-based logics such as [7]. Furthermore, the semantics
of QC logic directly models inconsistent sets of formulae.

Definition 22. Let ∆ ∈ ℘(L). Let MQC(∆) ⊆ QC(∆) be the set of minimal QC
models for ∆, defined as follows:

MQC(∆) = {X ∈ QC(∆) | if Y ⊂ X, then Y �∈ QC(∆)}

Example 26. Consider the following sets of formulae.

MQC({α ∧ ¬α, α ∨ β,¬α ∨ γ})
= {{+α,−α,+β,+γ}}

MQC({¬α ∧ α, β ∨ γ})
= {{+α,−α,+β}, {+α,−α,+γ}}

MQC({α ∨ β,¬α ∨ γ})
= {{+β,+γ}, {+α,+γ}, {−α,+β}}

Whilst four-valued logic [6] also directly models inconsistent sets of formulae,
there are too many Belnap models in many situations. Consider for example
{α∨β,¬α}. There is one minimal QC model {−α,+β}, but there are a number
of Belnap models that satisfy this set. QC logic has a reduced number of models
because of the constraint in the definition of strong satisfaction for disjunction
that ensures that if the complement of a disjunct holds in the model, then
the resolvent should also hold in the model. This strong constraint means that
various other proposals for many-valued logic will tend to have more models for
any given knowledgebase than QC logic. This increases the number of models
that need to be analysed and it underspecifies the nature of the conflicts. These
shortcomings of Belnap’s four-valued logic also apply to three-valued logics such
as 3-interpretations by [47], and a similar proposal by [26].

Measuring Coherence of QC Models. We now consider a measure of in-
consistency called coherence [31]. The opinionbase of a QC model X is the set of
atomic beliefs (atoms) for which there are reasons for or against in X, and the
conflictbase of X is the set of atomic beliefs with reasons for and against in X.

Definition 23. Let X ∈ ℘(O).

Conflictbase(X) = {α | +α ∈ X and − α ∈ X}
Opinionbase(X) = {α | +α ∈ X or − α ∈ X}

In finding the minimal QC models for a set of formulae, minimization of
each model forces minimization of the conflictbase of each model. As a result of
this minimization, if ∆ ∈ ℘(L), and X,Y ∈ MQC(∆), then Conflictbase(X) =
Conflictbase(Y ).

Increasing the size of the conflictbase, with respect to the size of the opin-
ionbase, decreases the degree of coherence, as defined below.
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Definition 24. The Coherence function from ℘(O) into [0, 1], is given below
when X is non-empty, and Coherence(∅) = 1.

Coherence(X) = 1 − |Conflictbase(X)|
|Opinionbase(X)|

If Coherence(X) = 1, then X is a totally coherent, and if Coherence(X) = 0,
then X is totally incoherent, otherwise, X is partially coherent/incoherent.

Example 27. Let X ∈ MQC({¬α ∧ α, β ∧ ¬β, γ ∧ ¬γ}), Y ∈ MQC({α,¬α ∨
¬β, β, γ}), and Z ∈ MQC({¬α, β,¬γ∧γ}). So Coherence(X) = 0, Coherence(Y ) =
1/3, and Coherence(Z) = 2/3.

Different minimal QC models for the same knowledgebase are not necessarily
equally coherent, since different models for the same knowledgebase may have
different opinionbases, though they will have the same conflictbase.

Example 28. Let ∆ = {α,¬α, β ∨ γ, β ∨ δ}, and let X = {+α,−α,+β} and
Y = {+α,−α,+γ,+δ}. So MQC(∆) = {X,Y }, and Coherence(X) = 1/2 and
Coherence(Y ) = 2/3.

We extend coherence to knowledgebases as follows.

Definition 25. Let ∆ ∈ ℘(L). Assign Coherence(∆) the maximum value in
{Coherence(X) | X ∈ MQC(∆)}.

Example 29. Let ∆ = {φ ∧ ¬φ, α ∨ (β ∧ γ ∧ δ)} and ∆′ = {φ ∧ ¬φ, (α ∧ β) ∨
(γ ∧ δ)}. Also let X1 = {+φ,−φ,+α}, X2 = {+φ,−φ,+β,+γ,+δ}, Y1 =
{+φ,−φ,+α,+β}, and Y2 = {+φ,−φ,+γ,+δ}. So, MQC(∆) = {X1, X2} and
MQC(∆′) = {Y1, Y2}. Also, Coherence(X1) = 1/2, Coherence(X2) = 3/4,
Coherence(Y1) = 2/3, andCoherence(Y2) = 2/3.SoCoherence(∆)>Coherence(∆′).

Note that the definition of the coherence of a knowledgebase is an optimistic
one, since it is based on the maximal coherence value of its models. But taking
other aggregation functions could be interesting. For example taking a leximax
function would allow for more discrimination. And taking the minimum or a
mean can lead to other interesting measures. Such generalisations have not been
considered yet, but can be a starting point for further work.

Significance Functions. The QC logic framework for measuring inconsistency
has been extended to measuring the significance of inconsistencies arising in QC
models, and thereby in sets of formulae [32]. The approach is based on specify-
ing the relative significance of incoherent models using additional information,
encoded as a mass assignment, which is defined below.

Definition 26. A mass assignment m for O is a function from ℘(O) into
[0, 1] such that:

(1) If X ⊆ O and Coherence(X) = 1, then m(X) = 0

(2) ΣX⊆O m(X) = 1
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Condition 1 ensures mass is only assigned to models that contain conflicts
and condition 2 ensures the total mass distributed sums to 1. A mass assign-
ment can be localized on small subsets of O, spread over many subsets of O, or
limited to large subsets of O. A mass assignment can be regarded as a form of
metaknowledge, and so it needs to be specified for an application area, where
the application area is characterized by O.

Example 30. Let O = {+α,−α,+β,−β}. A mass assignment m is given by
m({+α,−α}) = 0.2 and m({+β,−β} = 0.8. Another mass assignment m′ is
m′({+α,−α}) = 0.2, m′({+α,−α,−β}) = 0.6, and m′({+α,−α,+β,−β}) =
0.2.

A significance function gives an evaluation of the significance of the conflicts
in a QC model. This evaluation is in the range [0, 1] with 0 as least significant
and 1 as most significant.

Definition 27. Let m be a mass assignment for O. A significance function
for O, denoted S, is a function ¿from ℘(O) into [0, 1]. A mass-based signifi-
cance function for m, denoted Sm, is a significance function defined as follows
for each X ∈ ℘(O).

Sm(X) = ΣY ⊆Xm(Y )

The definitions for mass assignment and mass-based significance correspond
to mass assignment and belief functions (respectively) in Dempster-Shafer the-
ory [66]. However, here they are used to formalise significance rather than un-
certainty.

Proposition 7. Let m be a mass assignment for O. If Sm is a significance
function, then the following property of simple cumulativity holds for all X,Y ∈
℘(O): X ⊆ Y implies Sm(X) ≤ Sm(Y ).

Given that simple cumulativity holds, we see that specifying significance in
terms of mass assignment is more efficient than directly specifying the signifi-
cance.

Proposition 8. Let m be a mass assignment for O. Let Sm be a mass-based
significance function. For all X,Y ∈ ℘(O),

(1) Sm(X ∪ Y ) ≥ (Sm(X) + Sm(Y ) − Sm(X ∩ Y ))
(2) Sm(X) + Sm(Xc) ≤ 1

So mass-based significance is not additive. Also the remaining significance
need not be for the complement of X (ie, Xc). Some may be assigned to models
not disjoint from X. We now consider some constraints on mass assignments
that give useful properties for mass-based significance.

Definition 28. Let m be a mass assignment for O. m is focal iff for all X ∈
℘(O) m(X) ≥ 0 when Coherence(X) = 0 and m(X) = 0 when Coherence(X) >
0. m is solo iff for all {+α,−α} ∈ ℘(O) m({+α,−α}) ≥ 0 and for all other
X ∈ ℘(O), m(X) = 0.
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A focal mass assignment puts the mass onto the totally incoherent models,
and a solo mass assignment puts the mass on the smallest totally incoherent
models. For all m, if m is a solo mass assignment for O, then m is focal mass
assignment for O. Significance is additive for totally incoherent models when the
mass assignment is solo.

Proposition 9. Let m be a solo mass assignment for O. Let Sm be a mass-based
significance function and let X ∈ ℘(O). If Coherence(X) = 0, then Sm(X) +
Sm(Xc) = 1.

A useful feature of a focal mass-based significance function is that as the
number of conflicts rises in a model, then the significance of the model rises.
This is formalized by the following notion of conflict cumulativity.

Proposition 10. Let m be a focal mass assignment for O. If Sm is a signifi-
cance function, then the following property of conflict cumulativity holds for all
X,Y ∈ ℘(O): Conflictbase(X) ⊆ Conflictbase(Y ) implies Sm(X) ≤ Sm(Y ).

We now extend the significance functions to knowledgebases. Since MQC(∆)
is not necessarily a singleton, the significance for a set of formulae ∆ is the lowest
significance obtained for an X ∈ MQC(∆). This means we treat the information
in ∆ as a “disjunction” of QC models, and we regard each of those models as
equally acceptable, or equivalently we regard each of those models as equally
representative of the information in ∆. As with Definition 25, the following
definition is an optimistic view, in the sense that taking the higher coherence
value and lower significance value is better.

Definition 29. Let ∆ ∈ ℘(L). We extend the definition for a significance func-
tion Sm to knowledgebases as follows:

Sm(∆) = min({Sm(X) | X ∈ MQC(∆)})

Someknowledgebases have zero significance.Clearly, if∆ �� ⊥, thenSm(∆)=0.

Example 31. Let Ω = {+α,−α,+β,−β,+γ,−γ}. Let m({+α,−α,+β}) = 0.3,
m({+α,−α}) = 0.6, and m({+β,−β,+γ}) = 0.1. So Sm({α∧ ¬α, β ∨ γ}) = 0.6

In order to determine the set O for which a mass function is defined, we can
use the delineation function as follows.

Definition 30. For ∆ ∈ ℘(L), Delineation(∆) = {+α,−α | α ∈ Atoms(∆)}.

Example 32. Let ∆1 = {¬α, α ∨ β,¬β}, ∆2 = {α ∨ β,¬α ∧ α}, and ∆3 =
{β,¬α ∨ ¬β}. Let O = Delineation(∆1 ∪ ∆2 ∪ ∆3) = {+α,−α,+β,−β}. Also
let m({+α,−α,+β,−β}) = 0.2 and m({+α,−α}) = 0.8. So Sm(∆1) = 1,
Sm(∆2) = 0.8, and Sm(∆3) = 0.

The next result captures a notion of monotonicity for mass-based significance.
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Proposition 11. Let ∆ ∈ ℘(L) and α ∈ L. Let m be a mass assignment for
Delineation(∆ ∪ {α}). If Sm is a significance function, then Sm(∆) ≤ Sm(∆ ∪
{α}).

Another approach to analysing the significance of inconsistency is possibility
theory [19]. Let (φ, α) be a weighted formula where φ is a classical formula and
α ∈ [0, 1]. A possibilistic knowledgebase B is a set of weighted formulae. An
α-cut of a possibilistic knowledgebase, denoted B≥α, is {(ψ, β) ∈ B | β ≥ α}.
The inconsistency degree of B, denoted Inc(B), is the maximum value of α
such that the α-cut is inconsistent. Possibility theory can also be used to extend
classical logic, so that the proof rules propagate the possibility weights. This
logic is called possibilistic logic and it offers complementary reasoning to that
offered by QC logic.

Possibilistic logic and QC logic can be combined to give quasi-possibilistic
logic [18]. This combined logic can handle plain conflicts taking place at the
same level of certainty, as in QC logic, and take advantage of the stratification
of the knowledgebase into certainty layers for introducing gradedness in conflict
analysis, as in possibilistic logic. Moreover, quasi-possibilistic logic can be used
to generalize the QC logic framework for measuring the degree and significance
of inconsistencies.

Compromising on Inconsistency. In the following, we define the compromise
relation to prefer knowledgebases with models with a greater opinionbase and a
smaller conflictbase.

Definition 31. Let ∆,∆′ ∈ ℘(L). The compromise relation, denoted �, is
defined as follows:

∆ � ∆′ iff ∀X ∈ MQC(∆) and ∃Y ∈ MQC(∆′)
such that Conflictbase(X) ⊆ Conflictbase(Y )
and Opinionbase(Y ) ⊆ Opinionbase(X)

We read ∆ � ∆′ as ∆ is a preferred compromise to ∆′. Let ∆ ≺ ∆′ denote
∆ � ∆′ and ∆′ �� ∆. Also let ∆ � ∆′ denote ∆ � ∆′ and ∆′ � ∆.

Example 33. If ∆ = {α ∧ β ∧ γ}, and ∆′ = {α ∧ ¬α, β ∨ γ}, then ∆ ≺ ∆′, since
the following hold,

MQC(∆) = {{+α,+β,+γ}}
MQC(∆′) = {{+α,−α,+β}, {+α,−α,+γ}}

Example 34. If ∆ = {α∧¬α∧β} and ∆′ = {β}, then ∆ �� ∆′, and ∆′ �� ∆, since
MQC(∆) = {{+α,−α,+β}} and MQC(∆′) = {{+β}}. Though Coherence(∆) <
Coherence(∆′).
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Example 35. If ∆ = {α ∨ β} and ∆′ = {α ∨ γ}, then ∆ �� ∆′, and ∆′ ��
∆, since MQC(∆) = {{+α}, {+β}} and MQC(∆′) = {{+α}, {+γ}}. Though
Coherence(∆) = Coherence(∆′).

We now motivate the compromise relation. For checking whether ∆ � ∆′

holds, we want to compare the minimal QC models of ∆ with the minimal QC
models of ∆′. First, we want each minimal QC model of ∆ to have a conflictbase
that is a subset of the conflictbase of each minimal QC model of ∆′. Second, we
want for each minimal QC model X of ∆, for there to be a minimal QC model
Y of ∆′ such that the opinionbase of Y is a subset of the opinionbase of X. This
is to ensure that ∆ is not less conflicting than ∆′ because ∆ has less information
in it. The reason we use the condition Opinionbase(Y ) ⊆ Opinionbase(X) rather
than Y ⊆ X is that if Y is more conflicting than X, then this will be reflected
in the membership of Y but not in the membership of Opinionbase(Y ). The
reason we only seek one minimal QC model of ∆′ for the comparison with all
the minimal QC models of ∆ is so that we can handle disjunction in ∆′ as
illustrated by Example 33. Useful properties of the compromise relation include
it is a pre-order relation and it is syntax independent.

Let us note that, although the compromise relation and coherence function
are logically independent notions, they are “philosophically” related, since in
both case it is better when the conflicts decrease or when the information in-
crease.

Measuring First-Order Inconsistency. Using the first-order version of quasi-
classical logic [30], the QC logic framework for measuring inconsistency has been
extended to first-order logic [33]. In first-order QC logic, the strong satisfaction
relation is extended for universal and existential quantification.

– A QC model M , with a variable assignment A, satisfies a formula ∃Xα if
and only M satisfies α with some variable assignment A′ that differs from
A in at most the assignment for X.

– A QC model M , with a variable assignment A, satisfies a formula ∀Xα if
and only if M satisfies α with all variable assignments A′ that differ from A
in at most the assignment for X.

As with propositional QC logic, the models are a form of Herbrand model.
The definitions for minimal QC model, for coherence, and for compromise rela-
tion can be used with first-order information.

In another development, the degree of inconsistency as presented by Grant
[26], has been incorporated into the QC logic framework for measuring inconsis-
tency in first-order information [25]. In this, both the language and the domain is
taken into account. In the following, we restrict the presentation to a first-order
language with constant symbols and no function symbols.

Definition 32. For a language L = 〈P, C〉, where P is a set of predicates rep-
resented in the form P (n), with P being the predicate symbol and n being the
arity of the predicate, C is a set of constants, and D is a domain,

Groundatoms(L, D) = {P (c1, .., cn) | P (n) ∈ P and c1, .., cn ∈ D}
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This is used for a measure as a ratio between 0 and 1 whose denominator is
the total possible number of inconsistencies in the bistructure.

Definition 33. The measure of inconsistency for a model M in the context of
a language L and a domain D is given by the ModelInc function giving a value
in [0, 1] as follows.

ModelInc(M,L, D) =
|Conflictbase(M)|

|Groundatoms(L, D)|

Example 36. Let L = 〈{P (2), R(1)}{}〉. Hence, P is a binary predicate and R is
a monadic predicate. Let D = {a, b, c}, and M = {+P (a, a), −P (a, a), +R(a),
−R(b), +P (b, c)}, |Groundatoms(L, D)| = 12 (9 ground atoms for P and 3 for
R). Conflictbase(M) = {P (a, a)}. Hence, ModelInc(M,L, D) = 1

12 .

The ModelInc definition provides the basis of a richer framework for compar-
ing first-order formulae. In the following example, we compare some inconsistent
formulae. For this, we consider the preferred QC models: These are the minimal
QC models with a minimal conflictbase. Given a language L and a domainD, the
value of ModelInc is the same for all preferred QC models for a knowledgebase.

Example 37. Let L = 〈{P (2)}, {}〉 and D = {a, b, c}.

1. ∆1 = {∀x∀y(P (x, y) ∧ ¬P (x, y))} has one preferred QC model which is
represented by M1 = {+P (a, a),−P (a, a), . . . ,+P (c, c),−P (c, c)},
so ModelInc(M1,L, D) = 9

9 = 1. M1 is totally inconsistent.
2. ∆2 = {∃x∃y(P (x, y) ∧ ¬P (x, y))} has 9 preferred QC models. One of them

is M21 = {−P (a, b),
+ P (a, b)}, so ModelInc(M21,L, D) = 1

9 .
3. ∆3 = {∀x∃y(P (x, y) ∧ ¬P (x, y))} has 9 preferred QC models. One is M31 =

{+P (a, a),
− P (a, a),+P (b, c),−P (b, c),+P (c, a),−P (c, a)}, so ModelInc(M31,L, D) =
3
9 = 1

3 .
4. ∆4 = {∃x∀y(P (x, y) ∧ ¬P (x, y))} has 3 preferred QC models. One is M41 =

{+P (b, a),
− P (b, a),+P (b, b),−P (b, b),+P (b, c),−P (b, c)}, so ModelInc(M41,L, D) =
3
9 = 1

3 .

Comparing quantified formulae is potentially important in diverse applica-
tions such as analysing systems specifications and analysing sources of infor-
mation as a precursor to selecting sources for merging. These applications po-
tentially include consideration of information that violates integrity constraints.
This framework incorporates a notion of quasi-equality, which is weaker than
classical equality, but can be formalized as an extension to QC logic for reason-
ing about integrity constraint violations.
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9 Choosing a Good Measure

In the previous sections we have presented the existing measures of contradiction
and of information for (possibly) inconsistent information. We have tried to
highlight the advantages and the typical uses of each of its measures. In this
section, we will try to compare them in order to highlight their differences and
to guide the choice of a particular measure.

9.1 Logical Properties

A very convenient way to compare several approaches to the same problem is
to propose a set of logical properties, aiming at capturing the typical wanted
behaviours, and to compare the approaches with respect to the properties satis-
fied/dissatisfied.

Setting these properties have several advantages: first, it allows to “abstract”
the discussion, i.e. to drop the discussion from the examples that are the partic-
ular approaches, for a discussion on the wanted behaviour for the given problem.
Second, it gives a mean to compare the different approaches and to highlight the
differences of behaviour and underlying rationale (in a much more explicit way
that when building examples that are correctly handled by one approach and
badly by an other). Thirdly, this allows us to define in one shot a whole family
of methods (the ones that satisfy a set of properties), instead of only one par-
ticular one. And in the case where there is only one approach satisfying a set of
properties, then it usually gives a nice comprehensive definition of the approach.

Setting a set of properties have usually accelerated the development of a cor-
responding field. We can cite for example the work of Arrow for social choice
theory (voting theory) [3], Savage for decision theory [64]. In artificial intel-
ligence, the same happened for non-monotonic inference relations [51, 43, 46],
belief revision [1, 24], and belief merging [62, 41, 42].

So, it might be of great interest to find a set of logical properties for infor-
mation measures (that allows non-trivial information content for inconsistent
information), and for contradiction measures.

Information Measures. Lozinskii [49] gives a set of properties that a measure
of quantity of information should satisfy.

He stated those properties in first order logic. Recasted in propositional logic,
those conditions can be summarized as follows. I is a function from LPS to a
numeric scale with least element 0 such that:

1. If ∆ = ∅, then I(∆) = 0
2. If ∆ = {a ∈ LPS} ∪ {¬a | a ∈ LPS}, then I(∆) = 0
3. If ∆ is consistent, and α is a consequence of ∆, then I(∆ ∪ {α}) = I(∆)
4. If ∆∪ {α} is consistent and α is not a consequence of ∆, then I(∆∪ {α}) >
I(∆)

5. If ∆ is consistent and α is a consequence of ∆, then I(∆ ∪ {¬α}) < I(∆)
6. If ∀a ∈ LPS ∆ � a or ∆ � ¬a, then ∀∆′ I(∆) ≥ I(∆′)
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The first condition states that an empty knowledgebase contains no informa-
tion. The second condition states that if a knowledgebase contains all the atoms
and their negation of the language, it gives also no information. In the first con-
dition it was caused by a lack of information, in the second one it is because
of an overload of (contradictory) information. The third condition states that
adding a consequence of a knowledgebase does not change anything of the infor-
mation content. That implies, in particular, an irrelevance of syntax, since there
is no difference between an explicit formula of ∆ and an implicit one4. It says
also that several occurrences of the same formula (or several way to derive the
same formula), do not improve the information content. The fourth condition
says that adding a (consistent) formula that is not a consequence of a consistent
knowledgebase increases the amount of information. The fifth condition says
that adding a (consistent) formula that contradicts a consistent knowledgebase
decreases the amount of information. This condition relates the contradiction
of a base and its information content. Thus, as expected, the introduction of a
contradiction decreases the amount of information. The sixth condition states
that a complete knowledgebase, thus having exactly one classical model, has the
highest possible information content. This condition is quite natural, and quite
close to the idea of Shannon’s information theory.

It is not surprising that the information measure Il(∆) of section 5 satisfies
those conditions.

Knight in [39, 38] propose also a set of logical properties for measures of
quantity of information. Most of them are equivalent to Lozinskii’s ones. The
different ones are:

7. 0 ≤ I(∆) ≤ |PS|
8. I({α}) = 0 if and only if � α or � ¬α
9. If ∆ and ∆′ are logically equivalent5, then I(∆) = I(∆′)

Condition 7 simply puts bounds on the value of the information measure.
Putting 0 as minimum is quite natural (and is already asked in Lozinskii’s con-
ditions). So the addition of this property is to put a maximum on the value. It is
clear that in a finite setting, the information value must have an upper bound,
but we are not sure that giving a precise bound is useful (taking any strictly
increasing function of |PS| would basically give the same thing, as acknowledge
by Knight [39]). Condition 8 states that the only singleton knowledgebase having
null information value are tautologies and contradictions. Condition 9 is an irrel-
evance of syntax condition, basically saying that we can exchange any formula
of a knowledgebase by a logically equivalent one without changing the amount
of information in the knowledgebase.

Those two last conditions are not similar to the previous ones. They basically
say that information measures can cope with inconsistency only because we work

4 An explicit formula of a knowledge base is a formula α ∈ ∆. An implicit formula of
a knowledge base is a formula α /∈ ∆ and ∆ � α.

5 We say that two knowledgebases are logically equivalent if for each formula of a base,
there is a formula in the other base that is logically equivalent to the first one.
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with sets of formulae. But if one is faced with a unique inconsistent formula, it
continues to have a null information value. So it is a very strong assumption
that forbids consideration of inconsistent formulae. Whereas the information
measures proposed by Knight and Lozinskii satisfy those two properties, the one
proposed by Konieczny et al. [40] do not satisfy them, since they differentiate
the information content of inconsistent formulae.

In addition, there are also two conditions on the relation between the language
and the information value. The first one is given by Lozinskii in [48], the second
one by Knight [39, 38].

9. If PS ⊆ PS′, then max∆∈LP S
(I(∆)) ≤ max∆′∈LP S′ (I(∆′))

10. If PS ⊆ PS′, then I∆∈LP S
(∆) = I∆∈LP S′ (∆)

Condition 10 says that extending the language does not change the informa-
tion content of a given knowledgebase. But, as expected, condition 9 says that
extending the language allows to express more things, and so the upper bound
of the information measure in the extended language is higher than the one in
the original language.

One can think of other meaningful conditions, but the ones given here seem
to be a good place to begin.

Contradiction Measures. The story is not the same for contradiction mea-
sures. It is much more difficult to state properties for contradiction measures
than for information ones. Since classical logic is not the right tool for talking
about inconsistency, it is difficult to state interesting logical properties using
only classical logic.

In order to state the wanted properties, one should need to use a para-
consistent logic. But there are a lot of different paraconsistent logics (see e.g.
[28, 13, 60]), so choosing a particular logic is already a real, non-trivial commit-
ment. So one has to be careful for avoiding stating ad hoc properties, according
to a given paraconsistent logic.

This maybe explains why there is not yet any proposal of such set of prop-
erties for contradiction measures. But this is an interesting and important open
question.

9.2 Comparison of the Measures

Let us first talk about the information measures presented in this paper. For
comparing Lozinskii’s measure (section 5) and Knight’s ones (section 6.2), Let
us quote Knight [39]:

“For when we look at proper subsets of Γ we fail to account for the affect
the remaining sentences of Γ have on the sentences of the subset. Thus
the author asserts the superiority of IL

k1 - and, indeed, IL
k2 - over such

information measures as Lozinskii’s [48, 49] that analyze the information
of a set by breaking it up into its maximal consistent subsets.”
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So, one drawback of Lozinskii’ measure is that it is a “local” one, that takes
into account subsets of the whole base, but not the base as a whole for the com-
putation of the measure of information, whereas Knight’s measures are “global”
ones since they keep the knowledgebase in one piece. However, the maximal con-
sistent subset semantics seem to be natural for a lot of people (it is for example
the basis for several inference relations [52, 5, 4]), and if one looks at an inconsis-
tent knowledgebase as a knowledgebase “polluted” by some false sentences, then
trying to find the “plausible” information in the maximal consistent subsets can
be sensible. Finally, as underlined in section 9.1, those two measures work with
sets of formulae (with a single inconsistent formula still having a null informa-
tion value). This behaviour can be discussed, and can be interesting for some
applications. But, in some cases, one can wish to try to get some information
from an inconsistent formula. In this case, the previous measures cannot be used.
In this case, the information measure proposed by Konieczny et al. (section 7),
based on epistemic tests, still succeeds in extracting some non-null information
from a single inconsistent formula.

As for contradiction measures, the main measures presented in this paper
are, first the scoring functions of section 4. The obtained score ordering allows
to compare the contradiction level of different knowledgebases. Another contra-
diction measure is given by Knight’s η−consistency (section 6.1). The idea here
is also based on minimal inconsistent subsets, and, roughly, a knowledgebase is
more contradictory than another one, if the contradictions (minimal inconsistent
subsets) require more formulae. Intuitively, the more formulae are needed to pro-
duce a contradiction, the less the contradiction is strong. Knight illustrates this
idea on the lottery paradox: saying that, if there is a sufficiently large number of
tickets, a given lottery ticket is6 not winning, but it is a fact that one of the tickets
will win the lottery. That can be written: Γ = {¬w1, . . . ,¬wn, w1∨. . .∨wn}. This
knowledgebase is clearly inconsistent, but it seems sensible to say that the bigger
n, the more tolerable the inconsistency. As for information measures, the two
previous approaches trivialize when they are applied to singleton knowledgebase,
i.e. to only one formula. They both give the maximal contradiction value to an
inconsistent formula. And, even more arguably than for information measures, it
is important to be able to discriminate several inconsistent formulae. This can be
achieved by the degree of contradiction proposed by Konieczny et al. (section 7),
that do not take the formulae as atomic inconsistencies, but take propositional
variables to this aim. In this framework, it is the (maximum) number of tests
required for get rid of all inconsistencies that determine the degree of contradic-
tion. In the same way, Grant’s degree of inconsistency (section 8.1) and Hunter’s
degree of coherence take the propositional variable as atomic inconsistency, so
they can cope with singleton inconsistent knowledgebase. Those two approaches
can be used to measure the amount of contradiction in a knowledgebase. But in
both cases, the amount of contradiction is related to the amount of information
of the base. Basically, a knowledgebase is less contradictory than another one if it

6 more exactly it is rational to believe that a given (random) ticket is not winning.
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has a model that has a lowest noise7 ratio than the models of the second one. The
main difference between the two approaches lies in the underlying chosen logic.
To be able to talk about models for classically inconsistent knowledgebase, one
has to choose an underlying paraconsistent logic. Grant starts from Levesque
3-valued logic [47, 26], whereas Hunter starts from quasi-classical logic [9, 29].
Quasi-classical logic seems more adequate to handle inconsistent information (it
has, for example, a more constrained semantics), so the degree of coherence of
Hunter may seem more adequate that Grant’s degree of inconsistency. Finally
let us note the degree of significance of section 8.2, that allows us to compare the
amount of contradiction in several knowledgebases when the potential contra-
dictions are not as important. It often happens in real life that some parts of the
agents beliefs are more important than others8, so contradictions that concern
the important beliefs are much more problematic than the ones concerning the
less important ones. So if one can weight the importance of the (worries induced
by potential) contradictions, the degree of significance allows us to measure the
contradiction amount of a given knowledgebase.

10 Towards Applications

Formalisation of analyses of inconsistency information has been driven by more
intelligent techniques for handling inconsistent information in applications. In
this section, we briefly review two emerging applications, namely negotiation
between agents and comparing heterogeneous sources of information, using two
of the techniques we have presented in this review.

10.1 Negotiation Between Agents

For the following example of negotiation, we will keep the domain knowledge
separate from the perspectives of the participants. In other words, we will con-
sider the domain knowledge as being correct and not subject to negotiation.
This will allow us to focus our attention on the perspectives of the participants.
Note, we are not presenting a general framework for negotiation between agents.
Rather we are trying to show how measurement of inconsistency can be used to
evaluate each cycle in a negotiation to gauge how well the negotiation is proceed-
ing. Formalisation of multi-agent negotiation is currently the subject of much
research (see for example [2, 56]). Potentially, measures of inconsistency can be
incorporated in an existing formalisation for multi-agent negotiation.

Example 38. Consider three members of a family who are discussing their wishes
for their next family car. Let the domain knowledge Ψ be:

7 amount of “contradiction” compared to the amount of “information”.
8 For example, an agent can posses some beliefs that have no importance for its goals,

thus having very small importance.
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red → fast
fast → ¬fuelEfficient
offRoad → expensive
sporty → (expensive ∧ (black ∨ red ∨ white))
¬expensive → under$20K
cabriolet → ¬bigCapacity
fuelEfficient → ¬offRoad

Let the initial preferences (requirements or demands) for each family member
(participant 1, participant 2, and participant 3) be represented by Φ1

1, Φ
2
1 and

Φ3
1 respectively.

Φ1
1 = {red, offRoad}

Φ2
1 = {¬expensive, fuelEfficient}

Φ3
1 = {sporty, cabriolet, bigCapacity}

So the starting point of the discussions is captured by ∆1.

∆1 = Ψ ∪ Φ1
1 ∪ Φ2

1 ∪ Φ3
1

Let S1 be the scoring function for ∆1. Now consider S1 for some subsets of ∆1.

S1({red}) = 1 S1({bigCapacity}) = 1
S1({sporty}) = 1 S1({offRoad}) = 2
S1({fuelEfficient}) = 2 S1({¬expensive}) = 2
S1({cabriolet}) = 1 S1({red, bigCapacity}) = 2

S1(Φ1
1) = S1({red, offRoad}) = 3

S1(Φ2
1) = S1({¬expensive, fuelEfficient}) = 4

S1(Φ3
1) = S1({sporty, cabriolet, bigCapacity}) = 2

S1(∆1) = 5

We see from S1 that each of the preferences is individually inconsistent with
the domain knowledge. We also see that Φ2

1 has the highest score (4) of the initial
preferences and it would be a good starting point for discussion.

Suppose after some discussion, Φ1
1 is changed to Φ1

2 by participant 1, Φ2
1

to Φ2
2 by participant 2, and Φ3

1 to Φ3
2 by participant 3, as follows. How this

multi-agent discussion is conducted is beyond the scope of this review. Potential
formalisms for this include [2, 56]. However, we do assume that aim of the multi-
agent discussion is that some of the agents have weakened their positions. The
measurement of inconsistency is intended to monitor this.

Φ1
2 = {red ∨ black, sporty ∨ offRoad}

Φ2
2 = {¬expensive}

Φ3
2 = {sporty, bigCapacity}

This intermediate point is captured by ∆2.

∆2 = Ψ ∪ Φ1
2 ∪ Φ2

2 ∪ Φ3
2
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Let S2 be the scoring function for ∆2. Now consider S2 for some subsets of ∆2.

S2({sporty}) = 1
S2({¬expensive}) = 2
S2({sporty ∨ offRoad}) = 1
S2(∆2) = 2

We see that S2 < S1. Furthermore, we see that the preference for ¬expensive
is the most problematical.

Now suppose after further discussion, Φ2
2 is changed to Φ2

3 by participant 2,
and Φ3

2 is changed to Φ3
3 by participant 3.

Φ1
3 = {red ∨ black, sporty ∨ offRoad}

Φ2
3 = {interestFreeCredit, diesel}

Φ3
3 = {sporty ∨ offRoad, bigCapacity}

This final situation is captured by ∆3.

∆3 = Ψ ∪ Φ1
3 ∪ Φ2

3 ∪ Φ3
3

Let S3 be the scoring function for ∆3. We see that S3 < S2. Also for all Γ ∈ ∆3,
we have S3(Γ ) = 0. So ∆3 could be regarded as an acceptable end-point.

In the above example, we see that the scoring functions allow us to focus on
the more problematical data, and use this to facilitate conflict resolution.

10.2 Comparing Heterogeneous Sources

We now return to the problem of comparing sources, discussed in the introduc-
tion. Here we consider how the compromise relation introduced in Section 4 can
be used directly to reject sources of information that are too inconsistent. A
threshold can be fixed and any source of information that is above this thresh-
old is automatically rejected. For example, if we set the threshold at 0.5, then
any report represented as a set of formulae Φ that together with background
knowledge Ψ is such that coherence of Φ ∪ Ψ < 0.5, then “more than half of the
information” in Φ is contradictory with respect to the background knowledge.
Similarly, for infinite models, a selected profile can be used as a threshold for
rejection of sources of information.

Definition 34. Let Φi, Φj , Ψ ∈ ℘(L). A qualified compromise relation �Ψ

is defined as follows, where Φi and Φj are sources and Ψ is background knowledge.

Φi �Ψ Φj iff Φi ∪ Ψ � Φj ∪ Ψ

When using a qualified compromise relation, there may be an assumption
that the background knowledge is correct, and we rank sources by their conflicts
with the background knowledge.
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Example 39. Let ∆ incorporate a standard axiomatization for the equality pred-
icate, denoted =, and the “less-than-or-equal-to” predicate, denoted ≤. Also
suppose we know that the list price of a new Ferrari Maranello is $200K. We
represent this as Cost(Ferrari) = $200K, and add this to the following back-
ground knowledge in ∆.

∀X Cost(X) ≤ $1K → Cost(X) ≤ $2K
∀X Cost(X) ≤ $2K → Cost(X) ≤ $3K

:
∀X Cost(X) ≤ $199K → Cost(X) ≤ $200K

In general, the lower the purported value of a Ferrari in a report, the greater
the number of formulae in the background knowledge that are contradicted. Now
consider Report 1 with the information Cost(Ferrari) = $150K and Report 2
with the information Cost(Ferrari) = $15K. With this, we see Report 1 is a
preferred compromise to Report 2, and that Report 1 with ∆ is more coherent
than Report 2 with ∆.

Cost(Ferrari) = $150K �∆ Cost(Ferrari) = $15K

We could extend the above example so that we have the following holding
for any numbers V1 and V2 when V1 ≤ V2.

Cost(Ferrari) = $V1 �∆ Cost(Ferrari) = $V2

The situation above is reflected in many real-world situations where there is
a range of possible values for the facts that are being reported, and the facts that
take values “further away” from those delineated by the background knowledge
are regarded as more inconsistent.

As an alternative approach to dealing with heterogeneous sources, we may
assume that the sources are all individually consistent with the background
knowledge, but combinations of sources are inconsistent. The � or �Ψ relations
may then be used over all possible unions of sources. In either case, we may then
choose to select the n least compromised sources of information. These n sources
could then be used in some form of merging process such as arbitration [41, 42].

11 Discusssion

Current techniques for measuring the degree of inconsistency in a set of formulae
are underdeveloped. There has been a marked increased interest in the past three
years as reflected by new published articles on the subject. This has resulted in a
range of interesting proposals based on syntactic coherence, information theory,
probability theory, epistemic actions, and three/four-valued models. But it is a
subject that is very much in flux. At this stage it is unclear what would constitute
an ideal framework for measuring inconsistency: Though it seems that there is
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no unique measure of inconsistency. There are good arguments for a variety of
factors to be taken into account.

Concerning the degree of inconsistency, there are two main ideas developed
independently in the approaches presented in this paper. The first idea is to
state that the importance of the conflict is reflected by the number of formulae
of the knowledgebases implied in the contradiction. The more formulae needed,
the less important the conflict. Another idea is to state that the importance of
the conflict is described by the number of atoms on which we have contradictory
information. An interesting question, in the quest for definition of “the” degree
of consistency, is to know if it is possible to meld these two ideas, in order to
take these two sensible intuitions into account.

Suggestions for desirable properties are at a tentative stage. More inter-
relationships between proposals need to be established. And perhaps most sig-
nificantly, potential applications need to be developed. Since the more we know
about how they can or should be used, the better we can develop the formalisms.
In addition, there is a need to consider how some other formalisms in knowledge
representation and reasoning are relevant to the subject.

Other formalisms in knowledge representation and reasoning that touch on
the subject include: Diagnostic systems for which there are preferences for certain
kinds of consistent subsets of inconsistent information [36, 61]; Belief revision for
which epistemic entrenchment is an ordering over formulae which reflects the
preference for which formulae to give up in case of inconsistency [24] and the
Dalal distance which provides a model-theoretic characterisation of how incon-
sistent a formulae is with a consistent set of formulae [15]; Coherence-based
reasoning (for drawing inferences from inconsistent information) for which there
is a preference for inferences from some consistent subsets (e.g. [11, 7]); Para-
consistent logics for which there is an object operator denoting “acceptable”
inconsistency that can be used to differentiate acceptable and unacceptable in-
consistencies [13]; Approximate entailment for which two sequences of entailment
relation are defined (the first is sound but not complete, and the second is com-
plete but not sound) which converge to classical entailment [65]; and Partial
consistency checking for which checking is terminated after the search space
exceeds a threshold and so gives a measure of partial consistency of the data
[54]. Whilst none of these proposals provide a direct definition for degree of in-
consistency, there are clearly some important issues in common that could be
explored.

As to the choice of a particular degree of inconsistency or degree of infor-
mation, one important criterion, not mentionned until now, is its computational
complexity. So a study of the complexity of the different proposals exposed in
this paper should be a valuable work. And an open question is to know if there is
a correlation between the discriminating power of the different approaches and
their computational compelxity.

Finally, an interesting proposal for analysing the coherence of explanations
could form an interesting development of the consistency-based analysis in Sec-
tion 4. In the process of finding an explanation for some observations, there



Approaches to Measuring Inconsistent Information 233

may be multiple theories that are mutually incompatible, but each constitutes
an explanation for the observations. Consider a set of observation and a set of
possible explanations ∆. A set Γ ⊆ ∆ is a support for O in some context I iff
Γ ∪ I implies O and no subset does so. Now we may have a number of these
supports for O, and we may wish to evaluate the quality of the formulae that
are used in them. In [45], a general framework for measuring support coherence
is based on the average use of formulae in the supports. Highly coherent theories
are those whose formulae that are tightly coupled to accounts for observations,
while low coherence theories may contain disjointed and isolated statements.
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