

A. Gelbukh (Ed.): CICLing 2005, LNCS 3406, pp. , 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrating Natural Language Techniques
in OO-Method

Isabel Díaz1,2, Lidia Moreno1, Inmaculada Fuentes1, and Oscar Pastor

1

1 Universidad Politécnica de Valencia – Dpto. de Sistemas Informáticos y Computación,
Camino de Vera s/n, 46022 Valencia, España,

2 Universidad Central de Venezuela,
Ciudad Universitaria, Edif. FACES, Piso 2, Caracas 1051, Venezuela

{idiaz, lmoreno, opastor}@dsic.upv.es, infuegil@inf.upv.es

Abstract. An approach that involves natural language analysis techniques for
the treatment of software system functional requirements is described in this
paper. This approach is used as the basis for a process developed to generate
sequence diagrams automatically from the textual specification of use cases.
This facility has been integrated in the Requirements Engineering Phase of OO-
Method, an automatic production environment of software. For this purpose, a
translator that is based on natural language parser is used. The translator
provides grammatical information to each use case sentence and it identifies the
corresponding interaction. The automatic transformation is conceived and
specified following an orientation that is based on models and patterns. The
results of the validation of the transformation patterns are presented.

1 Introduction

The OO-Method is an automatic production environment of object-oriented software
that has been created at the Universidad Politécnica de Valencia [1]. It is supported by
a tool whose industrial version was given the name OlivaNova Model Execution®
(ONME). In the OO-Method, the construction of the Conceptual Model plays a
leading role from which it is possible to generate the Execution Model automatically
(Fig. 1). The Conceptual Model graphically describes the problem space from a
structural, dynamic, and functional perspective, and from the point of view of the
presentation. Each piece of the Conceptual Model’s graphic information can be
automatically transformed into an OASIS concept, an object-oriented formal
specification language based on dynamic logic [2]. The OASIS specification is used
to generate the Execution Model.

The construction of the Conceptual Model is supported by the models obtained
during the OO-Method Requirements Engineering Phase [3]. This phase begins by
defining the Mission Statement which describes its purpose and the main
functionalities of the system. Taking into account the system’s possible interactions
with its environment, the Functions Refinement Tree (FRT) is obtained. The
remaining nodes form a hierarchy of the system’s functionalities at different
abstraction levels. An FRT leaf node is an elementary function that can be activated

560 – 571

directly by an actor or as a result of a temporal event. Each one of the ARF
elementary functions is a use case in the Use Case Model. By applying an iterative
strategy, this model is refined by identifying the actors that interact in these use
cases and by describing them in natural language. A use case models the
communication between an actor and the system for the exchange of information, as
well as the actions that must be carried out internally by the system to respond to
these requests for information [4].

The Use Case Model is the main input for the development of the Sequence
Diagram Model. A sequence diagram is built by each use case scenario. The
Sequence Diagram Model is used as a link between the Use Case Model (which
specifies the interaction between the system and its environment) and the OO-
Method Conceptual Model (whose purpose is to describe the system’s internal
components, relationships and restrictions).

Originally, the construction of the Sequence Diagram Model was formulated as a
manual task, to be undertaken exclusively by the stakeholders. Nevertheless,
traceability mechanisms have recently been established and make it possible to
deduce the sequence diagrams automatically, based on the use case text. In order to
do so, a linguistic approach has been used with the intention of establishing this
fourth point of automatic translation in the OO-Method. This approach is supported
by a framework that is based on patterns that are compliant with MDA (Model
Driven Architecture) and with UML (Unified Modeling Language) [5,6].

The defined linguistic framework and its integration in the OO-Method is
described in this paper. This article has seven sections. Section 1 is the introduction.
Section 2 shows the phases of the translation process, its objectives, activities,
inputs and outputs. Section 3 describes the transformation model based on patterns
that support the translation. Section 4 explains the strategy of transformation pattern
application. Section 5 describes the validation process of these patterns and the
translator tool that has been developed. Sections 6 and 7 present our conclusions
and references.

Fig. 1. The OO-Method Models

561 Integrating Natural Language Techniques in OO-Method

2 OO-Method Linguistic Approach

The automatic generation of the OO-Method Sequence Diagram Model is supported
by linguistic information processing and control techniques [7]. This information is
obtained through use case specification. It assumes that this specification is expressed
as a document written in natural language that describes an elementary function of a
software system [4,8]. The use case language is described by a previously defined
grammar [9,10]. The translation of use cases into sequence diagrams is an iterative
process developed through four sequential phases (Fig. 2). The result obtained in each
phase is illustrated by an example in Figure 3 (based on the specification of a use case
of a Sales Terminal System for Stores).

SYNTACTIC NORMALIZATION SEMANTIC NORMALIZATION CATEGORIZING TRANSFORMATION

Edition

Orthographic
Revision

Structuration

Morphosyntactic
Analysis

Complete

In
co

m
pl

et
e

/\
Tagged

Stakeholder

Existence
Verification

Lemmatization
No exist

E
xi

st Significative
Terms Ontology

Updating

Signifier
ID

Sentences
Classification

Semantic
Roles ID

Existence
Determination

Linking

Exist

N
o

ex
is

t

Sequence
Diagram

Construction

Secuence Diagram
Ontology Updating

CONCEPTUAL
MODELING

Model
Elements

ID In
co

m
pl

et
e

Sequence
Diagram
Updating

/\

C
om

pl
et

e

Stakeholder

Stakeholder
/\

Notation: Phase ; Activity ; → Transition ; ---> Dependence Relationship

Fig. 2. Activities Diagram for the OO-Method Linguistic Approach

2.1 Syntactic Normalization

The goals of this phase are: (a) to generate a standard specification of the use case for
the purpose of developing system documentation, and (b) prepare the use case text to
be used to obtain information that enables the Sequence Diagram Model to be
constructed automatically. In addition to improving the quality of requirements
documentation, this phase acknowledges its lexical constituents in each sentence of
the use case and provides them with useful morphological information so that it will
be possible to identify the elements of a sequential diagram such as instances and
parameters later on. As a result of this phase, a use case, which is structured according
to the predefined grammar and is grammatically correct and enriched with
morphosyntactic information, is obtained.

The Syntactic Normalization starts with the editing or transcription activity of the
use case body and its descriptive information. The spelling check of the use case text
includes the identification of words that do not exist in the language dictionaries. The
morphosyntactic analysis enables possible morphological interpretations of each word
in the use case body to be obtained and allows their respective grammatical features
to be determined. It covers the disambiguation of those words that permit more than
one morphological interpretation. Through structuring, the morphological
constituents are grouped into syntactic categories of a superior level, i.e., in noun
phrases. This activity makes it possible to determine whether or not the editing of the

562 I. Díaz et al.

use case has respected the structure imposed by pre-established grammar and style
rules. In addition to this, its function is to guarantee the grammatical agreement of the
text sentences of a use case. Once the use case has been edited, each word is tagged
with information related to its morphological features and the syntactic category to
which it belongs (Fig. 3).

2.2 Semantic Normalization

The main objective of this phase is to guarantee the terminological consistency of the
use case text. Upon completion, each word of the use case body will be given a sole
meaning and useful information about its grammatical relationships (e.g. equivalence,
antithesis, generalization and composition).

In order to study the vocabulary of a use case, the words that describe domain
significant information are distinguished from those that lack it. The words that have
a semantic content are called significant terms [11]. The main components, properties
and restrictions of the significant terms of the use cases form an ontology of the
domain. The purpose of this ontology is to define the common vocabulary that
enables information about the requirements of the software system under
development to be shared [12,13]. The updating of this ontology is the central activity
of the Semantic Normalization phase. The signifier identification or symbol that
represents each significant term recognized in the use case text is undertaken for this
purpose. The canonical form of the signifier is obtained through lemmatization. In
order to avoid information redundancy, it is necessary to check that the significant
term has not been previously defined in the ontology.

2.3 Categorization

In this phase, the significant terms and the use case sentences are classified according
to their role in the Use Case Model. The identification of the semantic roles of each
significant term consists of determining the function of the elements involved in the
communication modeled by the use case. Thus, "issuer" and "action" are semantic
role examples. Syntactic patterns are used to identify them. Hence, semantic roles are
intermediaries between syntactic patterns and abstractions of the use case, making
them independent of the way they are expressed in natural language. This enables
each semantic role to be related to equivalent syntactic patterns in different languages
(Fig. 3).

Lastly, the Categorization classifies each sentence of the use case as follows:
actor-system interface (the actor is the issuer of the communication), system-actor
interface (the issuer of the communication is the system and the recipient is the actor),
and process (the sentence describes a certain behaviour that is able to change the state
of the system). The predefined grammar and semantic roles identified by the sentence
are used for this classification.

2.4 Transformation

The main purpose of this phase is to build the sequence diagram that corresponds to a
scenario. The first activity is the identification of the sequence diagram elements. It is

563 Integrating Natural Language Techniques in OO-Method

Fig. 3. An example

all a matter of recognizing instances, messages and parameters in each use case
sentence. To do this, the information related to the semantic roles of the significant
terms identified with the syntactic patterns is used. In order to guarantee that an
element is described only once, its pre-existence is determined. Therefore, updating
the analysis ontology involves defining a new Sequential Diagram Model element and
linking it to the ontology of the domain significant terms. The description of the
elements of the Sequence Diagram Model and their restrictions makes up an analysis
ontology.

The construction of the sequence diagram is the graphic representation of these
elements. This consists of acknowledging the interaction pattern associated with the
syntactic pattern of each sentence type. An interaction pattern describes the
interchange of messages between two or more objects. After the preliminary version
of the sequence diagram that corresponds to a scenario has been automatically
generated, the stakeholder can modify whatever he considers appropriate. The
diagram update makes it possible to register the information concerned with these
changes and verify their consistency.

3 Transformation Model Based on Patterns

The automatic transformation from the Use Case Linguistic Model to the Sequence
Diagram Model has been conceived and specified following an orientation based on
models. Figure 4 shows the application of the transformation model using the MDA

564 I. Díaz et al.

framework (Model Driven Architecture) [6]. The target and source models that take
part in the transformation are platform-independent models (PIMs). These models
don't display implementation details. The transformation model assumes that the Use
Case Linguistic Model has been syntactically and semantically normalized.

The use of patterns is decisive in the transformation [14, 15]. These patterns allow
us to identify generic conceptual structures and to describe how they can be reused
whenever it is necessary to provide a solution to the same type of transformation.
Each pattern is specified using a basic schema of five elements: name (identification
that distinguishes a pattern from others), source structure or context (informal, formal
or graphical representation that describes the situation in which the transformation can
be applied), target structure or context (informal, formal or graphical representation
of the transformation) and transformation rules (formal specification of a target
structure from a source structure or context). Furthermore, a pattern can describe
specific cases, contain application examples and attach observations. The patterns
have been specified using the following metalanguages: (a) EBNF (Extended Backus
Normal Form) for the specification of lexical component sequences [16] and (b) the
combination of OCL (Object Constraint Language) and UML (Unified Modeling
Language) to describe the participant models in the transformation [5,17].

The types of patterns used in OO-Method are described in the following sections.
The patterns were designed for the Spanish language with the intention of also
considering them in other languages. They were designed following the linguistic
approach to transform the use case text into sequence diagrams.

Fig. 4. Linguistic Transformation Model

3.1 Syntactic Patterns

They allow the recognition of types of lexical component sequences from use case
text [18]. They can be atomic or molecular. Each atomic syntactic pattern allows the

565 Integrating Natural Language Techniques in OO-Method

deduction of a modeled element from generic lexical component sequences. The
composition of two or more atomic syntactic patterns gives rise to a molecular
syntactic pattern. Syntactic patterns of this type facilitate the acquisition of modeled
elements and help to determine how these elements collaborate with each other.
Figure 5 shows a molecular syntactic structure that is described by the "Properties
Chain Pattern". This structure corresponds to a grammatical context of a particular
type of use case process sentence.

3.2 Interaction Patterns

The interaction patterns specify generic types of sequence diagram fragments [5].
Figure 5 shows an interaction structure that is specified by the "Domino Effect
Pattern". The structure is conformed by a border object and two or more domain
objects1. The interaction initiates with a message that is sent by the border object to a
domain object. This message induces the receiving instance to send another message
to another domain instance and so on, until each instance sends a message with its
respective answer.

3.3 Transformation Patterns

The transformation patterns describe how the grammatical contexts (recognized by
the syntactic patterns from use case text) are turned into sequence diagram fragments
(in accordance with the interaction patterns). The next section explains how the
OO-Method transformation patterns are applied.

4 Applying Transformation Patterns

The transformation patterns act within the scope of each use case step. As a result of
the syntactic and semantic normalization and the categorization, each use case step
contains the following information: (a) an identification that indicates its position in
the use case with respect to the other steps, establishing a partial order among them;
(b) a part-of-speech tag according to the predefined grammar for each word in a step;
and (c) the type of the step, depending on the sentence type that it contains: interface
or process sentences (see Section 2.3).

This information allows the transformation pattern to recognize a certain
grammatical context and to deduce the interaction structure that corresponds to it. The
recognition of the grammatical context that underlies a step also implies the
recognition of the transformation pattern that must be applied. Thus, according to the
guidelines established in the transformation pattern, the information relative to the
participants of the interaction is extracted from the grammatical context.

The transformation matches an interaction with each use case step. The interaction
can be compounded by one or more messages and by one or more instances that fulfil
the roles of senders and receiver of these messages. In order to deduce
complementary information on the interaction, it is necessary to make a later analysis

1 Hereafter, we will use the terms "instance" and "object" interchangeably. The definitions of

"border class object" and "entity class object" correspond to the ones given in [8].

566 I. Díaz et al.

Fig. 5. Simple Communication Transformation Pattern from Different Sources

considering groups of two or more steps. This analysis allows us to recognize the
parameters of a message or to determine if it is synchronous or asynchronous. This
analysis is also done to incorporate information relative to conditionals and iterations
(deduced from special sentences).

A sequence diagram is obtained by combining the interactions deduced from the
use case steps. One or more sequence diagrams are matched to each use case. One of
these corresponds to the basic path of the use case. There is also a sequence diagram
for each alternative path. The process of application of a transformation pattern is
described in Figure 5. Some details have been omitted for reasons of brevity.

4.1 Phase 1: Grammatical Context Recognition

The part-of-speech of a use case step allows us to recognize the grammatical context.
A grammatical context is described by a syntactic pattern. A transformation pattern is
specified from this syntactic pattern. Thus, the recognition of the grammatical
structure helps determine which transformation pattern must be applied. In the
example, the "Different Origin Simple Communication Transformation Pattern" was
applied because its grammatical context corresponded to the part-of-speech of the step
(Figure 5).

4.2 Phase 2: Participants and Interaction Type Identification

A transformation pattern always ties a grammatical context (described in a syntactic
pattern) to a generic type of interaction (specified in an interaction pattern). The

567 Integrating Natural Language Techniques in OO-Method

transformation pattern also describes how to deduce information from the part-of-
speech to obtain the elements that participate in the interaction. In the example, the
transformation pattern establishes that the border instance name is the system name
that is being modeled (Figure 5). The names of the other instances are obtained from
the noun phrases contained in each one of the "OF prepositional phrase" in the step.

4.3 Phase 3: Transformation Pattern Application

The transformation pattern uses the grammatical information that is recognized in the
step, the type of interaction, and the participant elements identified. By rewriting, the
pattern infers the interaction contained in this step. This way, a specific fragment of
the sequence diagram of the use case is obtained. The combination of these fragments
(one fragment per step) allows us to complete this diagram.

In the example, the obtained interaction contains three domain instances: "course",
"student" and "mark" (Figure 5). These objects were recognized from noun phrase
content in each "OF prepositional phrase". The canonical form of these noun phrases
was taken into account. Therefore, the label "marks" was substituted by label "mark"
by means of the word normalization function: 〈noun-phrase-i〉Norm. Furthermore, the
name given to the border instance was the same as the name given in the system been
developed (SCS: Studies Control System). The three synchronous messages that were
sent and received by these instances were identified. The order of the messages was
inverse to the order of "OF prepositional phrases" in the step. The second and first
messages allowed the referencing of their respective receiving instances ("course" and
"student"). The third message was responsible for activating the execution of the
"calculates the average" operation in the "mark" instance.

5 The Experience

In principle, the transformation patterns defined were designed through the direct
observation of a sample of sequence diagrams obtained from the use cases of some
academic and commercial information systems. A strategy was devised to validate
these patterns. The strategy permitted us to establish the limitations of the
transformation patterns designed initially and then improve and enrich them. The
automatic validation strategy was supported by a translator developed by way of a
prototype. The following sections make a description of the validation process.

5.1 The RETO-UPV Translator

The characteristics of RETO-UPV (Requirements Engineering TOol of the
Universidad Politécnica de Valencia) were taken into account in the translator
implementation and design [3][19]. This tool supports all the activities of the
Requirements Engineering Phase of the OO-Method (see Section 1). Figure 6 shows
the translator architecture and its interaction with the RETO-UPV components.

The stakeholder must use RETO-UPV to elicit and specify the use cases. This
implies defining the Statement Mission, constructing the FRT and developing the Use
Case Model (see Figure 1). Every use case text is normalized and then every step is
considered as the input of the translator. The first action of the RETO-UPV Translator

568 I. Díaz et al.

is to obtain the tag of each word indicating its part-of-speech. To do this, we used the
MS-Analyze tool which was developed at the Research Centre on Language and
Speech Technologies and its Applications (TALP) at Universitat Politècnica de
Catalunya (Spain) [20]. This tool is responsible for splitting use case text into tokens.
Each token is tagged with its part-of-speech.

Fig. 6. The RETO-UPV Translator Architecture

With the help of dictionaries, a set of grammar rules and the tagged step, the

translator recognizes the structures that correspond to the grammar symbols. This
permits the translator to identify the grammatical context of the step, including the
type (interface or process sentence). The grammatical context determines the
transformation pattern that the translator must apply. The translator must provide
itself with additional information about the Use Case Model so that the transformation
process that indicates the pattern can be made. This process generates the interaction
fragment specification that corresponds to analyzed step as output. Finally, the
RETO-UPV Translator combines the fragments of every use case step until the
sequence diagram specification is obtained. This information is held in XML File.
Then, the RETO-UPV Sequence Diagram Editor displays the graph representation of
this specification.

5.2 Validation

A manual validation of the transformation patterns proposed at the beginning of this
study was made. To do this, the Use Case Model of the Car Rental System (CRS)
following the OO-Method guidelines was developed. After normalization of the use
cases, the Sequence Diagram Model was constructed. Both models were exhaustively

569 Integrating Natural Language Techniques in OO-Method

revised by stakeholders in order to reach a consensus on the results obtained
manually. The sequence diagrams were then compared with the sequence diagrams
generated using the RETO-UPV Translator in order to determine differences and
similarities. Forty-one use cases were analyzed. This included a total of 574 steps of
which only 14% were special (conditionals, iterations, etc.).

The interactions manually obtained were compared with the interactions generated
automatically for each step of the CRS use cases. The comparison had to establish
whether automatically generated interactions were the one expected by stakeholders.
This implied determining if both interactions were equal, equivalent or different. We
considered them equal when they were compounded by the same instances and the
messages that these instances exchanged. We considered two interactions equivalents
if both represented the same interaction goal even though the instances and messages
weren't the same.1 If the interactions were neither equal nor equivalent, we considered
them to be different. Using these criteria, 66% of the transformation patterns, 23%
were equivalent and only 11% were categorized as different.2 This experience allowed
us to establish which of the transformation patterns had to be improved or rejected. It
was also possible to identify new transformation patterns of the grammatical contexts
that were not considered by the designed ones initially.

6 Conclusions

In this paper, a linguistic approach for the automatic deduction of sequence diagrams
from the use case textual specification has been presented. The deduction process has
been defined following a software development approach that is based on the Use
Case Model transformation in a Sequence Diagram Model. The transformation
assumes the semantic and syntactic normalization of the use cases. This linguistic
approach has been integrated into the OO-Method, a software automatic production
environment. To do this, a translator was developed that was incorporated into the
Requirements Engineering tool of OO-Method. The translator uses a natural language
tool to provide each use case sentence with the necessary information to recognize its
grammatical context. This context determines the type of transformation pattern that
the translator must apply to obtain the interaction that corresponds to each sentence.
The sequence diagram is obtained by the ordered combination of all the interactions
of the use cases. An experiment was designed and executed that allowed us to validate
the transformation patterns used. Actually, we are working on the definition of new
transformation patterns and the design of an evolution strategy of sequence diagrams
to guarantee the bidirectional traceability between sequence diagrams and their
corresponding use cases to improve and to enrich the transformation process defined.

Acknowledgments. This work has been supported by the research projects CICYT
TIC2003-07158-C04-03 and ICT EU-India (ALA/95/23/2003/077-054); it has been

1 This decision was taken by stakeholders and who designed the transformation patterns.
2 The interactions that did not come from grammar contexts recognized by a transformation

pattern were also considered like different interactions. In these situations, the translator
supposed that the interactions were formed by a single self-message on a border object.

570 I. Díaz et al.

financed also by Consejo de Desarrollo Científico y Humanístico of the Universidad
Central de Venezuela.

References

1. Pastor O., Gómez J., Insfrán E., Pelechano V.: The OO-Method Approach for Information
Systems Modeling: from Object-Oriented Conceptual Modeling to Automated
Programming. Information Systems 26 (2001): 507-534.

2. Pastor O., Ramos I.: Oasis 2.1.1. A Class-Definition Language to Model Information
Systems Using and Object-Oriented Approach. Departamento de Sistemas Informáticos y
Computación. Universidad Politécnica de Valencia. España, 1995.

3. Insfrán E., Pastor O., Wieringa R.: Requirements Engineering-Based Conceptual
Modeling. Requirements Engineering, 7(2), 61-72. Springer-Verlag. March 2002

4. Díaz I., Losavio F., Matteo A., Pastor O.: A Specification Pattern for Use Cases.
Information & Management, Vol. 41/8 (2004). Pp. 961-975. Elsevier Science B.V.

5. Object Management Group: Unified Modeling Language Specification: Superstructure.
Version 2.0. August 2003. http://www.omg.org/uml.

6. Object Management Group: MDA Guide. Version 1.01. Jun 03. http://www.omg.org/uml
7. Métais E.: Enhancing IS Management with Natural Language Processing Techniques. Data

& Knowledge Engineering. 41(2002), 247-272. Elsevier Science B.V.
8. Jacobson I., Christerson M., Jonsson P., Övergaard G.: Object-Oriented Software

Engineering. A Use Case Driven Approach. Addison-Wesley, 1992.
9. Díaz I., Pastor O., Moreno L., Matteo A.: Una Aproximación Lingüística de Ingeniería de

Requisitos para OO-Method. Memorias del VII Workshop Iberoamericano de Ingeniería
de Requisitos y Desarrollo de Ambientes de Software (IDEAS'04). Perú. Mayo, 2004.

10. Díaz I., Moreno L., Pastor O.: Traducción de Casos de Uso en Patrones de Interacción de
Instancias: una Aproximación Lingüística. Memorias de las 3eras. Jornadas
Iberoamericanas de Ingeniería de Software e Ingeniería del Conocimiento. Chile, 2003.

11. Rolland C., Ben-Achour C.: Guiding the Construction of Textual Use Case Specifications.
Data & Knowledge Engineering 25(1998), 125-160. Elsevier Science.

12. Aussenac-Guilles N., Biébow B., Szulman S.: Revisiting Ontology Design: a Method
based on Corpus Analysis. Proceedings of the 12th European Workshop on Knowledge
Acquisition, Modeling and Management (EKAW 2000). Pp. 172-188. Springer-Verlag.

13. Velardi P., Fabriani P., Missikoff M.: Using Text Processing Techniques to Automatically
Enrich a Domain Ontology. Proceedings of the International Conference on Formal
Ontology in Information Systems (FOIS'2001). Pp. 270-284. ACM C. P.

14. Fowler M. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.
15. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns. Elements of Reusable

Object-Oriented Software. In Professional Computing Series, Addison-Wesley, 1992.
16. International Standard ISO/IEC 14977. Extended Backus-Naur Form. 1996.
17. Object Management Group. OCL 2.0. October 2003. http://www.omg.org/uml.
18. Juristo N., Moreno A., López M. How to Use Linguistic Instruments for Object-Oriented

Analysis. IEEE Software Vol. 17 Issue 3. May/June 2000. Pp. 80-89.
19. Requirements Engineering Tool (RETO-UPV). Universidad Politécnica de Valencia.

DSIC. http://retoweb.europe.webmatrixhosting.net/home.aspx
20. Carreras X. Padró L. A Flexible Distributed Architecture for Natural Language Analyzers.

TALP Research Center Departament de Llenguatges i Sistemes Informàtics Universitat
Politècnica de Catalunya, Barcelona, España.

571 Integrating Natural Language Techniques in OO-Method

	Introduction
	OO-Method Linguistic Approach
	Syntactic Normalization
	Semantic Normalization
	Categorization
	Transformation

	Transformation Model Based on Patterns
	Syntactic Patterns
	Interaction Patterns
	Transformation Patterns

	Applying Transformation Patterns
	Phase 1: Grammatical Context Recognition
	Phase 2: Participants and Interaction Type Identification
	Phase 3: Transformation Pattern Application

	The Experience
	The RETO-UPV Translator
	Validation

	Conclusions
	References

